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As part of Japanese design contribution in the ITER activity, con-
ceptual design of an entire ITER tritium system and their safety analysis
have been carried out through the three-year period since 1988. The
tritium system includes the following subsystems;

- Fuelling (gas puffing and pellet injection) subsystem,

- Torus vacuum pumping subsystem,

- Plasma exhaust gas purification subsystem

- Hydrogen isotope separation subsystem,

— NBI gas processing subsystem,

— Blanket tritium recovery subsystem,

- Tritiated water processing subsystem,

- Tritjum safety subsystem

Hydrogen isotope separation system is a key subsystem in the ITER
tritium system because it is connected to all above subsystems. This
report describes an analytical study on the Japanese concept of hydrogen

isotope separation system.
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*] Toshiba Corporation
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1. 1Introduction

Two major design concepts of ITER hydrogen isotope separation sys-
tem (hereafter, ISS) have been proposed. One is the Japanese proposal
composed of three independent separation systems; they are I53(1) for
processing plasma exhaust gas, and I85(2) for both NBI regeneration gas
and pellet injector propellant gas, and 1SS(3) for blanket tritium re-
covery. The other is-an integrated ISS proposed by Canada. It has been
designed to treat all hydrogen isotopes from above tritium subsystems
and tritiated water processing subsystems of primary cooling water and
iiquid waste processing. The Japanese design has taken into considera-
tion large flexibility to meet uncertainty in the operation mode of ITER
itself and its supporting subsystems.

Different fuelling techmology such as gas puffing, pellet injection
with single and double stages gas gun, centrifugal pellet injection, and
neutral beam injection will be applied to the ITER. If the above fuel-
ling subsystems can satisfy the plasma requirement of fuel composition
of 50%D-50%T, the product tritium concentration from 1SS can widely be
changed between 60%T and pure tritium. Therefore requirement of tritium
concentration for the hydrogen isotope separation system, which has the
role to supply fuel gas (D-T) to all fuelling subsystems, has not been
fixed yet.

Tritium inventory and ohter major parameters such as sizes and
helium load of distillation of the ISS using cryogenic distillatiomn
column method are strongly influenced by the tritium concentration in
the product stream.

The purpose of this analysis is to study the relationship between
product tritium concentrations (60, 70, 80 and 907%T) and column para-

meters of the ISS.

2. Model of ISS

"2.1 Process Model

Figure 1 shows the feature of Japanese proposal of ISS composed of
two—interlinked distillation column. Each column has a feed back stream
extracted from middle position of column. The isctopic equilibrators

attached in the feed back streams are to dissociate bimolecules such as

.714.‘
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1. TIntroduction

Two major design concepts of ITER hydrogen isotope separation sys-
tem (hereafter, I138) have been proposed. One is the Japanese proposal
composed of three independent separation systems; they are 188(1) for
processing plasma exhaust gas, and IS5(2) for both NBI regeneration gas
and peilet injector propellant gas, and ISS(3) for blanket tritium re-
covery. The other is an integrated ISS proposed by Canada. It has been
designed to treat all hydrogen isotopes from above tritium subsystems
and tritiated water processing subsystems of primary cooling water and
liquid waste processing. The Japanese design has taken into considera-
tion large flexibility to meet uncertainty in the operation mode of ITER
itself and its supporting subsystems.

Different fuelling technology such as gas puffing, pellet injection
with single and double stages gas gun, centrifugal pellet injection, and
neutral beam Injection will be applied to the ITER. If the above fuel-
ling subsystems can satisfy the plasma requirement of fuel composition
of 50%D-50%T, the product tritium concentration from 1SS can widely be
changed between 60%T and pure tritium. Therefore requirement of tritium
concentration for the hydrogen isotope separation system, which has the
role to supply fuel gas (D-T) to all fuelling subsystems, has not been
fixed yet.

Tritium inventory and ohter major parameters such as sizes and
helium load of distillation of the IS5 using cryogenic distillation
column method are strongly influenced by the tritium concentration in
the product stream. .

The purpose of this analysis is to study the relationship between
product tritium concentrations (60, 70, 80 and 90%T) and column para-

meters of the ISS.

2. Model of ISS

2.1 Process Model

Figure 1 shows the feature of Japanese proposal of ISS composed of
two-interlinked distillation column. Each column has a feed back stream
extracted from middle position of column. The isotopic equilibrators

attached in the feed back streams are to dissociate bimolecules such as
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HT and DT. The isotopic reactions are 2HT » T2 + T2 for column 1 and

2DT - T2 + D2 for columm Z.

