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The composite Simpson's rule is extended to n-dimensional
integrals with variable limits. This extension is illustrated by
means of the recursion relation of n-fold series. The structure of
calculation by the Newton-Cotes formulas for n-dimensional integrals
is clarified with this method. A quadrature formula corresponding to
the Newton-Cotes formulas can be readily constructed. The results
computed for some examples are given, and the error estimates for two

or three dimensional integrals are described using the error term.
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1. Introduction

Since a paper giving twe formulas for numerical integration
in higher dimensions was published by Maxwell [17], the numerical
evaluation of multiple integrals has been devised variously
[1,10,12,14,18,20]1. The most natural approach to the evaluation
of n-dimensional integrals among them is through the repeated
application of one dimensional quadrature formula to each vari-
ablie [11,15]. There are two types in the guadrature formulas;
the Newton-Cotes formuias and the Gauss formuias [1,3,5,7,%8].
The former that contains the Simpson 3-paint (closed) rule as a
special case has convenient weights and uses funciion values at
equally spaced points. The latter uses function values at une-
gually spaced points, determined by certain properties of
orthogonal polynomials. In this paper we discuss the eXtension
of the Newton-Cotes formulas to higher dimensions. Simpson's
rule method has been employed for numerical integration with
constant limits [3,4,6,7]1. ©On the other hand, for numerical
integration in which the domains of integral are variable, as far
as we know, an application of Simpson's rule method to such
integration is rarely seen in the library of computer programs
{16,181, a book [73, and a paper [8]. Cadwell illustrated an
algorithm by Simpscn's rule for n-dimensional integrals [8].
However, it is difficult to construct the other Newton-Cotes
formulas by analogy with them, because the domains of integration
in higher dimensions are complicated. Froberg has stated that
it is possible, in principle at least, to construct a formula
caearresponding to the Newton-Cotes formulas and the Gauss for-

mulas, but it is extremely clumsy and awkward [13].
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The purpose of this work is to clarify, using the composite
Simpson's rule, the structure of calculation by the Newton-Cotes
formulas for n-dimensional iterated integrals. Its structure is
illustrated by means of the recursion relation of n~fold series.
This method is readily applicable to the other Newton-Cotes
formulas (in the closed or the open ones). We give the numerical
values computed for some examples and will estimate, using the
error term of Simpson's rule or the Newton-Cotes 5-point rule,
the error of numerical evaluation for two or three dimensional
integrals.

We assume that the integrand of a given integral in higher
dimensions is analytic over the range of integration except at
the end points and the function which indicates the domain of

integration is also analytic.

2. The one-dimensional definite integral

We begin our discussion with the definite integral of
function of one variable, although known, for evaluating numeri-
cal integration in higher dimensions.

Let
b

(1) { dx f(x)
a

be the integral to be evaluated.
1f the interval (a, b) is divided into M equal subinter-

vals, set f2i—2 = f(XZi-Z) for the function values at egqually-

spaced values of variable x:

4 = i-2 i=
(2) X549 a + (2i-2)h, (i=1,2,3,..., M)
- 1 _ '
where h = oM {b a). Then,
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The purpose of this work is to clarify, using the composite
Simpson's rule, the structure of calculation by the Newton-Cotes
formulas for n-dimensional iterated integrals. [Its structure is
illustrated by means of the recursion relation of n-fold series.
This method is readily applicable to the other Newton-Cotes
formulas (in the closed or the open ones). We give the numerical
values computed for some examples and will estimate, using the
error term of Simpson's rule or the Newton-Cotes 5-point rule,
the error of numerical evaluation for two or three dimensional
integrals.

We assume that the integrand of a given integral in higher
dimensions is analytic over the range of integration except at
the end points and the function which indicates the domain of

integration is also analytic.

2. The one-dimensional definite integral

We begin our discussion with the definite integral of
function of one variable, although known, for evaluating numeri-
cal integration in higher dimensions.

Let
b

(1) [ dx f(x)
a

be the integral to be evaluated.
1f the interval (a, b) is divided into M equal subinter-

vals, set f2i—2 = f(x21_2) for the function values at egually-

spaced values of variable X:

(2) Xyip = 8 + (2i=-2)h, (i=1,2,3,...,M)
N = a)
where h = 5M (b a). Then,
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b M h M
Jodx £ = ¥ g gy v afy gy F 0y LK,
a i=1 i=1
M M
(3 = Y F. + ¥y E.,
i=1 ! i=1 !
_ h ‘
where Fi = 5 {f21—2 + 4f2i—1 + fzi} and Ei is the error term
h5 (4}
given by - 0 fx ( §i), where x21_2 < §i < XZi. For the

sake of simplicity, we discuss numerical integration in higher
dimensions aside from the error term. The error of such integra-
tion is described in Section 8. Since the first term on the
right side of (3) is of the form of series, let it be represented
by the recursion relation. Then, we have the following formula

(43 5., = §, + F.,
where S.1 gives a partial sum of the i-th, and the 0-th partial

sum SO= 0. The integral of (1) is approximated by using eq.(4).

