e Y ey ooy 7 AR

JAER! -M
32-087

MOMENTUM AND HEAT FRICTIONS BETWEEN
FAST IONS AND THERMAL PLASMA SPECIES

June 1992

Jian Ping WANG? Masafumi AZUMI, Keiji TANI
and James Donald CALLEN""

H * R ¥ h & R F
Japan Atomic Energy Research Institute



JAERI'M L #— F i3, HABTHREFAAZMIAAL T 2HEREEFTT,
AFORS L, HARETHF TGRSR ARE (F319— 1IRM G RiE)
AT, BELILLTE G, 4B, IO IHERARTAVSESER Y 7 — (TI-11EK
EFFTA RN IR T TN THSI L 2 EBER S B I~ TEN ET.

JAERI-M reports are issued irregularly.
Inguiries about availahility of the reports should be addressed to Information Division, Departrnent

of Technical Information, Japan Atomic Energy Research Institute, Tokai—mura, Naka—gun,

lbaraki-ken 319-11, Japan.

© Japan Atomic Energy Research Institute, 1992

W RRAT B AR F NIRRT
£ ] B Emd el A it



i

JAERI-M 92-087

Momentum and Heat Frictions Between Fast Ions

and Thermal Plasma Species

*
Jian Ping WANG , Masafumi AZUMI, Keiji TANT
ek
and James Donald CALLEN

Department of Fusion Plasma Research
Naka Fusion Research Establishment
Japan Atomic Energy Research Imstitute
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(Received May 25, 1992)

Momentum and heat friction forces between fast ions (isotropic to
the lowest order) and thermal bulk plasma species (near Maxwellian) have
been derived analytically for the first time using the linearized Fokker-
Planck collision operator. Therefore effects of flow-type distortion of
test particles and flow-type restoring from field particles are both
retained self-consistently. Here, the momentum and heat friction forces
are defined as the momentum moments of the Coulomb collision operator

weighted by Laguerre polynomials LU(3/2)(w2a/v2Ta) and Ll(g/g)(wza/vau)
respectively, i, e. momentum friction force FOH/BE f mawﬁL0(3/2)

¢ £, £,1 d°w while heat friction force F?/B S f m W L1(3/2)
af "o’ B o o

Cuﬁ[fu’ fB] d3 . Where Wa = véva represents the random veloccity

measured in moving reference frame of test particles, and the superscript
a/f denotes test particles of a species colliding with field particles
of B species. The momentum and heat friction forces have been explicitly

calculated for electron-fast ion collisions (Fi/f), fast ion-electron

collisions (Ff/e

* }, thermal ion-fast ion collisions (Fi/f) and fast ion-
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thermal ion collisions (Fi/l) wherein the subscripts k's correspond to

the indices of Laguerre polynomials (k=0, 1). The collisional moment
matrix is shown asymmetric in the presence of fast ions because the

approximate self-adjointness of the Coulomb collision operator is no

longer a wvalid property.

Keywords : Fast Ions, Friction Forces, Collisions
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1 INTRODUCTION

Frictional forces specifying the collisional transfer of momentum and en-
ergy flux are important to transport theory, pérallel neoclassical current,
resistive instability studies and neutral beam injection heating etc. The fric-
tion forces have been well formularized for thermal plasma collisions by many
authors.'™ However, this problem has not been well answered for fast ion—
thermal plasma collisions except the preliminary estimation given in Ref. 3
which considers the parallel momentum friction force for collisions between
fast ion test-particles and Maxwellian field-particles only. It emerges neces-
sary to quantify the friction forces for evaluations of bootstrap currents in
plasmas with fast ion component, which are of more and more interests for

maintaining more stable plasmas in present large tokamak devices.

In this paper, the momentum friction Fy and heat friction Fy, between
fast ions and thermal plasma species, are calculated using the linearized full
Fokker-Planck collision operator thereby retained the restoring effects from
.ﬁeld-pa,rticles. The fast ion distribution is presumably consisted of a lowest

order isotropic function®®

?if'rs 1
dr v3 4 v?

