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In order to investigate the thermo-hydrodynamic behavior during the
reflood phase of a loss-of-coolant accident (LOCA)} in a pressurized water
reactor (PWR) with the vent valves, a reflooding test was performed with the
Slab Core Test Facility (SCTF) at Japan Atomic Energy Research Institute
(JAERI). The simulated PWR with the vent valves in the test is one
manufactured by Brown Boveri Reaktor (BBR) in Federal Republic of Germany
(FRG) . The data obtained in the present test are also supposed to be used
for the experimental coupling with the Upper Plenum Test Facility (UPTF) of
FRG, based on the trilateral 2D/3D Agreement among FRG, the USA and Japan.
The test data have been analyzed by also utilizing other test results. The
main conclusions are as follows:

(1) It has been demonstrated that the core cooling is significantly good
during the reflood phase of a BBR under the best estimate conditions.

(2) The intact loop differential pressure was significantly reduced when the
vent valve was open.

(3) The effect of the vent valve on core cooling was not remarkable under

* Toshiba Ltd.
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the coqditions that the downcomer water level was below the overflow
level when the vent valve was closed, but is expected to be remarkable
under the conditions that the downcomer water level exceeds the overflow

f

level when the vent valve is closed.

Keywords: Reactor Safety, PWR, LOCA, ECCS, Reflood Experiments, two-=
phase Flow, Heat Transfer, Thermo-hydrodynamics, Vent

Valves, SCTF
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1. Intreoduction

The Siab Core Test Facility (SCTF) test program is a part of the large
scale reflood test program[l] together with the Cylindri&al Core Test
Facility (CCTF) test pfogram, which are performed by Japan Atomic Energy Re-
search Tnstitute (JAERI) under a contract with Atomic Energy Bureau of
Science and Technology.Agency of Japan. The SCTF test program is also ome
of the research activities based on the trilateral agreement among JAERI,
the United States Nuclear Regulatory Commission (USNRC) and the Federal Min-
ister for Research and Technology (BMFT) of the Federal Republic of Germany
(FRG) .

There are three test series (Core-I, -II and -III) in the SCTF test
program. The SCTF core-1[2] and Core—II[3] test series have been already
performed mainly to investigate the two-dimensional thermo-~hvdrodynamic be-
havior in the core during the reflood phase of a loss-of-coolant accident
(LOCA) of a Westinghéuse type (US/J-type) pressurized water reactor {PWR)
with the cold-leg-injection-type emergency core cooling system (ECCS). On
the other hand, one of the major objectives of the SCTF Core—IIIEh] test
series is to investigate the effectiveness of the combined-injection-type
ECCS in a German type PWR (GPWR). In addition, simulation tests for a US/J-
type PWR were also conducted with the SCTF Core-III for further investiga-
tion of the two-dimensional thermo-hydrodynamic behavior. Furthermore, one
simulation test for a Brown Boveri Reaktor (BBR) type German PWR with the
vent valves is planed to be performed based on the 2D/3D Agreement.

According to the Agreement, there are four special tests for the SCIF
Core-IIT and the Upper Plenum Test Facility (UPTF)} of FRG. They are called
"coupling tests", and the experimental coupling between the SCTF and the
UPTF is planned to be performed with the data from those tests. As one of
these coupling tests, a BBR type FWR simulation test was agreed to be per-
formed. The special features of the BBR are the vent valves, which provide
another flow path from the upper plenum to the downcomer being parallel to
the intact loop, and the not-lowered once—through—type steam generators.
Based on the above mentioned background, one SCTF Core-III test was con-
ducted in order to obtain the data for the coupling between the SCTF and the
UPTF and to investigate the thermo-hydrodynamic behavior for reflooding of a
BBR type PWR under the best estimate (BE) conditions. This test was named

Test §3-17 (Run 721). This report describes the major results of the test.
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A brief description of the SCTF Core-III is presented in Appendix A.
some selected data obtained in Test §3-17 are presented in Appendix B.

A brief information on the test 1s presented in the following:

v

{1) Test name
BBR simulation integral coupling BE test
where, BBR : German PWR with the vent valves manufactured by Brown
Boveri Reaktor
BE : Best estimate
(2) Test number |
§3-17 (Run 721)
where, S : SCTIF
3 : Core-III
17 : Sequential number of main test
(3) Objectives of test
To obtain data for the coupling between the SCTF and the UPTF and to
investigate the: thermo-hydrodynamic behavior during the reflood phase

in a BBR under the BE conditions

(4)y Type of test

An integral reflooding test simulating a BBR under BE conditions
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2. Test Description

2.1 Test Facilityia]

The SCTF was originally designed to study two—dimensional effects on
thermal hydraulics during the reflood phase in a PWR core with full iength
radius.[215>13]

Flow diagram of the SCTF is shown in Fig. 2.1. The SCTF is simulating
a 200% cold-leg-large-break with a simplified primary system and can be
operated at the system pressure less than 0.6 MPa. It consists of a pres-
sure vessel, an intact loop, a broken loop at the pressure vegsel side, and
a broken loop at the steam-water separator side.

Figure 2.2 shows a vertical cross gection of the pressure vessel. The
pressure vessel includes a simulated core, an upper plenum with its inter-
nals, a lower plenum, & core baffle region and a downcomer. The configura-
tions of the upper plenum structure and the end box simulate those of a
1,300 MWe class GPWR as practically as possible.

The core is full-height, full-radius and one-bundle width one. The
core flow area scaling ratio is 1/24 to a typical 1,300 Mwe class GPWR.
1,888 electrical heater rods are installed in the core. Dimensions of a
heater rod is 10.7 mm in diameter and 3,613 mm in heated length simulating
those of PWRs. The maximum available power supplied to the core is 10 MW.

The heater rods are assembled in a 16 x 16 square array bundle posi-—
tioned with grid spacers. Eight bundles are installed in a row in the core,
as shown in Fig. 2.2. In the SCTF, the leftmost bundle in the figure 1is
named Bundle 1 and orderly to the right direction the bundles are named
Bundle 2, 3, ..., 8. Since the downcomer and the hot leg are connected to
Bundle 8 side, Bundle 1 and 8§ sides are corresponding to the central and the
peripheral sides of PWRs, respectively. The core and the upper plenum are
enveloped by honeycomb thermal insulators with wall plates to minimize the
wall thermal effects.

