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Tt is shown that the diffusion coefficients due to the dissipative
drift wave turbulence, which have been described by several authors in
the different forms corresponding to the turbulence strength, can be
written as a unified form by introduing a parameter representing the
turbulence strength. Therefore, the model of L-H transition whose
cause was pointed out to be possibly the dissipative drift wave
turbulence by the author previouslyl), can be found to be rewritten in a
simpler form which consistently covers wholly the discussions developed

1)

in the previous report

?’ Keywords : Plasma, Dissipative Drift Wave, Turbulence, Tokamak, L-H

Transition
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1. Introduction and Motivation

In the model of L-H transition, based on the dissipative drift
wave turbulence theory, as presented in the previous reportl), it is
shown that the drastic L-H transition can be induced by the sufficient
condition that electron temperature (Te) exceed the certain threshold
whose value is determined by the alternation of the two governing
diffusion coefficients that Te-dependence of the diffusion coefficient
varies fromches/6 in the low-Te region (deduced by Kadomtsev and
Pogutsez) within the restriction of the fluid-type strong turbulence)
to « Te'2 in the high-Te region (deduced by the author, extending the
turbulence theory evolved by Kadomtsev and Pogutsez) into the region
of the kinetic-type-weak turbulénce) as Tg increases from a low value
to a higher one, so that the diffusion coefficient increases at the
initial stage according to Tes/s-dependence as Te increases, though
it turns to decrease at a certain threshold value of T,, corresponding
to Te_z—dependence; therefore, the diffusion can be drastically
improved to result in the L-H transition, with the help of the enhance-
ment effect of the density-gradient dependence of the diffusion
coefficient.

_ The above-mentioned two regimes are the modellized cases of
turbulence, strong énd weak, which are very convenient to explain such
a drastic change és L-Y transition. The actual case, however, might
not be that. As Te dincreases, the turbulence must be changed
'continuously from strong to weak, accompanying the continuous change
of the diffusion coefficient.

Fortunately, until the present day there have been presented
several formula of the diffusion coefficients concerning to the
dissipative drift wave turbplende with some respective applicability
limitations, besides the above-mentioned two regimes.

In the present paper, they are reconsidered from the vieﬁpoint
of the turbulence strength to expect to find a common feature which
might benefit wus not only to make the L-H transition mechanism
. physically more understandable but make the applicability of the
previous reportl) better-defined.

According to Terry and DiamondS), in the case of moderate
Reynolds number (0.1~ a few) which is defined as the ratio of the

parallel correlation time to the coherent nonlinear relaxation rate
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by them, the diffusion cecefficient is given to be .

-V*F n vei =) o T 1
Drp = ¢ 62T 2% " mp (1)
. : s Te n

where V*}Eu@/ke, Wy, electron diamagnetic frequency, kez wave number
d In ne

dr

r: the position of the minor radius direction, CgZ vTe/Mi, Te: electron

along the poloidal direction, rniii |, ne: electron density,
temperature, M{i: jon mass, Vei: electron-icon collision frequency,
wTEEEVe/Rq, VeEE/f;7£g; Ul electrbn mass, R: major radius, q: a safety
factor § = rq'/q, q'=dq/dr, and Crp represents the average evaluation
at a mean wave number in the turbulent spectrum, being estimated to get
a value around ~3 in the case of the spectrum line width of Auwg/wg~1
by Terry and Diamond.

In the case of the limit of large Reynolds number, they present

the diffusion coefficient as follows;
o~ 2
Dip (R > ~ o “C /e (2)

where pg = Cg/Q2, {I1: ion gyro-frequency.
Then, we should take into consideration the pseudc-classical

type of the diffusion which has been empirically adopted at first and

4)

reinforced by the several numerical calculations °, having the form of

p_ ~eife ¢ (3)

where pg: electron gyro-radius, ©: shear parameter (= rn§/qR), and
Cps: a numerical facﬁor. : _
In the last place, we should add in the line-up of the dissipative

drift wave turbulence diffusions the two forms of the diffusion

coefficients which were already mentioned in the previous report by the

1),

author”

B YE 413
Vei” "V (peve)

kp (rn0)273 (030173 (4

D

which is derived as a limit of the maximum of the diffusion coefficient

2)

in the strong turbulence by Kadomtsev and'Pogutse y and
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which is derived by the author as a limiting case of the weak turbulence
on the basis of Kadomtsev and Pogutse-analysis, where a is a minor
radius of a plasma and {}p is an electron gyro-frequency.

