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THRUSH is a code fer computing the thermal neutron scattering
kernel by phonon expansion method for both coherent and incoherent
scattering processes. To evaluate the scattering kernel from the
double differential scattering cross section, it is necessary to
perform angular integration over scattering angle, Existing codes
utilize, for this purpose, the numerical integration of the scattering
law. So as to improve the accuracy and reduce the computing time,
this integration is performed analytically in the THRUSH code, Another
feature of THRUSH is that this code can calculate the coherent part of
the scattering kernel as well as the incoherent part, which is

suitable for calculating the scattering kernel for heavy water,
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1. Introduction
Thermal neutron scattering cross section is customarily divided
into following four categories.
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In this diagram, suffixes coh and incoh correspond to the coherent and
incoherent scattering of neutrons, and el and inel to the elastic and
inelastic scattering. Analysis of so-called thermalization problems or
design of thermal neutron reactors have been generally performed within
the approximation of incoherent scattering. The coherent inelastic
scattering kernel has been obtained only for few crystal materials.

The approximation, in which the contribution from the coherent
scattering is neglected, is appropriate for hydrogeneous moderator, since
the incoherent scattering length is very large for hydrogen atoms. For
crystalline moderator which does not contain hydrogen atom, the coherent
scattering is evaluated only for the elastic scattering (Bragg diffrac-
tion), and is neglected for the inelastic scattering part. The above
approximation is widely accepted at least from the standpoint of reactor
physics. Heavy water is probably only one non~crystalline moderator
whose coherent scattering cross section can not be neglected.

The incoherent inelastic scattering cross section can be calculated
from the generalized frequency distribution, or the spectral density
function. We proposed more '"'generalized" spectral density which may
have negative value for the calculation of the coherent scattering cross
section(l) By the use of this ''generalized" spectral density the scatter-
ing law with the coherent scattering effect was successfully calculated
for heavy water.

THRUSH is the code to calculate the coherent and incoherent scatter-
ing cross sections from the above ''generalized" spectral density. We

assumed that the calculational method of the coherent scattering cross
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section is applicahle to heavy water.

There exist many computer codes for calculation of the scattering
cross section in the incoherent scattering approximationgz)’(s) Most
of the codes utilize the following procedure for cross section calcula-
tion. TFirstly, the scattering law which is related to the double dif-

ferential scattering cross section is calculated,

~ %1 [E -B/Z -
o(Eg > Eyu) =57 T, © S(u,B) . (L
where
k2 m
¢ = SuT T MT (Eg + E - 2VEgEW) , (2)
1
8=-3=7(E-Ep), (3

and E and Ep : neutron energy before and after scattering, ¥ : cosine

of scattering angle, k, @ : momentum and energy change of neutron before
and after scattering, M : mass of scattering atom, m : neutron mass,

T : temperature of scattering system in energy unit and op bound atom
scattering cross section. The scattering kernel is defined as the
Legendre moment of double differential scattering cross section,

U(EG * E,U)-
1
-1

where PR(X) is the f-th order Legendre functiocnm.

The scattering law is calculated in the Gaussian approximation,

8(a,8) = = s oiBt omaw(t) 4¢ (5)

2T T

and

cosh(%) - cos(Bt)

2 dt , (6)
B sinhfg)

w(t) = ﬂf 0 (B)

_2_
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where p(B) is the generalized phonon frequency distribution or the
spectral density?q) Except the over-simplified model like Einstein
crystal in which p(B) 1is given as ¢(B - Bp), where Bp Is Einstein's
frequency of crystal, p(8) is given only numerically. Therefore, the
scattering law is obtained only numerically and as the result, the
angular integration of Eq. (4) is performed only numerically.

1f the scattering law is expressed in the phonon expansion, the
angular integration in Eq. (4) can be performed analytically, even with
numerical p(R). THRUSH utilizes this procedure to increase the accuracy
of the calculated scattering kernel and to reduce computer. time.

