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In order to study the reflood behavior with low initial clad
temperature, a reflood test was performed using the Slab Core Test Facility
(SCTF) with initial clad temperature of 373 K. The initial clad temperature
of the test(573 X) was determined based on the best-estimate calculated
result (550 K) with TRAC code for a PWR. The test conditions of the test are
identical with those of SCTF base case test S2-SHl1(initial clad temperature
1073 K) except the initial clad.temperature.. Through the comparison of
results from these two tests, the following conclusions were obtained.

(1) The low initial clad temperature resulted In the low differential
pressures through the primary loops due to smaller steam generation

in the core.

(2) The low initial clad temperature caused the accumulated mass in the
core to be increased and the accumulated mass in the downcomer to he

decreased in the period of the lower plenum injection with accumulator
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(before 50s). In the later period of the cold leg injection with LPCI
(after 100s), the water accumulation rates in the core and the
downcomer were almost the same between both tests.

The low initial clad temperature resulted in the increase of the core
inlet mass flow rate in the lower plenum injection peried. However,
the core inlet mass flow rate was almost the same regardless of the
initial clad temperature in the later period of the cold leg
injection period because the core inlet mass flow rate is limited
mainly by the ECC water injection rate into the cold leg in the SCTF.
The low initial clad temperature resulted in the low turnaround
temperature, high temperature rise and fast bottom quench front
propagation.

In the region apart from the quench front, low initial clad
temperature resulted in the lower heat transfer. 1In the region near
the quench front, almost the same heat transfer coefficient was
observed between both tests.

No flow oscillation with a long period was observed in the SCTF test
with low initial clad temperature of 573 X, while it was remarkable
in the Cylindrical Core Test Facility (CCTF) test which was performed
with the same initial clad temperature. It is considered that no flow
oscillation is induced in the SCTF because the SCIF has no active

steam generator while the CCTF has active steam generators.

Keywords : Reactor Safety, PWR, Reflood, SCTF, Heat Transfer, Two Phase

Flow
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Nomenclature

cross sectional area (mz),

specific heat of water (J/{(kgK)),

acceleration of gravity (m/sz),

latent heat for condensation of steam (J/kg),

flow resistance coefficient,

accumulated masé (kg),

mass flow rate (kg/s),

mass flow rate through the broken cold leg

of pressure vessel side (kg/s),

total condensation rate in cold legs and downcomer (kg/s),
ECC water.injection rate into intact cold leg (kg/s),.
mass flow rate through the intact cold leg (kg/s),
ECC water temperature (K},

saturation temperature (K),

superficial steam velocity (=mg/pgA) {m/s),
differential pressure (Pa),

steam density at upper plenum (kg/mB).
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1., Introduction

A reflood test program using large scale test facilities is being con-—
ducted at Japan Atomic Energy Research Institute (JAERI)(l). The facilities
are the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility
(SCTF). This report describes the test results from the SCIF Test S2-09
(Run 614).

In previous reflood tests with CCIF and SCTF, most of the tests were
performed with relatively high initial clad temperature {(nominally 1073 K)
because those tests were based on the results from a licensimg calculation of
a PWR. Recently, a best estimate calculation was performed with TRAC
(Transient Reactor Analysis Code) at Los Alamos National Laboratory for a
double ended, cold leg break loss-of-coolant accident (LOCA) of a typical
Westinghouse PWR(z). In the calculation, the peak clad temperature was about
550 K at reflood initiation under most probable conditions. The best-estimate
calculation suggests the possibility that the initial clad temperature assumed
in the licensing caléulation is unrealistically high compared to that in a
PWR-LOCA. The calculation also suggestes that the data base with leow initial
clad temperature is important to understand the reflood phenomena as well as
that with high initial clad temperature.

Test S2-09 (Run 614) was conducted to investigate the thermal hydraulic
behavior during the reflood phase in the case of low initial clad temperature.
Tn Test $2-09 (Run 614), the peak clad temperature at reflood initiation was
set at 573 K instead of 1073 K for the base case test Test 52-SHI (Run 604)
in SCTF Core-II test series in order to simulate the calculated results for a
PWR LOCA with TRAC code. The other test conditions of Test $2-09 (Run 614)
were the same as those of the base case test in order to study the effect of
the initial clad temperature.

Presented in Appendix A are a brief description of SCIF Core-1l and cal-
culation methods of mass balance, steam generation rate and additional

horizontal differential pressures. Some selected data obtained in Test $2-09

are presented in Appendix B,
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2. Test Description

2.1 Test Facility

(3), 4y

Figure 1 shows schematic diagram of the SCTF The primary coolant
loops consist of a hot leg equivalent to the actual hot legs, a steam-water
separator corresponding to the steam generator, an intact cold leg equivalent
to the three intact cold legs, a broken cold leg of the pressure vessel side
and a broken cold leg of the steam-water separator side. These two broken
cold legs are connected to two containment tanks of which pressure is control-
led by exhausting steam to the atmosphere.

The flow area scaling ratio of the primary loops is 1/21 to a 1,100 MWe
PWR. The flow areas of the hot leg, the intact cold leg and the broken cold
leg are 0.0826, 0.0697 and, 0.0179 m?, respectively. In the SCTF, the verti-
cal dimensions of the hot leg and cold legs are designed to be the same as
those of a PWR in order to properly simulate the flow behavior affected by
the gravity force; sucﬂ as the water carry-over through the hot leg. The flow
resistance coefficients through the primary loops are adjusted by orifice
plates in the primary loops. In the tests described in this report, orifice
diameters are 86.4, 179.9 and 173.3 mm for the broken cold leg of the steam-
water separator side, the intact cold and the pump simulator of the intact
loop, respectively. No orifice plate is inserted in the broken cold leg of
the pressure vessel side.

The emergency core cooling system (ECCS) of the SCTF consists of an
accumulator (Acc) and a low pressure coolant injection (LPCI) systems.
Figure 2 shows the vertical cross section of the pressure vessel which
includes a simulated core, an upper plenum, a lower plenum, a core baffle and
a downcomer. The simulated core consists of eight bundles arranged in a row,
simulating the :adial slab extracted from a PWR core with full height, full
radius and one bundle width. In Fig. 2, Bundle 1 corresponds to the central
bundle and Bundle 8 to the peripheral bundle in the actual PWR core, respec-
tively. Fach bundle consists of 234 heater rods and 22 non-heated rods
arranged in 16 X 16 array. The pitch, the outer diameter and the heated
length of heater rods are 14.3 mm, 10.7 mm and 3.66 m, respectively. These
dimensions are identical with those for a 15% 15 fuel rod assembly in a
Westinghouse type PWR. Each heater rod has a 17 step chopped cosine axial

power profile with a peaking factor of 1.40. The core and the upper plenum
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are enveloped by honeycomb thermal insulators to minimize the wall thermal

effect.—

More detailed information of the SCIF is summarized in Appenddix A.

