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Preface

Some PWRs have been in operation for a few years in the country.
Core management of the reactors is important in utilizing the nuclear
power plant. Main objects of the core management calculations are as

follows:

(1) Determination of the most economic and safe fuel exchange
schedule.

{2) Reactor startup test analyses.

(3) Determination of the suitable operating conditions for safe
operation satisfying the licences.

(4) Evaluation of the nuclide inventries, tables of which are

submitted to the government.

Many partial studies have of course been made for satisfying some of
the requirements. From experiences of the present authors, however, it
seems that the results from such analyses are not necessarily reliable;
moreover cause for and nature of the errors are often not clear. The
most important for obtaining any results 1s thus consistency and definite-
ness of the theoretical bases of data processing methods in successive
calculations. Generally, the nuclear and thermo-hydraulic state of a
reactor core is represented by neutron transport equation and thermo-
hydraulic equations including the mass-, momentum- and energy conservation
principles. However, the equations are so complicated that the analytical
solution is hardly possible even for a simple system. It is thus
inevitable to divide the procedure into some steps, in each of which the
equation is reduced to a simple form for its numerical solution with
economic computer time.

The problems included in the division above are as follows:

(1) Consistency of the boundary conditions on each variable.

(2) Precision of the approximate equationms.

The few group reactor constants, for example, are obtained from the multi-
group spectrum calculations in simpler geometries in which the boundary
conditions are determined by solution of the overall equilibriumA
equations with natural boundary conditions. The authers have developed
an analyzing scheme which has the overall consistency in the range of its
applicability. In this report, the design concepts for the scheme are
described in detail by reference to the results obtained by the computer

code system based on the concepts.

Vil
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1. The Basic Course and the Summary of the Analyzing Method

1.1 General properties of the physical quantities

In general, nuclear and thermo-hydraulic quantities to be evaluated
for reactor core maintenance are determined by neutron balance equation,
thermo-hydraulic equations and burnup equation. Of these equatiomns, the
neutron balance equation has a linear form if the coefficients are
constant. But there may be some feedback effects of neutron flux on the
coefficients through the thermo-hydraulic equations and the burnup
equation; the neutron balance equation is not linear as to neutron flux
in this sense, which is one of important causes of complexities in data
processes for neutron balance calculations. Thermo-hydraulic equations
in rigorous form which are described in terms ofrvector—tensor notation

are very complicated from the next poitns of view.

(1) Mathematical properties of the operaters in the equatioms
(2) Boundary conditions

{3) Physical properties of the stress tensor

Hence there may be found no other way to treat these equations than
a macroscopic treatment with unknown ccefficients to be determined by
empirical method. It is to be noted that super sonic transient phenomena
are taken out of the description because any such phenomenon is due to an
abnormal core state in a period negligibly short compared to normal
operation time for which core maintenance should be performed. In other
words, features are too complicated in such drastic transient states to
be analyzed, that is, any analysis for such a phenomenon may be almost
nonsense except when it is performed by a simple model based on many
reliable experimental results.

The burnup equation is seemingly linear as to the dependent variable
but the coefficients depend on it through the neutron balance equation,
then some corrections may be needed.

Usually, the burn up equation is solved for the next two purposes.

(1) Analysis of Xe-Oscillation

(2) Calculation of fuel burnup

For the purpose (1), the feed back effects of fuel nuclide densities are
negligiblly small, hence the equation becomes simple. For the purpose (23,
the correction for time-variations of flux distribution and effective

cross sections of nuclides is important.
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1.2 Summary on the basic equations

The equilibrium condition of a reactor core is determined by the next

equations.

(Neutron balance(5))

1 |

[v * 3t + 0V + Zt(r’E)]‘i}("‘:E’ﬂst)
N t e (o

= Xo(B)vgp{r,£) + SUM x3(E)vidy/ p0r,v)e r(e T)dT
i=1 o

+ [ aR'S dE'ig(r,E'>E, 2'-@e(r,E',0",t) (1.1
4 o
(Mass balance)
—a-ag o (M, t) + div o(r,e)V(r,t) = 0 (1.2)

(Momentum balance(ll))

;1 p(r,t)y v(r,e) + [V-o0r, v, e)¥(r, )]

+ Vp(r,t) + (9.1 (r,t)] - p{r,t)g = O (1.3)

(11))

{(Energy balance

s(r,t) —— e(r,t) + pVprade + div g

ot

+ P(r,t) div V(r,t) + [~{(r, )W (r,t)] = 0 (1.4)
(Burn up)

e

= 1.5

" AN ( 3
where

t : time wvariable (sec)

r : positien vector (cm)

E : neutren energy varinhle (eV)

f : unit direction vectur

v : the neutron veloclty corresponding to E (cm/sec)

£y ¢ macroscopic total cross section (cm 1)

Ig ¢+ macroscopic differential cross section (cm_l'eV_lj

-2 -
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macroscopic fission cross section (em™ 1)

If ¢
v : number of neutrons appearing per unit interval about the final
time by a fission emerged per unit interval about an initial
time (sec™!)
: average energy spectrum of fission neutrons
¢ ! neutron flux density per unit solid angle (em™2+eV iesec™!)

p(r, ) :f dEzf(E)I ¢ (r,E, R, t)d0/a4n
p : moderator den51ty (gr em™3)

¥V : wvelocity vector of moderator (emrsec™!)

P : moderator pressure (gr-cm’l'sec‘z)

“lisec™?)

T : viscosity tenmsor of moderator (gr-cm
: internal energy of moderator (ergecm3)
. vector of heat flux density (ergrem Z2-sec” )

: the acceleration vector of gravity (cmesec™@)

= S

: coefficient matrix of burn up equation

Of course, some auxiliary equations are needed, which give nuclear
CTOSS sections(l*z!a), the relation among the thermo-dynamic functions(ll),
friction and so on. However, there are some complicated relations which
are not necessarily given theoretically or even if possible the forms are
too complicated for utilization.

Therefore these relations should be determined by any macroscopic
empirical methods for utilization as the case may be. In this report, a
series of methods for solving these equations are introduced, the contents
of which are partly conventional methods are partly those developed by

our efforts, constituting an organic system. The solving processes are

summed up as follows:

(1} Calculation of nuclear data values at the neutron energy
points required for calculating group constants.
(2) cCalculation of multi-group constants.
{(3) Calculation of few group reactor constants.
(4} Calculation of distribution of neutron flux, power, temperature,

burn up rate and so on.

The necessity of these processes 1s clearly shown gradually in later

descriptions.
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2. MNumerical method for solving the Boltzmann equation

2.1 The design concept on numerical method

The neutron balance condition under a fixed thermo-hydraulic state
is determined by equation (1.1)}.

In other words, if the distributions of temperature and pressure over a
reactor core are given, the cross sections in equation (1.1) is uniquely
defined by the cross section theory(l’Z), hence equation (1.1} with
natural boundary conditions gives the neutron balance condition over the
core.

However, it is well known to us that the dependencies of the cross
sections on neutron energy are very complicated and the core of any
comerclal reactor has a complex gecmetrical structure. Therefore, no
analytical solution of eq. (1.1) over the all domain of phase space can
be expected. But the final purpose is to obtain the spacial distribution
of reactor power and burn up rate. To obtain these quantities over a
large reactor core by numerical method, it is necessary for computational
economy to smooth away the neutron energy dependency of the Boltzmann
equation and reduce it into a set of some few discrete group equations
with the appropriate constants so called few group constants or reactor
constants. These constants are given by averaging the cross sections
weighted by the spectrum obtained as the solution of equation {1.1)

over each unit cell such as fuel rod, etc., under simple boundary condi-
tions. Therefore the constants depend on the weight flux, the shape of
which is changed by the densities and the temperature of the absorbefs
and the moderator.

The fine structure of the spectrum is determined almost by the
composition and the temperature of the resonance absorbers; the
composition changes very slowly according te fuel burn up rate and the
temperature distribution is effectively constant at a power level. The
overall shape of the spectrum in a core is determined by the moderator
density, the poison density in the moderator and the boundary conditions
of the unit cell, where the first two of these guantities can be changed
rapidly by plant control. Therefore, it is desirable to divide the
reactor constant calculation precedure into two steps. The first is to
calculate the fine spectrum of each unit cell and erase the resonance
structure of the cross sections by averaging them using the fine spectrum
as weight over each enerpy interval taken so appropriately that the

effect of the overall shape is negligibly small. We call this step multi-

— 4 -
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group constant calculation. The second is to calculate overall spectrum
using the multi-group constants described above and reduce the multi-
group constants into reactor constants. We call this step reactor constant
calculation. |
It is to be noted that the multi-group constant calculation has to
be performed at only some points of the absorber densities and the tem-
perature because the variation width of absorber composition and the
Doppler effect is very Small, while the reactor constant calculation must
be performed at many points of the parameters, viz., moderator density,
poisen demsity, cell boundary conditions, and fuel enrichment because
these quantities often change so far that the overall shape is distorted.
In brief description it may be said that the multi-group constants are
not changed by any short term transition of the reactor state but the
reactor c¢onstants are not s0C.
Finally it may be concluded that the almsot best way to solve

equation (1.1) over a reactor core is to divide the solving procedure

into three steps below:

(1) Multi-group constant calculation
(2) Reactor constant calculation

(3) Spacial distribution calculation.

We perform the step (1) by solving the ultra-fine group integral—
forms(13,18) defined in simple one-dimensional geometries, and (2) by
solving the multi-group differential—forms(ls’19) in one dimensional
geometries such as rods cell or infinite slabs, while use is made of the
multi-group integral form(18:17) for more complex geometries such as
assemblies to research the boundary conditioms of the rod cell geometries.
The step (3) is performed by the diffusien form(*) consistent with the
p1-equations; the reactor constants for the diffusion equation are
determined by the pj-approximation at the step (2). The detailes of

these steps are described in later sections.

2.2 Nuclear data

Almost all the reactions important for the neutron balance in a
light water reactor core are picked up in table 2.1. The nuclide cress
section for each of these reactions is given by ENDF{12)-B in the form
according to the reactiom. On the other hand, the neutron transport
equation in seven dimensional phase space is represented using the cross

sections of total, fission (multiplied by v-value) and differential

‘_5_
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scatter. Therefore we collect the cross sections for reactions in TABLE
2.1 into three practical quantities, namely, the cross sections of capture,
fission and scatter.
The collecting manner is as follows.
(Capture cross section)

First, the cross section of reaction (a) in TABLE 2.1 is given as
two parts, one 1s the resonance cross section given by the Breite Wigner's
level formula(l,zalz), etc.,, with the corresponding level parameters,
while the aother is the so-called smooth data giving the difference
between measured value and that given by the level formula.
Consequently, the cross section of the reaction (a) at any arbitrary

neutron energy E is given by summing up the value given by the formula

above and the smooth data:

_ res _sm
”n,Y(E) {‘En,\‘,(E} + ”n,Y(E) (2.1)
where 0§e$ the resonance part is given by the level formula. Next, the
>

cross sections of the reaction from (b) to (g) are all given as the
smooth data %,p> 9n,a> n,t Un’Hé, %, andon,za measured at finer
neutron energy points.

TABLE (2.1}

(a)  (m,Y)  reaction

() (n,p) "

(c) (n,d) "

(d) (n,t) " neutron capture
() (n,He?) "

(£) (n@) "

(g) (n,2y) " -

(h) (n,n") " .

(D (n,n"50) " inelastic

(i) (n,n',3) "

(k) (a,n',p) " - scattering
(1) (n,2n) " ) (n,Zﬁ)

(m) (n,2n,u) " B

(n) elastic scattering]—

(o) (n,f) reaction fission
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The capture cross section g.(E) is then given as:

sm
9. (E) = 0§?$(E) + gn,Y(E) + gn’p(E) + on,q(E) + Un,t(E)

+ op,He3(E) + C’n,oa(E)'*'01—1,2@(1‘:) (2.2)

(Fission cross section)
Fission cross section is also given as the summation of resonance

part ocf®S(E) and smooth part U%m
oe(E) = o%es(E) + o%m (2.3)

(v-value and fission spectra)
It is required for the treatment of neutron kinetics equation that
v-value is given in a time dependent form(12’21). The nuclear data

library ENDF-B/4 gives this as such factors:

vi(E}: the number of the total neutrons emerged by decay of the
i-th precursor originated from a fission by neutrons of
energy E

xi(E): fission spectrum of the i-th delayed neutrons

»j ¢ the decay constant of the i-th precursor (= 0 means "prompt",

ie., Ag = =)

These data give the time dependent fission source as

N t ~aq (-7
Xo (E)uablr, t) + S'Ull.“i Xi(E)viP\iwa(H‘,‘r)e
1=

with

plr,t) = Ide' Le(E")/ $(r, B, 0, t)de/ 4w
o 4m

(Scattering cross sections)

First, in the category of the inelastic scattering reactions
described in Table 2.1, for only the (n,n') reaction excitation level
data are given in ENDF-B. Namely, the data of the (n,n') reaction are
given'as two parts. One is composed of the k-th discrete exitation
level Ey and c%,nr(E’) denoting the cross section value corresponding to
Ei and the incident neutron energy E', while the other is on,n'(E') the
cross sectlon in the unresolved excitation level energy range higher than

the maximum Ep.
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For another inelastic scattering reaction x, such as (n,n',a),
(n,n',3a) or (n,n',p), data are given as o4x(E') in the unresolved
excitation level energy range. Also, for each of the inelastic scattering
reactions, the distribution of level energy in the unresolved region is
represented by the evaporation model(l»2512) The total inelastic dif-
ferential scattering cross section is thus given on the assumption of
scattering isotropy(“) in the Laboratory system.

Next, for the (n,2n') reaction, data is given as cn,zn'(E') the
cross section corresponding to the incident neutron energy E', and the
evaporation model is used for the distribution of the emergent neutron
energy.

Last, the elastic differential scattering cross section is practi-
cally used as a Legendre polynomial expansion with regard to the direction
cosine of scattering angle. ENDF-B gives the coefficients. Finally, the
total differential scattering cross section is given by the data and the
models described above for incident neutron-energy larger than E. while
by thermal scattering model(2’1”’15) for the energy smaller than E..

Note that ENDF-B gives these data at the temperature of 0°K, hence they
are corrected for the Doppler effect corresponding to the actual tem-

perature by the procedure described in APPENDIX I.

2.3 Multigroup constants

2.3.1 Consideration on multi-group constants
For the treatments of the neutron balance equations described in

Sec. 2.2, it is desirable to have a set of multigroup constants satisfying
the next requirements:

(1) Closed in the sense of eigen value

{2} Effects of rescnance interference between nuclides can be

taken inte account
(3) Heterogenity effects can be taken into account
(4) Time dependent fission source term of the Boltzmann equation

can be represented without using precursor concentration

variable.

0f course, there have been produced some group constants sets well known
to us such as ABAGYAN(23) | 7aAERT-FAST(2%) | am(34,35) sec.  But these
sets may not be sufficient for the analyses of commercial light water

reactor hecause of the next features.
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(1) ABAGYAN and JAERI-FAST sets were produced for mainly analyzing
fast reactors, hence the thermal data are not sufficient for
light water reactors.

(2) GAM library is formally complete in the sense of having full
data in all the necessary neutron energy range but the values
are of infinite dilution and only the resonance seli-shielding
effect is evaluated by NR approximation on the assumption of
spacially homogeneous spectrum.

However, any realistic commercial light water reactor core
has strong heterogenity, moreover the interference effect of
sections must be taken into account especially in resonance

energy region when plutonium isotopes override.

Moreover there are no other conventional sets than them. Therefore
we have developed a computer code system for production of the multigroup

constants under the design below.

(1) ENDF-B is used as a basic nuclear data file.

(2) The weight flux spectrum is calculated by solving the equatioen
(1.1) in an isotropic one-dimensional form using fine energy
point data of macroscopic cross sections composed of the
individual microscopic cross sections given by some cross
section formulae and the instruction of ENDF-3 data processing
methods.

Any arbitrary neutron source spectrum can be given as the
fixed source term.

(3) The group constant set of individual nuclide has ome-
dimensional and two-dimensional parts, the former contains the
multigroup cross section vectors for capture, fission, v-value,
elastic scattering, inelastic scattering and {n,2n) reactiomn,
while the later contains the scattering cross section matrices
for elastic (py,py), inelastic (py) and (n,2n) reactioms.

(4) The effective values of one dimensional vectors are calculated
in the realistic simple geometries of the core components such
as cylindrical fuel rod cell or poison rod cell or infinite
slab layer in which the cne—dimensicnal heterogenity is
considered. _

(5) The scattering matrices are calculated by the scattering laws

using a standard spectrum as the weight flux.
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(6) The table of multi-group constants of each nuclide is compiled
in the form which has the infinite cross section vectors, the

vector of shielding factors and the normalized scattering

materices.

2.3.2 Calculation of multi-group constants

With a suitable group structure, the values of group constants may
not almost depend on the slow wvariation of the weight flux over an
energy range wider than the group width, but they depend on the rapid
variation in such a smaller energy range as a resonance width(zz) which
is extremely narrow compared to the group width. Therefore, it is
sufficient for the purpose to get a fine structure and an approximate
overall shape of the weight flux.

To attain this purpose, the total energy range is divided into two
parts at a suitable energy point E,, the neutrons scattered at an energy
(>E.) elastically or inelastically by any nuclide are all slowed down
and the Boltzmann equation is then treated as a slowing down equation for
a suitable fixed sources. On the other hand, in the energy range below
Ec the neutrons are scattered partly up and partly down, the fractions
of which are determined by the thermal scattering low, and the Boltzmann
equation is then treated as a thermal equilibrium equation with the

neutron source slowed down through E.. Here, E. is determined as:

E. = 1.835 eV.

For the actual problems of finding the weight flux for calculation of
group constants, it is to be noted that the energy spectrum'of the
neutron flux in an absorber lamp has strong heterogenitv which is the
reson why the equation cannot be treated in space free form. The
Boltzmann equation is then treated as a static form with isotropic
source in a one-dimensional geometry such as cylinder, slab or sphere.

In our calculation, the Boltzmann equation is treated fundamentally
as an isotropic form because only the isotropic component of angular
flux is used as weight flux. The integral transport equation is more
convenient than the differential form for calculation ¢f the isotropic
component because the former is a single equation, whereas the latter is

a set of more than two equations concerning some of the higher angular

compaonents.



JAERI-M 82-187

The components of a PWR core may neutronically be classified into

four categorieg; each of the fuel rod, contrel rod, burnable poison rod

or the other structural components has a typical fine structure of the

flux spectrum respectively. Therefore the effective values of the group

constants for a nuclide is distinct by the cell in which it is contained.

Hence calculation is made cell by cell to obtain the precise data for the

main nuclide in the cell.

The slowing down equation is thus solved in each of the omne

dimensional heterogeneous geometries over the energy range from an

effective upper limit to E_. under the next conditions:

(1)

(2}

(3)

(4)

The macroscopic cross sections are given at the required
energy mesh points fine enough to represent the resolved
resonance structure of important nuclear cross sections, and
any neutron once collided in a mesh 1is necessarily removed
from the mesh.

The scattering process of neutrons is represented by the so-
called a-model.

An appropriate fixed source, e.g., a fission spectrum is given
for the cell.

Boundary conditions of the cell are perfect reflective.

The calculation is performed by the RABBLE-code modified for the purpose.