All the eguations (1)-(5) represent the diffusion of the
dissipative drift wave turbulence, derived from the various theoretical
or experimental backgrounds. Then, what equation should we adopt in
the practical use? The key to judge this question may be the
turbulence strength. In the strong turbulence limit, Eqs. (2) and (4)
are probably applicable candidates, especially Eq. (2) may be the strong-
est, then next may be Eq. (4). Eg. (1) should be the following in the
turbulence strength order, of mo&erate Reynolds number case.

But, of the left-behind two cases (Eqs. (3) and (5)) Eq. (5)
should be the weakest case. ‘Then, Eq. (3) should be the fourth
order? Originally, Eq. {(3) have only the mere implication as to the
turbulence strength that it should be in the case of moderate or weak
turbulence though it is widely applied from the moderate Reynolds number
region to the adiabatic region, so that the turbulence strength with
regard to Eq. (3) and (1) cannot be all clearly distinguishable.

But maybe either of Eq. (3) or (1) is the third or fourth order.
Here, for the temporary convenience, we proceed the analysis,
assuming that Eq. (1) is the third order, and Eq. (3) is the fourth
order stength.

Then, investigating the dependence of Te, ne, B (a toroidal

magnetic field) and rnp, we find as follows;

Doy R >) = T ° /8% (6)
ka « Teslsnlfs/Bu/arnula _ (7)
DTD - Tellenezlalel3rn5/3 (8)
Do ™ T, %0 /x (9)
DH - Te—znesfsBuls/rn13/3 (10)
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Tﬁis is.a very interesting result. In the first place, Te-
~dependence shows the arithmetical progression of the power with the
difference of (-2/3) from Eqg. (6) to Eq. (9), with the exception of
Eq. (10) which shows the jump of (-3/2) power difference from Eq. (9).

In the second place, ne—dependence_also shows the arithmetical
progréssion in the powef with the difference of (1/3) from Eq. (6) to
Eq. (9}, similarly with tbé exception of Eq. (10) which gives the
jump of (2/3)—pdwef difference from Eq. (9). |

.Similarly, B and~rn dependences alsc give the arithmetical
progression in the power with the equal differences of (2/3) and (-1/3)
respectively from Eq. (6) to Eq. (9), with thé exception of Eq. (10)
which gives the jumps of (4/3) and (-7/3) power differences in the
cases of B and rp respectively. .

Here, it should be noticed that there is a disagreeable jump of
the power progression between Egs. (9) and (10), which, however, would
be covered if the form of D = Te™ "/ ®ng"/ 382/ 3 /7 7' 3 were inserted
between them, even ﬁhdugh the defects still exist in the power pro-
gréssion of Te énd rp in Eq. (10). As it were,‘if Te'? wefe replaced
by Te'llls in Eé. (10}, the Tg-progression would be complete, though
the slight difference between (—2)_and (-11/6) still remaiﬁs without
any interpretatidn. As for the rp-dependence, the deviation from the

would-be-right progression is comparatively large, as it were rn“l3/3

in Eq. (10) should be rn_s"3

if the (-1/3)-power progression continues
to Eq. (le. X ' .

The above;results concerni;g to the ng-and Te-dependences may be
crudely interpreted as that ng-dependence is only included in Vgi, wﬁose
dependence is going up as the turbulence groﬁ weaker, on the other
hand, Te-dependence is contained not only in the -3/2 negative power
in Vei, but in the positive power in pg or Cg, all combined to compete
each other to give the final effect of (-2/3) power progression.

As for B-dependence, B is included in pg, the characteristic
length of this type of the diffusion, giving the B *-dependence in
Eq. (2), though B, on the other band, makes the parallel correlation

.time of this turbulence effectively smaller as B grows stronger, Lo

result in the contribution of the positive power of B,
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Concerning to rp-dependence, it should be neoticed that the
density gradient is originally the driving force of this type of the
instability, and represented in rp in the denominator of Eq. (2).

When the tubulence becomes weak, the system is getting into the the
adiabatical electron regime (the lons are getting into the kinetic
region) and this adiabaticity is known to lead to make the rp-power
dependence negative in the diffusion coefficient.

