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The Zirconium-lined cladding fuel and Copper-barrier fuel developed
as PCI-remedy fuels by General Electric Company were tested in the Nuclear
Safety Research Reactor (NSRR) to examine the fuel behavior under the

reactivity initiated accident (RIA) conditions.

Besides the above two remedy fuels, the currently used BWR type fuel
was also tested for reference.

Slightly higher cladding surface temperature was indicated in the
Copper-barrier fuel than in the Zirconium-lined and the reference fuel.
However, no significant differences were observed between the three in

failure threshold and fuel failure behavior.
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1. Introduction

Irradiation of GE-type fuel rods in the NSRR (Nuclear Safety Research
Reactor) was requested by the U,S. NRC to investigate the fuel behavior
of the PCI remedy fuels under the reactivity initiated accidental condi-
tions (RIA) in accordance with the research participation and technical
corporation with the U.S. NRC and the JAERI.

Three types of fuel rods, currently used GE-reference type fuel rod,
Zr-lined cladding fuel rod and Cu-barrier cladding fuel rod, were supplied
by the U.S. NRC to the JAERT and tested in the NSRR. Total of 21 fuel rods
were irradiated until October, 1979, with the NSRR standard water capsule
as the first stage of tests.

Energy deposition to the fuel rods was in the range of 150 to 400
cal/g-U0, and fuel failure behavior and failure threshold were especially

investigated. Summary of the test results is presented in this paper.

2. Experimental Method
2.1 Test facility

The NSRR is a modified TRIGA-Annular Core Pulse Reactor having a
large experimental cavity in the core. Figs. 1 and 2 show the general
arrangement of reactor facility and the cross section of the core.

Pulsing power is realized by quick withdrawal of transient rods and
the maximum reactor capabilities in pulse operation are the peak reactor
power of 21,000 MW, total energy release of 117 MW-sec with the pulse
width of 4.4 msec as shown in Fig. 3. The major characteristics of the

NSRR is shown in Table 1.

2.2 Test capsule

In these experiments, the NSRR standard water capsule was used.
Fig. 4 shows the capsule in which the test rod is supported at the center.

Cooling water is filled up to 22 cm below the top of capsule flange.

2.3 Test fuels

The three types of fuel rods were tested. One is the currently used

GE-reference type fuel rod and the others are Zr-lined cladding fuel rods



JAERI-M 8836

and Cu-barrier cladding fuel rods which are newly developed as PCI remedies.

Zr-lined cladding fuel rod has a zircaloy cladding with a metallur-
gically bonded layer zirconium (+75 pym) on the inner surface, and Cu-
barrier cladding fuel rod has a zircaloy cladding with a very thin layer
(w5710 ym) of copper plated on the inner surface. Schema and design

summary of fuel rods tested are given in Fig. 5 and Table 2.

2.4 Instrumentation

Major instrumentations in the capsule are indicated in Fig. 4.

Cladding surface temperatures were measured by very thin bare-wire
Pt/Pt-137Rh thermocouples attached to the cladding surface by spot welding.
Pressure pulses in the capsule were measured by strain gauge type pressure
transducer at the bottom of the capsule. Upwards velocity of water column
was measured by a float type movement sensor, and the transient displace-
ment of fuel rod by LVDT (Linear Variable Differential Transformer).

Characteristics of the sensors are summarized in Table 3 and the

location of the cladding surface thermocouples is shown in Fig. 6.

3. Test results and discussion

The tests consist of two categories, i.e. test for evaluation of
energy deposition to the fuel rod and test to obtain information about
fuel failure behavior and fuel failure threshold. Eight rods for GE-
reference type fuel, seven for Zr-lined fuel, and six for Cu-barrier fuel
were irradiated.

The test conditions and summary of the results are listed in Tables &
and 5.

3.1 Energy deposition and power distribution

The energy deposition to the fuel rod was evaluated by the method of
absolute measurement of fission products, 137 Cs, 140 Ba, and Zr in
pellets after pulse irradiation. The results are shown in Table 6.

The core release energy in Test No. 501-1 was 49.6 MW-sec, then the
radially averaged energy deposition at axial center position to the GE-
fuel rod was 4.21 cal/g-U0,-MW-sec.

