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In order to obtain the data of the reflooding behavior in a wide core
under an Evaluation Model (EM) condition for a Pressurized Water Rector
(PWR) with a cold-leg-injection-type Emergency Core Cooling System (ECCS),
a test was performed with the Slab Core Test Facility (SCTF) Core-TIII,
which has the same radial width as the radius of a 1,000 MWe class PWR.
The test was named Test $3-~9. The experimental data of the present test
were supposed to bé used for an experimental coupling between the SCTF and
the Upper Plenum Test Facility (UPTF) of FRG, which is a full scale facil-
ity but without the heated core, based on the 2D/3D Agreement, Z.€. an in-—
ternational cooperation among FRG, the USA and Japan. Major core initial
and boundary conditions for the test were determined based on the test

results of Cylindrical Core Test Facility (CCTF) Test ¢2-4, which is the

_base case test for the CCTF test series and was performed under an EM con-

dition for a PWR with a cold-leg-injection-type ECCS. Therefore, the
present test is also a coupling test between thne SCTF and the CCTF under an

EM condition.

* Toshiba, Ltd.
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In the present report, the difference in the reflecoding behavior be-

tween the SCTF and the CCTF is mainly investigated by comparing the ex-—

perimental data from those two tests. Major conclusions obtained are as in

the following: .

(L

(2)

(3>

(4)

Test S3-9 was successfully completed under an EM condition. Tie plate
mass flow rate data were obtained and can be used for an experimental
coupling with the UPTF.

The overall core coqling behavior observed in Test S$3-9 was nearly the
same as that observed .in CCTF Test C2-4.

However, the core differential pressure characteristic observed in
Test $3-9 was somewhat different from that observed in Test C2-4.

Main reasons for the difference are almost explained to be different
core inlet water subcooling between the two tests and the different
effective core flow area between two facilities.

The core two-dimensional behavier observed in Test S$3~9 had the same

characteristic as observed in the other tests with the SCTF Core~II.

Keywords: Reactor Safety, PWR, LOCA, ECCS, Reflood Experiments,

Two-phase Flow, Heat Transfer, Thermo-hydrodvnamics, SCTF
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1. Intioduction

The Slab Core Test Facility (SCTF) test program is a part of the
large scale reflood test program[1] together with the Cylindrical Core
Test Facility (CCTF) test program, which are performed ﬂ& Japan Atomic
Energy Research Institute (JAERT) under a contract with Atomic Energy
Bureau of Science and Technology Agency of Japan. The SCTF test program
is also one of the research activities based on a trilateral agreement
(Z.e. 2D/3D Agreement) among JAERI, the United States Nuclear Regulatory
Commission (USNRC) and the Federal Minister for Research and Technology
(BMFT) of Federal Republic of Germany (FRG).

There are three test series (Core-I, —II and -III) in the SCTF test
program. The SCIF Core—I[z] and Core—II[B] test series were already per-
formed mainly to investigate two-dimensional thermal hydraulic behavior in
the core during the reflood phase of a loss-of-coolant accident (LOCA) of
a Westinghouse type pressurized water reactor (denoted US/J PWR) with the
cold-leg~injection—type emergency core cooling systenm {(ECCS). On the
other hand, one of the major objectives of the SCTF Core—III[A] test
series was to investigate the effectiveness of the combined-injection-type
ECCS in a German type PWR (denoted GPWR). In addition, simulation tests
for a US/J PWR were also performed with the SCTF Core-III.

In order to obtain the data for the reflood phenomena in the wide
core of a US/J PWR, a test was conducted with the SCTF Core-IJII under an
Evaluation Model (EM) conditicn. This test was named Test $3-9 (Run 713)}.
The data of the test, especially the tie plate mass flow rates were sup—
posed to be used for an experimental coupling with the Upper Plenum Test
Facility (UPTF) in FRG based on the 2D/3D Agreement. Major core initial
and boundary conditions of the test were determined based on the results
of CCTF Test CZ—&[S], which was also conducted under an EM condition.
Therefore, the present test is also a coupling test between the SCTF and
the CCTF under an EM condition.

This report describes the major results of the present test and the
discussion on the difference between the SCTF and the CCTF. A brief
Idescription of the SCTF Core-III is presented in Appendix A. Also, some
selected data obtained in Test S$3-9 are presented in Appendix B for better.
understanding of the test.

Brief information on the test is presented in the following:
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(2)

(3)
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Test name

US/J PWR simulation integral EM Test
where, US/J PWR : PWR of the USA and Japan with cold-leg-injection-
type ECCS )

EM : Evaluation model

Test number

$3~9 (Run 713}
where, 8§ : SCTF
3 : Core-TII

9 : Sequential number of the main test
Objectives of test

i) To investigate the difference in the reflooding phenomena be-
tween the SCTF and the CCTF under an EM condition of a US/J PWR

ii) To obtain data for experimental coupling with the UPTF of FRG

Type of test

Refill and reflood integral test for a US/J PWR under an EM condi-

tion.
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2. Test Description
2.1 Test Facilityl%]

The SCTF was originally designed to study two—dimensfonal effects on
thermal hydraulics during the reflood phase in the PWR core with full
length radiusf21,[31,

A flow diagram of the SCTF is shown in Fig. 2.1. The SCTF is
simulating a 200% cola—leg-large—break with a simplified primary system
and can be operated at the system pressure less than 0.6 MPa. It consists
of a pressure vessel, a combined intact loop, a broken loop at the pres-
sure vessel side, and a broken loop at the steam-water geparator side.