2.2 Test Conditions

Figure 3 shows comparisons of measured ECC (Emergency Core Cooling) water
injection rate and water temperature at the lower plenum and the intact cold

(5)

leg between Tests S5Z2-5H1 and $2-09. The location of the water injection is
switched from the lower plenum to the intact cold leg at 55 s in both tests.
Figure 4 shows comparison of total power supplied to the heater rods in the
core. The core power is maintained constant for 40 s after the reflood
initiation and then it is decayed following the decay curve type of ((ANS +
Actinide) *1.02 (40 s after scram)). Figure 5 shows comparison of the
pressure in the containment tank I between botﬁ tests. The pressure in Test
§2-09 is slightly lower (by about 0.01 MPa) than that in Test S2-SH1 during
the test. Figure 6 ghows comparison of clad surface temperatures between
Tests S2-SH1 and $2-09 at the reflood initiation. The maximum clad tempera-
tures are 591 and 1076 K in Tests S2-09 and $2-SH1, respectively. The initial
stored energy based on the saturation temperature for the system pressure is
about 6.8 times in Test S2-SH1 compared to that in Test 52-09.

Table 1 summarizes major test conditions of Tests S52-SH1 and S52-09.
Except the initial clad temperature, the test conditions are almost the same

in these two tests. In this report, Test S$2-SH1 will be called "high tem-

perature test'". Test $2-09 will be called "low temperature test”,
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3. Results and Discussion

3.1 Effect of Initial Clad Temperature on Flow Behavior through Primary Loops

Figure 7 shows comparisons of differential pressure along the primary
loops between high and low temperature tests. In both tests, the differential
pressure through each section of the primary loop increases with time in the
lower plenum injection period (0<t<55s}. After 100 s, the differential pre-
ssures through the intact and broken cold legs decrease with time in both
tests. The differential pressures from low temperature test is lower than
those from high temperature test in both lower-plenum and cold-]leg injection
periods.

Figure 8 shows comparisons of mass flow rate through each section of the
primary loops (the intact cold leg, the broken cold leg of steam-water separa-
tor side, the broken cold leg of pressure vessel side and the exhaust line
from the containment tank II to the atmosphere) between high and low tempe-
rature tests. Table 2 s;mmarizes the calculated flow resistance coefficient
at 100 and 300 s. In high temperature test, the flowmeter at the intact cold
leg was failed to measure the mass flow rate due to zero shift of the sensor,

For the mass flow rate through the intact cold leg in high temperature test,

an estimation was made with the following relations;

mrer T PpeL T c | )
0 (in lower plenum injection period)

B
I

Cp1(Tsat - Tgce) MECC (2)
he (in cold leg injection period)

g

In the relation mentioned above, the following assumptions were included.

(1) No condensation or evaporation occurs in the lower plenum injection
period.

(2) In the cold leg injection period, complete mixing of steam with injected
water is established in the intact cold leg and then thermal equilibrium
is attained in the region.

The discrepancy of the mass flow rate through the intact cold leg between the

measured and estimated results was T 0.5 kg/s at most in low temperature test,

Tt was £ 0.2 kg/s after 100 s in low temperature test. It is considered that

the estimated mass flow rate is reasonable except in the short period fellowing
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the switch of the ECC water injection location from the lower plenum to the
intact—cold leg.

The mass flow rates through each section of the primary loops show the
maximum rates at about the time when the ECC water injection location is
switched from the lower plenum to the intact cold leg in both tests. The mass
flow rate in low temperature test is lower than that in high temperature test
through each section of the primary loops.

The calculated flow resistance coefficients are about the same between
both tests. The result shows that the lower differential pressure through
the primary loops in low temperature test are attributed mainly to the lower
mass flow rate through the primary loops compared to high temperature test.

The steam through primary loops is generated in the core due to the heat
transfer between heater rods and fluid. The initial stored energy is about
6.8 times in high temperature test compared to that in low temperature test
at reflood initiation. It Is supposed that the steam generation rate is
different between high and low temperature tests. Figure 9 shows the cmo-
parisons of the steaﬁ generation rate in each bundle of the core. The gene-
ration rate was calculated based on the energy balance relation in the core
{see Appendix A). Figure 10 shows the comparison of the total steam gene-
ration rate in eight bundles between the measured and calculated results.

The estimation method based on the core energy balance is considered to be
reasonable because the error of the calculated steam generation rate is
estimated to be T 15%. Figure 9 shows that the steam generation rate is lower
in low temperature test than that in high temperature test. This result con-
firms that the lower mass flow rates through the primary loops in low tem-
perature test is due to lower steam generation rate in the core compared to
that in high temperature test.

In Fig. 9, the equivalent steam generation rate to the supplied power is
also shown. Because the supplied power is almost the same between both tests,
the equivalent steam generation rate is also almost the same between both
tests. The discrepancy between the equivalent steam generation rate to the
supplied power and the steam generation rate by the energy balance calculation
indicates the net contribution of the released energy from the heater rods
beside the supplied power to the steam generation. Figure 9 confirms that
the net contribution of the release of the stored energy from the heater rods
is smaller in low temperature test than that in high temperature test. For

example, at 200 s, the steam generation rates by the core energy balance
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calculation are higher by 36 % and 27 % than those from the supplied power in
high and low temperature tests respectively. Even though the initial stored
energy is 6.8 times in the high temperature tests compared to that of low
temperature test at reflood initiation, the contribution of the stored energy
is only 1.5 times that in low temperature test at 200 s. It is caused by
faster quench front propagation in low temperature test as will be discussed
later.

For the flow behavior through the primary loops, the low initial clad
temperature resulted in the low differential pressure and mass flow rates

through the primary loops due to the small steam generation rate in the core.
3.2 FEffect of Initial Clad Temperature on Flow Behavior in pressure Vessel

Figure 11 shows the differential pressures through the core and the
downcomer. The differential pressure through the core in low temperature test
is higher than that in high temperature test, while the differential pressure
through the downcomer of low temperature test is lower than that of high
temperature test. In the SCTF, the bottom of the broken cold leg is located
at the elevation of 4.777 m from the bottom of the core heated part. If the
downcomer is filled with the saturated water at 0.2 MPa to the level of the
broken cold leg, static water head through downcomer is calculated to be
44,2 kPa. The measured differential pressure is about 32 kPa at most.
Because the downcomer wall is not superheated in the SCTF tests. It is
expected that the downcomer is filled with solid water to some Tevel. 1In case
that the differential pressure is 32 kPa, the free surface of the solid water
is located at 1.32 m below the bottom of the broken cold leg. It is consid-
ered that the water overflow through the broken cold leg is small in the SCIF
tests.

