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Japan Atomic Energy Research Institute (JAERI) has been developing
a superconducting magnet system for a fusion reactor. One of the key
items in developing the superconducting magnets is material development
and evaluation. The data of superconducting materials, structural
alleys, ﬁnd non-metallic materials are generated to establish a material
data base at JAERI.
This report is prepared to provide available data generated by
JAERT to designers of superconducting magnets throughout the world.
The following review papers written for the International Thermonuclear
Experimental Reactor (ITER) report on conceptual design cf magnet
system are combined here.
I. Superconducting Material Data
T. Mechanical Properties of the Japanese Cryogenic Steels (JCS) at
Cryogenic Temperature
M. Review of Radiation Degradation Studies at JAERIL on Composite

Organic Insulators Used in Fusion Magnets
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PREFACE

All of technical design reports from Japanese contributors to ITER

magnet design are listed below:
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I. Superconducting Material Data
M.Nishi

Superconducting Magnet Laboratory
Japan Atomic Energy Research Institute

1. INTRODUCTION

There are many superconducting materials. Among them,
multifilamentary (NbTi)gSn wire is the best choice for high-
field large superconducting coils at present. Major reasons
are its good high-field performance, its confirmed reliability
as the wire and the established industrial manufacturing
processes. Of course, there are some materials, such as
NbgAl, which arerexpected to exceed (NbTi)gSn in the future,
but their reliable manufacturing process as the wire have not
vet established industrially. In this report, the critical
current density of recent (NbTi)aSn superconducting wire 1is

presented briefly.
2. MANUFACTURING PROCESSES OF MULTIFILAMENTARY (NbTi)3Sn

There are many manufacturing processes of multi-

filamentary (NbTi)3Sn superconductor as follows:

* Bronze process

« Internal tin diffusion process
# Niobium tube process

* Jelly-roll process

¥ External tin diffusion process
#* In situ process _

* Powder metallurgy process

etc.

Each process and the wire manufactured with it have advantages

and disadvantages, therefore, we cannot choose one as the best

il___
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in general. As the typical processes, we select three of them

and explain briefly.
2.1 Bronze process

The bronze processed (NbTi)4Sn is used widely and its
manufacturing process is well established. As shown in
Fig.1(a), the (NbTi)3Sn is formed around the niobium filaments
arranged in bronze after the diffusion reaction. The bronze
of this process can contain tin only around 10 % for the cold
drawing, and moreover, a few times of annealing is necessary
during drawing process. Because large amount of bronze
remains around the (NbTi)gSn filaments after reaction, the
critical current density per non-copper area, where bronze is
involved, becomes much lower than that per (NbTi)3Sn itself.
However, the superconductor with low AC-losses and with high

mechanical strength;can get easily by this process.
2.2 Internal tin diffusion processed (NbTi)SSn

In the internal tin diffusion process, the (NbTi)BSn is
formed with niobium filaments arranged In copper and with tin
arranged in the center of the filament area as shown in
Fig.1(b). The annealing during drawing is unnecessary, and
the bronze fraction in the conductor after reaction can be
much lower than that of the bronze processed one. Theréfore.
present capacity of this type of superconductor is in the same
level as that of the bronze processed one, however, it has

higher potential capacity.
2.3 Niobium tube processed (NbTi)SSn

The superconductor manufactured with this process has
very high critical current capacity. In this process, the
(NbTi}5Sn is formed on the inner wall of the niobium tube, in
which tin core and copper are arranged before reaction as
shown in Fig.l1l(c). The annealing during drawing is also

unnecessary and the tin contents in the niobium tube can raise

_2_
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near 100 %. Major disadvantage of this type of superconductor
is its rather high AC losses, because its filament size is
larger than those of other types and the filaments are located

in copper instead of bronze.
3. CRITICAL CURRENT DENSITY OF (NbT1i) 550

Figure 2 shows the highest critical current density curve at
4.2 K of the bronze processed (NbTi)SSnl. that of the internal
tin diffusion processed one2 and that of the niobium tube
processed one3 published. The current density data per non-
copper area of the superconducting wire actually in the coil
operated at 4.2 K are also shown in the same figure. As shown
in Table 1, some of these points do not indicate the limit of
the wire, the real limit of the wire in use can be recognized
by these data. '

