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The effect of the virtual mass force term on the stability of tran-
sient two-phase flow analysis is studied. The objective form of the
virtual mass acceleration is used. The virtual mass coefficient is
determined from the stability condition of basic equations against infini-
tesimal high wave-number perturbations. The parameter is chosen so that a
reasonable agreement between the analytical and experimental sound speed in
two-phase flows can be obtained. A one-dimensional sedimentation problem
is simulated by the MINCS code which is a tool for transient two-phase flow
analysis. The stability analysis is performed for the numerical procedure.
Tt is shown that calculated results are stabilized so long as the virtual
mass coefficient satisfies the stability condition of differential equa-

tions.

Keywords: Virtual Mass Force Term, Stability, MINCS, Transient Two-Phase

Flow Analysis, Sedimentation



JAERI-M 88-101

HWE HAREfTOEER T RIS TMERE O R

HARFARAmEBRARTE FF L TH¥
#GE » FEHEE] « X B

(1989%FTHI1482ZE)

BECHAET OLEBEICREINMEEHBOS R L& Lz, MWERHREE LTE
BERICHLTAE LR GEAD DAL, SMEEREKE, #WIhTEARDOE
BN T OERETADOLEROEMPORE L, HPONNS x—% 13, “HifT®
HEORBMEERMEN —HT 2L IICHRE Lic, HEFEHA L LT —REDKIKE B
FMEZMINCS 2 — FEROTIRIF L, BEREZICHT 5 REBEBITLITH -/, ©
DR, MNEBRFRRS S TEAOZERMEEMIEL T 2R 0, & ELHERIE S
5T EBELhER ST, ‘

SRS T319-11 HEEBEMBEENOAFEOR2 —4



JAERI-M 89-101

Contents

I, IntrodUction u.ucusseserearonceacesaasenssosnsessssansnscsnnnennnaneas 1

2. Determination of Virtual Mass FOrce TOIM sueeverseasconsssssasannnsnss 2

2.1 Virtual Mass Acceleration ....... reeriararesanens O
2.2 Virtual Mass Coefficient c.ieeeeersieeereennosroesvocnaceaerosacenes 3
2.3 Parameter in Virtual Mass Acceleration ....cceeeen. Peeasses e e

3. One-Dimensional Sedimentabion cuvseeeeseescesoscrvsoocnnsonssnsssose

3.1 Description of the Problem ....... terr it freteres st aaes

co o o o~

3.2 Numerical Stability .ieieieiriaseassrrsroonssssonnssisnensnsnsenns
3.3 Calculated Results and DisScuSS10N vsveevvaceeveanennsennsscoroasans 10
4, ConclusionS.....se... BBt et et e s ke et a et n e etk b 12

2 o= o s o = - S, P ¢

I ) 1 = 1D B - T T O PN
2.1 AFII BB D HIIEEE - vververmme e oo rmieries srrrae s b e et e e eennnn
2.2 FIHIEBBEL v s e e i e e e e arre e
2.3 BB MEE MY 5 A cm i e e

3. —IRIT ST B HARGEE -+ vomrr trrermmnr e oo r s e e e e ser i ettt se et e
3.1 PHEEDEIHR covvveerrreeneaneeeeeiin, B S et
3 0 B I et e e e g
3.3 EHEEBERIPEBI e, U UP TP 10

A, BE B rereriit e b e e e ettt e e nnrr e e e 12

0 CC =1 WY N e



JAERI-M 89-101

Nomenclature
a,b,e.f element of matrix
Qym virtual mass acceleration

A, B, C E.F coefficlent matrix

Cep sound speed in two-phase flow
c dt/dx(1-e7"")y

Cum virtual mass coefficlent

D vector of dependent varlables
S wall friction term

Fum virtual mass force term

g gravity

I lmaginary unit

K wave number (2x/4)

momentum transfer term

P pressure
t time

7 velocity

x flow direction

X vector of dependent varlables
Greek

a volume fractlion or vold fraction
) Kdx

8 perturbation

r mass transfer rate

@ perturbation

¢ fleld vector

A paraemeter of virtual mass force term
A wavelength

B characteristics or eigenvalue

0 density

Subscript

c continucus phase

d dispersed phase

g gas phase

i interface

k phase index

1 liquld phase
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1. Introduction