H(UU - 'U), (1)

for =

and a higher order flow-type distorted function fiy o< H(ve — v}.>® Here, 7

is the fast ion production rate, T, represents the slowing-down time defined

by
4 4rn.Zie*ln A

3T memgv 2)

vo denotes the fast ion birth speed assumed much faster than ion thermal

1_
Ts

speed but much slower than electron thermal speed, i.e. vh < vg K v,
H{vg — v) is a unit step function which vanishes abruptly for its negative

argument, and v, represents the critical speed given by

DY B/ mevy, 1o, ve (3)
i 4 m; Tle i
beyond which drag by electrons dominant and by ions otherwise. In Sec. 2,

the general formulas for calculating friction forces are presented, which can

_lt
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be applied to arbitrary a species test-particles and 3 species field-particles.
Formal expressions for Rosenbluth potentials are also given, assuming that
field-particle distribution can be expanded in terms of spherical harmonics for
its solid angle dependence, for later reference. In Sec. 3, thermal test-particle
species 1s considered assuming that the distribution function is consisted of a
local Maxwellian and a small flow-type distortion (two-polynomials). Then,
a formal expression of the frictional moment Mf’w (k=0,1) is presented for
thermal test-particle collisions with an arbitrary isotropic, thermal or ener-
getic, field-particles in Sec. 3.3.1. Furthermore, Mi/f and M:;/f are calculated
for electron — fast ion and ion ~ fast ion collisions accordingly. In parallel, the
restoring frictional moment N:/ﬁ {k = 0,1) due to collisions with distorted
field-particles is discussed and applied to specific calculations for Nz’/f and
Ni/fmoments in Sec. 3.3.2. Next, Sec. 4 is devoted to the determination of
friction moments due to collisions with distorted thermal field-particles. The
isotropic test-particle species is kept unspecified at first for more generality
in discussing the frictions with maxwellian field-particles and the restoring
frictions with the distorted thermal field-particles in subsections 4.4.1 and
4.4.2 respectively. Then, the results are applied to the explicit derivations
of MI/*, M| NI/* and NI”. Finally, in Sec. 5, total friction forces are
summarized into matrix forms for electron - fast ion e/ f collisions, fast ion
— electron f/e collisions, ion - fast ion i/ f collisions and fast ion — ion f/i
collisions respectively. Brief discussion i1s given on the asymmetry of these

matrix elements caused by the break of the approximate self-adjoint property

of the Coulomb collision operator.

2 COLLISIONAL MOMENTS

% a5 the random momentum

Define momentum and heat friction forces
moments of the Fokker-Planck collision operator weighted by Laguerre poly-

nomials, i.e., momentum friction force

F3” = [ mowe L7 (aL) Copl s fol & (4)
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be applied to arbitrary a species test-particles and J species field-particles.
Formal expressions for Rosenbluth potentials are also given, assuming that
field-particle distribution can be expanded in terms of spherical harmonics for
its solid angle dependence, for later reference. In Sec. 3, thermal test-particle
species 1s considered assuming that the distribution function is consisted of a
local Maxwellian and a small flow-type distortion (two-polynomials). Then,
a formal expression of the frictional moment M:m (k=0,1) is presented for
thermal test-particle collisions with an arbitrary isotropic, thermal or ener-
getic, field-particles in Sec. 3.3.1. Furthermore, Mi/f and Mi/f are calculated
for electron — fast ion and ion - fast ion collisions accordingly. In parallel, the
restoring frictional moment Nz/’a {k = 0,1) due to collisions with distorted
field-particles is discussed and applied to specific calculations for N;’/f and
N;.c/fmoments in Sec. 3.3.2. Next, Sec. 4 is devoted to the determination of
friction moments due to collisions with distorted thermal field-particles. The
isotropic test-particle species is kept unspecified at first for more generality
in discussing the frictions with maxwellian field-particles and the restoring
frictions with the distorted thermal field-particles in subsections 4.4.1 and
4.4.2 respectively. Then, the results are applied to the explicit derivations
of MI/¢, M{/" NI/* and NI/, Finally, in Sec. 5, total friction forces are
summarized into matrix forms for electron - fast ion e/ f collisions, fast ion
— electron f/e collisions, ion - fast ion i/f collisions and fast ion — ion f/i
collisions respectively. Brief discussion is given on the asymmetry of these

matrix elements caused by the break of the approximate self-adjoint property

of the Coulomb collision operator.

