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This report surveys several existing uncertainty analysis methods
for estimating computer output uncertainty caused by input uncertainties,
illustrating application examples of those methods to three computer
models, MARCH/CORRAL 1I, TERFOC and SPARC. Merits and limitations of
the methods are assessed in the application, and recommendation for

selecting uncertainty analysis methods is provided.
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1, Introduction

In order to assess the safety of complex technological systems,
computer models are widely used in many fields such as probabilistic
safety assessment (PSA} of nuclear power plants,(l)’(z) dose assessment
for disposal of radioactive waste(B) and so on., However, the results
(outputs) calculated include uncertainties associated with both the
complex computer models themselves and values of input variables or
parameters. An adequate quantification of uncertainties associated with
such assessments as PSA is crucial to their use as a decision-making
tool.(z) |

The general problem with which uncertainty analysis is concerned can
be expressed as a functional relationship whose output depends in a

deterministic manner on various input variables.(a) Thus,
Y = h(Xl!"'!XK) ’ (1°l)

where, Y denotes system output, and X14...,Xg are system variables. As is
shown in Figure 1.1, in practice, the values of the input variables are
not precisely known and consequently, some imprecision attaches to the
estimate of output Y. The objectives of uncertainty analysis are to
quantify the uncertainty in Y, and, often to partition that uncertainty
among the contributing input variables.

When the functional relationship, Eq.(1.1), is complex and thus not
given in analytic expression, quantification of the uncertainty in Y needs
a set of input/output data which will be obtained from a large number of
numerical calculations based on the computer model of concern. As 1is
larger the size of the data set, the uncertainty in Y will be, in general,
estimated more precisely because of decreased errors in statistics. The
Monte Carlo simulation method is known to be the direct and proper method
for the uncertainty quantification, where a large number of repeated
calculations with the computer model are needed. However, the Monte Carlo
method loses its effectiveness for very long-running computer codes, which
is often the case for assessment of the safety of complex technological
systems using computer models, Hence some uncertainty analysis methods
have been proposed and studied, which aim to assess uncertainty using a
less number of input/output data.

The objectives of this report are to provide a current status of
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uncertainty analysis methods and to illustrate application examples of the
methods to three computer models, MARCH/CORRAL II, TERFOC and SPARC.
Chapter 2 describes a procedure of uncertainty analysis. Chapter 3
describes several methods for uncertainty analysis. Application of the
methods to uncertainty analysis for computer models is illustrated in
chapter 4. Summary and recommendation on use of uncertainty analysis

methods considered in this report are provided in chapter 5.
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Procedure of Uncertainty Analysis

In order to estimate the uncertainties included in the output

predicted by the computer model of concern, the following steps are to be
followed:(S)

(1

(2)

(3)

(4)

Screening Analysis: This stage is necessary to reduce the number of
input variables to a manageable size. This is accomplished by
parametric sensitivity studies on the computer code, where
calculations by varying input variable values one by one are made and
change of the output is estimated.

Uncertainty Propagation Analysis: This stage consists of (a)
identification and classification, (b) quantification, and (c)
propagation, Identification and c¢lassification of uncertainties
entails a detailed examination of the model included in the computer
code. The quantification process'will entail using the available
experimental data base to establish reasonable upper and lower bound
estimates together with probability density functions (PDFs) for the
sensitive input variables to the computer code. Then the propagation
of input uncertainties through the code will be accomﬁlished giving
upper and lower bound values together with the PDF for the output.
Uncertainty Importance Analysis: This stage will establish
importance ranking of input variables with respect to the output
uncertainty for the computer code.

Output Distribution Sensitivity Analysis: Although uncertainty about
the correct values of input variables can be quantified by treating
the variables as random variables with appropriate PDFs, or,
cumulative distribution functions (CDFs), these distributions are
assigned on the basis of available data, combined with the judgment
of experts. Because experimental data is often scarce, and expert
opinions can vary widely, the input uncertainty distributions are not
definitive; therefore, the impact of the input PDFs on the output PDF
must be assessed. In this analysis stage, the sensitivity of the
output PDF to the input PDFs, that is the relationships between
alternative input PDFs and the corresponding output PDF, will be
established.

This report describes the current status of techniques for the

second, third and fourth steps. 1In the following discussion, we suppose

.__4_
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that the first step, and the items (a) and (b) in the second steps have
been established. In other words, we start with the assumption that the
number of input variables included in the uncertainty analysis has been
reduced to a manageable size, and that the input PDFs have been given in

the following uncertainty analyses.
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3. Description of Uncertainty Analysis Methods

3.1 Introduction

Quantification of uncertainty in the output Y, in general, needs a
set of input/output data which will be obtained from numerical
calculations with the original computer model. A larger size of the data
set will be useful in estimating the uncertainty in Y more precisely
because of decreased errors in statistics. If the computer model of
concern is very simple and thus the computation time is short enough to
make a large number of numerical calculations with the computer model
possible, the uncertainty in Y will be estimated directly using the large
number of input/output data based on the original computer model. This
approach is known to be the Monte Carlo method. However, if it takes a
long time to make computer runs with the computer model, the Monte Carlo
method loses its effectiveness.

The current uncertainty analysis methods may include two kinds of
approaches: One approach is based on replacing the original complex
computer model by a simplified surrogate model such as a response surface
mode1(6) (hereafter called response surface method), and the other does
not rely on such a simplified surrogate model but relies on a limited
number of calculations based on the original computer models (hereafter
called direct method), The response surface method involves the
simplified simulation of physical or logical models. In other words, the
original output function, Eq,(l.l1), is approximated by a simplified

function:
Y = R(X{,X9,...,%g) (3.1

often termed a response surface, In building a replacement for the
computer model, various samplihg techniques are used such as random
sampling, Latin hypercube Sampling,(7)’(8) experimental design,(g) and so
on, in conjunction with a regression analysis.(lo)"(lz) After building
the simplified surrogate model for the original computer model, a series
of uncertainty analyses (the uncertainty propagation analysis, the
uncertainty importance analysis, and the output distribution sensitivity
analysis) will be performed with respect to the simplified surrogate model

not to the original model. The results obtained, therefore, are only as

_Gi
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valid as the approximations attendant in fits of the simplified surrogate
model to the original model. The response surface methods which will be
described in the following sections include the classical regression
method, and the medified regression method.(13)’(14)

The direct method refers to the approach that utilizes the
input/output relationships provided by the original computer model
calculations. Although the Monte Carlo method is the direct and proper
tool for this approach if computation time is allowable, it is not
practical for very long-running computer codes, In obtaining reasonable
results from a limited number of input/output relationships, the key in
the direct method exists in a sampling technique. Today the Latin
hypercube sampling (LHS) technique is known to be useful and has been
extensively used in uncertainty analysis for many fields. Also several
methods for uncertainty analysis based on the LHS technique have been
developed, The direct methods described in this report include the Monte
Carlo method, the LHS method,(7)’(8) the uncertainty reduction
method,(IS)’(l6) the method of closest distance,(17) the weighting
method,(IS) and the rejection method.(lg)

Applicability of those uncertainty analysis methods mentioned above
to each analysis step is shown in Table 3.1. The following sections will

be devoted for describing these uncertainty analysis methods.
3.2 Response Surface Methods

3.2,1 Classical Regression Method
(1) Regression Equation
In a linear regression method, the function R in Fq.(3.1) is replaced

by a linear polynomial function of input variables:

a.X; , (3.2)

~where aq, and a; are constants fitted to the computer model input/output
relationships based upon the LHS or an experimental design of the inputs,
As measures of input importance, the coefficients aj become
meaningful only in the case that the parameter inputs are dimensionally
comparable. The problem of different units of measurement in the input

variables can be eliminated by standardizing all variables:

i7_
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*
X, —> Xy o= (% - <Xp0) / oo(Xy) (3.3a)
Y—> Y = (Y -<D) / oY), (3.3b)

where <X;> and <Y> are the means of X; and Y for some samples, and o(Xi)
and o(Y) the standard deviations of X; and Y for the sample, respectively.