It 1s 1important for safety analyses of nuclear reactors to
accurately and efficiently predict transient two-phase flow phenomena
under widely ranging conditions. A two-fluld model 1s considered to
be appropriate for the most general and detailed description of
two-phase flow since non-equilibrium exchange between phases can be
easlly included in the analysis. In the basic form of the two-fluid
model, each phase 1s separately described 1n terms of a set of
conservatlon equations. Interaction terms between two phases appear
in the bvaslc fleld egquations as transport terms across Iinterfaces.

The virtual mess force term is one of such transient Interacticn
terms between phaslc momentum equations. It contains derivatives of
dependent varlables which play &an important role +to determine
methematical characteristics of differential equation system. Andersen
et al. (1] have studied the consequences of virtual mass force term
on the stabillity of differential equation system against infiniteslimal
high wave-number perturbations. They found that the differential
equation systen was almost stable when the virtual mass coefficient
was sufficlently large. The virtuael mass acceleration was, however,
not oblective and there remained some unstable regions even if an
extremely large coefflclent was used. It has been shown by Drew et
al. [2])] thet the wvirtual mass force must be objectlve, that 1s, the
virtual mass acceleration should be invariant under changes of frame
of reference, They pointed ocut that the inclusion of 1t was able to
improve numerical efficiency by changing the nature of eigenvalues cf
the differentiasl egquation system of conservation laws describing tThe
two-phase flow. Afterwards, the combination of the virtual mass force
and the 1lift force has been shown to be oblective by Drew and Lahey
[3]. They polnted out that neither the virtual mass force nor the 1lift
force was solely objective.

Lahey et al. [4) have numerically studied varlous nozzle/diffuser
flow under steady state conditions. They reported that the inclusion
of virtual mass effects 1nto the analyslis of two-phase flow would be &
physically reallstlic way to improve numerical stability and efficiency,
and 1to achleve accurate results Iin many cases of practlical concern.

The effect of wvirtusl mass on the prediction of criticel flow has been
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investigated by Cheng et =al. {5]. The Moby Dick experlment was
numericelly simulaeted and the calculated results were compared with
the experimental data. They used different values for virtual mass
parameters to obtain critical flow in accordance with the experimental
conditions. The effect of virtual mess coefficient on the numerical
stability has been studled by No and XKazimi [6]. The real
characteristics region of %he differential eguation system as the
stabllity condition was shown In terms of the virtual mass coefficlent
under some simplification. They recommended that the virtual mass force
term be included in all two-fluid models since it could stabilize the
differential egquation system with real physical effects.

In this paper, the effect of the virtual mass force term on the
stabllity of +transient itwo-phase Tflow analysis i1s studied. The
objective form of the virtual mass acceleration is used. The virtual
mass coefficlent 1s determined from the stability c¢condlition of basic
equatlions agalnst infinitesimal high wave-number perturbations. The
parameter 1s chosen so as to obtain a reasonable agreement between the
analytical and experimental sound speed in two-phase flows. BRNumerical
simulations are performed on a one-dimensional sedimentation problem
by using the MINCS code which 1s a tool for transient two-phase flow
snalysls. A stability sanalysis 1s carried out for the numerical

procedure.
2. Determination of virtual mass force term

2.1 Virtual mass acceleration

The che-dimensional momentum equation for transient two-phase flow

iz written as

Dyu o}
a500 ]Stk = _ak“a"g'“f:uk+Mih_ﬂ'thg+(ui_uk)rk ) (1)

where ¢ is the vqlume fraction, ¢ the density, p the pressure, g the bod?
force, u the velocity, fu. the wall friction, and I and M, respectively
are the interfacial mass and momentum transfer rates. In Eg.(1), the
subscript k& and i denote phases and the interface, respectively. The

interfaclisl momentum transfer rate M; contalns the standard drag force,
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characteristics region of the differential equation system as the
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under some simplification. They recommended that the virtual mass force
term be 1ncluded in all two-fluld models since it could stabilize the
differential equation system with real physical effects.