From the cdrve in Fig.2, the bronze processed (NbTi)SSn
and the internal tin processed one can have the critical
current density of around 700 A/mmZ at 12 T and 800 A/mm2 at
13 T. With the niobium tube processed (NbTi)sSn, the critical
current density of around 1.9 kKA/mm2 at 12 T and 1.5 kKA/mmZ at
13 T can be expected. These data show the potential capacity
of wires, and therefore, at the coil designing, it should be
taken the current density at least 0.7 times lower than the
champion data mentioned above or should be taken the data

measured with the wire industrially well-established.
4. FUTURE PROSPECT

The present current density data of the (NbTi)BSn wire
were summarized. The capacity of the (NbTi)3Sn wire 1s still
improved day by day, and other materials are being developed
actively. Therefore, the coil designer will have to refer

completely new figure in place of Fig.2 a few years hence.
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Table 1 List of superconducting magnets shown in Fig.2

No. Transport Winding Note
Current Inner Diameter
[A] [mm ]
1 330 37.5 No guench
2 158 34
3 330 . 79.2 Quench except for Ic
4 531 36.6 reach Ic
5 478 46 reach 1c¢
6 232 28 Quench except for Ic
T “B75 T2 No quench
8 155 50 reach Ic
9 70 38 Quench except for Ic
10 330 il0 No gquench
11 144 130 Quench except for Ic
12 850 40 No quench
13 800 91 No quench
14 1180 190 No gquench
15 ~220 60
16 469 58.4
17 1327 260 No guench
18 804 149.3 Quench except for Ic
19 1327 330 No quench
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Nb3Sn fllament Nb

Nb fllament
Bronze &

i Nb3Sn fllaments

Nb fllaments

Bronze Bronze

—

(reaction)

c Barrier (Nb or Ta)
" ) Nb3Sn fliament Nb

Nb fllament Bronze &

Nb3Sn fllaments

Cu & Nb filaments

Cu Bronze

—

(reaction)

Barrler (Nb or Ta)
Cu ' Nb3Sn

Nb Cu Nb  fllament

Cu & Cu &
Nb-tube fllaments Nb3Sn filaments

Cu Bronze

Sn
sn————=d

(reactlon)

—
e

Fig.1l Schematic manufacturing processes of the typical multi-
filamentary Nb38n wire.,
(a)Bronze process
(b)Internal tin diffusion process
{c)Niobium tube process
(NbT1i)3Sn wires are manufactured with the same way

except for a few titanium added in somewhere.
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filamentary (NbTi)3Sn superconductor at 4.2 K
manufactured with the bronze process, the internal tin
diffusion process and the niobium tube process, which
have been published. Circles in this figure are the
operating current density of the wires actually in the

coils listed in Table 1.
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I1I. Mechanical Properties of the Japanese (ryogenic Steels

(JCS) at Cryogenic Temperature
H. Nakajima, K. Yoshida, and H. Tsuji

Superconducting Magnet Laboratory
Division of Thermonuclear Fusion Research
Naka Fusion Research Establishment

Japan Atomic Energy Research Institute

1. INTRODUCTION

Japan Atomic Energy Research Institute (JAERI) started
development of new cryocogenic steels for the superconducting
magnets of the Fusion Experimental Reactor (FER) in collabora-
tion with four steei companies in 1982. JAERI required a
strength-toughness combination (¢y>1,200 MPa, K;.>200 MPa,/m,
called JAERTI box) that was beyond the capabilities of the
existing austenitic stainless steels for cryogenic use. Up to
now, JAERI has successfully developed the new cryogenic steels
named "Japanese Cryogenic Steels"” (JCS). These steels were
supplied from industrial heats (5 - 50 tons) and their mechan-
ical properties satisfied requirements mentioned the above.
These steels have been already used in superconducting coils,
such as JAERI's Demo Poloidal Coils (DPC).

It was already reported that the development of the JCS
for the superconducting magnets of the FER.! This paper 1is a
summary of mechanical properties of the JCS at cryogenic

temperature.
2. REQUIREMENTS FOR THE NEW CRYOGENIC AILLQOYS

The conventional austenitic stainless steels, 304L and
318L that were not specially developed for cryogenic use were
applied to cryogenic structures. As these steels had poor
mechanical properties, nitrogen-strengthened austenitic stain-
less steels, 304LN and 316LN were substituted for them in

_8_
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large superconducting coils for LCT program.2’3 JAERI inves-
tigated the effect of carbon and nitrogen contents on the
strength and Charpy absorbed energy of 300-series austenitic
stainless steels to apply these steels to Japanese LCT

coil.?4-9

However, Structural materials for the superconducting
coils of the FER must have higher strength and fracture tough-
ness than 304ILN or 3186LN at liquid helium temperature. JAERI
determined targets for the engineering properties of the
structural materials before the specifications of the FER had
~ been fixed.6’7 The targets which were determined from stress
analyses, properties of the superconducting materials, crack

propagation analyses, coil operation were as follows:

(1) Yield strength : more than 1,200 MPa at 4 K.
(2) Fracture toughness :@: more than 200 MPa/m at 4 K.
(Charpy abéorbed energy : more than 100 J at 4 K.)
(3) Fatigue characteristics : similar to those of 316 auste-
nitic stainless steel at 4 K.
(4) Magnetic permeability : not specified
(non-magnetic material is preferred).
(5) Corrosion resistance : good rust resistance.