Eq.(3.2) can now be rewritten in the following standardized form,
a. X, . (3.4)

Here the coefficients ai* are called the standardized regression
coefficients (SRCs).

To better account for nonlinearity in the original model, it is often
more sensible to formulate rank regression equations using the variable
ranks instead of the original variables.(lo)'(ll) Specifically, the
smallest value of each variable across sample members is assigned the rank
1, the next smallest value is assigned the rank 2, and so on up to the
largest value which is assigned the rank N, where N denotes the total
number of observations in the sample. Therefore, the rank regression form

of Eq.(3.2) is given by

A

ry = &, + T ajr; . (3.5)

Here r; and ry are ranks of X; and Y, respectively. The r; and ry are

standardized according to the following relations:

¥*
ry —> 14

i (ri - <r;>) / c(ri) , {3.6a)

*
ry —> ry (ry = <ry>) / o(ry) , (3.6b)
where <r;> are <{ry> are the mean values of r; and ry for the sample, and
U(ri) and o(rY) are the standard deviations of r; and ry for the sample,
respectively., Therefore, using Eqs.(3.6a) and (3.6b), the standardized
form of Eq.(3.5) is as follows:
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2% %, (3.7)

where éi* is called the standardized rank regression coefficient (SRRC).

A value of Y is easily obtained from the rank ry by using an interpolation
method. It is known that this linear rank regression equation can well
approximate Y, when Y is a monotonic function of the Xi's.(lo)

The goodness-of-fit of the regression model is measured by the

quantity,(ll)

~

(Y. - Yj)z}, (3.8)

N
)
1 J

(T - <2/ (7 (=<2 4
1 j=1 J

H ot =

called the coefficient of determination, where Qj and Yj are the raw
values of Y given by the regression equation and the original computer
model, respectively.

The regression equation, Egq.(3.2), can be expanded to include not
only linear terms but also non-linear terms such as quadratic terms of X5
and Xj, by which the goodness of fit will be expected to be better.

(2) Standardized Regression and Partial Correlation Coefficients(lz)
In the standardized regression equation, Eq.(3.4), the uncertainty

width of Y% or the variance of Y*, Vy*, is given by

1

1=

#
where V(X-1 )} is the variance of the variable Xi*, and independency among
variables Xi*'s has been assumed. Since the variables Xi* and ‘4 are
standardized, their variance should be one. Thus the Eq.(3.9) is

rewritten as
*
VY = ai 2 . (3.10)

. #*
The above equation, Eq.(3.10), shows that the uncertainty in Y is the sum

of the square of SRC for X The SRC, therefore, provides an importance

_gt
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measure with which to identify the variables which should be accounted for
in a regression model. In other words, as is larger the absolute value of
the SRC for X;, the variable X; makes larger contribution to the
uncertainty in Y.

The partial correlation coefficient (PCC) is a measure of the unique
linear relationship between two variables that cannot be explained in
terms of the relationships of these two variables with any other
variables. Thus, it provides an importance measure with which to identify
the variables which should be accounted for in a regression model.

As an example, consider a linear model having only one input

variable:
% = ap + alxl . (3.11)

The residuals from this model are denoted by Yi - ﬁi where Yi = i-th
observation value by original computer model, §i = i-th prediction using
Eq.(3.11). The partial correlation for any remaining variable not in the
model is found by computing the sample correlation coefficient between the
residuals and that variable. Thus, a measure of linearity between any
remaining variable and Y is obtained, given that an adjustment has been
made for the variable(s) already in the model.

When nonlinear relationships are involved, it is often more
appropriate to calculate PCCs on variable ranks rather than on the actual
values for the variables: such coefficients are known as partial rank

correlation coefficients (PRCCs).

3.2.2 Modified Regression Method(13)’(14)
In this subsection, a modified regression model based upon the
classical approach is described. Given a functional relationship between

the computer model inputs and outputs of the form
Y = h(Xp,Xg,. .0 Xg) (3.12)

a Taylor series expansion of the function h around a sample vector X, =

(Xls’XZS""’XKs) can be effected to obtain:

K gh
Y2+ 3 (X - %)

i=1 aXi

. (3.13)
Xi=Xiqg
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Here, XS is one of the original sample members generated by the LHS method
relative to the original input distributions. Now, in the light of
alternative input distributions, a new sample of input vectors X, where X
= (X;,X9,...,Xg) is generated. Eq.(3.13) is implemented relative to a new
vector X by effecting the Taylor expansion about the original vector XS
(generated from the original distributions) that is the closest to the new

vector X, i.e., the original vector XS that minimizes the quantity

K
#7 # #®.2
ifl a; < (X - X)) . (3.14)

*®

The constant a; 1s a weight that reflects the importance of the i-th
* #*

input variable as measured by the SRC, and X; and Xis are the

standardized values of X; and X respectively, Here, Eq.(3.14) may be

is?
viewed as a modified Fuclidean distance measure that accounts for the
importance of an individual dimension (i.e., variable). It should be
noted that the analytic form of the function h is unknown; however; the
value of h(XS) which is the computer model output corresponding to the
sample input vector XS is known. This is the case since the computer
model utilized the original samples as input for the purpose of
formulating the regression fit. The gradient of h at X; is approximated

as.

oh

r—— ~ Aa

25 Xi=Xis

(3.15)

that is, as a derivative with respect to the regression model of Eq.(3.2).

Substituting Eq.(3.15) into Eq.(3.13) yields,

Y = h(Xs) +
i

ai(X. -X

1 is)'

K
T (3.16)

Equation (3.16) can be recasted into the rank form by replacing X,

Y, and 84 with ris Ty, and %i, respectively. Therefore,

K .

ry = h(rs) + '21 ai(ri - ris)' (3.17)
i=
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Here, h(rs) indicates the rank of output Y corresponding to an input rank

vector r, of the original sample where the vector r_. is chosen to minimize

s s
the quantity
S a2 (r )2 3.18
I ay (riy - r55) . (3.18)
i=1
n ®
and ris* is the standardized version of rjs+ TIhe constant a; 1is a weight

that reflects the importance of the i-th input rank as measured by the
SRRC.  Eq.(3.17) is now used as a surrogate for the original computer

model,
3.3 Direct Metheods

3.3.1 Monte Carlo Method

The Monte Carlo Method directly simulates the distribution of the
output Y. After a joint probability distribution to the input variables
X1+X9,+..,Xy is assigned, a large number of independent samples
(Xli’XZi""’XKi)’ i=l,...,M, from the assigned joint distribution are
taken and the corresponding outputs Yi’ i=1,...,M, are calculated with the
original computer model. The laws of probability ensure that this
spectrum of outputs provides a good representation of the true output
distribution., From the output data, summary statistics such as the mean,
variance and percentile values of Y may be estimated.

Although the Monte Carlo method has the principal advantage of its
very general applicability that there is no restriction on the form of the
joint input distribution or on the nature of the relationship between
input.and output, the major disadvantage to the Monte Carlo method is the
relatively large number, M, of runs often needed to obtain reliable
information. Sometimes, M can be on the order of several thousands, which
may rules out the use of the Monte Carlo method for very long-running
computer codes. Another disadvantage is that Monte Carlo results do not
tell us which variables are the most important contributors to output
uncertainty.

In order to overcome the disadvantage of the relatively large number
of computer runs needed in the Monte Carlo method, a type of stratified

Monte Carlo sampling known as the LHS was proposed by McKay, Conover and
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Beckman.(7) As for the disadvantage that the Monte Carlo method is
powerless with respect to the uncertainty importance analysis, Ishigami
and Homma(16) proposed the calculation technique called the uncertainty
reduction method which is based on the importance measure proposed by Hora
and Iman(13) and needs repeated runs according to the several different
Monte Carlo or LH samples. The LHS method and the uncertainty reduction

method will be described in the following subsections,

3.3.2 Latin Hypercube Sampling Method(7)>(8)

The LHS téchnique provides an alternative to the conventional Monte
Carlo approach. The LHS method can provide a precise estimate of the
model's response to input variability with a smaller total number of
calculations. This is accomplished by a constrained sampling scheme. LHS
selects N different values from each of K variables Xl""’XK in the
following manner. The range of each variable is divided into N intervals
on the basis of equal probability. One value from each interval is
selected at random with respect to the probability demsity in the
interval, The N values thus obtained for X; are paired in a random manner
(equally likely combinations) with the N values of X5. These N pairs are
combined in a random manner with the N values of X5 to form N triplets,
and so on, until N K-tuplets are formed, This is the Latin hypercube
sample., Thus, for given values of N and K, there exist (NI)K_1 possible
interval combinations for a LHS. It is convenient to think of the LHS as
forming an NxK matrix of input where the i-th row contains specific values
of each of the K input variables to be used on the i-th run of the
computer model. A particular row is often referred to as a LHS input

vector,.