If the friction loss and the acceleratioﬁ loss is negligible, the diff-
erential pressure can be related to the accumulated mass by the equation,

given by
M = A AP (3)
Table 3 shows the time-averaged water accumulation rate estimated with Eq.

(3). In the lower plenum injection period, the water accumulation rate in

the core of low temperature test is 1.42 times the rate of high temperature
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test. The rate in the downcomer of low temperature test is 0.82 times the
rate of high temperature test. In the lower plenum injection period, more
water accumulated in the core for the lower initial clad temperature test.

On the contrary, in the later period of the cold leg injection, the water

accumulation rates in the core and the downcomer are almost the same between .

both the tests.

Figure 12 shows comparisons of the core inlet mass flow rate and the
core inlet mass flow between high and low temperature tests. The core inlet
mass flow rate shown in Fig. 12 was calculated based on the mass balance
relation in the pressure vessel (see Appendix A). The core inlet mass flow
is the time-integrated one of the mass flow rate evaluated based on the mass
balance relatiom. The core inlet mass flow indicates the total mass through
the core inlet after the reflood initiation.

Table 4 summarizes the time-averaged core inlet mass flow rate. In the
lower plenum injection period (before 50 s}, the time-averaged core inlet
mass flow rates are 10,69 and 12.85 kg/s in high and low temperature tests,
regpectively. The ECé water injectien rate in the lower plenum is about
20.0 kg/s in both tests. Roughly speaking, about a half of the injected water
flows into the core and another half of the injected water flows into the
dowvncomer in the lower plenum injection period. In the lower injection
period, the time-averaged core inlet mass flow rate in low temperature test
is higher by 2.16 kg/s than that in high temperature test.

As shown in Table 3, the water accumulation rate in the core is 2.9 kg/s
higher in low temperature test than that of high temperature test in the lower
plenum injection period. Although the core inlet mass flow rate increased by
low initial clad temperature, the mass flow rate through the core outlet
decreased in the period by low initial clad temperature due to increase of
the water accumulation rate in the core.

After the switch of the ECC water injection location from the lower
plenun to the cold leg, the core inlet mass flow rate is decreased as shown
in Fig. 12. The reduction occurs more quickly in low temperature test than
in high temperature test. In the period between 50 and 100 s, the time-
averaged core inlet mass flow rete in low temperature test is lower than that
in high temperature test. Figure 11 shows that the differential pressure
through the downcomer is reduced in high temperature test right after the

switch of the ECC water injection location. It seems that some amount of
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accumulated water in downcomer was supplied to the core right after switching.

After 100 s, the core inlet mass flow rate is almost the same between
both the tests as shown in Fig. 12. The time-averaged core inlet mass flow
rates between 100 and 300 s are 4.98 and 5.22 kg/s in high and low tempera-
ture tests, respectively. The core inlet mass flow rate is almost identical
with the ECC water injection rate into the cocld leg (that is, 5.1 kg/s).

The core inlet mass flow rate is limited mainly by the ECC water injection
rate into the cold leg in the SCTF. Even though the SCTF tests were performed
under the gravity feed condition, the core inlet mass flow rate is not cont-
rolled by the feedback effect of the generated steam in the core in the later
period of the cold leg injection. It is important to adjust the ECC injection
rate carefully in order to simulate the flow conditions of actual PWRs
properly.

The ECC injection rates of the SCTF Tests S2-SHl and $2-09 were adjusted
in order to establish the same core inlet mass flow rate as in the CCTF base
case test, that was conducted with a high initial clad temperature of 1073 K.
One can expect that thé core inlet mass flow rate in the Test 82~SH1 is rea-
sonable for the simulation of flow conditions in actual PWRs with a high
initial clad temperature. In the SCTF Test $2-09, the same ECC injection rate
as the SCTF $2-SH1 was applied although the initial clad temperature was
different between two tests. It should be noted that there is a possibility
that the core inlet mass flow rate is strongly affected by the initial clad
temperature due to the system feedback effect in actual PWRs. Although the
SCTF Test S$2-09 was performed under the gravity feedback condition, the test
should be treated as a parametric test for the initial clad temperature
without system feedback effect as in the so-called forced feed test.

Figure 13 shows the comparisons of the axial core differential pressures
along Bundle 4 of the core. In the period right after the reflood initiation
(before 20 s), the lower initial clad temperature resulted in the lower core
differential pressure in the region above 0.700 m from the bottom of the core
heated part. Tt is supposed that the fluid swell is less significant in low
temperature test because of less steam generation in the period right after
the reflood initiation. In the later period of the tests, the core differ-
ential pressure of each section increases as the quench front propagates the
section in both tests. Because the quench front propagates faster in low
temperature test than in high temperature test, the differential pressure of

each section is higher in low temperature test than that in high temperature
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test. After the whole part of the section is quenched, the differential
pressure through the section is nearly the same between both the tests. The
low initial clad temperature causes the water accumulation rate in the core

to be increased because of the fast propagation of the quench front,
3.3 Effect of Initial Clad Temperature on Core Cooling Behavior

Figure 14 shows comparisons of the clad surface temperature between high
and low temperature tests at the elevations of 1.735 and 2.330 m from the
bottom of the core heated part in Bundles 4 and 8, respectively. The lower
initial clad temperature resulted in the lower turnaround temperature and
the faster guench at the elevations of 1.735 and 2.330 m. The turnaround
temperature in low temperature test is lower at other elevations than that
in high temperature test, as shown in Fig. 15. TFigure 16 indicates the tem-
perature rises along the Bundle 4. The temperature rise is defined as the
difference of the temperatures between the turnaround and the reflood initia-
tion. The lower initiél clad temperature resulted in the higher temperature
rise except the top part of core (above 2.76 m). Figure 17 shows the com-
parisons of the quench times and temperatures between high and low temperature
tests in Bundles 4 and 8. The lower initial clad temperature resulted in the
faster guench propagation, especially in the lower part of the core.

Figure 18 shows heat transfer coefficients at the elevations of 1.735,
1.905 and 2.330 m from the bottom of the core heated part in Bundles 4 and 8.
The heat transfer coefficients in low temperature test are higher than those
in high temperature test at every elevation. The lower initial clad tempera-
ture resulted in the higher core heat transfer coefficient. In high tempera-
ture test, the heat transfer coefficient in Bundle 4 is higher than that in
Bundle 8 except the point right before the quench ocecurs at each elevation.
Similar relation can be observed between the heat transfer coefficients of
Bundles 4 and 8 at the elevation of 2.330 m in low temperature test. At the
elevations of 1,735 and 1.905 m in low temperature test, the dependency of
the heat transfer coefficients on the bundle location looks similar to that
in low temperature test, although it is not so clear as that at the elevation
of 2,330 m.