As the mathematical procedure is based on the phonon expansion in
THRUSH, the convergence worsens for high incident energy of neutrons or
at high temperature. This is overcome by using Sjolander expansion or
short time expansion in the region where the phonon expansion converges
slowly.

The present version of THRUSH accepts only isotropic "generalized"
spectral density. The improvement of THRUSH is desirable to accept

§-function type and anisotropic spectral density in the near future.

2, Theory

2.1 1Incoherent scattering part

The scattering kernel Gg(Eg + F) can be calculated with the use of

the scattering law of Eq. (1), as,

% [ -8/2 }
o, (Ey > E) = Efﬂ/iﬁ‘ eI 1S, PG (7)

Defining the asymmetric scattering law by,
-
slel, w = e s@e | (8)

we can rewrite Eq. (7) as,

Ub 1 .
o (Eg > B) = — %—Il SCE[> o) P () du €)
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where p(B) is the generalized phonon frequency distribution or the

(4)

spectral density. Except the over-simplified model like Einstein
crystal in which p(B) is given as (B - By}, where Bg 1s Einstein's
frequency of crystal, p(8) is given only numerically. Therefore, the
scattering law is obtained only numerically and as the result, the
angular integration of Eq. (4) is performed only numerically.

If the scattering law is expressed in the phonon expansion, the
angular integration in Eq. (4) can be performed analytically, even with
numerical p(R). THRUSH utilizes this procedure to Increase the accuracy
of the calculated scattering kernel and to reduce computer time.

As the mathematical procedure is based on the phonon expansion in
THRUSH, the convergence worsens for high incident energy of neutrons or
at high temperature. This is overcome by using Sjolander expansion or
short time expansion in the region where the phonon expansion converges
slowly.

The present version of THRUSH accepts only isotropic "seneralized"

spectral density. The improvement of THRUSH is desirable to accept

§-function type and anisotropic spectral density in the near future.

2, Theory

2.1 Incoherent scattering part

The scattering kernel GR(EO + F) can be calculated with the use of

the scattering law of Eq. (1), as,

O _ 1
0, (8 > E) = ;}1/ e 5/2_5 S(a,8) P, G dp 7)

Defining the asymmetric scattering law by,

=L e 25, | (8)

we can rewrite Eq. (7) as,

a .
o, (Eg > E) = b.iEO_f SUE]> w) P00 du (9)
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where
W = EO - E (10)
> - >
K = Kg = K {(11)

- -
and Ky, K are the momenta for neutron before and after collision,

respectively,
= . (5)
We now express S(|K|, w) by the phonon expansion;
> =20 T 1
s(iR], 0y =™ 1 — @0 4 () . (12)
n=1 B! n

In this equation, 2W and ¢n(m) can be written with the spectral density

function p (w)

w2
20 = 55 ¥(0) (13)
where
) = 1 elw) orn ) du (14)
Y - 4} w 2T '
And,
0,) = S 1(e 0y 4 @) du”, (15)

$7{w) being defined as

p (w) W/2T
1) = 50 sinh (L) ©

(16)

Using Eq. (13), we can transform the integration of u to the integration

of 2W, since

= (Eg + E - 2 JEE ) . (17)
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Substituting this equation inte Egq. (13), we obtain

R S

M x
m

oy ) (18)

where x = 2W. Equation (12) becomes by this transformation

UQ(EQ + E) j;q/f;‘nzl ET’¢H(N) {1 PQ(U) e & x du

% 1M 1 % 1
=% Fg m ¥y op al
(VE + /ﬂ)zﬁy(m
-X _n 1 M _x
p e & X PQ(EJEEET(EO+E m‘;fay) dx . (19)

(& - VE)? 5 (0

As Pg(x) is a polynomial of 2-th order at most, the integration of Eq.
(19) can be performed analytically.

