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The effect of the longitudinal electrostatic field on the energy
conversion efficiency is investigated by use of a l-dimensional FEL
amplification cbde. It is found that the repulsive electrostatic Inter-
action prevents the periodic bounce motion of trapped electrons in the
ponderomotive potential especially in the high current Raman operation
regime. The irregular rotation of the trapped electron increases the
untrapped ones, which obtained the kinetle energy from the radiation
field. Resultantly, the energy conversion efficiency averaged over a
long wiggler distance stays in a lower level than that predicted by the
trapping argument. It is also found that the finite beam energy spread
reduces the electrostatic force in the nonlinear trapping stage. The
reduction of the electrostatic force recovers the periodic electron
bounce motion and the associated amplitude oscillation of the radiation

field.
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1. Introduction

Recently. high power wave generation in the range of millimeter
wavelength has been extensively investigated by use of the Free Electron
Laser(FEL)‘z). One of important key issues of FEL is the energy conversion
efficiency from a relativistic electron beam energy to a radiation fieid
energy. Theoretical investigation, 1.e. the trapping argument, indicates
that a maximum conversion efficiency after the saturation of a linear growth
of the radiation field increases with a beam current density I, according
to the relation np=I}/> for a fixed beam energy Ebiléy Numerical simulations
also show the above relation in a weak current Compton regime where the
electrostatic beam mode 1is less important5ﬁ). However, the current
dependence of the conversion efficiency in a high current Raman regime is
not systematically examined. In the Raman operation regime, FEL
amplification isrcharacterized by the electrostatic beam mode excitation.
That 1is, the longitudinal electrostatic potential ¢.s modulates the
ponderomotive ﬁotential $, and affects a linear growth rate of the radiation
field, Since the electrostatic force fuos(=0%.s/9z} becomes comparable to
the ponderomotive bunching force f,(=0%,/3z) with increasing a beam current
density, the energy conversion efficiency should be determined by taking into
account the detailed behaviour of electrons which are influenced by the
electrostatic field. T.M. Antonsen recently pointed out an importance of
the electrostatic field in a tapered wiggler FEL” . He analytically found
that the repulsive electrostatic field leads the particle spilling from a
ponderomotive potential well and a deceleration rate of the wiggler parameter
is limited to obtain the high energy conversion efficiency.

In the paper, we analytically derive the ratio between the electrostatic
force fes and Lhe ponderomotive one fp, i.e. fes/fp. It is found that the

electrostatic force fee closely reléted to the electron phase and/or the

electron distribution in a pondercmotive potential well and plays an
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important role in the nonlinear trapping stage even if fes is small compared
with fp in the linear stage. In order to examine the above effect, we
investigate the particle dynamics in the wiggler field over the wide range
from the lower current Compton regime to the higher current Raman one by
using a l-dimensional FEL amplification code, where the electrostatic
interaction 1s taken into account. Here, we introduce a conversion
efficiency averaged over the long wiggler distance (n) as a realistic
parameter, in addition to a maximum conversion efficiency np.x which is used
'in  the wusual FEL analysis}ﬁ). It is found that the longitudinal
electrostatic interaction prevents the regular periodic bounce motion of
the bunched electron in a ponderomotive potential well especially in the high
current Raman regime .and suppresses the amplitude oscillation of the
saturated radiation power. Resulatantly, an averaged conversion efficiency
{(n) stays in a iqwer level than that expected from the trapping argument.
We also analyze the effect of the axial beam energy spread. We find that
the finite axiai beam energy spread plays a role to reduce the electrostatic
force.

In 2, we derive an analytical expression for f../f, to estimate the
magnitude of the electrostatic force. Basic equations for the numerical
calculation and numerical methods are described in 3. In 4, results of
numerical analyses are presented and discussed. The effect of the axial

energy spread is also discussed in 4-2. 5 summarizes our conclusions.

2. Analytical Estimate for fe/f, in Trapping Stage

The physical model we employ here is the 1-dimensicnal relativistic
electron beam interacting with the spatially periodic helical wiggler field,
the radiation field and the space charge field, which are described by using

the vector and scalar potentials as follows
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Aw(z)=—Aw(ex cos ky+ey sin sz), (1)
Az, ) =4A:(2) {ex cos [ fo k.(z")-wt }dz —ey sin I: j;) k(2" )-at }dz ' {(2)
Bes(z,1) =B (2} cos |: fozk(z")ﬂmf :ldz.', (3

vhere ky and Aop(=B./ky) are the wave number and the amplitude of the helical
wiggler field, and are taken to be constant in the analysis of this section.
As(z) and (=) are slowly varying part of the vector and scalar potentials,
k.(2) and k(z) are corresponding wave numbers, and « is the wave frequency.