The ECC water can be injected into the lower plenum, the cold leg and
the upper plenum in the SCTF. Since the SCTF has no injection port in the
hot leg, the hot leg injection of ECC water in PWRs with the coumbined-
injection-type ECCS was substituted by the upper plenum injection. The ECC
water can be injected into the upper plenum from both top and side wall.

Description of the SCTF Core-TLI is presented more in detail in Appen-
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dix A.

2.2 Test Conditions and Sequence

The test conditions were selected to simulate the reflooding phenomena
under the BE conditions for a 200 % cold-leg-large-break LOCA of a BBR-type
PWR. The bases for the test conditions are summarized in Sec. 2.3. Table
2.1 shows the planned and the measured test conditions. The top view of a
BBR plant and its ECCS are shown in Fig. 2.3.

Figure 2.4 shows the conceptual initial set-up of the facility for Test
53-17. The ECC water was injected into the lower plenum (Z,e, gravity feed
mode) instead of the cold logs and downcomer. Orifice diameters for the
steam—water separator side broken cold leg and the pump simulator are 86.4
and 173.7 mm, respectively. No orifice is inserted into the pressure vessel
side broken cold leg and the intact cold leg. The water in the steam-water
separator was drained to the containment tank II to keep the maximum water
level in steam-water separator at 1.1 m.

Figure 2.5 shows the sequence of Test §3-17. 1In this figure, the time
when the maximum clad temperature reached 570 ¢ is defined as 0 s. The
pressure in the containment tank IT was aimed to be kept constant at 0.37
MPa by controlling discharge rate of the steam through the blow valve to the
atmosphere after 0 s. The ECC water was injected into the lower plenum
after 0 s. The ECC water injection rate was set at 105 kg/s initially.

The water temperature was set at 100 Oc. The core power was initially set

at 7.59 MW and was decreased to simulate the decay as shown in the figure.

7.3 Bases for Test Conditions

Bases for test conditions are summarized in Table 2.2. They are given
by FRG and are proprietary ones. Therefore, no further information is
available on the bases of these values.

The ECC water injection rate was determined as follows based on the
given core flooding rate:

(1) 0~ 5 s

. Acore 0.250 ,

"F = Ta,, "ECC T0.502 "ECC T 0.5 meg
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assuming similar steam binding effect as Test 53—9[5]-

(3) After 21 s

Op = Mpce

where, ﬁF and hECC are core flooding rate and ECC water injection
rate. Apy and Ap,pe 2T€ flow areas of pressure vessel and core,
respectively.

The loep flow resistance for the present test is higher than that evaluated

for a BBR. That is,

K
— = 2040 w™* (cf. 1152 1% for a corresponding BBR)
A
where,
K "
——2=AP/_m_
A 2p

expecting the smaller flow resistance of the loop side in the SCTF than that

evaluated for a BER.

2.4 Measured Boundary Conditions

The major measured test conditions are listed in Table 2.1. Table 2.3
shows the chronology of events occurred during the test. Figures 2.6
through 2.10 show the measuerd boundary conditions of the test.

There observed no significant differences between the planned and the
measured except for the pressure in the containment tank II. The pressure
was controlled at 0.37 MPa by venting the excessive steam. However, the
pressure was higher during 80 ~ 140 s because of significant steam ganera-
tion in the core, so that the pressure reached at 0.47 MPa at 103 s, as

shown in Fig. 2.6.
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Table 2.1  Test conditions for Test §3-17

Item Planned Measured
Containment pressure (MPa) 0.37 0.34 ~ 0.47
Initial structure temperature (K) >414 > 421
Initial lower plenum water level (m) 0.24 0.20
Initial lower plenum water temperature (K) 373 410
Initial core power {(MW) 7.59 7.59
Radial power profile (MW) Bundles 1 - 5 1.05 1.05

Bundles 6 - 8 0.78 0.78
Maximum clad temperature at BOCREC (K) 873 928
Maximum clad temperature at ECC injection
initiation (K) 843 877.9
ECC water injection locatioen Lower plenum

ECC water injection rate (kg/s)

Acc (maximum) 105 98
LPCI 9.3 9.4
ECC water temperature (K) 373 366 ~ 410

Table 2.3 Chronology of events for Test S3-17

Event Time (s)
Core power "ON" 0
Initiation of ECC water injection 78.3
Initiation of reflood (BOCREC) 90.2
Whole core quench 290.2



JAER

Table 2.2

Pressure
Power
Initial power

Radial power profile

Decay curve

I-M 90—-038

Summary of bases of test conditions

0.37 MPa

7602 kW -
1.11:1.11:1.11:1.11
:1.11:0.82:0.82:0.82

t* (s) 0 15 45 75 175 400 515
Power (kW) 7602 6777 6075 5699 4963 4074 1753
Initial clod temperature 873 K (600 °C)
ECC water
Core flooding rate
t* (s) o 5 1 21 50
Velocity (m/s) 0.21 0.21 0.074 0.060 0.037

Water temperature

Loop flow resistance

Initial structure temperatures

* t = 0 is reflood initiation and

373 K (100 °C)

k/a2 = 2.0 % x 242(scaling factor)
- 1152 o ¥
higher than 414 K (141 °C)

27 s after the break
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Fig. 2.1 Flow diagram of SCTF
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Fig. 2.5 Sequence for Test 8§3-17
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Fig. 2.7 ECC injection rate into lower plenum



Filuid temperature (K)

(kW)

Power

JAERI-M 80—036

O-- TEQBRKS {721}
460 I — T T T T 1T T T
470 {nb
B f e o]
i b |
3560
300
o N
I ! AN P L
250 3] 100 200 200 400 600
Time ( s )
Fig. 2.8 ECC water temperature
®-- BUNDLE-1 {(721)A-- BUNDLE-2 (721)
+-- BUNDLE-3 [721)X--BUNDLE-4 {7211
¢ -~ BUNDLE-5 (721 )4 -- BUNDLE-6 {721)
X -~—- BUNDLE-? (721)7Z-—- BUNDLE-8 {7211
1200 1T 7 T [ S T — S E——
Qoo
600
300
|_.. p—
0 N L1l L1 L1 Lo
0 100 200 300 400 BOO