The integration can be reduced as follows. We define

_ a+ —-X Il

Jn(R) = fa_ e X PQ(A - Bx) dx , (20)

with

a, = % Y(0) (VEy * VE) , (21)
1 )

A=————(Ey+ E) , (22)

2/E E
B 2t M 1 (23)

-

Performing the integration, we get the following relations ;
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=0 3 3 () = 7 T e ¥ Po(A - Bx) dx
n a_ L
a n n! . &
= ST e N ax - [ -e™ ¢ - T *
a_ j=1 (n-1)| a_
= I(n) . (24)
=1 : Jn(l) =AI Q) -BIm+1) (25)
2 -
=21 3 (@) =221 1) - 3BIG + D)+ 2 B2I(n + 2) (26)
3_ 2p_
=3 : J_(3) - 1A -9A 1(n) _mﬁéé;ﬁygg,l(n+l)
n 6 6
| + 452‘3 T(n42) - L2 83103 27)
i
The scattering kernel can be written explicitly for 2=0 and =1 as
follows,
%M 1 2
Go(Eg ~ E) = TEy m 7C0) nil ¢ (w) I(n) , (28)
o v E) =2 ML ) D2 1)
4Eg m v(0) -1 2/EqE
; SR SN S TSI (29)

As one can

expressed in an

type function by the central limiting theorem.

is well known as the Sjolander expansion,
same method of Sjolander expan81on( ) that is used in the SUMMIT

* 2/EgE ® Y(0)

see from these equations, the scattering kernels are

analytical form except ¢ (w), which is evaluated

numerically from p(w)

The shape of the function ¢n(w) for larger n tends to the Gaussian

This property of ¢n(w)

The THRUSH code employs the
(6)

_6_
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(the equivalent japanese version is UNCLE.) to treat an anisotropic
crystal like graphite, Although the present version of THRUSH does not
treat an anisotropic crystal, this method is used for future modification,
and the distinct term calculation described below,

The spectral density is diwvided, rather arbitrary, into two parts,
a lower frequency part and higher frequency part. The n-th phonon term

¢n(w) in this expansion is given by

Ll a® () (o), (0,1
d)n(w) = (Y(O)) rfofl ° f?_ f3 3 (30)
where the Hermite correction is neglected and
( 1 I
67 = L aePont, G
3 Y ARl () DRI
3 BTy T , (32)
(w - K1(n’r)}2 (33)
glosey L 2¢, %)
3 Jom K2in,r) €
Kin,r) =T Ksl) +(n - 1) KSZ) , (v=1,2), (34)
(1)
(1) _ %1
3 a(i) , (35)
0
(1) (1)
(1)_ % 1\ °
Ky =@y ) . (36)
%0 %o '
N €5 .
agt = 72 comn By w = v P, €
oD 2 2D ) gz 6@, (38)
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déi) = Izp(i) (w) w coth C§%) dw , (39)

and { = 1, or 2. 1In the above equations, p(l)(w) corresponds to the
lower frequency part spectral density and p(z)(m) to the higher part.

When the convergence becomes slow for higher incident energy, we
use the first term of short ccllision time expansion. In the approﬁima—
tion the scattering law is expressed as the free gas with effective

temperature T,¢f,

La-vm 1 - er+ay
S{a,B) = e Jing © (40)
where
T
y = iff , (41)
T N h (=) d 42
eef 27,7 w) w coth (zz) dw , (42)

The scattering kernel is calculated directly from Eq. (40) by Gaussian

integration.