The thermalization equation in the one dimensional gecmetry is

solved under the next conditions.

(1)

(2)

(3)

(4)

The macroscopic cross sections are given at the mesh points
many enough for representing the resonance cross sections and
the 1/v cross sections in relation with the Maxwell peak of
the thermal neutron flux.

The scattering process(z’lq’ls) of neutrons is obedient to the
Haywood model in water and to the Free Gas model in other
media.

The slowing down source is given as the result of the solution
of the slowing down equation.

Boundary conditions of the cell are perfect reflective.

The calculation is performed by the THERMOS code.

The multigroup meshes above Ec are taken like those of the ABAGYN-set for

the reason that these mesh widths are selected by the fact that the group

constants do not vary more than 2% whether the weight flux is 1/E or flat
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shape. The multigroup meshes below E. were determined first by considering

the thermal resonances of important nuclides and thermal flux peak, and
are modified afterward to decrease the neutron temperature effect on
the 1/v cross sections to negligible size.

The fine meshes for solving the slowing down and the thermalization
equations are determined by surveying the fewest necessary number of
fine meshes of energy group. The multigroup structure and the fine
meshes are summalized in APPENDIX A-11,

The space meshes should be determined by their optical length.

Let a mesh width the Ar and the macroscopic cross section Iy. The size

of Ar should be so dtermined as the next approximaticn
e Tt = 1 - Iear (2.4)

is valid to an extent, because anv discrete numerical solution is based
on the assumption of mesh-wise linear dependency on space variable.
The effective group constants of a nuclide are given by the next

relations,

S aEaOx (E)$(E)dE
0B sEglx ") (2.5)
S ppgt (B) dE
S i GBSy TE~E' )9 (E)JE
oM gog') = A SRR (2.6)

/ 45g¢ () dE

where, ¢(E) is the angle-integrated fiux spectrum which is given by the
fine spectrum calculation described above.

However, it is very troublesome to compile the two-dimensional data
og™(g,g') define by relation (2.6), because the scattering law becomes
flux dependent and thereby it must be calculated every times. Therefore,
it is desirable to make allowance of the next premises on the scattering

matrix.

(1) The total scattering cross section of every group is conserved
equal to the effective value determined by relation (2.5).
(2) The law of scattering from any group is independent of the

fine spectrum in the group.

The premise (1) is indispensable tc comserve scattering rate from every
group. The premise (2) is an assumption meaning that the neutrons

scattered in any group are transfered intc other groups at the ratios
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jndependent of energy distribution of scattering density in the group.
This assumption may have little influence on the multigroup energy transfer
1aw. Thus, ¢(E) in relation (2.6) is replaced by a standard spectrum $5(E)
representing an average spectrum of usual LWR cores as described in
APPENDIX III, and the total scattering cross sectiom in every group is
normalized to unity.

Consequently, the effective scattering matrix ME can be represented
by the standard scattering matrix Mg and the effective scattering cross

section matrix Mg as:

Ml = M3.MO (2.7}
where,
n n n
fl+l f1+2 e fl*ﬁ
n n n
o frwy foup vrerne foug
g =
n n n
fG+1 fc+2 e fG+G
. -~
s Tl It n ~
Sh O, e Oc
n o _ i
MC = .
n n n
L‘Ul a, cereels O )
n _ n n
fg+g' = os(g*g')/SuT os(g+g')
&

Then, it is obvious that MZ is obtained by calculation of only Mg, if once

Mg is calculated and reserved.
2.3.3 The compilation of the multi-group constants

Concept of multi-group constant table is considered first. The
effective group constants depend on the geometry, the temperature and
the composition of the system. Therefore the effective value is calculated
- at some points of these parameters in the work. Usually, however, the
group constants are calculated not by any peculiar reactor spectrum but
by a standard spectrum considered as fairly suitable for almost all

neutron reactors.
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In these c¢ircumstances, we also compile a gréup constant set of the
ABAGYAN type which is easily .compared to other sets. The set has two new
factors for IWR, i.e., the spectrum factor and the heterogenity factor
which will be described in the following sentences. In the fuel rods of
the actual LWR, the fine structure of flux spectrum is determined almost
by U-238, but in case of the fuel irradiated to an extent, U-236, Pu-240,
Pu~242 override, and they may effect a change on the spectrum over the
energy range 1.0 eV to 400 eV.

In any case, the fine spectrum is affected to an extent by the
nuclides with large rescnance cross section.

Morecver, the effective group ccmstants have heterogenity for the reason
described in the previous sectiomn.

Therefore we represent an effective group constant of a nuclide i as

aNB)  TNB) oMo

N
B) = - 32(0)
or ANy N 3% (0) y
= hi(IB)-sN(IB)-f(N}-cO(o) (2.8)
where RIB) = o) /oN(®)
sSS@) = VB /oMo
f(N) = SN /oo(0) (2.9)

o®(0): standard spectrum weighted group average value.

oN(0): real spectrum weighted group average value in case the
nuclide i is contained with number density N

EN(B): fuel region averaged group value calculated by the weight
flux determined for a cell which contains 1 and other
resonance nuclides with number density N and respectively.

N
0.{8): group value in region r calculated as above.

Note that aP(0)} is the so-called infinite value and fN the self-
shielding factor of the nuclide i and is a function of the potential
scattering cross section Ip of the other nuclides and the temperature,
these quantities are all the same with those defined in usual sense.
But, SNOB) denotes the shielding effects by other resonance nuclides
contained in the cell with number density Vector B, and hE(B) denotes
heterogenity effects by main resonance nuclides contained in the cell.

The merit of the representation (2.8) for the compilation is that the
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next relation may be permissible except few special cases,

S(B)

hr(B) (2.10)

sN@B)

1

SO (@B)

12

hY(B) ho(B)

because, the self-shielding effects on the denominators of relations (2.9)
may be comparable with those on the numerators. Thus the effective

group value is given approximately by the next relation

hr(B)-S(B)- £ -0(0)

o} (B)

The pertinence degree of the approximation (2.10j is as exhibited in

table.
As previously described, the group constants for a nuclide are
compiled into one-dimensional data tables and two-dimensional data

tables. The former containes the next quantities:

Infinite cross section

gc’ 9£> Je» Oin>%n,2n Ot

v-value and A

0, N (i, delayed neutron group

\Ji(E); i
24(E); 1 =0, N =0 means prompt)

Self-shielding factor

£.

£ in

foo fg, f

tr ~c? e’

Spectrum factor

Ses Ses Sgy Se

Heterogenity factor

hy, hc, he, hy

The later contains the next quantities,
. - , n
Elastic scattering matrix Mg,
Inelastic scattering matrix Mig

The (n;Zn) reaction matrix Mgn,Zn
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Moreover, the tables must have some other data such as the parameter
points at which the effective cross sections are calculated, various
integers to control file utilization program and descriptions on the
calculational conditions. The details of the forms of the group constant

tables are shown in APPEDIX IV with the utilization rule.

2.4 Reactor constants

2.4.1 Consideration on reactor constants

The flux distribution over a reactor core is inevitably given by
the few group diffusion approximation for the reason menticned in Sec.
2.1. For practical purposes, the finest space mesh for the horizontal
distribution of the meutron flux or the power ovef a reactor core is
equal to one rod pitch. For this reason, it is sufficient to calculate
and compile rod-cell-average few group constants of tvpical rod cells
and their correction factors due to the rod cell boundary conditions.

The few group constants of the typical rod cells are calculated by
multigroup SN-method (6,19,20) ip cylindrical geometry, while the correction
factors by multigroup FFCP-method in assembly geometry. For convenience
sake, we call the former "Standard values'", while the later '"correction
factors', "and all of these values "'reactor constants'.

The standard values are dependent on quick parameters, namely
moderator density, liquid poison demsity, whereas the multigroup comstants
are not. Hence the dependency of the standard values on these parameters
can be obtained from a set of the multigroup constants sabsténtially
invariant as to these parameters. Of course, the standard wvalues also
depend on slow parameters, namely absorber nuclide densities in the fuel
assembly components. This dependency would be explained in two factors;
one is the number density change itself of each absorber nuclide due to
burn up and the other is the variation of the multigroup constants due to
the former. Consequently it is cbvious that the most convenient data
processing method in practice is to calculate and compile the standard
values at some typical points of every quick parameter from a set of the
multigroup constants correspeonding to the considered ranges of the slow
parameters, where the ranges of the slow parameters should be chosen so
reasonably that the multigroup constants are substantially invariant over
each of the ranges. By this method, the standard values are calculated
and compiled step by step as the range proceeds.

The object of the correction factors are to compensate the sraudard
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values for the discrepancy between the isotropic boundary conditions taken
in the cylindrical SN calculation and the actual one. The discrepancy
mainly arises from the non periodic material array of a fuel assembly,
viz., PWR fuel assembly has some non fuel rods in its array. The effects
of these non fuel rods on the boundary conditions of each rod cell may
not largely depend on any parameter other than burnup rate of the poison
rod, because other parameters are overall ones and hence have no large
local effects.

It is, therefore sufficient to calculate the correction factors for
each type of the assemblies only at some typical points of the poison rod
burnup rate with the other parameters fixed at suitable points. For PWRs,

the parameters necessary in practice are as follows:

(Quick Parameters)

(1) fuel temperature Py
(2} moderator density P,
(3) liquid poison density Py

{(Slow parameter)

(1) U-235 density Py
(2) Pu-239 " Ps
(3) pPu-240 " P
(4) Pu-241 " Py
(5) poison rod burn up rate Pg

2.4.2 Calculation of reactor constants
Multi-group calculation is needed for determining reacter constants.
We calculate rod-wise constants and multiplication efficiency because the
over all flux spectrum is distinct cell by cell.
Usually the multi-group spectrum is calculated by the P> Bn

(%) By,

integral—p0 method. The typical computer codes based on P, or
method, namely the moment method are MUFT and GAM.

Both of them solve only the slowing down equation derived as the Forier
transform of the one dimensional Boltzmann equation on the assumption of

specially constant cross sections. In such a case the neutron thermaliza-

_tion equation is solved by another code such as THERMOS or the like,

which means the calculation system is not closed in the sense of eigen
value. It is then obvious that these systems have two disadvantageous
points in practical use for comercial thermal reactors, one of which is

the ambiguity or uncertainty in determination of spacially comstant cross
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sections and the other is the difficulty in obtaining the multiplication
efficiency of each trod in an assembly. Moreover there is no such practical
computer code based on the moment method that can deal with a multigroup
eigen value problem in a simple geometry, i.e., a cylinder, slab or

sphere with one~dimensional heterogenity.

On the contrary, some one-dimensional multi-group S, codes have been
developed for practical use, the typical two of them are well-known to us,
viz., DIF(ANISN) and WDSN-II which can dispose both of the eigenvalue and
the fixed source problem. The characteristic differences between them
exist in the method of taking angular quadratures, the treatment of
anisotropic scattering source and the treatment of void region.

We have taken WDSN-II for the purposes in favour of the merit that
it can calculate the angular quadrature autcmatically according to a
clear theory and the treatment of void region has been verified by our
calculation, while DFT(ANISN) requires angular gquadratures as Input data
and the convergence of calculation has not been certified in case of a
geometry with some void regions. The anisotropic source is generally
calculated by the Legendere expansicn of differential cross section in
regard to the directien cosine of scattering angle u, under the condition
of rotatiomal invariamce. WDSN-II code takes account of anisotropy of the
collision source by far the first order at present, but it is easy to add
the faculty of evaluating the higher order anisotropy. The method of
numerical solution used in this code is described in APPENDIX V, VI and
VII. One of the important factors for a rad cell calculation is the
boundary condition of the cell which is determined through by the natural
(or obvious) condition at the core boundary in rigorous sense, but it is
impossible at present to determine the cell boundary conditions by a full
core calculation. But it may be possible.tc obtain the approximate
conditions by a multigroup calculation in the two-dimensional assembly
geometry with perfect reflective boundary conditions, because the
assenbly boundary conditions may be nearly flat except that of assembly
positioned near the core periphery, or the rod wise flux spectrum may not
be influenced by the assembly boundary conditions so strongly as by rod-
rod interaction even if the assembly boundary conditions are not flat.
Therefore we determine the rod cell boundary conditions by the assembly
calculation described above using the code COLSQ.

This code solves the Po-integral Boltzmann equation using the first
flight collision brobabllities. The relation between the inteoral transport

equation and the first flight collision probability is described in detail



JAERI-M 92—187

in APPENDIX VIII. Of course this method may be the most precise one for
evaluating the details of the reaction rates and the effective cross
sections in an assembly, but such a method needs so much computer time
that it is hardly possible to perform many practical calculations accord-
ing to various reactor states.

Therefore we execute such calculations only at some typical parameter
points and the results are stored as a basic data for modification of the
rod cell boundary conditions through a quantity, e.g., ALBEDO which is
usable in WDSN-II code. But, the problem of finding a set of effective
ALBEDO values is one of the important works for the reactor constant
calculations in rod cell geometries, because the ALBEDO have strong effect
on the disadvantage factors in one rod cell on which the cell average

cross sections and hence the multiplication efficiency depend.

2.4.3 Formulation of the reactor constants

i) Standard value

As previously mentioned in Sec. 2.4.1 the standard values are cal-
culated by solutions of the transport equation in the cylindrical
geometries. But it is to be noted that the few group constants should
be so defined that the diffusion equations, when these constants are
applied as the coefficients, yield a solution consistent with that of the
transport equation as precisely as possible. The definition admissible
for this requirement can be derived from some troublesome manipulations.
The detailes of the procedure(”) are described in APPENDIX IX.

The diffusion approximation may be represented using a difference

operator Vi as

D8¢248 + 18 8 = 1 My IBo38 + r8 108481
DBY; 08 + 18 4B = 3 xgsgy\)z o8 + I8 17BeE
where
-
vIg8 = SUM uzf§¢§ vy/suMpBY,
i 1

— —
8781 _ pqg.pBET!
Se s

e _ g, 8.8t _ B
8., = & + RE - 12 r®
Dg = (Dr O>

o Di



JAERI-M 92—187

. Tg'+g+1
so si g’ g’
Rf = 1+ SUMSUM —— 07 ¢y Vi/SUMSS V.
g'fe g i
g'#gtl
: ;88
~g si £ g
R® = 1+ SUM SUM ——~n~¢.vjsmw.v.
r ~ 11
5 g'#g Zg+g+1 i i1
e
- S ' g g
Lg - SEMZsi ¢iVi/SgM¢iV1
B - SUMZg /SUM¢
g _ g g
i = sumrnl 1 §/SUMSTV,
SUMb V4
" g g g i
D2 = R/SUM(AR./|DF|) - BT -
T i 1 } 1‘ g SUM(v2¢g)lvl
1
p8 = suM(|p%| - /Bz)mgv /SUM¢gV
a K P L‘Q‘l
1
ib = sumrfiefv. /SUM¢gV
p® = 1/3:18 .
1 tri
gl+g . g” g ¢8'
g _ g' Isli_ | .8'7e'"E -t S
£5y = sumfsuw(xl VIS, =S 4 D2 )— " LEmi 1
g'fg g T¥ri i i
878 Soduf | du'f + "y [di (od®
sti ~ g ng, u'friu'u)iqqu’) (divd(ur};/[divd® 1y
58 = 7 Tpq(wdivd (u)]:du/[divd®} 1878
tri g“tl j9u/laIveTiy ~ Loy
g"rg've L cg'or' og'vg, .8
Zsml =Ygy “s1i /Ztrl
g'-g _
Etml R 511 /Ztrl
g _ .8 2R g
Zti zal + “si + zni
B, = L rag(ui(wdu/ef



JAERI-M 92187

g _ gg'
fai = SUML 4
E
g+g' -_ r 1 1 g
Toi = fg dng' du'f (uru') 2 (u} /43
vE%i b dqufi(u)¢i(u)/¢§
g
Zsi(u) = Eei(u) + () + 25441 (0)
3% =/ dubg(w)
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g
o0 = [ ¢{u,mdv/Vy
Vi
[divd(uw)ly = [ divd (u,r)dv/Vyq
Vi
[divd®]; = /7 duldivd(u)]y
g
d(u,r)y = [ d(u,r,0)d0/4n
b
J(u,r)y = 1 o¢(u,r,0)-pda/4r
A
L4 {u) macroscopic absorption cross section
Teilud macroscopic elastic scattering cross section
£1i(u) macroscopic inelastic scattering cross section
Inilw macroscopic (n,2n) reaction cross section
vZgilu) macroscopic fission cross section multiplied by
v=-value
R rod cell radius
AR space mesh increment
v volume element
B? axial buckling
i mesh number
g few energy (or lethargy) group number

ii) Correction

The correction factors are defined by the following concideration.
The boundary conditions of any rod cell in an assembly may be determined

by the assembly array type and pison rod burn up rate as described in (1i).

factor
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Thus, the correction factors, for the standard value of a quantity X
in an assembly type A with a poison rod burnup rate B is defined as the

next matrix:

2Xpq Kyp vevenns Xy A
}é(B) E—l- I‘. X21 Xzz LI ] XzN .
Xg 1
\\XN XN ....... XNN B

Xg : Standard value calculated by the cylindrical SN method under
suitable values of the parameters P; ~ Py and Pg = B.

: Actual value of X for (i,j)th red in the NxN assembly array
which is calculated by the FFCP method in the assembly

geometry under the parameter values same as above.

Therefore, the FFCP calculation is performed for every type A or the
assemblies at a burn up step B and MQ(B) is calculated for every
necessary quantity X, e.g., o%, c§+g'of the important nuclides and the
macroscopic quantities Z%, Z§+g'etc.

This procedure is performed step-wise as to B with an appropriate
interval 4B in which Mi is nearly constant. Obviously, the rod cell-wise
effective values X, in assembly A of a quantity X cerresponding to

arbitrary values of parameters P; ~ P, are given as the next NxN matrix
A
(Ke) = X-MR(B)
through burn up interval (B, B+AB).

2.5 Calculation of distributions

2.5.1 Calculation of the flux distribution in a reactor core

The Boltzmann equation is so complicated that the distribution of
the neutron flux over a commercial power reactor core may hardly be
obtained by solving it within an appropriate computer time and capacity.
Therefore, the Boltzmann equation is cbtained approximately bv a set of few
group diffusion equations. The diffusion equations are generally solved

by the so-called seven points recursion formula or a variational methed

such as the finite element methad. In any case, the large obstacles against

solving the practical problems are the following three items included in

inversion?) of the spacial operators.
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(1) Difficulty in determination of the adequate boundary
conditions.

(2) Any coordinate system does not necessarily fit to the actual
horizontal geometry.

(3) Large computer capacity is required for a full core calculation.

The item (1) has the following features. For a reactor core
calculation, it is desirable to know a set of external conditions
defined at the surface of the core, and these conditions are homogeneous

guch as:
(f%"%%)core surface’ 0F normal to surface
These values are however, not given previously because these are to be
determined by the over—all calculation about a larger geometry including
the core, at the external boundary of which naturally known conditions
can be taken. But, the over-all calculation cannot be performed properly
by any usual diffusion code which takes only one coordinate system for
a geometry, viz., the horizontal geometry of any actual reactor is so
complicated that some parts of it fit to one coordinate system, while to
another do the other parts, and_the item (2) means this feature.