2 COLLISIONAL MOMENTS

0 as the random momentum

Define momentum and heat friction forces!
moments of the Fokker-Planck collision operator weighted by Laguerre poly-

nomials, i.e., momentum friction force

F = [ maw, L/ (al) Coplfe, S5} a0, (4)
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and heat friction force
R = = [ mowo L (o) Caslfa, fo] P (5)

where w, = v — V,, represents the random velocity measured in moving
reference frame of test particles (a species), and z], = w2 /v is the normal-
ized random kinetic energy. Combining Eqgs. (4) and (5), we can express the

frictional forces in the laboratory reference frame in a more compact form
FY/” = (-1 [ mav LE/2(s) Caglfor fol & )

for convenience of derivations, where z, = v*/v},_ 1is the normalized kinetic

energy. Obviously, the momentum friction forces defined in two reference

frame are equivalent to each other, i.e.,

Fgfﬁ — FS‘/.@’ (7)
which indicates the Galilean invariance physically. However, the heat friction
forces in two reference frames are related by

o e 10 Qaﬁ
Fl/ﬁzFl/ﬁ_?v% Vaf; (8)

with Qs = [d®v im,v?C,p denoting the collisional energy exchange rate.
The second term in Eq. (8) is usually second order and hence can be neglected
if o and A are both thermal species. Then, using Fokker-Planck form of the
Coulomb collision operator’’'? (also given in Appendix A) to integrate by

parts and using the tensor relation given in Eq. (D1) we can obtain
[ mav L @0) Caplfa, fo] d%
0
_ 3 qo/8. Y [ 7(3/2)
= My /d v J?2 3y [va (xa)]

o 2 . dh
= ma’?’aﬁfdav fa { (1 + "z_) lLis/z)($a)I + TLE‘:S/Q)VV a_vﬁ

B VT,
2 a2 g5
+ ELk (vhg—{—v-avav o for k =0,1. (9)

Where, I is a unit tensor, the dot on top of Laguerre polynomials denotes
the derivative with respect to its argument z,, and Rosenbluth potentials,
hs = h(fs] and g5 = g[fs], are functional of the field particle distribution.

In deriving Eq. (9), all of the surface integrals in velocity space have been

73_.
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dropped off considering that energy and momentum moments etc. are finite
thereby the distribution function has to vanish fast enough on the infinite
boundary. The relation V2g; = 2h5 has also been used.

From Eq. (9) it is not difficult to see that collisions of isotropic test
particles with isotropic field particles do not contribute to frictional forces
which are odd moments of velocity v. Therefore, linearizing the Coulomb
collision operator, the frictional forces can be reduced to the following form

(=1)FFe/? :_" (Mg” + NP (10)
af

Here, the relaxation time 7,5 for a — 3 collisions is defined as

14 4mngeled In Ayg (11)
wp 3T m2vg,

wherein In A,g ~ In A will be used consistently throughout this paper, and

nor [+ 4

2o M = [d% mav LY (za) Caplfra, Jod (12)

af
represents frictions arose from collisions of test particles (described by the
first order flow-distorted distribution f,,) with field particles (describe by
the the lowest order isotropic distribution fog), whereas

PN = [ mev P (e) Caglive fi) (13)
represents restoring frictions due to collisions of test particles (described by
the lowest order isotropic distribution fp,) with field particies (described by
the first order flow-distorted distribution fi5). Having obtained the above
three equations, the frictional forces can be calculated by substituting in ap-

propriate distribution functions for test and field particles.

To determine the Rosenbluth potentials needed, we assume that the dis-
tribution function for field particles can be expressed in terms of spherical

harmonics Y (§2) for its solid angle variation

Is —ZG V) Yo (2). (14)

Where the energy dependent coeflicient G(ﬁ )( ) can be further expanded

in terms of Laguerre polynomials for thermal plasmas. Substituting this

_4__7
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distribution function into Eq. {A5), we can obtain

hy = fd3rfﬁ( )

v v
v’
_ Ty () / 2y 2<_ G (v
g; tzm 2041 oS
X [ A Yo ()Y (S7)
. 12 3.4 (5)
_ E%Hnm(n)/v dv' < m 2"y, (15)
Where we have used the expansion given in Eq. (A7) and the orthogonality

of spherical harmonics [dQ'Yg, ()Y (2} = btpépmme. Similarly, we can

obtain
g = [EVI(VIV -V
= T gy Yenl) [0 Ve (V)
 Jorar i [t (2) - | et

vt 1 92 1
_ 12 Ve G(ﬁ) 16
E2€+1Y"“ ﬂ)] W' [2£+3 v2 24?-1] (v), (16)

using Eq. (A8). Here, v¢ = min(v,v’) whereas v, = max(v, v'). If the field-
particle distribution is isotropic, then the above results in Eqgs. (15) and (16)

will be reduced to the following form:

hg’) — /ds rfoﬁ( )

v—v|
¢
dn v

- j 2 gy /dﬂ’ ST ST V()Y (@ ) fos(v')

= 4#]1}'2 dv';foﬁ(”l) (17)