2.2 Coherent scattering part

The coherent scattering calculation in the THRUSH code is based on
the Butler's model for heavy water. The definition of the spectral
density function for atom pair v and v7, and its property are described
and discussed in other placegl) Here, we will briefly explain the
calculational method of the scattering kernel. If we write the scatter-
ing law va, (]2[ w} for a pair v and v” atoms in a molecule, this is
given by,

sin(|z| R .)

s LK) L (43)

[
|KJ R .
WV

va,(K,w) =

— >
The reduced scattering law va,(|K|,w) can he written in the usual phonon

w8_
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expansion formulation. Here va, is the distance hetween atom pair v

and v*, and

NN | w7

- i YAV n .
Syy-(lelhe) =z e = QU 0 @), (44)
where
i

zw-\)\)" - 2M-\)U’ Y\)\)»(O) 3 (45)
1 Moy My~

Yy (0 = 5 ( i, Yyu- (0 + =52 Yyu-(0)) - (46)

60V @) = 1 8w = el ol @) de” (47)

. Py~ (@)

67 W) = o — /7T (48)
2W va’(o) sinh (ET

M\)_\)_’ = VEIVM\)) (49)

My~ : mass of the v-th atom

The spectral density pvv,(w) is used in generalized meaning for
the coherent scattering by Vv and v° atom pair. (See reference 1.)

This expression is essentially same as the scattering law of the
incoherent approximation except the term sin(Kva;)/Kva,. Due to this
term, the Integration of Eq. (43) with respect to w (i.e. angle) could
not be expressed by known functions. The formal expression for 2=0 and

£=1 kernels are

- l@ﬂ A A - l
vV
Q’v\) (Eg > E) =

O : 2E0 F\)\)J D\)\)» RV\)) n

(503

8
-



JAERI-M 8927

GYV(E_ > E) =—O—E—'o‘é"’(E + E)
L g 2VEqE a
vy~
[HT A.\’A\)» 1 c; ¢n (UJ)I (51)
/r3 2 =1 nt 2n+2 ?
4 VEgE Fov Dy~ Ryv~
where
m Y- (0}
Fov’ =5 (52)
vV
D .= j]— ¥ , 53
vV my,,- (0) (53)
a 2
- + . -t n
I, = Ia_ 51n(va, va, t) e t 4t , (54)
ai=1/FW,|/E_Oi/E|, (55)
At coherent scattering length of vth atom. (56)

W

The integral 1, is performed numerically and described in section 3.

The function ¢;v’(w) is calculated in the same manner as Eqs. (15),
(16). The usual Sjolander expansion is, however, invalid for ¢§?)(w),
since the spectral density function has negative and positive parts.
This difficulty is overcome by utilizing the same formulation used in
the coherent scattering approximation. 1In this case, we divide ¢EV’(w)
into the sum of two parts, one positive and the other negative definite.
We apply the Sjolander approximation separately to each part of the
scattering law corresponding to the above division. The final result
is obtained by the convolution integral of these two scattering law.

The short collision time approximation also leads to a divergent results.
This can be overcome by applying the short time expansion only to the
scattering part corresponding to the positive definite spectral density,

and the phonon expansion to the negative definife part. However, the
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short collision expansion is not utilized for the coherent scattering

. . RV AVRES . N . .
calculation. Therefore, ¢n (w) in the Sjolander expansion is written

as

v~ _ 1 Yo ey, ey
80 (w) (:va)(0;> R £5077, (57)

with the definitions of Egs. (31), (32) and (33) for £\, {7 &

(n ), provided that p( )(m) for lower frequency part spectral density
1)
is changed to pévr(w) for pesitive spectral density and p( )(w) for
2)
v higher frequency part spectral den31ty to pév:(w) for negative definite,.

Accordingly 5( L) should satisfy the follow1ng relation:

s 4 52 L g, (59)

2.3 Elastic scattering cross section

The elastic scattering cross section or the zero phonon cross
section is calculated by setting n=0 and ¢,(w) = §(w) in Eg. (19) for
the incoherent scattering and in Eqs. (28), (29) for the coherent
scattering. The integral I, for the coherent scattering is evaluated
numerically also.