3. The two-dimensional integral with constant limits

Let
b d

(5) { dx § dy f(x,y
a L4

be the integral to be evaluated.
Suppose that the interval (a, b) on the x-coordinate and
the interval (¢, d) on the y-coordinate are divided into M and N
egqual subintervals, respectively. To show how a quadrature
formula for the integral of (5) could be consfructed using
Simpson's rule, we will use the recursion relation of a double
M N

series Y ¥ Fi i For that purpose, we associate the sum of
i=1 j=1 ’
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b M h M
§odx fx) = Y o (f,_, + 4f, o+ f ) v Y By
a i=1 i=1
M M
(37 = Y F, + Y E.,
1 : 1
i=1 i=1
_ _h .
where F, = —= {f,, , * i, * f,,} and E. is the error term
h5 (4)
given by - 5~ fo 7 ¢ Ei), where x,. , < Ei L Xy For the

sake of simplicity, we discuss numerical integration in higher
dimensions aside from the error term. The error of such integra-
tion is described in Section 8. Since the first term on the
right side of (3) is of the form of series, let it be represented
by the recursion relation. Then, we have the following formula

(4) S, = 8§, + F.,
where S.1 gives a partial sum of the i-th, and the 0O-th partial

sum SO= 0. The integral of (1) is approximated by using eq.(4).

3. The two-dimensional integral with constant limits

Let
b d

(5) { dx § dy f(x,y
a L4

be the integral to be evaluated.
Suppose that the interval (a, b) on the xX-coordinate and
the interval (¢, d¢) on the y-coordinate are divided into M and N
egqual subintervals, respectively. To show how a guadrature
formula for the integral of (5) could be cons{ructed using
Simpson's rule, we will use the recursion relation of a double
M N

series § ¥ Fi i For that purpose, we associate the sum of
i=1 j=1 i
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functional value of Fj ; at any grid point (i, j) in two-

LI

dimensions to the partial sum of Si E which is the sum of the

value of F. .. Then, we make use of (4). Assuming that the M-th

b 4

partial sum with respect to i in a double series could be found,

we put the sum of j from 1 to N in the form

N
(6) SM.N = jgl{(sM'l'j - SM-l,j—l) + FM,j}'
h
where FM,j takes the form of 3 {GQM-Z,j + 4G2Mv1.j + G2M,j}’
and h = L (b - a) The G has the form given b K X
= oM y > YaM-2,j Y 73

- 1
X {f(xzm—z‘YZJ—z) + 4f(x2M_2,yzj_1) + f(xzm_z,yzj)} and k = 5N
{d - ¢), and so on. By induction, we expand the right side of
(6) with respect to j. If, in a formula obtained, we replace

M, N by i, j, then (6) is given by

€7 Si5 T Sio1Li T SiLi-1 T Si-n, -y YR

FEguation (7) expresses the recursion relation for a double
series. When the method of Section 2 is applied to this case, a
guadrature formula for the integral of (5) can be immediately

written down in the explicit form:

= 1 -
(8.1 h = oM (b aj
Xl = a + (2i - 2)h
(8.2) x2 = a + (21 - 1)h
x3 = a + 2ih
(8.3) K = - (d - ¢)
. 2N 1
Yl = c + (2 - 2)kK
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(8.4) ¥, = € + {(2j - 1)K

Y3=C+2j}{

- _k_ '
2i-2,; = 73 {f(xl,yl) + 4f(x1,y2) + f(xl,ya)}
(8.5 G = K (f(x,y. ) ¢ Af(x.,Y.) + f{x.,¥. )}
- 2i-1, j 3 RV RS AR 2 Vg
G = K (F X,y ) 4+ (XL, Y.) + F(X,,¥,)}
21, 3 3*'71 3’72 3’73
(8.6) F B + 4G + G }
i, 3 2i-2, 2i-1, 21,
Si,5 T Si-1,5 TS50 T Si-n - Ny
where S00 = SiO = SOj = 0,
or
M N
(9) S =y ¥ F. ..
MON T2 s

4. The two-dimensional integral with variable limits

Let
b F,.(x)
2
(10) 5 dx S dy f(x,y)
a FI(X)

be the integral to be evaluated.
Suppose that the interval (a, b) on the x-coordinate and

the interval {Fl(x), Fz(x)} on the y-coordinate are divided into

M and N subintervals, respectively. On taking note of the domain
of the second integral of (10), we will attempt to change the

formuta of step size (8.3) in the following
{Fg(xl) - Fl(xl)}

(11> K, =

ol wof-
z. =4

{Fz(xz) - F (XZ)}

1

— 5 —
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(8.4) y, = ¢ + (2j - 1)k

Y3=C+2jk

. _E_
2i-2,7 = 73 {f(xl,yl) + 4f(x1,y2) + f(xl,y3)}
(8.5) G = K (f(x,y.) o Afix.,y.) + f(x,,¥.))
O 2i-1,j 3 X9 ¥y (X9 ¥y AR
G = B F(x,v.) 4 A (XL, Y.) + F{Xn,Vo))
2, j 3 3+Y 3+Y2 373
(8.6) F S W + 4G + G }
i, 3 2i-2,3 YU2i-1, 21, j
Si,3 % Si-1,5 Y S8i,5-1 7 Si-1,5-1 T e
where S00 = SiO = SOj = 0,
ar
M N
(9) S = Y Y F.
MONCT 2 E T

4. The two-dimensional integral with variable Iimits

Let
b Fg(x)
(10> S dx S dy f(x,y¥)
a FI(X)

be the integral to be evaluated.

Suppose that the interval (a, b) on the x-coordinate and

the interval {Fl(x). Fz(x)} on the y-coordinate are divided into

M and N subintervals, respectively. ©On taking note of the domain
of the second integral of (10), we will attempt to change the

formuta of step size (8.3) in the following

{FZ(XI) - Fl(xl)}

(11> kK, =

e
Sl
2 =4

{Fz(xz) - F (Xz)}

1

_5_
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= L -
ky = 5 (Folxg) - Fi(xg)).