The Hamiltonian of such a particle is given by

1/2_

H= { m2c +Ppl+e?(Ao(2) +As(z, 1) P } /“—ed (=, 1), (4)

where p, is the canonical momentum in an axial direction. In Eg.(4), zero
transverse cancnical momentum, i.e. p.=0, is assumed. The axial equation
of motion for an electron is obtained from Eq.{4) as dp./dz=fp+fes, where

fo=ed®,/0z and fes=edPes/3z. The ponderomotive force f, is given by

e’do 3 '
fo = —mc‘;g[ As(z) cos ¥z, t) 1, (5)

-1/2 is the total kinetic energy of an electron and

where Ymczs(l—vz/cz)
z

Yz, bty = [)[k+(z')+kw]dz'ﬁwt represents an electron phase with respect to

the ponderomotive potential. In deriving Eq.(H), we assume the condition

Ap»As. The electrostatic force fes is derived from Eq. (3} as

fos = 2222202 cos 1k (2)8(2) sin v, (5)
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where w|(z,t)=£)k(z')dz'-wt represents an electron phase with respect to
the electorostatic field. 1In Eq.(8), a®/8x and ¢{z) are evaluated from the

Poisson equation described by Coulomb gauge

2
S8 o[ B sinbi+k(z)0(2) cos i | =4na(z, ), (7

where J,(z,t) is the axial beam current density given by

,\]

‘ {z. to)
Jz(z,t _embyg t-7;(z.t; _EﬁEL_L;ﬁ.
z ) NT ; [ LJ( JO) ]I'Uzj(zethH
Here, N1 is the total number of electron within an interaction region of
length L and np denotes the electron beam density. 7;(z,{p) represents the
time of j-th electron at position =z which entered the interaction region at

. ' =

time t;o, 1i.e. T;Etjg+l;dzﬂhkjﬁi,tﬂﬂ. Then, electron phases, ¥ and ¥,

are given by

Yty - do fo[ (2 s T2 &)
Wiz t) = o + foz[uz')—vz(wz,) Ja, ©)

where yp=-1tpw denotes the initial electron phasé. Assuming the periocdicity
with respect to the time interval T=27/w, we average Fq.(10) over the time

interval T and obtalin equations for a®/6z and k¢ as follows

‘3%" = —2§Em<vzosinwl>» (10
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e ]

ke — 22 (vo0cos¢1). (1
we _

Here, am2(4ﬁnb€%AH)V2 is the plasma frequency and vz represents an axial
electron velocity at i=tjo. In Egs.(10) and (11), { ) denotes an average
over the initial beam momentum distribution fi,(pp) and the initial electron

phase Yo which is defined by

Gy )= 1 fﬁd}boffb(po)(-n)dpo- (12)

2y Jog

Then, Fq.{8) is rewritten by employing Fgs.(10) and (11) as

fos = 202?"1[ sinyi( cos Y1y— cosYi{siny1) . (13)

Assuming that the amplitude of the radiation field as well as the

electrostatic field varies slowly, satisfying conditions | ay/ez| »
| olnas/ez | and | ay1 | /ez » | 0lnges/0z |, we estimate the ratio
| fes/fp I as

£s 2¢1dcs

== = — = { H({y, ) 14

P amaany | HO | (14)

where | H(y,¥ 1) | represents the phase factor given by

HW, ) = M(Bzocos¢'1>. (158)

siny

Here, ao(EeAwmu@), as(seAyﬁmz) and ¢(Ee¢/mc2) are normalized vector and
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scalar potentials. Szam/yﬁqckw is the normalized plasma frequency ¢
y=y(i{=to)), and B.o=vo/c. 1In Eg.(19), we introduce the trapping fraction
& due to the ponderomotive potential by assuming that the contribution from
untrapped particles to the phase factor H{y,Y) is negligibly small.
N.M.Kroll et al® derived a similar relation as Fg.(14). Their result,
however, does not include the phase factor H(y,¥1), which is important to
determine the elecrostatic force in the nonlinear trapping stage.

