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IAEA Coordinated- Research Program (CRP) on "Lifetime Prediction for
the First Wall of a Fusion Machine'" was started in 1989. TFive participants,
Joint Research Centre (JRC-Ispra), The NET team, Kernforschungszentrum
Karlsruhe (KfK), Russian Research Center and Japan Atomic Energy Research
Institute, contributed in this activity.

The purpose of the CRP is to evaluate the thermal fatigue behavior
of the first wall of a next generation fusion machine by means of numeri-
cal methods and also to contribute the design activities for ITER {Inter-
national Thermonuclear Expefimental Reactor). Thermal fatigue experiments
of a first wall mock—up which were carried out in JRC-Ispra were selected
as a first benchmark exercise model. All participants performed finite
element analyses with various analytical codes to predict the lifetime of
the simulated first wall. The first benchmark exercise has successfully
been finished in 1992. This report summarizes a JAERI's contribution for

this first benchmark exercise.

Keywords: TAEA CRP, First Wall, Thermal Fatigue, ITER, Benchmark Exercise,

Thermal Stress Analysis
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1. INTRODUCTION

The first wall of fusion machines are subjected to a high- heat load from the ITER plasma.
The heat load is estimated to be 0.2 - 0.6 MW/m? in ITER (International Thermonuclear Experimental
Reactor). To remove the high heat load from fusion plasma, the actively cooled structure is
necessary for the first wall components. The next generation fusion machines, such as ITER, is
planned to be operated under pulsed mode. A large number of cyclic thermal loads will be
applied to the first wall. The lifetime of the first wall is affected by the cyclic thermal stress due to
the pulsed operation. The minimum lifetime of the first wall in ITER is designed to be at least
20,000 thermal cycles. The first wall is also required to withstand against such cyclic heat loads.
Since none of the published evaluation methods are available in the lifetime, it is significant to
evaluate the lifetime of a first wall by the use of the combination of experimental methods using a
small specimen and numerical analyses using finite element codes.

IAEA CRP on " Lifetime Prediction for the First Wall of a Fusion Machines " has proposed to
| predict the lifetime of first wall structures under cyclic thermal load by numerical analyses and to
establish an evaluation method on it. As a first step, numerical analyses predicting the fatigue
lifetime of first wall specimen were carried out to compare. the results from thermal fatigue
experiments on a simulated first wall specimen performed by JRC Ispra. This report presents the

evaluation method of fatigue lifetime of the specimen by numerical analyses.

2. GEOMETRY DEFINITIONS[1]

Figure 1 shows a geometry of the specimen. The first wall specimen tested is made of an
austenitic stainless steel SUS316 (European reactor grade). It has 5 cooling channels of 8 mm
inner diameter at a distance of 10 mm from its surface. The specimen is cyclically heated by
infrared lamps. The infrared lamps produce almost uniform heat flux on it. The surface of the
specimen is coated with chromium and chromium oxide to increase the absorption rate of the

infrared from the lamps. As shown in figure 1, the specimen was supported by two arms fixed at

both ends of the specimen.
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3. TWO DIMENSIONAL THERMAL ANALYSIS

3.1. MESH FOR FEM ANALYSES

A thermal analysis has been carried out by‘”thé use of 2-dimensional FE mesh. Considering
symmetrical geometry of the specimen, 2-dimensional 1/2 model was selected for the analyses.
Figure 2-(A) shows the FE mesh in these analyses. It consists of 820 linear elements and 922
nodes in total. Figures 2-(B) and 2-(C) also show the node number and element number at
selected points for the evaluation of its lifetime, respectively. All FE analyses were carried out by

the use of "TABAQUS ver. 4-8-4" FE code.

3.2. ANALYTICAL CONDITION
In the thermal analysis, following analytical conditions are assumed;

(1) Uniform heat transfer coefficient at cooling channel is assumed to be a constant value of 9000
Wim® K.

(2) Heat flux of 0.5 MW/m’ is uniformly deposited to the surface of the specimen.

(3) No radiative cooling effect is considered.

(4) Coolant temperature is fixed at 20.0 °C during thermal cycles.

(5) The constraints by the supporting arms have not been considered.

(6) The residual stress of the specimen due to manufacturing process have not been considered.

A cyclic thermal load scenario is shown in Fig. 3. Thermal boundary conditions for the
analyses are shown in Fig. 4. In the thermal analysis, §teady-state heat transfer calculation at the
heat flux of 0.04 MW/m?® during preheat condition was performed first. After the calculation,
using the temperature distribution of the preheat condition as an initial temperature, the transient

thermal analysis was carried out for a thermal cycle.

