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Post test calculations for two tests with steep or flat radial core
power distribution using the Slab Core Test Facility (SCTF) were per-—
formed to assess the TRAC-PF1/MOD]1 code for the thermal-hydraulic
behaviors in pressure vessel during reflood phase of a PWR-LOCA, The
predictive capability for the two-dimensional thermal-hydraulic behavior
in pressure vessel was also assessed in this report. The TRAC code
predicted transients of clad surface temperature well including radial
distribution of clad surface temperature caused by different bundle
power. However, the TRAC predictions showed poor agreement on void -
fractions in the core and in the upper plenum. For the radial distribu-
tion of void fraction, the TRAC code predicted a peculiar distribution
in the core which was not observed in the SCTF tests, and predicted a
flatter distribution in the upper plenum compared to measured results.
Recommendation was made for the future improvement on hydraulic and heat

transfer models based on this assessment study.
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1. Introduction

The International Thermal-Hydraulic Code Assessment and Application Program
(ICAP) was conducted by several countries and coordinated by the United States Nuclear
Regulatory Commission (USNRC)."’ The purpose of ICAP is to make qualitative and
quantitative statement regarding the accuracy of the current thermal-hydraulic computer
programs developed under the auspices of the USNRC.

Japan's contributions to ICAP include the assessment of TRAC-PWRY,
TRAC-BWR® and RELAP5" codes. The assessment matrix is shown in Table 1. The
assessment calculations were conducted by Japan Atomic Energy Research Institute
(JAERI) and Japanese industrial groups.

In this report, the predictive capability of TRAC-PF1/MOD1 code® is presented for
the thermal-hydraulic behaviors including two-dimensional behaviors in pressure vessel
during reflood phase of a postulated Large Break Loss—of-Coolant Accident (LBLOCA)
in a PWR. In the previous studies at JAERI®®, the integral predictive capability of the
TRAC-PF1/MOD1! code was assessed in the calculation of the Cylindrical Core Test
Facility (CCTF)™ test with the model including the primary loops, and then the scparate
assessments with one—dimensional core model were conduced with the CCTF and the Slab
Core Test Facility (SCTF)® data. In the present study, a multidimensional predictive
capability is assessed with two-dimensional VESSEL model by comparisons with data
from the SCTF. The predictive capability for the multidimensional behaviors has not been
analyzed in detail yet as far as the authors understand.

The SCTF has a full-height core with full radial size and one bundle depth to a
reference actual PWR. Experimental results from SCTF indicate that radial power
distribution affects the two—dimensional thermal-hydraulic behaviors in the pressure
vessel®. So two SCTF tests with different radial power distribution were selected for the
assessment in this report. One is Test S2-14, that is flat radial power distribution test,
and the other is Test S2-16"%, that is steep radial power distribution test.

This report is organized as follows: Chapter 2 describes the test facility and test
conditions and chapter 3 describes the TRAC-PF1/MOD1 model used to simulate the tests.
In chapter 4, results from the simulations are presented and discussed. Conclusions and

recommendation are presented in chapter 5.
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2. Facility and Test Description

2.1 Test Facility

The SCTF was designed to properly simulate the two—dimensional core heat transfer
and hydraulic behaviors during refill-reflood phase. The pressure vessel is of slab
geometry as shown in Fig. 2.1.1. Full scale radial and axial section of a reference PWR
is provided as a simulated core with single bundle depth. The reference reactor is the
Trojan reactor in the United States which is a four loop 3300 MWt PWR. The simulated
core consists of 8 bundles arranged in a row. On the other hand, simplified primary
coolant loops are provided. Bird's—eye view of pressure vessel and the coolant loop is
shown in Fig. 2.1.2. The scaling of flow area and fluid volume of each component is in
accordance with the core flow area scaling. The principal dimensions of the facility is
shown in Table 2.1.1, and the comparison of dimensions between the SCTF and the
referred PWR is shown in Table 2.1.2 and in Fig. 2.1.3.