It is found in Eq.(14) that the force ratio | fes/fp | depends not only
on the trapped particle density n,d and the radiation field amplitude a..
but also on the particle distribution in the ponderomotive potential well,
i.e. H(Wo) =~ (cosi)( assuming ¥~y and $z0~1 ). For example, the phase
factor H becomes H~0 for randomly distributed trapped particles in
-r=p1=x and H=~z/2 for the same trapped particle distribution in
-r/2=yr=n/2. For the bunched electron distribution which is occupied by
the small phase space area compared with the bucket of the radiation field,
the magﬁitude éf H depends on the phase of the bunched electron. Namely,
during one bounce motion, the bunched electron which bounces in the
ponderomotivé potential well suffers two Limes strong electrostatic force(
H~1 ) at around ¥1~0. Note here that the coordinate =0 for the bunched
electron corresponds to the coordinate that the radiation power becomes peak
value or the bottom one. In. 4, we 1investigate the effect of the
electrostatic force on the phase space distribution of the bunched electron

in addition to the energy conversion efficiency.

3. Basic Equations and Numerical Method

The single mode{w=f/Zx) 1-dimensional FEL formulation employed here is
basically given by H.P.Freund” and developed by taking into account the
electrostatic interaction and the axial beam energy spread. The averaging

procedure in a peo-direction for the given beam momentum distribution fi(p)
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in addition to the energy conversion efficiency.

3. Basic Equations and Numerical Method
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procedure in a pyo-direction for the given beam momentum distribution fi(p)
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in Eq.{12) 1is performed by means of an 10-th order QGaussian quadrature
technique in the variable p,n vhich permits the small number of test particle
to obtain an encugh accuracy in the numerical calculation. The slowly

varying part of the vector potential, as, obeys the following equations .

2 2

3 0 2 b / B0 . ~

-;7;2—-*- (%—h)af ?<_U;[U' cos ¥—uz sin 11)]>, (16)
,1/2692_( ,4!./2(_‘13): —i—§<ﬁv—"f[v1 siny+uz cos “JJ]>, (17)

where v| and vz denote the perpendicular velocity of an electron described
in a helical coordinate. Note that Egs.(18) and (17) couple to the Poisson
equations given by Egs. {10} and (11).

Here, we assume that an electron beam is composed of N test particles
and particles are uniformly distributed in the phase space in the initial
stage. Then, Eﬁs.(IO) and (11), and Eqs. (16) and {17) couple to 3N equations

of motion given hy

dp kP2 \ mpp i : da

CPL - (- mz)“'"ﬁ{" + mc{(-ﬁ——k+)as sin ¢+ cosqad;}, (18)
dpe _ (Qo_kwpz)l”ﬁl + me (l"l“i_k Jas cos ¢— sin ¢da5 - Quin (19)
dz m /P2 pz "/ dz v

|

dp; _ Q2+ Eg{ash(p} sin y+p2 cos w)_%%s—(pl cos Y—p2 sin 1,1))}

dz & Pz
2.2 .
. d
HYT)ZC (k(b sin UN‘% cos 1&1), (20)

where (u=eB,/mc, and pygz=ymu; a2 is the electron perpendicular momentum. In

Fgs. (18) and (19), Qy=eBy/mc represents the axial guide field for the stable
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propagation of the electron beam.

Here, we use the helical wiggler FEL as an amplification system of the
f=60CHz microwave'”. 1In the following calculation, the beam energy E, and
the wigegler pitch iy are fixed to Ep=1MeV (yy,~2.96) and Ay=dcm, and the beam
current density I, is taken to the variable parameter. Therefore, according
to the beam current density Iy, the wiggler field B, is determined by solving
the linear dispersion relation so as to satisfy the condition for the maximum
growth rate of the radiation field'”. The wiggler field is adiabatically
increased in the entry region 0=z=<104, to guide the electron beam to a stable
orbit. An initial level of the electroétatic potential, 1.e. ¢{(z=0)=
-2ug( cos ¢ /cfw(ki+ky), is determined froﬁ the numerical error which
corresponds to an initial setting of test particles in the phase space.
Here, the initial value of k. is also determined from the dispersion
relation. In the numerical calculation, about 500 test particles are

employed by examining the numerical convergence for the energy conversion

efficiency averaged over the long wiggler distance.