Axial power distribution measured by r-scanning and radial power
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distribution calculated are shown in Figs. 7 and 8, respectively.

3.2 Fuel behavior

The appearance, X-ray photographs and neutron radio-graphs of
irradiated fuel rods are shown in Figs. 9, 10 and 11 and magnified view

for the typical portion of failed fuel rods are shown in Appendix A.

Reference type fuel (Test series 501): Reference type fuels were
tested at energy deposition of 169 cal/g-U0, (Test No. 501-2), 209 (501-1),
257 (501-3), 277 (501-10), 284 (501-4), 305 (501-7) and about 390 cal/g.UO
(501-8 and 501-9).

In Test No. 501-2,(169 cal/g-U0,), the cladding was partially oxidized
and it is concluded that the DNB condition just occurred.

The fuel rod-in Test No. 501-1 (209 cal/g'UOZ) was fully oxidized
and, in Test No. 501-3 (257 cal/g-U0,) and 501-10 (270 cal/g-U0,) oxide
flakes were observed in both rods, but neither of the fuel rods failed.

In Test No. 501-4 (284 cal/g-U0,), melted cladding / or fuel was pushed
out from the cladding at the lower portion of the rod (Appendix A-1).
Relatively large ballooning of the cladding was observed at the lower
portion of the rod and several holes were at the thermocouple locations.

The fuel rod in Test No. 501-7 (305 cal/g-UOz) was broken into two
pieces by the embrittlement of cladding during disassembling. Some void
space was observed in the fuel at the fracturated portion (Appendix A-2).
In the X-ray photograph and the neutron radiography (Fig. 10(1) and Fig.

11 (1), extensive movement of fuel pellets was found

In Test No. 501-8 (393 cal/g-U0,), the cladding had extensively
melted. The fuel rod was fractured into three pieces during disassembling.
Melted fuel had adhered to the lower failed portion of the rod, but almost
all of the fuel was expelled from the rod as seen in the neutron radio-
graphy (Fig. 11(1) and fragmented. Extensive oxidation of cladding at the
fuel plenum portion and shortening of the spring were observed (Fig. 10(1)
and 11(1).

The transient records of capsule pressure and water level sensor
(Appendices B-16, B-17 and B-18) indicate that the fuel failure occurred
just after the power burst.

The major difference of fuel behavior in Test No. 501-8 from that of

the NSRR standard fuel rod tests under such the high energy deposition
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tests is that the fuel meat was expelled and fragmented but the cladding
did not fragment.

Fragmentation of fuel and cladding resulted from melting of U0,
pellets and cladding. However, in case of the GE fuel rod tested, it is
supposed that no fragmentation of the cladding might result from
that the melted fuel was expelled early from the cladding so that the
cladding temperature rise was limited and significant melting of cladding
ded not occurr. Because extensive pressure increased due to the .
evaporation of UO; is expected at the lower end of fuel stack, where is
the maximum power peaking position,*l) since the gas plenum of lower
portion of the rod is very small compared with that of the NSRR standard
type fuel rod as shown in Appendix D-1.

In Test No. 501-1, therefore, a fuel rod wrapped with the cadmium
(Cd) sheet at the both ends of fuel stack was irradiated to investigate
the effects of pressure generation at the edge of fuel stack. As the
results, the fuel and the cladding had fragmented in the same manner as

that of the NSRR standard type fuel rod as seen in Appendix D-2,

Zr-lined fuel (Test series 502): Zr-lined fuels were tested at
energy depositions of 171 cal/g-U0, (Test No. 502-2), 208 (502-1),
287 (502-6), 304 (502-4), 309 (502-4b), 313 (502-3) and 394 (502-5).

The fuel behaviors of Zr-lined rods are almost the same as those of the

GE-reference type rods except the fuel rod in Test No. 502-6 fractured
into two pieces and the fuel rod in Test No. 502-4 did not fail even
though the energy deposition was over 300 cal/g-U0,.

Test No. 502-4b was the reproduceability test of Test No. 502-4,
The irradiation condition was the same as that of Test No. 502-4, but the
fuel rod failed. The state of failure was almost similar manner to that
of the reference type fuel rod in Test No. 501-7 which was subjected to

the same energy deposition.