In this paper, the effect of the virtual mass force term on the
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mass coefficlent 1s determined from the stability c¢ondition of basic
equatlons agalnst infinitesimal high wave-number perturbations. The
parameter 1s chosen so as to obtain a reasonable agreement between the
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by using the MINCS code which is a tool for transient two-phase flow
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procedure.
2. Determination of virtusal mass force term
2.1 Virtual mass acceleration

The cne-dimensional momentum eguation for transient two-phase flow

is written as

Dru a
a0 5; = ‘“M"g’%‘fm*‘Mih—athgﬂ"(uz—uh)f'h ) (1

where ¢ is the vqlume fraction, ¢ the density, p the pressure, g the body
force, u the velocity, fw the wall friction, and I and M; respectively
are the interfecial mass and momentum transfer rates. In Eg.(1), the
subscript & and i denote phases and the interface, respectively. The

interfaciel momentum transfer rate M; contalns the standard drag force,
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the virtual mass force (M,.), the Basset force, the 1ift force and so
on [7].

The virtual mass force term can be expressed as [2)
Mvm = I'-'*"c."l’F'um = adpccumaum ' (2)
where a4 1s the volume fraction of dispersed phase, e, 1s the density of

continuous phase, C,n 1s the virtusl mass coefficient, and the objective

virtuael mass acceleration a,m» is given by

o Ofug~-uc) 0 (ua—te)

Tom 31 TouaT oyt
& u 3 ’
[ (A=2) (ua=te) 522+ (1-2) (wau) 5= ), (3)

where A 1s the parameter, and subscripts 4 and ¢ respectively refer to
the dispersed and continucus phases. The 1ift force is not considered.
Equation (3) was derived by Drew et al.'”’ under the assumption that
+he virtual mass force should be obJective. They c¢onsidered a frame
which moves relative to another one in a rigid body motion. The change
of frame can be expressed by a time dependent vector which expresses a
translation and a time dependent tensor which expresses a rigid body
rotation. They derived a general expression of +the objJective
accelertion, shown in Eq.{3), where the expression in one frame can be
expressed by that in another frame multptied by the rotation tensor.
If we consider not only the virtual mass force hut alsco the 1iff
force, we can obtain the another form of the virtual mass acceleration.
In thls case, while neither the virtual mass force nor the 1lift force
can not be solely objective, thelr combination is objective. In the
one-dimesnsional formulaticn, the Iinterfacial momentum <+ransfer term

contains no lift force, and the virtual mass acceleration is [3]

du Ou 0, Qu,
avm = [ 6541% a;)‘* & x +”°ax )] ' (4)

In this study, we use the objective form of Eq.(3), since Eq. (L) does
not contribute to the stabllity of baslic equation system as shown In
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the following section. The wvirtual mass coefficient C,. and the
parameter A thus have to be determined in a practical use of Egs.(2)
and (3).

2.2  Virtual mass coefficlent

We consider the stabllity of basic differential eguations egalnst
infinitesimal high wave—-number perturbations. The governing equations
for the two-fluid model consist of slx conservation equations for mass,
momentum and energy for both phases. The energy equations are, howvever,
neglected since the characteristics corresponding to the energy equations
are the gas and llquid velocities [1]. The momentum equation {1) and

the following mass equation are therefore considered:

3 (apen) + A (anontin)
at 0x

=TIy, (5)

where the variation of cross—-sectional area in the flow direction is
neglected.
The mass equation for both phases and the sum and the difference

of two momentum equations are rearranged 1n one matrix equation:

22 o0 -
AST + B4+ Co + D=0, (6)

where the field vector ¢ contains the four dependent variables; 4 x I
coefficlent matrix A, B and C, and l-component vector 1) are all real
functions of ¢. We assume that an infinitesimal sharp perturbation ¢
is introduced into a solution of Eq.{(6). The linearized equation for

disturbances are then obtained:

422 4+ 2% . ' (7)

where ¢ is definéd as the column vector of independent variables:

p = ( 8a , 8p , Bug , Suy )" . (8)
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In the above equations, & denotes the

respectlively are the coefficient matrices:

ady; Qs 0 0
A g1 Cgn 0 0
r - O 0 Qay layg '
0 0 gy 44

where

aA11=PCgz

. a
Q12773
Cg

dgs=—P1 ,

_(l-a)
3

=3} )
Cy

[

Azz=aPg ,
azs={(1-a)e; ,
a43=(l_a)pg+.0£curn

and

aga=—{(1-a)e,+2,:Cpm)

and
i1 byz bz O
n = bay bzs 0 by
- 0 1 bas bay '
0 O byz by
where
bllngug [
au
blz’”““_gg' ’
Cg
biz=aeg
bar=—0u; ,

perturbation,

and A and B

(¢)

(102
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1-aju
bw:,(_z)r ,
]

bag=(1-a)e: ,

baa=apguy ,

bag=(1-a)eu; ,
byz={{1l-a) e+ P 1Com(A—-1) ug—21Com(A-2)u;

and
hyy=—[{{1-a)Y+C,m(1-2) }plu;—.ﬂzcumlug

In the above equations, the variables for the dispersed and continuous

phases res?ectively are simply displaced by those for the gas and liquid

phases. The sound speed in gas and liguid phases ¢, and c¢; are
respectively
Lo 2%y, ana L= (40, . (11)
cf; ap el dp

The characteristics g of Eq.(7) are defined by
| #A — B | = 0 . (12)

We assume that the sound speed is sufficiently large in comparison with
the velocities. In order for Eq.(12) to have real characteristics, the
following equation must be satisfiled:

Cla( X+ 4(1-2) (1-2)} + AC,n(1-A)a(1-a) (1~55

~ (1) (HL) = 0 . (13)

We can find the two-phase region 1is entirely unstable if the basic
equations contaln no virtual mass force term. The above equation 1is
the stability condition based on the obJectlive virtual mass acceleration

of Eq.{3).
On the contrary, if we use the virtual mass acceleretion of Eq. (L)},
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a slightly different stabllity conditicn is obtained:

~a(1-a) (0 Cim + (1-a)(pi+pee1)Com + (1-)’pz01) Z 0O . (14)

The coefficlent C,n must be negative 1f Eg.(1l4) is to be satisfied.
That 1s, the basic equatlion system 1s always unstable agalnst the
infinitesimal high wave-number perturbations when the virtual mass
acceleration of Bg.(4) is used. In other words, the form of Eq.(4) does
not contribute to the stabillty of basic egquations., For this reason,
we use the form of Eq.(3) in this study.

The real characteristics region of Eq.(13), that is, the stable
region of basic equations is shown in Flg.l. In Fig.l, values of 1.28
(kg/m’y and 999.2 (kg/m®), which are the air and liquid densities at
the condition of 0.355 MPa and 288.9 K, are chosen for e, and s;. The
basic equation system 1s stable 1f we use & large value as the virtual
mass coefficlent. We have to pay attention, however, for selecting the
coefficient since the virtual mass force acts as the transient drag
force. The general value of coefficlent 1s not well known at present,
s0 we use the minimum value In this study sc as to ¢learly see the effect
of virtual mass force on the stability. We can obtain the minimum value
of coefficient from +the equality of BEq.(13) if the perameter 21 is

determined.

2.3 Parameter in virtual mass acceleration

The parameter A is determined so as to obtain a reasonable agreement
hetween the analytical and experimental scund speed in two-phase flows.
The sound speed in two-phase flows ¢, is obiained from Eq.(7) as &

function of virtusl mass coefficient:

: (l—d'){(l—a)ﬁg+apl}+Plcum {(1-a) a ]Al (15)
Cep [(1-a)pgoi+{aog+ (l—a}p;}p:Com) pict  pgck '

If the virtuel mass effect 1s negligibly small in comparison with other
terms in Eq.(15), the sound speed is +the same as the velocity of
compressibility wave in stratified flow derived by Wallis [8].