Then, the arguments yi in (8.4) and the Gzi-z’ G21—1’ etc. in

(8.5) should also be rewritten in the following

y11 = Fl(xl) + (23] - 2)k1
y12 = Fl(xl) + (2] - 1)k1
y13 = Fl(xl) + 2jk1
Y21 = Fl(xz) + (2j - 2)k2
(12) y22 = Fl(xz) + (23 - 1)k2
Yoq & Fl(xz) + 2jk2
Y31 = Fl(Xs) + (2] - 2)k3
y32 = Fl(XB) + (2] - 1).k3
y38 = Fl(X3) + 2Jk3
and
k1
Gzi-z,j = -5 {f(xl,yll) + 4f(x1,y12) + f(xl,yla)}
k2
(13> Gzi—l.j = = {f(xz,yzl) + 4f(x2,y22) + f(xz,y23)}
Kq
Gzi,j = 3 {f(XS’y31) + 4f(x3,y32) + f(x3,y33)}.

Substituting (13) into (8.6), we can evaluate numerically the
integral of (10)}. One may now easily write down, using similar
summation procedures, a quadrature formula of the other Newton-

Cotes formulas for two-dimensional integrals.

5. The three-dimensional integral

Let
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.
kK, = {FE(X

3 N Y - FV(XB)}.

3 1

Then, the arguments y. in {8.4) and the G21—2’ Gyioyo etec. in

(8.5) should also be rewritten in the following

Yi1 © Fl(xl) + (2§ - 2)k1
Yig = Fl(xl) + (25 - 1)k1
y13 = Fl(xl) + 2Jk1
y21 = Fl(xz) + (2] - 2)k2
= 7 I -
(125 Yoo Fl(xz) + (2] 1)k2
y23 = Fl(xz) + 2Jk2
y31 = Fl(x3) + (2] - 2)k3
Y3u = Fl(xa) + (23 - l)k3
Ygg ¥ Fp(xg) + 2ikg
and
kl
G2.1_2’j = 3 {f(xl,yll) + 4f(x1,y12) + f(xl,yls)}
k2
(13> GZi—l,j = 7 {f(xz,ygl) + 4f(x2,y22) + f(XE'YZB)}
Kq
(312.1’j = 5 {f(xa,y31) + 4f(x3.Y32) + f(XB’YBB)}'

Substituting (13) into (8.6), we can evaluate numerically the
integral of (10). One may now easily write down, using similar
summation procedures, a quadrature formula of the other Newton-

Cotes formulas for two-dimensional integrals.

5. The three-dimensional integral

Let
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Fz(x) Fz(x,y)

b
(14> { dx o oay | dz f(x,y,2)
a

Fl(X) F](x,y)

be the integral to be evaluated.
Suppose that the interval (a, b) on the x-coordinate, the

interval {Fl(x), Fz(x)} on the y-coordinate and the interval

{Fl(x,y), F,(x,y)} on the z-coordinate are, respectively, divided

2
into L, M and N subintervals.

We will use the recursion relation of a triple series

M N L
by 3 ¥ Fi Pk For that purpose, we associate the sum of

i=1 j=1 k=1

functional value of Fi — at any grid point (i, j, K) in three

L4

dimensions to the partial sum of S, i K” which is the sum of the

value of F. Then, we make use of (7). Assuming that the

i,j.k’
partial sum of the L-, M-th terms in a triple series could be

found, let us put the sum of k from 1 te N in the form

(15)
N
ST e S T8 2 S 0 5 U5 S MU IS R
Sy ,M-1,k - Sp-1,M-1,k-17 * Fr,om,k
where FL M. K takes the form of Simpson's rule. Proceeding as

before, we pobtain the formula analogous to (7),
(16)
Sivivk = 8- ik T8, 5-1,k T S5,k T Si-1, -1,k

S F

Si-1,3.k-1 " Si,i3-1,x-1 ¥ Si-1,5-1,k-1 i3,k
Eguation (16) expresses the recursion relation for a triple

series. When the method of Sections 2, 3 and 4 is applied to

__7_...



JAERI-M 92-099

this case, we may write down a quadrature formula for the in-

tegral of (14) using Simpson's rule:

h=—?L—(b—a)

XI = a + (2i - 2)h

X3 = a + 2ih

K. = —— (F.(x.) - F.(x,)}
1 T oM 2 (%) 1 6%

K. = - (F.(X.) - F.{(x.)}
s = TIN 2 (X9 1%y

K, = —— (F.(x.) - F.{(X.)}
3 % oM g (X3 1 (%3

i, = F (%) + (25 - 2k

le = Fl(xl) + (237 - 1)k]

¥, = Fy(x) + 2k,

Yo = F (Xg) + 2jkg

K.. = —~— (F._(x ) - F, (X )}
11 - T2N 2 %101 14 %1 Y14

K. . = —b (F.(x ) - F.(x ))
12 T 73N 2 %112 14%1° 712

K., = —— (F.(X.,¥..) - F. (X.,9..3)
13 N 9 (XY 13 1%17 Y13

K. = 2— (F(X.,¥..) - F. (X, Y00
33 ZN 9 {X3+Y33 1¢%3°Y33
204, = Fi(x,¥, ) + 2k - 20k,

2112 = Flcxl,yll) + (2k - l)k11

2113 = Fy(xy.¥y4) + 2KKyy
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{2k - 2)k1

