JAERI-M
92-186

A “COST-EFFECTIVE” PROBABILISTIC MODEL TO SELECT
THE DOMINANT FACTORS AFFECTING THE VARIATION
OF THE COMPONENT FAILURE RATE

November 1992

Christian KIRCHSTEIGER*

R X B F A W R M

Japan Atomic Energy Research Insfitute



JAERLM V=t id, BEEFHHERS AT CATIL Ty 2 RHREETY.

AFORES T, BAREBETHFRREAHEHREER AR (T30 1L ERE I IEE
HERD) AT, BHLIL S w, 8, ZolscBEEARFILEeER L F—
(316 -1 HEREEH B E T H REF DA TSI EERG B4 -T
B ET,

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Division
Department of Technical Information, Japzn Atomic Energy Research Institute, Tckai-
mura, Naka-gun, [baraki-ken 319-11, Japan.

(©Japan Atomic Energy Reaf_earch Institute, 1992
WEFRET B 7 57 7 R 5
Efl kil PRNNF G- S S o




JAERI-M 92-186

A "Cost-effective" Probabilistic Model to Select
the Dominant Factors Affecting the Variation

of the Component Failure Rate
*
Christian KIRCHSTELGER

Department of Reactor Safety Research
Tokai Research Establishment
Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun, Ibaraki-ken

(Received November 2, 1992)

Within the framework of a Probabilistic Safety Assessment {(PSA), the
component failure rate A is a key parameter in the sense that the study
of its behavior gives the essential information for estimating the current
values as well as the trends in the failure probabilities of interest.
Since there is an infinite variety of possible underlying factors which
might cause changes in A (e.g. operating time, maintenance practices,
component environment, etc.), an '"importance ranking" process of these
factors is considered most desirable to prioritize research efforts. To
be "cost-effective", the modeling effort must be small, i.e..essentially
involving no estimation of additional parameters other than A. Imn this
paper, using a multivariate data analysis technique and various sta-
tistical measures, such a "cost—effective" screening process has been
developed. Dominant factors affecting the failure rate of any components
of interest can easily be identified and the appropriateness of current
research plans (e.g. on the necessity of performing aging studies) can be

validated.
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1. INTRODUCTION

A Probabilistic Safety Assessment (PSA) includes failure probabilities
for all relevant active and passive components of a plant. The derivation
of realistic empirical models to describe the variations of the component
failure rate A of components produces analytical tools that allow the
monitoring and the control of all failure probabilities of interest and is
therefore of key importance to ensure the safety of nuclear power
plants. Standard PSA technology, however, averages out almost all
dependencies and considers A as a constant parameter. Further,
component failure data availability will usually be insufficient in terms
of quality and quantity to formulate significant A estimates for passive
components. In such cases, the estimation of A will have to be limited to
active components only. |

In the following, a "cost-effective” empirical model is developed and
proposed for application that allows the formulation of component
characterizing factors, as retrievable from a given data base
architecture, and their quantitative importance ranking versus each
other. The model is appropriate to give guidance on the relative
importance of certain component-related'engineering features or
maintenance characteristics of interest and may especially be useful in
deciding whether or not certain detailed probabilistic studies have to be
performed. The accessibility of a plant-specific component data base is
required.

Sections 2 to 4 of this paper deal with the stepwise development of such
an importance ranking model, including a numerical example which
uses hypothetical component failure rate and engineering data. Possible
conclusions from this case study are given in Section 5. Further, an
Appendix is included, which presents exemplary component raw faiture
data as well as component engineering data collection tables, as required
to perform the proposed modeling tasks.
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2. THE FUNCTIONAL CAPABILITY OF COMPONENTS AS A
FUNCTION OF VARIOUS PARAMETERS

Suppose that we are interested in a certain type of component whose
failure rate A shall be monitored and controlled. The detailed
probabilistic modeling of component behavior and thus of A usually
requires large modeling, parameter estimaticn and data collection
efforts. Therefore, from an "economical” point of view, it is considered
reasonable to develop a simple, "cost-effective” model which gives
confidence in the hypothesis that certain underlying "factors” actually
have a dominant impact on the variation of A, while others can be
considered quite negligible in that respect. Here, "cost-effective” shall
be understood as requiring no estimation of parameters other than
standard reliability parameters, like A.