In these circumstances, calculation is generally performed by
modifying the actual geometry to fit to the computer code or by sétting
up the trial values of the logarithmic derivatives at some imaginary
boundaries convenient for the code. The result of such a calculation is
then unreliable in its distribution because these modificatiens often
distort the overall distribution. The item (3) is the largest obstacle
especially in three-dimensional calculation because the computer core
capacity required for a calculation of the kind is proportional to the
multiple of the numbers of meshes taken on each axis, and this capacity
is very rarely admissible for usual computer in case of a large power
reactor core.

Our efforts were made to remove these obstacles, and thereby a series
of édequate methods has been developed. The series of meshods is derived
by the following consideration. The geometry of any usual comercial LWR
is very complicated horizontally while simple vertically. Then fer
ASettling a part of the three items, the three-dimensional equatiens are
first separated into horizontal ones and vertical omes. This operation
is possible by the leakage iterative method(33). The one dimensional

equations can be solved with ease but the two dimensional equations are
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very difficult to be solved because of the item (1) and (2). But, for

practical purposes, the item (1} and (2) can be removed by using two

coordinate systems, because the horizontal geometry of any commercial

LWR fits partly to the former and partly to the latter while the wvertical

plane geometry fits to a linear coordinate.

Two problems are included in using two coordinate systems in one

geometry.

The first is centinuity at the interface of two horizontal

plane regions, in one of which x-y-z system is used while r-8-z systems

is used in the other. The second is the inversion procedure of the

spacial operator. We have settled these problems in case with the

difference formula as shown in APPEDIX X, but the same problems may arise

in case with a variational method.

The substance of the series of methods is as follows:

(1)

(2)

(3)

(4)

(5

Separation of the three dimensicnal equations into one- and
two~dimensional ones.

The geometry is divided into appropriate regions by vertical
curved surfaces.

Two dimensional equations are expressed region-wise by the
coordinate system taken accordingly to the shape of the region.
We call this method RWM.

The spacial operator of two dimensional equation is inverted
region-wise.

The rule of taking mesh line in any region is Independent of

those of the other regions.

The obstacles described as three items above are almost completely

removed by the series of methods.

The outstanding merits of the series of methods are as follows:

(1)

(2)

(3)

It can be applied quite naturally to any horizontal plane
geometry, and thereby the calculational error caused from

the geometrical complexity may be extinguished.

The RWM can limit the required computer core capacity tc an
adequate maximum value almost independently of the total number
of meshes taken in the geometry.

Nearly natural boundary condition can be taken and it Is

represented in the most simplified form.
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2.5.2 Calculation of burnup rate
Calculation of burn-up distribution is usually accompanied with

the next there problems:

(1) Evaluation of one-group constants(31,32) for burnup
caleulation(30436,37,38,39)

{(2) Treatment of many F.P. isotopes(zs)

{3) Correcticen for variations of the one-group constants and

flux distribution during a burnup step.

in the code system, problem (1} has been settled by calculating the

effective cross sections consistent with those used for calculating the

initial flux distribution, where the cross sections are assumed constant

in each of "burnup regions™ suitably taken independently of the flux

calculation meshes.

For problem (2), the F.P. isotopes are categorized into the next four

groups.

(a) Xe135, Smlhg
(b) The other positioning isotopes
{c)} Isctopes important for burn-up analyses

(d) TIsotopes important for F.P. release.

The number of the isotope kinds in group (6) is so large that the number

density of the individual isotope cannot be calculated, hence they are
grouped into some appropriate seudo-F.P. nuclides. The number of
isotope kinds of categories (c} and (d) is small enough that the

individual calculation is possible.

The problem (3) is causes essentially from the non-linearity of the

equation system. No-suitable correcticen for this feature can be found
other than the nermalizatien of fissile nuclide densities by integral

power within the burnup step.
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3. Numerical method for solving the thermo-hydraulic equations

3.1 Basic concept

Strictly speaking, the thermo-~hydraulic balance condition of a PWR
primary system under the required S5G output power and steam quality
should be described in a complete set of equatiecns for its closed loop
composed of reactor core, SG, circulating pumps and other junction parts.
For statistic analysis of a reactor core however, the core boundary condi-
tions corresponding to the required SG output power and steam quality
are given as the design values, hence thermo-hydraulic equations(ll) (1.2},
{1.3) and (1.4) defined over a reactor core can be solved under these
conditions. Of course, it is necessary for transient analysis to
connect these equaticns to out-core balance equations considering variocus
characteristic relation and quantities, e.g., the pump characteristics,
the reactor control system characteristics, the pressure loss
coefficients, etc. In this report object is restricted to only seeking

the appropriate macroscopic distributions over a core under the suitable

core boundary conditions.

3.2 Macroscopic treatment

The thermo-hydraulic equations are principaly regafded as a set of
partial differential equations about the pressure P, temperature T and
velocity vector V as to space variable ¥ and time variable t, where
fluid density p, enthalpy e are the hydrodynamic quantities uniquely
defined by P and T, but the distortion trnsor v is given by P, T and V.

These equations should be solved under the next conditions

Vf:o = 0
T(X:Y:O:t) = Tin(x:Y)t)

P(x,y,2u,t) = Pg p(x,y,t)

Wix,y,o.t) Vin(x,v,)

where the next equation
f{x,y) = 0

represents the flow channel contour vertical to flow direction parallel
to Z-axis. But conflguration of flow area in any actual reactor core and

dependency of the di:ntortion tensor T on T, P and ¥ are so complicated
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that the analytical solution of the original equations may hardly be
obtained. Hence it follows that an engineering treatment(zs’za) must be
applied using macroscopic empirical data for smoothing the microscopic
complexity away, and obtaining reasonable macroscopic results for
practical use. The macroscopic balance equations in the form for such

a treatment can be derived by integrating the equations over a sub-
channel flow area and defining the appropriate average coefficients. The
detailed derivation of the macroscopic equations is described in APPENDIX
XI.

The balance equations about subchannel i is as follows”

(Mass balance equation)

aoi ami
A — + —= = -I Wij 3.1
I oat az 3 13 ¢ )
(Axial momentum equation)
am{ Ipi aP{
Aj - 2A5u; — +A;—
oot PLoge T bz
mi; 2 Vifid KeVs! 3 v
= - (= =L 11+A-—(—}_)}Ai
Ay ' 2Dy4 2 1%z “Ay
*
- ftg(ui_ui)wij + §(2uj—u JWiy — Ajpigcos B (3.2)
(Radial momentum equation)
3W1 4 BU*Wi § d d f (3.3
“t + az = ) (Pi - Pj) - 3 Cijwij
(Energy equation)
- 8hji shy t
0 —— 2L o g - (T, - TC.,
Api T M T ag =~ (T = TC5;
T
+ ;;(hl- - hy)Wiy + Jz_(hi = bW, (3.4)

where the subscript i or j denotes subchannel and

Time variable (SEC)

Z : Distance from the inlet (M)
m; : Mass velocity (KG/SEC)
Wiy ¢ Radial flow rate from channel i to j, per unit channel

length (KG/SEC/M)
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W!. : Turbulent cross flow rate (KG/SEC/M)

Ty ¢ Temperature (°K)
P. : Pressure (KGW/M )

i

Pt i Fluid density (KG/M )

T1 : Effective density, or energy balance refer to appendix XI

hi : Enthalpy (Kcal/KG)

h* i Enthalpy (Kcal/KG) Refer to appendix XI

uj : Effective momentum velocity (M/SEC)
refer to appendix XI

u* "

Vi : Liquid specific volume

Vi : Effective specific volume for momentum transfer {M /KG).
Refer to appendix XI.

Q3 : Linear heat rate (Kcal/M)

b : Two phase flow multiplier. Refer to appendix XI

i Friction factor based on all-liquid flow. Refer to
appendix XI.

D1 : Hydrgulic diameter (M)

Ky : Spacer loss coefficient. Refer to appendix XI
It : Empirical correction factor for turbulent radial momentum
transfer rate

Gravitational constant

g

e Channel declination as to gravitational direction

d Rod spacing, (M). Refer to appendix XI

i Length of radial momentum transfer region, (M). Refer to
appendix XT

ng Radial friction ccefficient from channel i to j (SEC™!)

ng : Heat transfer coefficient {Kcal/M/°K)

3.3 Matrix notation and the practical form for a large core

The set of equations (3.1) ~ (3.4) can practically be solved only for
a fuel bundle with some hundreds of subchannels, whereas any actual
thermal reactor core without channel box has more than ten thousands of
subchannels. Therefore it is inevitable to separate the calculation
procedure into two steps, viz., inner iteration and outer iteration.
The former means to solve equations (3.1) ~ (3.4) for each bundle under
a set of guessed boundary condition obtaining subchannel-wise distribu-

tions, while the later means to solve these equation regarding each
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bundle as a subchannel with equivalent coefficients obtainning new
pundle boundary. In performance of these numerical calculations, it is
inevitable to distinguish each assembly, subchannel, and their boundary

by appropriate identification numbers. The identification numbers are

defined as follows,

I : Number of assemblies in the core

J : Number of assembly boundaries in the core

Kn : Number of subchannels in assembly n

Ln : Number of subchannel boundaries in assembly n except those

on assembly boundaries
Mm : Number of subchannel boundaries on the assembly boundary

No.m

Mm=mL+mR—mD+l

Number of left boundaries

= Number of right boundaries

Number of duplicate boundaries

J

mL—

i,i: Subchannel number defined as

1, 2, ...... ,» K1 in assembly No.1l
Kqi+1, Kj+2 ..., » K1+K; in assembly No.2
k = Subchannel boundary number in an assembly alleotted to the

boundary between two subchannels i and j (i < j) in ascending
order of j,

m = Assembly boundary number allotted to the boundary between two
assemblies n and n' (n<n') in ascending order of n'

kg = Subchannel boundary number on assembly boundary in ascending

order of K, the assembly boundary number
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Under these identification, the equations for inner calculation

assembly n can be represented in vector matrix notations as

(Mass)
35 . am > >
5 m o z .
A E + -3—2.: = =5 - SBWB (3.

(Axial momentum)

am .. 38 . 3p > =+
AT R oy S8 4 2B o g 4 AT saurw
at at 3z
- -
+ A lsgALg*ig (3.
(Radial momentum)
5w 3 > de, = de >
- —_— * —_ = e .
2t T 3z (UKW + (RC)CFW (Qc)s + P (3
(Energy)
w-1 3h . oh _ + >
=l 28 2 o wT - +
U et 3, M g SATG + SAHW
> A)DB *+ .
+ SAH*W - SgATRCT + SgAHBWR) (3.
(Heat source)
2
prCr aTr - Kr(a Tr + l BTI) + qn'l (3_
3t 5re r ar
01
+ P
o = 2
Pkn
my
=
m = mz
Mkn
P
oo [P
Pkn

of

5)

6)

7)

8)

9)



o2 3

£+

<y

U"

1

il

w1

(%)
()
-
o
-

WB1
WgB2

WpJ

WBl
WB2
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*
/ up 0
Uz
Uv* = .
-
Yln
i
UE = uj(h) for wy > 0
{ uj(h) for wp <0
aux = 2ul - px
ul : LnxLn - diagonal matrix of velocity, (k, k) element
of which is uj when two subchannels i and j (i< j) are
inter connected by k~th subchannel boundary.
v : LonxLn - diagonal matrix of velocity (k, k) element of
which is u. for the same (i, j)} as above.
o _ T _ %
UB 2Ug UB
Ué, Ué : JxJ diagonal matrices of velocity, (m, m) - -th
element of which is such a matrix as
i
. um,l\ 0
(u_) AV
i
0 Um, Mm m=1n~1I
or
Ym,1 0
(ul o
~ ] -
0 U, Mm m=1"J

respectively for subchannel pair (i, j) (i< j) inter-connected by

assembly boundary m

*
(ul)_ O
* —_—
UB = .
0 (uy)
*
. Un,1 0
(u) =
m
0 Um, Mn
. ug if W > 0
)14 =
m,n
n=1 " Mnm
Uj if WBk < D
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for subchannel pair (i, j) (i< j) inter~comnected by subchannel boundary

k on assembly boundary m

AR = HI - uJ

ul, 8d ;

AH*

Ln x Ln - diagonal matrices of enthalpy, (k, k) - element

of which is h; or hj respectively for the same (i, j) as

those for UI

HL - H*

H* =

>
ol
1

AT
I oJ
L, 13
AT
i, 1d

ny 0
*
hy
v/

0 th
hj (%) for Wi > 0
hj (k) for W < 0O
- H§

JxJ - diagonal matrices of enthalpy, (m, m) - the
element of which is (hé) or (h%) chosen by all the
same manner as with that of (ul) or (ui)

JxJ - diagonal matrices of enthalpy defimed by all

the same manner as that of Ug

- T3

JIxJ - diagonal matrices of temperature defined by
all the same manner as that of Ué or U% respectively.
Tl - 7J

Ln x Ln - diagonal matrices of temperature defined

by all the same manner as that of UI, or UJ
respectively.

The n-th row vector of the next matrix Sg

(Spp}s n=1nI, m=1v]

Mn xMn - zero matrix; if assembly n has boundary m
Mm x Mm - Unit matrix; if assemblies n and n' are inter
connected by boundary m and n<n'

Mn x Mn - negative unit matrix; if n>n' in the case
above

Summation matrix of an assembly. If any two sub-

channels i and j in an assembly are interconnected
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by a boundary k, the cross terms wij, wij's ng, Cij

may be represented by one dimensional notation as
' £ f 1 t f
Wk, Wk, Ck’ Ck, hence wji’ wji s Cji’ Cji by '-Wk,
1
W, CE, cf.
Thus, the cross terms in the balance equations about subchannel i may b

represented in the simple notations, viz., inner products of W, W', Crs

Cr and a vector Sj, the k-th element S;; of which is defined as

0 : If subchannel i has not boundary k
Sjx = 911 : 1f subchannel 1 and j are interconnected by the
boundary k and i< j

-1 : If 1> j in the case above.

The size of the matrix S is then determined by the assembly considered,

viz., for the n-th assembly, S is determined as

§ = (84x) 1 =1vkn, k=1vLn

This matrix has the next properties

(2 : 1f k = k'

0 : If no subchannel has two boundaries k
and k' at the same time.

sT x § = (agy') =§-+l : If subchannel i is interconnected to

sibchannels j and i' by boundaries k and

k' respectively under the next condition

jy, 3'>»1 or j, j'<i

-1 ¢ If j>i>3" or <i<j' in the case above

5 x ST = (bjy") =-Ji(i) : If i=1' and subchannel i has I(i}

boundaries in the assembly

Vl: If i#1'

where, no two subchannels are interconnected by more than one boundary.

Moreover, the matrix S is a conversion factor as

us = syl
TS = ST!
HS = SHL

f

e
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(do/2e)

0

Akn
0
.(dcfic)Ln
0

L f
CLn

— 35—
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1
mi 2 Vifidy K{Vy 3V
ay = mi -4 1%1 ivi +A; — -1y}
fr > = |
+ — - S,AUW +p.gcoob
Ay 4 i
where
Pr Density of fuel rod (gr/cc)
Cr : Specific heat of fuel rod (kcal/°K/gr)
Ty : Temperature of fuel rod (°K)
Ky : Heat conductivity of fuel rod (kcal/®K/M/SEC)
q"' : Heat source demsity (kcal/ecc)

— 36—
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4. Description on the computer code system

4.1 Overall structure of the system
The code system was developed for the purposes shown in the main
document. For convenience' sake, the system may decomposed into some

functional parts, eq.:

(1) Nuclear data processing part
{(2) Multi-group constant calculation part
{3) Reactor constant calculation part

(4) Reactor characteristics calculation part

The following explanation concerning the code system will be given in

accordance with this decomposition.

(1) Nuclear data processing part

Here, the basic data for nuclear calculation are taken mainly from
ENDF-B, and the continucus data of cross sections, fission spectra and v-
values, etc. are reproduced in form of analytical functions of the neutron
energy according to the cross section theories and the ENDF instructicn
manual. The reproduced data are then corrected for the doppler effect

and changed into the ultra fine energy group data sets required by part

(2.

(2} Multi-group constants calculation part

Here, two basic calculation are performed to obtain the ultra fine
energy spectrum of neutron flux. One is selving the slowing equation with
given fast source, and the other is solving the thermal equilibrium
equation with the slowing down source given as the result of the former.
These two calculations are performed in an appropriate one~dimensional
geometry using the ultra fine data sets given from part (1). Averaging
the ultra fine data with the ultra fine flux spectra as weight gives the

multi-group comstants.

(3) Reactor comstant calculation part

Here, the basic work is solving the wulti-group transport equation
by SN or FFCP method according to the purpose described in the main document
using the multi-group constants given by part (2).
Averaging the multi-group constants with the multi-group spectra as weight

Bives the reactor constants.
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(4) Reactor characteristics calculation

The main calculations are as follows:

(a) Neutron diffusion;caiculation
{b} Thermo-hydraulic calculation

{¢) Burn up calculation

The over-all system is briefly illustrated as the next figure.
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4.2 The organic function of the code system

A series of descriptions has been made about the full steps of the
numerical method for analyzing the nuclear and thermo-hydraulic behaviour
of the LWR core. Every step is therefore accomplished in principle by
the method described. But it is to be noted that every step of the
analysis for core management if inevitably accompanied with so many
input and output data that manual handling of them may scarcely be pos-
sible. Furthermore, the nuclear constants depend on the various para-
meters, e.g., the moderator density, poison density, fuel enrichment, etec.
which are on the contrary determined by nuclear constants; the calculations
are all interconnecfed as an iteration loop in regorous sense.

It is then obvious that there are two impertant works for use of the
analyzing method; one is fo construct an organic computer code system,
the other is to cut the loop loose from the unimportant connections and
set up a practical feed back scheme for economizing computer time by
avoiding much trivial tolerance. We have designed a computer code system
which has partly been completed and is partly under construction.
Description will be given about the system mainly from the view-point of

the two works above.

4.2.1 Construction of core calculation part

As a rule, this work could be done on the FORTRAN level by under-
taking the adjustment of input and output data FORMAT of every constituent
code of the system. But this method requires much manpower because the
code system is to be constituted by many codes. We then avoid this
demerit by development of some common utility programs in the assembler
languages. These utility programs may be powerfull tools especially for
the critical search and burnup calculations, because such calculations
are multi-step ones in principle, and cosequently performed by many
computer codes.

All the data processed for core maintenance calculations are put into

the next categories in the system.

(1) The nuclear data

(2) Multigroup constants
{3) Reactor constants

{4) TFine flux spectra

(5) Multigroup flux spectra

(6) Spacial distributions of few group fluxes
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(7) Spacial distributions of nuclide number densities
(8) Data of hard-wares

(9) The control parameters of the code system

The data are usually stored in external storage units, and can be

arbitrarily revised, added or elliminated if necessary.

4.2.2 Practical feed back scheme

In general, both of the multi-group constants and the reactor
constants as the coefficients of the neutron balance equations depend on
the flux, i.e., the solution of it, through the moderator density, poison
density and burnup rate. The feedback effects on the multi-group constants
are taken into account by interpolation of the reéonance shielding factors
which are fitted to appropriate functions of the parameters. But the
rreatment of the feed back effects on the multi-group constants is not
so important from the view-point of the code system, because the values
of the parameters having influence on the multi-group constants are
fixedly given for multi-group calculations. Hence the description will
be limited to the reactor core calculation using the reactor constants
from now on. The summarized logic of the core calculation part of the

system is simply shown in the figure below.
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N

>
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In this code system, the reactor constants corresponding to the
parameters N, d, B are interpolated instead of being calculated from the
multi-group spectrum calculation. Therefore, the multi-group calculation
is cut off from the loop, theoreby the substantial iteration due tb the

feed back effects are quickly performed in the calculation flow.