The sound speed I3 shown in Filg.? along with the experimental

results obtalned by Martin and Padmenabhan [ 91 for the air-water case
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and by Grolmes and Fauske [10] for the steam—-water case. It 1s found
that the reasonable agreement between analytical and experimental
resulis are obtalned when the parameter 1 1s chosen to be 2. The
constant value of 2 is, therefore, assumed for 2 and hence the minimum

virtual mass coefficient 1s
o p p
Cum = 5 (1) (1-50) + 5 [ (1=a)* ((1-a) (1-55) +4(55)) 1 (16)

from Egq.(13).

In summary, the basic egquatlions are stable agalnst infiﬁitesimal
high wave-number perturbations and the analytical sound speed 1s in good
agreement with +the experimental data by using the virtual mass
coefficient defined by Eq.(16).

3, One-dimensionel sedimentation

3.1 Description of the problem

The effect of virtual mass force term defined by Egs.(2}, (3) and
{(16) 1s evaluated through the numerical simulation of a one-dimensional
sedimentation problem. This problem is based on the numerical benchmark
test of International Two-Phase Flow TFundamentals ({11]. The basic
conservation equations with virtual mass force term are solved by using
the finite difference method. In this study, the MINCS code 1s used
[12). The numerical method of MINCS is based on the implicit upwind
gcheme with the staggered mesh system. The input model to MINCE is
shown in Fig.3. The water phase Iinitially rests above the alr phase
in & 2 meter long vertical pipe, then it falls down due to gravity.
The same values used in Fig.l are assumed for the initlal conditions:
0.355 MPe and 288.9 K. Mesh cells are equally spaced and values of
0, 50 and 80 are chosen for the number of cells. The time step width
1g 0.0005 sec for the h0-cell case, 0.000L sec for the 50-cell case and
0.00025 sec for the 80-cell case. The ratio 4t/4x 1s, therefore, always
constant of 0.01. The frictional terms are all neglecied so that we
can clearly see the effect of virtual mass force term on the calculated

results.
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that the reasonable agreement between analytical and experimental
results are obtalned when the parameter 1 1s chosen to be 2. The
constant value of 2 is, therefore, assumed for 2 and hence the minimum

virtuel mass coefficient 1s
o o p
Cum = H(1=2)* (1—55) + 5 [ (1-a)* ((1-2) (1-55) 44 (55)) 31 (16)

from Eg.(13).

In summary, the basic equatlions are stable agalnst infiﬁitesimal
high wave-number perturbations and the analytical sound speed 1s in good
agreement with the experimental data by using the virtual mass
coefficient defined by EBq.(16).

2, One-dimensilonel sedimentation

3.1 Description of the problem

The effect of virtual mass force term defined by Egs.(2}, (3) and
(16) 1s evaluasted through the numerical simulation of a one-dimensional
sedimentation problem. This problem is based on the numerical benchmark
test of International Two-Phase Flow Tundamentals [11]. The baslc
conservation eguations with virtual mass force term are solved by using
the finite difference method. In this study, the MINCS code is used
[12). The numerical method of MINCS is based on the implicit upwind
gcheme with +the staggered mesh system. The input model to MINCS is
shown in Fig.3. The water phase Initially rests above the air phase
in & 2 meter long vertical pipe, then it falls down due to gravity.
The same values used in Fig.l are assumed for the initlal conditions:
0.355 MPa and 288.9 K. Mesh cells are equally spaced and values of
10, 50 and 80 are chosen for the number of cells. The time step width
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constant of 0.01. The frictional terms are all neglected so that we
can clearly see the effect of virtual mass force term on the calculated

results.
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3.2 Numerical stability

The stablility analysis for the numerical procedure 1s performed
based on Neumann's method [13). Three equations are considered, namely,
the two mass conservation equations and the difference of two momentum
equations. For simplicity, the Iincompressible and countercurrent flow
is assumed. We suppose +that the iInfinitesimal perturbation 1is
superposed on the sclution of discretized equations. The discretized
equations are linearized, and then the perturbations In the difference

terms are substituted by components of Fourler series [14] , we obtain

EX"™ = FX* (17)