We start our paper by postulating the existence of various "factors”
which could affect the value of the component failure rate, {1,2].

Factors affecting the variation of A are related to the initial component
properties, to maintenance related conditions, to operating conditions
(“component environment”) and to the cumulative operating time
(“component age”).

Any number of interactions and dependencies could exist between two
or more of such factors resp. subfactors. Therefore, in realistic
approaches to model factor topologies for practical applications, many
simplifications will become inevitable, such as the renunciation of
dealing with interactive factors, the possible time-dependency of some
factors, etc. Further, "in reality", the number of component
characterizing factors is likely to be an unmanageable large value (in
fact, it might even be infinite). Thus, for practical applications, the
problem essentially becomes that of determining the most "adequate”
subset, where "adequate” refers to those factors which can be quantified
from given plant-specific data records and to those which are expected
to explain "most” of the components’ failure rate variation.

In the following sections, this topic shall be discussed in more detail.
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3. CHARACTERIZATION OF COMPONENTS

In PSA studies the detailed component type is usually the lowest
hierarchical level for which reliability data are being provided, [2-4].
Components are different in size, design, material characteristics,
manufacturer, operational specifications, environmental conditions, etc.
Now, a component population to be used in the PSA process shall
consist of a well-defined accumulation of "similar" components (i.c.
components with certain common characteristics) from the entire
recorded component population of the specific plant under investigation
and/for of plants considered "similar” versus each other (in the above
sense). To each of the N components in the thus-defined component
population of interest, unique component identification codes from
(ID)1 to (ID)N can be assigned, denoting the various levels of

similarity.

As already mentioned, for each component in the given component
population, the existence of various component characterizing factors
which could conceivably affect the value of the component's failure rate
A shall be postulated. For practical applications, the condensed
compenent engineering data as symbolically denoted by the component
(ID) will usually serve as the most important source of information to
establish the topological structures of the abstract factor spaces of
interest.

Any set of characterizing factors of interest will therefore entirely
classify the component population included in a component reliability
data base. Obviously, there is a countless number of possibilities for
corresponding data base architectures, and the only restrictions in
defining factors of interest will be given by the available man-power
and the available (resp. affordable) performance monitoring
technology. Thus, "in reality”, the number of characterizing factors ¢p

will always be a manageably small value, ¢.g.:

A= A01,00,Pp,nly TS 15T
(1)

where T denotes the statistical observation time interval.

.773¥
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The actual selection resp. definition of component characterizing factors
of interest will entirely depend on the desired scope of analysis and on
the given architecture of the component reliability data base to be used
(examples of typical data base architectures are given in reference [1]).
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4, MODEL DEVELOPMENT AND NUMERICAL EXAMPLE

In the previous section, we described the abstract architecture of a
component reliability data base as a multidimensional topological space
of component characterizing factors.

Now, as an illustrative example, the following set of 12 component
characterizing factors shall be assumed to define a typical plant-specific
component reliability data base:

¢1 = Country;

2 = Plant Type;

®3 = System;

¢4 = Component Type;

¢5 = Component Subtype;

¢6 = Normal Operating Mode;

¢7 = Component Size;

®8 = Perlodic Functional Test Interval;

®9 = Periodic Check Test Interval;

$10 = Periodic Calibration Test Interval,

$11 = Overhaul Interval,

912 = Cumulative Component Operating Time
(component "age" (t-to)).

Recalling equation (1) and taking into account the above-mentioned
inevitable modeling simplifications, the component's failure rate A can
here be considered as a function of

A = A01,02,00pseensdr 1 T=12,T) .
(2)

Basically, two types of component characterizing factors ¢i have to be
distinguished from each other: "easily changeable" and "invariable”
factors. For example, the "Normal Operating Mode" and the
"Component Size" factors can be considered rather invariable
throughout the component's  lifetime, while maintenance program

_5i
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characteristics (e.g. the test and the overhaul intervals) are "easily
changeable”. The "Operating Time" factor of a component and thus it's
age "change" of course at each infinitesimal instant of time.