@ = [ hav -V
2
= 411'/1)’2 dv' vy !—:13— (Zf) + 1] fos(v'), (18)

since all G¥H(v') but G¥)(v') are zero.
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3. THERMAL TEST PARTICLES

The distribution function for thermal plasma species can be approximated

by a lowest order Maxwellian plus a flow-type fluid distortion of the form*

2 2 @
fia =3 [V L6/ (@) = 5 —au L (w0)| 117, (19)
where
fa) _ _ Mo
M= Wexp{—ma} (20)

1s the Maxwellian distribution, n, the density, T, the temperature, vy, =
/2T, /m, the thermal speed, p, the pressure, V, the mass flow and q, the

heat flux for a species.

3.1 Mf/ﬁ for thermal test particles

Substituting in the distribution function given in Eq. (19} and using
Eqs. (9) and (12), frictions of distorted thermal test particles with isotropic

field particles can be written as

2
i, L§3/2)) -

af8 Mo 3, 2 {3/2)
M = ma’yaﬁm/d ’UT (V L

Taf Ur, VT,

(©)
(3/2) /), v Ohy
{(1+ ﬁ)[L (zo) + 2z LY ]vav

2 . g
+ —Z—L,(ka/z)(asa) [vh(o) (v I8 ):l } for £k =0,1.
qu 'U v

Where th) = h[fos] and ggn = g[foa] are functional of the isotropic distribu-

tion for field particles of 3 species. Considering that

32gé0) + 2 3gf;

= _ h()
du? v Ov =2

Vigy =

the above equation can be reduced to a more compact form
M? = M uge + M usa. (21)

Where we have introduced the notations

If
<

Upy

Uiy

il
|
oL

&
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as mass flow and normalized heat flux respectively, and the matrix element

[o0)
M,f}m = 2%/ v? dv xaLg-a'/z)(ma)e_“'*

ng Jo
(0)
Mo\ [73/2) Fa, ] LR
X { (1 + mﬁ) [Lk (.‘Ia) -+ ZxaLk (330)] ;W

2 . 28
b ez, (3;150) _ 2995
Te

)}, for k,7 =0,1. (22)

To proceed further, we will consider e/ f and i/ f collisions separately below.

A. ]Lf;;./f friction coeflicients
For electro—fast ion collisions, Eq. (22) becomes

e M, g ~Te
MkJ/-'f ~ Qn—f]vo v? dv :ceLf'/z)(me)e

)
1 9

" { (1372 0) + 2L w0 S50

(0
2 r 3/2 1) 2agf 3
+—U%CL£ '(z.) (3}‘5’)*5—5@ . fork,j=0,1. (23)

neglecting the integrals over v € [0,v0], which are O(vé/v}) < 1, under
the standard fast ion approximation (v} < v§ < v%, ). Straightforward

calculations of integrating by parts will yield the following matrix elements:

Mgy My 132 24)
~ —m,
M Mgl 3/2 13/4
Which, in turn, yields the friction forces caused by Coulomb collisions of

electrons with isotropic fast ions

ne (MY mmengzi{ 132 Uoe 25)
Ter \ M1 Tee Te \ 3/2 13/4 uge

Here, we have utilized results for hgro) and g}o) given in Appendix B, the

electron-fast ion collisional relaxation time

1 _ 1 an?
Tef Tee Me ’

(26)

and the fast ion density ny = ns(vg).

— 7 —
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B. Mk /Ifriction coefficients

Considering thermal ion—fast ion collisions, Eq. (22) becomes

il _ T
M = 2—

Tf

©
(3/2) 3/2)] 1 9h;
{(H- f) L8/ (2:) + 221§ }v“—au

2 . 2 8¢\
+5%—Li3/2’ (3h5,°)_—i , fork,j=0,1. (27

/ v? dv a:,;Lg-3/2)(:c.;)e_""
0

v v

For & = 0, the above result is further reduced to

. N\ oo dn'”)
Ml = 2™ (1 N m) / Pdva, Lgs/z)(xi)e—xil_f (28)
0

ny my v dv
because all the other terms proportional to the derivative of Laguerre poly-
nomials vanish. The integral above can be carried out by using Eq. (B5) and

changing the order of the double integrations over v and v/, e.g.,

. 1dr©
M /f o / 2d’(‘) I,L(alz)( 1)6—.7:“___ ?'f
0 v dv

= _/ 2'dv:t:,,L(E'm( e T — / 42 dv’ foz(v")