Figure 2.2 shows a vertical cross section of the pressure vessel.,

The pressure vessel includes a simulated core, an upper plenum with its
internals, a lower plenum, a core baffle region and a downcomer. The con~
figurations of the upper plenum structure and the end box simulate those
of a 1,300 MWe class GPWR as practically as possible.

The core is full-height, full-radius and one-bundle width one. The
core flow area scaling ratio is 1/21.4 to a typical 1,000 MWe class Us/J
PWR. 1,888 electrical heater rods are installed in the core to simulate
fuel rods. Dimensions of a heater rod is 10.7 mm in diameter and 3,613 mm
in heated length, simulating those of PWRs. The maximum available power
supplied to the core is 10 MW.

The heater rods arée assembled in a 16 x 16 square array bundle being
positioned with grid spacers. Eight bundles are installed in a row in the
core, as shown in Fig. 2.2. 1In the SCTF, the leftmost bundle in the
figure is named Bundle 1 and orderly to the right direction the bundles
are named Bundle 2, 3, ..., 8. Since the downcomer and the hot leg are
connected to the Bundle 8 side, the Bundle ! and 8 sides are corresponding
to the central and the pefipheral sides of PWRs, respectively.

The ECC water can be injected into the lower plenum, the cold leg and
the upper plenum in the SCTF. The core and the upper plenum are enveloped
by honeycomb thermal insulators with wall plates to minimize the wall
thermal effects. Description of the SCTF Core-III is presented more in

detail in Appendix A.
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2.2 Test Conditions and Sequence

Test conditions were selected to simulate the refill and reflood
phencmena under an EM condition for a US/J PWR 200% cold-leg-large-break
LOCA. The bases for the test conditions are mainly thehrééults of CCTF
Test C2—4[5], which is aﬁ integral test performed under an EM condition
with the CCTF, and are summarized in Sec. 2.3. Table 2.1 shows the
planned and the measured-test conditions.

Figure 2.3 shows the COnceptual initial set-up of the facility for
Test $3-9. The ECC water was injected into the lower plenum instead of
the cold leg. This is because the core flooding rate for the present test
was intended to be the same as that in CCIF Test C2-4 as closely as pos—
sible.

Orifice diameters for the steam-water separator side broken cold leg,
the intact cold leg and the punmp simulator were 86.4, 179.9 and 173.7 mm,
respectively, and were'the same as in SCTF Core-I and II tests. No
orifice was inserted in the pressure vessel side broken cold leg. Water
in the steam—water separator was set to be drained to containment tank 2
to keep the maximum water level in steam—water separator at 1.l m.

Figure 2.4 shows sequence of Test §3-9. In this figure, the time
when the maximum clad temperature reached 700 O¢ is defined as 0 s. Pres-
sure in the containment tank 2 was kept constant at 0.2 MPa by controlling
discharge rate of steam through the blow valve to the atmosphere after O
s. ECC water was started to be injected into the lower plenum 8 s before
0 s. Water temperature for this was set to be 80 °C up to 28 s and 120 oc
thereafter. Core power was initially set at 9.35 MW and was decreased to

simulate decay as shown in Fig. 2.4.

2.3 Bases for Test Conditions

Bases for test conditions are summarized in Table 2.2. A brief

explanation is as follows:

(1) Pressure

Pressures in the pressure vessel and the containment tank 2 was ini-
tially set at 0.2 MPa and was intended to be kept constant during the
reflood phase. They were selected to be the same pressure conditions as

in CCTF Test C2-4.
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{2y Initial core power

Initial total core power for the present test was determined to be

the same as in CCTF Test C2-4 and was set to be 9.35 MW.

(3) Power profile

Radial power ratio in the present test was determined to simulate
that in SCTF Core-II steep power profile test (Test 82—6[6]). They are
1.0 ¢+ 1.2 : 1.0 7 0.8 for Bundles 1 and 2, 3 and 4, 5 and 6, and 7 and 8.

(4) 1Initial clad temperature

Initial clad temperature of the present test was determined to simu-
late the same stored energy in rods as that in CCTF Test C2-4. The maxi-
mum clad temperature of Test C2-4 was 1073 K at reflood initiation (t.e.
BOCREC). Since the radial and the axial peaking factors were 1.36 and
1.40 in the test, the average temperature at BOCREC was estimated as

follows:
(1073 = 393)/1.36/1.40 + 393 = 750 (X)

In order to simulate the same stored energy in the present test, a correc—
tion due to the difference in heater rod number ({.e. 1888 for SCTF vs.
1824 for CCTF) should be considered as follows:

1824

+ 393 = 738 (K)

Taking account of the radial and the axial peaking factor for the present

test, 1.20 and 1.40, respectively, the maximum clad temperature at BOCREC

for the present test was obtained as follows:
(718 - 393) x 1.2 x 1.4 + 393 = 973 (X)
(5) ECC injection rate and temperature