2.2  Distillation Column Model

Figure 2 shows a schematic structure of the cryogenic distillation
column, which is composed of shell & tube type condenser, packed section
with Dixon Ring of 3mm in diameter, and reboiler with outer heater. A
small cylindrical tank is inserted to minimize volumetrically liquid

tritium inventory in the reboiler.

3. Design of Distillation Columns

To determine the major parameters of distillation columns against
the different product tritium concentrations, the following design
conditions were used.:

(1) Feed gas flow rate
75mel/h from plasma exhaust gas purification system
{2) Feed composition
H: 1%, D: 49.5%, T: 49.5%
{3} Tritium concentration in top flow of Column 1
less than ImCi/litter—-STP (40ppm)
{4) Tritium concentration in top flow of Column 2
less than 0.1%
(5) Product tritium concentration (in bottom flow of Column 2)
60%ZT, 70%T, 80%T, and 90ZT
(6) Height equivalent to a theoretical plate (HETP)
5 cm
(7) Maximum gas veleccity in the column
10 cm
(8) Total number of theoretical stages
Column 1: 100
Column 2: 60
(9) Feed stage position
Column 1: 55th from top stage
Column 2: 60th from top stage
(10) Middle extraction position

Column 1: 60th from top stage

727
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HT and DT. The isotopic reactions are 2HT » T2 + TZ for-column 1 and

2DT » T2 + D2? for column 2.

2.2 Distillation Column Model

Figure 2 shows a schematic structure of the cryogenic distillation
column, which is composed of shell & tube type condenser, packed section
with DHMxon Ring of 3mm in diameter, and reboiler with outer heater. A
small cylindrical tank is inserted to minimize volumetrically liquid

tritium inventory in the reboiler.

3. Design of Distillation Columns

To determine the major parameters of distillation columns against
the different product tritium concentrations, the following design
conditions were used.:

(1) Feed gas flow rate
75mol/h from plasma exhaust gas purification system
{2) Feed composition
H: 1%, D: 49.5%, T: 49.5%
(3} Tritium concentration in top flow of Column 1
less than lmCi/litter—-STP (40ppm)
{4) Tritium concentration in top flow of Column 2
less than 0.1%
(5) Product tritium concentration {(in bottom flow of Column 2)
60%T, 70%T, 80%T, and 90ZT
(6) Height equivalent to a theoretical plate (HETP)
5 cm
(7) Maximum gas velocity in the column
10 cm
(8) Total number of theoretical stages
Column 1: 100
Column 2: 60
(9) Feed stage position
Column 1: 55th from top stage
Column 2: 60th from top stage
(10) Middle extraction position

Column 1: 60th from top stage
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Column 2: 70th from top stage

{l1) Middle extraction flow rate
60% of inner gas flow rate at the lower part of Columns 1
and 2.

The values in the items (1) through (4) were the reference pa-
rameters of ITER, and the values in the items (8) through (l1) were
determined to minimize tritium inventory in the columns.

Calculation results are summarized in Table 1. Figure 3 shows
material flow balance in the reference case of the I8S, where isotopic

composition of the product stream is 70ZT-30%D.

4, Calculation Methods of Column Parameters

4.1 Column Performance

Concentration profiles for six species of hydrogen isotopes (T2,
D2, H2, DT, HT and HD) were determined in the column design. Where the
recycle ratio was converged as to meet the requirements of top tritium

concentrations in the Columns 1 and 2.

4.2 Column Sizes and Helium Heat Load

Following to above convergence calculation, sizes of column, helium
heat load for distillation, etc. were estimated as follows.

(1) Packed section diameter; d (cm)

d = VYG/({n/4) x Vg)

G(cm3/sec); maximum gas flow rate in column

= gas flow rate at Top in cases of this study
V;(em/sec); maximum gas velocity designed

(= 10 cm/sec in this study)

(2) Packed section length; I (cm)

I=HETPXxM
M; Total stage number
(HETP =05 cm in this study)
(3) Helium heat load for feed; Qp (W)_

*x (F+TF")
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Column 2: 70th from top stage

(11) Middle extraction flow rate
60% of inner gas flow rate at the lower part of Columns 1
and 2.

The values in the items (1) through (4) were the reference pa-
rameters of ITER, and the values in the items (8) through (11} were
determined to minimize tritium inventory in the columns.