= --/ 4o dy’ fof(v)/oo v E;—'LEE’/Z (zi)e™
0 y!
~ 0. (29)

Where, those exponentially vanishing terms have been neglected considering
the fast ion approximation {vp/vr,)? > 1. Similarly, for £ = 1, we can obtain

(referring Appendix D for more details)
i 15 U ELH (4
T O R SO (30)

with §;; being the Kronecker notation. It is interesting to notice that the

integral above can be cast into a form like

1 U
&y 25 P Bt YR 31
/ fof 2?1;1' vf, g (31)

which correlates to the fraction of energy transfered from fast ions to thermal

ions in the slowing down process:

3

Gizgfﬂovdv Vei (32)
0

2 3 3
vy v + v

__8__
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Therefore, the frictional forces for thermal ion and isotropic fast ion collisions

can be written in a matrix expression

ne [ My _ nemengZi( 0 0 ug; (33)
i \ My Te e \ M0 )\ uy
2 L)
g/ — 2% T
0 =53 G (34)

3.2 N(,:/ﬂ for thermal test particles

Frictions caused by collisions of Maxwellian test particles with flow-distorted

field particles can expressed as

(1)
aff _ 3 Ma [ (3/2) 2 22 Ohy
S [&v {( )[L (@)l B aav| -2
9 (1)
(3/2) h(l) 9s ~%a  for k = 0.1
TQL (zo) + Ve Guav| (& for .1

using Eqgs. (9) and (13). Where, hg) = h[f15] and gf,l) = g|[f16] are functional
given in Section II. Integrating by parts and dropping out the contribution-

less surface integrals, the above results can be further cast into the following

form:

o o) 2 _
4m ng mg ) v,

(3/2) F(3/2) 7 (3/2) Lf’/z)
L) =2 L Nk
x | L7 () Ly 1 (;1:)-+—1 g

~—% fdsv vg},”e—%Lf"’z)L?”)(%)} , fork=0,1 .(35)
v,

[+ 3

A. N¢/7 restoring frictions

For electron—fast ion collisions, neglecting the electron — fast ion mass

ratio m./my and small integrals O(v3/v%,), Eq. (35) gives

3 m. ™
Nf,/'f ~ ———~—~TE—/ T 7 dv? dﬂvh(I)
47 nf v g

with ¥ representing the unit velocity vector. Substituting in Eq. (15) for hsfl)

and assuming G, (v) & H(vo —v),? we have

oy = 2 Z / dSY 'Yy (S2) f “ v o' GE(w)
0

™ 3 2

__9_
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47 1
= 3 vganf (36)

Then, the restoring momentum friction force for electron—fast ion collisions

is obtained
N/ ~m,V; (37)

presuming the fast ion approximation v3/v} < 1. For k = 1, similar calcu-

lations lead us to an integral expression as follows

1
Ne/f ~ [/ dv? e % (—3 — 3.1'6) dQ2 {rhg})
4r Ty 2 g
u>vn

+—2-/ dvz.ree_”'eLgajz)(xe) dﬂ\‘fg&l)]
’UTc vp

Substituting in Eq. (16} for g}l) and following the same procedure as has

been used in deriving Eq. (36), we find

N 2
- (1) _ % 3 1{v
[, dave) = o [doy [5 (—) ”1] fulv)

- 4—“(2 - -—nfvf), (38)

3

where Q; = q; + %pfvf is the total fast ion energy flux. Therefore, the

restoring heat friction force acted on electrons by distorted field fast ions can

be approximated as

N/~ -;-mevf, (39)

by completing energy dependent integrals. Where, the energy flux term
proportional to Q; is of higher order, [e.g. O(v3/v% ) < 1], compared with
the mass flow term and henceforth neglected in deriving Eq. (39). Rewriting
Egs. (37) and (39) in a matrix form, we thus obtain

ne [ NP\ memongzi{ 10 oy

_ (40)
Ter \ N/ Tee Te | 3/2 0 u;

Here, the distribution fi; has been replaced by f; considering that the

isotropic part does not contribute to odd moments.
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B. Ni/f restoring frictions

Recalling Eq. (35), for Maxwellian ions being test particles while distorted

fast ions being field particles, we find

Ny 2 (g | vtz [dnenl).
4w ny my [ Jo

Because the solid angle integral above can be written as

47 oo v

~ ¢ (1 ” <

fdavhg,) = ?/dﬂ’v'fo o v’ =X fiy(V'), (41)
>

the restoring momentum friction force can be approximately expressed as

; 3 i ; 2,
N/~ 3/ my (1 + i) fd3v VEI:;—‘f]_f(V) (42)
mf v

4nf

reverting the order of the double integrations over v and v’ and utilizing the

fast ion approximations. Following the same procedure and noticing that the

solid angle integration of \“fgf;l)