Here, we arrive po note that the above-described beautiful
progression indicates that a certain common nature must govern the
diffusion coefficient, in accordance with the degree of the turbulence
strength. Terry and DiamondB) introduce the Reynolds number to
represent the turbulence degree though it is not so simple to
adopt here because it contains the nonlinear term. Waltz et 31.4)’
on the other hand, often use the adiabaticity, defined as (wTéézrn/
VeiCg), to distinguish the system between the hydrodynamic regime and
the adiabatic electron regime. This adiabaticity may be able to be
used as a measure tofrepresent the turbulence degree because in the
hydrodynamic region, the width of the frequency spectrum induced by the
nonlinear instability exceeds the parallel correlation frequency to
lead the system grow into the strong turbulent state, while in the
adiabatical regime, the linear instability structure can be maiﬁtained
to let the system remain in the weak turbulence state because the
parallel flow velocity is larger than the width of the phase velocity
induced by the nonlinear instability to make the turbulence remain
weak. Furthermore, Kadomtsev and Pogutsez) introduce the gquantity &,
which is equivalent with the inverse of the adiabaticity used by
Waltz et al. to distinguish the system between the hydrodynamic region
and the kinetic omne.

Here, based on the above disscussions concerning to the relation
between the adiabaticity and the turbulence level, we may think that
the inverse of the adiabaticity can be adopted as a measure of the
turbulence level because it can be expected to be apparently
proportional to the turbulence strength though it is not rigidly
proved theoretically.

Then, we try to rewrite Egs. (1)-(5) to draw out the term of

(VeiCs/wri82ry) to find
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4 0s°Cs
Doy (Re > ) ~ er—IT - {11)
2 . ¢ . 173
p ~Ps Cs | VeiCsg (12)
KP. rn  |wrarpS? :
: 2 L Y273
. Ps"Cg | VveilCg il
Drp I'n (ngrnﬁzj 28577 S (13)
Dsch Veilyg ‘
p ~Psls | Veils | ¢ (14)
- ps rn _wTernS— ps
and
b~ DSECS veils 1577 [Eﬂ 113 3 (15)
H Tn wrarns® \0g rrn? .

As expected, there emerges a beautiful series of a-third power of
(veiCS/wTérnéz) though the numerical accessaries are attached in Egs.
(13)=(15). This result shows us that the inverse of the adiabaticity
can be a substitute of the turbulence strength, and, as pointed out in

the previous paragraph, such a type of the diffusion coefficient as
2 . 573
. Ps Cg [ veiCs )"/ o =7ls_ wlagels . -7/
between Eqs. (14) and (15) to make the series complete. Furthermore,

is possible to exist

tooking over from Eq. {(11) to Eq. (15), we notice that the power of
(veiCS/wTérn§2) increases from 0 te 5/3. Then, we can take a step
forward to speculate that the above described discrete set of the
power progression may be tranformed to be a unified form of the
continuous set of the power-progression representing the turbulence
strength.

Therefore, in the néxt step, we try to find such a form of the

diffusion coefficient as

1
2 Brox
p~ P50 x B (16)
where

= iy, Ge
WTATnS

and o, P are arbitrary positive factors to dete:mine, expecting_Eq.(l6)to
represent all the Eqs. (11)-(15). As a first step, we try to confirm
that Eq. (16) is consistent with Egs. (11)-(153). As X, representing

the inverse of the adiabaticity, goes to the infinity, in other words,
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the turbulence goes to the infinite limit, Eq. (16) becomes D ~ B%;Eﬁ
which corresponds to Egq. (ll), and as X goes to the zero-limit, ?
Eq. (16) becomes

p~ 25 bs i (18)

n

which may be corresponding to Dy if é““gr(that is, £~0.6) and X is
very small but not zero, though the numerical accessaries in Eqs.
(13)-(15) are not included in this argument. Therefore, as a second
step, we try to discuss the numerical factors in Eqs. (13)-(153).