Figure 19 shows the heat transfer coefficients at the elevation of

1.905 m in terms of the distance from the quench front. When the ECC water
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injection location was switched from the lower plenum to the cold leg, the
quench front located at 0.63, 0.59, 0.61 and 0.65 m from the bottom of the
core heated part in Bundles 2, 4, 6 and 8 in high temperature test, respec-—
tively. Those located at 1.26, 1.16, 1.23 and 1.30 m in Bundles 2, 4, 6 and

8 in low temperature test, respectively. 1In the region apart from the quench
front, the heat transfer coefficient from high temperature test is higher than
that from the low temperature test., It is supposed that the higher heat
transfer coefficient in higher temperature test is caused by the increase of
the water carry-over. In the region near the quench front (less than 30-40 cm
from the gquench fronth), almost the same heat transfer coefficient 1s observed

between both tests.

3.4 Comparison with CCTF Results

In order to study the thermal hydraulic behavior with low initial clad
temperature, a test was Fonducted using the CCTF(6). The SCTF and CCTF
results are compared to get better understanding of the SCTF results.

Figure 20 shows the core inlet mass flow rate from the SCTF and CCTF tests
which were performed with the initial clad surface temperature of 573 K. In
the SCTF test (low temperature test: Test $2-09), no significant oscillation
can be observed, while oscillation with a long period is remarkable in the
CCTF tests. In the reference (6), the flow oscillation in the CCTF test is
attributed to the system coupling effect among the water accumulation in the
upper plenum, the water carry-over from the upper plenum to the steam genera-
tor and the steam generation at the steam generator, In the mechanism of the
flow oscillation described in the reference, the steam generation due to the
evaporation of the carried water at the steam generator is one of the key
causes of the flow oscillation because it can push the water in the upper
plenum beck to the core due to the increased loop differential pressure.
Because no active steam generator is installed in the SCTF, such a feedback
effect from the steam generation at the steam generator can not exist in the
SCTF. It is considered that no flow oscillation is observed in the SCTF
Test 52-09 because the SCTF has no active steam generator.

"Figure 21 shows the temperature rise at the central part of the core,
In the SCTF tests, the temperature rise of the low temperature test is higher

than that of the high temperature test. On the other hand, in the CCTF tests,
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the temperature rise is lower in the test with initial clad temperature of
373 K than those in the tests with higher initial clad temperature. The
dependency of the temperature rise on the initial clad temperature in the
SCTF test is the same as those in the previous tests performed under the
forced feed test such as the FLECHT test., As previously mentioned, the core .
inlet mass flow rate is controlled mainly by the ECC injection rate in the
SCTF gravity tests. Therefore, the core inlet mass flow rate was weakly
affected by the initial clad temperature in the SCIF gravity feed test as
well as the so-called forced feed test. 1In the CCTF tests, the low initial
clad temperature resulted in the increase of the core inlet mass flow rate
and caused the temperature rise to be decreased in the test with a low
initial clad temperature of 573 K. In actual PWRs, such a system effect as
in the CCTF test cah be expected. It is considered that the temperature rise
in actual PWRs with low initial clad temperature of 573 K should be smaller
than that in the SCTF test because of the increased core inlet mass flow rate

arising from the system effect.
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4, Conclusions

In order to study the reflood behavior with low initial clad temperature,

a reflood test was performed using the Slab Core Test Facility (SCTF) with

initial clad temperature of 573 K. Through the comparison with results from

the test with initial clad temperature of 1073 K, the following conclusions
were obtained.

(1) The low initial clad temperature resulted in the low differential pressures
through the primary loops due to smaller steam generation in the core.

(2) The low initial clad temperature caused the accumulated mass in the core
to be increased and the accumulated mass in the downcomer to be decreased
in the period of the lower plenum injection with accumulator (before 50s).
Tn the later period of the cold leg injection with LPCI (after 100s), the
water accumulation rates in the core and the downcomer were almost the
same between both tests,

{(3) The low initial cla? temperature resulted in the increase qf the core
inlet mass flow rate in the lower plenum injection period. However, the
core inlet mass flow rate was almost the same regardless of the initial
clad temperature in the later period of the cold leg injection period
because the core inlet mass flow rate is limited mainly by the ECC water
injection rate into the cold leg in the SCTF.

{(4) The low initial clad temperature resulted in the low turnaround tempera-
ture, high temperature rise and fast bottom quench front propagation.

(3) In the region apart from the quench front, low initial clad temperature
resulted in the lower heat transfer. In the region near the quench front,
almost the same heat transfer coefficient was observed between both tests.

(6) No flow oscillation with a long period was observed in the SCTF test with
low initial clad temperature of 573 K, while it was remarkable in the CCTF
test which was performed with the same initial clad temperature. It is
considered that no flow oscillation is induced in the SCTF because the
SCTF has no active steam generator while the CCTF has active steam

generators.
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Table 1 List of major test conditions

Test name High temperature Low temperature
Ttem {Test S$2-SH1) (Test S2-09)
Initial maximum
clad temperature (K) 1076 591
System pressure (MPa) 0.20 0.20
Initial average
core power (kW/m) 1.041 1.033

Radlal power
profile (=1)

1.001:1.063:1.013:0.923

1.005:1.059:1.017:0.919

Decay curve type (#2) (#2)

Injection rate

into lower plenum 20.0 19.3
(kg/s)

Duration time of

injection into 52.0 55.5

lower plenum (s)

Injectlon rate

into cold leg (kg/s) 5.3 5.4

ECC water

temperature (K) 351 351

{#1) Piz 1 Paa : Pss

: Prs
Pi; = (P, + P;}/2 where P,
(#2) (ANS + Actinide) x 1.02 (40 s after scram)

: radial peaking factor of i-th bundle
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Table 2 Comparisen of loop flow resistance coefficient

between high and low temperature tests

(a} Intact cold leg

Time
100 300
Test name
High temperature test 40 414
Low temperature test 45 45

(b) Broken cold leg of S/W separator side

Time
100 300
Test name
High temperature test 23 22
Low temperature test 22 25
(c) Broken cold leg of PV side
Time
100 300
Test name
High temperature test 5.3 5.0
Low temperature test 4.9 3.9




(1)

(2)

JAERI-M 90-106

Table 3 Water accumulation rates into core and downcomer

Tn lower plenum injection period ( 0 s <t <55 s )]

Test name High temperature Low temperature
test test
Location
Core 6.9 9.8
Downcomer 6.8 5.6