(6) Good workability and weldability.
3. DEVELOPMENT OF THE NEW CRYOGENIC ALLOYS

The data obtained by different laboratories could not be
compared because there were no ctandards for cryogenic materi-
al testing. The method of testing at 4 K is very important in
evaluating the material properties. Even though the standard-
ization of cryogenic test methods has progressed by a US-Japan
collaboration, there still remain several problems.g’g'10 To
eliminate the difficulty of interlaboratory comparisons, it is
necessary that only one laboratory conducts material tests at
4 K to select a candidate from the materials produced by
different steel companies. Therefore, all tests at 4 K were
performed by JAERT. Screening tests to develop new cryogenic

steels were tension and Charpy jmpact tests. Fracture tough-

igm
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- ness test using computerized unloading compliance technique
was conducted for a further screening.ll
Materials evaluated at JAERI are classified into ferritic
steels (FS), high manganese austenitic steels (HMS), austenit-
ic stainless steels (88), and high manganese austenitic stain-
less steels (HMSS). Tested steels are all newly developed
cryvogenic materials except for a few austenitic stainless
steel and ferritic steel such as 9% nickel and maraging steel.

Figure 1 shows the relation between the Charpy absorbed
energy and the yield strengthlz. Our target shown by the
hatched area is located over the line which is extrapolated
from 304LN and 318LN austenitic stainless steels. All test
results are plotted in this figure. The materials that satis-
fy the target are austenitic stainless steels and high manga-
nese austenitic stainless steels, except for one ferritic
steel and three high manganese austenitic steels. The struc-
tural material of the Japanese LCT coil, 304LN manufactured by
the electron slag remelting (ESR) process, shows high energy
compared with conventional 304LLN and 316LN steels. This
suggests that the purity of the material affects its tough-
ness. JAERI decided that the austenitic stainless steel
development should be continued, and stopped the development
of ferritic and high manganese steels. The reason was the
poor rust resistance of the latter.

Figure 2 shows the relation between fracture toughness
and yield strength. The target, called "JAERI Box", is also
located above the trend line for 304-type stainless steels
measured by the National Institute of Standards and Technology
(formerly National Bureau of Standards)ls. The results for
materials that passed the goals of tension and Charpy tests
are plotted in this figure. Half of the tested materials
satisfy the target. High Cr-Ni austenitic stainless steéls
have a better balance of fracture toughness and yield strength

in -compariscon with high Mn austenitic stainless steels.
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4. JAPANESE CRYOGENIC STEELS (JCS)
4.1 Mechanical properties of the base metals

From the screening tests, b5 materials were selected and
then produced on an industrial scale. These structural alloys
were named "Japanese Cryogenic Steels” (JCS). Each name and
the corresponding chemical composition is shown in Table 1.
All steels are austenitic stainless steels. Two are high Cr-
Ni (csUs-JN1t4:15 JKA1l), two are high Mn (CSUS-JIN215.16,17
JK218), and one is medium chemical composition (CSUS—JJllg).
The tensile properties of the JCS are shown in Table 2. The
JCS have both high strength and high ductility at 4 K.

Figure 3 shows a typical stress-strain curve for a new
cryogenic stainless steel.20 The stress-strain curve shows a
" unique and strange behavior, called serration, in the plastic
region at 4 K as‘shown in Fig. 3. The JCS have higher yield
strengths than 300-series austenitic stainless steels. But it
has lower ductility than that of 300-series austenitic stain-
less steels. When serrations occur the load drops on the new
cryogenic structural materials are larger than those on 304LN
austenitic stainless steel as shown in Fig. 3.

Fracture toughness data for the JCS are also shown in
Table 2. During fracture toughness tests, serrations occur in
the plastic region as observed during the tension tests.