In Egq. (13), Terry and Diamond3) estimate the factor Cpp around
~3 in the case of thé moderate Reynolds number region with the
condition that the frequency width due to the turbulence is the same
order of electron diamagnetic frequency w,. And the mean wave number
<kp> 1g around ”O.l,ps—l. They alsc find the energy lies predominantly
in the region of the small wave number (kgpg < 0.1). Furthermore the
quantity &, introduced by Kadomtsev and Pogutsez), is easily found to
have an approximate form of

- 1 , _VeiCg
§ Kpoas wTérngz (19)

Rememberingz) that the numerical factor of Eq. (15) is deduced
from the arguments as to this quantity &, and, furthermore, the |
inverse of the adiabaticity, defined as w*vei/kﬁvez, is found to take
the same form of & in Eq. (19) if we take into account the facts of
w,~kppgCs/ry and kﬂ”keﬂX@/Rqueps§/Rq in case of AX~pg, we may replace
X in Eq. (16) with & of Eq. (19). 1f we do so, the difference emerges
from the part of 1/<kgpg> in Eq. (19). Therefore, if this part can
explain the numerical parts of Egs. (13)-(15) consistently, we can
adopt & instead of X. Then, we try to estimate the order of the
numerical factors of Egs. (13)-(15). As pointed in the above
discussions, Cyp is around 0(1), andlthe numerical factor of Eq. (lI5)
is easily found to be 0(10)~O(102), and Cps in Eq. (l4) depends on
<kpgpg> and will be found to be around 0(1l0) if we obey the estimation
by Terry and Diamond of <kgpg> < 0.1.

On the other hand, we can find easily (l/k995)2/3~4.6, (1/kgpg)~10,
and (1/keps)5’3“46 at <kgog>~0.l, respectively, each of which would

correspond to the numerical factor of Egs. (I13)-(15) if we would replace
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X with §. This ordering quite agrees well with the above-discussed
estimations. | | |
Fuffhérmore, In cases of.Eqs. (11) and (12), the estimation_df
(1/kgpg) °~1, and (1/keos)’7~2.2, is consistent with the fact that
the numerical part is, in the sense of the physical meaningness, not
attached in the Egs. (11) and (12),
Then, setting o=1 and redefining X, as

- 1 Meils 1
XO "~ <kppg> wrhrnS? <kgpg” X (20)

we can write the unified form of the dissipative drift wave turbulence

as a consequence of the physical speculation as follows;

1

5 -
D = pSrnCS XOB+XO . . : (21)

Here, let's estimate the value B and <kgpg>. Equation (15)
indicates that at small Xo, 1/B+Xg should take the wvalue 5/3 but the

value of the small X, is not definite. Then we select B=0.5 which

means that becomes é-at X, =0.1 and becomes 2 at X5=0 limit.

1
B+Xo 3
Practically, the B-value does not affect the physical behavior of Egq.
(21y. As for <kgpg>, as pointed out previously, Terry and Diamond
estimates <kepé> < 0.1; thoﬁgh this criterion must change corresponding
to the turbulence level. But, we have no other alternative as a
practical use to indicate the mean wéve number than to choose a
certain ﬁélue below 0.1. ' _

Here we adopt <kgng>~0.0666, as it were 1/<kgpg> =15 to match fhe
numeriﬁal calculatioﬁ, thdﬁgh(the situation almost never change eveh if
we adopt <keps>~0.i only to.give in the slight slide of the function
YH=X01/B+XO as shown later in Fig. 1 and Fig. 2.

In the next section, we investigate Eq. (21} numerically from
the various viewpoints. In the third section, we investigate the

relation between Eq.'(2l)'and L-H transitioﬁ. In the last section,

we conclude the results.
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2, Bepaviors of the Unified Diffusion Coefficient

From the previous section, it is obvious that the intesesting
. 1/B+X . , .
part of Eq. (21) is the term X, /B+%o which represents the contribution

from the turbulence. Therefore, in Fig. 1, the function

1

v - x B (22)

is shown with the parameters £ =0.5 and B =0 with <1/kgpg>=15 to make
the situation clearer. As described in the previous section, we treat
the case of B=0.5 and 1/<kgog>=15 as a model case. As a whole, the
function Y increases approximately linearly from X=0 to X=0.l, then
reaches the maximum Y= 1.37 at X=0.2, thereafter, goes down slowly
to the ultimate limit of Y=1 at X=%. This fact indicates that ¥
may be, roughly speaking, = X at X< 0.1, and remain constant around
1~1.37 X20.1. In‘other words, below X~0.1, the pseudo-classical
type (¥ =X) may be used as a practical use, and above X~0.1, Eq. {2)
may be not a wrong choice within the factor of 2. This tendency
cannot be altered still in the case of B=0, or in the case of
1/<kgpg> =10 as shown in Fig. 2, though the approximate linear part
is extended to X ~0.15 in case of 1/<kpgpg> =10.