121 1% Y12 2
= 2 -
2122 Fl(xl,ylz) + (2k 1)k12
Zygg = Fy(Xy,¥ 90 + 2Kk,
2433 = F1(Xg:¥gq) + 2Kkgq
K1
Goiog,2j-2,k = 3 FXpype2yq) * 4EXyy002y950 *
YRy 02yy8))
ki
Gyiog.2j-1.k = 3 (FXa¥y902199) + 48(X,7,5,2195)
+ f(XI:Y12,2123)}
K3
Goi_n 25,k = 3 E(X.Yyg0215)) * 48X,V 5,2799) *
+ f(xl,Y13.2133)}
kg3
Goi.25.k = 3 H(Xg.¥gq.255,) * 48(X5,¥44,244,)
K,
Hyio ik = 75 Yai-0,25-2,k * %%2i-2,25-1,% * %2i-2,2j.k
Ky
Hoicii.x = 3 ‘S2i-1,25-2,k * %%25-1,25-1,%x ¥ %21-1,25,k
kg
Hoi 5.k = 3 ‘95 ,25-2,x % %% ,25-1,k Goi,2i,x
F = -y 4H + H }
i3,k 3 2i-2,7.k 2i-1,3,k 21,3,k
Si,ivk = Sic1, ik T Si, -1,k * S,k T Si-1,-1,k

}

)
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= Sy sk-1 T SiLi-1.k-1 Y Si-n,-1.k-1 Y T gLk
where S 00 = Sy = Si61 = S;56 = Sook = Sijo0 7 Sojo T O
or
L M N
(18) S = y Y Y F. . ..
L.M, N iS1 j=1 k=1 LI
6. The four-dimensional integral
Let
b Fo(x1) F_oxt,x%) F_(x',x%,x5)
1 (2 5 2 3 2 4
ae  {axt { ax® ax® ax*  x
1 1 2 1 2 .3
a Fl(x } Fl(x LX) FI(X ,X . %)

X f(xl,xz,xa,x4)

be the integral to be evaluated.
Suppose that the interval on each direction in four-dimen-

sional spaces is divided into Nl’ Nz, N3 and N4 sutbintervals.

Using similar summation proecedures, we obtain the recursion

relation of a guadruple series:

(20 S kol T Ti-l.iukel T Tie1l,i-1.k,1 " T 1k-1,3-1,1 "
= Sisii-1,k-1.1-1 T Filik, 10
where
i1,k = Si1,i.k,1 T Sili-1,k,1 i, 5,k-1,1
Si 5k, 1-1"

Zi o1kl T Si-n,g-1,01 TS, uk-1,1 T Si-n, k-1 T

* Sy o1,k-1,1 T SiL -1,k 1-1 T %L i,k-1,1-10
i1 i-1.k-1.1 = Si-1,5-1,k-1,1 * Si-1,5-1,k,1-1 *

Si-1.i,k-1,1-1 T Si,j-1,k-1,1-1"
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T %=1, ,k-1 i,j-1,k-1 i-1,i-1,k-1 i,i.k'
where S 0 = Sq. = Sior = Sii0 = Sook T Sioo 7 Sojo T O
or
L M N
(18) ) = ¥ ¥y >y F. . .
L.M,N {51 j=1 k=1 ek
6. The four-dimensional integral
Let
b F.(x") Fo(x',x%) Fo(x),x2,x)
1 2 2 2 3 2 4
asy  faxt | ax® | ax° | ax® x
1 1 2 1 2 3
a F,(x") F.(x ,x ) F (x",x ,x")
1 1 1
X f(xl,xz,xs,x4)
be the iniegral to be evaluated.
Suppose that the interval on each direction in four-dimen-

sional spaces is divided into Nl’ N2, N3 and N4 subintervals.

Using similar summation procedures

relation of a guadruple series:

, we obtain the recursion

20 SiLi kol T Fi-1l,i,k,1 i1, i-1.k,1 " Tl k-1,3-1,1 "
- Siy,i-1,k-1,1-1 " FiLik, 1
where
1,5k, = S 1.i.k,1 T Sili-1,k,1 T i, ,k-1,0
S ik, 1-1"

S

Zi-l,j-l,k,l Si-l,j*l,k,l

T+

si,j”l,k-l,l

z

i-1,j-1,k-1,1 = S

i-1,j-1,k-1,1

Si-1,3,k-1,1-1

+

i-1,j,k-1,1 Si—l,j,k,l-l

S 5-1.k,1-1 ¢ 5,5, k-1,1-10

+

Si-1,j-1,k,1-1

S j-1,k-1,1-1"
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a quadrature

takes the form of Simpson's rule.

formula for the
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rule:
1
h-W(b—a)
1
1 .
x1 = a +(2i - 2ih
1 .
x2 = a +{(2i - 1)h
xé = a + 2ih
_ 1 1. _ 1
k1 = 2N2 {Fz(xl) Fl(xl)}
_ 1 1. 1
k2 = 2N2 {Fz(xz) Fl(xz)}
1 1 1
k3 = —Eﬁ; {FZ(XB) - Fl(xs)}
2 _ 1 .
Xll = Fl(xl) + (2] 2)k1
2 - F.(xh + (2§ - Dk
Xpo = Fyp(xp) ] 1
2 1 .
x13 = Fl(xl) + zjkl
2 1 .
x33 = FI(XB) + 2Jk3
21 1 .2 _ 1 .2
kll = 3N {Fz(xl’xll) Fl(xl’xll)}
o1 1 .2 _ 1 .2
k12 = N {Fz(xl,xlz) Fl(xl,xlz)}
_1 1.2 1 .2
k13 5N {FE(XI’XIS) Fl(xl'xls)}
_ 1 1 .2 . _ 1 .2
k21 = N {F2(X2’X21) FI(XZ’XZI)}