4. Numerical Results and Discussions

In 4.1, vwe show results in the absence of the axial beam energy spread.
Effect of the axial energy spread is discussed in 4.2. In the following
calculation, the 1initial input radiation power, P;in, 1is chosen to

P. in=10W/cm?.

4.1 Case without Axial Beam Energy Spread

Here, we choose the electron momentum distribution in Egq.{12) as
Fo(P0) =18 (pz-pz0) 8 (px)8 (py) , where pao=yemuso( wo= (1-vi2)"/2). Figure 1 shovs
the linear growth rate I versus the beam current density Iy in the case with
the electrostatic field ¢»=0 {open circles) and without one $=0 {open

triangles). The wiggler field By is also illustrated in Fig.l1. 1In the

_8_
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_8_
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calculation, no axial guide field is applied. The transition from the
Compton regime to the Raman one is observed around the current density
IbEGOA/sz(EIBC)w when the electrostatic field is taken into account'®.
Furthermore, the linear growﬁh rate shows the relation FocIﬂ,/3 for IysIpe and
l"cmlﬁl/4 for IyzIh., which are predicted from the linear response theory&4x
On the other hand. no Raman transition is found in the ¢=0 case. The linear
growth rate deviates from the above power dependence in the current density
region for TbzPKA/cm®. This is due to the fact that a low frequency mode
comes close to a high freqguency main mode under consideration and then the
wvave grovth deviates from the ideal case where two modes separates enough.
Further increase of the current density for the present wiggler parameters
leads the decoupling between an electrostatic beam que and a electromagnetic
one. Therefore, we restrict the current density for IbSEKA/CmZ in the
present calculatipn.

Figure 2(a) illustrates the typical spatial evolution of the radiation
power P, in the‘case without the electrostatic field for Ip=1.5KA/cm’. Figure
2(b) shows the corresponding trapping efficiency of electrons due to the
ponderomotive potential. The trapping efficiency 8 is estimated from the

separatrix equation S(y¥,dy/dz)=0, where the function S is defined by

, 0N 2 2
S(W% E<%) —8—a002;k"‘(1+cos7‘b). (21)

1

Here, ¥ is given by Eq.(8) and 71:1+a8( ao:eBw/mczkw) . In deriving Eq.{21),
we assume that the radiation amplitude varies slowly enough satisfying the
condition | oy/ez | » | olnus/3z | . Conditions, ¥*»¥f, k.»¢%k/2 and
ke»dy/dz, are also employed. In Eq.(21), S(y,dy/dz)<0 represents a trapped
particle and S{(y.dy/dz)>0 represents a untrapped orne. Furthermore,

untrapped particles are divided into two groups as shown in Fig.2(b). One
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1s an untrapped particle with dy/dz=0. which we call an “up-scattering
particle”, hereafter. Such a particle has the axial velocity 1. faster tha.
the phase velocity of the ponderomolive potential v,(=w/{k.+ky)). Another
one is an untrapped particle with dy/dz<0, i.e. a “down-scattering one’,
in which the axial velocity v, is lower than v,. As seen in Fig.2(a), the
linear growth of the radiation field saturates at around z=184, {(=zg: ;
saturation coordinate which gives the peak value of the radiation field
and then repeats the amplitude oscillation. Here, we define the averaged

value of a local quantity A(z) over the long wiggler distance as

1 L
@) = [ 4 az, (22)

sat

where L is the interaction length and taken to [=1004, in the present
numerical calculation. Then, the averaged radiation power in Fig.2 obtained
according to Eh.(22) is evaluated as (Pa>a2.0x1CﬁW/cm2, and the trapping
efficiency averaged in a same manner is about (6)~80%. Note also in Fig.2(b)
that the ratio of the down-scattering particle ( {8down)=15% ) is larger than
the up-scattering one ( {(&,,)=5% ). This feature is also seen in Fig.4 in
which the particle positions( represented by dots ) and the separatrix( solid
line ) in phase space (Y,dy/dz) are plotted from z=15i4( linear stage ) to
z=354,( trapping stage ) corresponding to Fig.2. It is found in the figure
that the bunched electrons are shallowly trapped near the separatrix and
the deeply trapped particles (¢=0,dy,/dz=0) are not found.