*1) Axial and radial power peaking factors are 1.28 and 1.30 (Figs.6 and 7,
respectively, and then the energy deposition at the edge of the
lowest pellet of fuel stack is 666 cal/g+U0, when a radially

averaged energy of 400 cal/g-U02 is deposited at the axial center.
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Cu-barrier fuel (Test series 503): Cu-barrier fuels were tested at

energy deposition of 169 cal/g+U0, (Test No. 503-2), 201 (503-1), 280
(503-3b), 283 (503-3), 304 (503-4) and 392 (503-5).

The appearances of rods in Test Nos. 503-1 & 2 were almost the same as
those of reference rods but, in Test No. 503-3, the rod was broken into
two pieces. Test No. 503-3b was the reproduceability test of Test No.
503-3. The fuel failure behavior was almost the same as that of Test No.
503-3 although the rod had not fractured. The fuel rods in Test Nos.
503-4 & 5 failed in a similar manner to the reference type rods.

In general, extent of damage by appearance was rather milder in the
GE fuel rods tested than in the NSRR standard fuel rods. This may
probablly have resulted from the larger cladding thickness which
secured higher rigidity of the cladding during RIA transient. In the NSRR
test with thinner cladding rods in which cladding thickness was reduced
to about 65 % of the standard, failure threshold has decreased by about

50 cal/g*UO, and more intensive damage to the rod was observed.

3.3 Failure threshold

Failure thresholds for each type of fuel rod are compared in Fig. 12
with that for the NSRR standard fuel rod.

The failure threshold energy for the reference fuel rod and both the
remedy fuel rods is 260 to 280 cal/g+UO, which is equal to or a little
higher than that for the NSRR standard fuel rod. A single exception is
that a Zr-lined rod did not fail at 300 cal/g-UO, as described in the

preceeding section.

3.4 Cladding surface temperature

The maximum cladding surface temperatures at the axial center posi-
tion are shown in Fig. 13 with the data for NSRR standard fuel rods.
Transient records are attached in Appendices B-1 to B-15.

The cladding surface temperatures at an energy deposition of 170
cal/g-U0, indicate DNB condition occurred in each case.

The maximum cladding surface temperatures in case of the Cu-barrier
fuel rods are higher than those in the GE-reference fuel and the Zr-lined
fuel rods at lower energy depositions. It is considered that these
differences may be the result of the good heat conductivity in the fuel-

cladding gap due to melting of Cu-barrier and it is reasonable that this
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effect disappeared at high energy depositions, because the zircaloy base
reached melting temperature promptly at the energy of near failure
threshold.

3.5 Deformation of cladding

Cladding radial deformation

Permanent radial deformation of cladding was measured by the profile
meter and measured data are attached in Appendix C.

Fig. 14 shows the maximum and average deformation at the axial center
of fuel rod. Permanent deformation increases with increasing energy
deposition and is supposed to be caused by the thermal expansion of the
fuel pellet since the deformation measured agrees with the value calculated
by the thermal expansion of fuel pellet.

However, as seen in the figures of Appendices C-3 & C-5, the large
ballooning of cladding is observed in Test Nos. 501-4 & 502-4 of which
energy deposition is 280 to 300 cal/g-U0O,. As discussed in the preceeding
section 4.2, the energy deposition at the edge of fuel stack might exceed
450 cal/g+U0,. Therefore, the ballooning seems to be the result of in-
creasing of the fuel rod internal pressure due to evaporation/or melting

of fuel pellets at the edge of fuel stack.

Cladding axial deformation

In several tests, measurements of the cladding axial deformation,
i.e. elongation, were made with the linear variable differential
transformer (LVDT). Transient records are attached in Appendices B-19 to
B-25 and the maximum elongation for each tests is compared in Fig. 15
with the data of the NSRR standard fuel rod tests.

Time historical response of the cladding elongation responds to that
of the cladding temperature and the maximum value of elongation agrees
well with the thermal expansion of cladding evaluated by the maximum |
cladding surface temperature, therefore, it is concluded that the elonga-

tion of cladding depends strongly on the cladding temperature behavior.