Time { s )

Fig. 2.9 Supplied core power

— 14;



JAERI-M 80—036

M-- CORE SIDE WALL (7281)A—— UP STRUCTURE (721)
+--0C WALL (7211
B0 1T S — T T T T
> 450
) i
l ey — e oY 7
3 ™1 *\M %
— n b Bmtermy Eh'! ke ]
o 400 t.—f'["""""""""‘l""""‘"‘““‘*"“*-v-d: e e
[ & ’r', ! h
o - B
o - i
E | -
o
4= B —
350
o B B
= - _
300 I L L1 . Lo

() 100 200 300 400 500
Time { s )

Fig. 2.10 Structure temperatures in pressure vessel (core inner side wall,
upper plenum structure and downcomer imner wall)



JAERI-M 90035

3. Test Results and Discussion

3.1 Achieved Core Flooding Rate .

As mentioned in Sec._2.3, the core flooding rate for the present test
was given by FRG and, based on this, the ECC water injection rate was deter-
mined by JAERI. The achieved ECC water injection rate is compared with the
planned in Fig. 3.1. They are in good agreement. However, when they are
compared in the other time axis of "Time after flood” (Z.e. time after
reflood initiation) as in Fig. 3.2, they are not in good agreement and the
achieved injection rate is significantly smaller during the Acc period.
This discrepancy was caused by the wrong estimation of the time required to
fill the lower plenum. This time was estimated to be 8 s, whereas it took
11.9 s in the test. Therefore, the initiation of reflooding was later by
3.9 s and resulted in the smaller ECC water injection rate during the Acc
period than planned.

Figure 3.3 shows a comparison of core flooding rate. The measured one
was calculated from the ECC water injection rate by subtracting the water
accumulation rates in the downcomer and the excess core flow area, 7.e. be-—
tween the rod bundles and the core barrel. The data for the time integra-
tion of the core flooding rate shows that the total mass flooded the core
was the same as the planned value up to 15 s and the difference between them
is 15 % at 200 s, when the whole core quenched (see, Table 2.3). The dif-
ference in the LPCI period was resulted from the water accumulation in the
downcomer, which was estimated to be zero before the experiment (see, Sec.

2.3(3)).

3.2 Mass Balance in System

Figure 3.4 shows the arrangement of the mass flow and water accumula-
tion measurements in the system. Arrows in solid line and broken line indi-
cate flows of water and steam, respectively. Tag-IDs with asterisk (*) mean
estimated data with measured omes. Tag-IDs started with "F" give mass flow
rates and ones with "G" give water accumulation rates. Figures 3.5 through
3.8 show the steam mass flow rates in the intact cold leg (Tag-ID: FTOLCS),
the broken cold leg steam-water separator side (FTOILS), the connecting pipe
between containment tanks (FTOLES) and the vent line from the containment

tank II to the atmosphere (FTOlVS). Figure 3.9 also shows the steam mass
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£low rate in the broken cold leg pressure vessel side (FTBCL) calculated
from the steam velocity measured with the spool piece turbine meter.

Figure 3.10 shows a comparison of FTBCL and FTOlES. They are in good
agreement after 160 s. Around 100 s, FTOLES gives much lower value. This
is considered to be resulted from steam accumulation in the containment tank
T. Although there exists the difference around 120 s, which is considered
to be caused by the depressurization of the containment tanks (see, Fig.
2.6), the data of FTBCL are adopted as the mass flow rate in the broken cold
leg pressure vessel side. Figure 3.11 shows a comparison of FTBLOW and
FT01VS. FTBLOW is the steam mass flow rate going into the containment tank
IT and is defined as

FTBLOW = FTO1LS + FTOLES (L)
They are qualitatively im good agreement.

The estimated steam mass flow rate through the vent valve {FTVVS) is

shown in Fig. 3.12. It is defined as

FTVVS = FTBCL - FTOLCS (2)
The maximum value is 1.8 kg/s at 125 s and the value decreases monotcnously
till 320 s. The increase after 320 s is resulted from the decrease of
FTO1CS (Fig. 3.5) and is not considered to give correct steam mass flow
rate. Figure 3.13 shows a comparison of FTVVS, FTELS and FTUPS. FTHLS and
FTUPS are the estimated steam mass flow rates in the hot leg and the upper

plenum, respectively, and are defined as

FTHLS = FT01CS + FTOLLS (3)
FTUPS = FTHLS + FTVVS
= FTBCL + FTO1LS (4)

Figure 3.14 shows a comparison of the estimated maximum core steam gen-—
eration rate (TSG,) arnd the tie plate steam mass flow rate {(FTTPS). FTTPS
is calculated as follows with the steam mass flow rates measured with the
tie plate flow modules, referring the behavior of tie plate differential
pressures.

FTTPS =4 x (UDOLF41-S) + 3 x (UDCIF51-8)
+ (UDO1F81-S) (5)
As shown in the figure, they are rather in good agreement. A comparison
among FTUPS, FTTPS and TSGx is given in Fig. 3.15. They are rather in good
agreement within + 20 7 difference between 120 s and 300 s, which is the
main core cooling period in the test. Therefore, the estimated steam mass

flow rate through the vent valve is considered to be correct with & 20 % er-
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ror between 120 s and 300 s.