Next, in order to look into the function Y more closely, we take
out the power part of the function Y to envisage it in the same Figures
1 and 2. In the region below X£0.l, the power part varies from 2
(at X=0) to 0.5 (at X=0.1). In looking more closely into the region
X<0.l, we divide the region into three parts, 0<X<0.033, 0.033<X<
0.066, and 0.066<X<0.1. In the first region, the base part of the
function Y, as it were (15X), becomes less than 1, and the power part
(6T§$i§§9 is more than unity, so that Y gets a smaller value than the
base value (15X), which means that Y decreases rapidly more than the
speed of the linearity. In the second region 0.033<X<0.066, the base
part is still smaller than unity, though the power part becomes smaller
“than unity, therefore, totally Y gets a more closer value to unity
than the base value (15X). 1In other words, the linearity is weakened
but it does not deviated so much from it. In the third region
0.066 <X<0.1, the base part turns larger than unity, and the power

part grows much smaller than unity enough to reach %—at X=0.1, and

AC R
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Y begins to saturate and deviate more from the linearity.

In the case of the region XE:O.i, Y experiences the maximum at
X=0.21, then goes down slowly to reach the final unity value at X-+,
Here we should remark as to the makimum ﬁoint X=0.21 where the.power
part of the function takes the vaiue 1/3;65 whose value happens to be
close 1/3 around which the diffusion coefficient is predicted to take
the maximum value by Kadomtsev and Pogntsez) when they deduce Eq. (4).
With regard to this point, if we take B=0, as also shown in Fig. 1,
the maximum point moves to X = 0.18 whose value gives the power part of
the funetion the value 1/2.7 which is also near the prediction by
Kadomtsev and Pogutse. '

The above results suggest that below X< 0.033, the system is in
the adiabatic electron regime, governed by the diffusion coefficient
with the power part of more than unity such as Eg. (3) or (5), and
in the region of 0.033<X%0.1, the system turns to the intermediate
region of the adiabatical and hydrodynamic regimes {corresponding to
the so-called moderate Reynolds number  region named by Terry and
Diamond), and above Xx0.l, the system enters intc the strong turbulent
state of the hydrodynamic region.

Though the choosing way of 8 or 1/<kgppg> makes the situation
numerically a little ambiguous, the whole arrays of the diffusion
coefficients Egqs. (1)-(5), discovered by several authors, might be
possibly covered by Eq. (21) and found to be consistent with the
characteristic features representing each diffusion coefficient of
Egs. (1)-(5). It is the practical use that we are interested in here,
so it wil} be allowed to use Eq. (21) as one of the ways to get at
the kernel of this type of the nonlinear turbulence when many features
characterizing this type of the turbulence are consistently interpreted.
But, it should be also taken into notice that the only way to prove
this scenario is to calculate the exact nonlinear drift wave equation
numerically or solve it analytically with the exact use of the

techniques describing the turbulent state exactly.
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3. Relations with L-H Transition

In the first place, we try to apply Eq. (21) to the actual
experimental data as similarly as we did in Ref. 1 to demonstrate Dy

5)

and Dgp. Here, we borrow again the same ASDEX data™ ' as we did in
Ref. 1 not only te envisage L-U transition from the viewpoint of the
unified form of Eq. (21) but alsc to compare it with the behavior of
Dy and Dgp on the same basis.