The same spatial evolution as Fig.2 for the ¢=0 case is illustrated
in Fig.3. Dashed line in Fig.3(a) represents the space charge field ¢2.
The peak value of Py, i.e. Pimax(=Pa(Zsat)), observed at around z=184+ roughly
becomes the same value as the case without the electrostatic field{ see

Fig.2{a) ). It is found, however, that the amplitude oscillation is
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suppressed small and the averaged radiation power 1is reduced to
(Pa>sl.2x108W/cm2. The small reduction of the averaged trapping efficiency
{8)~T6% is also found in Fig.3(b). Furthermore, Fig.3(b) shows that the
up-scattering untrapped particles are considerably increased in comparison
with the case without the electrostatic field( see Fig.2{(b) ). These results
are explained by investigating the electron behaviour in the phase
space( Fig.5 ) as follows. As explained in 2. the bunched electron suffers
the strong electrostatic field at zs~194, and z=214, (pointed by arrows
in Fig.3(a) ), where the radiation power becomes the peak value and the
bottom one ( Fig.5-(2) and (3) ). Actually, the magnitude of | fes/fp| is
roughly estimated from Eq.(14) as | fes/fp| ~ 0.9 for =zsa=1894, and
| fes/fo| ~ 1.7 for z~2li, by assuming H{y,}i) = {Bz0 cos ¥ )~0.9 and
5~1.0. At these axial coordinates, the periodic electron bounce motion is
disturbed due to_the strong electrostatic field. That is, some electrons
become an untrapped state after one bounce motion owing to an irregular
rotation of thé bunched electron and obtain the kinetic energy from the
ponderomotive potential as seen in Figs.5-(3) to (4). After that, the
randomization of the bunched electron begins to take place( see Figs.5-(4)
to (6) ). Thus, the phase scrambling due to the randomization of the bunched
electron leads the small amplitude oscillation of the radiation field and
an increase of the up-scattering untrapped particle reduces the averaged
radiation power.

Figure B illustrates the saturation efficiency n versus the beam current
density Iy,. The peak value of 7, i.e. "nax(=Pamaxe/IbEL), and the averaged
value (1) (=(P,)/ItEx), are shown in both cases with and without the
electrostatic field. It is found that both 7max and {(n)=nnx/2 are scaled
as n=I}/® in the absence of the electrostatic field, vhich coincides with
the trapping argument&4). The maximum conversion efficiency nm.x for the

=0 case roughly follows the same dependence as the ¢=0 case, although the

711 —
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slight deviation is observed for Ib20.5KA/cm2. Note here that in the
presence of the electrostatic field, the averaged conversion efficiency {(n)
stays in the lower level than nn../2 in the Raman regime for IbEO‘IKA/CmZ,
roughly showing the scaling (n>m1§5( dashed line in Fig.©6 ). The conversion
efficiency for Bp=1KG( axial guide field ) and the corresponding fitting
line( (n}mlém ) are also illustrated in Fig.6. It is found that the averaged
efficiency becomes the lower value than that for the By=0 case, although
Mmax becomes almost same value as the By=0 case. According to the
classification by H.P.Freund”, the steady state particle orbit for Bp=1KG
belongs to the QGroup I stable orbit. Thus, the averaged conversion
efficiency is reduced by the electrostatic field in the high current Raman
regime, providing the lower current density dependence (n)mIﬁ6"V6 than

the ideal case (n)=I}/.

4.2 Effect of Axial Beam Energy Spread

In this sﬁbsection, we investigate the effect of the axial beam energy
spread on a wave amplification over the wide range of the beam current
density. An initial beam momentum distribution is given by the Gaussian type

I/2> 1/2

as fo{P)=nb exp (- (P> P20)2/APE)8 (p) 6 (py) /7 Ap,. where py=yumc(1-vs , and

the momentum spread Ap, 1s related to Ay, through the relation

Apo=mcAy./vh{vE-1)%.