3.6 Mechanical energy release

Capsule internal pressure and upward velocity of water column were
measured in the tests of 501-8, 502-5 and 503-5 where the energy deposi-
tion was about 400 cal/g-UO,.
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Generation of capsule pressure and jump-up of water column were
recorded just after the power burst as seen in Appendix A. Maximum
value of capsule pressure is 1.5 to 3.4 bar and maximum value of water
column velocity is 2.8 to 5.5 m/sec. Those values are almost the same as
those of the NSRR standard fuel rod tests at the same energy deposition as
shown in Fig. 16.

If it is assumed that the water column moves upward essentially as
a solid body, the mechanical energy generated by the fuel failure can
be evaluated by adding the two components, i.e. the kinetic energy of the
water column and the energy imparted to the air contained in the top part
of the capsule by compression since the potential energy of water column
and the strain energy contained within the capsule wall are negligible.

The kinetic energy of the capsule water column is calculated by the
equation

Ek 2 (1)

1

N
g
c

where
Ek ; Kinetic energy of water column
m 3 mass of upward moving water column

u 3 velocity of water column

The energy imparted to the air by compression is given by the equation,

if the air is compressed adiabatically,

\Y
I pdv
Vo

"

Ec

?%I (PoVo - PV) (2)

where

Ec ; energy imparted to the air

Po ; initial pressure of air (1 atm)

Vo ; initial volume of air space in the top part of the capsule
(2486 cm3)

P ; air pressure at time when the air compressed to volume V

; volume of the air compressed by the upward movement of the

water column,

Y 3 Cp/Cv of air (1.4)
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In the equation (2), P and V are given by the equations

P=ro @D (3)
V=A (Lo - h) (4)

where
A ; cross-sectional area of the capsule (113 cm?)
Lo ; initial hight of air space (22 cm)

h ; upward displacement of water column

Assuming that the water above the top of the fuel moves as a solid body,
the mass of water column is 2.26 kg (the height of the water column is
about 20 cm) and, then, the mechanical energy generated by the fuel
failure is calculated from the data of the velocity and the hight of water
column recorded by the velocity transducer. The energy conversion ratio

defined by the following equation is then obtained.

E
n = EE (5)

wher
n ; the energy conversion ratio
Em ; amount of mechanical energy (Ek + Ec)

En ; fission energy in the fuel up to time when Em is evaluated,

The mechanical energy and conversion ratio, which are evaluated at the
time of peak water column velocity and of maximum water level, are

summarized in Table 7.

4, Conclusions

Three types of GE fuel rods, currently used reference fuel rods, Zr-
lined cladding fuel rods and Cu-barrier cladding fuel rods, were tested
in the NSRR. A total of 21 tests at room temperature and atmospheric
pressure have been completed so far.

The experimental results are summarized as follows;

(1) Failure threshold energy of GE-reference fuel rod is 260 to 280
cal/g-U0, which is equal to or a littler higher than that of NSRR

standard rods.
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(2) Zirconium-lining had no influences on thermal behavior, nor failure
threshold energy.

(3) Copper-barrier caused higher cladding temperatures at lower
energy depositions, but had no evident influences on failure
threshold.

(4) 1In the view point of fuel failure behavior at the RIA conditions, no
significant differences between GE-reference fuel rod and newly

developed Zr-lined and Cu-barrier fuel rods are observed.
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Table 1 Major characteristics of NSRR

Reactor Type; Modified TRIGA-ACPR (Annular Core Pulse Reactor)
Reactor Vesgel; 3.6m(wide) X 4.5m(long) X 9m(deep) open pool
Fuel;

Fuel type 12 wt® U-ZrH fuel

Fuel enrichment 20 wt% U-235

Clad material Stainless steel

Fuel diameter 3.56 cm

Clad diameter 3.76 cm 0.D.

Length of fuel section 38 cm

Number of fuel rods 157

Equivalent core diameter 62 cm

Control Rods;

Number 8 (including 2 safety rods)
Type Fuel followered type
Poison material Natural B4C

Rod drive Rack and pinion drive

Transient Rods;’

Number 2 fast transient rods and
1l adjustable transient rod

Type Air followered type

Poison material 92% enriched B,C

Rod drive . Fast : Pneuratic

Adjustable: Rack and pinion & pneumatic

Core Performance;
a) Steady state operation
Steady state power 300 kW

b) Pulse operation

Max. peak power 21,100 Mw

Max. burst energy 117 MW-sec

Max. reactivity insertion 3, 43% 4k ($4.67)