Each bundle has 234 electrically heated rods and 22 non-heated rods. The
arrangement of rod bundles is shown in Fig. 2.1.4. The dimensions of the heater rods are
based on a 15x15 type fuel assembly and the heated length and the outer diameter of each
heater rod are 3.66 m and 10.7 mm, respectively. The dimension, configuration and axial
power distribution of each heater rod are shown in Fig. 2.1.5. The axial peaking factor
is 1.4.

The design of upper plenum internals is based on that of the new Westinghouse
17x17 amay fuel assemblics. The internals consist of control rod guide tubes, support
columns, orifice plate and open holes and the arrangement is shown in Fig. 2.1.6. The
radius of each componeﬁt is scaled down by factor 8/15 from that of an actual reactor.

Mode detailed information on the SCTF is available in reference (8).

2.2 Test Conditions and Procedure

Emergency core cooling (ECC) water was injected directly into the lower plenum in
the tests examined in this report. The downcomer had been isolated from the lower
plenum by inserting a blocking plate. This method is called the forced—feed reflooding.
' Two forced feed tests were selected in this report to meet objectives in Introduction,
those are Tests S2-14 and S2-16. These two tests were performed under the different
radial power distribution. In Test S2-14, the distribution was flat. On the other hand,

the normalized radial power factors in Bundles 1 and 2, 3 and 4, 5 and 6 and 7 and 8



JAERTI—M 893—139

were 1.0, 1.2, 1.0 and 0.8 in Test S2-16. Additionally, water extraction from the upper
plenum was performed in Test S2-14 to maintain the flat distribution of collapsed liquid
level because non—uniform distribution of liquid level in upper plenum was found to affect
the “two—dimensional core thermal-hydraulic behaviors as described in reference  (9).
Therefore, data from Test S2-14 are considered to give information under the condition
without inducing two-dimensional thermal-hydraulic behaviors due to test conditions.
Major specified and measured test conditions are listed in Tables 2.2.1 and 2.2.2.

The test procedure for these two tests is as follows. After setting the initial
conditions (pressure and saturation condition etc.), core heating was initiated. When four
cladding temperatures cxceeded 910 K and 1137 K for Tests S2-14 and S2-16,
respectively, the accumulator (Acc) injection into the lower plenum was initiated. The
initial saturation water level in the lower plenum was about 0.15 m below the bottom of
heated part. The maximum cladding temperature at the reflood initiation was intended to
be 922 K and 1160 K for Tests S2-14 and S2-16, respectively. After keeping the core
power constant for O second in Test $2-14 and for 40 sec in Test S2-16 from the Acc
injection start, the core power decay simulation started from the value at 40 sec after
shutdown of an actual reactor. The decay curve was based on the "1.02 x (ANS standard
+ actinides)". Chronologies of major events for both tests are shown in Tables 2.2.3 and

2.2.4.

3. Code and Model Description

The two—-dimensional reflood simulations for SCTF Tests S2-14 and S2-16 were
performed with TRAC-PF1/MOD1 code Version 12.5.

3.1 Input Schematics
The TRAC input in this report modeled the pressure vessel, ECC injection piping
and a hot leg in SCTF. Intact and broken cold legs and steam/water separator were not
modeled because of the following reasons:
(1) Main assessment subject is the two-dimensional thermal-hydraulic behaviors in the
| pressure vessel in this report. |
(2) Since ‘the bottom of the downcomer js blocked in the tests, two—phase flow

through the cold legs to the downcomer does not affect the core thermal-hydraulics.
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(3) Since the SCTF has the steam/water separator instead of steam generators to
measure carry—over flow rate accurately, the effect of the feed back from the exit
of the hot leg is negligible small on the core behaviors in the SCTF.

The pressure vessel was represented by VESSEL component as shown in Fig. 3.1.1.
The input consists of 15 axial levels, 11 radial sections and 1 azimuthal section. Levels
4 through 11 and radial sections 1 through B represent the heated core.