/dﬂ‘ ) _ Mfdn' ’f dv’ v (———1) fuv),  (43)

we can obtain the restoring heat friction force arose from Coulomb collisions

can be cast into the form

of Maxwellian ions with field fast ions
z'/f 37(' m,, 3
N; / d vv—flf(v) (44)

Utilizing Eq. (11), restoring forces given in Egs. (42) and (44) can be sum-

marized in the following matrix form:

. Ni/f , Z% NW
n (N6 ) _memet B L fpyE g [ 0] )
T\ N ) T me my N
( wi _ o3 [ 1+ (mifmy) (46)
\N:/f v3 1

Again, the distorted fast ion distribution function has been replaced by its

total distribution since the isotropic part does not contribute.
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4. THERMAL FIELD PARTICLES

4.1 M}:/ﬂ for thermal field particles

For collisions of fast ions with Maxwellian field particles, Coulomb colli-

sion operator can be simplified to:

e 110
Crelfs, £i3] P b (U3ff) (47)
i L my v vg; 0
Crilfy, A1 = p (ngff + ‘;}Eé;ff) : (48)

Wherein £ represents the pitch-angle scattering operator, v.; 1s the critical

speed for a single ion species [see Eq. (3}].

A. M’ friction moments

Then, taking flow-type moments, m vaf/ 9 of the collision operator

T

given in Eq. (47), we find

n e 1 .
ol x - L [Pomp (U e 4200 1 9

Which in turn yields momentum and heat friction moments

ﬂ M();/e _ _ne',ne anJ% 1 0 Uqgy ’ (50)
Tre \ MY/ Tee Te | 5 15/2 uy;

caused by collisions with Maxwellian electrons.

B. Miﬁ friction moments

Similarly, taking flow-type moments of the collision operator given by

Eq. (48), we find

n i 1 Ugi m; ] 5
émyz_gﬂmmﬂ_{@+_JmW%»+%ﬂﬁﬂﬁ.bn

Thus, the matrix elements of the above expression (for & = 0,1) can be

written as

ng Mérﬁ) nemensZi [ M0 UU)’) (52)

Tri \ M/ Tee T \ M Mi[ U,
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where the fast ion “flows”

Uof (53)

I
=9
[
<
<
|
&

Ulf = — da’UV—ff, (54)

il = (14 M)

B my) v

3

f/‘ — 9 m; Ve
, 2 B 3
i = - (3+n)—
'UTf mf Uc

are dimensionless coefficients. The order of unity factors v2/v3 an d ve/v.

will be simplified to unity for single ion species plasmas.

4.2, Ni/’a for thermal field particles

Given hg) and gél) for distorted thermal field particles (see Appendix C),
the restoring friction forces can be reduced to

Ny Na/ﬁ nama UT
k

[Na/ﬁu.gﬁ + Nkl ulﬁ] (56)
TQ’»B Ta.‘a UTg

Wherein the coefficients (for & = 0,1 only) are defined as

it = (”ma) =[] 1) v

49 T,g L(3/2) [ 1/2¢r($) . ma/'m,a L vj;(a?)]}foa (57)

v} 1 4+ ma/mgct/?

« /r My 1 /3
N = %—_(H )nf/d3 lf’(m)( Sz (37)

Ts @) (At malms 20 2 23|
L —_— e e — — - 1O8
(lu (1+m /77’55 33: 31 ¢(x)f0 ( )

il

l

It is important to keep remembering that z, = v?/v%_, whereas z is a simple

notation for #°/% = v* /v, in the above equations.
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A. NI’ restoring frictions

Straightforward calculations using Eqgs. (56) - (58) and z//¢ < 1 approx-

imation give us the following result:

ny (NN emengzz (1372 [ ue (59)
Tre \ NI/ | 7 me \ 0 0 ug,

B. Niﬁ restoring frictions

Using Egs. (56) - (58) and the fast ion approximation, z//f > 1, we find

ny Né"" Nnemean? 0 0 Ug; (60)
Tfi N{/i Tee Me Nifoﬁ 0 uy; ,

Niff=2 2208 baq (61)

Here, those terms proportional to ¢/(zf/?) have been neglected because they

are exponentially small.