The coherent elastic scattering cross section calculated by the
above method contains only the contributien from the intra-molecular
scattering. The inter-molecular elastic scattering from the atom pair
v, v* of a different molecule is generally difficult to evaluate. We
incorporated the Butler's mode1(7) for this cross section into THRUSH.
Tn this model, the coherent elastic scattering cross section qénter(E)

is given by

inter _ 1nter 1nter inter _
E} = + E) + S (E) , 2=0,1, (60
oy (E) o, 00" (E) i’DD, (E) OR,OD (E) > (60)
where

812 Sy~

inter _
g )(E)“NHV’A\)A;

0,_\),\) v v kz [ Jo(Zk S\)\)’) -1 ] s (61)
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812 & v

inter T TWv .
oy e (E) = -~ N n,-A A,- -k2 [ 1+ JQ(ZR S\)v’)

. 2

-2 { jo(k S‘\)U))} ] » (62)

] inX
Jo =53
N, : number of vt atom per unit volume,
n, ¢ pumber of vEP atom in a molecule,

§ . : mean minimum distance between v and v~ atom,
k : momentum of incident neutron.

For Sy~ we used the numerlcal values due to Butler, i.e., Sgn” = 2.9A,

Spps = 1. 9A and Sgpn = 1. 9A The other parameter N,, , n, , etc. are also

gset in the subroutine CSIM.

3. Numerical Method

3,1 Energy Integration

The integration over energy (E) and frequency (w) is performed by

the trapezoidal rule. TFor example, an integration

GR(EU) = f: GR(EO + E} dE , (63)

is performed, as

IEX
UR(EI) = k£1 GE(EI - Eg) DE(K) . (64)

Here, DE(K) is defined as follows,

DE(1) = {E(1) + E(2)}, (65)
DE(I) = {E(I + 1) - E(I - 1}}/2 , I=2,3, -+ IEX-1 , (66)
DE(IEX) = {E(IEX) - E(IEX ~ 1)}, (67)
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81r2 Syu~
1nter _ 7 PV :
o] e (E) = - N,n,-A A,- kz' [ l+ju(2k S\N,)

-2 { jok svv»)}z] , (62)

sinX
X

Jox) =

N, : number of vt atom per unit volume,

n,ood number of vER atom in a molecule,

va, : mean minimum distance between v and v° atom,

k : momentum of incident neutron.
For Sy~ we used the numerlcal values due to Butler, i.e., Sgp” = 2.94,

Spps = 1 9A and Sy = 1. 9A, The other parameter N, , n, , etc. are also

set in the subroutine CSIM.

3. Numerical Method

3.1 Energy Integration

The integration over energy (E) and frequency (w) is performed by

the trapezoidal rule. For example, an integration

o, (Eg) = f: GR(EO +~ E) dE , (63)

is performed, as

IEX

k-E-l UE(EI > Eg) DE(K) . (64)

UQ(EI) =

Here, DE(K) is defined as follows,

DE(1) = {E(1) + E(2)}, (65)
DE(I) = {E(I + 1) - E(I - 1)}/2 , I1=2,3, -+ IEX-1 ,  (66)
DE(IEX) = {E(IEX) - E(IEX -~ 1)}, (67}
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E(I) : input energy mesh,

IEX ; number of energy mesh point.
3.2 Evaluation of I,p

The integral of Eq. (54)

a 2

1, =/ togin (at) o7t 2T 4 (68)
n a .

can be evaluated by using following recurrence formula:

2 2
_ -t _2n-1 a oo 1. 2118+
Tyn = [ e t {- 7r~cos(at)t + 5 sin(at) 5 sin(at)t }]a~
n(2n + 1) dn + 1 a?
- 2 Top-p T ( 2 7)) I2n ’ (69)

This equation is easily derived frem Eq. (68) by the method of integra-

tion by part. Therefore, we should perform the numerical integrations:

2

I, = fa sin(at) et ode (70)
At —t?

I, =/ sin(at) e t2 dt (71)
a

The integration for Ig and Iy is performed by Simpsen's rule.