The core flooding rate (FTCORE) shown in Fig. 3.3 is estimated as fol-
lows neglecting the water supply from the upper plenum te the downcomer
through the vent valve. Namely,

FTCORE = FTECC - GDC - GCA (6)
where, FTECC is the ECC water injection rate, and GDC and GCA are the water
accumulation rates in the downcomer and in the additionmal area around the
core, respectively. However, there is a pessibility that the water in the
upper plenum flows through the vent valve to the downcomer and floods the
core. Therefore, it is important to estimate the water mass flow rate
through the vent valve. Although there installed vent line spool piece
provided by the USNRC, it did not seem to work well and no meaningful data
was obtained. Accordingly, a mass balance calculation has been performed to
obtain the water mass flow rate through the vent valve (FTVVW). Considering
the mass balance on the core flooding rate (FTCORE)

GC + FTTPW + FTTPS (77
FTECC + FTVVW - GCT1 - GDC - GCA (8)

FTCORE
and, FTCORE

where, GC and GCT1 are the water accumulation rates in the core and the con-
tainment tank I, respectively, and FTITPW is the tie plate water mass flow
rate calculated in the similar manner as FTTPS (Eq.{5)). The value for GCT!
is nearly zero until 500 s in the present test. From Eqs.(7) and (8),
FTVVW = GC + FTTPW + FITPS — FTECC

- GCT1 - GDhC - GCA (9
The calculated value is shown in Fig. 3.16. Until 196 s the value is nega-
tive. This is considered to be resulted from errors of the measured values
and suggests no water flow through the vent valve until 196 s. After this
time the value increases gradually and becomes over 20 kg/s after 340 s.
The core flooding rate calculated with Eq.(7) is shown in Fig. 3.17 compar-
ing with the data shown in Fig. 3.3 (Eq.(6)) with two different time axes.
The difference becomes large after 130 s after the reflood initiation. By
this time, the core was quenched up to about 2 m as shown in the following

Section {(Fig. 3.25).

3.3 System Thermo-hydrodynamic Behaviors and Core Cooling

In this section, the system thermo-hydrodynamic behaviors are inves-

tigated by comparing the data of the present test with those of another SCTF
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test (Test Sl~20[6]), in which the total EQC water injection rate was the
closest to that of the present test but the vent valve was closed. In this
way, effects of the free vent valve on system thermo-hydrodynamic behaviors
can be clarified easily. Major test conditions for Test §1-20 are sum-—
marized in Table 3.1 in comparison with those for the present test.

Figure 3.18 shows a comparison of the intact loop differential pres—
sure. The data for the present test are significantly smaller than those
for Test §1-20. This is considered to be the direct effect of the free vent
valve, because the mass flow rate in the primary loop becomes significantly
smaller when the vent valve is open. Therefore, the figure also indicates
that the vent valve was open during the reflood period in the present test.
As shown in Fig. 3.13, the steam mass flow rate in the primary loop is about
2/3 of the total steam mass flow rate flowing out of the upper plenum and
the rest of 1/3 flowed through the vent valve in the presént test. And the
steam mass flow rate in the intact cold leg, which mainly determine the in-
tact loop differential pressure, is close to that in the vent valve as shown
in Fig. 3.19. Accordingly, as shown in Fig. 3.20, the steam mass flow rate
in the intact cold leg is much smaller ({,e. about one half) in the present
test comparing to that in Test 51-20, and hence, the pressure drop is ex-
pected tc be about 1/4 if the system pressure is the same. Another reason
for the significantly smaller intact loop differential pressure is the dif-
ference in the system pressure shown in Table 3.1. The steam density in the
present test (0.39 MPa around 100 s) is 1.52 times as large as that in Test
$1-20 (0.25 Mpa), and hence, the differential pressure is 1/1.52 = 0.66
times for the same mass flow rate. Therefore, the significant difference in
the intact loop differential pressure shown in Fig. 3.18 is explained quan-—
titatively.

Figure 3.21 shows a comparison of the downcomer liquid level converted
from differential pressure data. The data for the present test is much
smaller during the initial period. This is considered to be caused by the
smaller intact loop differential pressure shown in Fig. 3.18. The dif-
ference in the downcomer liquid level is quantitatively corresponds to that
in the summation of the intact loop differential pressure and the core dif-
ferential pressure (Fig. 3.22) during the initial 110 s. The data for Test
§1-17 increases even after 110 s. This is considered to be resulted from
the additional water flow from the upper plenum through the vent valve (Fig.

3.16). Figure 3.22 shows a comparison of the core differential pressure.
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puring the whole reflooding transient, the data for the present test gives
larger value of about 0.004 MPa (0.4 m water head). Since the difference
appears during very initial period, the reason for the difference is con-
sidered to be the difference in the core flooding rate during the very ini-
tial period. Figure 3.23 shows a comparison of the upper plenum water
level. The data for Test $3-17 show increase after 100 s. This is cor-
responding to the increase in the water mass flow rate through the vent
valve mentioned above.

Comparisons of the rod surface temperature and the corresponding heat
transfer coefficient at the highest power location are shown in Fig. 3.24.
A comparison of the quench envelope for the peak power rod is shown in Fig.
3.25. Since the other boundary conditions for the core than the total ECC
water injection rate is different a lot between the two tests, further dis-
cussion on these comparisons is not meaningful. Therefore, for only getting
the feeling on the better core cooling in the present test, the core cooling
for the present test is compared with that for another SCTF test (Test S3-
10[7]) in the following. Test $3-10 is a representative one conducted under
the BE conditions for the Westinghouse type PWRs. Major conditions for the
test are presented in Table 3.2. Since the present test was also conducted
under the BE conditions, many items are close to cach other except for the
snitial clad temperature and the ECC water injection rate during the LPCI
period. Figures 3.26 and 3.27 show comparisons of the rod surface tempera-
ture and the corresponding heat transfer coefficient at the peak power loca-
tion. Although there exists a certain difference between the two tests,
both the data show the significantly good core cooling. More precise quan-—
titative investigation for the effects of the vent valve on reflooding be-
havior is given in the following Sections by using data from other SCTF

tests.

3.4 Effects of Vent Valve on Reflooding Behavior

In the SCTF Core-1 series, there are two tests conducted under the same
nominal conditions only except for the vent valve activation. They are
Tests 51-2016] and Sl—14[6](see Table 3.3). The vent valve was forced to be
closed in the former, whereas free to open in the latter. The data of these
two tests were already compared and the effects of the vent valve on the

reflooding behavior were briefly investigated by Adachi et al . [6]. Accord-
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ing to Ref. [6], the downcomer collapsed water level was smaller when the
vent valve was open, which is the same characteristic as observed ino the
present test described above. The core collapsed water level for Test S1-14
was higher during the initial period. However, the effect on core cooling
was a little. 1In the following, the effects of the vent valve on réflooding
behavior will be investigated further.