In the sbove equation, X I1s the vector composed of 8a;, 8u, ; and fu, ,,
where & 1ndicates the perturbation, and +the subscript j and the
superscript n respectively denote the spatisl mesh number and the time

step. The coefficlent matrices F and I are described as

ey; eqz 0
K = 23 0 Eng , (18)
0 e3 e
wvhere
911=1+Cug .
ep—Ca ,

ep_1¥1+Cuge” B

823’““0(1"0) ,
es2={{1-2) 0g+ 2(Cym) (1 +Cuy)
and .

egz=— [ {(1=a)pi—p1Com} (1+Cure’®) +20,Com(1+CuyCy ),

and

1 0 0
F = [1 ¢ 90 } , (19)
Ofaz -f33
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where
Jaz= [(l_a)pg+plcum]

and

fgg’"_[(l_a)|01+.ﬂchm}

In the above equations, ¢, u, and u, are the unperturbed values and the

variables C and & are defined as
C = 4t/d4x(1-e7"%)

and
8 = Kdx ,

where 7 is the imaglnary unit, K the wave number defined as (2z/4) and
A the wavelength of perturbation.

By calculating the eigenvalue of amplification matrix E'F, we
can find whether or not the infinitesimal perturbation grows. The

elgenvalue z is defined as the root of the parabolic equation:

((1-a)eyesz—aegiess)t’ ~ {(1—a)(espter i) ~a(eas+esfag))u

+ ((1-a)fsa—afas) = 0 . (20)

The finite difference scheme 1s stable against infinitesimal
perturbations 1f the maximum absolute value of elgenvalue — also known

a5 the speectrum radius — 1s smaller than unity [13]:
tpl < 1 . (21)

3.3 Calculated results and discussiocn

The void fraction trensients in the cell one mesh upper from the
midplane are shown 1n Figs.L and 5. The calculated results without
the virtual mass force term are shown in Tig.l and those with it in

Fig.5. We cén find that the water is gradually replaced by the alr.
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The 1nstablllity grows and unrealistlc results are cbtained as the number
of mesh cells increases as shown in Fig.lL. Stable results however are
obtalned as shown in Fig.5 even 1f 80 cells are used. It is found that
the numerical solutions are stabilized by the virtual mass force term.
The instability in the numerlcal results appears to be corresponding
to the ill-posedness of the basic egquations.

The meaximum absolute values of elgenvalue of +the discretized
equation system are shown 1In Flg.6 in terms of +the dimensionless
wavelength (A/4x). In this problem, the veold fraction 1is varied from
0.0 to 1.0 and, though the flow directlons are different, the maximum
velocities are about 5 m/s for both phases. Hence values of 5 m/s and
-5 m/s are assumed for the unperturbed velocities of alr and water,
and 0.5 for the unperturbed void fraction in Fig.6. The eigenvalue is
larger than unity 1n some region of wavelength for‘the caze without
the virtuel mass force term, while smaller than unity for the case with
it. The same results are obtained for eigenvalues even il other values
are assumed for the unperturbed variables. We can confirm that the
discretized equation system and hence the numericel solutions are
stabilized by introducing the virtual mass force term.

At the next step, we study the stability of numerical sclution when
the virtual mass coefficient is smaller than +that defined by Eq.(16)
and can not =satisfy +the stability condition. The wvirtuel mass
coefficient obtained by Eg.(16} is multiplied by 1.C, 0.7, 0.5 and 0.3.
The basic equations are unstable when the factors of 0.7, 0.5 and 0.3
is multiplied to the wvirtual mass coefficient since the cecefficient
defined by Eq.(16) is the minimum which is needed %o stabilize the basic
equations. The vold fraction transients in the cell one mesh lower from
the mldplane are shown in Fig.7. The number of mesh cells 1s 50. Ve
can find that the air is graduslly replaced by the water. The smaller
the virtual mass coefficient, the larger the spike in the vold fraction
transient. The elgenvalues of the discretized egquation system are shown
in Fig.8. The eigenvalues exceed unity for the c¢ase with the
multiplication factors of 0.7, 9.5 and 0.3, while smaller than unity
for the case with 1.0. The stabllity of discretlzed equation system
corresponds to the stabllity of differential egquation system.