Small unstable crack growth, like pop-in cracks, can OocCcur
during serrations. However, the JCS materials do not fracture
in an unstable fashion. Consequently, the JCS has high frac-

ture toughness.
4.2 Mechanical properties of weldments

The requirements for the mechanical properties of weld-
" ments are the same as those for the base metals at cryogenic
temperatures. Usually however, weldment properties decrease
compared to the base metals. Therefore, we adopted weldments
which had the best properties, even if their mechanical
properties did not satisfy the target. Tungsten inert gas
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(TIG) welding and electron beam (EB) welding were applied to
the JCS, and these weldments have been evaluated now2l:22

The mechanical properties of the weldments are shown in
Table 3. The strength of TIG welded joints is lower than that
of the base metals. The fracture toughnesses of TIG joints
are also lower than those of the base metals. On the other
hand, the EBW properties compare favorably with those of the
base metals. In fact, the fracture toughnesses of EBW joints
of CSUS-JN1, JN2, JKZ2 are higher than those of the base met-

als.
4.3 Mechanical properties of Conduit Materials

Thin plates are used for the conduit material of a con-
ductor. The base materials and weldments suffer from cold
working when the conductor is formed. In addition, the con-
duit material for NBBSn conductors suffers from the reaction
heat treatment (for example, 700 °C x 200 hours}, which de-
grades the ductility of the material due to sensitization.
Some verification tests to clarify these problems were con-
ducted before application of the JCS to conduits23. Tested
materials were CSUS-JN1, JN2, JK2 and JKAl. 1In addition,
specially developed CSUS—JK124, whose ductility does not
decrease after the NbaSn reaction heat treatment, was tested.
The yield and tensile strengths of a thin plate in the solu-
tion treated state slightly increased in comparison with those
of a thick plate. Both the yield and tensile strengths
slightly decreased due to heat treatment. The effect of heat
treatment on elongation is a serious problem in some JCS. The
elongation of materials subjected to heat treatment drastical-
ly degrades, except for that of CSUS-JK1 as shown in Fig. 4.
It was verified that CSUS-JK1 was effective for conduits which
suffer from NbgSn activation heat treatment, and also that

other JCS could be used for the conduits of Nb-Ti conductors.
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5. VARIABLES IN CRYOGENIC TESTING
5.1 Effect of specimen size

The effect of specimen size on tensile and fracture
toughness properties of the JCS were investigated25. Figure 5
shows a load-time chart for a CSUS-JJ1 tension test with a
large specimen. The observed tensile behavior 1is similar to
that of the 7 mm diam. specimen. Figure 6 compares the me-
chanical properties of the 7 mm and 25 mm diam. specimens.
Ultimate tensile strength and reduction of area slightly
decrease with increased specimen diameter. However, the
decreases are equivalent to measurement uncertainties for the
material properties.

Figure 7 shows Jy. versus specimen thickness for CSUS-JN1
and JJ1. There 1s little or no size effect in thick specimens
and brittle fracture does not occur even if the plane strain
condition is satisfied. However, the fracture toughness of
12.5 mm thick CSUS-JJ1 specimen 1is higher than those of other

thicknesses.
5.2 Effect of Test Rate in Tension Test

Figure 8 shows the yileld and ultimate tensile strengths
of CSUS-JK2Z with varying test rate. Yield strength is not
influenced by the test rate, but ultimate tensile strength is
decreased at test rates higher than 1073 ¢~1, serration
phenomena also change with the test rate. Serrations do not
oceur at high test rates, due to extreme adiabatic heating of
the material. With regard to tension test, a consensus method
was established under a US-Japan collaboration. This will be
standardized as ASTM standard in US 9 and JIS Z 2277 regarding
cryogenic tension test was already established based on this
consensus method in June 1990 in Japan. The test rate recom-
-1

mended by the standard is less than 10’3 S The maximum

rates in our tension tests are below that limit.



JAERI-M 9:—-124

5.3 Effect of test control in fracture toughness test

Figure 9 shows load-displacement curves of three differ-
ent controls for 25 mm thick CT specimens. Load-drops during
serrations are sharp when displacement control is used. On
the other hand, no load-drops and rapid increase of displace-
ment occurs when tests are conducted using load control.
Figure 10 shows J - Aa curves for three controls. All data
points are on the same curve up to the 0.15 % offset line.
But the slope of the regression line using load contrel is
larger than that using other controls, due to different behav-
ior observed in the load-displacement curve when serration
occurs. Consequently, the test using load control indicates
lower JIc as compared with stroke or displacement control
tests. The JCS, however, did not exhibit brittle fracture

even when fracture tests were conducted using load control.

6. APPLICATION OF THE JCS

JAERI used the JCS as structural materials for the Demo
Poloidal Coils (DPC)26’27. The DPC project aims to develop
the technology for the ohmic heating coils of the FER. These
coils suffer from complicated cyclic forces due to pulsed
operation for plasma ignition. The DPC is composed of three
coils; a pair of Nb-Ti forced-flow coils (DPC-U1,U2) and a
NbgSn forced-flow coil (DPC-EX), installed between DPC-Ul and
DPC-U2. Figure 11 shows a schematic of the DPC. The JCS used
in the DPC were thlck plates for the coil supports and bolts,
and thin plates for the conduit materials and the cryogenic
" buffer tank. CSUS-JK2 and JK1 were used as coil supports and
bolts, respectively. CSUS-JN1 and JK1 were used for the
conduit material of the DPC-Ul,U2 and DPC-EX, respectively.