3.3. THERMAL PROPERTY

The thermal properties of SUS316 stainless steel used in the analyses are summarized in
TABLE 1. In the present analysis, the thermal properties were considered as a function of

temperature except its density; the constant density of 8000 kg/m® was assumed.

i2i
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3.4. RESULTS OF THE THERMAL ANALYSIS

Since the specimen was preheated at a heat flux of 0.04 MW/m’ for a long period, the initial
temperature distributions of the specimen for the transient thermal analysis should i)e fegarded as
those obtained in the steady-state analysis under preheating condition. Figure 5 shows the
temperature distributions under the preheat condition. The initial temperature values of the

selected points are summarized in TABLE II

Thermal load scenario shown in Fig. 3 was applied to the model. The results of transient
thermal analysis are summarized as follows;

The maximum temperature of 451.7 °C appears at the point H (Node number 271) at the end
of heating period. A base temperature of point H is expected to increase from initial temperature
of 60.52 °C to 107.6 °C. To reach steady-state temperature condition, it is expected to take several

thermal cycles. Thermal responses at the selected points are shown in Fig. 6-(A)~(E), respectively.

4. TWO DIMENSIONAL ELASTIC THERMAL STRESS ANALYSIS
The elastic thermal stress analysis has been performed to predict the lifetime of the specimen
by referring from ASME code section III NB[2] and Monju code[3]. In this analysis, generalized

plane strain elements was selected for the aim of simulating 3-dimensional effect of the model.

4.1. BOUNDARY CONDITION
Mechanical boundary conditions for the elastic analysis are described in Fig. 7. Nodes on the

center line was constrained along X-direction. Out-of-plane (along Z-direction) bending was

constrained in this model.

4.2, MECHANICAL PROPERTY

The mechanical properties of SUS316 stainless steel used in the stress analysis are shown in

TABLE III. In this analyses, they are also considered as a function of a temperature.

4.3. RESULTS OF THE ELASTIC STRESS ANALYSIS

Mises equivalent stress contours at the conditions under preheating and the end of heating are

_Bﬁ
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shown in Fig. 8 and Fig. 9, respectively. TABLES IV and V also summarize minimum principal
stress, maximum principal stress, Mises equivalent stress, Tresca equivalent stress and Mises equivalent
strain range (A€ eq.) at the conditions under preheating and the end of heating.

Maximum principal stress of 721.9 MPa is estimated in the Element No. 292 at the end of
heating; minimum principal stress is almost 0 MPa in Element No. 41 at the preheat condition.
Maximum Mises equivalent stress value of 986.7 MPa at the edge of specimen surface ( i.e.
Element No. 233 including point H ) was expected. Maximum Mises equivalent strain range (A€

eq.) reached to 0.56% at Element No. 233.

4.4, EVALUATION OF FATIGUE LIFETIME
4.4.1. ASME Boiler and Pressure Vessel code (ASME code)

In ASME code sec. III NB, an evaluation of fatigue lifetime for various materials is based on
an elastic stress analysis. For the use of this code, all stress values should be classified, such as
general primé.ry membrane stress, primary bending stress, secondary peak stress and so on. Based
on these stress invariants, stress intensity is calculated. However, in FE analyses, obtained stress
values show toral stress values. It is difficult to classify these value. Therefore, the stress values
obtained in the present analyses were assumed to be secondary bending stresses.

Figure 10 shows a design fatigue curve for stainless steels. This curve includes safety factors.
In particular, in a low cycle fatigue region (<10° cycles), the fatigue lifetime of this curve includes
a safety factor of 20. The realistic fatigue lifetime, that is, the experimental fatigue lifetime, is
estimated to be 20 times longer than this curve.

In ASME code section I1I, Tresca equivalent stress value is required for a conservative prediction
of lifetime of the specimen. Maximum Tresca equivalent stress value of 1052 MPa is expected in
the Element No. 1 at the end of heating. Young's modulus of AISI316 stainless steel, 194 GPa, is
used in this evaluation. As a result, a stress intensity in ASME code section Il NB, S, was expected
as follows;

S = 805 MPa.

Therfore, the design fatigue curve of ASME code section III ( see Fig. 10) gives the minimum
fatigue lifetime of around 16,000 cycles at the specimen surface.

_47



JAERI-M 93—049

4.4.2. Monju code ( Monju : Japanese prototype fast breeder reactor)

Monju code was developed as an analysis-and design code for structure materials of FBR with
liquid metal cooling system in 1984. Applicable materials of Monju code are mainly chrome-
molybdenum steels and austenitic stainless steels (SUS304, SUS316 and SUS321) at an elevated
temperature condition. The Monju code is based on ASME Boiler and Pressure Vessel Code
section 11T and its code case N-47. Therefore, the basic concept of the code is also "Design by
Analysis". Linear and non-linear analyses are applied for the design of the components.

The descriptions of "Limits to primary stress”, "Limits to special stress” and "Limits to buckling”
in the Monju code are similar to those in the ASME code case N-47. Linear analyses are used for
the consideration of the limits described above. In the Monju code, stresses are distinguished into
two kinds. One is "long term stresses”, the other is "short term stresses”. The long term stresses are
the stresses which creep effects can be considered.

-~ Comparing to the ASME code case N-47, the Monju cbde has characteristics as follows;
The Monju code

1) has limits in the case of lower local primary stresses are low.

2) does not have a limit to a local stress.

3) gives a reasonable limits by considering short term primary stresses (which are separated

into several kinds) in the evaluation of an enhanced creep strain.

4) has definite lmits to secondary stresses (except for the thermal stresses induced by the

temperature gradient through a wall thickness direction) by consi_derations of elastic

follow-up.