In the above "typical" example, 5 "easily changeable” age &
maintenance related factors and 7 "invariable" design, installation &
operating mode related factors have been assumed to be retrievable
from the given plant-specific data base. Factors 8 to 11 describe the
most important quantifiable aspects of maintenance practices performed
on a specified component population.

For a certain component population, the above factors could have the
following discrete "meanings”:

¢l = Japan;

p2 = PWEK;

¢3 = Auxiliary Feedwater System (AUXFEED);
@4 = Valve;

@5 = Motor Operated Valve (MOV);

¢ = Standby;

@7 = > 200 mm;

@8 = 3 Months Periodic Functional Test Interval;
¢9 = 1 Month Periodic Check Test Interval;

¢10 = 3 Months Periodic Calibration Test Interval;
@11 = 6 Years Overhaul Interval;
@12 = Component Age of 5 Years.

It shall be noted that, using a real data base, some of the factors in the
preceding example may have to be considered "factorial” in their
nature; that is, the same factor levels resp. factor values will be used
throughout the data base. For example, the factor "Cumulative
Component Operating Time" may be treated as being "factorial”, since
the same age discretizations may be used to classify the "age” of every
component included in the data base.
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On the other hand, some of the factors may be considered "hierarchical”
in nature; that is, the same categories may not be used for all
components in the data base. In our above example, the factor
"Component Type" with the discrete meaning "Valve" is further
classified into the subfactor "Component Subtype” with the discrete
meaning "MOV",

Here, it is important to state that the proper categorization of
components into classes of components considered similar to each other
requires a complete and mutually exclusive set of characterizing facters
of the same level. Of course, factors with different hierarchical levels
can also be combined into aggregated factors, if necessary, but in such
cases it is not possible any more to estimate the relative importances of
the therein included hierarchical factors versus each other. In the
illustrative example of this paper, the factor "Component Subtype” is
only applicable to valves, resulting in three valve subtypes, but not to
pumps, wherefore an aggregated factor, "Component (Sub)types"”, has
been formulated. Consequently, it was impossible to estimate the
relative importance of the "Component Type" factor versus the
"Component Subtype" factor (see example below).

At this point, at the latest, it could be argued that the total number of
factors to be used for our further modeling purposes is rather arbitrary
and that it may even be impossible to consider "all” relevant impacts on
the component failure rate ("hidden factors”). Yet, it shall be recalled
that the total number of factors that can be formulated is, by definition,
always directly related to and limited by the fixed number of data
entries in the given reliability data base. Therefore, the adequacy &
appropriateness of the information included in a user-defined set of
component characterizing factors is always (at least) the same as the one
usually employed in component reliability calculations.

Provided that a corresponding component reliability data collection
exists, failure rates can be estimated for each of the possible
combinations of the above factors 0i (i=1,2,...,12), using the well-
known maximum likelihood estimator in a Poisson process,

_7_
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#{ xc ¢ X¢ € [Xrecorded M Xunscheduled down} §

k
T Observation Time Interval

A=
(3)

where k denotes the number of failure events in a fixed statistical
observation time interval T. That is, the cardinality "#" of the set of
recorded events x¢ leading to an unscheduled downtime of the selected

component(s) of interest (see also Appendix).

To simplify our illustrative example, let us now assume that we are only
interested in estimating the modeling task priorities for "Japanese PWR
AUXFEED MOVs in Standby Mode of Operation and 1 Month Periodic
Check Test Interval, 3 Months Periodic Calibration Test Interval and 6
Years Overhaul Interval” (our component population of interest), that
means:

{0 = const.: i=123,5,69,10,11}.
4)

In other words, the actual configuration of the following four
"remaining” component characterizing factors 0i classifies our

component population of interest:

¢4 = Component Type,

¢7 = Component Size,

®8 = Periodic Functional Test Interval,
612 = Component Age.