3.3.3 Uncertainty Reduction Method(ls)’(16),
The uncertainty reduction method aims to quantify importance of input
variables including uncertainties to the output uncertainty. The method

(15)

is based on the importance measure proposed by Hora and Iman, and the

calculation technique to practically estimate the importance measure was

(16) The uncertainty reduction method

Heveloped by Ishigami and Homma.
does not rely on a simplified surrogdate model of the original computer
model but relies on a limited number of calculations based on the original

model using the Monte Carle or Latin hypercube sampling.



JAERI-M 89-190

The importance measure Ij for the input variable Xj proposed by Hora

and Iman is given by

I.= /Vy - Vi, (3.19)

J

where Vy is the variance of the output variable Y with uncertainties in
all input variables XI'XZ""’XK of concern being considered, and VYj is
variance of Y with uncertainties in the other input variables than the
variable X being considered by ascertaining the specified value of X

The expre381on of Vy and VYJ is given by, with an assumption that 1nput

variables are independent,

K
= 2
Vy = [.. J{h(Xl,Xz,...,XK) - <Y>) ijl £ (X;)dX;
9 K
=j "J.h(xl'xz’-'-'XK) (NEFTCIPL> SR (3.20)
i=1
i<
Y J Vy (xy)f5(x5)dxy, (3.21)
where,
r 2
VY(_}_(_J') = J..J{ h(Xl,.",Xj—l’lj’ Xj+1,,,,,XK) - <h(£j)>}
4
i (Xy)dky, (3.22)
i=]
(i#3j)

<h(£j)> =f --J h(Xl,.--,Xj_l,E‘]" Xj+1,.no,XK)

K
T £, (X;)dXy, (3.23)
i=

(i#3)

£;(X;) = PDF for the input variable X,

Here <h(§j)> and VY(Ej) are a mean and a variance of Y, respectively, with

the input variable Xj ascertained by the specified value x.., Combining

J
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Eqs.(3.20) through (3.23) leads to the relation:

Vy - VyJ

Yy

J(h(gd)>2 £4(x4)dx;. (3.25)

Since the quantity <Y>2 is constant, the importance rankings are
determined by the wvalue of Uj. In other words, the input variable Xj is
more important than X;, if Uj>Ui' Hence the importance analysis to
determine the importance rankings of input variables is reduced how to
practically estimate the quantity Uj.

A calculation technique to estimate the quantity U, of Eq,(3.23) is

J
illustrated by rewriting it as

[ow}
il

2
J<h(§j)> fj(zj)ﬁﬁj

J..J LTC SR O 16 STINNS LTS SR SRETITI §'0

X
DD 1 EEAX). (3.26)
i=

(1#3)

= =~
—

i

The above equation, Eq.{(3.26), shows that the quantity Uj is nothing

more than an expectation value of the function defined by

H(le---sXKs X'ls--'!X'j_ls X'j+1r---vX'K)
= h(Xp, e Xg) BOK' e XY g XX e, X gD, (3.27)

with (2K-1) independent random variables
(X102 Xg,s X'l,...,X'j_l, X'j+1,...,X'K) whose PDF is given by

K K
(= fi(Xi))( T fi(X'i)). Thus the quantity Uj would be estimated

i=1 i=

(i£3)

numerically with allowable Monte Carlo calculations. It is noted that to
estimate Uj the required computer run number for the original model
function h(Xl,...,XK) is 2xM, where M is a number presenting Monte Carlo

sample size, because the function H is expressed by twofold product of the
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original model function h.

If Monte Carlo calculations for the original model h(Xl,Xz,...,XK) is
costly and impractical, the LHS method would be applicable which requires
much smaller number of samples than that of the Monte Carlo method. Now
the computer run number to estimate Uj is reduced to 2xN and thus the
computer run number needed to determine importance rankings of input
variables is reduced to 2xNxK, where N is a number presenting LH sample
size, It should be emphasized that this technique is expected to give
more accurate results as the size of the Monte Carlo or the LH samples
becomes larger, owing to reduced error in statistics. In addition, it
should be noted that the uncertainty reduction method is applicable in the
case where input variables of concern include such ones as selection of

models embedded in the computer models.

3.3.4 Method of Closest Distance(l7)

The method of closest distance can be used for the output
distribution sensitivity analysis to determine the impact of the
probability distribution functions characterizing the input variable
uncertainties on the output distributions.

The method is based upon the modified regression method. It is a
method that utilizes the input/output relationships provided by the
original computer model calculations based upon a single LH sample.

Elimination of the second term of Egs.(3.16) and (3.17) yields,

Y =h(X), (3.28)
and

ry ~h(r,). (3.29)

The method comprises the following steps:

(1) A Latin hypercube sample is generated:
xi = (XlilXZi!---!XKi)i i=1,2,...,N . (3-30)

Here, the N sample members correspond to N combinations of values for
the K parameter inputs. The input vector (i.e,, sample member) X

yields the output Yi from the computer code where, for simplicity,
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just one output variable is considered.
(2) In order to ascertain the effects of the input PDFs on the output

distributions, another Latin hypercube input sample,
r o _ t ' 1 i '
XJ = (le ’XZ_] ,...,XKJ ), N 1,2,...,N (3-31)

is generated. This sample is obtained with respect to the different
input PDFs from those employed in step (1).

(3) The output value Yj' corresponding to the randomly sampled input
vector Xj' is approximated by the LHS output value Y, whose
corresponding LHS rank vector rg is "closest" to the rank vector r.'

J
corresponding to X.', where Eq.{(3.18) provides the definition of

"closeness"., Then ghe corresponding original output Y, is used as an
approximate replacement for the output Yj'. Hence N' random output
values are approximated by the nearest of the N' LHS output values
obtained from the original computer code calculations,

(4) An approximation of the output distributions resulting from the
second set of input distributions is thereby compiled in the light of
the original computer model calculations. These new output
distributions may be compared to the original output distributions in
order to ascertain their sensitivity to the input PDFs. This
appreoach is identical to the modified regression method described in

subsection 3.2.2 except that the regression based terms are excluded

from the surrogate model of the original computer model.

3.3.5 Weighting Method(18)

A small sample sensitivity analysis technique which directly utilizes
the computer model results generated based upon LHS of input distributions
has been proposed by Iman, et al.(ls) This method can be used to determine
the impact of the probability distribution functions characterizing the
input variable uncertainties on the output distributions without the need
for computer calculations in addition to those used to determine the
original output PDFs and without relying on a response surface
representation of the physical model.

Iman, et al. show that if the probability density function of a
single input variable X; is changed from fi(Xi) to qi(Xi), then the mean
<Y>, standard deviation o(Y), and cumulative probability function C(Y) of

the output variable Y may be approximated by
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N
oy = -21 WY, (3.32)
J=
N
W(1) = T Wy (Y(I) - %, (3.33)
j=1
N
Cy(¥) = .zl Wy u(Y - Y(9), (3.34)
J=

where u is the unitary step function defined by

1if x> 0
u(x) = (3.35)
0if x < 0,
Y(j) is the computer model output corresponding to the LHS input vector in
which the rank of X; is i, N is the LH sample size, and the weighting
factor, Wj, is given by the probability with respect to qi(Xi) that the
reference variable X; takes a value in the j-th interval of the original

stratification of the parameter space with respect to fi(Xi):

W, =

J J £5(3

Q. (X )dX, . (3.36)
X (3-1 T

Here Xi(j) is the upper bound of X; in the j-th interval and, for given j,

is determined by

i/N J L) £.(X;)dX (3.37)
JAN = X, (0) LR Tl :

since in the LHS approach, the range of each variable is divided into N

nonoverlapping equiprobable intervals.