Min. period 1.12 msec

Pulse width 4.4 msec (1/2 peak power)
Neutron life time 30 usec

Experiment Tube;

Inside diameter 22 cm
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Table 2 Characteristics of GE fuel rods

Type of fuel rods tested
GE reference type fuel rod ( 8x8 BWR type )
Zirconium lined fuel rod ( Zr- lined )
Copper barrier fuel rod ( Cu- barrier )

Cladding material Lr-2

Fuel pellets
Enrichment 10% U-235
Density 95% T.D.
Geometry

Dimension
Pellet 0.D. 10.57 mm
Cladding 0.D. 12.52 mm
Cladding wall thikness 0.86 mm
Gap width 0.115 mm

Zr-liner thickness ~10 % of wall thickness
Cu-barrier thickness ~0.01 mm

Table 3 Sensors for transient measurement

Measuring Item Senser Type Heasuring Range | Response Frequency Remarks
Cladding Surface | Pt-Pt.132Rh T/C " | Room Temp. Spot welded to the
Temperature Wire Diameter 0.2 mm¢ ~1700°C ~200 Hz Cladding Surface
Fuel Interﬁal Flash Diaphram Type 2 resonance freq.

Pressure Strain Gauge Transducer 0500 kg/cm 170 kHz

Capsule Internal " 0~ 200 kg/cm? responce freq.

Pressure 110 kHz
Water Velocity Float Type Transducer 0.1+ 20 m/s

Fuel Axial

Displacement LVDT ~ 310 mm .~ kHz
Cladding Axial LVDT ~ +10 s . ~l Kiz

Displacement
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Fig. 3 Histories of reactor power and core energy
release in case of maximum reactivity insertion
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Fig. 4 Standard water capsule
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Top End Fitting Bottom End Fitting

1 SO S
alelel ot o)
Iry Spacer Spring Holder SST Disk Pellet SST Disk
Spring Iron Slug Cladding

Fig. 5 GE fuel element

Core center

TC2 4 TC4 : Center of fuel stack

Fig. 6 Location of thermocouples for cladding surface temperature
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Fig. 7 Axial power distribution : Test No. 501-1
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Fig. 8 Pellet radial power distribution (JAERI-M5613)



JTest No.

501-2

JAERI - M 8836

Energy
Deposition

(cal/q.u02)

169

501-1

209

257

501-7

277 _

305

501-8

393

394

Fig. 9 (1)

Post-test photographs of Reference fuel

rods
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Test No. Energy
Deposition
(cal/g.U02)

502-2 171

502-6 287

502-4 : _ 304

502-4b 309

502-3 313

502-5 - 394

Fig. 9 (2) Post-test photographs of Zr-lined fuel rods




Test No.

JAERI-M 8836

Energy
Deposition

(cal/g.u02)

169

503-1

201

503-3b

503-3

280

283

304

503-5

39

Fig. 9 (3) Post-test photographs of Cu-barrier fuel rods
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Deformation (mm)
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0.5

0.4

0.3
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0.1

JAERI-M 8836

= Test No. | Max. Average
501 ) o
: 502 A A
— 503 ] O
===-=Calculated by thermal
expansion of fuel pellet
B ®
A
B o
A
[ ] ///
= ///
//’ o
| -
-
= " A
- 3
[Ty O
sl ] ! |
159 200 250 300

Energy Deposition (cal/g. U0,)

Fig. 14 Max. and averaged radial deformation of fuel rods at

Max. Cladding Elongation (mm)

axial center of the rod.

ONSRR STD fuel rod
O GE ref-rod

AGE Zr-lined rod
BGE Cu-barrier rod

---Calculated by therma
expansion

0 100 200 300

Energy Deposition (cal/g.UO5)

Fig. 15 Max. cladding elongation
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Q
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a 20} |
o ~® NSRR STD FUEL ROD o
- O GE FUEL ROD
g ~10F [ ]
[
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> 0 4 —8- | R
i
3 20f °
>

0 °
g8
58 .
M o]
8 8
2 0 A T e— N 1

300 400 ‘ 500

Energy Deposition (cal/g-U0y)

Fig. 16 Energy deposition vs. average water column
velocity and max. capsule pressure
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Appendices