ECC water injection rate (ﬁECC) for the present test was intended to
be set to achieve the same core flooding rate (ﬁF) as that in CCTF Test
C2-4. Since ECC water imjection into the lower plenum accumulates in the
downcomer as well as the core, ECC water injection rate was set to be

larger than the aimed core flooding rate as follows:
(i) Period 1 (0 ~ 3 s)

In this period, steam binding effect is negligible, and hence,
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core flooding rate is expected to be

O

Acore / (Acore + Adowncomer) X WEee
= 0.6 Meee (1)
(ii) Period 2 (5 s ~ time when the downcomer water levelﬁreéches the

balanced level)

In this period, it was observed in the SCTF Core-~IT test that the
ratio among core flooding rate (ﬁF), water accumulation rates in

the downcomer (ﬁde and the core baffle region (ﬁCB) was

mp : Ope @ Mg = 4 : 3 :1
In the SCTF Core-111, the downcomer flow area is larger by 30 %
and a flow path between the bottom of the core baffle and the

core was plugged. Therefore, the ratio was roughly expected to be

mp : Bpe = 4 (3 x 1.3) =1 : 1
Accordingly,
Ty & 0.5 Dgeg , (2)

(iii) Period 3 (after downcomer water level reaches the balanced level)

mp & Mgeg (3)
By using above relation (Egs. (1), (2), and (3)); the ECC water in-
jection rate for the present test was determined and is plotted in Fig.

2.5 in comparison with the aimed core flooding rate, which is a simplified

curve for Test C2-4.
{6) 1Initial water temperature and level in the lower plenum

Tnitial water temperature in the lower plenum was the saturation tem—
perature (393 K) as in the almost CCTF and SCTF tests. Initial water
level was determined considering that the saturated lower plenum water be
delivered to the core during initial 20 s after BOCREC prior to the sub—

sequent delivery of the subcooled ECC water to the core.

2.4 Measured Boundary Conditions

Major measured test conditions are listed in Table 2.1. Table 2.3
shows the chronology of events occurred during the test. Figures 2.6 to

2.9 show the measured boundary conditions of the test.
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Table 2.1 Major conditions for Test S53-9

Item

Pressure (MPa)
Containment

Pressure vessl

Power

Tnitial wvalue (MW
Decay curve

Radial profile

Peak clad temperature (K)
At ECC injection initiation

At BOCREC

ECC water injection

Leocation
Injection rate (kg/s)
Temperature (K)

Planned

9.35

Measured

5

0.270.22
0.270.25

94.32

ANSx],2+Actinidexl.1
1.0:1.2:1.0:0.8 1.0:1.2:1.0:0.8

933
973

37-+3.75
353+393

959.1
1018

Lower plenum
40+4.28
3761390
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Table 2.2 Summary of bases of test conditions
Item Condition  Basis
1 | Containment pressure 0.2 MPa (*1)
2 | Initial system pressure 0.2 MPa (*1)
3 | Tnitial metal wall 193 K (+1)
' temperature
4 Ldop orifice size
Broken cold leg (PV side) Ne orifice
Broken cold leg (S/W side) 86.4 mm The same as in
Intact cold leg 179.9 mm SCTF-1 and -11
Pump simulator 173.7 mm
5 1 Initiazl lower plenum 393 K Saturation temper-—
water temperature ature (Tga¢)
6 | Initial lower plenum 1.9 m Delivery of Tg,+ water
water level for initial 20 §
7 . Initial total core power 9,35 MW (1)
8 | Power decay curve ANSx1,24+Actinidex1. 1|’ (1}
{30 s after scram)
9 i Power profile 1.0:1.2:2.0:0.8 53CTF Test S2-06
10 | Maximum clad temperature 973 K
at reflood initiation
. . . (*2) %
11 | ECC injection rate Follow m and (*1)
TF(NS) of CCTF Test
c2-4
Notes: {%1) The same as in CCTF Test C2-4
{(%2) ﬁF : Core inlet mass flow rate
{(*#3) TF Core inlet fluid temperature




JAERI-M 90—048

Table 2.3 Chronology of events for Test S3-9

Item Time (s)
Core power ''ON" _ 0
ECC water injection initiation 74
Core power decay initiation g2
BOCREC 83
Whole core quench 723
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Intact coid
ieg injection
Intect cold leg

Hot leg Broken coid leg
) / —sws side

O

Upper
plenum -
injection

b et

T

Equalizing line

Lower plenum injection :
wer P : Broken coid leg- PV side

(1) Pressure vessel (® Break valves
(2) Steam/water separator (&) Flow resistance

(@) Containment tanks simulators
(@) Pump simulator
Fig. 2.1 Flow diagram of SCTF
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Fig. 2.2 Vertical cross section of pressure vessel
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7N

[+ Saturated
0.2 MPa water
Upper plenum
Hot leq /Sreom
— ] water
separgtor
V2
E Coid leg
Core S CTH 0.2 MFa
= Atmosphere
=
S V1 CT?2 :N:
Lower
Water Plenum /
——re
4
CT1: Cor}tainmenr tank 1 V1 Bregk valve |
CT 2 : Containment tank 2 V2 Break valve 2
Fig. 2.3 Initial set-up of Test S$3-9
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System pressure 0.2 MPd