In cold leg injection period { 100 s < t < 300 s )

Test name High temperature LLow temperature
test test
Location
Core 0.85 0.85
Downcomer 0.19 0.20

Table ‘4 Comparison of time-averaged core inlet mass flow rate

between high and low temperature tests

Test name High temperature Low temperature
Period (s) test test
0 - 50 10.69 12.85
50 - 1060 7.95 6.43
100 - 300 4.98 5.22
Note
Lower plenum injectlon
Injection rate (kg/s): 20.0
Injectlon period (s) 0 - 55
Cold leg injection
Injection rate (kg/s): 5.1
Injection period (s) after 55
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Intact cold
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Hot leg Broken cold leg
J_S/W separator side
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Open 10
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|
Broken cold leg-PV side

(1) Pressure vessel (5) Valves

(2) Steam/water separator  (6) Flow resistance simulators
(3) Containment tanks

(4) Pump simulator

Fig. 1 Schematics of S5lab Core Test Facility (SCTF)
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Appendix A  Brlef Description of the Slab Core Test Facility(SCTF)

Al

Test Facility

The Slab Core Test Facility is designed under the fellowing design

philosophy and design criteria:

a.

(1

(2)

b.
(1)

(2)

(3)

(4)

(5)

Design Philosophy

The facility should provide the capability to study the two-
dimensional thermohydraulic behavior in a reactor pressure vessel
especially due to the radial power distribution during the end of
blowdown, refill and reflood pahses of a postulated LOCA in a PWR.
To properly simulate the core heat transfer and hydrodynamics, a
special emphasis is put on the proper simulation of the components
in the pressure vessel., Provided as the components in the pressure
vessel are the simulated core, downcomer, core baffle region, lower
plenum, upper plenum and upper head. On the other hand, simplified
primary coolant loops are also provided. Provided as the primary
coolant loop components are a hot leg, an intact celd leg, broken
cold legs and a steam/water separator which is to simulate single
steam phase flow downstream of a steam generator and to measure

the flow rate of carryover water coming from the upper plenumn.

Design Criteria

The reference reactor to be simulated in SCTF is the Trojan reactor
in the United States which is & four-loop 3300 MWt PWR. The Ooi
reactor etc. in Japan are also referred which are of the similar
type to the Trojan reactoT except the prevision of UHL system.

A full scale radial and axial section of core with single bundle
width of the pressurized water reactor is provided as the simulated
core of SCTF.

The simulated core consists of 8 bundles arranged in a row. Each
bundle has electrically heated rods simulating fuel rods and non-
heated rods with 16x16 array, with the diameter and the pitch for
Trojan which has 15x15 rod array.

The flow area and fluid volume of components are scaled down based
on the nominal core flow area scaling, 1/21.

To properly simulate the flow behavior of carryover water or

entrainment, the elevations of hot leg and cold legs are designed



(6)

(7)

(8)

(9

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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to be the same as the PWR as much as possible.

A honeycomb structure 1is used for side walls with surface plates
which accomodates the slab core, the upper plenum and the upper
part of lower plenum, sc as to minimize the effect of walls on the
core heat transfer and hydrodynamics.

To investigate the effect of flow resistance in the primary loop
are provided the orifices of which dimension is changeable.

The maximum allowable temperature of the simulated fuel rods is
900°C (1173 K} and the maximum allowable pressure of the facility
is 0.6 MPa,

The facility is equipped with the hot. leg equivalent to four hot
legs ccnnecting the upper plenum and the steam/water separator,
the intact cold leg equivalent to three intact celd legs connecting
the steam/water separator and the downcemer and the twec broken cold
legs, one is for the steam/water separator side and another for
the pressure vessel side.

The ECCS consists eof an accumulator (Acc), a low pressure coolant
injection (LPCI) system and a combined injection system.

ECC water injection ports are at the cold leg, the hot leg, the
upper plenum, the downcomer, the lower plenum and above the upper
core support plate. These ports are to be chosen according to the
objective of the test.

For better simulation of lower plenum flow resistance, simulated
fuel rods do nct penetrate through the bottom plate of the lower
plenum but terminate at below the bottom of the core.

For measurements in the pressure vessgel including core, the feature
of the slab geometry of the pressure vessel is utilized as much as
possible. Design and arrangement of the instruments are done so
as to be able to carry out installaticn, calibration and remowval
of the instruments.

View windows are provided where flow pattern recogniticn is impor-
tant. Their locations are the interface between the core and the
upper plenum, the hot leg, the pressure vessel side broken cold
leg and the downcomer.

Blocked bundle test is carried out in Core-I in order to investi-
gate the effect of ballooned fuel rods and unblocked normal bundle
test follows in the Core-IY and -TIT. _

Types of break simulated are cold leg break and hot leg break.
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(17) The components and systems such as the containment tanks and ECC
water supply system in CCTF are shared with SCTF to the maximum
extent.

The overall schematic diagram of SCTF is shown in Fig. A-l. The
principal dimensions of the facility is shown in Table A-l, and the

comparison of dimensions between SCTF and the reference PWR 1is shown

in Fig. A-2.

A.1.17 Pressure Vessel and Internals

The pressure vessel is of slab geometry as shown in Fig. A-3. The
height of the components in the pressure vessel is almost the same as
the reference reactor's, and the flow area and the fluid volume of each
component are scaled down based on the nominal core flow area scaling,
1/21.

The core consists of 8 bundles arranged in & row and each bundle
includes heater rods and non-heated rods.-with 16x16 array. The core is
enveloped by the honeycomb thermal insulator which is attached on the
back surface of ccre wall plate.

The downcomer is located at one end of the pressure vessel which
correspeonds to the periphery of the actual reactor pressure vessel.

The core baffle region located between the core and the downcomer is
basically isolated for Core-II to minimize uncertainty in actual core
flow. However, some leak holes are still existing. For better
understanding, the cross section of the pressure vessel at the elevation
of midplance of the core is shown in Fig. A-4.

The design of upper plenum internals is based on that for the new
Westinghouse 17x17 array fuel assemblies. The internals consist of
control rod guide tubes, support columns and orifice plates which are
attached to the upper core support plate (UCSP). The UCSP has some
open holes without internals. Those arrangement is shown in Fig. A-5.
The radius of each internal is scaled down based on the factor of 8/15
of an actual reactor. Baffle plates are inserted in the guide tubes.
The elevation and the configuraticn of baffle plates are shown in Figs.
A-6 and A-7.

The heights of the hot leg and cold legs are designed as close to
the reference PWR as possible. However, in order to avoid the inter-

ference of the nozzles in the downcomer, the heights of nozzles for the
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broken cold leg and the intact celd leg are shifted down compared to

that of the hot leg as shown in Fig. A-3.