5. CONCLUSION

Recalling Egs. (10), (25} and (40), total frictional forces for e/ f collisions

can be expressed as

ﬁg/f ~

__F;/f
M, an? 1 3/2 Upe _ 1 0 llof (62)
Tee Tte 3/2 13/4 . Uy, 3/2 0 Uiy

While the total friction forces for f/e collisions can be summarized into a
matrix form

Fi/e

_pire

<[22z ()
Tee Ne -5 15/2 ulf 0 0 U,
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recalling Eqs. (50) and (59). Also, using Eqgs. (33), (45), (52) - (55), we find

the friction forces

ﬁ:’)/.f

_F'I/f

_nemean? 0 0 uoi | Nééf 0 Uy (64)
Tee Te M{é’f 0 Uy, leéf 0 Ulf

for ¢/ f collisions, and

B/

@A)

nem, nyZ} Mo Uy} [ 0 0)fua 65)
Tee Tl Wlfo/t leljt Uy N{Oh 0 Ui

for f/i collisions. The asymmetry of these friction force matrixes may seem to
be surprising since it is contrary to the well known symmetry of the friction
matrix elements* which are derived utilizing the self-adjoint property'® of
the linearized Coulomb collision operator. However, the self-adjointness is
an approximate property presuming that the temperature difference between

two species is negligible,® e.g.,

{15 T ’

wherein m. = min(m,, mg), m> = max(mg,mg) and AT =T, — T. The
linearized Fokker-Planck operator for collisions between fast ion and thermal
plasma species is no longer self-adjoint thereby breaks the symmetry of fric-

tion matrix elements. Another interesting feature is the appearance of the

flows
1 3
Uy = — [dov=
of n =57
1 v
U]f = d3v V—cff
nf v

instead of the normal mass flows V and heat flux q; in ¢/ f and f/1 friction
forces. The flow moments Uy and Uy are at most the same order of mag-
nitude compared with the normal mass flow and heat flux moments since the

fast ion speed is typically O{1) compared with the critical speed v, for many
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practical applications.

The parallel component of momentum friction force f‘é/f given in Eq. (64)
agrees with Hirshman and Sigmar’s result [c.f. Eq. (8.23) in Ref. 4], whereas
1?‘3” given in Eq. (62) has additional restoring terms [c¢.f. Eq. (8.22) in Ref. 4].
In this work, the test-particle distortion and field-particle restoring effects are
both considered self-consistently using small flow distortion assumptions in
linearizing Fokker-Planck collision operator. It is explicitly calculated that
the frictional forces f'z/f, f‘ile, f‘i/f and f‘iﬁ for £ = 0,1. The momentum
conservation properties of momentum friction forces are explicitly demon-
strated here observing that FS” = —F{;/E and Ff)/f = -—Ff;/". While in
Ref. 4, only collisions between beam induced fast ions and Maxwellian par-

ticles are considered for the frictional moments f’é‘ff . f‘;/ ! and f‘;" 7

The friction forces quantify the momentum and energy flux transferring
between fast ions and thermal bulk plasma species and hence the collisional
coupling. In combination with viscous forces, the coupled parallel momentum
and heat flux balance equations for thermal electrons, ions and fast ions
can be inverted to evaluate the bootstrap current for plasmas with fast ion

component.!#*5
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Appendix A COULOMB COLLISION

The Coulomb collision operator can be written in terms of the Fokker-

Planck coefficients A5 and D,; as follows!11?

ch[fa] = anﬁ[favfﬂ]: (Al)
B
Cutlfor il = =3 = =2 [Ausfo = 37 Do) (82)

where C,4 represents the collisions of test particles « on field particles 3.

Here, the dynamical friction vector is given by
Ohs
af = Ya 1 - A3
Aop = (14 722) 58 (A3)

wherein 7,5 = 4me? ef; In Agp/m2, velocity diffusion tensor

0%
Dop =g avgi, (Ad)

and Rosenbluth potentials

hs —/d3 So(¥) (A5)

v’l

9o = [V fa(V)v = V'l (A6)

The following expansions in terms of spherical harmonic function, Yem (£2),

are useful in calculating Rosenbluth potentials:

1 s 47 v‘é
—_— Yoo (S2)Yen (2 AT
|V _V;l E,Z 21?—{- lvy e+1 zm( ) £ ( ) ( )

, 2, 4w ol 1 . e |
V= U< _ Yo () Yem(S2) (A8
v-vi= 2 20+ 1o \20+ 302 20— 1 m(S)Yem($2) (AS)

£,m=0

where v¢ = min(v,v'), vs = max (v,v’) and §2 is the solid angle of v.
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Appendix B. CALCULATION OF 4 AND 4