The stabllity is further examined when the virtual mass coefficlent

is constant. Values of 0.5, 0.3, 0.1 and 0.05 are chosen for the constant.
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The baslc equations are partially stable by these coefflicients from
Fig.1. The overall void profiles at 0.3 sec for the 50-cell case are
shown in Fig.9. It is fcound that the smaller the coefficlent, the larger
the instabllity. The elgenvalues are shown in Fig.1l0. A value of 0.1
is assumed for the vold fraction in Fig.i10. The eigenvalues exceed unity
for all cases, and become 1larger as the coefficlents become smaller.
The instablility of discretized equation system is in good agreement with
the instability of differential equation system.

The stability of the differential equation system can be described
by the condition defined by Eq.{13) while +that of the discretized
equation system by Eq.(21). The stability of numerical results is
determined by +the eigenvalue of the amplificatlon matrix of +the
discretized equation system and it does not salways agree with the
stability of differential equation system [14]. The virtual mass force
term however can stablilize the discretized eguation system so long as
the virtual mass cecefficient satisfies the stability condition of bhasic

equations.
i, Conclusions

The effect of the virtual mass force term on the stability of
translient two-phase flow analysls has been studied. The objective form
of virtual mass acceleration which was derived by Drew et al. was used.
The virtual mass coefficlent was determined from the steblility condition
of basic differential equations agaeinst infinitesimal high wave-number
perturbations. The parameter was determined so as tc obtain the
reasconable agreement between the analytical and experimental sound
speed 1n two-phase flows. The one-dimensional sedimentation problem
was simulated by using the finite difference method. The stability
anelysis based on Feumenn's method was also performed for the implicit
upwind scheme with the staggered mesh system. It has been found that
the virtual mass force term stabillzes the discretized equation system
so long as the virtual mass coefficlent satisfys the stability condition
of differential équations.
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The baslc equations are partlially stable by these coefficlents from
Fig.1. The overall vold profiles at 0.3 sec for the 50-cell caze are
shown in Fig.9. It is found that the smaller the coefficilent, the larger
the instabllity. The elgenvalues are shown In Fig.1l0. A value of 0.1
is assumed for the vold fraction in Fig.i0. The eigenvalues exceed unity
for all cases, and become 1larger as the coefficlents become smaller.
The instability of discretized egquation system 1s in good agreement with
the instability of differential equatlion system.

The stability of the differential equation system can be described
by the condition defined by Eq.{13) while that of the discretized
equation system by PEq.(21). The stability of numerical results is
determined by +the eigenvalue of +the amplificatlon matrix of +the
discretized egquation system and it does nol salways agree with the
stability of differential equation system [14]. The virtual mass force
term however can stabilize the discretized eguation sysitem so long as
the virtusl mass coefficient satisfies the stability condition of basic

equations.
i, Conclusions

The effect of the virtusl mass force term on the stability of
translent two-phase flow analysls has been studied. The objJective form
of virtual mass acceleration which was derived by Drew et al. was used.
The virtual mass coefficient was determined from the steblility condition
of basic differential equations against infinitesimal high wave-number
perturbations. The parameter was determined so as to obtain the
reasonable agreement between the analytical and experimental sound
speed 1n two-phase flows. The one-dimensional sedimentation problem
was simulated by. using the finite difference method. The stability
anelysis based on Neumann's method was also performed for the implicit
upwind scheme with the staggered mesh system. It has been found that
the virtual mass force term stabilizes the discretized egquation system
50 long as the virtual mass coefficient satisfys the stabillity condition
of differential équations.
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Fig. 3 Input model for sedimentation
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Fig. 6 Maximum absolute values of the eigenvalues
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