With that and apart from the trivial contribution of the fixed
observation time interval T equation (2) becomes

A= Mba,97,08,012) -
&)
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To further characterize the architecture of the underlying hypothetical

data base, discrete descriptive "values” ¢ji-j shall be assigned to each
factor in a way reflecting the given data base structure, for example:

P41 Motor Operated Valves (MOVs)

04 = Qa2 | _ Air Operated Valves (AOQVs)
4T P4-3 B Manual Valves
44 Pumps
(6)
< 100 mm
P7.1
¢7 = ( ©7-2 ) = | 1100 mm, 200 mm]
¢73 > 200 mm
(7
P3-1 1 month
63 =| 932 | =| 3 months
Ps.3 12 months
(8)
<2
P12-1 years
o2 = | Q2.2 | = {12 years, 4 years]
P123 > 4 years
)

The question how to appropriately "discretize" factors, 1.e. how many
discrete values have to be introduced for a factor in order to give
statistically significant estimates, is an important one; yet, it entirely
depends on the given data base and can not be answered in a general
way. It shall, however, be noted that a too finely structured factor
topology is likely to have many factor combinations that show few or
even no failure events. This makes statistical analysis for such cases
either very imprecise or impossible. Aggregating failure event data by

ig_
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simply reducing the number of discrete values in a factor will help
avoiding such effects, but can, on the other hand, possibly result in
severe loss of information, [1]. Therefore, it shall be recommended to
quantify the conventional statistical uncertainty bounds around each A
point estimate, which gives a decision criterion whether or not certain
factor discretizations result in statistically significant A estimates.

In a "real" application, to determine the component characterizing
factors ¢;j which have dominant relative importances, we would now
have to estimate and further analyze all possible A-dependencies among
the above-defined factors. In our hypothetical example, however, let us
now, for the sake of brevity, assume that we are only interested in the
pair-wise importances of the component size ¢7, the component
functional test interval ¢g8 and the component age ¢12 relative to the
four above-defined component (subjtypes of factor ¢4 , 1.e. only in the

4
following 3 of ( 2 ) = 6 possible pair combinations (Cartesian products):

04 @ 07

(10)
04 ® O3

(11)
b4 ® 012

(12)

For each of these Cartesian products, using a given set of hypothetical
(however "realistic”, when compared to generic failure rate data)
reliability raw data, the isomorphic mapping from factor space Z4 1o
failure rate space A4 results in a set of two-dimensional A-matrices, as
depicted in Table 1 to Table 3 (which shall represent our quantitative
model input). The A point estimates in these matrices are in arbitrary
units (e.g. per demand).

710_
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The question of interest is now, which of the three factors of interest,
o7, 98, 12, has the dominant impact on the failure rate of the four

component (sub)types, respectively.

In order to estimate the sensitivity of the failure rate value towards
variation of certain factors, the following simple importance measure
for the failure rate values in the data matrices, Table 1 to Table 3,
shall be defined:

Q = (maximum A\ value in a table's row or column
minimum A value in a table's row or column

(13)

For example, the (mean) "importance” of factor ¢7 is:

Qy, = L Z Q¢; varried; ; const. 3 (98912 = const.)
2 ‘i,j=4,7
i#]
' (14)
where,
3
max » l 3
Q. varieds o const, = 1 3 ( (Aa7)-1k Aa-7)-2K M&-7)- 3k})
3 & \min Aamax Mar2zk Ma)3k)

(15)

and

3
max ’ )
¢, varried; ¢4 const. = 1 2 ( A('M) Xk ?\'(74) % A‘(FM) 3k}
3 5 \min (A7)0 Aggy21, M74)- )

(16)

Similar measures can be constructed for the two other factors ¢g§ and
®12 and, using our hypothetical data, be numerically evaluated. The
final outcome is then a set of "Relative Importances” Q¢7,Q¢3,Q¢12

—_ 11i
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for the three selected factors ¢7,08,012 (under the modeling
assumption that ¢4 = const.), as summarized in the form of bar plots in
Fig.1. Again, in a "real” example the estimation of the relative
importance of factor ¢4, the component (sub)type, would have to be
included in the analysis, which would then have to deal with the
complete set of six pair-wise A-matrices.