The results are shown in Fig. 3 which is found te confirm the
results of Fig. 2 in Ref. 1. In Ref. 1, Dgp is assumed as a
representative of the strong turbulence case. That is toc say, as
described in Ref. 1, it is expected that in the cases of OH and L-
mode plasmas, the peripheral diffusion is dominated by the strong
turbulence represented by Dgp, while in the case of H-mode plasma, it
is turned to be dominated by the weak turbulence represented by Dy.
Therefore, it is proper that we compare the behavior of Dkp in Fig. 2 in
Ref., 1 with D in Fié. 3 in the present paper in the cases of OH and
L-mode plasmas, while in the case of H-mode plasma, we compare D in
the case of H-mode plasma in Fig. 3 with Dg-line in the region within
Ar £-~3.0 cm and ka—line in the region outside Ar:x-3.0 em in Fig. 2(c)
of Ref, 1, in other words, the assumed line is Dy inside Ar <-3.0 cm, and
transferred to Dgp-line outside Ar =z -3.0 cm at which Dy crosses over Dgp.
Although the absolute values of the diffusion coefficient D are roughly
twice larger than the results of Ref. 1, which is obviously due to not

3 op (141e) in Dxp or Dy in Ref. 1

only the numerical factors (1+T{/Te)
which is omitted in Egqgs. (1)-(3) but also the choice of <k@p8$—value

in Eq. (21), the overall tendency is found quite alike each .other,

That is, Fig. 3 shows that the diffusion coefficient of L-mode case

is approximately twice larger than that of OH case, keeping the similar
radial dependency each other, while the diffusion coefficient of H-mode
case steeply decreases from the strong turbulence in the outer region
(02 Ar 2 -3.0 c¢m) to the weak turbulence in the inner region (Ar<
-3.0cm). This fact clearly supports that the unified form of the
‘diffusion coefficient, derived from the consistent unification of the
existing several diffusion coefficients of the dissipative drift wave
turbulence, is applicable to all the cases (OH, L-mode and H-mode)

presented by Ref. 1 with regard to L-H transition.

A L



JAERI-M 90-175

Next, we seek the electron temperature threshold (T¢h) of L-H
transition as we did in Ref. 1 with the use of Dy and Dyp with the
condition Dy < Dkp. Here, the procedure is simple and straightforward.
The unified diffusion coefficient Eq. (21), being a function of Te, can
be differenciated with respect to Te with the other parameters (rp, n, B
etc,) fixed. As shown iﬁ Fig. 4 as a sample of the diffusion
coefficient Eq. (21) as a function of Te, Eq. (21) is an increasing
function of Te in the region of small Te (strong turbulence case),
then reaches the maxiﬁum and decreases as Te goes up still more (enter
into the weak turbulence region). Therefore, as you see it, the

threshold should be the maximum point (though we replace it later with
32D
9Ta”
condition of

=0 only for the practical reason) which is determined by the

8D _
T 0 | (23)

This condition easily results in the value

X =~ 0.91 . : (24)
o

numerically when 8=0.5. (for example, when 8=0, Eq. (24) slides to
Xo=1.15) With the use of Eq. (20), Eqg. (24) easily gives Typ in the
form of '
172 112
- -9 Zeff ' ° |De Rq .
TR ALY (RN @
where the units are Tip(eV), ne(m'3), rnp{m), and R{(m), and both of

1/<kgog> and ln/ are assumed to be 15. And if we assume the current

2
probile j =j0(l-§3), then Eq. (25) turas to be

1/2 1/2 4
- -2 Zeff |ne Ba
Tth - 1.66x 10 —gl—{:“ [ ] Ipr2 (26)

I'm

which is a much simpler form than Eq. (14) in Ref. 1.
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Then we can compare Eq. (26) with T¢n of Eq. (14)* given in Ref. 1.
Regardless of ﬁhe numerical factor (1%—%&)2/17 or (Ii-ne)6/17, both
equations are very resembling. That is, ng, B, Ip, Zgff, A and r
dependences are almost similar, only slight differences of the order
of (1/17 ~3/17)~power. However, the exceptions are rp and a
dependences which are differing each other about the order of (1/2~1)
power. The reason is quite clear. That is, in Eq. (21}, we push the
part of (rn/ps)lfaaS/rrn2 in Eq. (15) of Dy into the part of 1/<kgpg>
which is numerically taken to be 15 in the present case. Therefore
the contribution of this part is absorbed into the numerical part of
Eq. (26).

Originally, the part of (r,/pg)®’’a/rrp® obviously results from
how. to estimate kgﬁ=m/r (m: mode number) which Kadomtsev and Pogutse
approximate m~va/Ax where Ax is a localization length. Therefore,
the physical difference is explained as that Eq. (26) treats 1/<kgrg>
as a constant value of 15 while Eq. (14) in Ref. l treats it as some
functions of several parameters though we make it match the numerical
order in deducing Eq. (21).