3.3.6 Rejection Method(1%)
In this method proposed by Beckman and McKay,(lg) a subset of the
original computer model outputs corresponding to a Monte Carlo sample from

the original input distributions is selected to provide the appropriate
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statistical outputs corresponding to a new set of input distributions.
Consider the input variable vector X = (Xl'x2""’XK) and the sample

vectors
XJ. = (le,XZj,,.,,XKj), J=1 to N (3'38)

which are generated with respect to the PDF f(X). Let the output of the
computer model corresponding to the input Xj be Yj. The rejection method
relies on selection of some subset of the sets of variables (Xj!Yj)' Let
the new input PDF be q(X).

It is necessary that there exists a uniform bound M such that,

—%%;%— (3.39)

for all X and that the domain of q(X) be contained within the domain of
f(X). Let the random variable V, given as sample vector Xj’ be assigned a
uniform probability distribution between O and M-f(Xj). The data set (Xj,
Yj) is then retained as a sample from q(X) if a random realization of V is
less than q(Xj). The theoretical basis for this approach is expounded in
Ref. 19.
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4, Application to Deterministic Models

The uncertainly analysis methods described in the previous chapter
have been applied to three computer models, the MARCH/CORRAL II
Model,(200+(21) the TERFOC mode1(22) and the SPARC model.(23) Table 4.1
summarizes methods utilized in each analysis step for three computer

models,
4.1 Application to the MARCH/CORRAL II Model(2%4)

This section illustrates results of the uncertainty analysis for the
MARCH/CORRAL II model using the regression method to estimate
uncertainties in the fission product release to the environment during
core meltdown accidents at a BWR Mark~I plant. Investigated are
identification of important input variables and uncertainty propagation. A
sampling technique of an orthogonal factorial design is used to determine
a response surface, and analysis of variance and regression analysis are
performed for the MARCH/CORRAL II input/output relationships. Uncertainty
propagation is analyzed using the Monte Carlo sampling technique based on
the response surface obtained,

In the analysis, the computer code system VARS(25) developed by Japan
Atomic Energy Research Institute (JAERI) has been utilized,

4,1.} Description of the MARCH/CORRAL II Model

The purpose of the MARCH/CORRAL II code is to estimate the
radiological release following a severe nuclear reactor accident. The
MARCH code is a computer code to analyze the thermal hydraulic response of
the reactor core, the primary coolant system, and the containment system
in light water reactors during a course of core meltdown accidents. The
CORRAL II code is a computer code to analyze the fission product transport
and deposition in the containment system of water-cooled reactors and to
evaluate environmental fission product release fractions of the core
inventory. Here the MARCH ocutput supplies thermal hydraulic conditions in
the containment to the CORRAL II input.
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4.,1.2 Accident Sequences Analyzed
The accident sequences analyzed are a station blackout accident and a
loss of decay heat removal accident at a BWR plant with Mark-I type conta-

inment.

Station Blackout Accident

In the accident, AC electric power of both the off-site power and the
diesel generator is lost completely and only the DC electric power in the
station is available. In the analysis, DC electric power was assumed to
be exhausted in four hours after the initiation of the accident.
Therefore high pressure coolant injection (HPCI) and reactor core
isolation cooling (RCIC) systems using the turbine driven pumps were
assumed to be operable for the first four hours. After water injection
capability from HPCI/RCIC pumps is lost, the station blackout would
develop a core meltdown accident, involving subsequent containment failure
which  would bring a large amount of fission products released to the

environment,

Loss of Decay Heat Removal Accident

In the sequence, a transient occurs that renders the power conversion
system unavailable as a heat sink for the reactor, and then a reactor
scram occurs. As decay heat of the core continues to be transferred to
the coolant, pressure in the reactor cooclant system (RCS) increases until
the safety relief valves (SRVs) open, After the SRVs open, steam from the
RCS is discharged into the suppression pool. Then the HPCI and RCIC
systems automatically start to recover the water level in the reactor
pressure vessel (RPV), Then SRVs are manually opened (assumption) to
depressurize the RPV and the low pressure coolant injection (LPCI) is used
to retain the water level. Steam in the RPV discharges into the
suppression pool through the SRVs, Thus the decay heat of the core is
transferred to the torus water. However, failure of the residual heat
removal (RHR) system causes the torus water temperature and the
containment pressure to increase until the containment fails. In the
study, it was assumed that the drywell would fail when the pressure or
temperature in the containment reaches 174.7 péia or 500 °F, respectively.
Upon containment failure the core cooling injection was assumed to fail.
Loss of all injection results in decreasing the water level in RPV, core

uncovery, core melt and subsequent vessel failure,
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4.1.3 Variables Considered in the Analysis and Sampling of Input
Variable Values
(1) Variables considered in the analysis

The output from the CORRAL IT code includes environmental release
fractions of the core inventory of eight groups of fission products; noble
gas, organic iodine, elemental iodine, and particulates {Cs-Rb, Te, Ba-Sr,
Ru, La). Two output variables were selected for consideration: the
environmental release fraction of the core inventory of elemental iodine
and Cesium—Rubidium (Cs-Rb).

The input variables selected in the analysis of the station blackout
accident and the loss of decay heat removal accident are shown in Tables
4.2 and 4.3, respectively, with the ranges and distribution patterns of
the input variables. These ranges of the variable values were determined

based on experimental data and/or a subjective judgment.

(2) Selection of input variable values

The input variable values were selected using an orthogonal factorial
design, one of the experimental designs, where input variables were
treated as ones with three levels, The orthogonal factorial designs used
are L243(3121) and L81(340) in the analysis of the station blackout

accident and the loss of decay heat removal accident, respectively.

4,1.4 Analysis of Variance and Regression Analysis

Based on the MARCH/CORRAL II input/output relationships using the
factorial orthogonal design, analysis of variance was performed to
identify important input variables for the amount of fission products
released to the environment., The analysis of variance partitions variance
of the output into sum of squares of a variable (main effect) and/or an
interactive variable set (interaction).

In regression analysis, input variables identified to be important by
analysis of variance were considered as candidates for terms in a
regression equation. The regression equation was determined in a step
wise manner; At each step one term was added to the regression equation
so as to make the greatest reduction in the error sum squares. The
resulting regression equation took a simple form composed of polynomials
up to second order of the input variables.

The uncertainty propagation analysis was made based on the regression

equation using a Monte Carlo sampling technique with joint probability
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distributions for the input variables being assigned.

4.1.5 Results for the Station Blackout Accident
(1) Elemental iodine

Table 4.4 shows the results obtained by analysis of variance. It
can be seen that the important input variables affecting the calculated
elemental iodine release fraction to the environment are FDROP (fractional
holdup of melted core at core slumping), DCF (suppression pool
decontamination factor) and DFI (natural deposition factor for elemental
iodine) whose values of mean squares are relatively large. The
interaction between TMELT (fuel melting temperature) and FDROP 1is
recognized to be important. In the uncertainly propagation analysis, two
sets of distribution functions were assumed; in one case (case 1) the PDFs
of input variables were assumed to be uniform or loguniform distributions,
and the other case (case 2) they were assumed to be normal or lognormal
distributions.

Figures 4.1 and 4.2 show the calculated probability distributions of
elemental iodine release fraction to the environment in the case 1 and in
the case 2, respectively, The mean and median values calculated are 0,022
and 0,021, respectively in the case 1, being 0.019 and 0.018 in the case
2, The wupper (the 95th percentile ) and the lower (the 5th percentile)
bounds calculated are 0.043 and 5.6 x 10"3, respectively in the case 1,
being 0.039 and 4.6 x 107> in the case 2. Thus the difference between the

upper and the lower bounds is about one order of magnitude.

(2) Cesium=-Rubidium (Cs-Rb)

As for Cs-Rb, an analysis similar to the one for elemental iodine was
performed.