In addition, CSUS-JKAl was used for the cryogenic buffer tank.

7. SUMMARY

JAERI, in collaboration with four steel companies, has

successfully developed new cryogenic steels, JCS, for the

— 14__
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superconducting magnets of the FER. The new steels have high
strength-toughness combinations (o y>1,200 MPa, KIC>2OO MPa/m)
that are beyond the capability of conventional austenitic
stainless steels for cryogenic use, as shown in Fig. 12.
These steels have been already used as the structural materi-
als of real superconducting coils, JAERI s Demo Poloidal

Coils.
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Table 2 Mechanical properties of the JCS base metals

Jcs YS TS EL RA CVN I1e Kie
(MPa)  (MPa) (%) (%) (J)  (ki/m?) (MPa/m)
CSUS-JN1 1403 1782 40 b2 183 196 201
CSUS-JKA1 1295 1534 34 49 250 460 - 302
CSUS-JN2 1215 1603 36 46 125 182 189
CSUS-JK2 1203 1623 39 52 124 188 202
CSUS-JJ1 1110 1574 43 51 185 372 267

Table 3 Mechanical properties of the JCS weldments

JCS YS TS JIC KIC
(MPa) (MPa)  (kJ/m?) (MPa/m)

CSUS-JN1 TIG 1196 1553 138 167
EBW 1396 1761 290 242
CSUS-JKAL Ti6
EBW 1293 1602
CSUS-JNZ TiG 1138 1449 128 157
EBW 1287 1646 230 216
CSUS-JK2 TIG 1316 1535 125 155
EBW 1173 1604 269 241
CsUS-JJ1 TIG 1207 1499 197 195
EBW 1229 1604 307 242
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M. Review of Radiation Degradation Studies at JAERI on
Composite Organic Insulators Used in Fusion Magnets
S. Egusa,l T. Seguchi,l M. Hagiwara,l H. Nakajima,2

sS. Shimamoto,2 M. A. Kirk,3 and R. C. Birtcher3

lTakasaki Radiation Chemistry Research Establishment, Japan
Atomic Energy Research Institute, Takasaki-shi, Gumnma 370-12,
Japan.

zNaka Fusion Research Establishment, Japan Atomic Energy
Research Institute, Naka-machi, Naka~-gun, lbaraki 311-02,
Japan.

3Materials Science and Technology Division, Argonne National
Laboratory, Argonne, Illinois 60439, U.S.A.

1. INTRODUCTION

In the construction of superconducting magnets for Tokamak
and Mirror type fusion reactors, large amounts of polymer ma-
trix composites are used as mechanical supporters and as elec-
trical and thermal insulators. The magnets will be subjected
to substantial quantities of neutrons and ¢ -rays during the
fusion-reactor operation, thus leading to significant degrada-
tion of the magnet component materials such as insulators,
stabilizers, and superconductor‘s.l_3 Probably the degradation
is most serious for composite corganic insulators, because or-
ganic materials are usually less radiation resistant than inor-
ganic materials. Thus the operating lifetime of the magnets
may be virtually determined by the radiation resistance of the
insulators.

The present paper is an interim report on the progress
made by the authors since 1983 in understanding the irradiation
effects on the mechanical properties of polymer matrix compo-

4-25 Thig paper mainly

sites to be used in fusion maghets.
describes the mechanical properties of glass fiber composites
tested at 77 K, 4.2 K, and at room temperature after 60Co w o=
ray and neutron irradilations at room temperature or at 5 K.

Based on the composite degradation behavior, the mechanisms
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underlying the irradiation effects on polymer matrix composites
are discussed with respect to factors such as composite type,

test temperature, radiation type, and irradiation temperature.
2. EXPERIMENTAL

Most composites studied here were especially prepared by
using the reinforcing filler shown in Table 1, and the matrix
resin of epoxy or polyimide. The epoxXy resin was tetraglycidyl
diamincdiphenyl methane (TGDDM) cured with diamino diphenyl
sulfone (DDS), or diglycidyl ether of bisphenocl A (DGEBA) cured
with diamino diphenyl methane (DDM). The polyimide resin was
polyaminobismaleimide (Kerimid 601). Unless otherwise noted in
the text, the matrix resin of TGDDM/DDS epoxy and the E-glass
fabric of KS$-1210 were used in this work. Commercially availa-
ble glass fiber composites such as G-10CR and G-11CR were ob-
tained from Spauiding Fibre Company, Inc. The matrix resin in
G-10CR was a solid DGEBA cured with dicyanodiamide, while that
in G-11CR was a liquid DGEBA cured with DDS. The 1.7-3.2 mm
thick sheets of the obtained composites were cut into rectangu-
lar specimens of 6.4 mm width and 70 mm length. The cutting
was made so that the 70 mm axis was in a 0° or 45° orientation
with respect to the warp and f£il11l, thus cbtaining 0° or 45°
specimens.