The ECC injection piping and the hot leg were modeled by PIPE components as
shown in Fig. 3.1.2. Mass flow rate and fluid temperature of ECC water was suppiied
by FILL component. The boundary condition at the exit of the hot leg was supplied by
BREAK component in terms of the pressure measured at the steam/Wwater separator in the
tests.

The ECC injection piping is connected to the cell of level 1 and radial section 9 of
VESSEL component as shown in Fig. 3.1.1. And the hot leg is connected to the cell of
level 14 and radial section 9 of VESSEL component as also shown in Fig. 3.1.1.

3.2 Initial and Boundary Conditions

The initial and time-dependent boundary conditions were determined based on the
measured results. The conditions for FILL, supplied core power and BREAK are shown
in Figs. 3.2.1 through 3.2.6. These values are plotted against the time after core power
on.

The conditions for FILL are shown in Figs. 3.2.1 and 3.2.2 for flat power test S2-14
and steep power test S2-16, respectively. The input values for TRAC calculations are
almost the same as the measured results.

The total supplied power for each bundle and relative axial power ratio are compared
in Figs. 3.2.3 through 3.2.5. Radial distribution of supplied power and the shape of decay
curve are agreed well with each other. Since the axial noding for the core is course
against the axial power step in the tests as shown in Fig. 3.2.5, the axial peak power was
supplied at 1.58 m elevation from the bottom of heated core for TRAC calculations. The
integrated power density at top and bottom regions in the core was slightly higher than
the measured results but the difference was negligible small as already shown in Figs.
3.2.3 and 3.2.4.

The conditions for. BREAK are compared in Fig. 3.2.6. The initial and

time—dependent values are agreed well with each other.
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4. Results and Discussion

4.1 Hydraulic Behavior in Pressure Vessel except Core

In this section, the assessment results are discussed on the pressure, on the core inlet
fluid conditions, on the mass flow rate at the core exit and at the hot leg exit and on the
two-dimensional hydraulic behaviors in the upper plenum.

Figures 4.1.1 and 4.1.2 show the comparison of the pressure in the upper plenum,
in the core and in the lower plenum for flat power test and for steep power test,
respectively. The whole transients are predicted well qualitatively and quantitatively for
both tests. However, the TRAC code slightly overestimates in the lower plenum after
about 200 sec for flat power test and in the period between about 250 sec and about 450
sec for steep power test. These differences were caused by the overestimation for core
differential pressures as will be presented in Figs. 4.2.5 and 4.2.6. And the pressure in
the lower plenum after about 600 sec for steep power test is slightly underestimated as
shown in Fig. 4.1.2. This was caused by the underestimation for liquid fraction in the
upper plenum in that period as will be shown in Figs. 4.1.9(1) and 4.1.9(2) because the
core differential pressure was almost the same between each other in that period as wili
be shown in Fig. 4.2.6.

Figure 4.1.3 shows the comparisons of the core inlet mass flow rates for both tests.
The measured values were estimated by subtracting the accumulated rate in the lower
plenum from the ECC injection rate because the bottom of downcomer was blocked. The
measured results and the TRAC predictions are almost the same between each other for
both tests.

Figure 4.1.4 shows the comparison of the fluid temperature just below bundles 1, 4
and 8 for both tests. For flat power test, the predicted results are slightly lower than the
data during whole transients. Since the pressure in the lower plenum is slightly
overestimated as shown in Fig. 4.1.1, the core inlet subcooling in the TRAC calculation
is higher than data. For steep power test, the predicted results are almost the same as the
data until about 400 sec, and however the degree of measured radial distribution after
about 500 sec is underestimated. The radial distribution is also recognized in the flat
power test in the period between about 160 sec and about 450 sec. The TRAC code
underestimates the degree of that distribution. The underestimation for the distribution
indicates that the degree of fluid mixing in the lower plenum is higher in the TRAC

calculations.
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Figure 4.1.5 shows the comparison of the liquid mass flow rate at the exit of core
for both tests. The TRAC predictions almost agree with the measured results except in
the following two periods,

(1) Early period in the transients —— Underestimate,
(2) Around 550 sec for flat power test and around 600 sec for steep power test

—— The TRAC code predicts the down-flow from the upper plenum into the core.