In our hypothetical example, the resulting set of factor importances,
Fig.1, clearly indicates the dominant impact of the "Functional Test
Interval” factor on the failure rate A in the case of MOVs as well as the
dominant impact of the "Age” factor on A in the case of AOVs and
Manual Valves. The relative importance of the "invariable"” size factor
exceeds the one for the "easily changeable” age factor in the case of
MOVs only, but exceeds the one for the "easily changeable" test interval
factor in the cases of both Manual Valves and Pumps. As a conclusion of
this hypothetical case study, the necessity for analyzing the
appropriateness of the MOVs’ test interval as well as for performing
"aging" studies for AOVs and Manua! Valves could be recommended. It
is important to note that the results of such a "relative importances”
analysis can only serve as indications, depicting possible problem
areas(*) and shall thus be understood and used as cost-effective tools
supporting decisions on the necessity of conducting further detailed (and
more "costly") studies. Reference [2] gives an overview and discussions
on the usefulness and applicability of such "costly” models.

Fig.2 to Fig.4 show the failure rate point estimates for the four
component (sub)types (cf. equation (6)) as a function of the three
different component size values (cf. equation (7)), the three different
test interval values (cf. equation (8)) and the three different age values
(cf. equation (9)), respectively.

As can be seen from Fig.2, the variation of the size of the components
results in a significant change of the A value only in the case of the
pumps. The failure rate of the pumps increases by appr. 7 when the
pump size is changed from ¢7-1 to ¢7-2.

(*) This is, however, true for the results of all importance measures.

i12 —
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In the case of MOVs, the variation of the test interval factor from 3 to
12 months (i.e. from ¢g-2 to ©8-3) results in a decrease of A by appr.

13 (see Fig.3).

Eventually, Fig.4 clearly depicts the great importance of “aging” for
AOVs (increase of A by appr. 10) and Manual Valves (increase of A by
appr. 10) and the very low importance of aging for MOVs (A remains
fairly constant).
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Failure Rate Point Estimates for ¢4 and ¢7 (e.g. in units/d)
o7
o4 <= 100 mm 7100, 200 mm] > 200 mm
MOVs 7.3E-03 4.4E-03 3.0E-03
AOVs 1.2E-03 8.0E-04 3.7E-04
Manual Valves 1.0E-04 2.2E-04 4.0E-04
Pumps 3.3E-03 1.8E-02 4.0E-03

Table 2 TFailure Rate Point Estimates for ¢4 and ¢8 (e.g. in units/d)

08
¢4 1 month 3 months 12 months
MQOVs 3.2E-04 5.0E-04 4 4E-05
AQVs 2.2E-03 1.1E-03 52E-03
Manual Valves 2.2E-03 2.2E-03 4 9E-03
Pumps 2.5E-03 3.0E-03 5.8E-03

Table 3 Failure Rate Point Estimates for ¢4 and 612 (e.g. in units/d)

612

o4 <=2 years 12, 4 years] > 4 years
MOVs 1.8E-04 2.0E-04 2.1E-04
AQVs 1.1E-04 5.9E-04 1.3E-03
Manual Valves 4.1E-03 8.8E-03 3.5E-02
Pumps 2.7E-03 3.3E-03 1.6E-02

— 14 —
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S. SUMMARY AND CONCLUSIONS

Using basic component classification schemes, a multivariate data
analysis technique and various elementary statistical measures, a "cost-
effective" screening process has been developed to calculate relative
importance values for all quantifiable component characterizing factors
of interest directly from active components' failure report and
engineering data. The only parameter to be estimated is A, the point
estimate component failure rate. Suppose, ZM represents the topological
space of all m discretized factors {91,92,...,Qi,..s@j5..,9m : ij=
1,2,..,m ; i=j} that have been formulated from the given data records.
The corresponding failure data collection can be considered as the
mapping from =M to AM, Now, for each possible Cartesian product
subset 2%®® a two-dimensional matrix A®® %, consisting of failure rate
point estimates can be constructed, taking over the pattern of the
corresponding factor space and using the given raw failure data. The
order of these matrices be (riXcj), respectively. Calculating the
arithmetic mean of all (rj+cj) permutated statistical range fractions of
the failure rate point estimates gives a simple measure for the relative
importances of the component characterizing factors among each other
with regard to the underlying failure rate measure.

The number of factors that can be formulated is limited by the scope of
the analysis itself (user input) and the given number of data entries in
the underlying data base. Thus, depending on the user’s requirements,
the quality and quantity of information included in the factors will
always be (at least) the same as the one in "conventional" reliability
calculations.