Table 4.5 shows the results obtained by analysis of variance. We can
see that the important input variables affecting the calculated Cs~Rb
release fraction to the environment are DFP (natural deposition factor for
particulate), DCF (suppression pool decontamination factor) and DCF*DFP
whose values of mean squares are relatively large. It should be noted
that the interaétion between DCF and DFP is recognized to be important.

Figures 4.3 and 4.4 show the calculated probability distributions of
Cs-Rb release fraction to the environment in the case 1 and in the case 2,
respectively. The mean and median values calculated are 0.080 and 0.085,

respectively in the case 1, being 0.079 and 0.083 in the case 2. The
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calculated upper (the 95th percentile) and the lower (the 5th percentile)
bounds calculated are 0.13 and 9.3 x 10_3, respectively in the case 1,
being 0,14 and 0.011 in the case 2. Thus the difference between the upper

and the lower bounds is about one order of magnitude,

4.1.6 Results for the Loss of Decay Heat Removal Accident
(1) Elemental iodine

Table 4.6 shows the results of analysis of variance. It can be seen
that the important input variables affecting the calculated elemental
iodine release fraction to the environment are MWORNL (zirconium—-water
reaction model), FDROP and DFI2 (natural deposition factor for iodine)
whose values of mean squares are relatively large.

In the uncertainly propagation analysis, the value of the variable
MWORNL was assumed to be 1 (Cathcart) or 0 (Baker-Just) with the same
probability (fifty percent). For the other variables, two sets of
distribution functions were assumed; in one case {(case 1) the PDFs of
input were assumed to be uniform or loguniform distributions, and the
other case (case 2) they were assumed to be normal or lognormal
distributions.

Figures 4.5 and 4.6 show the calculated probability distributions of
elemental iodine release fraction to the environment in the case 1 and in
the case 2, respectively. The mean and median values calculated are 0.032
and 0,031, respectively in the case 1, being 0.028 and 0.028 in the case
2. The upper (the 95th percentile) and the lower (the 5th percentile)
bounds calculated are 0.064 and 0.0053, respectively in the case 1, being
0.055 and 0.0042 in the case 2, Thus the difference between the upper and

the lower bounds is about one order of magnitude.

(2) Cesium—Rubidium (Cs-Rb)

Table 4.7 shows the results obtained by analysis of variance., We can
see that the important input variables affecting the calculated Cs-Rb
release fraction to the environment are PDIA (particle diameter), DFP,
MWORNL and FDROP whose values of mean squares are relatively large. It is
noted that the interaction between variables is small.

Figures 4.7 and 4.8 show the calculated probability distributions of
Cs-Rb release fraction to the environment in the case 1 and in the case 2,
respectively, The mean and median values calculated are 0.10 and 0.095,

respectively in the case 1, being 0,089 and 0.085 in the case 2. The



JAERI-M 89-190

upper (the 95th percentile) and the lower (the 5th percentile) bounds
calculated are 0.20 and 0.013, respectively in the case 1, being 0.17 and
0.016 in the case 2. Thus the difference between the upper and the lower

bounds is about one order of magnitude.

4,1.7 Summary

The uncertainty analysis for environmental fission product release
included two main features: One was identification of important
parameters affecting the calculated results and the other was a
quantitative estimate of uncertainty for fission product release fraction
to the environment. The former was obtained by analysis of variance and
the latter by Monte Carlo simulation based on the response surface.

For the station blackout accident, important parameters identified
are suppression pool scrubbing factor, natural deposition factor and a
fractional holdup of melted core at core slumping as main effects and the
interaction between core melting temperature and a fractional holdup of
melted core at core slumping. For the loss of decay heat removal
accident, important parameters identified are a fractional holdup of
melted core at core slumping, natural deposition factor and zirconium—
water reaction model, while the interaction between input variables was
small, The reason why suppression pool decontamination factor was not
significant is conjectured as follows. In the accident, the containment
had failed before fission product was released. Thus the released fission
products were directly carried to the atmosphere with a small effect of
suppression pool scrubbing.

The results obtained by Monte Carlo simulation were similar for both
the accident sequences. It was shown that in both accident sequences, the
difference between the upper and lower bounds of environmental fission

product release fractions was about one order of magnitude.
4.2 Application to the TERFOC Model(le)

This section illustrates results of the uncertainty importance
analysis for the TERFOC model using the regression method and the

uncertainty reduction method to identify important input variables. A

sampling technique of the LHS was utilized in both the methods.
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4.2.1 Description of the TERFOC Model

The purpose of the TERFOC (Terrestrial Food Chain) computer code
developed by JAERI is to assess the potential radiological impact of
routine releases of radicactive effluents from nuclear facilities.(zz) The
TERFOC model calculates the concentration of radionuclides in vegetation
and animal products as the result of deposition of radionuclides on
agricultural land,

To simplify the problem for the analysis an average long-term
concentration of 1311 [Bq/m3] in the above ground atmosphere was assumed
and the physico-chemical form of iodine was assumed to be 10Z elemental,
50Z organic and 40% particulate. The equation used for predicting the i-

th radionuclide concentration, C, {Bq/2], in milk is given by
C = Fl‘l'l (QFFCVF + QFSCVS) exp(—?\itf), (4.1)

F = feed to milk transfer factor [d/i]
Qpp = daily dry intake of fresh forage by dairy cows [kg/d]
Qpg = daily dry intake of stored forage by dairy cows [kg/d]
tg = time delay from production to consumption of milk [d]
Cyp = radionuclide concentration in fresh forage [Bq/kg]

VEF
Cyg = radionuclide concentration in stored forage [Bg/kgl

A; = physical decay constant of the i-th radionuclide [1/d]

4.2.2 Variables Considered in the Analysis

Of many output variables provided by the TERFOC model, one output
variable was selected in the importance analysis for simplicity, The
output variable selected is the 1311 concentraticon in milk, Cm given by
Eq.(4.1), at the time of 30 years. The TERFOC input variables selected
are given in Table 4,8 together with their assigned ranges and
distribution patterns as used for the importance analysis. These twelve
input variables were sampled independently using the LHS technique in
accordance with the ranges and distribution patterns of the input

variables,

4.2.3 Results of the Importance Analysis
Based on the TERFOC-run results for two hundreds LHS input vectors,
the evaluation of PCCs, PRCCs, SRCs, and SRRCs was performed using the

computer program in Ref. 12, Table 4.9 shows these coefficients and the
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coefficient of determination, Rz, for the 1311 concentration in milk,-Cm,
at the time of 30 years. The results show that the fit of the regression
model to the TERFOC model is almost satisfactory (R2 > 0.8). It is found

that the three input variables, F_, RP anpd wp, a@s revealed by their high

m?
correlation coefficients, predominantly govern the uncertainty in the
output C_.

In calculating the quantity Uj relating to the importance measure Ij
for the j-th input variable, the TERFOC computer runs for four hundreds
LHS input vectors were performed to obtain the expectation value of the
function H, Eq.(3.27), corresponding to the output variable C,+ Here the

"input" variables in the function H is not twelve but twenty

number of
three (=2x12-1), and this is why the LH sample size is larger by two times
than the LH sample size used in the regression analysis. The calculated
values of Uj for twelve input variables are shown in Table 4,10, The
results indicate that the input variables, Fm' Wp and RP, make dominant
contribution to the uncertainty in the output variable Cae

The rankings of input variable obtained from the uncertainty
reduction method are also shown in Table 4.10 together with the results by
the regression analysis of PCCs, PRCCs, SRCs and SRRCs. The results show
the following;
(a) Both the uncertainty reduction method and the regression method

identify the three dominant input variables, F Wp and RP, that

m?
contribute to the output uncertainty.

(b) There can be seen some differences between the results by the
uncertainty reduction method and those by the regression method.
This may reveal that the fit of the regression model to the TERFOC

model is not completely adequate in spite of high value of Rz.
4.3 Application to the SPARC Model(13),(14)

This section illustrates results of the output distribution
sensitivity analysis for the SPARC model using several methods described
in the previous chapter. Merits and limitations of the methods are

examined by detailed application to SPARC.