The determination of 1/<kgpg>, in accord with the corresponding
turbulence strength, is not a easy task because it involves the
nonlinear behavior of the frequency spectrum. Besides rp and ng
dépendences, the other parameter dependences of both equations (Eq.
(26) and Eq. (14) in Ref. (1)) are consistent with the experimental
data as discussed in Ref. 1. Therefore, ne and rp dependences ghould be
examined a little more closely. In Egq. (26), Ty eventually does not
contain ne—dependence if rn==\ne/%§%1 is taken into account, while

Eq. (14) in Ref. 1 -depends on ne'10/17. The only available experimental

6)

data concerning to this respect is JET data ', which, unfortunately,
cannot tell which should be favorable because of the randomness of the
data points, but appearing that both are not inconsistent.

One more remark should be added with respect to T¢h. In deriving

Eq. (26), we set the condition 3D/3Te =0. But, as seen in Fig. 4, this

‘% for the convenience of the discussions, Eq. (14) in Ref. 1 is cited
here : .

/ / '
Ty = 1,66 Lo-? Zegs®' P 0o’ 17,82/ 17p18/17 () 4y )6/ 17
t . .
A5117Ip16/17rn18117r38I17(1-FIL)
Te

2517
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_point is the summit of the mountain-like curve of T,, which forms a
comparatiﬁely broad width of T, around this maximum point. Therefore,
it is feared that L-H transition  cannot cccur practically unless the
Te-rise exceeds the maximum point considerably, because the enhancing
mechanism of the transition, as described in Ref. 1, can fail to
work around 9D/3Te ~ 0. Therefore, as a practical use, it may be
appropriate to take the threshold condition as

2 .
§%§%'= 0 (27)
This means the maximum point of [23D/3Te| (8D/8T¢ <0, discard the other
maximum point in case of 8D/3Te > 0 which has no interests here). As an
example of Fig. 4, this point corresponds to Te > 400 eV. The condition

of Eq. (27) can be easily interpreted numerically as

X, ~ 0.42 | o | (28)

with the same assumptiéns with regard to B and 1/<kppg> in derdving
Eq. (24). The condition of Eq. (28) leads to the practical T¢h which
is only different from Eq. (26) by the numerical factor v0.91/0.42~

1,47,

As demonstrated in Ref. 1, we can present the value of Eq. (29) in
cases of the existing Tokamak machinés with the assumptions Zeff =2,
A=2, rnf=%a, ne = 102? n™® which are the same parameters as we
calculated the values in Table 1 in Ref. 1. The results are shown in
Table.l which tells the similar results as described in Ref. 1. That
is;, it is evident that ' JT-60 and ASDEX have higher thresholds than
the other machines.

Arriving up to this point, it is easy to illustrate the same
figure as Fig. 3 in Ref. .1l at Arx>-3.5 cm to visualize L-H transition.
The result is Fig. 4 which is already referred as a convenient
example of Eq. 21 as a function of Te. In Fig. 4, L-point indicates
the actual value calculated ffom Eq. (21) in L-mode plasma,
corresponding to L-point in Fig. 3 in Ref. 1. Dy_pede—Curve shows
Eq. (21) as a function of Ty with the other parameters (rp, Nes Ip,

etc.) fixed on the values at L-point. Therefore, if Te-rise exceeds
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the maximum point {~ 280 eV) enough to reach ~400 eV, predicted from
Eq. (29), L-H transition can be expected to occur. We should omit the
following,oécurrence because it is only the repetition of Ref. 1.

In the last place, we try to calculate ngh which limits the lowest
density triggering the L to H transition, as we did in Ref. 1. The
procedure is same as it is in Ref. l, so we omit it only to show the

final result as follows;

) .
aZ[I —“]‘:““_‘}E:SIZB

2
r > 9.8 10° ?a (= rrtlh) (30)
All2 I,
or
3 172
£ B |d
ne > 4.9 10° %1—/7—1{3? Idnre|(= nth) (31)

2
where the units are MKS and j =jo(l-w§5) and r - a are assumed.