Figure 3.28 shows a comparison of the intact loop differential pres-
sure. The data for Test S1-14 are significantly smaller. This is the typi-
cal for the effect of the free vent valve. Figure 3.29 shows a comparison
of the steam mass flow rate in the intact cold leg. The data for Test s1-14
are about one third, which mainiy resulted in the significantly smaller in-
tact loop differential pressure shown in the previous figure.

The downcomer collapsed water level is compared in Fig. 3.30. Although
the downcomer water level is almost identical to each other up to 20 s, it
becomes much smaller in Test S1-14 after that and then increases gradually
in time. The core differential pressures are shown in Fig. 3.31. The data
for Test S1-14 are larger during the initial period but becomes almost iden-
tical to those for Test $1-20 after 120 s. The upper plenum water level is
compared in Fig. 3.32. The data for Test S1-14 is larger a little through-
out the whele transient.

From Figs. 3.31 and 3.32, it is inferred that the core flooding rate is
lager in Test S1-14 during very initial period (20 s) and becomes almost
identical after that. Although the correct core flocding rate for Test Sl-
14 can not be evaluated because the fluid mass flow rate through the vent
valve was not measured, the core flooding rvates evaluated by neglecting the
" water mass flow rates through the vent valve are compared in Fig. 3.33. It
shows the core flooding rate is larger in Test S1-14 during initial 20 s by
about 20 kg/s and becomes almost the same after that. Judging from the
downcomer liquid level data shown in Fig. 3.30, the water flow through the
vent valve is inferred to start at about 160 s. Therefore, the core flood-
ing rate for Test $1-14 is considered to increase after about 160 s. Figure
3.34 shows a comparison of the ECC water injection rate. This figure indi-
cates the Acc injection rate was larger by about 10 kg/s in Test S1-14, al-
though the planned value was the same. This difference is considered to be
one reason for the larger core flooding rate in Test S1-14 during the ini-
tial 20 s mentioned above. However, the difference in the core flooding

rate was about 20 kg/s, and hence, there should be the effect of the vent
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valve.

Figures 3.35 and 3.36 show comparisons of the rod surface temperature
and the corresponding heat transfer coefficient. The core cooling in Test
S1-14 is better during the initial 100 s and then becomes identical result-
ing in the nearly identical quench time in the two tests.

As discussed above, the effect of the vent valve on core cooling is
remarkable only during the initial period. In Test $1-20, the downcomer
liquid level was below the overflow level from 20 s through about 400 s
(Fig. 3.30). According to Adachi et al.[G], the effect of the vent valve on
core cooling is remarkable "only when the downcomer water level cannot be
kept below the overflow level without opening the vent valve”. 1In other
words, when the ECC water injection rate is so large that the the downcomer
water level exceeds the overflow level without opening the vent valve, the
effect of the vent valve on core cooling is remarkable. According to the
investigation for the effect of the ECC water injection rate on core
cooling[g], the larger ECC water injection rate results in the better core
cooling as far as the downcomer water level does not exceed the overflow
level. Therefore, it can be expected that the best core cooling, which can
be achieved by increasing the ECC water injection rate with keeping the
other conditions unchanged,. is more under the open vent valve situation than
under the closed vent valve situation. This is considered to be the most
important benefit of the vent valve.

In the next section, the effects of the ECC water injection rate on
reflooding behavior under the free vent valve situation will be investigated
to confirm that the larger ECC water injection rate results in the better
core cooling also under the free vent valve situation as far as the

downcomer water level is below the overfiow level.

3.5 Effects of ECC Water Injection Rate on Reflooding Behavior under Free

Vent Valve Situation

In this section, the effects of the ECC water injection rate on re-
flooding behavior under the free vent valve situation are investigated by
using the data of SCTF Tests 81—15[6] and $1-17[8). 1n these tests, the
test conditions were set to be identical only except for the ECC water in-
jection rate as shown in Table 3.4. Figure 3.37 shows a comparison of the

ECC water injection rate.
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Figure 3.38 shows a comparison of the downcomer liquid level. The data
for Test $1-15 are lager throughout the transient. This is mainly due to
the larger ECC water injection rate in this test. Figure 3.39 shows a com—
parison of the core differential pressure. The data for Test S1-15 are also
much larger. This suggests that the core flooding rate is much larger in
Test S1-15. Since the core flooding rate including the water mass flow rate
through the vent valve cannot be evaluated in these tests, the core flooding
rates evaluated by neglecting the water mass flow rate through the vent
valve are compared in Fig. 3.40. Figures 3.41 and 3.42 show comparisons of
the upper plenum liquid level and the intact loop differential pressure,
respectively. For both data, the values for Test §1-15 are larger. This is
considered to be resulted from the larger core flooding rate described
above.

Figures 3.43 and 3.44 show comparisons of the rod surface temperature
and the corresponding heat transfer coefficient at the peak power lecation.
These data show the core cooling is much better in Test S1-15 than in Test
$1-17. Therefore, it is confirmed the core cooling is better as the ECC

water injection rate is larger also under the free vent valve situation.

3.6 Discussion on Reflooding Behavior of B&W type PWRs

Tn the CCTF Core-~II test series, two tests were conducted[g]’[lo] in
order to investigate the reflooding behavior in a Babcock & Wilcox (B&W)
type PWR of the USA, which also has the vent valves and the once-through
type steam generators. However, there are some differences between a BBR
and a B&W type PWR. One important point for the LOCA analysis is that the
once-through type steam generators are not "lowered” one in a BBR. That is,
the crossover leg is only about 2 m lower than the hot and cold legs In a
BBR, whereas about 9 m lower in a B&W type PWR. Therefore, in the latter,
the crossover leg is assumed to be filled or blocked with the water during
the reflooding, whereas open in a BBR.

According to the analyses[g]’[lo] of those CCTF tests, the effect of
the vent valve on core cooling is not significant and only appears in the
initial period. 1In the CCTF tests, the ECC water injection rate was large
enough to cause the overflow of the water to the break when the wvent valves
were closed. Therefore, based on the last discussion in Sec. 3.4, a sig-

nificant improvement of core cooling is expected when the vent valves were
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open. However, the results were not as expected as mentioned above. The
reasons for this difference between the observed and the expected are Inves-
tigated in the following.