Figures 4.1.6 and 4.1.7 show the comparisons of steam and water mass flow rate at
the exit of hot leg for flat and steep power tests, respectively. For the steam mass flow
rate, the TRAC predictions almost agree with the measured results qualitatively and
quantitatively although relatively long period oscillations are recognized. On the other
hand, the water mass flow rate is not predicted qualitatively and quantitatively. For both
tests, the TRAC predictions give almost zero value until about 400 sec. After that, the
TRAC code tends to overestimate the mass flow rates although the predicted value falls
to zero in the periods when the mass flow rate at the exit of core is negative as shown
in Fig. 4.1.5. Since the water mass flow rate at the exit of hot leg affects the core inlet
coolant velocity due to the steam binding in an actual reactor, the improvement for the
carry—over characteristics is recommended.

Figures 4.1.8 and 4.1.9 show the comparison of differential pressure in the upper
plenum above bundles 1, 3, 6 and 8 for flat and stce.p power tests, respectively. For flat
power test, the assessment of the TRAC code for the hydraulic behaviors is difficult until
about 500 sec because the water in the upper plenum was extracted until that time in the
test as mentioned in Chapter 2. After that time, the TRAC code underestimates the
differential pressure. For steep power test, the TRAC code overestimates the differential
pressure until about 550 sec, and, after that, tends to underestimate the value.

Figure 4.1.10 shows the comparison of the degree of radial distribution of differential
pressure in the upper plenum, that is (differcntial pressure above bundle 8 - differential
pressure above bundle 1). Even though the radial distribution was tried to be flat in the
flat power test by extracting the water, the TRAC prediction indicates flatter distribution
than the measured results. For steep power test, the TRAC prediction also gives flatter
distribution, and the difference is getting large after about 400 sec.

- Figure 4.1.11 shows the comparisons of void fraction in the upper plenum above
bundles 1, 3, 6 and 8 for stécp power test. The measured results were estimated from
the differential pressure shown in Fig. 4.1.9 under the assumption that the frictional and

acceleratory pressure drops are negligible small. Until about 350 sec above bundles 1, 3
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and 6 and about 250 sec above bundle 8, the TRAC prediction shows almost zero liquid
fraction (1-void fraction). This indicates that the higher differential pressure of TRAC in
this period shown in Fig. 4.1.9 is caused by the frictional and acceleratory pressure drops
mainly due to the steam flow because the water up—flow rate from the core’ is small as
shown in Fig. 4.1.5. In the period between after those times mentioned above and about
500 sec, the TRAC code slightly overestimates the liquid fraction. After about 500 sec,
the TRAC code underestimates the liquid fraction. These characteristics for the liquid
fraction are correspond to those for the differential pressures shown in Fig. 4.1.9. The
assessment results for the hydraulic behaviors in the upper plenum and for the carry-over
flow rate described above indicate the necessity of the hydraulic model improvements in

the upper plenum.

4.2 Hydraulic Behavior in Core

Figure 4.2.1 and Figs. 4.2.2(1) through 4.2.2(3) show the comparison of sectional
differential pressure in core for flat and steep power tests, respectively. The TRAC code
has a tendency to overestimate the differential pressure below the middle elevation of the
core. On the other hand, the TRAC predictions almost agree with the measured results
at the upper region of the core until about 300 sec for flat power test and until about 400
sec for steep power test. After those times, the TRAC code overestimates the differential
pressure.

The comparison of the differential pressure at the lower half and at the upper half
of core is shown in Figs. 4.2.3 and 4.2.4(1) through 4.2.4(3). The tendency of TRAC
predictions mentioned above is also observed in these figures although the periods of
underestimation at the upper half are different. The predicted values at the upper half
show relatively good agreement with the measured results against the lower half. And for
the steep power test, the TRAC predictions almost agree with the measured results after
about 600 sec in both regions.