4. TInput Quantities

The physical input data for THRUSH are the spectral density, mass
of scatterer, free atom cross section (or coherent scattering length),
temperature and energy mesh points. The simple flow chart for the input
routine is shown in Appendix 1.

The main restriction of input data for the pre;ent version is

(1) Maximum number of frequency mesh points for spectral density

(IMAX) : 400

(2) Maximum number of convolution integral for ¢n(w)(NPX)
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E(I) : input energy mesh,

IEX ; number of energy mesh point.

3.2 Evaluation of Ion

The integral of Eq. (54)

a 2
1, = /! * gin (at) e7F 2" ae (68)
i a

can be evaluated by using following recurrence formula:

2 2
- -te on-1- . ac oo, 1 s 2313+
IZn+2 = [ e t {- 7 cos(at)t + > sin{at) 5 sin{at)t }]a_
n(2n + 1) 4n + a?
= ey T T ) (69)

This equation is easily derived from Eq. (68) by the method of integra-

tion by part. Therefore, we should perform the numerical integrations:

a+ 2

Ig = fa gin{at) et de (70)
4+ —t?

I, = T sin(at) e t2 dt (71
a

The integration for Iy and Ip is performed by Simpson's rule.

4. Input Quantities

The physical input data for THRUSH are the spectral density, mass
of scatterer, free atom cross section (or coherent scattering length),
temperature and energy ﬁesh points. The simple flow chart for the input
routine is shown in Appendix 1.

The main restriction of input data for the pre;ent version is

(1) Maximum number of frequency mesh points for spectral demsity

(IMAX) : 400

(2} Maximum number of convolution integral for ¢n(m)(NPX)
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NPX < 8000/IMAX
(3) Maximum number of energy mesh for scattering kermel (TEX) : 101
The THRUSH code uses only standard input output tape unit (tape 5

for input, tape 6 for output and tape 7 for card punch).
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Note 1

The scattering kernel of a heayy water molecule may be calculated
corresponding to spectral densities of Dgg1fs Ogelfs OD pair and DiD>
pairs with IAM=4 and ID#0 option. If IDD is set to zero, the scatfering
kernels for each input spectral densities and the summed scattering
kernel for a whole heavy water molecule will be calculated. If IDD is:set
to 3, the scattering kernels for OD and DDy pairs will be calculated.
For the calculation of OD pair, oﬁe may input IPAl=1l, IPA2=2 and R=l A
aﬁd for DjDy pair, IPAl=l, IPA2=1 and R=1.6 A. The IDD option has no

effect, when ID is set to zero,

Note 2

The maximum of NPX is limited by

NPX < 8000/IMAX.

Note 3

The phonon expansion is performed until expanded phonon numbers
reach NPX without convergence check. The contribution of phonons from
the series with the number greater than NPX is calculated in the Sjslander
approximation. This expansion is terminated by the following conversion
check, If Ag is the scattering cross section (kernel) from the n~th

phonon term,

L
An(Ei—>E)

< EPS1 , p =0, 1. (72)

If this inequality is not satisfied until n=NGX, Ug(Ei - E) is evaluated
by the short time approximation. In the THRUSH code the calculation of
the scattering kernel continues to the whole down scattering. If the
short time approximation is employed for a certain E = E_,, then the
remaining Gg(Ei - Ef) with Ef < ESt igs calculated in the short time
approximation. The full scattering kernel matrix is constructed from

the down scattering matrix by the detailed balance principle.

Note 4
If the inequality
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GE(Ei +.Ef)

_ < ESP 2 (¢ = 0, 1) (73)
G,Q,('Ei - EJ) - ’ ' ’

is satisfied, aéEi -+ E) with E < Ef is set to zero.

Note 5
The spectral density for the incoherent scattering calculation is
not necessarily normalized to unity. The spectral density for the

coherent scattering calculation, however, should obey Eqs. (58) and (39).