In the CCTF tests, a lot of water was observed to overflow to the break
without accumulating in the downcomer even when the vent valves were open,
resulting in the lower downcomer water head than expected. This lower down-
comer water head than expected in these tests is considered to be explained
as follows.

In the CCTF tests, all primary coolant loops were mechanically closed
in order to simulate the reflooding situation for a B&W type PWR. There-
fore, the flow path from the upper plenum to the downcomer is only through
the vent valves, whereas primary loops are available as well as the vent
valves in a BBR. This means, in the B&W case (Z.e. the CCTF tests), all the
steam generated in the core should be exhausted to the break via the vent
valves and the downcomer. This is expected to cause larger amount of carry
over of the downcomer water to the break than the BBR case, especially when
the downcomer water level is close to the overflow level. Therefore, in
the B&W simulation tests with the CCTF, the downcomer water level is con-
sidered to be much lower than the expected, resulting in a little enhance-
ment of core cooling.

The similar situation is alsoc expected to take place in & BBER, when the
ECC water injection rate is large encugh to cause the overflow. However,
the magnitude of the carryover of the downcomer water is considered to be
much smaller in this case. This is because the amount of the steam ex-
hausted via the downcomer is expected to be much less in the BBR case. That
is, in the BBR case, the broken loop is also open and a large amount of the
steam generated in the core can be exhausted through it. According to the
results of Test S§3-17 presented in Secs. 3.2 and 3.3, about one third of the
steam generated in the core flows through the vent valve and another one
third flows through the intact cold leg to the break. Accordingly, only two
thirds of the steam generated in the core flows via the downcomer and the
rest of one third flows the broken cold leg without causing any carry over

of the downcomer water to the break.
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Table 3.1 Major test conditions for Test 51-20

System pressure (MPa) : 0.20 ~ 0.24 (0.34 ~ 0.47)
ECC injection location : cold leg (lower plenum)
Maximum Acc injection rate (kg/s) : 77 {98)

LPCI injection rate (kg/s) : 8.5 (9.4)

ECC water temperature (K) : 333~ 336 (366 ~ 410)
Initial clad temperature at BOCREC (K) : 1087 {(928)

Initial core power (MW) : 7.1 (7.57)

Vent valve situaticon : closed (free to open)

Note : Conditions for Test $3-17 are shown in parentheses

Table 3.2 Major test conditions for Test S$3-10

System pressure (MPa) : 0.29 ~ 0.33 (0.34 ~ 0.47)
ECC injection leocation : lower plenum {lower plenum)
Maximum Acc injection rate (kg/s) : 100 (98)

LPCI injection rate (kg/s) : 5.3 {9.4)

ECC water temperature (K) : 335 ~ 410 (366 ~ 410)
Initial clad temperature at BOCREC (K) : 793 (928)

Initial core power (MW) : 7.78 (7.57)

Vent valve situation : closed (free to open)

Note : Conditions for Test $3-17 are shown in parentheses
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Table 3.3 Comparison of major test conditiouns between Tests $1-14 and $1-20

Item Test Sl-14 Test §51-20
System pressure {(MPa) : 0.20 ~ 0.24 0.24 ~ 0.24
ECC injection location : cold leg cold leg
Maximum Acc injection rate (kg/s) : 86.5 77.0
LPCI injection rate (kg/s) : 7.8 8.5
ECC water temperature (K) : 336 ~ 340 333 ~ 336
Initial clad temperature at BOCREC (K) : 1087 1087
Initial core power (MW) : 7.1 7.1
Vent valve situation : free to open closed

Table 3.4 Comparison of major test conditions between Tests §1-15 and §1-17

Ttem Test $1-15 Test S1-17
System pressure (MPa)} : 0.20 ~ 0.24 0.20 ~ 0.24
ECC injection location : cold leg cold leg
Maximum Ace injection rate (kg/s) : 85.9 28.3
LPCI injection rate (kg/s) : 8.3 5.0
Acc water temperature (K) : 339 393
LPCI water temperature (K) : 338 336
Initial clad temperature at BOCREC (K) : 1099 1144
Initial core power (MW) : 7.1 7.1
Vent valve situation : free to open free to apen

—— 26 i
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Conclusions

SCTF Test $3-17, in which reflooding of a BBR type PWR with the vent

valves was simulated, was conducted successfully and the data for the ex-

perimental coupling'with the UPTF have been obtained. Furthermore, the test

data are analyzed by also utilizing other SCTF and CCTF test data, and the

following conclusions.have been obtained:

(1)

(2)

(3)

(4)

(5)

1t has been demonstrated that the core cooling is significantly good
during the reflood phase of a BBR under the BE conditions.

The intact loop differential pressure was significantly reduced when the
vent valve was open.

The effect of the vent valve on core cooling was not remarkable under
the conditions that the downcomer water level was below the overflow
level when the vent valve was closed, but is expected to be remarkable
under the conditions that the downcomer water level exceeds the overflow
level when the vent valve is closed. Therefore, it would be better for
core cooling of a BBR to increase the ECC water injection rate.

It has been experimentally confirmed also under the open vent valve
situation that the core cooling is better as the ECC water injection
rate is larger as far as the downcomer water level is below the overflow
level,

It has been clarified that the reflooding behavior is somewhat different
between a BBR and a B&W type PWR. That is, the ratio of the steam mass
flow rate exhausted through the top of the downcomer to the total steam
generation in the core is significantly smaller in a BBR than in a B&W
type PWR, in which all the primary coolant loops are assumed to be
blocked with the water during reflooding. This is expected to result in
the smaller carry over of the downcomer water to the break, and hence,

the larger core flooding rate in a BBR.
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Appendix A

Description of SCTF Core-III
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A.1 Test Facility

The overall schematic diagram of SCTF is shown in Fig. A-l. The
principal dimensions of the facility is shown in Table A-1l, and the
comparison of dimensions between SCTF and the reference FPWR is shown

in Fig. A-2,

A.1.1 Pressure Vessel

The pressure vessel is of slab geometry as shown in Fig.