A Magnified views of fuel rods at failed portions

B Transient records during irradiation
B-1 ~15 Cladding surface temperature
B-16418 Water column velocity and capsule internal pressure

B-19125 Cladding elongation
C Profile measurement of cladding radial deformation

D NSRR standard fuel rod test
D-1 Schema of NSRR standard test fuel rod
D-2 Appearance of post-test fuel rods in NSRR standard

fuel rod tests related with energy deposition
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1900

1000

CLADDING SURFACE TEMPERATURE (°C)

1900

CLADDING SURFACE TEMPERATURE (°C)
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1000

TIME (sec)

B-1 Transient records of cladding surface temperatures in

Test No. 501-1 (Reference rod, 209 cal/g.uo,)

T/C #1

_ " #2
I 43
g g
n #5

" 46

. e

O T ea re ey RS

1 1 2 | 1 1 n 1 1

5
TIME (sec)

B-2 Transient records of cladding surface temperatures in
Test No. 501-2  (Reference rod, 169 ca]/g.UOz)
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1000

1900

1000

JAERI-M 8836

TIME (sec)

B-3  Transient records of cladding surface temperatures in
Test No. 501-3  (Reference rod, 257 ca]/g.UOz)

TIME (sec)

B-4  Transient records of cladding surface temperatures in
Test No. 501-4 (Reference rod, 284 ca]/g.UOz)
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B-5 Transient records of cladding surface temperatures in
Test No. 501-7  (Reference rod, 305 cal/g.UOZ)
1900

—

TIME (sec)

Transient records of cladding surface temperatures in
Test No. 502-1 (Zr-lined rod, 208 ca]/g.UOz)
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B-7 Transient records of cladding surface temperatures in
Test No. 502-2 (Zr-1ined rod, 171 ca]/g.UOZ)
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B-8
Test No. 502-3

Transient records of cladding surface temperatures in

(Zr-lined rod, 313 ca]/g.UOz)
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1900

1000 |

B-9

TIME (sec) .

Transient records of cladding surface temperatures in

Test No. 502-4 (Zr-1ined rod, 304 ca]/g.UOz)

J\,\;\r — T/t #H
3 — R
01 UL“A%»P_ ::1:? : zi

TS LI N s A e e ——

5 10
TIME (sec)

Transient records of cladding surface temperatures in
Test No. 502-5 (Zr-lined rod, 394 ca]/g.UOz)
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B-11  Transient records of cladding surface temperatures in
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B-16 Transient records of Test No. 501-8
(GE-reference rod, 393 ca]/g.UOZ)

Water Column
Velocity (m/s)

Cladding Surface
Temperature (°C)



JAERI -M 8836

180 200

160

100
Time (msec)

80

60

20

N
=)
=
(s/w) A31o013A (3o) @d4njesadus) = (s/w) A3190(34 (2o) @unjeaadusy
uwn oy J93eM 92e4.ns Buippel) = uun 0y 4a3eM 350445 Buippe(d
(&
<
e ¥ o o s 3 .
o =)
[ce) o N
— ~
o
[
1o .m |
i
g5 B
— wn (=]
& o o i<
8 w . S
— .m m
—
e
(o] (72} .
S D
T
: 3 S
w
©
o }
< o
Q
—— o bt
TN o —
o
i L I i i i L X N ..nl.‘.
~ (wd) [9Ad] (aeq) ™) g (wo) |3A37 (aeq) (M9)
uun |0y Ja3em 34nssadd alnsde)  U3MO4 103003y ~ WUNL0) JoreM  aunssaug BLnsdey  JaMog 403083y

B-17

B-18 Transient records of Test No. 503-5(Cu-barrier rod, 392 ca]/g.UOz)
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B-19  Transient record of cladding elongation in Test No. 501-2
(Reference rod, 169 ca]/g.UOz)
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B-20 Transient record of cladding elongation in Test No. 501-4
(Reference rod, 284 ca]/g.UOz)
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B-24  Transient record of cladding elongation in Test No. 503-1
(Cu-barrier rod, 201 cal/g.U05)
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B-25 Transient record of cladding elongation in Test No. 503-3
(Cu-barrier rod, 283 cal/g.U0,)
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D-2 Appearance of post-test fuel rods in NSRR standard fuel rod
tests related with energy deposition