4,3.1 Description of the SPARC Model

The suppression pool aerosol removal code (SPARC) calculates the
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scrubbing of fission products released from the reactor coolant system

(RCS) into the pressure suppression pool of boiling water reactors (BWRs)

during postulated severe reactor accidents., This code is part of the

source term code package (STCP), and is particularly suited for the

purpose of demonstrating merits of the various sensitivity analysis

methods for the following reasons:

(1) Relatively small computational requirements.

(2) Due to a limited number of input variables, a small of LH samples
will suffice for the analysis.

(3) Owing to the above, the SPARC code can be readily exercised for
several different LHS inputs. This enables comparison of the
sensitivity analysis methods with direct SPARC sensitivity

calculations.

4.3.2 Variables Considered in the Analysis
For the purpose of the sensitivity analysis with the SPARC model, the
following calculational outputs were tracked,.

(a) The integral decontamination factor (DF) for CsI defined by:

t
£
J M, dt
ty
DF = . (4.2)
t
£
j M, dt
i

{b) The total leakage amount of all radionuclides into the wetwell

airspace defined by;

t .
£

I, = J 5 Mgut dt (4.3)
ti ]

where M;  is the mass of CsI aerosols entering the pool from the RCS, Mout
is the mass of CsI aerosols leaving the pool and entering the suppression
pool's wetwell airspace region, t; is the initial time, ty is the final
time (tf-ti is the scrubbing duration), and the superscript j corresponds
to the j-th radionuclide species entering the wetwell airspace region.

The SPARC input variables selected together with their assigned

ranges and probability distribution patterns as used for the reference
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analysis are given in Table 4.11, These six input variables were sampled
using the LHS technique in accordance with the ranges and distributien
patterns of the input variables, A sample size of fifty was considered

corresponding to fifty combinations of values for the six input variables.

4.3.3 Reference Analysis

Based on the SPARC-run results for fifty initial LHS input vectors
(LHS~1), the evaluation of PRCCs and SRRCs was performed using the
computer program in Ref. 12. Table 4,12 shows the PRCCs, SRRCs and the
coefficient of determination, Rz, for the integral DF for CsI and the
total leakage of all radionuclides into the wetwell atmosphere. These
results indicate that the fit of the regression model to SPARC for the
reference output variables is satisfactory (R2 > 0.9). It is found that
two input variables, X; (RATIO) and X (VSWARM), as revealed by their high
correlation coefficients, predominantly govern the magnitude of
uncertainties in the outputs DF and L,

Table 4,13 shows some properties of the output distributions,
resulting from propagation of the 30 input LH vectors through SPARC,
These include the mean, standard deviation, the 5th, 50th and 95th
percentile values for DF and L, respectively.

Of course, numerical simulation techriques such as LHS provide only
an estimate of the output distributions that would in principle be
generated by the exact analytic propagation of the input distributions.
In order to provide an appreciation for the impact of the LHS approach on
the calculated results, additional SPARC calculations were performed using
a different set of fifty LHS input vectors (LHS-2), although sampled from
the same input distributions. These comparisons are given in Tables 4.12
and 4.13, Even though relatively large differences in the calculated
PRCCs and SRRCs exist for the unimportant input variables X4s X5 and Xg,
the impact of LHS on the important input variables is shown to be

insignificant,

4.3,4 Output Distribution Sensitivity Analysis

" The reference analysis of the previous subsection showed that the two
SPARC variables Xl (RATIO) and X5 (VSWARM) were the most significant
contributors to both the integral DF for CsI (DF), and the total leakage
of all radionuclides into the wetwell atmosphere (L), The sensitivity

analysis, therefore, focused attention on the effect of varying the PDFs
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of the most important input variables, X; and X5, on the PDFs of the
output variables DF and L.

Table 4.14 lists the assumed distributions for Xy and X4 in the
sensitivity cases as compared with the reference analysis of subsection
4,3.3. The mean and the range of each input variable in the sensitivity
analysis were assumed to be the same as those given in Table 4.11 for the
reference analysis.

The sensitivity of the output variables will be determined by
changing the distributions for X (case 5-1) and A4 (case 5-2) from
uniform to normal using the sensitivity methods described in Chapter 3,
Hence, the approach to be adopted is one in which the original LHS-1
results provide the basis for applying the response surface methods and
direct methods described in Chapter 3. By comparing the results thereof
with the output distributions based upon LHS of the new input
distributions (LHS-3 and LHS-4 of Table 4,14) and runs of the actual
computer model SPARC, the success of the methods may be assessed. Here,
three LH sample sizes of fifty are considered. Note that since simple
regression models are being utilized to propagate the samples LHS-3 and
LHS-4, we could equally well have used larger samples acquired from the
same distributions with respect to which LHS-3 and LHS-4 were generated.
However, for more direct comparison with the original computer code
predictions, we use the regression models to propagate the actual LHS-3
and LHS-4 samples,

The normal distribution is of the form:

32
exp{ —-Sijil— } {(4.4)

Y21 o 202

q(x) =

where the distribution parameters, u and ¢ are determined by
requirement(s) of the same mean and range between the normal distribution

q(x) and uniform distribution £(x) = 1/(b-a):

b w
j x f(x)dx = ( x g{x)dx (4.5)
a p— .
and
a L]
J a(x)dx = J q(x)dx = 0,001, (4.6)
- b

Egs. (4.5) and (4.6) give the values of u and o as:
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=
I

(a+b)/2 (4.7)

@]
it

(b-a)/6.182 (4.8)

4.3,4.1 Response Surface Methods
(1) Classical Regression Model

The adopted standardized rank regression equation is:
K
rY = 4 §- r. . (4'9)

Table 4.15 lists the SRRCs, éi*, and the coefficient of
determination, R2, for the integral DF and the total leakage as calculated
by the computer program in Ref. 12, These results indicate that the fit
of Eq.(4.9) to SPARC for the reference output variables is satisfactory
(R%50.9).

(2) Modified Regression Model
Based on the rank regression analysis, the adopted modified rank

regression equation is

o~

ry = h(rg) + I 3 (r; - r;)) . (4.10)

i=l

Here the coefficient a; is identical to the SRRC, ﬁi*, in Table 4.15.
This is ensured since both the ranks of X; and Y cover the same range, 1
to 50, The nearest LHS-1 input rank vector, r,, to a given LHS-3 or LHS-4
vector was determined using Eq.(3.18) with the values of ﬁi* given in
Table 4.15.

4.3.4,2 Direct Methods
(1) Weighting Method

In the weighting method, statistical parameters such as mean, the
standard deviation and the CDF for the reference output variable Y were
calculated by Eqs.(3.32) through (3.34). The weighting factors Wj
corresponding to the change in distributions given in Table 4.14 were
calculated using Eqs.(3,.36) and (3.37), and the results are shown in Table
4,16,
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It is noted that the weighting method requires neither the LHS-3 nor
the LHS5-4 samples. This is the case since this method requires only a
knowledge of the new input distributions, but does not require a sampling

of these distributions to be effected.

(2) Rejection Method

This method requires a uniform bound M defined in Eq.(3.39) as

M = MAX { q(X)/£(X)}. (4.11)

Such a bound indeed exists and in this application is given by

M

i

38
B~
~J

(4.12)

where Eqs.(4.4) through (4.8) have been used. Again this method requires
a knowledge only of the new input distributions and does not require the
samples LHS-3 and LHS-4,

(3) Method of Closest Distance
In this method, Eq.(3.29) based upon the rank data was used. The

nearest LHS-1 input rank vector, r to a vector of LHS-3 or LHS-4 is

S’
determined using Eq.(3.18) with the values of éi* given in Table 4.15.

4,3,4,3 Results and Discussions
Tables 4,17 through 4.20 summarize the calculated statistical

parameters for the output variables DF and L based directly upon the SPARC

results as well as upon the five sensitivity analysis methods, A

comparison of the calculated cumulative distribution functions (CDFs)

based on the five methods is given in Figures 4.9 through 4.12.