A.1.2 Simulated Core

The simulated core for the SCTF Core-I1 consists of 8 heater rod
bundles arranged in a row. Each bundle has 234 electrically heated
rods and 22 non-heated rods. The dimensions of the heater rods are
based on 15x15 fuel rods bundle for a PWR and the heated length and the
outer diameter of each heater rod are 3.66 w and 10.7 mm, respectively.
A heater rod censists of a nichrome heater element, boron nitride (BN)
or magnesium oxide (Mgo).depending on elevation in the heated zone and
Nichrofer 7216 (equivalent to Inconel 600) sheath. The sheath thick-
ness is about 1.0 mm and is thicker than the actual fuel cladding
because of the requirements for thermocouple installation. The heater
element is a helical coil and has a 17 step chopped cosine axial power
profile as shown in Fig. A~8. The peaking factor is 1.4.

Non-heated rods are either pipes or solid rods of stainless steel
with 13.8 mm 0.D. The heater rods and non-heated rods are fixed at the
top of the core allowing downward expansion. In Fig. A-9, relative
elevaticen of rods and spacers is shown.

For better simulaticn of flow resistance in the lower plenum the
simulated fuel rods end in the lower plenum and do not penetrate through

the bottom plate of the lower plenum as shown in Fig. A-G.

A.1.3 Primary Loops and ECCS

Primary loops consist of a hot leg equivalent tb four hot legs in
area, a steam/water separator for simulating single steam phase flow
downstream of the steam generator and for measuring flow rate of carry
over water, an intact cold leg equivalent tc three intact loops, a
broken cold leg on the pressure vessel side and a broken cold leg on the
steam/water separator side. These two broken cold legs are connected
to two containment tanks through break valves, respectively. The
arrangement of the primary loops is shown in Fig. A-10. The flow area
of each locp is scaled down based on the core flow area scaling, 1/21.
It should be emphasized that the cross section of the hot leg is an
elongated circle with an actual height to realize proper flow pattern

in the hot leg. The steam/water separator has a steam generator inlet
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plenum simulator to correctly simulate the flow characteristics of
carryover water into the U-tubes. The cross section of the hot leg and
the configuration of the steam genrator inlet plenum simulator are
shown in Fig. A-11.

A pump simulator and a loop seal part are provided for the intact
cold leg. The arangement of the intact cold leg is shocwn in Fig. A-12.
The pump simulator consists of the casing and duct simulators and an
orifice plate as shown in Fig. A-13. The loop resistance is adjusted
with the orifice plates attached to the intact cold leg, the steam/
water separator side and pressure vessel side brcken cold legs and the
pump simulater.

ECCS consists of the Acc and an LPCI systems. Injection ports are
located as already described in the design criteria section. Besides,
the UCSP water extraction system and the UCSP water injection system

are provided for combined injection tests.

A.1.4 Containment Tanks and Auxiliary System

Two containment tanks are provided to SCTF. The containment
tank-I 1is connected with the downcomer through the pressure vessel side
broken cold leg and the containment tank-II is connected with the steam/
water separator through the steam/water separator side broken ccld leg.
Especially in the containment tank-I, carryover water from the downcomer
is measured by the differentiation of the liquid level. These ccntain-
ment tanks and auxiliary system such as a pressurizer for injecting

water from the Acc tanks, etc. are shared with CCTF.

A.2z Instrumentation

The instrumentation in SCTF has been provided both by JAERI and
USNRC. The JAERI-provided instrumentation includes the measurement of
temperatures, pressures, differential pressures, liﬁuid levels, flow
velocities, and heating powers. USNRC has provided film probes, imped-
ance probes, string probes, liquid level detectors (LLDs), fluid
distribution grids (FDGs), turbine meters, drag disks, densitecmeters,
spool pieces and video optical probes. Location of each instrument is

shown in Figs. A-14 through A-32.
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A.3 Mass Batance Calculation

The mass flew rate at the core inlet, ﬁ? shown in Fig. A-33, was
estimated by the mass balance in the SCTF system assuming the quasi-
steady state conditions. .The following mass accumulation rates in
various parts, ﬁK’ were estimated by the time differentiation of the

measured differential pressure APK:

d
EE’(APK) Sy

o |~

e =

where K = Ci ({core, 1 =1 ~ §),

Ui (upper plenum, i =1 ~ 8),

Ei (end box, i =1 ~ 8),

B (baffle region),

UB  (upper plenum above baffle regicn),
{lower plenum),
(downcomer) ,
(hot leg),

CI (containment tank-I) and

SW (steam/water separator).

The total steam flow rate generated in the core was estimated by
the sum of mass flow rates at intact cold leg, mI, and at broken cold
leg (steam/water separator side), ﬁBS’ measured by the ventury flow
meters assuming single-phase steam flow conditions, which was
confirmed by the differential pressure along the vertical direction in
those pipings. Condensation due to the subcooled ECC water at intact
cold leg was estimated by the difference between B and éIEI’ vhere

ﬁﬁjﬂ is the mass flow rate from the containment tank I to the
containment tank-II measured by the orifice flow meter,
The cocre inlet mass flow rate ﬁF can then be expressed considering

the upstream mass balance from the core Iinlet as

Mp T Mgy Mgy YWy T Wy 7MW T My T Hep

where mSL and ﬁSI are the supplied ECC water mass flow rate into the
lower plenum and the intact cold leg, respectively. The core inlet

mass flow rate can alsc be estimated comsidering the downstream mass

balance from the core inlet as
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where ﬁow is the overflowing water mass flow rate from the steam/water

separator.

A.4 Calculation Method ¢of Steam Generation Rate

The steam generation rate in the core was calculated with a heat
balance calculation code "STEAM'". The heat fiux at the surface of
heater rods was calculated with a heat transfer calculation code

”HEATT”(12>

developed for the SCTF test analvsis. The temperature
dependence of physical properties is considered but the axial heat
conduction 1s neglected in this code.
The following assumptions were made in the calculation,
(1) The heat flux from the heater rods is totally absorbed in the
fluid.
(2} The core inlet flow rate is equally divided into each of 8
bundles.
(3) The steam and water mixture is always saturated.

The core is divided intc 8 bundles and 10 elevations.