We may write down

integral of (19) using Simpson's



JAERI-M 92-089

------------------------------------

1 1 2 1 .2
2N3 {FQ{XB’X33) - Fl(x3,x33)}
1 .2
FL(x),x7) + 2k = 2)Kj,
1 .2
Fo(x,x]) *+ (2k = Dk,
1 2
Fo(xy,%]) + 2kkg,
F.o(xl,x%.) + (2k - 2)k
1$%1°%y9 12
1 2
F|(Xg,Xgq) *+ 2Kk,
1 1 .2 .3 1
2N, (Fo(xy,xy,X) 1) - Fy (X,
1 1 2 3 1
'EN; (Fy (X s Xy 10Xy 1) = Fy (X
1 1 2 3
2N4 (Fz(xl’xll’xlla) Fl(x],
1 1 2 .3 _ 1
2N, {Fp(X3.X33+Xg44) = F;(Xg,
2 3

1
= F XXXy

y o+ (21 - 2)k11

2 3
xll’xlll)}

3

2 .
X11:%1127}

2 3

Xg3° %3337}

1

1 2 3

= F (x].X];-%y7p) ¢ (21 - Dk
1 2 .3

= Fiaxpaxyy.Xyyy) + 21k,
1 .2 .3

= Fl(xl’xll’x112) + (21 2)k112
1 .2 .3

= F (X3,X34:%g44) + 21Kgq4
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Kk
111 {f(xl 2 3 4

2i-2,2j-2,2k-2,1 ~ 3 ¥ ¥ *i’

G

2 3 4

11° %111 %1112 *

+ 4f(x;,x

1 2 3 4

MR T N R R O I R

G = -Ellg {f(x1 X2 XS x4
2i-2,2j-2,2k-1,1 - 3 1’71177112°71121

YO+

1 2 .3 4
AR LXK K yg,) *
1 2 3 4

tEOX Xy X 90 X 09 ?)

113 1 .2 3 4

K
XX X153 %1130

Gyi-2,2j-2,2k,1 3 1 > *

2 3 4

1
AR LK X 190 Xyg9) *

+ f(xl.x2 3 4 >}

1'*11°%113° %1133

----------------------------------------------------------------

G = 388 pix} %% X3 x4
2%,2j,2K,1 3 3'¥33'%333° %3331
2 3 4

33'*333°%3332° *

1
+ 4f(x3,x

1 .2 3 4

* £(X53,X34,X334:Xgg44)}

11

HoiZ2.,25-2.x.1 = 3 'G34-2,25-2,2k-2,1 * 4€ *

2i-2,23-2,2k-1,1

Gpi-2,2j-2,2k,1’

Hoi_o.25-1,k,1 = 3 'Goy.0,2j5-1,2k-2,1 * 4CG2i-2,25-1,2k-1,1 *
Gyi-2,25-1,2k,1°
Hoi_o.25.x,1 = 3 625-9.95,2k-2,1 * 4%25-2,25,2k-1,1 *

+ G }

2i-2,25,2k,1
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---------------------------------------------------------------

+ 4G +

H2i,2j K,1 =73 {G21,2j,2k—2,1 21,25,2k-1,1

+ G }

2i,2j,2k,1

Toi-2.5,k,1 = 3 Hayo o05-0 k,1 *4Hy 5 9.1,k ¢

--------------------------------------------------------------

Loi ikl = 3 Way og-2,k,1 * Mg 25-1,%,1 7 Hoiy 25,k.1°

41 }

FiL ik, Loi—2, ik, P 4o, g,k * 2, gLk,

Si k.1 T Fio1,i.k.1 T Tiol,i-1,k,1 " 1. i-1.k-1.1

= Sy j-1.k-1,0-1 Y F k1

where

S6000 = Soik1 = Siok1 = Sijo1 = Sijko = Soox: = Sojor T Sojko T

= Si001 = Sioxo = Sijoo = Sooo1 T Sooko T Sojoo T Siooo T ¢

or

)
™
™
™

n™M o=z

s

21 N,»N i,isk,1°

S =
NpsNysNgo Ny i=1 j=1 k=1 1

7. The n-dimensional integral

Let

1 1 2
b Fz(x ) Fz(x S X, .0, X h)

(22} S dxl S dx2 ... j dx f(x " ,Xx ,...,X )
1 .2 n-1.

1
a Fl(x ) Fl(x JX T, 0, X )

he the integral to be evaluated.
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---------------------------------------------------------------

Kqg
Hos,2i,%,1 = 3 Gy 9j.0k-2,1 * Y2y 05,2k-1,1 "
* Goy 95,2k,1°
Ky
Toi-2.5.k,1 = 3 ‘Haio0 95-2 k,1 ML P S N T
Hoi2,2j,%,1°
kq
Lt ikal = 3 Wy o5oa k1 * %Mag a5-1,x,1 * Mo, 2g,x,0)
F = L 41 I }
i,9,K,1 3 2i-2,j.K,1 2i-1,j,K,1 2i,5,k,1
Si ikl T Eic1Likal T TielLi-1,k,1 T Eicl,io1,k-1.1
= 81 -1.x-1.0-1 T Fi g k10
where
So000 = Soik1 = Siok1 = Sijo1r T Sijxo T Sook1 T Sojor T Sojko
Sioo1 = Sioxo = Sijoo = Sooo1 = Sooko = Sojoo T Sicoo T ¢
or
N, N, Ny N,

(21 S = > > 2 L .