ECC flow rate (LP injection)

41kg/s 3.75kg/s

[

I | i
~-100s -8s 6‘855 20s 9051005
120

80

ECC temperature :

‘.
| l
-Bs0s 28s

Lower plenum water level
1.719m
1.2m 4
20T L
]
-8s Os
. 700°C
660 C ! Peak power rod temperature
120t | i
|
L
-82s -8s Os
9.35 MW Core power B
wANS x 1.2 +Actinide x1.0{ 30s after scram )
l
I
1
-82s Os
Fig. 2.4 Sequence for Test 53-9
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50 1 i
N _
37kg/s .
~ Mece
30 S TTT Mg of CCTF C2-4 |
{into core)

7770 My

(23)
20 (into downcomer ) .
(13kg/s)
101 8
(6.5}~ (4.1kg/s )
| | 1(375kg/s) 1
0 (20 ~ (90)100 200 300

Fig. 2.5

Time after flood (s)

Planned ECC water injection rate and core flooding rate
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Fig. 2.6 Pressures of containment tank II and upper plenum
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Fig. 2.7 ECC water injection rate into lower plenum
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3. Test Results and Discussion

3.1 Achieved Major Test Conditions

Since test conditions for the present test were determined to achieve
the same core boundary conditions as those for CCTF Test c2-4151 as
closely as possible, it is important to review first the measured core
boundary conditions. Boundary conditions such as the initial core power,
the radial power profiie, the initial clad temperature, the initial lower
plenum water temperature and the initial lower plenum water level can be
directly set and controlled by us, whereas the core flooding rate and the
flooding water temperature can not. Therefore, these data are reviewed in
the following.

Figure 3.1 shows a comparison of the core flooding rate between the
achieved value and the planned. As shown in the figure, the achieved core
flooding rate is satisfactorily in good agreement with the planned value.
Core inlet water subcooling are compared in Fig. 3.2. The difference be-
tween them is within 20 K throughout the transient. The subcooling of the

present test is larger by about 7 K after about 300 -s.

3.2 Core Thermo-hydrodynamic Behavior

Figure 3.3(a) shows the core differential pressure compared with that
for Test C2-4. It has been knownl/] that the characteristic of the core
differential pressure is somewhat different between the SCTF and the CCTF
tests, and the comparison in the figure shows the same tendency as that.
That is, the data for the present test are smaller up to about 250 s and
becomes larger after that. Also, its increasing rate for the present test
is smaller during the initial 50 s and becomes larger after 100 s.

One reason for this difference is considered to be the difference in
the core inlet water subcooling between the tests shown in Fig. 3.2. 1In
order to quantitatively investigate this effect on core differential pres=-
sure, two calculations were performed with REFLA-1D code[s], which can
predict CCTF and SCTF test results welll9], Figure 3.3(b) shows those
calculational results. One is for Test C2-4 with its measured boundary
conditions. The other is one obtained with the measured core inlet sub-
cooling and pressure for Test $3-9 but with the same core flow area as the
CCTF. The results show that the difference in the characteristics of the

core differential pressure observed in Fig. 3.3(a) is qualitatively pre-
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dicted except for the initial period.

Anotﬂer reason for the difference 1s considered to be the existence
of excess core flow area in the SCTF. In the SCTF, there is an additional
core flow area between the heater rod assemblies and the vessel walll41,
This is corresponding to the baffle region around the co;e: The flow area
of the rod assemblies is calculated to be 0.25 m2 (7. €. the same as in the
CCTF), while there is the additional flow area of 0.07 ~ 0.10 m2l4}) in the
SCTF. That is, in the SCTF, the effective core flow area where water can
accumulate is 30 to 40 % larger than the real core flow area.

During the initial Acc injection period of reflooding, nearly the
single phase water accumulates in the core and the core differential pres-
sure increases rapidly. 1In this situation, core differential pressure is
expected to be smaller in the SCTF under the same core inlet mass flow
rate as for the CCTF because its effective core flow area is 1.3 ~ 1.4
times larger as mentioned above. In order to quantitatively investigate
this effect on the core differential pressure, two calculations were also
performed with the REFLA—lD code and the results are presented in Fig.
3.3(c). One is for Test C2-4. The other was obtained with the same core
inlet subcooling as for Test $3-9 and with taking account of the geometri-
cal effective core flow area (Z.e. 1.4 times larger) only during the Acc
period. That is, core flooding velocity was reduced by a factor of 1.4
during the Acc period. The results show that the characteristics observed
in Fig. 3.3(a) is qualitatively predicted including the initial period.
However, quantitative agreement in the later period is not enough in com-
parison with the difference of the measured values.