Acknowledgments

Numerous experts in JAERI made significant contributions to the
work reported here. The authers are also particularly grateful to the
members of Division of JPDR, Reactor System Labofatory, Computer Center;
Thermal Reactor Physics Laboratory and Nuclear Data Laboratory.

This report is Based on the final report on the work titled
MTechnical consultation on development of the computer code system for
the analyses of nuclear core phenomena at the Tkata Electric Power
Station", which is performed under contracts between Shikoku Electric
Power Company and JAERI, (July 1973 ~ May 1976).

The Co-workers of the contraction were as follows in the old

ﬁosition on May 1976.

Shikoku Electric Power Company INC.

C. Matsumoto Manager

I. Tsujimoto .Techﬁical supervisor

K. Oota Nuclear engineer

M, Mizobuchi - "

M. Watashi "

K. Kawanishi Mathematical engineer

T. Mori Computer system engineer
H. Tsuruno ~ Chemical Engineer

Japan Atomic Energy Research Institute

M. Ishizuka Manager

Y. Naito C Technical consultant



JAERI-M 92—187

References

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13

14)

15)
16)

7

18)

Blatt, JM., and V. F. Weisskopf, "Theoretical Nuclear Physics",
John Wiley and Sons, Inc., (1952). ' ‘

M. M. R. Williams, "The Slowing Down and Thermalization of Neutroms",
North-Holland Publishing Company-Amsterdam, (1966).

M. K. Drake, 'Data Format and Procedures for the ENDF Neutron Cross
Section Librarv", Nationmal Neutron Cross Section Center Brookhaven
National Laboratoery, Upton, New York (1970).

Case, K. M., and P, F. Zweifel, "Linear Transport Theory", Addison-
Wesley Publishing Co., Imc., (1967).

George I. Bell and Samuel Glasstone, "Nuclear Reactor Theory', Van
Nostrand Reinhold Company, {1970).

Carlson, B. G. and ¥, D. Lathrop, '"Computing Methods in Reactor
Physics”, (1968).

Richard ‘S. Varga, "Matrix Iterative Analysis', Prentice-Hall, Inc.
(1962).

Alvin M. Weinberg and Eugene P. Wigner, "The Physical Theory of
Neutron Chain Reactors', University .of Chicago Press, (1958).
Robert V. Meghreblian and David K. Holmes, "Reactor Analysis’,
McGraw-Hill Book Company, Inc., (1960).

Melville Clark, JR. and Kent F. Hansen, "Numerical Methods of
Reactor Analysis', Academic Press, (1964).

R. Byron Bird, Warrem E. Stewart, and Edwin N. Lightfoot, "Transport
Phenomena', John Wiley & Sons, Inc. (1960).

R. Q. Wright, N. M. Greene, J. L. Lucius and C. W. Craven, Jr.,
"SUPERTOG: A Program to Generate Fine Group Constants and Pn
Scattering Materices from ENDF/B", ORNL-TM-2679, (1969).

Kier P. H. and Robba A. A., YRABBLE, A Program for Computation of
Resonance Integrals in Multiregion Reactor Cells", ANL 7326, (1967).
Koppel J. et al., '"GASKET, A Unified Code for Thermal Neutron
Scattering, GA-74117 (1967).

Macdougall J., "PIXSE", AEEW-M318, (1963).

Honeck. H. C., 1"THERMDS, A Thermalization Transport Theory Cede for
Reactor Lattice Calculations', BNL-5826, (1961).

K. Tsuchihashi, "LAMP-B, A FORTRAN Program Set for the Lattice Cell
Analysis by Collision Probability Method, JAERT, 1974,

C. Green, "The Winfrith DSN Program, MARK2'", AEEW-R438, (1967).



19)

20

21)

22)

23)

24)

25)

26)

27)
28)

%)

30)

31)

32)

33)

34)

33)

JAERI-M 92—187

J. R. Askew, R. J. Brissenden, 'Some Improvements in the Discrete
Ordinate Method of B. G. Carlson for Solving the Neutron Transport
Equation, AEEW-R161, (1963).

Clarence E. Lee, "The Discrete Sn Approximation to Transport Theory",
LA-2595, (1962).

G. Robert Keepin, "Physics of Nuclear Kinetics", Addison-Wesley
Publishing Company, Inc. (1964).

Murrey D. Goldberg, Said F., Mughabghav, Surendra N. Purohit,

Benjamin A. Magurno, and Victoria M. May, "BNeutron Cross Sections”,
BN1-325, Second Editiom, (1966).

L. P. Abagyan, N. 0. Bazazyants, I. I. Bondarerko and M. N. Nikolaev,
"Group Constants for Nuclear Reactor Calculations", Authorized
Translation from the Russian, Consultants Bureau, New York, 1964.

S. Katsuragi et al., "JAERI Fast Reactor Group Constants Systems',
JAERI-1195, 1199, (19870).

D. S. Rowe, "COBRA III C, A Digital Computer Program for Steady state
and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel
Elements', BNWL-1695, (1973).

C. Michael Lederer, Jack M. Hollander and Isadore Pearlman, "Table of
Isotopes", Sixth Edition, John Wiley & Soms, Inc. (1967).

L. S. Tong, "Boiling Heat Transfer and Two Phase Flow", Wiley, (1966).
J. T. Rogers and N. E, Todoreas, "Coolant Interchannel Mixing in
Reactor Fuel Rod Bundles -- Single~Phase Coolants', ASME, (1968).

H. Mizuta, K. Aoyama and Y. Fukai, "RICM, An IBM-7090 Code of
Resconance-Integral Calculation for Multi-region Lattice', JAERI-1134,
(1967},

H. Sakata, $. Nagayama and I. Otake, "Study for Decay Chain of Fission
Products™, JAERI-1194, (1970).

S. Iijima, T. Kobayashi and H. Sakata, "Neutron Absorption Cross
Section of Fission Product', JAERI-1206, (1971).

H. Sakata, S. Nagayama, I. Otake, H. Matsunobu and K. Saito, "Group
Constants of Fission Products for Thermal Reactor”, JAERI-1226, (1973).
Y. Naito et al., "A leakage Iterative Method for Solving the 3-D
Neutron Diffusion Equation', NSE: 58, 182-192, (1957).

Adir J., and Lathrop K. D. "Theory of methods used in the GGC-4
multi-group cross section code', GA-9021, (1968).

Drake M. K., Smith C. V., and Todt L. J., "Description of auxiliary
codes used in the preparation of data for the GGC-3 code’, GA-7158,

(1967).



36)

K¥))

38)
39)
40)
41)

JAERI-M 92187

M. E. Meek and D. F. Rider, "Complilation of Fission Product Yield",
NEDO-12154-1, (1974).

"Journal of Nuclear Sience and Engineering", Vol. 12, p.115 134,
(1962).

WAPD-PM-333

JAFRI-6234, 4586, 1198

ANT-58Q0, Second Edition

K. Suzuki and S. Katsuragi, "Instruction manual of EXPANDA-2 code",

JAERI 1118, (1966).



JAERI-M 92187

APPENDIX I Evaluation of Doppler effect

1, Dependency of cross section on medium temperature

The nuclear cross section of a nuclide with velocity ¥ for neutrons
with velocity V is determined by the relative speed defined by

vy = v -V ¢H)
The corresponding cross section may then be denoted as cm(vr). If velocity
distribution of the medium nuclide is subject to the Maxwell-Boltzmann's
formuta P(W, T), the average cross section (9) ol(v) of the mecium nuclide

for neutrons with velocity ¥ is given by

Cwvo(v) = Jffvpee®w )PV, T)dV (2)
where ‘
POV,T) = exp(-¥2)40)/(4m8)3/2 (3)
5 = kI/2M
k : Boltzmann constant (eV/°K)
M : Nuclear mass in the unit of neutron mass
T Medium temperature (°K)

Upon substituting relation (3) into (2), the next relationm is obtained,

[ Vg dVyS dVveo (vp) rexp(-v2/48)  (4)

vo (v) (4r0)3/2 "_, -

Since Ow(vr) is determined by vy, one of the integration variables in the
relation (4) must be replaced by v, to perform the integration. Let the
orientation of ¥ be in accordance with that of V, for calculational

convenience. The speed v, is given as

ve = V-Vl = VZ+VE+ (v, -7 (5)

which can be solved about V, as

v = v % /v% - vi - ve (6)

B y
with the sign taken in the same order.
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Hence, it follows that

dV,y = 2vid (v )dv, (7)

with

v = LAEZ-VI- V2 | (8)

Substituting the relation (7} inteo (4) with consideration of the V;
duality as to v, gives the integral part I of the relation (4) as
I = [ dVg/ dv,S [£(V, ) + £(V, ) vpé(vp)dy (9)
v z z v/ dvy .
- - /v§+v%

with
£(V,,) = v, (v.)exp(-V2/46) - Qo)

Futher, substitution of the next relation

Ve = Vi + V§ + V%t = v+ v% + ZVJV%—Vi-V§ : (11)
into (10) yields
o vi+vi v/ E-VE-VG
f(vzi) = veo (vp)exp(- o )rexp(: - 76 ) (12)
which gives the relation:
2 = v2+v% v#v%—vifvz
vl E(V, )+E£(V,3) T = 2vio (vedexp(- e Jcosh ————EE—H-X (13)

Substitution of this into the definition (9) with some manipulations

about the order of integration yields

[+]

I = 2exp(-v2/48)/ dzexp(—zZ/AS)zzam(z)K(z) . (14)
o
with
K(z) = [ [/ dxdycosh (y-‘-/-y-—Ti—:y—)/\1:.'.2—)\:2—)72 (15)
x7+y2<z2 26

Integration of K(z) can be performed by the next changes of the variables:

~ 48—
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x = rcood
y =.rsind _ : (16)
0sriz
0% ¢ = 27

yielding the Jacobian J as

oAy
ETE N an

which gives K(z) as

. _ : _
K(z) = 2uf dr T cosh(a=—)/V22-r?
o
_ A4m6 | vz ' | |

Substitution of the relation (18) into (14) gives a(v) as

o

2 2 v
_ v o 2 - z . Z
exp( ZE){)O {2)z%exp( 26051nh s dz (19)

L

1
oflv -
) Y78 v

H

.or o(E) as

gfE) = 1 .1 ;o (2)/zlexpl- L (VE - vVz)2?)

2/im8 E 28
- expl- (/E + /2)?]}dz (20)

Formula (20) is directly applied for thermal neutrons, vj,., When
0 < E < 5kT

2. Calculation of Doppler function

For neutrons of kinetic emergy E sufficiently large so that the
relation

E > kT . (P20

holds the second exponential term of the integrand in the formula (20) can

be neglected and the approximation

-7 = Bz L EZ (22)
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may be admissible.

In such a case, therefore, the formula (20) may be broken down as

1 1. (E-2)2
g(E) = il foc (z)Vz expl- aoz )4z (23)

which when Breit-Wigner's single level formula is applied for the

expression of Um(z) yields the so-called Doppler functions as

PER === f e exple B (xey) 21 (24)
’ 27 T 1+y2 4 7 |
£y 2 2
X = I N _

Numerical values of the functions are computed as follows.

Let a cbmplex function W(f,x) be defined as

-W(g,x) = X (26)

Bl
Bk

This function may be represented simply as

o

“W(E,x) = %— /

_E )2 :
Ty exp[- %~ (x-y)“ldy (27)
Change of the integration variable by

= G0 = ot (28)

vields the next relation

1 _ it 1 .
1-iy ~ 2 z~t (29)

with
z = (&x + ig)/2 (30)

Substitution of eq. (28) and (29) into (27} results in the next expression

Wz) = i% ! S

-0

—t2
dt (31)

For smaller |z{, this function can be expanded in the Taylor seroces as
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® 213y g ont o1t
2 N 21z . (=1YMn12%(229)

/7 oo (Za+1) 1 (32)

W(z) = e 2

whereas 1t may be adequately represented by an asymptotic expansion for

larger lz| as

17 I(n+l/2
W = A op Hml) (33)
n=0 2
From the expansion formula (32), it may be presumed that the integrand

of (31) may properly represented as

I AntD
n=0

which suggests that the integration of (31) for smaller |z| is better to
be performed by the Gaussian integration method based on an appropriate
orthogonal function set. For larger |z|, however, W(z) may be easily
calculated from the formula (33) by taking a sufficient number of terms
for desired precisiomn.

For a typical example, QUICKW-code calculates W(z) by a suitable
approximation for every range of |z|.

In range 1, Izl < 6, 4
W(E,x) and X(£,x) are calculated and tabulated at necessary points of the
parameters £ and x for interpolation of ¢ and X as to é and x.

In range 2, 6 = |z| < 12,
W(Z) is represented by the next Gaussion integral based on Hermite

function as

n
W(z) = = tim T BR/(2-tD)
T e k=1

which is truncated for n larger than 4 and thereby it is given as

Y Y " 4
1, B H] Hp Hp
W(z) = = {—7+ -+ C+ -
T z-t] ztt z-t, ztt,
_ Z—{Hu x[x2-y7=(£1) 2] + 2xy? b x[xzyz—(tg)z]-+23y2
T U fy w Py - (e 2122 axy? 4 [Py (e3)?)?
L2 ylx2-y2-(£)2] - 2x2y  , y[x2-y2-(e})?] - 2x%y
L 4x%y2+[x2-y2-(£})2)2 2 4x2y2 + [x2-y2-(t}4)2

4 4 .
Here, the zero points t; and t, of 4th-order Hermite function and the

. ; boou ;
Corresponding weights Hj, H; are given as
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L

] = 20.5246476233 Hi = 0.8049141

4 ‘

5 = +1.6506801239 Hy = 0.08131284
In range 3; 12 = |z| < 100,

W(Z) is approximated by the asymptotic expansion (33) which with aid of

the Q. D. argorithm yields

2iz 1

Joo 222-1

W(Z)

1 2x%y - y(x2——y2-0. 5)
/o (x2-vy2-0.5)2 - 4x2y2

x(xz‘—yz—o.5)—2:-:},!'2
I (x2-y2-0.5) 2 + 4x2y?

In range 6, Izl z 100,

Only the first term of (33) is taken yielding

Wy = 2. r{1/2)
¥ Z
- L X
/1;{ 1.(2+y2 *1 x2+y2}



JAERI-M  92—187

APPENDIX II Choice of Energy Peoints for
Multigroup Constant Calculation

1. Thermal Energy Points

For determining the thermal neutron energy mesh points for multi-
group constants calculation, it is necessary to take account of the next

factors:

(1) Thermal resonance structure of the macroscopic total cross section.

(2) Thermal scattering property.

(3) Energy range in which thermal neutron flux spectrum peak lies.

of these, the factor (2) is taken into account mainly for defining the
upper limit energy of thermal neutron flux; the scattering property may
be an important measure for judging the energy point, e.g., such as,
through which neutrons are not almost scattered up. The factor (3) is a
measure of important thermal neutron energy range in which finer energy
meshes may be required. But the applications of these two factors may
be simple in any way. The factor (1) is the most important measure for
determining the energy mesh points through which the effects of thermal
resonances are efficieﬁtly evaluated in the multigroup comstant calcula-
tion. Therefore the thermal energy mesh points are determined mainly by

this point of view under the next two requirements.

(a) Relative error of linear interpclation of transport kernel
concerning to neutron energy is bound by an upper limit,
(b) In the proximity of each prominent resonance energy, e is taken

proportionally to 1/AE, where AE is the mesh width taken there.

The meaning of requirement (a) is self-evident; the transport kernel

is generally represented by

TG = exp(x) | &
with
x = I (E)-2 ‘ (2)

where I.(E) is the macroscopic total cross sectidn and % is a length.
Thus if x takes two values a and ar(r > 1) corresponding to two distinct
energy points, the value of the transport kernel at x between these two

points is given as
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" 1__e—a(r—l)
T(x) © =@ {1 = ———————— (x-a}} (3)
a(r-1)

Then, the relative error o{x) is given by

- 1-ema(z-1}
g{x) = e¥2{l - ———— (x-a)} -1 (&)
a(r-1)

vielding the maximum value ad(x,) as

exp n _
= == _ >
o(xy) = (3)
with
_ S
N - (®)
§ = a(r-1) (7

By equating o(xy) given by the formula (5) to €, the next table is

obtained.
£ _ .5 _ n
0.001 0.08947 0.0454
0.01 0.28234 _ 0.1478
.1 0.87796 - 0.5024

Reauirement (b) means if the collision rate per unit neutron energy is
nearly constant concerning neutron energy, the next relation may give the

best harmony of precision in neutren balance calculation:
AEgreg = AEq*eg

where
LE.,AEg : energy mesh width in the center or the skirt region of
' 4 resonance |
Eastg error bound in the center or the skirt region of a

resonance

Thermal resonances was teken into account of the nuclei:

U-235 (0.29, 1.14)
Pu-239 {0.296)
Pu-240 (1.056)
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Pu-241 (0.258)

Am-241 (0.308, 0.576, 1.27)
In-115 (1.456)

€d-113  (0.178)

Dy-163 (1.71)

Sm-149 (0.0976)

Where the numberslin the round brackets indicate resonance eﬁergy in the
unit of elegtron Volts. Taking account of these judgements together with
some other requirements, e.g., that the Bragg-cut energies of carbon
nuclide had better be taken as the points, the thermal energy points

were obtained as shown in ‘the later table. Note that the multigroup
boundary points were chosen so that the multigrOuﬁ constants are almost

independent of overall energy spectrum of the neutron flux used as weight.

2. Epithermal Energy Points

A series of survey calculations were performed to find such points
through which calculated effective resonance integrals(29) are saturated.
As the objective resonance nuclei, fissionable nuclei Ag-107, Apg-109 and
SS~-elements were taken. Thus, the best energy points were obtained as
shown in the last table. It is to be noted that the ABAGYAN(23) Points
are taken as multigroup boundaries for the same reason as the thermal

part.
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Thermal mesh point

No. Energy(eV) No. Energy(eV) No. Energy(eV) No. Energy(eV)

1 0.0001* 31 0.1400 61 0.4500 91 1.1600
2 0.0005% 32 0.1450 62 0.4750 92 1.2000*
3 0.0015*% 33 0.1500 63 0.5000% 9% 1.2350
4 0.0030% 34 0.1580 64 0.5400 g4 1.2700%
5 0-0050* 35 0.1600 65 0.5760% a5 1.2900
6 0.0060 36 0.1780% 66 0.6000 96 1.3100
7 0.0075 37 0.1850 67 C.6500% g7 1.3350
8 0.0090 38 0.1900 68 0.7CC0C 98 1.3700
9 0.0100* 39 0.1950 69 0.8000 99 1.3800
10 0.0122 40 0.2020 70 0.8730% 100 1.3300
11 0.0110* 41 0.2100 71 0.9300 101 1.4000
12 0.0160 42 0.2150 72 0.9700 102 1.4100
13 0.0200% 43 0.22C0 73 0.9950 103 1.4200
14 0.0250 44 0.2250 74 1.C000* 104 1.4300
15 0.0268 45 0.2300 75 1.0050 105 1.4500
16 0.0314% 46 0.2350 76 1.01C0 106 1.4560%
17 0.0360 47 0.2400* 77 1.0200 107 1.4700
18 0.0420% 48 0.2450 78 1.0250 108 1.4800
19 0.0490 45 0.2580* 79 1.0450 109 1.4500
20 0.0560% 50 0.2680 30 1.0560% 110 1.5000
21 0.0642 51 0.28C0% 81 1.0700 111 1.5100
22 0.0707* 52 0.2900 82 1.0750 112 1.53C0
23 0.0740 53 0.2960* 83 1.0800 113 1.57C0
24 0.0860 54 0.3080 84 1.0900 114 1.6300
25 0.0976* 55 0.3200 85 1.0950% 115 1.6700
26 0.1060 56 0.3300 86 1.1000 116 1.7100%
27 0.1100 57 0.3500* 87 1.1050 117 1.7500
o8 0.1150 58 0.3600 88 1.1100 118 1.8550
29 0.1270% 59 0.3750 89 1.1200
30 0.1%60 60 0.33C0 90 1.1400%

(Comment) The asterisks indicate multi-group boundaries.