NpoNpsNgo Ny 431 j=1 k=1 121 3K
7. The n-dimensional integral

Let
b F.(xl) Foxtx2, .., x"h
1 2 2 2 n 12

22> § ax | dx | ax" fox,x%, ..., x

a Fo(x') Foxt,x2,...,x"

1 1

be the integral to be evaluated.
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Suppose that the interval on each direction in n-dimen-

sional spaces is divided into Nl,NZ,....and Nn subintervals.

Using the above-mentioned method, we can put the partial sum of

the recursion relation for n-fold series in the following

(23)
Tt P B OF T S i1,k eeur,s t
21,5 1 k=1,...,0,8 ~ "00 "
+ 0 Si-1,3-1,k=1,...,r-1,s-1
* Fi,j,k,...,r,s’
where
Zi—l,j,k,..,r,s = the sum of such ( ? y different partial

sums as S. .
i-1,j,k,...,r,s °’

— n . :
i=1,5-1,Kyeuu D)8 = the sum of such ( 5 ) different partial

SUMS a8 5y 1, j-1,K,...,r,s
— n I .
Zi_l,j-l,k-l,---vrss = the sum of such ( 3 Y different partiatl
sums as Si_l’j—l,k‘lg---nris '
and F. takes the form of Simpson's rule.

i,j,k,...,T,8

Since the structure of calculation in which Simpson’'s rule
is used for the integral of (22) has been clarified using the
recursion relation of n-fold series, we can now write down
easily a quadrature formula by the repeated use of the Newton-
"Cotes formulas (of either open formulas or closed formulas) for

the n-dimensional integral.
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8. Error analysis

In this section we first consider the error estimates for
two-dimensional integrals. Faor a double integral with constant
limits the accuracy can be checked using the error term for
function of one variable before integration is completed [7]. On
the other hand, for the integral in which the domain of integra-
tion varies, we cannot check the accuracy before integration is
completed, since the domain of each subinterval varies from step
to step. However, if computations of integration and error
estimates are carried out simultaneocously, we may estimate the
error. As can be given in the Appendix A, the error term of the

composite Simpson's rule is obtained in the following

(24)
B ] <
5
M N K
h 1 (4) 1
Filx,. )¢ o CF (g, o)
5
M N k
4h 2 (4 2
Fuxy 128 he L Fylxy, )
5
M N K
+ I X max N R TN LN I
i=1 j=1 3 _ 3 90 y 21 J
F,(x,,2¢ 7j < Fptx, )
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M 5
£ 5 max D By - F (8 x
=1 % ¢ ¢ x 90 2 i 1 i
1= 2i-2 £ B3 L %y
FOED & hy CF,0 80
(4)
£ 08, T
where k.= —— (F,(x ) - F, (x ), F,(x <« Bt
1 2N 2 72i-2 1"721-2""" 1 72i-2"— i -
F,(X,;_,) and so on. The range of 7. is F ( Ei) < <
F2( §i)' Thus, we may estimate the error of numerical integra-
tion for (19) using the error formula (24). Using the similar

error term corresponding to the other Newton-Cotes formulas, we
may also estimate the error of the integral of (10) or the error

of higher dimensicnal integrals.

9. Numerical examples

In this section we will illustrate several examples for
higher dimensional integrals which were computed by the method
mentioned above. All computations reported below were performed
in double-precision arithmetic.

Example 9.1

T
T2 X

j dx { dy sin(x + y)
0 0

The results computed by Simpson's rule method and the Newton-
Cotes 5-point (closed) rule method are listed in Tables 1 and 2.
The error from the error term are given in the fourth column of
each table. When using Simpson's rule, the maximum error by the
error term is given by eq.(24). However, it is difficult to find

its error in the domain of each subinterval corresponding to the
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M hS
s 5 max a5 (F,( &) - F i« € x

i=1 x ¢ 3 < X ! 1 1

2i- - i = T2i
F OB & 7y CF,C8D
(4)
x £.°7C8, B
where k.= —+— {F, (X ) - F, (% 3}, F,(x e alog
1 2N 2 2i-2 1 21-2 * 1 21-2"— ji-

F,(X,,_,) and so on. The range of 7. 1s F ¢ Ei) <<
F2( Ei). Thus, we may estimate the error of numerical integra-
tion for (19) using the error formula (24). Using the similar

error term corresponding to the other Newton-Cotes formulas, we
may also estimate the error of the integral of (10) or the error

of higher dimensional integrals.

9. Numerical examples

In this section we will illustrate several examples for
higher dimensional integrals which were computed by the method
mentioned above. All computations reported below were performed
in double-precision arithmetic.

Example 9.1

s
2 b

j dx  § dy sin(x + y)
o 0

The results computed by Simpson’'s rule method and the Newton-
Cotes B-point (closed) rule method are listed in Tables 1 and 2.
The error from the error term are given in the fourth column of
each table. When using Simpson's rule, the maximum error by the
error term is given by eq.(24). However, it is difficult to find

its error in the domain of each subinterval corresponding to the
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respective i~ and j-th. Hence, we found the error by setiing Ei

_ 1 2 3 1
= xy, Ny = vy 15 = vy Ty = vaye and T s e (FpC 8

+ F (&) in (24), where x indicate the arguments

1 Y110 Y2173
used in Section 3 and 4. All of error estimates in this section
have been obtained by this method.

The subroutine program used is given in the Appendix B.

Example 9.2

.