A-3. The height of the components in the pressure vessel is almost
the same as the reference reactor's, and the flow area and the
fluid volume of each component are scaled down based on the nominal
core flow area scaling, 1/21.

The core consists of 8 bundles arranged in a row and each bundle
includes heater rods and non-heated rods with 16Xx16 array. The core
is enveloped by the honeycomb thermal insulator which is attached on
the back surface of core wall plate.

The downcomer is located at one end of the pressure vessel which
corresponds to the periphery of the actual reactor pressure vessel.
The core baffle region located between the core and the downcomer is
isolated for Core-III to minimize uncertainty in actual core flow..
The cross sections of the pressure vessel at the upper head, upper

plenum, core and lower plenum are shown in Fig. A-4,

A.1.2 Interface between Core and Upper Plenum

The interface between the core and the upper plenum consists of
upper core support plate (UCSP), end box and various structures in the
end box such as contreol rod spider which is paired with the control rod
guid assembly (CRGA) and its support column bottom and special baffle
plate spider which is paired with the heold-down bridge. These
structures are exactly the same as those for a German PWR except some
minor modifications.

Figure A-5 shows arrangement of the UCSP, the end box and the top

grid spacer. The configuration of the end box is shown in Fig. A-6.

— 56 —



JAERI-M 80—036

Detail of the end boxes with drag transducer device and other
internals is shown in Fig. A~7. The UCSP shown in Fig. A-8 has two
kinds of holes, i.e., the square holes correspond to the end boxes
with control rod spider and the circular holes correspond to the end

boxes with special baffle plate spider.

A.1.3 Upper Plenum and Upper Head

The vertical and horizontal cross sections of the upper plenum
are shown in Figs. A-9 and A-4, respectively. In the SCTF Core-III,
the slab cut of the upper plemum of a German (KWU) PWR is simulated.
The splitted and staggered arrangement of the CRGA support columns
was chosen to make good simulation of horizontal flow in the upper
plenum.

As shown in Fig. A-10, there are three kinds of CRGA support
column. Support column-1 is installed above Bundles 3 and 5 and
connected to the CRGA support column bottom with the transition cone.
Cross section of the CRGA support calumn changes from a circle to a
half circle in this transition cone. Support column 2 is installed
above Bundles 6 and 7 and the bottom is closed with the half conical
bottom seal plate with many flow holes. Support column 3 is
essentially the same as support column 2 but the edge of one side is
cut off in order to install above Bundle 1. Each CRGA support
column has ten or eleven baffle plates with flow holes. Top flow
paths to the upper head bottom and to the upper plenum top are also
provided.

Figure A-11 shows vertical cross section of the bottom part of
the upper plenum and the interface between the core and the upper
plenum. There are eight side flow injection nozzles and eight side
flow extraction nozzles just at the opposite side of the upper plenum
bottom, corresponding to each bundle.

The upper plenum is separated from the upper head by an upper sup-
port plate. Four top injection nozzles penetrate the upper head .and open
the top of upper plenum as shown in Fig. A-12. OQutlet part of the top
injection nozzle has a rectangular cross section and double mesh

screen with 45 degree cross angle is attached at the mouth.
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A.1.4 Simulated Core

The simulated core for the SCTF Core-III consists of 8 heater rod
bundles arranged in a row. Each bundle has 236 electrically heated
rods and 20 non-heated rods. The arrangement of rods in a bundle is
shown in Fig. A-13. The dimensions of the heater rods are based on
15%15 fuel rods bundle for a PWR and the heated length and the outer
diameter of each heater rod are 3,613 m and 10.7 mm, respectively.

A heater rod consists of a nichrome heater element, boron nitride (BN)
or magnesium oxide (MgO) depending on elevation in the heated zone
and Nichrofer 7216 (equivalent to Inconel 600) sheath. The sheath
thickness is about 1.0 mm and is thicker than the actual fuel cladding
because of the requirements for thermocouple installation. The
heater element is a helical coil and has a 17 step chopped cosine
axial power profile as shown in Fig. A-14. The peaking facter is 1l.4.

Non-heated rods are either pipes or solid rods of stainless
steel with 13.8 mm 0.D. The heater rods and non-heated rods are
fixed at the top of the core allowing downward expansion. In Fig.
A-15, relative elevation of rods and spacers is shown.

For better simulation of flow resistance in the lower plemum, the
simulated fuel rods end in the lower plemum and do not penetrate

through the bottom plate of the lower plenum as shown in Fig. A-15.

A.1.5 Primary Loops

Primary loops consist of a hot leg equivalent to four hot legs in
area, a steam/water separator for simulating single steam phase flow
downstream of the steam generator and for measuring flow rate of carry
over water, an intact cold leg equivalent to three intact loops, a
broken cold leg on the pressure vessel side and a broken cold leg on
the steam/water separator side. These two broken cold legs are
connected to twe containment tanks through break valves, respectively.
The arrangement of the primary loops is shown in Fig. A-16. The flow
area of each loop is scaled down based on the core flow area scaling,
1/21. It should be emphasized that the cross section of the hot leg
is an elongated circle with an actual height to realize proper flow
pattern in the hot leg. The steam/water separator has a steam

generator inlet plenum simulator to correctly simulate the flow
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characteristics of carryover water into the U-tubes. The cross
section of the hot leg and the configuration of the steam genrator
inlet plenum simulator are shown in Fig. A-17.

A pump simulator and a loop seal part are provided for the intact
cold leg. The arangement of the intact cold leg is shown in Fig. A-18.
The pump simulator consists of the casing and duct simulators and an
orifice plate as shown in Fig. A-19. The loop resistance is adjusted
with the orifice plates attached to the intact cold leg, the steam/

water separator side and pressure vessel side broken cold legs and

the pump simulator.

A.1.6 ECC Water Injection System

Three kinds of ECCSs are provided, i.e., the accumulator injection
system (Acc), low pressure coolant injection system (LPCI) and
combined injection system. Available injection locations for the
former two are the intact and broken cold legs, the hot leg, the lower
plenum and the downcomer. On the other hand, those for the last one
are the top and bottom-side of the uppér plenum and the intact and

broken cold legs.