As described before, the maximum Mises equivalent strain range was calculated to 0.56% in
the elastic analysis. According to this value, the lifetime of the specimen can be estimated to be

about 80,000 cycles by the Monju code. (See Fig.11)
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5. TWO DIMENSIONAL ELASTIC-PLASTIC THERMAL STRESS ANALYSIS
To evaluate the fatigue lifetime of the specimen by the use of experimental fatigue life data,
2-dimensional elastic-plastic thermal stress analysis was also performed. In the analysis, only one

thermal cycle was applied 1o the model. Analytical model and boundary conditions are same as

those in the elastic analysis.

5.1. MECHANICAL PROPERTIES

It was assumed that a stress-strain behavior of AISI316 stainless steel can be approximated to a
bi-linear curve as shown in Fig.12. The stress-strain data are based on those of RCC-MR code(4].
Material properties such as Young's modulus, thermal expansion and plastic coefficient were used
as a function of a temperature. Since only one thermal cycle was applied to the model, cyclic

hardening of the material was not considered in this analysis.

5.2. RESULTS OF THE ELASTIC-PLASTIC ANALYSIS

Figure 13 shows a Mises equivalent stress contour at the end of heating. Time histories of
Mises equivalent strain range at the selected elements are also shown in Fig.14. Maximum Mises
equivalent strain range reached to 0.602 % at the center of the specimen surface (Element No. 1)
at the end of heating. Figures 15-(A),(B) shows the history of principal stresses at selected
elements.

According to the experimental fatigue life data (see Fig. 16), it is estiméted that the fatigue

lifetime of the specimen is 1,000~2,000 cycles.
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6. CONCLUSIONS

1) In the elastic analysis, the lifetime of the specimen was estimated to be 16,000 cycles by
ASME code.

2) On the basis of Monju code, the lifetime was estimated to be 80,000 cycles.

3) In the elastic-plastic analysis, the lifetime of the specimen was estimated to be 1,000~2,000
cycles by referring to the experimental fatigue data (uniaxial tensile-compress test) of SUS316

stainless steel.

In the elastic analysis, the difference of each other is much attributable to the different
evaluation codes. In ASME code, a lifetime is determined by an allowable stress intensity (S).
While, in Monju cede, it is dctermined by an allowable strain range. Moreover, Ménju code
required to be applied under some limitations. Because of the reasons described above, the design
fatigue curve of Monju code is different from that of ASME code. In this way, the lifetime

predicted by ASME code is different from the lifetime evaluated by Monju code.

In the elastic-plastic analysis, the estimated lifetime is rather less than those of elastic analysis.
The calculated Mises equivalent strain values can be overestimated one because only one thermal
cycle was appliéd to the model. Since the experimental fatigue data used in the evaluation were
obtained by uniaxial tensile-compressive fatigue tests, the difference of loading patterns, bending

and uniaxial tensilc-compressive, will affect the evaluation of the lifetime.
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TABLE I . THERMAL PROPERTIES OF AISI316 STAINLESS STEEL
Temp. Thermal cond. Specific heat
O (WmK) (Jkg K)
20.0 14.5 480.0
300.0 18.0 550.0
500.0 20.0 580.0
700.0 230 600.0
TABLE [ . INITIAL TEMPERATURES AT THE SELECTED POINTS
node No. 1 5 9 281 338 336 557 562
Point name | F&M D C A

Temp.(°C) | 54.81

4396 3251 2596 2034 20.65 21.39 21.53

node No. 46'
Point name| G

50 54 420 351 617 622 271
B H

Temp.(°C)| 54.93

42.85 31.29 22.58 2096 21.44 21.58 60.52

TABLE II . MECHANICAL PROPERTIES OF AISI316 STAiNLESS STEEL

Temp. (°C) Young's Modulus (GPa) = Thermal Expansion (/K)
20.0 195.0 1.6E-5
300.0 175.0 1.7E-S
500.0 155.0 1.8E-5
700.0 140.0 1.9E-5




JAERI—M 93—049

TABLE IV. MINIMUM AND MAXIMUM VALUE OF EQUIVALENT
STRESSES AT PREHEATING CONDITION

minimum principal stress (MPa) 0.074 (atelement 41)

maximum principal stress (MPa) 63.97 (at element 292)
minimum Mises stress (MPa) 16.05 (at element 357)
maximum Mises stress (MPa) 97.73 (at element 233)
minimum Tresca stress {MPa) 18.27 (at element 357)
maximum Tresca stress (MPa) 99.95 (at element 233)

TABLE V . MINIMUM AND MAXIMUM VALUE OF EQUIVALENT
STRESSES AT THE END OF HEATING

minimum principal stress (MPa} 0.976 (Element 41)

maximum principal stress (MPa) 721.9 (Element 292)
minimum Mises stress (MPa) 159.0 (Element 357)
maximum Mises stress (MPa) 986.7 {Element 233)
minimum Tresca stress (MPa) 175.4 (Element 357)
maximum Tresca stress (MPa) 1052.0 (Element 1)
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Fig.12 Bi-linear data for kinematic hardening
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