The relative importances of the "easily changeable” factors (e.g. factors
related to a component population’s age & maintenance) can be
compared to those of the more "invariable” factors (e.g. factors related
to the component’s environment, design & normal mode of operation).
In the case that the "easily changeable” factors dominate the pattern of
importance values, further component performance studies, e.g. on
aging and maintenance cffects, are considered necessary. In such a case,
the "typical” failing component has been identified as a component with
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a certain (too long) age or with certain inappropriate periodic
maintenance characteristics. The relative importance of both of these
factor types can consequently be decreased by either introducing shorter
overhaul intervals or more appropriate maintenance intervals.

However, it has to be mentioned that the developed model does not
allow the importance ranking between components. For a pre-selected
and clearly specified component population of interest, sets of
component characterizing factors can "only” be ranked versus each
other. Obviously, the user’s definition which components are "currently
of interest" will heavily depend on their estimated contribution to
overall plant risk.

Further, it shall be recalled that the results of such a model can only
serve as indications depicting possible problem areas and shall thus be
understood and used as cost-effective tools supporting decisions on the
necessity of conducting further studies.

To give an impression how to actually conduct such a ranking process
of component characterizing factors and how to interpret the results, a
simple case study example has been included in this paper, using
hypothetical component failure rate and engineering data.

By means of this approach it shall be possible to detect the current
plant-specific priorities for conducting necessary research on (active)
component performance studies. Thus, utilities as well as research
institutions having access to plant-specific data could thereby prioritize
their research planning and validate the appropriateness of current
research plans.

Considering the specific characteristics of Japanese plants, equipment
~ designs, maintenance practices and programs, the application of this
model shall be proposed to such organizations in order to determine
future Japan-specific strategies in the field of necessary probabilistic
component performance studies.

718_
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APPENDIX

THE NECESSARY ANALYSIS INPUT DATA

This includes the "Component Failure Data Sheet”, Fig.Al, and the
"Component Specification Sheet”, Fig.A2, which have both been
developed to exemplarily support the suggested importance ranking
process of component characterizing factors. The format of both data
sheets has been designed in a way that enables the user to directly
perform the importance calculations proposed in the previous sections.

"Failure Events" of components shall thereby always be understood as
events recorded in the data base, directly or indirectly affecting the
components with consequences requiring a maintenance act (preventive
or corrective maintenance) and therefore leading to an unscheduled
downtime of the component (see equation (4)). Thus, a "failure” does
not necessarily result in an inoperable state of the component,
wherefore degradation events may also be considered and counted as
"failure events”. Since the date of failure discovery and the date of
actual failure event occurrence may (and usually will) differ from each
other, an estimate of the date of failure event happening shall always be
included in the "Component Failure Data Sheet", Fig.A1.

In order to specify the characterizing factors of a certain component in
detail, the "Component Specification Sheet”, Fig.A2, has been
developed.
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Component (Estimated) Date Date of Failure
Code (ID) of Failure Event Discovery
JAUX00IMV 1989-01-01 1989-02-15
1989-08-22 1989-08-22
1991-11-01 1991-11-01
JAUX002MV 1985-07-06 1985-07-06
1992-02-01 1992-03-01
2AUX00IMV 1984-08-01 1984-08-01
1988-01-15 1988-01-15
1988-02-01 1988-02-01
2AUX002MV 1987-09-01 1987-10-01
1988-12-01 1988-12-30

Fig. Al Example of a Component Failure Data Sheet

Compoenent Code (ID): 1AUX00IMV
Country: Japan

Plant Type: PWR

System: AUXFEED
Component Type: Valve
Component Subtype: Motor Operated Valve
Normal Operating Mode: Standby !/ Closed
Component Size/Flow Rate: 200 mm diameter
Periodic Functional Test Interval: | 3 Months
Periodic Check Test Interval: 1 Month

Periodic Calibration Test Interval: | 3 Months
Overhaul Interval: 5 Years
Installation Date: 1988-03-01
Out-of-Operation Date: still in operation
Start of Observation (Date): 1989-01-01

End of Observation (Date): 1992-04-30

Fig. A2 Example of a Component Specification Sheet
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