Calculation results are summarized in Table 1. Figure 3 shows
material flow balance in the reference case of the ISS, where isotopic

composition of the product stream is 704T-30%D.

4. Calculation Methods of Column Parameters

4.1 Column Performance

Concentration profiles for six species of hydrogen isotopes (T2,
D2, H2, DI, HT and HD) were determined in the column design. Where the
recycle ratio was converged as to meet the requirements of top tritium

concentrations in the Columns 1 and 2.

4.2 Column Sizes and Helium Heat Load

Following to above convergence calculation, sizes of column, helium
heat load for distillation, etc. were estimated as follows.

(1) Packed section diameter; d (cm)

d = VG/({n/4) x Vg)

G(cmafsec); maximum gas flow rate in column

= gas flow rate at Top in cases of this study
V;(em/sec); maximum gas velocity designed

(= 10 em/sec in this study)

(2) Packed sectionm length; I (cm)

I=HETP=xHM
M; Total stage number
(HETP =235 cm in this study)
(3) Helium heat load for feed; Qp (W)

x (F+F'")
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H(J/mol) ; feed gas enthalpy change

(= 664 J/mol in this study

assuming D, enthalpy changes from 50K to 20K)
F(mol/hr) ; feed gas flow rate
F'(mol/hr); middle extraction gas f{low rate

(4) Helium heat load for condenser; Qg (W)

HeL

Hep (J/mol); sublimation enthalpy
(= 1276 J/mol in this study assuming D, at 20K}
W(mol/hr); hydrogen isotopes condensation rate
(= 1liquid flow rate at top)
(5) Total helium heat load; Q (W)

Q = SF; x (Qp + Qg)
SF1(-); Safety factor considering heat loss
(= 1.5 in this study)

Qr> Qg; above (3)(4)
(6) Reboiler heat leoad:; U (W)

U = SFZ X HGL X Vf3600

V(mol/hr); gas flow rate at bottom
Hep (J/mol); showed above (4)
SF,(-) ; Safety factor considering heat loss
{= 1.5 in this study)
(7) Condenser heat transfer area; Ag {cm?)
Ag = Qg/(h x T)

h(W/cm?K): condenser heat transfer coefficient

_ (= 0.012 W/ecm?K = 100 kcal/m?hrK in this study)
T(K); temperature difference between hydrogen gas and

helium gas (= 1.0K in this study)

Qc{W); helium load for condenser (above (4))

{8) Reboiler heat transfer area; Ay (cm?)

H(W/cm?); heat transfer demsity from reboiler heat
transfer wall to liquid hydrogen

(= 1.0 W/en? in this study)
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UW); reboiler heater load {(above (6))

(9) Condenser diameter; dg¢

Ve = SF3 x Ac/A

de = (Ve/(pn/r))t/3

]

Ve (cm?); condenser volume
Ac (cm?); condenser heat transfer area (above (7))
A(-);  ratio of heat transfer tube area to condenser
volume (= 1.4 in this study assuming 1 cm
diameter tubes with 1.5 cm pitch)
SF3(-); safety factor for condenser volume

B(-); ratio of condenser length to condenser diameter

(10) Condenser length; 1p (cm)
l¢c = B x dc

8, dc; above {9)

(11) Reboiler diameter; dr (cm)
drp = vy x d

d{cm); packed section diameter (above (1))

y(-)3 ratio of rebeiler diameter to column diameter
(= 1.0 in this study)
(12) Reboiler length; 1r (cm)

1r = AR/ (7 % dgr)

Ap(cm?); reboiler heat tramsfer area (above (8))

dr(cm); above (L1}

On above equation, reboiler heat transfer area

is assumed to be inner wall of reboilr.

(13) Total column length; 1ir (ecm)
ig=deg+1gc+d+1+d+ Ix

Here, the column structure shown in Fig. 2 is assumed.