The dependence of the growth rate I' and the energy efficiency n ( both
{ny and 7max ) on the beam current density are shown in Figs.7 and 8 for
Av./vb=2% in the presence of the electrostatic field. Same fitting lines
as Figs.1 and 6 are also 1llustrated in Figs.7 and 8. It is found that both I
and n are reduced compared with the Ay;=0 case in the low current Compton
regime for IbSO.lKA/cm2 and no considerable change is observed in the high
current regime for Ibz0.2KA/cm®. This comes from the fact that an axial

energy spread produces an effect on the wave amplification when the axial
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velocity spread AUf{gATyﬁ%Uz becomes comparable to the phase velocity of

the ponderomotive potential 1n the beam frame, i.e. Up—Uy =
th/YzYyQ(k++kw)w). The ecritical beam density is written as
_ Wb o orAyayolkatky)
g(_yé/zkwc) = {57) vrvke € (23)

For Av./v,=2%. the above relation corresponds to the current density
IL=~PBA(¢.~0.079), which agrees with the numerical calculation. Thus, the
axial energy spread affects the wave amplification especially in the lower
current operation regime.

In our analysis, however, the spatial evolution of the_radiation power
shows the different feature in two cases for Ay.=0 and Ay;=0 even in the high
current region. Figure 9 shows the same spatial evolution as Fig.3(a) for
Av./vw=0 (a) and Av./vs=2% {(b) in the case of Ib:O.deA/cmz. Phase space plot
of the particle distribution is also illustrated in Fig.10, corresponding
to each spatial position of z=184,, 214, and z=b0l, in Fig.9. As already
explained in §4-1, the amplitude oscillation is suppressed small in Fig.9(a)
owing to the phase scrambling by the electrostatic force. On the other hand,
the amplitude oscillation is recovered for the Ay,=0 case as shown 1in
Fig.9(b), although an averaged conversion efficiency provides almost same
value as Fig.8(a). The recovery of the atrong amplitude oscillation is
considered as follows. From the discussion 1in §2, the repulsive
electrostatic force fes is proportional to the phase factor H{(y,y1) =
{Bzocos¥y. The initial beam energy spread leads the phase space spread
of the bunched electron in the ponderomotive potential well as shown in
Fig.10(b)-(1) and (2)( compare with Fig.10(a)-(1) and (2) ). Then, the value
of H{y,¥) at around ¥1=0 becomes smaller than that for the ideal case of

Ay.,=0 and the electrostatic force which induces the irregular rotation and
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the randomization of the bunch electron is weakened( see Figs.10(a)-(3) and
10{b)-3 ). The reduction of the electrcstatic field recovers the periodi.
electron bounce motion in the ponderomotive potential well, which leads th~
strong amplitude oscillation in the radiation field. Thus, the axial beam
energy spread affects the spatial evolution of the radiation field even in

the high current density region where I' and n are not influenced.

5. Concluding Remarks

Ve investigqted the effects of the longitudinal electrostatic field on
the saturated energy conversion efficiency over the wide range from the lower
current Cempton regime to the higher current Raman one where the
electrostatic force fs becomes comparable to the ponderomotive force fo.
The bunched electron trapped in the ponderomotive potential suffers two times
strong electrostatic forces at ¥|~0 during one bounce motion. It is found
that the phase dependent electrostatic force fesxH(¥,¥i) prevents the
periodic bounce motion of the bunched electron especially in the strong Raman
operation regime and increases the "up-scattering untrapped particle”, with
S, dy/dz)=0 and dy/dz>=0, which removes the kinetic energy from the
radiation field. Furthermore, the electrostatic field induces the phase
mixing by scrambling the bunched electron in the ponderomotive potential
well. Resultantly, the energy conversion efficiency averaged over the long
wiggler distance (i) stays in a lower level than that expected from the
trapping argument, providing the current density scaling {n}mlﬁ/avIQ@.
Furthermore, the amplitude oscillation of the radiation field is suppressed
small. Note here that the strength of the amplitude oscillation is related
to the fluctuation level of the output radiation power.

We also studied the effect of the axial beam energy spread. The axial
beam energy spread Ay, affects the linear growth rate of the radiation field

[' as well as the energy conversion efficiency n in the beam density ¢ which
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the randomization of the bunch electron is weakened( see Figs.10{a)-(3) and
10(b}-3 ). The reduction of the electrostatic field recovers the periocdi.
electron bounce motion in the ponderomotive potential well, which leads the
strong amplitude oscillation in the radiation field. Thus, the axial beam
energy spread affects the spatial evolution of the radiation field even in

the high current density region where I" and » are not influenced.