After the Acc period, the core is considered to be occupied with the
two—-phase mixture and its void fraction is determined mainly by steam
velocity there. 1In this situation, the effective core flow area is only
the area where steam can flow, being regardless of the geometrical value.
The larger effective core flow area is expected to result in lower core
void fraction due to its lower steam velocity (refer Wilson's correla-
tion[lo], for instance). If we take this effect into account, we may be
able to qualitatively explain the larger increasing rate of core differen-
tial pressure in the SCIF after the Acc period. Although the effective
core flow area where steam can flow is estimated to be only a little more
(Z.e. a few percent) than the real core Flow area in the SCTF Core-I1I

based on its design, some parametric calculations were performed with
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REFLA-1D in order to know the magnitude of the influence of the effective
core flow area on the core water accumulation characteristics. Figure
3.3(d) shows three of these results, <.€. results for the cases of the
original core flow area and the 1.2 and 1.4 times larger effective core
flow area. For the 1.4 times larger case, the effect éf core flow area is
much larger than the observed {see, Fig. 3.3(a)). For the 1.2 times
larger case, the difference observed in Fig. 3.3(a) is well predicted.
However, as mentioned. above, the effective core flow area is expected to
be a few percent at most and contradicts this value drawn from the cal-
culation.

Two-dimensional flow behavior in the wide SCTF core may also affect
the core differential pressure characteristics. That is, two-dimensional
water flow from the periphery to the center of the core may increase water
accumulation in the core. Furthermore, there may be an effect of flow
from the side wall region to the central region of the core. However,
they are not clarif%ed yet and the quantitative investigation is not pos-—
sible. Therefore, although the effects of the core inlet subcooling and
the effective core flow area during the Acc period have been clarified at
present, further investigation is necessary.

Figure 3.4 shows comparison of the quench front envelope for the
heater rods with nearly identical average linear power density, Z.€. 1.652
kW/m for SCTF vs. 1.674 kW/m for CCIF. This figure shows that the overall
core cooling is close to each other. Comparisons of heater rod surface
temperature and corresponding heat ﬁransfer coefficient are presented in
Figs. 3.5 and 3.6, respectively. The data for the present test are taken
at 2.33 m elevation and linear power density there is 2.17 kW/m, whereas
those for Test C2-4 are taken at 2.44 m elevation and linear power density
there is 2.12 kW/m. These data show that heat transfer for Test C2-4 is
larger during the initial 60 s, and it becomes identical te that for the
present test after that. The better heat transfer during the initial 60 s
in Test C2-4 is attributed to the larger initial core differential pres—
sure shown in Fig 3.3. Although quench times between the two tests are
very close in these tests, 1t should be noted that the elevation is dif-
‘ferent and quench time at 2.33 m is earlier in Test C2~4 as shown in Fig.
3.4. According to the figure, quench time in Test C2-4 at 2.33 m is 386 s

and is earlier than that in the present test by about 35 s.
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3.3 Thermo-hydrodynamic Behavior in System

Figure 3.7 shows a comparison of the ﬁpper plenum pressure between
the present test and Test C2-4. Although the initial pressure is the
same, the pressure for the present test is lower by 0.025 ~ 0205 MPa
during the transient. This is attributed to the lower pressure drop
through the primary loop in the present test as presented in the follow-
ing.

Figures 3.8 and 3.9‘shpw comparisons of the pressure drop along the
intact cold leg and the broken cold leg at the pressure vessel side,
respectively. The upper plenum pressure is the summation of the contain-
ment pressure, the broken cold leg pressure drop and the intact cold leg
pressure drop. Figure 3.8 shows that the intact cold leg differential
pressure is lower by more than 0.02 MPa during the initial 50 s in the
present test. Figure 3.9 shows that the broken cold leg differential
pressure at the pressure vessel side is also lower by 0.0l ~ 0.03 MPa in
the present test. There are two reasons for these lowér differential
pressures in the present test. One is the smaller intact loop flow resis-
tance than a desired value. The other is that the single phase steam
flows through the broken cold leg instead of the two—phase flow.

As shown in Fig. 3.10, the intact loop mass flow rate is lower in the
present test. The reasons for this are considered to be the lower carry
over from the core and the steam/water separation in the steam/water
separator, which is used as a simulation of a steam generator in the SCTF.
In order to compensate this expected lower intact loop mass flow rate in
the SCTF, flow resistance of the intact loop is supposed to be adjusted
with a couple of orifices. However, as seen above, this adjustment was
not successful for the present test.

Figure 3.11 shows the downcomer water level and indicates the down~
comer water level in the present test is much lower than the overflow
level. This suggests that the single phase steam flowed through the
broken cold leg in the present test because there was no cold leg ECC
water injection. 1In Test C2-4, however, two-phase flow flowed through the
broken cold leg, and hence, resulted in the large pressure drop[ll] shown
in Fig. 3.9.

Although our main concern is in the core cooling behavior and the

system behavior 1s not focused in the present test, the upper plenum pres-
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sure is knownll2] to affect core cooling. That is, the higher is the up-
per plenum pressure, the better 1is the core cooling. Therefore, the core
cooling in the present test is expected to be better unéer the same upper

plenum pressure as in Test C2-4. .