JAERI-M 92187

EPITHERMAL LETHARGY MESH

Upper Energy auf No. ¢f Point Sub total
1 10.5 MeV 0.00L - 480
2 . 6.5 " 485
3 4.0 " 470
4 2.5 " 530
5 1.4 " . 560
5 C.8 " 633
7 0.4 " 693
8 0.2 " 6973 4654
9 100.0 Xev 0.0003% 2552
10 46.5 " 2571
11 21.5 " 2552
12 10.0 " 2552 10227
13 4,65 0.0C0L 7715
14 2.15 " 7655
15 1000.0 eV " 7657 23028
15 46%.0 - 0.0C02 3357
17 215.0 " 3328 : 7635
18 100.C 0.00C3 - 2552
19 46.5 0.0006 1286
20 21.5 0.001 765
21 10.0 " : 766
22 4.65 " 919 2450
(1.855) 51882

(*) Thigz Table indicates the boundary lethargy points.
These points aren’t suificient tO express nigh ensrgy
1

resonances such as Fe's rescnances.
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APPENDIX III An analytic form of standard energy spectrum of

neutron flux in'typical light water reactor

Strictly speaking, any real neutron flux spectrum is given by the
solution of the Boltzmann equation. But, we need an imaginary convenient
form of flux spectrum to obtain a set of standard multigroup censtants.
For this reason we seek a typical spectrum which may be an averaged
values over the objective reactor system. In our work, we get this by
the method described below. In an infinite homogeneous system, the
neutron flux $(E) is given by the next equatiom.

o0 ®
ge(E)¢(E) = X(E)S vog(E")¢(E")AE" + S og(E'>E)¢(E')dE (1)
) o)
We solve this equation through all epithermal energy region under

the next assumptions:

(1) ct(E) is a constant above an energy Eh which lies in higher energy
range of 1/E flux regiom.

(2) In an energy.region below Eh, ¢(E) is formal given.

(3} wvog(E) = O for E Z Eh

(4} og(E'>E) ogf(l—a)E'.for aE' £ E £ E'

=0 for otherwise

Under these assumptions, equation (1) can be changed intc the next form.

E/Oi '
op¢(E) = a*X(E) + :gi s i%%—l dE' for E 2z Eh (2)
E

This equation can be solved analytically by the following asymptotic metod.

Let
$(E) = X(E)-y(E) ' (3)

By substituting this into eq. (2), we get

o oBE/8 E/a -E/8

otw(E) = 3 +E 7 Vol - y(E'")dE’ (&)

E

Next, we define the O-th solution of this equation by
Vo = /o
Then we get the lst solution P(E) of eq. (4} as

— 58 —
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L a 0Og gE/8 Ela -E'/p
Utwl(E)—a+"i*_j&'3'; = fE ol

dt' ( 5.)

This solution can be rewritten in the next form

P1(E) = 9B {1 + A1(E}} (6)
wheTe s
A(E) = 2 —S/E 2/ er e(/ET58) - erf (VET)) (7
1-a Ut E

Generally speaking, the limit form of solution of equation {4) can be

given as

Y(E) = Yoll+a)(E) + 8,(E) + ...en } (8)

where

Efa __g'

bn(E) = L % gt s : SLEL;TE Ap~1(E")dE' (9)
1-o Jt /E E /ET

By our calculation, solutions higher than $1(E) are not necessary in
actual problem. Then we take form (6) for our needs. For energy range
( £Eh} we have an empirical(“O) form, thus we get an analytical form for

full neutron energy range as follows:

E 1
E) = ——— _E/KTn) + v18(E+2KTn) ———o———
$(E) (KTn) 2 exp B Y18¢ n) (E+2KTn) 118
+ Youq (E)X(E) (10)

where
Y1, Y, : Constants to be determined by measured data

K : Boltzmann constant
Tn : Neutron temperature ATy
X(E) : Fission spectrum JE/83 exp(-E/&)
1
&§(E) = (11)

C
1 - ——2—— + (DKTII/E)7
1+(E/BKTn) >

2
p1(E) = 1+ EE-‘/%'eE/B{erf(VE/euc)—erf(l/Ele)} (12)

E_,
erf(E) =z [ e %du
o
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We obtained the values of constants Y;, Y,, A, B, C, D, a., og/ot, B, 6,

from JPDR's data, etc., as shown in Fig. 14.1.
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APPENDIX IV TForm of the group constant table

This group constant table was named SEPCO-set and has the next form(ul).

RECORD 1
*+ Set number NST
* Number of nuclides contained NUC
* Number of neutron energy groups NGR
Nuclide identification numbers . NID (1), I=1l, NUC
* Group energy mesh points E(I), I=1, NGR
* Description .

From RECORD 2 to RECORD 11 are given to every nuclide.

RECORD 2

= Nuclide identification number

Number of regions in body where

the cross section of this nuclide
is calculated

Maximum Legendre order of elastic
Scattering matrix+l

Maximum Legendre order of inelastic
scattering matrix+l

The length of elastic scattering
cross sectlon vector and self-

scatter position of every group

* The length of inelastic scattering cross

section vector of every group

The length of (n,2n) reaction cross
section vector of every group

Upper and lower limit of energy group
numbers for f # 1, 0

The same as above faor S # 1, O

The same as above for hr # 1, 0
Number of op - points taken for £, S,
hr-calculation.

The same as above for T- points

Dimension of B

NID (I)

NRE

NEIG

NILG

NEL (1,J) 1=1,2, .J=1,NGR

NIN (I), I=1, NGR
N2N (I), I=1, NGR
NFL, NFU
NSL, NSU
NHL, NHU

NSP

NTP
NC



RECORD

RECORD

RECORD

RECORD

RECCRD

RECORD

RECORD

RECORD
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Nuclide identification numbers which

construct B

Number of points of every component of B

3

Capture cross section

4

Fission cross section
YO‘f

Fission spectrum

5

Elastic scattering matrix

6

Inelastic scattering matrix

7

(n,2n) scattering matrix

8

Total cross section

9
Ip - value
T - value

B - value

10

Self-shielding factor
fr (op, t), felop, ©)
£ (op, T), fe(cp, T)
fin(cp, T)

NID (I}, I=1, NC

NP (1), I=1, NC
¢SIG (I), I=1, NGR

FSIG (I), I=1, NGR
FNSIG (I), I=1, NGR
FSP (I), I=1, BGR

SCATE (I,J,X), I=1,
NEL (1,J); J=1, NGR:
K=1, NELG '

SCATI (I,J,K) I=1, NIN (J);
J=1, NGR; K=1, NILG

SCATN (I,J), I=1, N2N(J),
J=1, NGR

TSIG (I), I=1, NGR

SIG (1), I=1, NSP

T (I), I=1, NTP
™ (1,]), I=1, NP(J) J=1, NC

FT (1,J,K), FC (1,J,K)
FF (1,J,K), FE (1,J1,K)
FI (I,J,K) I=NFL, NFU;
J=1, NSP, K=1, NTP
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RECORD 11
Spectrum factor ST T, N(1},..... N(NC)
I=NSL, NSU; N(1)=1, NP(1);..
...N(NC)=1, NP(NC)
RECORD 12
Heterogenity factor HT I,J,N(1}..... N(NC)
I=NIL, NHU; J=1, NRE;
N(1ly=1, NP{(1): ..... ;

N(NC)=1, NP(NC)

The utilization procedure of this table is divided into the next four

Steps per group.

(1) calculation of oN(0)

The total 0,44 of infinite inelastic scattering and (n,2n) reaction

cross sections is given as
Texo = Tto = (Jep * TUco *+ Tfo)

where Ttos Tep? Tcp OT Ofy 18 infinite total, elastic scattering,

capture or fission cross section respectively. Then, the factors f., f_,
fc’ fin are determined by iterative method as to'gp-value so as the next
relation is satisfied:

fr0t0 = fe%e0 t feT9co * 8950 + finexo

Zach of the terms is written as oj(0), o8(0), o}(0), of(0) and of, (0)

from the left hand side of this relation.

(2) Calculation of o™ (B)
The mutual shielding effect is evaluated by multipling the S-factor

corresponating to input B-value

o¥(B) = S(B)-oY(0)
g ®) = $(8)-og(0)
o (®) = sB)-ol(0)
oy B) = S@)-c}(0)
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(3) Calculation of dg(B)
Heterogenity factor is evaluated by multipling by (B) factor

corresponding to the region Y and input B

N B) = h (B)-oNB)
oy, (B) = by (B)-oN(B)
oM (B) = hr(B)-aN(®)
ofr®) = hr ()oY ®)

(4) Calculation of effective scattering matrix
The effective scattering matrix Mg is given by multipling Mg the
standard scattering low by ME constructed by effective scattering cross

sections given by the processes (1) ~ (3).
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APPENDIX V Basic theories used in WDSN (2)-code .

1. Derivation of the discrete form

One-dimensional neutron transport equation is represented on the

coordinate system in the figure below.

sin o o -
[ncos-ﬁ% -7 Mj;ﬂ'é% + I¢IN(r,w,4,E) = S(r,w,$,E) . (1)
with
i i @
S(r,w,¢,E) = Q(xr,w,6,E) + X(E)/ dw'/S d&"/ dE'
/2 T/2 0
ul bLs oo
x VIg(V,ENN(r,w',¢",E") + /7 dw' [/ de'S dES
/2 /2
x Lglr,w'~w, ¢'>¢, E'»E)-N(r,w',¢",E") (2)
w=0
b "
Tt~ Y
¢=m T~
I
| e~
|
!
i
!
|
| m""t
2} r

In this cede, the angular variables are represented by discrete
notations (18) nj(j=l%n) and ¢ji(k=0%j), where i denotes the division
points of the azimuthal angle w, and i the division points of the polar
angle ¢, with the division rule described in the next section.

Integration of equation (1) over the polar increment ﬂ¢ji under the

assumptions
&¢ji
IA N cos tdg = Nji'”ji'ﬂ¢ji (&)
sin ¢J1 + s5in ¢)] i-1 = —bJ1A¢J1 (5)
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(N,

jir T Ny 1-1072 ' (6)

Njir”z
uji'ﬂ¢j j-2 sin ¢ji z bji'ﬁ¢ji ' - AN

yiends the equation

_ 3N Nabss .
houi = SN ik 25~ i N

with bji given by egs. (5) and (7) as

_ 2 -
big = Heg - 7 I Wi
RS PR R
where in is defined in the next section. Further integration of

equation (8) over the space mesh increment AR gives the final discrete

form as
(N:lss +-l n:b;sPr + h N, -
j¥3i v o2 T3Tii ' Uyir
l _
+ (-njuji + _2' njbjiPr + hr)Njir__l
- nyby{PrNji-1p = AS (10)
where
Pr = AR/R
hr = Et-AR
R = (Rr+Rp_1)/2 | (11)
jir= (yir + N3350 /2

Note that ﬁjir is the i~th direction cell average value defined at the
outer edge of the r-th space cell, while ﬁjir is the r-th space mesh
average value defined at the outer edge of the i-th direction cell.

These values are connected by other relations. i.e. the diamond difference
relations

ZNjir = Njir + Nji—lr = Njil’ + Njir _ ‘ (12)

Here, Ejir is the average value for the r-th space cell the for. the .

ue N I . .
guess values of Njir and Njir—l' Therefore, by substituting the guess
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values of ﬁ'ir and Njip-1. Therefore, by substituting the guess value

J
Njir and the corresponding sclution Njir-l into the relation (12), Ejir
is obtained which gives Njir by use_of the guess Nji~lr' The code does
not edit the space cell edge value Njir’ but edits the phase-space

averaged value ﬁjir as an angular flux density in space mehs, additiomally

editting the boundary cell edge value ﬁjir'

2. Choice of angular quadrature ordinates and weights(lg)

Let the angular compenents of unit direction vector # be ¢ and w,

as whown in the figure of section 1.

Then, in one-dimensional geometry, it is sufficient for the flux

calculation to consider only the next range of w and ¢
/25w 7 and 7/2 2 ¢ £ o
The angular mesh points of order n are then defined as

Yi = cos w 410+ -1

J I n(n+2)
(j=1, 2,..... , n/2) (13)
ty1 = n(1l - 1/23) (i=0, I,..... D) (14)

The mesh increment is given as

. = P \ = __8.j_._ .
45 2 Y5 - V-1 T oD (1)

ddji = ¢ji—l ~ %51 < m/23 (16)
They give a constant increment of solid angle as
ded¢ji = 47 /nln+2) ] : (17>

The representative direction of each direction cell is defined by either

of the following two metheds.

(1) Carlson's method

Let:the'representatives be §j'and aii‘ They are definei by the
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relations:
- 2l ywooa+n = (2 Cja+n (18
T3 =72 V3itlin ~ tn(n+2) )
- _ 1 1 i
Hjp = cos 3053+ ey5.1) = cos T (Ltgy = 57 ()

Here, T is a modification factor determined by the diffusion approximation

condition which requires that the integral

T m
S sindwdw [ cos¢dé
w/2 nf2
by given regorously by the discrete ordinates and weights as 7/6.

This requirement determines I as

n +2n_

> 1 (20)
n<+2n+2

(2) Brissenden's method

The representatives are determined by the next two requirements

(a) The first and the second moment conditions are satisfied as

T “?“?i = 1/24n(n+2) (22)

(b) The flux peak near a reflective boundary is best given by

having

$ ns = L1 (n+2) (23)
Y | |

T s 2 = —]-'- n(n+2) | (24)
iny T 12 '

$ul. = —l-n(n+2) (23)
L E T

These conditions determine ﬁj and aji as
- (26)

1]
Ny = any +b
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- 1
- H31 = CiiHgs tody (27)
Here, n} is defined by
2 2
, YEHYYi_q FYS
R L (28)
J Aj 3
and “31 is equal to that of Carlson's and
. - 29
b = (30)
m/2 m{n+2)
o £ in (31}
) ]
j=1
b
. 1 12
372 == (L w3 _
_ 1 =1
Ci = — ; (32)
J 1 L] 1 J 1
z Mii T T (2 uyq)
i=1 3t 1 4=
y-c¢y d
dj = Loz (33)
. , ji
J i=1

3. Boundary conditions

The left-boundary condition is always fixed as perfect reflective
one, whereas free, perfect reflective or isotropic one is admissible at
the right boundary. These three conditions are as follows.

The free boundary condition is defined by setting the angular fluxes
in the direction ¢( £7/2) as zero at the outer boundary. By the notation
of the angular guadrature used in the code, this condition is represented

as
N;; =0 for [=1~nf2, 1i=0~] (34)

Here, j denctes the azimuthal angle mesh point and i the pelar angle mesh
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point. The perfect reflective or isotropic condition is represented by
the boundary matrix Bj defined for azimuthal angular slab j. The perfect

reflective condition is defined as
- + ‘
Nj = N' (34)

- + R
The wvector Nj or Nj denotes an inward or outward angular flux vector at
the outer boundary, the components of which correspond to ¢ji described

above. The isotropic condition is represented as

Ny = Wyl (36)

Here, Mj ig a vector the components of which are all unity, and NJ is a

scalar determined by the next non-leaking condition
- +
FNU-NDrdp = 0 (37)
Q

Here, I, denotes a unit vector directed toward the space coordinate.

The relation is rewritten by discrete notation as

+ .h , :
Uy N NG = 0 (38)
Then, NE is given as
} 3, 1
Nj = z uiNi/ PNV : (39)
1#0 1#0

The isotropic non-leaking condition is represented by (36) and (39) as

NT = w.-nNT (40)

Wi = O : (41)
ool D
\\0 Hy seeense B3/

The actual non leaking condition is mneither perfect reflective nor
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isotropic, but it is an intermediate one which may be represented as

Ny - BﬂN; L (42)

The intermediate boundary matrix Bj is defined as
By = AL+ (l“-A)Wj. : o - (43)
It is evident that the relation (42) satisfies:the non-leaking condition:
+ - .
By (|Nj <IN = 0 (44)

Note that A =0 implies the isotropic condition while 2 =1 the perfect
one. The.expressions above are used in the original WDSN(2) code as the
boundary conditions. In actuality, however, it is not satisfactery for
the cell calculations to use only the free or non-leaking condition.
That is, to seek the precise spectrum, it is necessary to have the
possibility. of using the semi-reflective or semi-leaking condition. Such -
a condition may be attained as follows.

Consider that rhe fraction A of the outward vectorIN; is perfectly
reflected while the fraction of the residue (I—ANN; is reflected
isotropically and the residue (l-w)(l-AﬁN; leakes out.

Then, the boundary matrix B4 may be modified as

Bj = AL + w(l- }\)Uj : (45)
impling _

leak out if 02wil

not leak if w =1

leak in if w > 1

The relation (42) with Bj defined by (45} is equivalent to the relation.

bjGN; - = 0 (46)

Here, the scalar o is given as

A= A+ w(l-) ' i (47)

— 72—
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which is the so-called ALBEDO; it is determined by calculation in a larger
geometry such as an assembly.

Much effort is required in performing the series of works to find a set

of the AIBEDO, because the calculation is made only by the integral
transport method which needs much computer time and core capacity especially

for multi-group calculation.
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APPENDIX VI Representation of collision source term in the

Boltzmann equétibn in terms of multigroup constants.

The collision source terms 5 in the Boltzmann equation is generally
written as

S = f dE'S d' T (E'-E, R'-@)4(E',Q") o (1)
o} 4

where £ (E'-E, 0'+Q) 1s the macroscopic differential scattering cross

section. Under the rotation invariance condition, it can be represented as

I (E'"»E, 9'-9) = I (E'=E, p)/2n (2)
with
r = O®"%
T (E'+E, p) = sumnici(E'+E, 1) (3)
i

where i denotes an individual constituent nuclide of the medium. The
emergent energy E of neutrons scattered at incident energy E', however, is

not independent of but uniquely determined by E', viz.,

f(u)

i

E = Eg

or

Ho= g g(E) (4)

It is therefore quite natural that the differential scattering cross
section is measured as E-dependent ol(E',E) or p-dependent ol(e',1).
Consequently, it follows that the microscopic cross section must be derived
from ol(E',E) or ¢i(E',u) for source calculation. This can be done as

follows. It is easily found that the next relation holds for an independent

variable y:

3Hg

oL(E'SE, W) = ol(E', WSGi-wo) f5p (5)

from which I (E'+E, ®'»R) is derived by use of the measurable data oi(E',u);
§ is the Dirac's delta functiom.