Comparison of the sensitivity methods against the SPARC results shows
the following:

(1) Generally good agreement is achieved between the direct SPARC results
and the results of the classical rank regression method, the modified
rank regression method, the rejection method and the method of
closest distance.

(2) The weighting method shows a good agreement for the calculated mean
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and median, however, the calculated standard deviation, the 5th and
95th percentiles show large deviations compared with other methods.

Of the original 50 LHS sample members, application of the rejection
method dictated the retention of 22 sample members for both
sensitivity cases S5-1 and S-2, These retained sample members then
provided a basis for making inferences relative to the new input
PDFs. Note that this number 22 is broadly consistent with the
theoretical frequency of retention(19) of 1/M, where M (=2.47 in this
application) is the uniform bound defined in subsection 3,3.6. While
the rejection method has performed well in the current investigation,
it should be borne in mind that this performance would be expected to
degrade in circumstances where the initial (pre-rejected) number of
sample members is small or where the bound M is large. 1In either

case, the number of retained sample members would be small.
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Table 4.4 Results of analysis of variance for elemental
iodine release fraction to the environment

in the station blackout accident.

Mean squares

Degree of
Variable freedom Sum of squares

DCF 2 7.0226D-03"
WDED 2 2.7755D-03
TMELT 2 2.5017D-03
FDROP 2 1.0634D-02
FZOCR 2 6.3982D-04
COND 2 1.3066D-03
FLRMC 2 §,0058D-04
HIM 2 2.6348D-04
HIO 2 4,3098D-04
FPSM 2 9.4865D-04
FPSV 2 6.3483D-04
ABRK 2 9.4290D-04
DFI 2 4,4618D-03
DCF ¥  WDED 4 7.8048D-04
DCF ¥ TMELT 4 7.8402D-04
DCF *  FDROP 4 1.5460D-03
DCF *  COND 4 1.2956D-03
DCF * DP 4 5.1624D-04
DCF *  FPSV 4 5.7865D-04
DCF *  FPSM 4 1.0398D-03
WDED *  FDROP 4 4,2473D-04
WDED * COND 4 1,1353D-03
WDED % DP 4 8.4231D-04
WDED %  FLRMC 4 6.1262D-04
WDED *  FPSV 4 5.9601D-04
TMELT *  FDROP 4 5.8029D-03
TMELT *  COND 4 7.2848D-04
TMELT +#  DFI 4 4,5028D-04
FDROP *  DP 4 8.1977D-04
FDROP #  FPSV 4 5.0637D-04
FZOCR * DFI 4 4,6717D-04
COND #  FPSV 4 5.9265D-04
COND #*  FPSM 4 9.5872D-04
Dp *  FLRMC 4 7.2141D-04
DP ¥ DFI 4 6.0843D-04
FLRMC *  FPSM 4 6.5177D-04
FPSV  #  DFI 4 5.1281D-04
DFI *  FPSM 4 6.5116D-04

ERROR 116 5,8273b-03

3.5113D-03
1,3878D-03
1.2508D-03
5.3171D-03
3.1991D-04
6.5329D-04

 4,5029D-04

1.3174D-04
2.1549D-04
4,7432D-04
3.1741D-04
4,7145D-04
2.2309D-03
1.9512D-04
1.9601D-04
3.8650D-04
3.2391D-04
1,2906D-04
1.4466D-04
2.5996D~-04
1.0618D-04
2.8382D-04
2.1058D-04
1,5316D-04
1,4900D-04
1,4507D-03
1.8212D-04
1,1257D-04
2.0494D-04
1.2659D-04
1.1679D-04
1.4816D-04
2.3968D-04
1.8035D-04
1.5211D-04
1.6294D-04
1.2820D-04
1.6279D-04

5.0235D-05

Cut off value of variance: 1.0 x 10—4
* 7.0226D-03 reads 7.0226 x 1073
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Table 4,5 Results of analysis of variance for Cs-Rb
release fraction to the environment

in the station blackout accident.

Degree of

Variable freedom Sum of squares Mean squares
DCF 2 2.0914D—01* 1.0457D-01
WDED 2 1,9427D-02 9,7135D-03
TMELT 2 4,5993D~-03 2.2996D-03
FDROP 2 2,4175D-02 1.2087D-02
FZOCR 2 6.0361D-03 3.0181D-03
COND 2 1.2604D-02 6.3021D-03
DP 2 5.9054D-03 2,9527D-03
FLRMC 2 5.9609D-03 2,9804D-03
FPSV 2 6.5581D-03 3.2790D-03
ABRK 2 1.3225D~02 6.6124D-03
DFP 2 3.8099D-01 1.9049D-01
DCF *  COND 4 1.4201D-02 3.5502D-03
DCF ¥  FPSV 4 8.1044D-03 2.0261D-03
DCF ¥ DFP 4 1.6437D-01 4,1093D-02
DCF ¥  FPSM 4 2.1089D-02 5.2723D-03
WDED %  COND 4 1.0009D-02 2.5024D-03
TMELT *  FDROP 4 1.6494D-02 4,1236D-03
TMELT *  DFP 4 1,2599D-02 3.1498D-03
FZ0CR *  FPSV 4 §,0066D-03 2.2516D-03
COND %  FPSM 4 1.1480D-02 2.8699D-03
DP *  FLRMC 4 1.0342D-02 2.5856D-03

ERROR 180 1.5762D-01 8.,7566D-04

Cut off value of variance: 2.0 x 10_3

¥ 2,0914D-01 reads 2.0914 x 107!
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Table 4.6 Results of analysis of variance for elemental
iodine release fraction to the environment
in the loss of decay heat removal accident.

Degree of
Variable freedom Sum of squares Mean squares
MWORNL 2 9.8030D-03" 4.9015D-03
FDROP 2 5.1128D-03 2.5565D-03
DFI2 2 3.0740D-03 1.5370D-03
TCOOLS 2 2.0444D=03 1.0222D-03
SAREA 2 1.7260D-03 8.6301D-04
PDIA 2 1.5636D-03 7.8182D-04
SAREA * (1 4 2,7212D-03 6.8031D-04
Cl 2 1.2302D-03 6.1510D-04
HIF 2 9.5716D-04 4.7858D-04
FPSM *  DCF 4 1.8377D-03 4.5942D-04
FPSM 2 7.2343D-04 3.6171D-04
DCF 2 5.2073D-04 2.6037D-04
MWORNL #  DCF 4 1.0406D-04 2.6014D-04
DCF *  DFI2 4 9.4114D-04 2.3529D-04
MWORNL *  DFI2 4 7.4512D-04 1.8628D-04
FDROP #  DFI2 4 6.2548D-04 1.5637D-04
FDROP *  DCF 4 5.3906D-04 1.3476D-04
FDROP *  MWORNL 4 2.3913D-04 5,9783D-05
HIF ¥ Cl 4 8,2724D-05 2.0681D-05
ERROR 24 6.0293D-03 2,5122D-04
TOTAL 80 4.1557D-02

* 9,8030D-03 reads 9.8030 x 1073
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Table 4.7 Results of analysis of variance for Cs-Rb release
fraction to the environment in the loss of decay

heat removal accident,

Degree of

Variable freedom Sum of squares Mean squares
PDIA 2 1.2600D-01" 6.3001D-02
DFP 2 6.5246D-02 3.2623D-02
MWORNL 2 2,7200D-02 1.3600D-02
FDROP 2 2.2685D-02 1.1343D-02
SAREA 2 8.8959D-03 4,4480D-03
DCF 2 8.7633D-03 4,3817D-03
FPSM 2 8.4184D-03 4,2092D-03
FpPSM *  DCF 4 1.5381D-02 3.8452D-03
TCOOLS 2 6.0860D-03 3.0430D-03
SAREA * Cl- 4 9.8593D-03 2,4648D-03
DCF *  DFP 4 8.2093D-03 2,0523D-03
HIF 2 2.3716D-03 1,1858p-03
FDROP *  DCF 4 3.3419D-03 8.3548D-04
MWORNL *  DFP 4 2,2570D-03 5.6424D-04
FDROP *  DFP 4 2.2433D-03 5.6083D-04
MWORNL, *  DCF 4 1.8604D-03 4,6509D-04
C1 2 7.4097D-04 3,.7049D-04
HIF ¥ (1 4 1.4768D-03 3.6919D-04
FBROP *  MWORNL 4 1.0760D-03 2.6901D-04