3.4 Two-dimensional Behavior in Core

Tt has been pointed outl®] that the core heat transfer is enhanced in
the higher power regioﬁ.and degraded in the lower power region when there
is a radial power distribution in the wilde core. Figure 3.12 shows a com—
parison of the heat transfer coefficient plotted against distance from the
quench front for three different power bundles. Bundle 2 is the average
power bundle, Bundle 4 is the high power bundle and Bundle 8 is the low
power bundle. As shown in the figure, the heat transfer coefficient for
Bundle 8 is the lowest and that for Bundle 4 is the highest. This is ex-
actly the same characteristic as observed in other SCTF EXperiments[6I.

- Figure 3,13 shows a comparison of the core void fraction in Bundles
2, 3 and 8 in the section of 1.365 ~ 1.905 m. Although data for Bundles 2
and 4 are almost the same, those for Bundle 8 are different from them.
That is , Bundle 8 gives higher void fraction before 120 s, whereas it
gives lower void fraction after 120 s. According to Fig. 3.4, quench
front reaches 1.365 m elevation at about 120 s. Therefore, in Bundle 8§,
the void fraction is higher above the quench front, whereas lower below
the guench front. This characteristic of void fraction is also the sanme

as that observed in other SCIF tests[6].

3.5 Tie Plate Mass Flow Rate

There are four 'Flow Modules' at the tie plates in the SCTF Core-IILl.
Flow Module is an advanced instrumentation for two-phase flow and consists
of a drag body, a turbine flow meter, a DP-cell and a thermocouple. They
are provided by the USNRC based on the 2D/3D Agreement for the experimen-
tal coupling between the SCTF Cove—I1II and the UPTF. The same type of
Flow Modules are also imstalled at the tie plates in the UPTF. By using
Flow Modules we can measure the tie plate steam and water mass flow rates
separately. For the experimental coupling between the SCTF Core-III and
the UPTF, these tie plate mass flow rates of steam and water obtained in a

SCTF Core-ITI experiment are supposed to be used as the boundary condi-
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tions for steam and water mass flow rates at the tie plates of the UPTF.
Since ThepUPTF does not have the heated core but a core simulator, from
which steam and water are injected separately toward the upper plenum, the
realistic steam and water mass flow rates from the heated core, such as of
the SCTF, are necessary to determine its boundary conditiéns.

Although there are four Flow Modules in the SCTF Core-IIT and they
are distributed above Bundles 1, 4, 5 and 8, one above Bundle 1 has found
not to work well due to touch to the structure. Therefore, data from that
Flow Module are not presented in the following. Figures 3.14(a), (b) and
(c) show steam mass flow rates at the tie plates above Bundles 4, 5 and 8,
respectively. As recognized from these data, the steam mass flow rate is
higher above the lower power region, i.e., Bundle 8. The data aﬁove Bundle
8 give 0.5 ~ 0.6 kg/s, whereas around 0.4 kg/s above Bundle 4. Figures
3.15(a), (b) and (c) show water mass flow rates at tie plates above

Bundles 4, 5 and 8, respectively. They all show water mass flow rate of

nearly zero.
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4, Conclusions

Analyzing data of Test $3-9 together with those of Test C2-4 and other

<

SCTF tests, the following conclusions are obtained. .

(1) Test 53-9 was successfully completed under an EM condition. The tie
plate mass flow rate data were obtained and can be used for an ex—
perimental coupling with the UPTF.

(2) The overall core cocling behavior observed in Test 53-9 was nearly the
same as that observed in GCTF Test C2-4.

{3) However, the core differential pressure characteristic observed in
Test 53-9 was somewhat different from that observed in Test C2-4.
Main reasons for the difference are almost explained to be different
core inlet watef subcooling between the two tests and the different
effective core flow area between two facilities.

(4) The core two-dimensional behavior observed in Test S3-9 had the same

characteristic as,observed in the other tests with the SCTF Core-II.
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Appendix A

Description of SCTF Core-Il1
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A.1 Test Facility

The overall schematic diagram of SCTF is shown in Fig. A-1. The
principal dimensions of the facility is shown in Table A-l, and the
comparison of dimensions between SCIF and the reference PWR is shown

in Fig. A-2.

A.1.1 Pressure Vessel

The pressure vessel is of slab geometry as shown in Fig.

A-3. The height of the components in the pressure vessel is almost
the same as the reference reactor's, and the flow area and the
fluid volume of each component are scaled down based on the nominal
core flow area scaling, 1/21.

The core consists of 8 bundles arranged in a row and each bundle
includes heater rods and non-heated rods with 16%16 array. The core
is enveloped by the honeycomb thermal insulator which is attached on
the back surface of core wall plate.

The downcomer is located at one end of the pressure vessel which
corresponds to the periphery of the actual reactor pressure vessel.
The core baffle region located between the core and the downcomer is
isolated for Core-III to minimize uncertainty in actual core flow.
The cross sections of the pressure ﬁessel at the upper head, upper

plenum, core and lower plenum are shown in Fig. A-4.

A.1.2 Interface between Core and Upper Plenum

The interface between the core and the upper plenum consists of
upper core support plate (UCSP), end box and various structures in the
end box such as control rod spider which is paired with the control rod
guid assembly (CRGA) and its support column bottom and special baffle
plate spider which is paired with the hold-down bridge. These
structures are exactly the same as those for a German PWR except some
minor modifications.