For practical convenience, S is generally represented by a series of
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Legendre moments about angular variables by the following procedure.
Cross section L (E'-E, '+R) and angular flux ¢(E', R') are expanded by

legendre function of angular variables as

L (E'-E, @'+0) = £ (E'SE, n)/2r

. .
- 1 &L e () rgED (6)
n=0
O T
$(E', ') = £ T ¢g(ENY (@) (N
2=0 k=-c
where
% (a-m)! omo, e im(y~y')
Pa(w) = I oyt PPN De (8)
m=-n _
Ry = mkpFGneikd’ )
k(201 (2-k)!1,1/2 <
By = [ 4o (R+K) ! ! x| <2 (10
Py = sin® < p_o) (11)
n M n
prl(x) = (D™D By 5= gan
n (ptm)! D0
A = cosH (12)
A' = cosf

The integrand of relation (1) is then represented as

oo -]

T (E'»E, o'»0) (E', ') = I I S(n,?) (13)
n=0 =0
where . o )
- 2041 (n-m)! Lkom '
S{n,) = I S o)l HgP (A)P ")
==L m=-n
x PO it (em) e’ 5 (E18) o (B (14)
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Integration of S(n,%) over f' with aid of the next relation

oo YR@an = skesk o - 15)
by S . S
yields
L n
f da's(n, ) 22:1 stz 3 ok ———En:n";:
4 ‘ k=-% m=-n w i
x PRGO)e™ g (ToE)$R(E") (16
Therefore it is evident that only the term S(n,n), (n=0, 1, ..... )

contributes to the scattering source, and the integral of S(n,n) is

rewritten simply as

n
2n+l (n-m)! 1 :
- ToFm) T v PI(A) gimy
m=-1n 1

/ da'S(n,n) =
4w

X Tq(E'-E)4M(E") (17)

Here, ¢B(E') is given by relation (7) as

1 21
$™E') = HR S dx' S dy' ¢ (E', 0" )PT(A") e 1Y (18)
-1 &) v

Finally the scattering source in expanded form is represented as

« n

- 1 . .

5 = —l? r L 2n;1______52+r:3;rpg(”em¢
m=0 m=-n HTl ot

x [ dB' I_(E'-E)$R(E") | (19
o |

If we take only the first and the second terms neglecting all other higher
terms, Pj-approximation of the collision source is obtained from relation
(19) as

o

s = ;dE' I (E'-E)¢g(E")
Q

1
2/

3 - t 0 [ l"'Az. i 1 -1 - bRl
Ly fodE 06T + [F5= [eMe(E) - e T DT

x T3 (E'SE) ' ' (20)
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Here, the moments ¢‘g(E“), ¢‘1’(E’), ¢1(E') and rb;l(E') are given from the

relation (18) by some manipulations as

O(E'Y = . —i_ ro (R @
$Q(E") 2 1, AE ") | (21)

122 iy .
MIED = TfelbpoEn - elhrlEn)

N |

% f AR $(E',R') - (R-0") (22)
] _

Finally, substituting relations (21) and (22) into (20) yields the next

expression
s = J'odE'Zo(E' E)$(E")
+3 f dE' L (E'-E)R-J(ET) (23)
Q

with the definitioms

S dQ'e(E',Q") f4n (24)
4m

$(E")

J(E") [ da'Re(E',R')/4n (25)

4

811
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APPENDIX VII Transverse buckling correction and time absorption

in one-dimensional cylindrical transport équation.

The Boltzmann equation in the cylindrical coordinate system shown in

the fiture below is represented as

1 3 U 8 nsiné 3 3
LT . : —— ¥ — )
Loaet e 7 1 36 7Y 3z (1
1 23
- =2 i + N =
T 39 nsing + a¢] S
| &
Y T cosw
n = sinw

sinwcos ¢

=
]

If the angular flux N is independent of &, the equation (1) is reduced
into the next form.

9

50 nsing + g¢]N = 8§ (2)

<=

o ] 1
—_ vy — = =
ar L AP T

H i

)
= +
ot

Let the flux N be approximated by the first and the second moments of

solid angle as

N + 30-4 (M

=4
i

with
;O Nd@/anm, d = f NfdQ/4n (4)
4 b

2
i

and substitute relation (3) into equation (2}, one obtains the next form;

1 3 ] a =
( v 3t *u or ¥ 3z “t)N
B2 3 3
+3(V+u ar+}1y az+ugt)3r
vy 2 3 2 1 =
J 2 4 L. 2 = 5
+ 3¢( ST T MY 3 + 52 + ya)d, S (5)

where, J,. or J, is r or z~component respectively.
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Upon integrating both hand side of equation (5) over @ and dividing
through by 4w, the next equation is obtained.

1 3 = 3Jr  3Jz
(V3t+dt)N+8r+Bz = S, (6)

with

So = J sdaf4r
4

Two other equations are obtained by Q-integration of equation (2) multiplied

by u or y:
18N 1 3y
1 3N , 1 3Jz _
33ct% e T otz T Sy (8)
where
Sy = [ Sudf/fén
w
S8y = I Syda/4r
L

Hence if the source is isotropic (SLI=SW'=0)’ J,. and J, may be given by

(7) and (8) as

_ __1 3N

Je = Ty ar 9
I U

Jz - 3Dt ar (10)

Substitution of these relations into equation (6) yields the next

equation

2 . 28
1 3 1 3<N (11)

(D, - — 29K - —25 = s
t " 3D 322 3D ar2 °

Thus, by substitution of the next assumptions

N = N(r)exp(at)cos(rz/22) (12)

S = So(r)exp(at)cos(nz/ZQ) (13)

-2 £ z=21
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into equation (11), one obtains the next equation

1,125 1 . d°N()
—_— —_— - ———— = S
[De + o (22) IN(r) oy a? o (1) (14)
with
Dy = op + alv (15)

This result means that the transverse buckling effects and time-dependency
in y-dependent c¢ylindrical problem can be disposed at a time by replacing
the total cross section or by ot' given by

v - O l 1 ) 2
Ut Gt{l + V3¢ + 3 l+('X./V0_t 22.01:) ] (16)

where

o ! Time constant of flux change
¢ Effective bukcling height of the cylinder

v : Neutron velocity
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APPENDIX VIII Derivation of integral transport equation and
first flight collision probability

Consider the Boltzmann equation at a phase space point P{r-nL,t-2/v)
for % taken as the distance between two spacial points indicated by

position vector F and r' as shown in the next figure.

;a—ﬁ dv = dids
—
™ ds = 1240
rll
"
' =r- 0
L= | -

The expression(a) is then given by replacing the coordinates ¥ by r-fii

and t by t-&/v:

13
Gt eV £, (r-02,E) 1£(r-02,E,8, e-2/v)

= S(1-RL,E,8,t-2/v)

+ f da' [ dE' % (r-0'2,E'SE, R £(r-02,E",0',t-2/v) (1)
4 o

The two derivatives on the left-hand side of eq. (1) are rewritten as,

12 f(r-ne,E,0,t-2/v)
at

= 2im £(r-02,E,R,t-(24A8) /v) - £(r-0¢,E,0,t-2/v)
Agro

Q-Vf(r-2L,E,R,t-2/v}

£(r-n(+aL) ,E, R, t-2/v) - £(r-o2,E,%,t-2/v)
AL '

= Lim
Ao

1t is evident, therefore, that the sum of these two derivatives is equal
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APPENDIX VIII Derivation of integral transport equation and
first flight collision probability

Consider the Boltzmann equation at a phase space point P{r-n2,t-0/v)
for § taken as the distance between two spacial points indicated by

position vector ¥ and r' as shown in the next figure.

;;—\ dv = dids
aq ds Z%-————
™ ds = 22da
rll
Ir
¥'=r- 10
L= frt -

The expression(a) is then given by replacing the coordinates ¥ by r-fif

and t by t-i/v:

1.3
Gt eVt L, (r-22,E) 1£{r-82,E,®,t-2/v)

= S(m-9L,E,8,t-L/v)
+ [ dQ' J dE' % (r-2'2,E'-E,R'-0) £(r-02,E',0',t-2/V) (L
4 o

The two derivatives on the left-hand gide of eq. (1) are rewritten as,

1 3
<3t £(r-02,E, 0, t-2/v)

f(r-RL,E, 0, t—(2+AR) /v) - £(r-04,E,R,t=%/v)

= Lim
A%>o

Q-VE(r-22,E,8,t-2/v}

F(r-n(2+48) ,E, R, t-2/v) - £(r-a2,E,9,t-2/Vv)
AL

= Lim
Ao

It is evident, therefore, that the sum of these two derivatives is equal
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to the total derivative of £(r-L,E,R,t-¢/v) as to &, viz.;
13 '
< 5+ o) FOr-02,E,0,t-2/v)
_ 4 y
2= =7 £(r -2,E,0,t-2/v) . (2)

Equation (1) is thus rewritten as follows by some manipulations:

d -f2 Le(r-net E)de’
- EE'{e o cF(r-n2,8,R,t-2/v) }

-t Ze(r-we ' ,E)de’
= e ° «q{r-0¢,E, 7, t=0/v) (3)

with q representing the total source. Integration of eq. (3) on both

sides over £ from zero to infinity under the natural condition

- £ T (r-e’ E)ds’
e « f(-=.E,R,-=) = 0

yoelds the formal integral:

o - s Fe(r-00',E)dR’
£E(r,E,0,t) = f e ° g(M-02,E, 0, t-4/v)ds
&)

(4)
where
q("M-%2,E,0,t-0/v) = S{r-RL,E,R,t-2/v)

+ [ dR' £ dE' E (r-%&,E'E, 0" R e (r-RE, BT L0, t=2/v) (5)
4m o}

Integration on both sides of eq. (4) over f with aid of the.relation

dede = av (r')/|et -n[? ‘ L . (6)
gives . . : .1 _ ' o ”
o(r, B, t) = o= J dV(Or') -——— Exp[- /I (v",E)dV"]
"y ' - r
x [S(M',E,,t=|w=1t|/v} + f da' s dE'£(n' ,E',0',t-|v-r"'|/Vv)
o C o 4n o ’
x T (07 E'SE,R'>0) ] 4 (D)
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Here,

$(v,E,t) = [ ARE(r,E,R,t)/4m (8)
™ ..

a = (r-r")/|v-r| ' (9)

For practical purposes, description will be limited to only quasistatic

form thereafter.
The static form of eq. (7) becomes as

r

1
(r,B) = -— J dv(y') ——— Exp[- / I¢(r',E)ar”
x [S(r',E,Q) + / do' S dE'£(r",E',0") L (r',E'E,0">0)]

b4 o (10)

If a synthetic kernel such as

£, ECT BT, 80 £ (' E'SE, R'+0) 40’
L (¢',E' E,® = (11)
.Qﬂ_dn'f(n',ﬂ',m')

is given, eq. (10) is rewritten as

T
$(F,EY = [ dv(r") . Expl- [ I¢(r",E)dr’]
v ]" —l‘] r
X{Zl" S(r' E,®) + f dE'¢(r',E') £ (1" ,E'-E,0)] (12)

0

by which ¢(r,E) is deterﬁined.

Equation (12) is generally solved using a kernel, such as transmission
probability or first flight collision probability. The code COLSQ, for
example, uses the first flight collision prebability Pij which is defined
as below. The definition of a probability P(E,r'->¥) such as

£e(r,E) "

P(E,r'>r) = TF-_\!'EI— Expl-/ T t(F' ,E)dl""] (13
- 4

and substitution of this into eq. (12) yields the next equation.
Ly(r,E)¢(1,E) = [ dv(n")P(E,n'>r)
v

x [iL-S(n',E,R) + [ dE'6(r',EN) L (r',E'-E,2)] (14)
o]
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The practical form is obtained by integrating this equation over a
subregion and replacing the integral on the right-hand side by a
sumnation of the integrals over each subregion Vi, where Vi(i==1'bN)

is a set of subdivision of V appropriately taken under the condition:
UN, =V, ViFWVj = ¢ for i#j] (153)

All the cross sections are spacially constant in each of V;. As is
well known, the mean value theorem of integral guarantees acceptability

of the next expressions as to Vj—integral of (14)

JoZ (e E)e(r,E}AV(N) = Vyc Iej(E) ¢4 (E) (16)
Vi
J

;odavee) f dV(F')P(E,ﬂ'+W)[i%—S(r',E,Q) + f dE'e(r',EDI(¢,ETSE, D) ]

VJ .V o}

= svy[p§;(B)-sy(E) + PEL(E) 7 aB'e (BN T (BSE)] (D)
C

i=1
Here
61 (E) = 5= 9(r',E)AV(r") (18)
lvi
- 1 ' '
S;(E) = iy i}-S(W E,dv(r") (19)
1

g, AV )R (E, r'>n)S (' ,E,0)

Pi(E) = J dv(m) - (20)
Vi s oavir')s(r',E,n) :
. Vi
: L dV(r')P(E,r'>r) fde'¢tw',E')z(w',E'+E,@)
Pij(E) = 7 oAv(n) —= ©
Vi Fooavie'y S dsTe(r',E")E(r ,ETE, Q)
(21)
fv_¢(r',E) (r' ,E'+E,0)Ydv(r")
I (E'9E) = —= (22)
S o#(n' ,ET)av(n')
Vi

Note that the volume element dV(r') is given by df and d as the relation

(%) and the position vector r' is given hy 2 and £ as
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F'= ¥ - ReR @
It is seen, therefore, that the V(r') integral of any quantity X(r',Q),

roOox0r ,@avir')

v

is a constant independent of both ' and R. By applying the principle to
the right-hand sides of eq. (18), (22), it is obvious the expressions on
the left hand sides are quite reasonable.

Thus, a practical form of the integral transport equation may be

given by equating the right hand sides of (16) and (17) as
\£ -Etj(E)°¢j(E)

= SuMVy [PF;(E)-S; (E) + P (B f dE'$4(E") T4(E"E)  (24)
i=]
It is easily seen that PlJ(E) and P¢ (E) must be given to solve eq. (24)
as to $4(E). Strictly Pij(E) depends on spacial distribution of § and
(E) on that of ¢, but if the subregion Vj is suitably chosen so that
the spacial distribution of 5 and ¢ in V; can be regarded as acceptably

flat, the next relation holds:

p3y(®) = B{j(E) = Byy(B) = g7 L 4V(M) S V() P(E, ')
Vl Vl
(25)

With aid of the relation (13}, the relation (25) gives Pij(E) independ-
ently of both S and ¢. The relation (25) is the so-called flat flux
approximation. Concerning this appfoxiﬁétion, the important conclusion
{s as follows. If the relation (25) holds strictly, the total flux

(the isotropic component of angular flux) can be obtained in rigorous
sense by eq. (24). Physical meaning of this conclusion is clear from the
definitions (20), (21), and (25). It is also seen that a symmetry

condition exists between Pj (E) and le(E)

=V IpqPij (26)

V5 Te3tPit ij
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APPENDIX IX Details of the reactor constant formulae

Here, derivation of the standard value formulae will be described.

A static form of the Boltzmann equation is wirtten as
div[Reo(r,u,W] + I  (r,w)¢(r,u,®) = 8 (1)

with w0

X {(u)
[

Sode' S du'vIOruf)e(r,u’,et)

47 o]

Q(W)usﬂ) +

[95]
iy

[ ]

+ f 4" [ du' Zg(r,u’ u,R'=R)e(r,u",n") (2)
4n 0
where
£y ! macroscopic total cross section
vIgf : macroscopic fission cross section muitiplied by v.value
z : differential scattering cross section
angular flux
fixed source

: fission spectrum

5 X 0O o

..

space variable

[

incident neutron lethargy
u : emergent neutron lethargy
®' : incident neutron direction vector

L : emergent neutron direction vector

If the neutron source Q is isotropic and the angular flux is approximated

as : . .
s(r,u, @) = ¢(r,u) + 3e-J(n,u) (3)
with _
a(r,u) = f o(w,u,@)du/bn (4)
4t
J(r,u) = 7 ¢(r,u,R)Rd0/ar

™

substitution of relation (3) into eq. (1) and integration of both hand

sides of the resultant equation E over @ ylelds the next equation
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div 3 (r,uw) + T 0w (r,u)

o

= QUr,u) + X(u) S vIg(r,u)e(r,u’)du’
Q

+ [ folu'»u) Tg(r',u")s(r,u")du’ . (6)
0 -

Further, f-integration of E multiplied through by f yields %

grad (r,w) + I (ru) (ryw) = S f (' Wig (' ,u" ) Gr,u')du!
’ o]

;O (u'-u) Zs(\f',u_')J(l‘,u')du' 7 (N

0

Here, f,, f1, Ig(f,u) are defined as

0,
ZS(N‘,_U'*Pu,ﬁ'—*ﬂ) = f(u'>u,p). Lg(r,u")

2n+l
2

f(u'»u,w) .= I £o(u'+w) Pp (W)

n=0

u T R'en

Eq. (7) can be converted into the next scalar (or divergent) from in

any spacial region r, with all coefficients being piece-wise constnat.

Lo |1

v2g(m,u) + Iy (uddivd (r,u)

(-]

[ f1(u">u) Es(u')divﬂ (r,u')du’ (8)
o .

It

In the region r, egs. (6) and (8) can be represented in discrete form

concerning lethargy variable as

atvdB(m) + 1 &8(r) = QB (r) +xBsuM I %'q;g' (r) +5UMZ §'+g¢g' (r)

g g
(9
% v2¢8(r) + 18 div W = SUM E§;+gdiv LA 10)
g'#g
Here,

oB(r) = [ &(r,u)du : (11)

g
I8y - = 1 d(r,u)du (12)

g
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o%(r) = S Q(r,u)du (13)
g

x2 = S x(udu (14)
124

£f o= reerwdy Fo (15)
g

vi¥ = v (Welruwdu/edr) (16)
2

ZE‘F}E z Ig du fg'du'f(u’-m) Zs(u')(b('ﬂ‘,u')/tbg' () (17)

. ) . 1]
E§1+g = [duf du'fy(u'>u) Dg(u')divd (r,u')/div 18 () (18)
g &

g - - o 38y _ B 7B
Ztr = fg Lt (u)div Jd (r,u)du/divd® () Zsl (19)

By eliminating Jg(lr) from eqs. (9) and (10), the diffusion equation is

derived:
82,8 g g _ B g-l+g g-1
-D%V24° () + T2 67 (r) = 5% + Lo = T (r) (20)
where
g g 2 48
D° = D® - 5+ ——— (21)
© k 7248 (y)
08 = 1/3;:%r (22)
8 = 38, yeBtl _ g (23)
rem a 5Y n
L}

18 = 184 $B 4278 - gyMp®TB (24)
S e i n o' 5

18 = sumisuMG:B uz® 24 pB7ETE) &0

2 ' 1" f g sn

g'¥g &g E ¢ (r)
tr
gl
' = ()
%m*g' 24 (25)
$ (r)

zgzgﬂ = »f. z':*gﬂ | (26)
sl @
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Tsot] '
g PETETT 48 () -
R = 1 +S5UM . (28)

d g'#g zg—*g-l-l ¢g(“.)
g'Retl °
88
g = s . . _
R® =z 1 +suUM ————- * - (29
r g'#g 5 grg+l _ (29)
g#gtl  °
g'>g . 8 ;8°8/;8 '
tm - t sl tr (30)
g'rg'rg L g'g _g'oe g .8 (31)
z sm = 2 s L sl z f = (r)
) ' [ _
s& = Qg+xgsumz§¢g (r) ' (32)
g'_ .. _ )

Eq. (21) is consistent with discrete form of the Boltzmann equation
(1) within the restriction of allowance for the approximations (9) and
(10). Therefore if the Boltzmann equation (1) is solved in a unit cell
geometry under appropriaté cell boundary conditions, the unit cell
average value of the constants may be obtained by averaging the necessary
quantities defined by the above relations.