2 X X + vy

j dx § ay dz sin(x + y + 2)
0 0 0

The results computed by Simpson's rule method and Newton-Cotes b5-
point (closed) rul® method are listed in Tables 3 and 4. The
Crror by the error term are given in the fifth column of each
table.

Example 9.3

4 4 4

2.0 X X + v

j dx I dy g dz In (x + 2y + 22)
2 3 3

1.4 X X + vy

The results computed by Simpson's rule method and the Newton-
Cotes b-point (closed) rule method are tisted in Tables 5 and 6.
For the exact value of this integral, we found it using the
Newton-Cotes 7-point (closed) rule method. The error from the
error term are given in the fifth column of each table.

Example 9.4

T

2 x1 X1+ x2 xl+ X2+ X

5 dxl j dx2 5 dx3 J dx4 sin (x1+ x2+ x3+ x4)
0 O 0 0
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The results computed by Simpson's rule method are listed in Table

7.
Example 9.5
T
2 x1 x1+ x2 x1+ X+ X X + X + X + X
j dx1 J dx2 I dx3 j dx4 j dx5 X
0 0 0 0 ¥

X sin(x1+ x2 + x3 + X+ X))

The resulis computed by Simpson's rule are listed in Tables 8.

10. Conclusions

The results of this study can be summarized as follows.
(i) The structure of calculation by the Newton-Cotes formulas for
n-dimensional integrals with variable limits was clarified using
Simpson's rule. Conseguently, we became to be able to construct
a quadrature formula corresponding to the Newton-Cotes formulas
(closed formulas and open formulas).
(ii) The computations using the program of Simpson's rule con-
structed from the present method are far faster in the rate of
convergence than the ones using the conventional program of
Simpson's rule available from the present computer library.
(iii) The error estimates by the error term are very crude but
give some indication of the order of magnitude.
(iv) The Newton-Cotes formulas will become a useful and powerful
toal for carrying out numerical integration with variable limits

in higher dimensions.
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The results computed by Simpson's rule method are listed in Table
7.

Example 9.5

T
T3 x1 x1+ x2 X + X + X x1+ X'+ X + X

j dxl J dx2 j dx3 j dx4 j dx5 X
0 0 0 0 G

. 1 2
X sin(x "+ X~ + % + x + x7)

The results computed by Simpson's rule are listed in Tables 8.

10. Conclusions

The results of this study can be summarized as follows.
(i) The structure of calculation by the Newton-Cotes formulas for
n-dimensional integrals with variable limits was clarified using
Simpson's rule. Consequently, we became to be able to construct
a gquadrature formula corresponding to the Newton-Cotes formulas
(closed formulas and open formulas).
(ii) The computations using the program of Simpson's rule con-
structed from the present method are far faster in the rate of
convergence than the ones using the conventional program of
Simpson's rule available from the present computer library.
(iii) The error estimates by the error term are very crude but
give some indication of the order of magnitude.
(iv) The Newton-Cotes formulas will become a useful and powerful
toal for carrying out numerical integration with variable limits

in-higher dimensions.
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Table 1  Results for Example 9.1 computed by Simpson's rule
method., Exact Value = 1.000000000000

M N Approximate Value Error Actual Error
1 1 1.0029764056572 9.5E-04 3.0E-03
2 2 1.000177898595 1.2E-04 1.8E-04
53 5 1.000004504636 ) 4.1E-06 4,5E-06
106 10 1.500000280986 2.8E-07 2.8E-07
20 20 1.000000017553 1.8E-08 1.8E-08
30 30 1.000000003467 3.5E-09 3.5E-09
50 50 1.000000000449 4.6E-10 4.5E-10
100 100 1.000000000028 2.9E-11 2.8E-11

Table 2 Results for Example 9.1 computed by the Newton-Cotes j-point
(closed) rule method. Exact Value = 1.000000000000

M N Appreximate Value Error Actual Error
1 1 0.9999896358656 2.3E-06 1.1E-05

2 2 0.9999998467837 1,0E-07 1.6E-07

5 ) 0.9999999993826 5.6E-10 6.2E~10

10 10 0.9999999999904 9.4E-12 9.6E-12
20 20 (0.9999999999998 2.0E-13 2.0E-13
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Table 3 Results for Example 9.2 computed by Simpson's rule
method. Exact Value = 0.5000000000000

L M N Approximate Value Error Actual Error
1 1 1 0.5611079067930 7.0E-03 6.1E-02
2 2 2 0.5033951461125 2.8E-04 3.4E-03
153 5 5} 0.5000820317546 1.1E-05& 8.2E-0b
10 10 10 0.5000050815660 1.3E-06 5.1E-06
20 20 20 0.5000003168956 1.6E-07 3.2E-07
30 30 30 0.5000000625709 4.7E-08 6.3E-08
50 50 50 0.5000000081070 1.0E-08 0.8E-08

Table 4 Results for Example 9.2 computed by the Newton-Cotes 5-point
(closed) rule method. Exact Value = 0.5000000000000

L M N Approximate Value Error Actual Error
1 1 1 0.4989404931725 5.6E-05b 1.1E-03
2 2 2 0.4998873290126 1.8E-07 1.3E-05
5 5 5 0.4999999516284 3.5E-09 4.8E-08
10 10 10 .4999999992515 8.8E-11 7.35E-10
20 20 20 .4999999999883 2.2E-12 1.2E-11
30 30 30 .,4999999999989 2.6E-13 1.1E-12
50 50 ho .4999999999994 1.8E~-14 6.0E~-13
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Table 5 Results for Example 9.3 computed by Simpson's rule
method. Exact Value = 171654.7094763