4,3 Tritium Inventory
(1) Condenser inventory; I¢(g)

Ic = (t1 *x Agc + a x P/700 x Vg) xXg) * o
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tL{cm) ; liquid hydrogen isotope thickness on heat
transfer tube (= 0.01 cm, in this study)
Ac(cm?); condenser heat transfer area (above 4.2(7))
a{-); ratio of gas hydrogen isotope density to liquid
hydrogen isotope density at pressure of 700 Torr
(= 1.31 x 10°2 in this study)
P{(Torr); operation pressure
-= 700 Torr for column 1
= 600 Torr for column 2
Vc(cm3); condenser volume {(above 4.2(9))
Xe(=); tritium concentration at condenser
pL(g/cm3); density of liquid T,
(= 0.27 g/cn? in this study)

(2) Reboiler inventory; Ir(g)
2 2
Ig = (n/4) x {dr - (dr - 2g)7} x Ig % p. % XR

dplen); reboiler diameter (above 4.2(11))

1g(em); reboiler length (above 4.2(12))

g(cm); gap between reboiler inmer wall and inner spacer
(= 1.0 cm in this study)

o1 (g/cm®); above (1)

X (=) tritium concentration at reboiler

(3) Packed section inventory; Ip(g)

Ir = (1/4) x d2 HETZP x pL

M P M

x {K; x iil ¥i + (1 - Kp) x u.x 766_x i£1 Yit

d{cm); packed section diameter (above 4.2(1))
HETP; above 4.2(2)

or (g/cm®); above (1)

K (=) volume ratio of liquid hydrogen isotopes in
| packing space 7 |

al-); above (1)

P{Torr); above (1)

Xi(-}); tritium concentration in liquid hydrogen

isotopes at i-th theoretical stage
Yi(-); tritium concentration in gas hydrogen isotopes

at i-th theoretical stage

_.6__
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M; total theoretical stage number

100 for column 1

80 for column 2

(4) Total tritium inventory; I (g)
It = 1Ic + I + Ip

I¢, Iz, Lp(g); above (1}{(2)(3)

5. Results of Calculation

5.1 Distillation Column Performance

Isotopic composition of the top and bottom streams in the Column 2
are shown for the different product tritium concentrations (60%, 70%, 80%
and 90%). The concentration profiles of D2, DT and T2 in the columns are
shown in Figs. &4 - 8. Table 2 summarizes isotopic composition in feed
and extraction streams. Figure 9 shows material balance sheet for the

reference case of 704T-30%D.

5.2 Sizes of Distillation Columns

Table 3 summarizes the calculation results of sizes, helium heat
load and tritium inventory of each distillation column. The influence
of the product tritium concentration on these parameters in the Column 2
can be seen in Figs. 10 - 12. Both tritium Inventory and helium heat
load exponentially increase with tritium comcentration. Total tritium
inventory and total helium heat load in the reference case are respec-

tivley 40% and 536% of that of 90ZT-10%D.

5.3 Design of Reference IS8

Based on the above analysis of distillation column against dif-
ferent product tritium concentration in the second column, the referernce
18S (product concentration of 70%ZT-30%D) with two-interlinked columns
was designed. Figs. 13 and 14 show dimensions of major parts of Column
1 and 2, respectively. Figure 15, cryogenic assembly of the two columns,
shows schematic structure of thermal shielding with liquid nitrogen and
outer vacuum jacket. From the viewpoint of tritium safety handling, the

vacuum jacket can serve as the secondary barrier of tritium containment.
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M; total theoretical stage number

100 for column 1

80 for column 2

(4) Total tritium inventory; I (g)
It = Ic + Iz + Ip

I¢, Iz, Ip(g); above (1}{(2)(3)

5. Results of Calculation

5.1 Distillation Column Performance

Isotopic composition of the top and bottom streams in the Column 2
are shown for the different product tritium concentrations (60%, 70%, 80%
and 90%). The concentration profiles of D2, DT and T2 in the columns are
shown in Figs. 4 - 8. Table 2 summarizes isotopic composition in feed
and extraction streams. Figure 9 shows material balance sheet for the

reference case of 70%T-30%ZD.

5.2 Sizes of Distillation Columns

Table 3 summarizes the calculation results of sizes, helium heat
load and tritium inventory of each distillation column. The infliuence
of the product tritium concentration on these parameters in the Column 2
can be seen in Figs. 10 - 12. Both tritium Inventory and helium heat
load exponentially increase with tritium comcentration. Total tritium
inventory and total helium heat load in the reference case are respec-

tivley 40% and 36% of that of 90ZT-10%D.

5.3 Design of Reference ISS

Based on the above analysis of distillation column against dif-
ferent product tritium concentration in the second column, the reference
1SS (product concentration of 70%T-30%D) with two—interlinked columns
was designed. Figs. 13 and l4 show dimensions of major parts of Column
1 and 2, respectively. Figure 15, cryogenic assembly of the twe columns,
shows schematic structure of thermal shielding with liquid nitrogen and
outer vacuum jacket. From the viewpoint of tritium safety handling, the

vacuum jacket can serve as the secondary barrier of tritium containment.
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Figure 16 reveals space requirement for the reference ISS, in which the
emergency suppression tank can contain whole hydrogen isotope inventory
in case of loss of heiium refrigerant accident. Small components such
as bellows, pumps and surge tanks will be installed in tritium-tight

gloveboxes for the secondary tritium containment and in situ maintenance.