'Uéing these cell average constants, a macroscopic neutron balance
condition over a large power reactor core may be described by the next
diffusion equation

-ngirpg + %emtbg = s+ ¢ g;bg o871 : (33)
Here, the Laplacian operator Vi is defined as a difference operator for
horizontal mesh width equal to one rod pitch or more, with other coeffi-
cients defined as described in (2.8.1). _

Some additional explanation must be given about the cross section
Z% and diffusion constant D%, Physicai meaning of the quantity Zﬁ is
obvious from egqs. (9) and (10); that is, real leakage should be’ '
represented by div J8(r), whereas diffusion equation represents it in

2 .
terms of -DgVL¢g(r). Therefore, the correction between these two

expressions is required such as
atvid (1) = pEvZeB(r) + 1 BeB(m = -pB7248(x)

yielding the corrected diffusion constants
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0B (r)
S
0 L 9248(r)

where ZE 1s defined by the relation (25) and ¢g(w)/v2¢g(r) is given by
the unit cell calculation described above. _

Ihe diffusion constant is locally isotropic as are the cross sectioms,
but the rod cell average value Df is anisotropic because the material of
a rod cell is not uniform radially; that is D® may be a temsorial
quantity. Practically, however, p8 may be regarded as composed of two
components, viz., radial and axial for the ordinary light water reactor
core structure.

These two components may be given by the following consideratiom.

Let the radial distribution constant be as shown in the figure below.

o Dg1 ¢1 Doz ¢2 - 6,7 Dy ¥

~— + - —t + -

0 Arj Pq Arg Py PL1 Ar, Py

The continuity condition at the mesh points Pi(i =17%n-1) of neutron
current induced by total flux gradient may approximately be represented as
¢1"‘¢0 ¢2_(b1 : D ¢n_¢’n_.l

= Dy =
Aty 0 Ars on - Ar

n

Hence, ‘if these be equated to the macroscopic neutron current Cross over
the half rod cell pitch, i.e., ﬁr-(¢n—¢0)/R, the formula for D, is

obtained:

R

D, =
T
AT1/Dgy + Ary/Dyy + ... + Arn/Don

which gives the isotropic terms of D,. The materials of any rod cell are
axially uniform, and the axial current in each material zone may be

proportional to the flux density. It is thus reasonable that isotropic

part ﬁa of ba is given as

D, = ng1)01¢i Vi /SUM ¢y V4
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APPENDIX X Diffusion calculation based on multi-coordinate system

1. Basic concept

In general, any complete coordinate system can be used for expressing
any spacial operator included in an equation. Then if the equation is
such that describes balance condition on a physical quantity in unit volume

at an arbitrary p031t10n, it is clear that:

(1) The equatlon may be written in a convenlent form by using
the most suitable coordinate system in each of spacial
subdomains which shoﬁld be suitably chosen in the geometry
considered. |

(2) The relative positions of the origins of the coordinate
systems used may be arbitrary in fhe senée that the equation
describes only a balance coﬁdition on a quantity at an
arbitrary position. It is obvioué'that the continuity
condition on each subdomaln boundary is the necessary and
sufficient condition assuring the conservativity of any

multi-coordinate —-system expression

Especially when the equation is written in difference: form for the
numerical solution, the treatment of this condition is important,
since the convergence of the operator inversion may largely depend on

assurance degree of the conservatitity.

2. An example of the multi-coordinate-system expression

Here, an example of'two—coordinéte—system expression applied to a
two-dimensional geometry is introduced. This is é typical problem
encountered at the calculation of horizontal disfribufion of the neutron
flux in a usual LWR core. For this problem, x-y system and r-8 system

were used under the following calculation scheme.

(1) Inversion{?) of the spacial operator
The spacial operator is separated into some suboperatorq
corresponding to the subdomains, then each Sub—operator is
inverted under the guess boundary conditions determined on
sub-domain boundary by the method described afterwards or
under the external boundary condition given..

(2) Determination of the subdomain boundary condition

Let the domain of the geometry be V which is enclosed by the
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external boundaries Fk(k==1'bK) and V be separated into sub-
domains Rj(j =1+J) with the numbering in ascending order

from cuter side, and Rj be enclosed by the boundaries Fij(i==lij)

An extrapolated boundary value ¢, is given for Fij as
dox = (1 - An-Cy)d

(b) If two subdomains Rj and Rj'(j <j') are interconnected by Pij’
and the same coordinate system is used in Rj and Rj', bay fOr
each of Ry and Rj' is given by interpolation shown in the

figure below

oy for Rj
bex
for Rj'
inversion area of Ri inversion area of Bj'

{c} If the coordinate system used in R; and Rj‘ are different

in case of (b}, bex 18 given by the manner illustrated below.

_______ : ¢ex for Rj
bex
for Ry'
inversion area of Ri ‘inversion area of Rj'

(3) Inversion scheme
Spacial inversion is performed every subregion by SOR scheme,

etc., under the boundary value $ay determined as above.’
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APPENDIX XI Derivation of a macroscopic form of the

themo~hydraulic equation

Thermo-hydraulic balance conditions{!1) in microscopic sense are
described by equations (1.2}, (1.3) and (1.4).

Here, a set of macroscopic thermo~hydraulic equations is derived from
the rigorous microscopic equations.above. A basic procedure used through
is to integrate the microscopic equations over V the volume of sub-
channel per unit length and smooth away microscopic dependency of every
quantity on lateral coordinates for changing the equations into one-
dimensional space dependent ones about a set of lateral average quantities
for practical purposes. By the procedure described above, each equation

may be changed into a macroscopic form as follows.

1. Mass balance equation

V-integral of the first term of equatiom (1.2) may be written as

;2. W2 | (1)

while the leakage term may be represented as

povy -t -
[ divpW¥Wav = f dS, + S pvtdS, + / pvtdSy
v S Z S Y y S X
z y X
APV
E P + Wy + Wy (2)
where
5, + cross section of the subchannel flow area
p = [ pdS,/S, (3)
SZ
PV = [ QVzdSz/Sz (4)
Sz
vt : time average of diversion component of v
v' :  turbulent component of v
o Wx: x— and y-component of diversion cross flow rate
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In terms of these notations, the integral form of the equation is

written as

3 dpvy
o= + =
St o +.(wx Wy)/Sz Q (5)

which may be specialized for a subchannel i with flow area A4y as

- apq omy, : . , S
e L.o=
ST PE N 0 | | - ®
where
mi = Ajopvg

2. Momentum balance

The first term of eq. (1.3) may be integrated as

s %%“idt =2 s ovay
A v
T — vz
= S, {EE-(I pvg + 1 pyy + k v (7N
with

PVx = [ pvgedS,/S,

Sz

(8)

pvy = S pvdez/SZ

Sz

The second term giving momentum loss rate by convection may be integrated

as

5 [v-pWidv = | oW(V-d3)

v 8
Bvaz
= > t 7 oWvydSy + 7 pWuydSy
Sz Sx Sx
apv%
= k{J —=4dS;+ [ opv,vydS, + [ pv,vds;}
S, - Sy Sx :

) apV,V
i IS u—gﬁ’z—?—dsz + 7 avidsy + 1 puyvydSy

z Sy - Sx
. apvxvz
= A0 7 —5—dSz + J pvevgdSy + [ pvids,)
Sz Sy Sx
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The third term becomes

f gradPdv = [ (i ) A i ® 4k Eg)dv
v v ax ay 3z
= 3 : 3P
= 1/ aPdy +J S o,Pdx + Kk [ - dS
y az Z
y X Sz
o x_. . Y z" 5,
with
SZ
B = bRas,/s, a2)
Sz ’ .
y = [ APdy/AP (13)
y .
x = J byPdx/AyP (14)
x
P = f PdS,/S, : (15)
SZ

The fourth term representing momentum loss rate by viscous transfer

becomes

S [Ve1]dv = [ [1+d8]
v 8

oT - :
= k{f —22ds;+ [ T1yadSy + S TxzdS%}
Sz Sy %

3t . . _
+ {Jg =2 ds, + S tyydS 4 S TgydS ) (16)

z Sy . Sy

AT %

+i{r dS, + S 1yxdS + [ TxxdS )
S, Sy Sx

The last term becomes

-7 p9dV = -(Kkpg, + iFey + 10g,)S, Loan
v

Now, preparation is completed for the macroscopic treatment, hence
the equation is treated as two scalar equations separatively of axial and

lateral components thereafter.
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2.1) Axial component
It is easily seen from relations (7) ~ (17) that the V-integrated

axial momentum balance 1s dgscribed as

BB-V- pr%
SZ + f + .l'. D'VszdSy + Jr OVZV ds
3z g, 9z g S 7K
z v X
3P 3Tzz - =
+ Sy 5, F /5= dSp + [ typdSy + [ 1x,dSy - PgyS, = 0
S, Sy Sk
(18)
The second term of the left hand side may be represented as
apv% s aPv, ap
. d5, = [ (2v, e T Vz Bz)dsz
Sz Sz
- PYz =, 3p '
= . - y2 PE
- Sz { ZVZ 2z Vz az } (19)
where
N BDVZ aovz
vz = vz dSy/ -, 45z (20)
Sz sz :
52 = 2 3p 3p
Using relation (5), the R.H.S. of (19) may be rewritten as
3pv3 - 3, =2 3p -
; 2 dSy = -S; { 2v, "a-t— + vz 'E} - ZVZW ) (22)
z

The third and the fourth terms of equation (18) may be separated into
two parts; diversion term and turbulent term. That is, substitution of

the next expressions

- T
Vg = v}fi + vy
. } (23)
= T
vy vy + vy

into the sum of the third and the fourth terms yields

I pvavydSy + [ pvzvydSy

Sy Sy

- 5 ot . ot

= vE [ pvgdS, + vy S vdey (24)
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—_ A —_
+ pvl * Axv, * 85 + pvy * byv, * Sy

= Ty + Iy + BV Ny + ByV, Wy

where
Vel vy i di i i
Vgs Vy version component of vy and vy.respectlvely

vi v§ : Turbulent component of vy and vy respectively

3% = ovSvadSy/ [ 0¥y dSy '|
Sx Sx g
i (25)
vW = [ opv te. dso/ £ pv tds )
z y Yz¥ %y v ¥
Sy Sy
pvg' = S pvy'dSy /Sy |
Sx L (26)
[ ' {
Py = [ pvy dSy/Sy )
Sx
K;;; : Sy - average of the difference between inside and outside

values of speed vz in the vicinity of S,

-E;;E : analogous to above concerning Sy in place of Sy

Wy = J p;;tdsx
Sx
(27
. . —t
. Sy
We' = pvg' ¢ 54 W
y | @8
I‘]y' = DVy' . Sy .J

Substitution of relations (22) and (24) into equation (18) yields

3pvy g 30
{=- f;; 3 T 3%'}52 = = [ 14,484
[~
X
L oads, - & 222 4g 45,5l 3
yz®y 3z “v2 " 72Vz 3y
Sy S,

* (2 - VL - ViR
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- (fx\vzwx' +’X)}2Wy') + pngzr
(29}

The first and the second terms in the R.H.S. of (29) are friction forces
inflicted on V by channel wall areas Sy and Sy, while the third term is
net viscous stress inflicted through §,, either of them being directed
toward z-axis. The fouth term is net incoming rate of z-directional
momentum by density gradient through Sy. _

The fifth term is net incoming rate of z-directional momentum
through 5, and Sy by diversion cross flow, while the seventh term is that
by turbulent cross flow. The first, the second and the thrid terms in
the R.H.S. of (29) are to be approximated by a simple empirical
correlation in total, because the dependency of 14, Tyz and 7,, on
velocity components, pressure and temperature, etc., may be horribly
complicated. In general, the next correlation

I TxgdSy * J TyzdSy + f ez dS; = ovy G+ S, (30)

S 3z

Sx Sy z

may be used, where the coefficient C is to be determined by a gross

measurement at the given system.
s ~ =2
It is to be noted that the various average velocities Vs § Vx>

v X,
transfer velocity pvz/E(E \_zz), because ;z cannot always represent correct

etc. contained in equation (29) should not be equated to the mass

momentum transfer rate especlally in ecase of two phase flow.

Therefore, it follows that an equivalent density for momentum tranfer
and the corresponding velocity are defined by the following consideration.
Generally, momentum transfer rate M, mass velocity, i.e., momentum

density mg and quality x are defined as

M = apgvé + (1- a)pevg (31)
Mg = oappVg + (1-a)peve = m/A (32)
ap v
x = £-g (33)
a0 vy + (1 - alpgV,
where

a : volume fraction of woid

Pgs Pe gas and liquid density respectively

vg, ve ¢ gas and liquid velocity respectively

A : subchannel flow area (= Sz)
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Thus 1f M be equated to mg/p', a quantity p’ is given with the aid
of relation (31), (32) and (33) as

x2 (1-%x)2
1/g? = ——— (34)
oo De(l"a)
This is the equivalent density for momentum transfer giving the correspond-

ing momentum transfer velocity u by equating mg to p'u as
u = mg/p' T mpV' = mV'/A (35)

where V' is the equivalent specific volume for momentum transfer. By the
notices above, it may be obvious that the fourth term in the R.H.S. of

eq. (29) should be represented by u and p' as

3(1/V')
3

1
Aey2e %5;.= A'(E?Z'V'Z'

=2 BE
Sz* Vg * o
3z 2

= -A(F o2 az (36)

Upon substituting the realtioms (30), (36) into equation (29) using
u for Gz, Géx, etc., the next equation for subchannel i is obtained

1l 9mi 3py 9Py mi.2 vy
- - —_— == = (== PR
i ST (Ai) (C1 5z ) _
(37)
. . .
+ § (Zui—u*)wijl‘/Ai - ;J (ui_uj)wij/Ai - pigcos B
where the constant C4 includes all frictional pressure loss effects
caused from viscosity. |
2.2) Lateral component(25’28)

In macroscopic point of view, the lateral momentum transfer phenomenon
may be properly represented by an equation about the rates of gross
momentum transfer from a subchannel to another, where the macroscopic
dlrectlonal distribution of lateral momentum in a subchannel is re-
presented by the rates above, ‘the number of which is eoual to the number
of adjacent subchannels. Such an equation may be derived by considering
about only one lateral component of the integral momentum equation. For

instance, i-component of the integral momentum equation is given by (7) ~

{(17) as
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5 —— OpVyV
Sz oy pvx + [ ——2dSy + [ puxvydSy + [ ovidSy
at dz g _

S, y Sy

_ - a7 -
+ AxP ry + S a':'x ds, + f Tyxdsy + J TxydS5¢-Szogx = 0
" (38)
The physical meaning of eﬁery term in this equation may be com—

prehended by the next figure

y
_\J/
f1- . 4:
i diZ " e I 3
12 Z
(\ SZO X
NS

Let i and j be two subchannels mutually adjacent at the broken line
and the region (2 xd) with hatching be such a regidn in which gross
lateral momentum transfer exists ﬁhereas the vectorial suﬁ of lateral
momentum in the region 5,  may be nearly equal to zero.

Then, if unit length of the two subchannels is téken as the integral
domain V in equation (38}, the resultant equation may be regarded as
of gross lateral momentum balance condition between i and j by the follow-
ing consideratiom.

The first term may conveniently be separated into two parts as

9 — 3 g —
Sy Ez'pvx = 85,4 T pvy + 2(d 5t PVy)

T
= -— +
Szo 3t L 7t 7 (39)

where, W is average cross flow demsity in §,, while Wi; the cross flow

rate as defined previously. The second term may also be represented as

OV V., ANV V A0V V '
e dsy =S —TFds, + 5~ s,
S S dxg '
Z zo
~ 3z 3aeWiy | | |
= o1 - . 0
S0 W 5, T - - (40)

—100—



JAERI-M 92-187

where the physical meaning_of‘ﬁ: G;;‘and-ﬁgz may be self-evident from the
previocus explanation ' . '

The third term is y-directional net divergence of X- dlrectlonal
momentum hence if exists should necessarily be estimated in relation to
the other subchannels adjacent to these two subchannels, thereby this
term has not to be considered here. The fourth term may be represented as

S pvEdSy = d ¢ p¥ c vf (41)
SX

; 2
with appropriate mean value vy and

{pi for v, >0
(42)

Pj for vy < 0

It may be clear from the definitions (11) and (13) that the fifth term
can be written as

8P *y = (Pj-Pi)-d (43)

The sixth term may be represented as

*

aT BT o :
zxsz-szo( )+zd( = (44)

/ 3z

Sx

for the appropriate mean values of (8T4,/5z) over the domains S;, and

ixd. The seventh term need not be consldered here for the same reason

as that of the third term. The eighth term may be represented as
xx"°x XX

S t..dS, =d-1_ % (45)
s . '

with
To® = T g = Tyus (46)

Collecting all terms above, the next equation is obtained

3Wij aﬁwij -2 ITxx, % *
2( Yl + d-{Pj—Pi-Fp*vi-{-E.(—-g-;") + Tyx |
X BGA\‘ at
~(Spo*t ) opy *+ Szoloy + W a§° + ( a:’f)} = 0 (47)

—101—
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This equation may be broken down into a simpler form by neglecting the

last term for the prescribed reason:

oWy 4 JuFW 4 £ d
J = o - . -— . o —_—
Tl L {(®y-P3) - Cij Wigd x 7 (48)

where the next coerrelation

T :
2 Rk 2.8 * - of
p* vx® + ()T T T Cyg Wy (48)
is assumed to hold with an empirical coefficient ng and further use is
made of '

v ~ *
Vzo u

3. Energy balance equation

The energy balance equation (1.4) is rewritten as the next form using

enthalpy h in place of internal energy e

p %—%+ divhpW =~ hdivpVv + dov q + (7:WW)
- wgradp - 22 = o (51)

Jt

V-integral therefore, of every term may be represented as foloows.