60Co y -ray irradiations were made in air at room tempera-
ture with a dose rate of about 0.02 MGy/hr. For some specimens,
2 MeV electrons from a Cockeroft-Walton type accelerator were
used in place of v -rays. The two types of radiation were
confirmed to be equivalent in the irradiation effects on poly-

18,25

mer matrix composites. Neutron irradiations were carried

out in the Intense Pulsed Neutron Source (IPNS) at Argonne

26 The in-air room-temperature irradia-

National Laboratory.
tions were made in horizontal thimbles called "Rabbit” and
“"H2", while the 5 K irradiations in liquid helium were made in
a vertical thimble called "VT2".

Three-point bend tests were conducted at 77 K, 4.2 K, or
at room temperature. For specimens irradiated at 5 K with

neutrons, the tests were performed after warmup to room temper-
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ature. The failure tests were made at a crosshead speed of 0.5
or 0.6 mm/min with a span length of 20 or 24 mm. The ultimate
flexural strength was calculated from 3Pg( £ /h)/2bh for a 0°
specimen, while for a 45° specimen the ultimate interlaminar
shear strength was calculated from 3Pp/4bh, where Pp is the
applied load at failure, ¢ is the span length, b is the speci-
men width, and h is the specimen depth (thickness).

3. RESULTS AND DISCUSSION
3.1 Temperature Dependence of Composite Strength

Glass/epoxy composites having various degrees of cure of
the matrix resin were prepared by changing the cure condi-
tions.17 The ultimate flexural strength of a 0© specimen test-
ed at 77 K or at room temperature is plotted in Figure 1 as a
function of the gléss transition temperature of the matrix
resin, Tg. The Tg is closely related to the degree of cure of
the matrix resin and its mechanical properties.

The composite strength at room temperature (Fig.l) scarce-
ly depends on the Tg, although in the Tg range below 140 °C the
strength has a tendency to decrease slightly. This result can
be explained by a fiber-controlled failure mode such that the
failure of a composite occurs when the composite strain is
reached at the ultimate strain of fibers. 1In this failure
mode, the composite strength is independent of the ultimate
strain of the matrix as.long as the matrix ultimate strain is
higher than the fiber ultimate strain. Thus the composite
strength at room temperature scarcely depends on the Tg, be-
cause usually the matrix resin is more ductile than the fiber.

The composite strength at 77 K (Fig. 1) is lower than that
at room temperature in the Tg range below 140 °C. The strength
at 77 K, however, begins to increase with increasing Tg at
about 140 °C, and then levels off at Tg values of 180°C or above,
approaching a value about twice that at room temperature.

These results can be explained by a matrix-controlled failure
mode such that the fallure of a composite occurs or at least
begins when the composite strain is reached at the matrix ulti-
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mate strain. In this failure mode, the composite strength 1is
virtually determined by the matrix ultimate strain instead of
the fiber ultimate strain. Thus the composite strength at 77 K
depends on the Tg, because the matrix resin becomes brittle on
cooling. These considerations lead to a conclusion that when
the present glass/epoOXy composite is fabricated as a low-tem-
perature material, the Tg value should be used as a monitor for
the quality contrel. In the present work, the glass/epoxy
composites having a Tg above 210 °C were used as starting mate-
rial for the study of irradiation effects.

The about two-fold increase in the composite strength on
cooling to 77 K in the Tg range above 180°C (Fig. 1) is due,
for the most part, to a cooling-induced increase in the bundle
strength of E-glass fibers in the composite. In fact, such an
increase in the composite strength on cooling occurs also for
other kinds of Efglass fiber composites such as the glass/epoxy

(DGEBA/DDM), glass/polyimide, G-10CR, and G-11CR composite. 13
16,18

3.2 Degradation Behavior for v -Ray or Electron Irradiation

The ultimate flexural strength of a 0@ specimen tested at
4.2 K is plotted in Figure 2 as a function of the absorbed dose
in matrix for the five kinds of E-glass fiber composites irra-

12 Comparison of

diated with 60¢co y -rays at room temperature.
the dose dependence among these composites reveals that the
radiation resistance increases in the order of the G-10CR < G-
11CR = glass/epoxy (DGEBA/DDM) < glass/epoxy (TGDDM/DDS) <
glass/polyimide composites. This result strongly suggests that
the radiation resistance of the matrix resin increases in the
order of DGEBA type epoxy < TGDDM type epoXxy < polyvimide, be-
cause for all of these composites the reinforcing filler is E-
glass fiber cloth with a comparable volume fraction of fibers.