The steam generation rate in each of 80 cells is calculated by

- 1 I _ 1} -
8: oy g A T O AT (43-1)
where 1 = Bundle 1
b = elevation j
Sij = steam generation rate in this cell
g.. = heat flux
1]
A = 234?D'AHj (Heat transfer area)
D = heater rod diameter
AHj = height of this cell
m, = core inlet mass flow rate in Bundle i
Cpja = specific heat capacity of saturated water at the

pressure in the lower plenum {(PTO1ALL)
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1
ATsub
h

fg

= subcocling of core inlet water in Bundle i

]

latent heat of eveporation at the pressure in the

core center (PTOIDI1)

The core inlet mass flow rate is assumed to be equally distributed

in each bundle and given by

-1 -
mo=g W (A3-2)

where the win is the total core inlet mass flow rate obtained by the

mass balance calculation described in A.3.

The ATsib is obtained by using the following Data:
i . .
= - i -
AT 1 = Tgap — (TWOLill + TWOLi41)/2 (A3-3)
where Tsat = saturation temperature at the pressure in the lower

plenum (PTO1AlI1l)
TWO11ill and TOW1i41l are the fluid temperature at the bottom

of heated part in Bundle i

The heat flux, 45 is calculated from the transient of heater
rod surface temperature. In the STEAM code, two kinds of temperature
transients can be selected. One is the temperature at the center of
each bundle (TEjilC in Fig. A-14, 7 =01 ~ 10, i =1 ~ 8). Another is
the average temperature in each bundle at the same elevation. Figure
A-34 shows a comparison of total steam generation rate obtained by
these two methods in Test $Z2-06. As shown in this figure, the
difference of these twe method is less than about 8§ 7. If not
specially commented, the average temperature transient 1s used in the
steam generation calculation.

Two kinds of vertical nording models are involved in the STEAM
code. One is a even division between two adjacent thermocouple
locations ("Even" division). Another type of division is made so that
the heat flux in each cell accuratelly represent the average heat flux
of the cell by considering the stepwise axial power profile shown in
Fig. A-8 ("Step" division). Figure A-35 shows the vertical nording
models of these two division methods. The difference of the total
steam generation rates obtained by these two methods is less than about

8 Z as shown in Fig. A-36, If not specially commented, the "Step'
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division method is used in the steam generation calculation, The
"Tven' division method 1s mainly used for the evaluaticn of steam flow
rate at each elevation.

Since the heat flux shows a very high peak value when the
tnermocouple 1s quenched, the heat flux is averaged for the calculation
of steam generation rate when the guench front exists in the cell.

Thie averaging method is classified into two cases.

(1) In case of: t. <t <t.ort. <t <¢t.

i-1 q N ] q 1-1
where t = guench time at thermocouple location
tj_1 = quench time at the bottom of cell ]
tj = quench time at the top of cell j
m
g A= I qft ) + 234TDAH./(m+1) {a3-4)
- m J
k=0
where m = jt. - t. _|/bt, At = 0.5 s
] 3-1
-
tm =t + 0.5 —“—*’"l‘*'—'—'—-*m—k
ALY+ AW, 2
J ]
AH.? = distance between thermocouple elevation and bottom
of cell
AHjZ = distance between thermocouple elevation and top of
cell

Wnen t 1s between tj_1

and tj’ eq. (A3-4) is used in eg. (A3-1).

72}y 1In case of: t.<t <t , t. . <t.,<t , t <6<t L °r t <t _<tC.

j-1 "q¢> 3=l 3 ¢’ ¢ ] i- g j-1 7]
m
gA = I qgft_) =« 234%DAH./{(m+l) (A3-5)
_ m J
k=0
where m = 't. - t. I/At, At = 0.5 s
) 3-1
t =t + 0.5(m - kJ
m

When t is between tj_1 and tj’ eq. {(A3-5) 1s used in eq. (A3-1).
For the other time, eq. (A3-4) is used in eq. (A3-1).

The gquench time at the bottom of the core 1s set to the initiation
time of bottom reflooding. The quench time at the top cf the core is

o>tained by extraporating the quench times at elevaticns 10 and 9.
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A.5 Calculation Method of Horizontal Differential Pressure

The measurement locations of the horizontal differential pressures
in the core are shown in Fig. A-26. In addition, the vertical
differential pressures were measured at various locations as shown in
Fig. A-25. The horizontal differential pressures which were not
measured directly can be obtained by combining these measured
herizontal and vertical differential pressures, Figure A-37 shows the
locations and Tag ID's of calculated horizontal differential pressures
together with the locations of measured horizental and vertical
differential pressures. The calculation method for the additional
horizontal differential pressures is shown in Table A-3. The Tag 1D's

used in this table are explained in Figs. A=25, A-26 and A-37,
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Table A-1 Principal Dimensions of Test Facility

1. Core Dimension

{1
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9}
(10)
(11
(12)

(L
(2)
{3)
4y
(5)

(6)
(73
(8)
(9)
(10
(11)
(12)
13

(14)
(15)

(16)
(17)
(18)

Quantity of Bundle

Bundle Array

Bundle Pitch

Rod Array inm a Bundle

Rod Pitch in a Bundle

Quantity of Heater Rod in a Bundle
Quantity of Non-Heated Rod in a Bundie
Total Quantity of Heater Rods

Total Quantity of Non-Heated Rods
Effective Heated Length of Heater Rod
Diameter of Heater Rod

Diameter of Non—-Heated Rod

Flow Area & Fluid Volume

Core Flow Area (Nominal)

Core Fluid Volume

Baffle Region Flow Area

Baffle Region Fluid Volume (Nominal)

Effective (ore Flow Area Based on the Measured
Level-Volume Relationship Shown in Fig. 4-7
Including Gap between Core Barrel and Pressure
Vessel Wall and Various Penetration Holes

Downcmomer Flow Area

Upper Annulus Flow Area

Upper Plenum Horizontal Flow Area

Upper Plenum Fluid Volume

Upper Head Fluid Volume

Lower Plenum Fluid Volume

Steam Generator Inlet Plenum Simulator Flow Area

Steam Generator Inlet Plenum Simulator Fluid
Volume

Steam Water Separator Fluid Volume

Flow Area at the Tep Plate of Steam Generator
Inlet Plenum Simulator

Hot Leg Flow Area
Intact Cold Leg Flow Area (Diameter = 297.9 mm)

Broken Cold Leg Flow Area (Diameter = 151.0 mm)

8 Bundles

1x8

230 mm

16x16

14.3 mm

234 rods

22 rods
234x8=1872 rods
22x8=176 rods

- 3660 mm

10.7 mm
13.8 mm

.227 m?
.62 w?
10 m?
.36 m?
.35 m?

o O O O o

.626 m?
.931 m?