'B. Concluding Remarks

We investigated the effects of the longitudinal electrostatic field on
the saturated energy conversion efficiency over the wide range from the lower
current Compton regime to the higher current Raman one where the
electrostatic force f; becomes comparable to the ponderomotive force fo.
The bunched electron trapped in the ponderomotive potential suffers two times
strong electrostatic forces at ~0 during one bounce motion. It is found
that the phase dependent electrostatic force fes=H(y,¥) prevents the
periodic bounce motion of the bunched electron especially in the strong Raman
operation regime and increases the "up-scattering untrapped particle”, with
S(Y,dy/dz)>0 and dy/dz>0, which removes the kinetic energy from the
radiation field. Furthermore, the electrostatic field induces the phase
mixing by scrambling the bunched electron in the ponderomotive potential
well. Resultantly, the energy conversion efficiency averaged over the long
wiggler distance (n)} stays in a lower level than that expected from the
trapping argument, providing the current density scaling {n}mlﬂ/5~1#@.
Furthermore, the amplitude oscillation of the radiation field is suppressed
small. Note here that the strength of the amplitude oscillation is related
to the fluctuation level of the output radiation power.

We also studied the effect of the axial beam energy spread. The axial
beam energy spread Ay, affects the linear growth rate of the radiation field

I as well as the energy conversion efficiency n in the beam density ¢ which

7144._
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is smaller than the critical one ¢.(Ay;). However, we found that the axial
beam energy spread affects the spatial evolution of the radiation field even
in the density region for €zé.. That is, the initial energy spread in an
axial direction leads the phase space spread of the bunched electron in the
nonlinear trapping stage and suppresses the repulsive electrostatic force.
The reduction of the electrostatic force recovers the periodic electron
bounce motion in the ponderomotive potential. Also recovered the strong
amplitude oscillation of the radiation field following the periodic electron
bounce motion. Thus, the strength of the amplitude oscillation closely
related not only te the beam current density I, but alsc to the magnitude
of the axial energy spread Ay;.

In the present numerical calculation, we fixed the wave frequency to
f=60GHz. We also obtained the similar reduction of the averaged conversion
efficiency in the wide range of the exciting wave frequency. Here, we
employed a spatially 1-dimensional code which is useful for studying the
basic process ﬁreated in this paper. However, Z2-dimensional effects such
as the beam emittance, i.e. the momentum spread in the p.-direction, and

4,13

the selective excitation of the wave guide mode ! are not included in

the preset model.

In the calculation, we considered the constant parameter helical
wiggler. Results obtained here will affect the energy conversion efficiency
for the tapered wiggler FEL, where the trapping efficiency is an essential
problem. It should be also noted that the axial beam energy spread as well
as the electrostatic field will influence the side-band instability because
the amplitude oscillation of the radiation field becomes a free energy source

for various parastic wave excitations,
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Fig.1 Dependence of the linear growth rate I on the beam current density

Ip in thé case without electrostatic field( open triangle ) and with
one( open circle ). Parameters are f=60GHz, E,=1MeV, Z,=4cm and no
axial guide field is applied( Bp=1KG ). Dependence of the wiggler
field By on Iy is alsc illustrated by dash dotted line. Dashed and

solid line represent '=0.235I}/° and r=0.185714/4, respectively.
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Fig.8
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Dependence of the maximum energy conversion efficiency 7imx and
the averaged one (n) on the current density Iy for cases with (circle)
and without (triangle) the electrostatic field. Parameters are same
as Fig.l, Squares represent the case for By=1KG( axial guide
field ) in the presence of the electrostatic field. Fitting lines
given by nmILB, nmIQ6 and noclrﬂ,/6 are aiso illustrated, corresponding

to each current dependence.
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Fig.7  Dependence of the linear growth rate I on the beam current density

Iy in the presence of the electrostatic field for Ay/v=2%. No axial
guide field is applied( Bp=1KG ). Dashed and solid line represent
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Fig.8 Dependence of the maximum energy conversion efficiency nm.x and
the averaged one {n) on the current density I, in the presence of
the electrostatic field for Ay,/mw=2%. Fitting lines for Ay,=0 in

Fig.6, i.e. ntrIﬂ,/e' and nmIt',/S, are also illustrated.
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