The ultimate flexural strengths of these composites tested
at 77 K are essentially the same as those shown in Figure 2
both before and after irradiation.13 This result appears to be
attributed mainly to the temperature dependence of the mechani-
cal properties of the matrix resin. The stiffness of epoXy
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resins is, in fact, almost temperature-independent between 4.2
and 77 K, although between 300 and 77 K the stiffness increases
by a factor of about 3 on cooling.

The ultimate flexural strength tested at room temperature,
on the other hand, differs from that tested at 4.2 or 77 K, as
shown in Figure 3 for the glass/epoxy and glass/polyimide com-
posites.18 Comparison of the 77 K and room-temperature data
points for each composite shows that the initial strength at 77
K is about twice that at room temperature, and that a decrease
in the strength by irradiation is appreciably greater at 77 K
than at room temperature. ]

The ultimate interlaminar shear strength of a 45° specimen
tested at 77 K or at room temperature is plotted as a function
of absorbed dose in Figure 4 for the glass/epoxy and glass/

21 Comparison of the 77 K and room-tem-

polyimide composites.
perature data points for each composite shows that the initial
strength at 77 K ié about twice that at room temperature, and
that a decrease in the strength by irradiation is appreciably
greater at 77 K than at room temperature. It is particularly
worth noting that the dose dependence at each temperature fol-
lows an identical pattern for the two composites. These find-
ings indicate that the dose dependence of the composite shear
strength is dependent only on the test temperature, and is much

less dependent on the matrix resin in the composite.
3.3 Degradation Mechanism of Flexural Strength

Figures 2 and 3 show that the dose dependence of the com-
posite flexural strength is quite complicated, depending not
only on the matrix resin in the composite but also on the tem-
perature during the mechanical test. As one possibility of the
most dominant factor determining such complicated dose depend-
ence, let us consider the ultimate strain of a matrix.

Figure 5 shows a relationship between the composite ulti-
mate strain and the matrix ultimate strain for the 0° specimens
of the glass/epoxy and glass/polyimide composites tested at 77
K and at room temperature. The relationship was calculated by
using the experimental data for these composites and for the

— 30 —
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pure epoxy and ﬁolyimide resins jrradiated up to the same doses

18 The composite ultimate strain is seen to

as the composites.
increase with an increase in the matrix ultimate strain in a
gimilar pattern for both of these composites at 77 K. At room
temperature, on the other hand, the composite ultimate strain
appears to increase at first, and then levels off at a matrix
ultimate strain of about 4% or above.

These findings strongly suggest that the polymer matrix
composites studied here have at least two different failure
modes when tested in the warp direction of the reinforcing
fabrics. In Figure 5, the composite ultimate strain which
increases linearly with the matrix ultimate strain is most
likely assigned to the matrix-controlled failure mode described
in the previous section of this paper. The composite ultimate
strain which is almost independent of the matrix ultimate
strain, on the other hand, is assigned to the fiber-controlled
failure mode. :

In corder to discuss this point quantitatively, we have
tried to derive an expression for the relationship between the
composite ultimate strain and the matrix ultimate strain.1®
The broken lines in Figure 8 show the matrix- and fiber-con-
trolled failure modes. The solid curve, on the other hand,
shows a complex failure mode such that the failure of a compo-
site is caused by interactions between the matrix- and fiber-
controlled failure modes. The solid curve indicates that the
composite ultimate strain increases with an increase in the
matrix ultimate strain at first, and then approaches gradually
the fiber ultimate strain. This characteristic of the complex
failure mode is, in fact, observed for the composites studied
here, as seen in Figure 5. 1t 1is reasonably concluded, there-
fore, that the dose dependence of the composite flexural
strength is virtually determined by a change in the matrix

ultimate strain due to irradiation.
3.4 Degradation Mechanism of Shear Strength

Figure 4 shows that the glass/epoxy and glass/polyimide
composites are quite similar to each other in the dose depend-
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ence of the ultimate interlaminar shear strength at each test
temperature. The identical dose dependence of the shear
strength may reflect a similarity of the fiber/matrix interface
between the two composites. The surface treatment of the glass
fibers is, in fact, the same for both of these composites.
These facts suggest that the degradation of the composite shear
strength is dominated by the radiation damage at the fiber/ma-
trix interface rather than that in the matrix.2!
This idea is consistent with the scanning electron micro-
scope observation reported by Takeda et al. for the same glass/
epoxy composite as used in the present Work.ll According to
their observation made after interlaminar shear tests, the
fracture surface of the irradiated composite displays separa-
tion or debonding between the fiber and the matrix, thus re-
flecting the radiation-induced decomposition of surface-treat-
ing compounds at the fiber/matrix interface. It will be rea-
sonable to concludé, therefore, that the degradation of the
composite shear strength is virtually determined by a change in

the fiber/matrix bond strength due to irradiation.
3.5 Effect of the Type of Reinforcing Fabric