5. Output

The unit system in THRUSH is based on barn and eV, therefore,
scattering kernels are in barn/eV unit. Punched output deck for a

kernel is composed of one title card followed by a half kernel in the

form,
((UE’(K,J)) le,K), K=l:l IEX) ]

where K and J are the initial and final energy indexes, respectively.
The structure of the card deck for scattering kernels with options,

IP3=1, IP6=1 and IP8=1, is

{ lst atom in- l lst atom total | 2nd atom in- l
elastic kernel kernel elastic kernel

} IAM=th atom in- ‘ TAM-th atom ‘ total kernel for ‘

elastic kernel total kernel whole molecule

Each kernel contains £=0 and %=1 moments. If one set -1 for punching
option, correspending the kernel punching will be deleted. Total

scattering kernel is defined as

| - oin IE T
0y (Bg > B) = o) (E; > E) + 55~ 0, (EQ)8(E,,E) (74)

where

0£(E0 -~ E) : total scattering kernel,
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< ESP 2, k=0, 1, (73)

is satisfied, GﬁEi + E) with E < Ef is set to zero,

Note 5
The spectral density for the incoherent scattering calculation is
not necessarily normalized to unity. The spectral density for the

coherent scattering calculation, however, should obey Egs. (58) and (59).

5. Output

The unit system in THRUSH is based on barn and eV, therefore,
scattering kernels are in barn/eV unit. Punched output deck for a
kernel is composed of one title card followed by a half kernel in the

form,
((UR(K’J)’ J=1,X), K=1, IEX) ,

where K and J are the initial and final energy indexes, respectively.
The structure of the card deck for scattering kernels with options,

IP3=1, IP6=1 and IP8=1, is

1 1st atom in- I 1st atom total | 2nd atom in- ’
elastic kernel kernel elastic kernel

l IAM-th atom in- I 1AM-th atom I total kermnel for )

elastic kernel total kernel whole molecule

Each kernel contains £=0 and %=1 moments. If one set -1 for punching
option, corresponding the kernel punching will be deleted. Total

scattering kernel is defined as

{ 1 el
- ~in
0, (Ey + B) = 0,7 (E, > E) + 2Eg 1 (Eg)8(E,E) (74)

where

GE(EG + E) ¢ total scattering kernel,



(1)
(2)
(3}
(4)
(5)
(6)
(7
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O;H(E0 + E) : inelastic scattering kernel,
el . .

o, (E) : elastic cross .section,

AEq : DE(I), with I for ED’
S(EO,E) : Kronecker's delta.
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O;H(EO + E) : inelastic scattering kernel,
el . ]

GR (E) : elastic cross section,

AEq : DE(I), with I for Eg,
S(EO,E) : Kronecker's delta,
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in .

o, (EG + E) 1
el

o, (E)

AEO H
S(EO,E) :

Kadotani, L.,

Koppel, 'J. U.

Honeck, H. C.,

Egelstaff, P.
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inelastic scattering kernel,

: elastic cross section,

DE(L), with I for E,,

Kronecker's delta.
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Appendix 1 Flow Chart for Input Routine

READ TITLE
l |

READ
IAM, ID, IDD, WPX, NGX, IEX
IMAX, INAX, ID20EL, NGP

READ
IP1, P2, IP3, IP4, TP5,

IP6, IP7, IP8, EPS1, EPS2

READ
XNAME (I), I = 1, TAM

READ
ISLF (1), I = 1, IAM

T

READ
TPAL(I), IPA2(I), R(I)

1000 CONTINUE

1 CONTINUE
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READ

TEMP, DLO

DO 1001 I=1, IAM

NP =1
T
NGX = 0 1
F NP = 2

READ AMASS(I), SIGF(I)

READ RHOZ(I)

DO 1001 M=1, NP

IN = IMAX

F IN = INAX

= 1001 READ RHX(I,J,M), J=1, IN

READ E(K), K=1, IEX

O

i ey
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