This result shows some interesting features about B, R, a’ and Ip.
In Ref. 1, it is found that nth<xB13I361p’5/12, while Eq. (31) indicates
nthO:B/Ip. As easily traced, it is found that this difference is
caused by the part of (rn/Ds)”?’aa/rrn2 in Eq. (15) of Dy which is
replaced by [1/<keos>]l/B+X0 in Eq. (21). Tt is the same cause as in
the case of the discussions about the differences of rtp-dependence
between Eq. (26) and Eq. (14) in Ref. 1. 1In Eq. (31), ng is
proportional to B. That is more favorable with the experimental
result by JET6) than the result shown in Ref. 1, though it is premature
to decide which result should be preferrable experimentally because
both equations include dng/dr term which requires the close observatory
data of ng(r) at r~a.

One more interesting remark with regard to Eq. (31} is concerned

with the term of azB/RIp which is related to gz-value. Then we

rewrite nep, of Eq. (31) as

* In Ref. 1, we erroneously omit R*'? in the numerator in E7. (39) in
36

Ref. 1, therefore, Egs. (41)-(43) should add the term R’ in the
denominator. This fact modifies some numerical results referred in
Ref. 1, though the kernel of the discussions developed there is not
hurt.
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112
- a da t£a dne
Mep T 01T a7 ar (32)
th - 1/2 w142 :
or T fa = 0.1 q, Ea /A . {(33)

This relation is amazingly simple and suggests that only three
quantities (q4, £a, A) decides rih/a and small q, and £, as well as
large A should be pr?ferrable to make rgh/a as small as possible in
order to get the advantage of the broad effective region of rn/agzrih/a

to obtain H-mode.
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4. Concluding Remarks

Being motivated by the findings of the common natures of the
several forms of the diffusion coefficients having been obtained by
several authorslwa), we induce thée unified form Eq. (21} which succeeds
to represent the turbulence strength in the power-dependences and the
inverse of the adiabaticity can be adopted as a measure to represent
the turbulence strength to form both the parts of the base and the
power. Though the pseudo-classical type can be approximately
consistent with Eq. (21) numerically in the adiabatic region of X<0.1
as shown in Fig. !, the parameter dependences vary in accord with the
functional form of Eq. (21). Therefore, in such a case as L-H
transition which seems to be caused by a steep rise of Te, the
diffusion coefficient should be treated as a function of Ty, not as a
function of X. This fact leads to that Eq., (21) increases as Tg
increases and reaches the maximum point, then decreases steeply as T,
goes up more. Thislpicture is quite same as presented in Ref, 1.
Therefore, when all the diffusion coefficients ever discovered by several
guthors are combined into a unified form of Eq. (21), it is easily
found to reinforce the model of L-H transition presented in Ref. 1,
and be able to give the thresholds of T¢h and ngp by applying the
similar procedure as we did in Ref. 1, though the forms of both Tth
and nth are found to be a little different from those in Ref. 1.,
expecially with respect to rn, ne on T¢h and B, Ip on ngh. But, as
previously pointed out, the discrepancy originally results from the
differences of the treatments of the nonlinearity part of the system,
so that it cannot but still remain to be an open question in the
future.

The comparison with the experimental data and the essential parts
of L-H transition, such as the formation of the dip of the diffusien
coefficient or the enhancement effect of the density gradient
dependences, etc. are fairly omitted, because the most parts become

only the retelling of the discussions in Ref. 1.
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Table 1 Threshold values (Tih) of the Tokamak devices, calculated

from Eq. (29)
Devices JT-60 JET DIII-D ASDEX JFT-2M
a =0.9m a =1Im a =0.55m a =0.4m a =0.3m
R =3.0m R =2.8m R =1.7m R =1.6m R =1.3m
Threshold B =4.5T B =2.2T B =2.1IT B =2.2T B =1.2T
Temperature Ip = 2,8MA Ip = 3MA Ip=1.2MA Ip=0.32MA Ip = 0.2MA
Tzh(ev) ~ 350 ~ 190 ~ 180 ~ 440 ~ 250

e o
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- Fig. 3 Diffusion coefficients calculated from Eq. (21) in the cases

of OH, L-mode and B-mode plasma of ASDEX—dataS)
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Fig. & Diffusion coefficients calculated from Eq. (2l) as a function
of Ty at Ar==3.5 cm in the cases of L-mode and H-mode plasma

corresponding to the data in Fig. 3