Figure A-5 shows arrangement of the UCSP, the end box and the top

grid spacer. The configuration of the end box is shown in Fig. A-6,
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Detail of the end boxes with drag transducer device and other
internals is shown in Fig. A-7. —The UCSP shown in Fig. A-8 has two
kinds of holes, i.e., the square holes correspond to the end boxes
with control rod spider and the circular holes correspond to the end

boxes with special baffle plate spider.

A.1.3 Upper Plenum and Upper Head

The vertical and horizontal cross sections of the upper plenum
are shown in Figs. A-9 and A-4, respectively. In the SCTF Core-III,
the slab cut of the upper plenum of a German (KWU) PWR is similated.
The splitted and staggered arrangement of the CRGA support columns
was chosen to make good simulation of horizontal flow in the upper
plenum.

As shown in Fig. A-10, there are three kinds of CRGA support
column. Support column-1 is installed above Bundles 3 and 5 and
connected to the CRGA support column bottom with the transition cone.
Cross section of the CRGA support calumn changes from a circle to a
half circle in this transition cone. Support column 2 is installed
above Bundles 6 and 7 and the bottom is closed with the half coﬁical
bottom seal plate with many flow holes. Support column 3 is
essentially the same as support column 2 but the edge of one side is
cut off in order to install above Bundle 1. Each CRGA support
column has ten or eleven baffle plates with flow holes. Top flow
paths to the upper head bottom and to the upper plenun top are also
provided.

Figure A-11 shows vertical cross section of the bottom part of
the upper plenum and the interface between the core and the upper
plenum. There are eight side flow -injection nozzles and eight side
flow extraction nozzles just at the opposite side of the uppér plenum
bottom, corresponding to each bundle.

The upper plenum is separated from the upper head by an upper sup-
port plate. Four top injection nozzles penetrate the upper head .and open
the top of upper plenum as shown in Fig. A-12, Outlet part -of the top
injection nozzle has a rectangular cross section and double mesh

screen with 45 degree cross angle is attached at the mouth.
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A.1.4 Simulated Core

The simulated core for the SCTF Core-III consists of 8 heater rod
bundles arranged in a row. Each bundle has 236 electrically heated
rods and 20 non-heated rods. The arrangement of rods in a bundle is
shown in Fig, A-13. The dimensions of the heater rods are based on
15x15 fuel rods bundle for a PWR and the heated length and the ocuter
diameter of each heater rod are 3.613 m and 10.7 mm, respectiﬁely.

A heater rod consists of a nichrome heater element, boron nitride (BN)
or magnesium oxide (Mg0) depending on eleﬁation in the heated zone

and Nichrofer 7216 {equivalent to Inconel 600) sheath. The sheath
thickness is about 1.0 mm and is thicker than the actual fuel cladding
because of the requirements for thermocouple installation. The
heater element is a helical coil and has a 17 step chopped cosine
axial power profile as shown in Fig. A-14. The peaking factor is 1l.4.

Non-heated rods are either pipes or solid rods of stainless
steel with 13.8 mm 0.D. The heater rods and non-heated rods are
fixed at the top of the core allowing downward expansion. In Fig.
A-15, relative elevation of rods and spacers is shown.

For better simulation of flow resistance in the lower plenum, the
similated fuel rods end in the lower plenum and do not penetrate

through the bottom plate of the lower plenum as shown in Fig. A-15.

A.1.,5 Primary Loops

Primary loops consist of a hot leg equivalent to four hot legs in
area, a steam/water separator for simulating single steam phase flow
downstream of the steam generator and for measuring flow rate of carry
over water, an intact cold leg equivalent to three intact loops, a
broken cold leg on the pressure ﬁessel side and a broken cold leg on
the steam/water separator side. These two broken cold legs are
connected to two containment tanks through break valves, respectively.
The arrangement of the primary loops is shown in Fig. A~16. The flow
area of each loop is scaled down based on the core flow area scaling,
1/21. It should be emphasized that the cross section of the hot leg
is an elongated circle with an actual height to realize proper flow
pattern in the hot leg. The steam/water separator has a steam

generator inlet plenum similator to correctly simulate the flow
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characteristics of carryover water into the U-tubes. The cross
section of the hot leg and the configuration of the steam genrator
inlet plenum‘simulator are shown in Fig. A-l7.

A pump simulator and a loop seal part are provided for the intact,
cold leg. The arangement of the intact cold leg is shown in Fig. A-18.
The pump simulator consists of the casing and duct simlators and an
orifice plate as shown in Fig. A-19. The loop resistance is adjusted
with the orifice plates attached to the-intact cold leg, the steam/
water separator side and pressure vessel side broken cold legs and

the pump simulator.

A.1.6 ECC Water Injection System

Three kinds of ECCSs are proﬁided, i.e., the accumlator injection
system (Acc), low pressure coolant injection system (LPCI) and
combined injection system. Available injection locations for the
former two are the intact and broken cold legs, the hot leg, the lower
plenum and the downcomer. On the other hand, those for the last one
are the top and bottom-side of the upper plenum and the intact and

broken cold legs.