The first term:

3h . o - 3h
fvp st DV = Sz0 3, (52)

The sum of the second and the third terms:

S (divhp¥ - hdivpv) dV
v

. . 3PV, 5h e
= 5, {(h-h) 5 + vz o, } + AyR Wy Bxh W,
+fy}'Wy' + Bxh'Wx' (53)
where
h : div pv - weighted average of h over V¥
h pv, - weighted average of h over V
h p - weighted average of h over V

—102—
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E;R;E;ﬁ‘: Bﬁ}t and EV;t - weighted average of (b=h) over V
respectively
ﬂ;ﬁ',ﬁgﬁ': pvy'- and pvy'- weighted average of (h-h)over V

The fourthe term:

. - 3qz .
J;dlquV—sz-—gz—+Qy+Qx (54)
where
Ez = [ qzd5,/8,
Sz
Q = fS qydSy
y
Qx = [ qgdSx
Sx

The fifth term:

[

S (1WA = = Sz 00 vt ey (55)
v o

M

with an empirical factor ey co-related for example as

2.7(1L-B)(1-B)/B2 for orifice
ey = 40.45(1 - R) for contraction
(1/g-1) for expansion

B = smaller area/larger area

The sixth term:

/ Vgradpdv =R (56)
Vv

The last term:

o _ g 0P L

Collecting all terms above, the next equation is obtained

—103-
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- 3h sh _ o 3%

+ By + ERwx) + (Kph'W,' + Sh'W,)

aaz 1

+ (Qx+Qy) + S, _é_;_ + ‘é‘ Szavgez + R
P _ o | - (58)

* a5 T

For usual phenomena taking place in any large power LWR, the following

assumption may be applied.

Heat flux vector 1s horizontal:

3qy
5y = 0 (59)

K/ (60)

Energy dissipation by viscosity is negligibly small:

1 - 3
—Z-Szpvzev = 0

(61)

The contribution of pressure gradient to energy dissipation by expansion

is negligibly small.

R = 0 (62)

Furthermore the assumption

h-h = 0 (63)

may be admissible to an extent.

Under these assumptions, equation (58) may be broken down into

— 3nd 3hi
Aoy Gy +mi S5
= qi - (ti-ti)ebiy + (hi-hH)wig + (hi-hjdw'i] (64)

- 104~



JAERT-M 92187

in gross notations for subchannel 1.

Here, it is to be noted that(zj)

represents increasing rate of energy density, but energy demsity E for two

phase flow is generally given by

E epyhy + (1-0)pehe = ph—{hey ' (65)

where
h = he + xhgy

p = (1= a)xpe- a(l-x)pv ' (67)

Hence it follows that

- 3hi 3E _ 3 _
°1 F¢ = Br - 3¢ (PhoVhey)
. . dh 3 _ 3V
=05t Py " Pev e
. . 3h _ 3
=P ot hev 3t [by (54)]
_ . 8h _ 8h 3y

LY ev 3t 3h

oy, 9h
(p - hev'gﬁ) e

[}

This result means that if hy is defined by relation (66), then hy
the effective density of energy transfer should not be equal to the

simple volume average density pj, but it should be given as

- 3
Pi = pi-hevﬁdf

—105—
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APPENDIX XII A set of'examples obtained by applicating the code

system to a PWR

Here, only the typical examples of the results obtained by test cal-

culations of a PWR core using the code system are illutrated.

The examples are as follows:

(L
(2)
(3}

(4)
(3)
(6)

Macroscopic total cross section curve of U0; reproduced from ENDF-B.
Fine spectrum in a fuel rod cell.

One-dimensional data of the multigroup constants for U-238 produced
from ENDF-B.

Multigroup spectrum in a fuel rod cell.

A set of rod cell average reactor constants.

Axial and horizontal distribution of three group flux in a PWR core.

—106—
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{3) One-dimensioanl data of the multipgroup constants for U-23B8 produced from ENNF-B

GROUF  UPPLR ENERS ASSARMIION NU=FI§SLny ELR5TILC INELASTIC {H, 21 FISSiGn T0TAL CAPTURE
1 1.662726+07 1.21535E400 5.828030+00 2.733336+G0 6.03503E-07 5.582525-01 1.21353IT02 3. 104635E+C2 1.7223348-93
2 1.454$9E+07 1.0TIJSEXDD  4.67831EHDD 3. TQ341E+00 6. 37053E-04 1.07Z15E+09  1.OG331E+00  5.435755+00 2.014528-G3
3 1.284056067  9.78?S1E-01  5.035940+20 2.73052£100  7.029955-01  1.313255+50  9.¥5338E-01  5.72703E+0D 2.42837E-03
& 1.433155407 9.83584E-01 3.B5081E+07 2.E1303E400 7.T2974E-01 (. 274598100 9.80302E-01 S5.Ba¥9GEsDD  ?.87§52E
H 1.09333E+87 $.91346E-01  3.5%6TIECLY 2,53376€+00 B8.33590E-01 1.1BTBVENSD  F.8TFIVE-C1 5.93854E+00 3.41355

] B.B7497E+G4  1.00017E+00  3.56855E+8% 3.117320+¢05 1.05003E+03  9.90164E-01  ¥.9312 01 6.14835Er20 $.04283E-03
7 7.78801E+405 9,840G7E-01 3.J6391E+0) 3, 34T90Er0D 1.65352E400 4.84214E-0%  9,79271E-01 6.ATODRErCD 4 B25TVE-QF
3 6.87289E+06 T7.7E3ABE-01 .5587FEMEI I, 597TUE00 2.43940E400  7.16682E-02 7.72515C-G! 6.83712E+CI 5.73315E-C3

k] 6.05531E+06 5.5628TE-01 1.75700E+C2 3.82132E+00 2.B5855E+00 0.0 5.4%274C-01  7.295156+00 6.81263E-03
10 $.35261E404 $.47681E-01 1.E5Z4SE+LD  4,14330F100 2.933%5E+00 0.0 5.345333-01 T.61TVOZE*DD 8.0%533&-03
11 &.72357E+05 5.66TI2E-01 1.6EIZFE+00 8. 25811E400 2.98300E+00 0.0 5.5TITIE-D1  7.31720E+¢00 9.6232}E-03
12 4. 16EE2E+0S  5.72127E-01 1.61803E°C3  4.28053E+G0 3.05531E400 0.0 S.BAS1YE-01 T.S1342E+CD  1.14T7THE-OF
13 3.67879E+05 5.303B5E-01 1, 50257E400 §.17785E+00 3.17250E+00 0.0 5.36508E-01 T7.90031E+00 1.35833E-02
14 3.74652E+06 5.46281€-01 (.43129€+00  3,99672E+00 3. 251616400 0.0 5.792158-01 7.80561E+00 1.70853E-02
15 2.85505E+05. 5.60923E-01 §.44T13E+00 1.7B0ITECDO 3.31515E00 0.0 5.39900£-07 7.65724E+00 2.10245E-02
15 2.52240E+06 5.76093E-01 1.46263E+00 J.5903BESQ0 3.32431E¢00 0.0 S.50270E-01 7.49133C+09 X.58276E-07
17 2.231306+05  5.78A1BE-01 1.44152E400 1.46925E400 J.2B8LSE+00 0.0 5.463855-01 7.334TTE400 3. 22315E-02
18 L.06912E+06 5. 46901E-01 1.32904E+07 3.431328:09 3.22291E+00 0.0 5.0TO72E-01 7.20113E00 3.98231E-02
19 L.T3TT4E+06  4.70030E-01 1.09403E+00 3454366100 3. §6F70E+00 0.0 4.19879€-01  F.02769E+00 5.01512E£-02
20 £.53355E+06 3.29700E-01 6.89086E-01  3.51956E100 3.15085E+00 0.0 2.65T64E-01 6.99990E200 6.393:05-07
21 1.35335E+05 1, 44G94E-01 1,60265E-01 3.72530E+00 I.G2P55E408 0.0 6.20534E-02 5.959532+00 8.199523E-02
22 1.19433E+06 1.387T02E-01 3,22625E-02 4.09141E+30 2.80991E+00 0.9 3.20444E-02 7.040C01E+0) 1.06637E-01
23 1.05399E+08 1.404465E-01 4.20997E-02 4. 63839E+00 2.43B55E+00 0.0 1.643588-07  7.20790£+00 1.24315e-01
24 9.30145E+05 1,37840E-01 2,70704E-02 5.02753E+00 2.23T4TEF00 0.0 1.06067E-07 7.A023%E+00 1.27234E-01
25 8.20330E+05 1.25506E-0% B.78530E-01 5.541028+02 1.976GiE+00 O, 3.A52T2E-03  7.63936E+00 1.23054E-01
26 7.7039B5¢05 1.20166E-01 3, 87383E-0F 6.057068+00 1.72500E+00 6, 1.52713E-03  T.90022E+0C 1.13638E-01
27 §.39279E+05 1.15155E6-01 2.09493E-03 6.43014E+00 1.630735+00 6. 8.27315E-0% B.17507E+00 1.143282-01
28 6. 64161F+05 1.§1323E-01 1.27971E-03  6.7305781900 1.56169E+00 O, 5.06375E-04  B.a5350F+00 1.10317E-9%

T1.563553E-04 B.7T7178E+C0 1.09015E-01
2.26345E-03  B.98525E+00 1.087T24E-01
2.07146E-0%  9,23392E+00  1.106892-01
1,24109€-05 9.53233E+C0  1.13705E-01
2.80005E-05 9.81629E+C0  1.17833E-01
3.95933E-05  1.01116E+01 1.21514E-01
$,.82051E-05  1.0409JE+01  1.253582-01
2.90901E-05  1,070356+31 1,30840E-01
9.50502E-05  1.09940E+01  1.37332E-01%
T.BCISSE-05  1.13180fe07 1. a33ist-ol
4.21983E-05  §.1615TE*D1  1.32367€-01
4,21003E-05  £.18395E+01 1.62953E-01
4.20973E-05 1. 20751601 1.75070€-01
2.8793BE-0F 1,23080E+01 1.8%302E-01
3.17618E-05 1.25201€+31 2,083193¢-01
5.38:12E-G5 1.27392£+01 2.2708%E-01
$.27231£-05 1.29563E¢01 2.51632E+01
9.537165-05 1.3t291E+01 2,82825E-C1
9,275316-05  1.31342E+01  J.2F194E-01
&.22335€-05 1.31061E¢01 3.72I7HE-C1
4,24511E-05  1.32166E¢G1  4.0D134E-01
2.B624AE-05  1.333ITErOL  &.13337E-01
$.32925E-05  1.34331E+01 4. 4D275E-0!
7.6635505-05 1.35200E+01 4B 419E-01
§.39453E-05 1.J4034ECL 4. E3TICE-OY
1,048¢3E-04  L.370I3E+01  §F.E5639E-01
1.13171E-0%  1.33026E+01  5.436%2E-0)
1.2813SE-04  1.39073E+CI 5. 74217E-01
1.07305E-04 1.40753E401 6.21223E-01
B.15327E-05 1.45521E+3% 6.36355E-01
1.613%4E-03  1.58186E10! 6&,.348345-04
2.02?297€-05 1.50531E+0t 7.32973E-0%
4.022126-04  1.89439E+01 T.Y¥TEI10E-C1
4.0473%€-08 1.75699E+0% 8.313IFE-0F
4.10538E-08  1.55907E+01  9.94453E-01
A.29715E-08 1.77855E+CT  1.07375E+00
5.05700€-03 1.772i2E403 1.08335E¢07
7.35154E-05  1.430535+31  1.08587E+09
1.10721E-03 L. 7OS1TE*IYT  1.41565E¢0D
8.93830E-05 1.38113E+¢1  1.62130E100
3.59998E-03  1.585228+0%  1.697516+02
2.625F7E-05  1.3BS87E+01 1.63347E000
9.033026-07  1.33879E+01  1.39345E+00
S.51601E-056  1.53231€:01  1.512310100

29 4.975TLE*0S 1.09372E-01 B.99759E-04 T.11143E+00 1.50093E+00
39 4.39359E+05 1.08050E-01 $.70CBGE-04 T.A4J201E+C0 L. 444296300
31 3,87747E+05 1.10896E-01 5.210%8E-04 7.75462£+00 1.3885TE400
32 3.42181E+05 1,13829E-D1 3,.11208E-04 B.08470E+00 [.3J429E400
33 5.01974E+0S 1.17976E-01 2.20833E-04 B, 41582E+0D 1.28741E400
34 2.66491E+05 1.21604E-01 2.24820E-04 B8.75721E+00 $.23275E200
33 2.35177E+05 1. 25456E-01 2,.46005E-04 9. 10206E+00 1.18238E+Q0
36 2.07543E+05  1.30739E-01 Z,47B13E-04 5. 45531E+¢C0 1.12245E+00
37 1.83154E+D5  K.3TAS1E-01 2.47E32E-04  9.80293E+00 1.05357E+00
k1) 1.615356+05 1, 4A4Z4E-01 1,95030E-03 1.01234E101 9.9015625-01
39 1426426405 1.52509E-03%  1.05425E-03 1.054716401 §.55049E-01
40 {.25831E+05 1.62996€-01 1.05153E-04 1.08339E+40 §.42661E-01
41 1.11090£+05 1.75192E-01 1,05109E-04 1.11333E+01 7.66455E5-01
42 9.80355E%04 1.BUBILE-01 T.1BAETE-05  1.141430+01 T7.017105-01
43 E.65159E+Ds  2.08230E-01 7.92457E-05  1.1705SEO1 6.05433E-01
44 7.63509E+0% 2.27143E-01 1.34303E-04 1.19993€:01 5.17752E-01
%5 6.73794E+04 2.SL714E-D1 2.06298E-0% 1.23095E+01 3.98972€-071
46 5.98627E+04 2.829226€-01 2.3F0B9E-04 1.25830E+01 2.83202E-01
(X4 5.24752E+08  3.232B7E-01 2.31256E-04 1, 26953E+01 1.15385E-01
43 4.63092E+04 3.723426-01 1.55241€-04 1.27300£+01 3I.68473E-03
LX) 4.08577E+0% 4,00227€-01 1.0576%5E-04 1.28483E+01
50 3. 60655E¢0%  4,19453E-01 7.13233E-05  1.29142g+01
s1 3.18278E+04 4, 40¥28E-01 1.3277PE-04 1.29%37E+01
52 2.80875£+04 A.63495E-01L 1.90968E-D4 1,30555€+01
53 P.ATBISEIOA 4, BOR24E-OL 2.34020E-04 1.31137E+01
54 ?.18749E+04 5.157S6E-01 2.65050E-04 1.318526401
35 1.93035E#04  5,4F811E-0t  2,94328E-08  1.3253RE+01
58 1.70362E+04 5.T43A6E-D1  3.19243E-04 1.33329E+01
57 1.503448104 6.21334E-01 2.87191E-04 1.34549E+0%
58 1. 17028E+0% 6.36421E-01 1.53225E-04 1.39157E401
5% 9.11882E+03 6.34596E-01 &,0700%E-04 1.31336E+0%
60 7.10174E+03  7.32998E-01 5.03498E-05 1.53221E+0!
61 §.53C83E+03  7.T7810E-01 1.00146E-07 1.41561E10)
62 §.30742£+03 8.31833E-0%t 1.00774E-07 1.67372E+0!
&3 3.15453E+03  9.94455E-05  1,02327E-07 1.55963E+01
LR 2.61259E+03 1.073I79E+00 1.06BE2E-07 1.467122E+401
65 2.03352E¢03  1.04535E+400 1.26027E-07 1.8671430101
bé 1.5RIGLEID3  1.04535E+00 S.85396E-05 1.3760aE+01

? 1254106403 1.41777E+00  2.75589E-03 1.53119E+01
63 9.611I8E102 1.62195E+00 2.22511€-0a 1.31894€+01
49 7.335186+07 1.701108+00  B,94050E-03 1,39911E+01
g S.8794TE02  1.G4BS0E+00  6.53J987E-05 1.22404E101
71 4,53995E¢07 1.39445E£+00 2.25C00E-06 {.23934E+01
72 37S3STSECDZ  1.51242E+00 §.37391E€-05 1.32110E+01

aoa

oo oo
R - - - - R R R - - - - -]

coooaq

73 Z.753485+02  §.99793E+00 4.03569E-06 1.47924E401 1.671526-05 1.679030001 1.9979}15+00
T3 2.14853F5+07  2.615B5E+00 1.59463E-05 2.1%297E+01 . 5.40516E-08 2.4165%Er01 2.63535E+00
I3 1.67017E*D?  1.53592E+00 4.08574E-07 1.08505E+01 . - 1.69183E-07  1.23855E+¢1  1.53352E+03

1.82950E6-03 J.0%8650+01 5.53334E:00
5.30724E-03 1.05333E+01 2.SI035Er00
1,15819€-05  2.03377E*01 3.07339E:02
A.DR037E-G7  1.05272E+01  1.39342€-01
§.13318F-05 2.234870+0F 2.00730E0Q
$.60Z77E-G6 3.01783E:0L 1.2287%801
1.58291E-06 1.12132E°01  6.63338%E-01
4.79719E-05 J.37ATJEsD1 2.02283E01

TE 1.30073Er02 5.68535E+00 &,35406E-05 2. 4B31JE+0L
it 1.01301E+02 2.53087E+00 1.32109E-05 5.02292€+20
78 7.85732€+01 5.07350E+00 2,.87814E-05 1.57633E101
1] 6.183271E+01 1.39833E-01 1.01086€-04 1.03274E10%
80 4. 785126401 2.00750E+00 2,82080€-058 2.03214E10%
81 I.72655€+017 1.27899E+01 1.39438£-05 1.78384E+ 00
82 2.90232E'01 6.84850E-01 3,95531E-05 1.05239€+01
83 2.76033E+01  2.02283E+01 1.19298E-04 1.3551258+01

OO 00O O0 o000 000000000GAA0ETDoA000oIREO0DEODD0COOT o

P R e - L R - L )

-X] L. 7TG03SE+O1  A,52885E-01 3.17303E-05 7.55308€+00 . 1.25350E-04  B.006958:00  1.52834E-01
43 1,37094E+01  3.39474E-01 2.01775E-06 B8.74653£r00 . 8.105106-07 9.03503E:00 3.3937sE-01
B4 1.06770E+01 B.§81STE-01 2.29439E-08 9.71927€+00 9 .21717E-07  1,03B34E+01  B.&3156E-01

1.59353E-05  +.98Q39E*31  3,37303€+01
4.79156E-08 1.54810E021  F.3371sEr00

L 3,31529E+00 3.51493E+01 3.96A80E-05 1.a6385E¢01
88 §,.A7595E+00 9,33218E+00 1.19357E-05 A.14834E100

PODOECOROCOROOOERA0NE9ROO00S0200 P ECOBO0O0A00000PSOO00O0

O C 00O OCOEONOONLO0CO0000CRELORAA0NLTA00IOTCOCOD

&g 5.0483186+00 1.15855¢+00 3.18262E-08 3.02620E+00 . 1.27337E-05 9.18473E+00 1.15855€+07
92 3.927BEE¢D0  6.75930E-01 2.92093E-05 2.3703IE+0D . 11814 1E-03  9.09523EC)  5.759295-01
91 3.05902E+00 5.08897E-01 3.08331€-06 8.83387E+00 . 1.23879E-05  9.109279E80  5.033%6E-01
92 2.38737E+00 &.72594E-01 3.33510E-05 &,81473E+00 1.38776E-06 5.7BTIEAG0 4. TI89FE-01
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— 2= Relative flux

JAERI-M §2-187

6.2 Flux distribution (principal direction)
(Node No. = 6)
-———Surface Center ————=
104~
/’—!-—i—'l—'l'-!'h-‘..-l_l—I—I—!-—inl—!._‘_‘-_“
/’ ' Xur—geX=k=T=X 1.t group
L
’,._.:.—l—:—x-x—x—;-—x—:—:—x—.-—,_,__
Fd x !."—!-;_ A —— X
X K= ¥ 2nd group
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