6. Conclusion

Many design parameters of ITER and its supporting systems have been
revised by the progress of system design and their technology in the
ITER conceptual design activity (CDA). The design requirements such as
tritium concentration and feed flow rate of hydrogen isotope separation
system must also be reviewed with the changes of the ITER parameters.

In the first year of CDA, we have proposed a flexible separation
system composed of th;ee independent cryogenic distillation subsystems
by taking into consideration large uncertainty of ITER operation. In
the second year we have analysed the effect of changes of the tritium
enrichment (from 60%ZT through 90%T) in the distillation column para-
meters. For the case of higher enrichment of tritium of 90%T-10%D, the
tritium inventory and the helium heat load in the second column are
about five times of that for the enrichment of 60%T-40%D.

Major column parameters determined by this study of the Japanese

proposal of the ISS are as follows;

Column 1 Column 2
Total length {cm) 601.8 504.7
Column diameter (cm) 4.9 5.6
Tritium inventory (g) 83.9 128.9
Helium heat load (W) 226.7 243.6
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Figure 16 reveals space requirement for the reference ISS, in which the
emergency suppression tank can contain whole hydrogen isotope inventory
in case of loss of helium refrigerant accident. Small components such
as bellows, pumps and surge tanks will be installed in tritium-tight

gloveboxes for the secondary tritium containment and in situ maintenance.

6. Conclusion

Many design parameters of ITER and its supporting systems have been
revised by the progress of system design and their technology in the
ITER conceptual design activity (CDA). The design requirements such as
tritium concentration and feed flow rate of hydrogen isotope separation
system must also be reviewed with the changes of the ITER parameters.

In the first year of (DA, we have proposed a flexible separation
system composed of thFee independent cryogenic distillation subsystems
by taking into consideration large uncertainty of ITER operation. In
the second year we have analysed the effect of changes of the tritium
enrichment (from 60%ZT through 90%T) in the distillation column para-
meters. For the case of higher enrichment of tritium of 20%T-10%D, the
tritium inventory and the helium heat load in the second column are
about five times of that for the enrichment of 604T-40%D.

Major column parameters determined by this study of the Japanese

proposal of the ISS are as follows;

Column 1 Column 2
Total length {cm) 601.8 504.7
Column diameter  (cm) 4.9 5.6
Tritium inventory (g) 83.9 128.9
Helium heat load (W) 226.7 243.6
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Tritium Inventory in Column 2

Fig.

JAERI-M 90-233

500+

400 -

300 -

200+

100 ¢

L. i - ]
T T T

60 70 80 90

Product Tritium Concentration (%)

10 Relationship between Column 2 Tritium
Inventory and Product Tritium Concentration



Diameter of Packed Section in Column 2 (cm)

JAERI-M 90-233

Y
o

Product Tritium Concentration (%)

Fig. 11 Relationship between Column 2 Diameter
and Product Tritium Concentration



(W)

Helium Heat Load in Column 2
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Appendix Influence of Change in Feed Stage Positions

on the Column Design

When the requireménts of isotopic compositions in the inlet and
outlet streams of the IS8S are fixed, the stage positions of feed and
middle extraction are one of the key parameters of column optimization.

In order to compare with previous design of the second column
(feed; 60th stage, middle extraction; 70th stage), four cases of the
second columns with the feed of 50th stage and the middle extraction of
60th stage was studied. Table A-] summarizes the column design condi-
tions, where all parameters except feed and middle extraction stages are
same as that in Table 1.

Calculation results are shown both in Tables A-2 and A-3 and Figs.
A-1 - A-4, Tritium inventory, column diameter and helium heat load of
the second column are compared with that for the column of 60th feed
stage and 70th middle extraction stage in Figs. A-5 - A-7. It is
apparent that optimum stage position of these parameters varies with
product tritium concentration. In case of the Japanese reference ISS
{product tritium concentration; 70%ZT-30%ZD)}, tritium inventory for the
feed stage of 50th is slightly greater than that for the feed of 60th,
but differences of the column diameter and helium heat lead among two

cases are very little.
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