A.1.7 Containment Tanks and Auxiliary System

Two containment tanks are provided to SCTF. - The containment
tank-I is connected with the downcomer through the pressure Qessel
side broken cold leg and the containment tank-II is connected with
the steam/water separator through the steam/water separator side
broken cold leg. Especially in the containment tank-I, carryover
water from the downcomer is measured by the differentiation of the
liquid 1e§el. These containment tanks and auxiliary system such as
a pressurizer for injecting water from the Acc tanks, etc., are shared

with CCTF.
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A.2 Instrumentation

The instrumentation in SCTF has been provided both by JAERI and
USNRC. The JAERI-provided instrumentation includes the measurement of
temperatures, pressures, differential pressures, liquid levels, flow
velocities, and heating powers. USNRC has provided film probes,
impedance probes, string probes, liquid level detectors (LLDs), fluid
distribution grids (FDGs), turbine meters, drag disks, densitometers,
spool pieces, drag bodies, break through detectors and video optical
probes. Locations of the JAERI-provided instruments are shown in

Figs. A-20 through A-43.
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Table A-1 Principal Dimensions of the SCTF

1. Core Dimension

(1) Quantity of Bundle 8 Bundles

(2) Bundle Array 1 x8

(3) Bundle Pitch 230 mm

(4) Rod Array in a Bundle 16 x 16

(5) Rod Pitch in a Bundle 14.3 mm

(6) Quantity of Heater Red in a ﬁundle 236 rods

(7) Quantity of Non-Heated Rod in a Bundle .20 rods

(8) Total Quantity of Heater Rods 236%8=1,888 rods
(9) Total Quantity of Non-Heated Rods 20%x8=160 rods
(10) Effective Heated Length of Heater Rod 3613 mm

(11) Diameter of Heater Rod 10.7 mm

(12) Diameter of Non-Heated Rod 13.8 mm

2. Flow Area & Fluid Volume

(1) Core Flow Area 0.25 m?
(2) Core Fluid Volume 0.903 m®
(3) Baffle Region Flow Area (isclated) (0.096) m?
(4) Baffle Region Fluid Volume (nominal) 0.355 m®
(5) Cross-Sectional Area of Core Additional 0.07 o2
Fluid Volumes Including Gap between "
Core Barrel and Pressure Vessel Wall and 0.10 )
Yarious Penetration Heles :
(6) Downcomer Flow Area 0.158 n?
(7) Upper Annulus Flow Area 0.158 m?
(8) Upper Plenum Horizontal Flow Area (max.) 0.541 m?
(9) Upper Plenum Vertical Flow Area 0.525 m?
(10) Upper Plenum Fluid Volume 1.156 n?
(11) Upper Head Fluid Volume 0.86 n?
(12) Lower Plenum Fluid Volume (excluding below 3
1.305 o
downcomer)
(13) Steam Generator Inlet Plenum Simulator 2
0.626 m
Flow Area
(14) Steam Generator Inlet Plenum Simulator 3
. 0.931 m
Fluid Volume
{15) Steam Water Separator Fluid Veclume 5.3 m?
(16) Flow Area at the Top Plate of Steam 0.195 2
Generator Inlet Plenum Simulator ) o
{17} Hot Leg Flow ATea 0.0826 m®



(18)

(19)

(20)
(21)
(22)

JAERI-M 90—045
Table A-1 (continue)

Intact Cold Leg Flow Area

{(Diameter = 297.9 mm)

Inverted U-Tube with 0.0314 m? Cross-
Sectional Area (Diameter = 200 mm) and
10 m Height from the Top of Steam
Generator Inlet Plenum Simulator Can
Be Added As an Option.

Broken Cold Leg Flow Area
{Diameter = 151.0 mm)

Containment Tank~I Fluid Volume
Containment Tank-II Fluid Volume

Flow Area of Exhausted Steam Line from
Containment Tank-II to the Atmosphere

Elevation & Height

(1)

(2)
(3)

(4)

(5)
(6)
7
(8)
(9)

(10)
(11}
(12}
(13)

(14)
(15)
(16)
(17)

Top Surface of Upper Core Support Plate
(UCSP)

Bottom Surface of UCSP

Top of the Effective Heated Length of
Heater Rod

Bottom of the Effective Heated Length of
Heater Rod

Bottom of the Skirt in the Lower Plenum
Bottom of Intact Cold Leg

Bottom of Hot Leg

Top of Upper Plenum

Bottom of Steam Generator Inlet Plenum
Simulator

Centerline of Loop Seal Bettom
Bottom Surface of End Box
Tep of Upper Annulus of Downcomer

Height of Steam Generator Imnlet
Plenum Simulator

Height of Loop Seal
Inner Height of Hot lLeg Pipe
Bottem of Lower Plenum

Top of Upper Head

2

0.0697 m
0.0197 m?
30 n®
50 n?

see Fig. 3-63

0 ™m
- 40 mm
- 444 mm
-4,057 mm
-5,270 mm
+ 724 T
+1,050 mm
+2,200 mm
+1,933 mm
~2,281 mm
- 263 om
+2,234 mm
1,585 mm
3,140 mm
737 mm
~5,772 ®m
42,887 mm
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Fig. A-27 Thermocouple Locations of Fluid Temperature Measurements
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