A.1.7 Containment Tanks and Auxiliary System

Two containment tanks are provided to SCTF. The containment
tank-I is connected with the downcomer through the pressure vessel
side broken cold leg and the containment tank-II is connected with
the steam/water separator through the steam/water separator side
broken cold leg. Especially in the containment tank-I, carryover
water from the downcomer is measured by the differentiation of the
liquid level. These containment tanks and auxiliary system such as

a pressurizer for injecting water from the Acc tanks, etc. are shared

with CCTF.
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A.2 Instrumentation

The instrumentation in SCTF has been provided both by JAERI and
USNRC. The JAERI-provided instrumentation includes the measurement of
temperatures, pressures, differential pressures, liquid levels, flow
velocities, and heating powers. USNRC has provided film probes,
impedance probes, string probes, liquid level detectors (LLDs), fluid
distribution grids (FDGs), turbine meters, drag disks, densitometers,
spool pieces, drag bodies, break through detectors and video optical
probes, Locations of the JAERI-provided instruments are shown in

Figs. A-20 through A-43,
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Table A-1 Principal Dimensions of the SCIF

Core Dimension

(1) Quantity of Bundle 8 Bundles

(2) Bundle Array 1 x8

{3) Bundle Pitch 230 mm

(4) Rod Array in a Bundle 16 x 16

(5) Rod Pitch in a Bundle 14.3 mm

(6) Quantity of Heater Rod in a Bundle 236 rods

(7) Quantity of Non-Eeated Rod in a Bundle 20 rods

{8) Total Quantity of Heater Rods 236%8=1,888 rods
(93 Total Quantity of Non-Heated Rods 20%8=160 rods
(10) Effective Heated Length of Heater Rod 3613 mm

(11) Diameter of Heater Rod 10.7 mm

{(12) Diameter of Non-Heated Rod 13.8 mm

. TFlow Area & Fluid Volume

{l1) Core Flow Area 0.25 o
(2) Core Fluid Volume 0.903 m®
(3) Baffle Region Flow Area (isclated) (0.096) n?
(4) Baffle Region Fluid Volume (nominal) 0.355 m?
(5) Cross-Sectional Area of Core Additiomal 2
. . 0.07 m
Fluid Volumes Including Gap between :
Core Barrel and Pressure Vessel Wall and 0.10 o2
Various Penetration Holes "
(6) Downcomer Flow Area 0.158 m?
(7) Upper Annulus Flow Area 0.158 m?
(8) Upper Plenmum Horizontal Flow Area (max.) 0.541 m?
(%) Upper Plenum Vertical Flow Area 0.525 m?
(10) Upper Plenum Fluid Volume 1.156 m?
(11) Upper Head Fluid Volume 0.86 m?
{(12) Lower Plenum Fluid Veolume (excluding below 3
1.305 m
downcomer)
{13) Steam Generator Inlet Plenum Simulator 2
0.626 m
Flow Area
(l14) Steam Generator Inlet Plenum Simulator 3
3 0. 931 m
Fluid Volume
{15) Steam Water Separator Fluid Volume 5.3 rd
(16) Flow Area at the Top Plate of Steam 0.195 "
Generator Inlet Plenum Simulator ’
(17) Hot Leg Flow Area 0.0826 w?
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Table A-1 (continue)

(18) Intact Cold Leg Flow Area 0.0697 m
(Diameter = 297.9 mm)
Inverted U-Tube with 0.0314 m® Cross-
Sectional Area (Diameter = 200 mm) and
10 m Height from the Top of Steam
Generator Inlet Plenum Simulator Can
Be Added As an Option.

(19) Broken Cold Leg Flow Area 2

(Diameter = 151.0 mm) 0.0197 =
{20) Containment Tank-I Fluid Volume 30 3
(21) Containment Tank-II Fluid Volume 50 :

(22) Flow Area of Exhausted Steam Line from

Containment Tank-II to the Atmosphere see Fig. 3-63

Elevation & Height

(1) Top Surface of Upper Core Support Flate 0 o
{UCsP)
{2) Bottom Surface of UCSP - 40 mm
(3) Top of the Effective Heated Length of - 444  mm
Heater Rod
(4) Bottom of the Effective Heated Length of —4,057 m
Heater Rod
(5) Bottom of the Skirt in the Lower Plenum ~5,270 mm
(6) Bottom of Intact Cold Leg + 724 frien]
(7) Bottom of Hot Leg +1,050 mm
(8) Top of Upper Plenum +2,200 m
(9) Bottom of Steam Generator Inlet Plenum
Simulator +1,933 mm
{10) Centerline of Loop Seal Bottom -2,281 mm
(11) Bottom Surface of End Box ~ 263 mz
{(12) Top of Upper Annulus of Downcomer +2,234 mm
{13) Height of Steam Generator Inlet
Plenum Simulator 1,535 mm
(14) Height of Loop Seal 3,140 mm
(15) Inner Height of Hot Leg Pipe 737 mm
(16) Bottom of Lower Plenum ~5,772 ©m
(17) Top of Upper Head +2,887 mm
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Appendix B

Selected Data from Test S3-17
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Figs. B—- 1~ B- 8 Heater rod temperatures

Figs. B- 9_~ B-12 Non-heated rod temperatures

Figs. B-13 ~ B-16 Steam temperatures

Figs. B-17 ~ B-18 Fluid temperatures just above end box tie plate

Figs. B-19 ~ B-20 Fluid temperatures above UCSP

Figs. B-21 ~ B-24 Fluid temperatures in core

Figs. B-25 ~ B-26 Liquid levels above end box tie plate
Figs. B-27 ~ B-28 Liquid levels above UCSP

Fig. B-29 Liquid level in steam—-water separator

Fig. B-30 Liquid levels in hot leg

Figs. B-31 ~ B-32 Differential pressures across core full height

Figs. B-33 ~ B-34 Differential pressures across end box tie plate

Figs. B-35 ~ B-37 Horizontal differntial pressures in core

Figs. B=38 ~ B-42 Differential pressures in primary loops

Figs. B=43 ~ B-44 Pressures in pressure in vessel and containment tanks

Figs. B=45 ~ B-46 Bundle powers
Fig. B-47 ECC flow rate
Fig. B-48 ECC fluid temperature
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