ERROR 24 5,0385D-02 2.0994D-03

TOTAL 80 3.7250D-01

* 1.2600D-01 reads 1.2600 x 1071
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Table 4.9 PCCs, PRCCs, SRCs, SRRCs and R® values
for the TERFOC cutput variable Cm'

Variable PCC PRCC SRC . SRRC
wp 0.25 0.32 0.11 0.10
wp 0.64 0.82 0.36 0.43
Vo 0.36 0.51 0.17 0.18
Vep 0.30 0.55 0.14 0.19
RP 0.71 0.86 0.44 0.49
Ay -0.52  -0.70  -0.27  -0.29
F_ 0.80 0.88 0.59 0.54
Qp 0.27 0.41 0.12 0.13
Qg 0.06 0.02 0.02 0.01
t, 0.07 0.10 0.03 0.03
t, -0.02  -0,07 -0.01  -0.02
te -0,16  -0.40  -0.07  -0,13
RZ 0.81 0.91 0.81 0.91
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Table 4,10 Values of quantity U, with the uncertainty
reduction method (URQ

) and rankings of input
variables for the TERFOC output variable C_.

Ranking

Variable Uj URM PCC PRCC SRC SRRC
wg 2.00x10° 5 8 9 8 9
wp 2.38x10° 2 3 3 3 3
Vop 2.046x10° 4 5 6 5 6
Vop 1.97x10° 6 6 5 6 5
RP 2.29x10° 3 2 2 2 2
Ay 1.90x10° 10 4 4 4 4
F. 2.56x10° 1 1 1 1
Qg 1.91x10° 9 7 7 7 7
Qps 1.88x10° 12 11 12 11 12
te 1.88x10° 11 10 10 10 10
th 1.93x10° 8 12 11 12 11
te 1.93x10° 7 9 8 9 8
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Table 4,13 Summary of the reference analysis results for the

SPARC output variables, DF and L.

Integral DF

Total Leakage (L)

Statistical parameter LHS-1 LHS-2 LHS-1 LHS-2

Mean 240.3 243,7 (1.4%) 2503 25067 (0.1%)
Standard deviation 129.9 138.8 (6.9%7) 504.9 907.1 (0.2%)
5th 131.,7 128.6 (~2.47%) 879.7 923.2 (4.9%)
50th 1959.7 196.5 (~1.6%) 2488 2535 (1.9%)
95th 574.6 547.8 (-4.7%) 3766 3481 (2.0%)

NOTE: Percentage departure from LHS-1 results is given in parentheses.,
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Table 4,14 Assumed probability distributions of
SPARC input variables in the output
distribution sensitivity analysis.

Sensitivity analysis

Reference
Variable analysis 5-1 5-2
Xl Uniform Normal Uniform
X3 Uniform Uniform Normal
All others Uniform Uniform Uniform
Sample LHS-1 LHS-3 LHS-4

Table 4.15 SRRCs and R? values for the SPARC
output variables, DF and L,

Variable Integral DF Total leakage (L)
5. %

a;% 8y
X, 0.776 -0.775
X, ~0.304 0.294
Xq -0.502 0.512
X, - -0.079
Xg 0.091 -0.092
Xg — —
RZ 0.92 0.95
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Table 4.16 Weighting factor W, in the weighting method.

J

1 2 3 4 5
5 (—4)* 7.3 (-4) 1.04 (-3) 1.45 (-3) 1.99 (-3)
6 7 8 9 10
2,71 (=3) 3.60 (-3) 4,77 (-3) 6.19 (-3) 7.84 (-3)
11 12 13 14 15
9.93 (-3) 1,23 (-2) 1.49 (-2) 1.80 (-2) 2.13 (-2)
16 17 18 19 20
2.14 (-2) 3.16 (-2) 3.21 (-2) 3.57 (-2) 3.91 (-2)
21 22 23 24 25
4,22 (-2) 4,49 (-2) 4,70 (-2) 4.85 (-2) 4,92 (-2)

*5 (<4) =5 x 1074

(j=1,2,...,25)

NOTE: Owing to the symmetric property of the normal distribution,
W5+ = ¥26-5-
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(VSWARM) is changed from uniform to normal distribution.
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5, Summary

The objectives of the uncertainty analysis for deterministic computer
models are to quantify the output uncertainty and to partition the
uncertainty among the contributing variables, The uncertainty analysis
considered here consists of four analysis steps of (1) screening analysis,
(2) uncertainty propagation analysis, (3) uncertainty importance analysis
and (4) output distribution sensitivity analysis. Several existing
methods for the analysis steps (2) through (4) have been surveyed. The
approach to the uncertainty analysis includes the response surface method
and the direct method,

The response surface methods described are (a) the classical
regression method and (b) the modified regression method, and the direct
methods described are (c) the Monte Carlo method, (d) the LHS method, (e)
the uncertainty reduction method, (£) the method of closest distance, (g)
the weighting method, and (h) the rejection method.

Application of these methods to three computer models, MARCH/CORRAL
II, TERFOC and SPARC, have been illustrated. 1In application to the
MARCH/CORRAL II model, the regression method was used to estimate
uncertainties in the fission product release to the environment during
core meltdown accidents at the BWR Mark-I plant. Investigated are
identification of important input variables and uncertainty propagation,
Calculated results showed that the difference between upper and lower
bounds of the amounts of fission products (elemental iodine and Cs-~Rb) was
about one order of magnitude.

In application to the TERFOC model, the uncertainty importance
analysis was made using the regression method and the uncertaintf
reduction method, where the sampling technique of the LHS was utilized.
The results showed that although both the method identified the same input
variables contributing to the output uncertainty, there could be seen some
differences between the results by the two methods.

In application to the SPARC model, several output sensitivity
distribution methods were assessed including the regression method, the
modified regression method, the method of closest distance, the weighting
method, and the rejection method. The analysis showed that although the
modified rank regression method performed the best of the five methods,
remarkable differences among the results stemming from the five methods

was not marked. Thus, judicious application of each of the five methods,
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weighed by a knowledge of the goodness of fit to the regression model

formulated, will provide a basis for the output distribution sensitivity

analysis,

Finally recommendation is provided for selecting several uncertainty
analysis methods in each analysis step of uncertainty propagation,
importance rankings of input variables, and output distribution
sengitivity.

when the computer code of concern is such a fast-running code to make
a large number of repeated calculations with the computer code possible,
the Monte Carlo method is maximally used for the uncertainty propagation
and the output distribution sensitivity analyses. As for the importance
analysis, the uncertainty reduction method can be used by combining with
the Monte Carlo sampling.

When the computer code of concern is a long-running code, which is
often the case, utilization of the methods to be recommended is described
below:

(1) In the uncertainty propagation analysis step, the LHS method would be
useful to provide the output distribution. Then the computer model
input/output relationships obtained based on the LHS are used as a
data base in the following regression analysis to determine P(R)CCs
and the S(R)RCs.

(2) When the coefficient of determination, RZ, in the regression analysis
is ¢lose to one, say RZ > 0.9, the response surface obtained may be
satisfactory. Therefore P(R)CCs and S{R)RCs would give importance
brankings of input variables, and the output distribution sensitivity
analysis can be performed with respect to the response surface using
a Monte Carlo sampling.

(3) However, if the regression analysis gives poor results, namely the RZ
value obtained is largely apart from one, the direct methed will bde
applicable in the following importance and output distribution
analyses. In the importance analysis, utilization of the uncertainty
reduction method together with a sampling technique of the LHS is
recommended. As for the output distribution sensitivity analysis, it
is not possible to make general recommendation among several direct
methods. Judicious application of each of the direct methods will

provide a basis for the output distribution sensitivity analysis.
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The above is summarized in Table 5,1 which shows the methods to be

recommended in utilizing several metheds in each uncertainty analysis step.
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