0.195 m*

0.0826m?
.9657m?
0.0179m?

o
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Table A-1 (Centinued)

(19) Containment Tank-l1 Fluid Volume

(20) Containment Tank-11 Fluid Volume

(21) Flow Area of Exhausted Steam Line from
Containment Tank-Il to the Atmespherc

3. Elevation & Height

(1) Top Surface of Upper Core Support Plate (UCSP)

(2)
(3)

(4)
(5}
(6)
(7)
(8)

{9)
(10)
(11)
(12}

(13)
(14)
(15)
(16)

Bottom

Top of
Heater

Bottom
Bottom
Bottom
Top of

Bottom
Plenum

Surface of UCSP

the Effective Heated Length of
Rod

of the Skirt in the Lower Plenum
of Intact Cold Leg

of Hot Leg

Upper Plenum

of Steam Generator Inlet
Simulator

Centerline of Loop Seal Bottom

Bottom
Top of

Height
Plenum

Height

Surface of End Box
the Upper Annulus cf Downcomer

of Steam Generator Inlet
Simulator

of Loop Seal

Inner Height of Het Leg Pipe

Bottom

Top of

of Lower Plenum

Upper Head

30
50

see Ref.

- 393

~-5270
+ 724
+1050
+2200

+1933

-2281
- 185.1
+2234

1585

3140
737
-5770
+2887

1
m

(1)
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Table A-2 Total, lower and upper heights of each cell
for calculation of steam generation rate
{a) "Even'"division method (b) "Step" division method
Elev. it i P AH.® Elev. AH, AH,T AR *
J 3 J 3 ] ]
No. (m) {m) (m) No, (m) {m) (m)

10 0.255 0.215 0.04 10 0.205 0.165 0.04
9 0.430 0.215 0.215 g 0.630 0.365 0.265
8 0.430 0.215 0.215 8 0.220 0,155 0.065
7 0.4275 0.2125 0.215 7 0.660 0.385 0.275
6 0.2975 0.085 0.2125 6 0.115 0.075 | 0.040
5 0.2625 0.1775 0.085 5 0.115 0.020 | 0.095
4 $.3925 0.215 0.1775 4 0.660 | 0.325 0.335
3 0.430 0.215 0.215 3 0.220 | 0.115 0.105
2 0.420 0.205 0.215 2 ¢.630 0.315 0.315
1 0.315 0.110 0.205 1 0.205 0.110 0.095

AH. = total height of each cell (elev. No. j)

AH . = distance between thermocouple elevation and bottom of

cell (elev. No. i)
AHj = distance between thermocouple elevation and top of

cell (elev. No., i)
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Table A-3 Calculation method for additional horizontal
differential pressures using measured

horizontal and vertical differential pressures

(1 elev.l (-0.142 m) for Run 601 ~ 619
HDO1Cl1 = DTO1D11 + BDOSCLI DTOLD21

HDOIC21 = DTO1DZ1 + HDO5SCZ1 - DTC1D41
HDO1C12 = EDO1C1l + HDO1C21
HDO1C41 = DTOIDAL + DTCG4D41 - DTOL1D6GL
HDO1C61 = DTC1D61 + HDO5C61 - DTO1DB1
HDO1C42 = HDO1C41 + HDOLICEL

(1)' elev.l (-0.142 m) for Run 620 ~ 625
HDO1C1l = DTO1D11 + HDO5CL1 - DTO1D21
HDO1C21 = DTOODL1 - HDOLCL1
EDO1C12 = DTOOD11
HDO1C41 = DTOOD41
HDO1C61 = DTOOD4Z - DTCOD4L
HDO1C42 = DTCOD42

(2) elev.2 (0,085 m)

HDOZ2CZ1 = DTO1S21 + HDO3C21 - DTOL1S41

HDO2C41 = DTO1S41 + DT02S41 + HDO4C41 - DTO1S61
HDO2C61 = DTO1S61 + HDD4CH1 - DTO2S81 - DTCL1SEL
HDO2C42 = HDO2C41 + HDOZCH]

(3) elev.3 (0.7 m) for Run 601 ~ 619
HDO3C21 = DTO0ZS21 + DTO3D22 - DT02S41
HDO3C42 = DTOZ2S41 + BDO4C4L2 - DTO2S881

(3)" elev.3 (0.7 m) for Run 620 ~ 625
HDO3CZ21 DT0Z2D22
HDO3C42 DT02D472

I

(4) elev.4 (1.365 m)
HDO4C21 = DT03D22

HDO4C41 = DT03S41 + DTC4D41 - DTO2561
HDO4CE1 = DTOZ2S61 + HDOSCE1 - DTO3881
EDO4C42 = HDO4C41 + HDO4CEL
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(5) elev.5 (1.905 m)
HDO5C11 = DTO04D11 - HDOS5C21
HDO5CZ21 = DTO3DZ2 + DTO3841 - DTO3S521
HDCO5C12 = DT04D11
HDO5C41 = DTO4D4Z
HDO5C61 = DTO4D4E - DTO4LD4A2
HDO5C42 = DT04D4]

(6) elev.6 (2.03 m)
Hpo06C21 DT04S21 + DTOS5D21 ~ DTO4S841
HDO6C4L2 DTO4S41 + HDO7C42 - DT0O4S81

1

(7) elev.7 (2.57 m)
HDO7CZ1 DT0O5T21
HDO7C42 DTO5G41 + HDOSC42 - DTO5GRL

(8) elev.8 (2.695 m)
HDOBC21 = DTOS5D21 + DTO5G41 - DTO5G21
HDOBCA42 = DTO5S41 + DT0O6D41 - DTOSS81

{9) elev.9 (3.235 m)
HDOSCL1 = DTQ&ED11 - HDO9CZ21
HDO9C21 = HDOBC21 + DTO5S841 - DTO5S21

HDO9Cl2 = DTO&6DI11 _
HDOSC41 = DTO4D4]1 + DT03S861 - DTOS5S841 — DTO5G41 — DTOLS41 ~ DTOALG4L]

EDO9C61 = DTO6D4]1 - HDOSC4LL
HDO9C42Z = DTO6D4L

(10) elev.10 (3.36 m)
HD10C42 = DTOHS41 + HD11C42 - DTOESS1

(11) elev.ll {(3.685 m)

HD11C41 = HRO9C41 + DTO4S61 -~ DTO6S41 ~ DTC6EGL]
HD11C61 = HD11C42 - HD11C4l
HD11C42 = DTO7G41 + HD12C42 - DTO7GE1

(12) elev.12 (3.821 m)

HD12Cl1 = HDOS5CL1 + DTO2D21 - DTGZDI1
DTOZ2C41 - DTOZDZ21
HD1ZC21
DT02D61 - DT02D41

+

HD12C21 = HDO5C21
HD12C12 = ED12C11
HD12C41 = DTO4D4L
EDL2C61 = HDO5C61 + DT02D81 - DT0O2D6L
HD12C61

+

+

+

HD12C42 = HDLZ2C41
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