Substituting Eq. (1) into Egs. (17) and (18) for the lowest order distri-
bution functivon, we can then obtain

1 v ¢ ry s ’
h.(fo) = ;./0 47rv'2dv'f0f(v')—|-/v dmv'dv’ for(v')

1 B . w pdv
- ;nf(v<)+nf7',ju v3+ng('D—U(]) (B1)

'

2
Y ! ! ]' ’
97 = /D 47rv2dvv"§ (%) +1} for(v')

+ oo47rv'2dv'v' —1- L 2+1 Jos(¥))
v 3 v of

1 _ .
= ——ps(tc) + vng(ve)
fU

m
. v? orw wdv v S do
+nyT, [3]; NCR e +/; - vf] H{v — ) (B2)
where v, = min(v, vy}, the fast ion “density”
v . 733
n(v<) E/ drv? dv fos(v) = Bl (1425, (B3)
0 3 v
and the fast ion “pressure”
N 1 2 1 ) e ptdu
pf(t)() :/0 47”)2 dv «3~me fof('v) = -é-mfnffsjo m (B4)
From the above results, it is trivial to verify that
dh{” 1
i _
D (85)
(0})
(0) ngf . 1 _ 2 _ a9 o
Bhyt = — == ;nf(?k) + m;uSpf(U“) t3g ) 4 dv for{v)  (B6)

Appendix C. THERMAL SPECIES A}’ AND g}

To determine hg) and ¢\, we need to utilize Eqs. (14) - (20) and orthog-
onality of spherical harmonics (only £ = 1 component here). Thus, we can

obtain:

n
Y = UTﬁV' (Hogugp + Higuig), (C1)
Ts
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g = 28 v (Gopuaog + Grpuip) (C2)
UTﬁ

Where the coefficients are defined and evaluated, replacing z®/# and zj

(= v'2/ v%ﬂ) with z and ¢ respectively for simplicity, as follows

8 1 oo )
Hy = ——f dv' 132 S =t L1
3/ Jo v
1
= ;;q;"/;%b(x)a (C3)
Hin = / g 13275 < »tL(B/Z)
138 3\/_:1:1/2 > (t)
1

= —a¥(e), (C4)

Gog = 'é“é\/—";'/u‘oodtte_*% (é% _ 1) L
- L [(i _ 1) ¥(z) — ¢’(I)] , (C5)

22 [\ 2z

4 « -1V« lvi (3/2)
= LAy (e t
Gus 3vﬁaé dttet= (5U§ L)
1
= —m?ﬁ(m)- (C6)

Here, the function t(z%/#) is defined as

Y(z) = %/x tH2e™t dt (CT)
0
which preserves the following property
1 !
¥() = (52 - 1) ¥'(0) (c8)

and asymptotic expansions for large and small arguments

vie) vawz (1 —sm ) forz <1
W(z)~ o (1—a+--) ’
¥(z) 21—z g2 = (1+ L +--)

for z > 1.
,(,bl(z.) — 7217"31/26_3:
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Appendix D MISCELLANEOUS

For an arbitrary symmetric tensor T, vectors A and B we can obtain

(%-T)-(AB) = Z a"’AB

d a
= % [B_v, (T3;A;B) — T”E; (AjB)]
5, A JB
= (T AB)-T: (a—v—B+Aa—v) (D1)

For Ml_{f, in Section 2, we have

(9)
iff . aMa [T g (3/2) —z m; 5 1dh%
My = 2——'/0 vidva L7 (zi)e (1 + mf) (§ —333:> —

ny
{0)
- _ 289 D2
vE (3hf v dv ’ (D2)

using Eq. (27). Where the first integral can be shown negligible, i.e.,

dh(o)
j v? dvz; L(E'/2 (z;)e”™ (?— — 3:{:;) !
0 2 v dv

- / 90’ dv’ fos(v') / e L (z;)e (g _39:,)
0 v
~ 0

by reversing the order of integrations over v and v’ and neglecting exponen-
tially small terms. The remaining integral in Eq. (D2) yields, substituting in
Eq. (B6)>

o0 (0)
/ v? dv 2; LD (z;)e " (3h§0) _Edg_f)
g

v dv
s —'UT/ 47wv’ dv’ fos(v f d:z113/2L(3/2)( e~

5 3‘/_ / drvdv fos(v)éjo

adopting the same methodology and the orthogonality of Laguerre Polyno-

mials. Thus, Eq. (30) is proved.