L M N Approximate Value Error Actual Error
1 1 1 221702.6520213 1.4E+06 5.0E+04
2 2 2 176653.0147794 2.1E+04 5.0E+03
5 5 b 171798.8919232 1.8E+02 1.4E+02
10 10 10 171663.5511569 5.8E+00 8.8E+00
20 20 20 171655.2492011 2.1E-01 5.4E-01
30 30 30 171654.8152598 3.3E-02 1.1E-01
50 50 50O 171654.7231187 3.5E-03 1.4E-02

Table 6 Results for Example 9.3 computed by the Newton-Cotes 5-point
(closed) rule method. Exact Value = 171654.7094763

L M N Approximate Value Error Actual Error
1 1 1 173691.4139897 3.1E+06 2.0E+04
2 2 2 171695.1634843 1.9E+04 4,1E+01
5 5 b 171654.5268374 3.1E+01 1.8E-01
10 10 10 171654.6957218 2.4E-01 1.4E-02
20 20 20 171654.7090801 2.0E-03 3.9E-04
30 30 30 171654.7094353 1.3E-04 4.1E-05
50 50 50 171654.7094741 4.4E-06 2.2E-06
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Table 7 Results for Example 9.4 computed by Simpson's
rule method. Exact Value = -1.000000000000

N1 N2 N N Approximate Value
1 1 1 1 -0.3016066138191
2 2 2 2 ~-1.070946748664
b 5 5 b -1.000120749446
i0 10 10 10 -1.000007464750
20 20 20 20 -1.0000004656531
30 30 30 30 -1.000000091921
50 50 50 50 -1.000000011911
Table 8 Results for Example 9.5 computed by Simpson's
rule method. Exact Value = -0.8750000000000
N1 N2 N3 N4 N5 Approximate Value
1 1 1 1 1 -0.1518271451815
5 b 5 5 b -(0.9074006283430
10 10 10 10 10 -0.8749806808405
15 156 156 15 15 -0.8749961503998
20 20 20 20 20 -0.8749987787813
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Appendix A

As seen in Sections 3, 4 and 5, the calculation for numeri-
cal integration has been proceeded from the first integral. So,
we may write down using the error formula of Simpson's rule in

the following

(A.1)
b F, (x) o Falp)
] dx J dy f(x,y) = -2 X dy f(x,. ,,¥) +
F, (X) 3ois1 P x ) 21-2
a 1 1= 10 %24i-2
an M Fo(Xgi-1’
+ r dy £(X,. ,,¥) *
34=1 Fox,. ) 2t-1
1 %251
. F, (%, )
+ = X dy f(x,.,y) -
S i=1 F,(x,.) 21
1 Xo5
soM 205 (1)
~ 95 @y £ R )
i=1 F, (&)
LM N K
=37 LXKy pu Y50 ARy Y0 Y
i=1l j=1
5
M Nk
_.h 1. (4) 1
MRS TP ER LR 5= L L g5ty Xy, Tyt
i=l j=1
M Nk
4h 2
* 3 igl 151 g Uy 0¥p5-9) ¥ Xy 0¥y ) Y
5
MOON Kk
_ _4h 2 (4) 2
MRS PSR L TR 3 & X Tgo fy GRpyope M50
i=1 j=1
LM N kg
* T3 1§i ng 5 HX Vi) AR Yy 0 Y
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+ f(x2i,y2j)} -

5

M N K
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Here we applied the integral mean-value theorem [7,9]. Oon cal-
lecting the error terms in (A.1), we have eq.(24). Similarly, we

may derive the error formulas corresponding to the Newton-Cotes

formulas for higher dimensional integrals.
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Appendix B
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SUBROUTINE SQUADC(F,FL1.,FL2,A,B,MM,NN,SUM)
DOUBLE INTEGRAL OF F(X,Y>, DOMAIN CA.B),(FL1C(X),FL2CX))
NUMBER OF ORDINATES MM, NN
QUADRATURE BY SIMPSON'S RULE
IMPLICIT REAL*8CA-H,0-2)
HM=2.0D0*MM

HN=2.0D0*NN

HH=(B-A> /HM

HHK=HH/9.0D0

SUM=0.0D0

Do 10 I=1,MM

HI=2.000%(I-1>

X1=A+HI*HH

X2=X1+HH

X3=X2+HH
HY1=C(FL2¢(X1>~-FL1(X12>)/HN
HY2=CFL2(X2>-FL1{(X2>>/HN
HY3=CFLZ2 (X3>-FL1<¢(X3>>/HN

DO 20 J=1,NN

HJ=2.0D0*(J-1)
Y11=FL1{X1>+HJ*HY1

¥12=Y11+HY1

Y13=Y12+HY1

Y21=FL1{(X2)+HJ*HY2

Y22=Y21+HY?2

Y23=Y22+HY2

¥Y31=FL1(X3>+HJ*HY3

Y32=Y31+HY3

Y33=Y32+HY3
F1=HY1*(F(X1,.¥Y112+4.0D0%F(X1,Y12)+FC(X1,Y13))
F2=HYZ2* (FC(X2,Y21)+4.0DO*F(X2,Y22X+F(X2,Y232>)
F3=HY3% (F(X3,Y312+4.0D0%xF(X3,Y32X+F{(X3,Y33))
FS=HHK* (F1+4.0D0*F2+F3)

SUM=SUM+FS

CONTINUE

CONTINUE

RETURN

END