The ultimate flexural strength of a 00 specimen tested at
77 K is plotted as a function of absorbed dose in Figure 7 for
the glass/epoxy composites having different reinforcing fabrics
shown in Table 1.25 The plots show that the initial strength
of the KS$-1210 or WITX-118E fabric composite is 28-40% higher
than that of the KS$-1600 or WTA-18W fabric composite, thus
indicating that the initial strength is dependent on the fabric
weave parameters such as the number of fibers in a yarn and the
number of yarns in the warp and fill directions. The plots
also show that the initial strength is less dependent on wheth-
er the reinforcing fiber is E-glass or T-glass.

Following irradiation the strengths of these composites
(Fig. 7) decrease monotonically with increasing absorbed dose.
Roughly speaking, the dose dependence appears to follow a ra-
ther similar pattern for all of these composites, thus suggest-
ing that the degradation of the composite flexural strength
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depends neither on the type of fabric weave nor the kind of
glass fibers. This result 1s consistentlwith the above-men-
tioned mechanism such that the dose dependence of the composite
flexural strength is virtually determined by a change in the
matrix ultimate strain due to irradiation.

The fact that the T-glass fiber composites are comparable
to the E-glass fiber composites in the radiation resistance
(Fig. 7) is of great importance from the standpoint of their
applications to fusion magnets. This is because composite
jnsulators in actual fusion magnets are subjected to neutrons
and 7 -rays simultaneously, with more than half of the total
absorbed dose resulting from neutrons. It is now generally
recognized that the neutron irradiation of boron-containing E-
glass fiber composites produces additional radiation damage due
to a 10B(n, a)7Li reaction in E-glass fibers, thus significant-
ly decreasing the radiation resistance of the composites to-
wards neutrons.7;14’15 For boron-free T-glass fiber composites
(see Table 1), on the other hand, the extent of the radiation
damage due the 105 reaction will be negligible, thus leading to
a higher radiation resistance towards neutrons compared to the
E-glass fiber composites. These considerations lead to a con-
clusion that the T-glass fliber composites are more recommenda-
ble than the E-glass fiber composites as component materials to

be used in fusion magnets.
3.8 Degradation Behavior for Neutron Irradiation

The ultimate flexural strength of a 0° specimen tested at
77 K is plotted in Figure 8 as a function of the total neutron
fluence for the glass/epoxy and glass/polyimide compesites
irradiated in the IPNS thimbles of Rabbit, VT2, and g 14,15
Comparison of the degradation behavior between the two compo-
sites reveals that the glass/polyimide composite is comparable
" or even inferior to the glass/epoxy composite in the radiation
resistance towards neutrons.

Taking into account the advantages of epoxy resins over
polyimide resins in cost and processing, this result is rather

unfavorable for the glass/polyimide composite, even though this
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composite is superior to the glass/epoxy composites in the
radiation resistance towards 7y -rays (see Fig. 2 or 3). This
is because in actual fusion magnets, the neutron contribution
to the total absorbed dose is estimated to be greater than the
¥y -ray contribution. These considerations lead to a conclusion
that the TGDDM/DDS epoxy composite is more recommendable than
the polyimide composite as component materials to be used in
fusion magnets. )

Comparison of the VT2 and Rabbit data points for each
compoéite shown in Figure 8 suggests that the dose dependence
of the flexural strength follows an identical pattern regard-
less of the 5 K and room-temperature irradiations. This find-
ing and the similarity of the neutron spectrum between the VT2
and Rabbit thimbles?®
temperature of 5 K and room temperature has no significant

strongly suggest that the irradiation

influence on the degradation behavior of a polymer matrix com-

posite.
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Fig. 1 Plot of the ultimate flexural strength at 77 K and at
room temperature versus the glass transition temperature of the
matrix resin for the 0° specimens of the glass/epoxy (TGDDM/

DDS) composites prepared under the various cure conditions.
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Fig. 2 Plot of the ultimate flexural strength at 4.2 K versus

the absorbed dose in matrix for the 0° specimens of E-glass
fiber composites irradiated with 6000 v -rays at room tempera-
ture. Only the matrix resin is indicated in this figure to

designate the composite, except for G-10CR and G-11CR.
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room temperature versus the absorbed dose in matrix for the 0°
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