The comparison of total core differential pressure is shown in Figs. 4.2.5 and 4.2.6.
The TRAC predictions for both tests overestimate the differential pressure except for the
initial rapid increasing period and for the period after about 600 sec in steep power test.
The tendency of the overestimation is due to the overestimation at the lower half of the
core as shown in'Figs. 423 and 4.2.4. In the initial period, the increasing rate of
predicted results is slightly lower, and after about 600 sec in steep power test the

differential pressure is almost agreed with cach other. These characteristics are also
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recognized in the sectional differential pressure shown in Figs. 4.2.1 through 4.2.4.

Figure 4.2.7 shows the comparison of differential pressure in core baffle region for
both tests. The TRAC code overestimates the differential pressure except for the initial
rapid increasing period. The tendency of the overestimation is correspond to that for the
total core differential pressure discussed above. In the initial period, the increasing rate
of TRAC is almost the same with the measured results and however the time of initial
increase is later than the measured result.

Figure 4.2.8 shows the comparison of sectional void fraction at three axial sections
in bundle 4 in flat power test. The locations of these axial sections are the same as those
for the sectional differential pressure shown in Fig. 4.2.1. The method for estimating the
void fraction was the same as that in Fig. 4.1.11. The TRAC code tends to underestimate
the void fraction below the middle elevation of core. The tendency of underestimation is
also recognized in the upper part of core after about 350 sec. In the upper part of core,
no water accumulation is calculated until about 300 sec. Even in the region below the
middle elevation, no water accumulation is calculated early in the transients. After those
periods, the TRAC code predicts a faster decrease of void fraction than the measured
results.

Figures 4.2.9 shows the comparison of radial difference of void fraction at almost
middle section of core in flat power test. TRAC predictions show the almost flat
distribution as in the data.

Figure 4.2.10 (1) through 4.2.10(3) show the comparison of sectional void fraction
in bundles 2 4 and 8 in steep power test. The tendency of the difference between
predicted and measured results in these different power bundles is the same as that
observed in flat power test mentioned above. In order to make clear the characteristics
of predicted water accumulation, the void fraction in each computational cell in bundle 4
in steep power test is compared in Fig. 4.2.11. This comparison indicates that the water
accumulation in one cell starts after that the void fraction of the adjacent lower cell is
almost saturated except for the cell just above the core. On the other hand, the void
fraction in some cells suddenly increases from a saturated value after a time period. This
peculiar nature of transients is considered to relate to the interface sharpener model in the
TRAC code®. For example, the void fraction in fifth level of core is reduced at about
300 sec because the model was on (the model is on under the condition that the void
fraction in the upper and the lower cells- are greater than 0.7 and less than 0.3,

respectively). However, the void fraction is suddenly increased at about 550 sec. Since
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the void fraction condition in the adjacent cells is not. satisfied to the condition of
application of the model at that time, the behavior is considered to be caused by the
model termination. In the upper figure of Fig. 4.2.11, the void fraction in the level just
above the core is also shown. The beginning of decrease of void fraction in this cell is
faster than that of the adjacent lower cell in the core because the interface sharpener
model is only applied to the cells of core.

Figures 4.2.12(1) and 4.2.12(2) show radial difference of void fraction in bundles 2,
4 and 8 in steep power test at almost middle regions of core. The TRAC predictions
indicate almost flat radial distribution during the decreasing period of void fraction in
which the interface sharpener model described above was on and, after that, the sharpener
model produces a peculiar distribution. On the other hand, a radial distribution is slightly
observed in the measured results. The void fraction in low power bundle (bundle 8) is
lower in the region between 1.365 m and 1.905 m elevations, and is higher at around 350
sec in the region between 2.03 m and 2.57 m elevations.

Figures 4.2.13(1) through 4.2.13(4) and 4.2.14(1) through 4.2.14(5) show the
predicted two-—dimensional steam and liguid mass flow rate distribution in the core at a
specified time for flat and steep power tests, respectively. These figures also includes the
location of quench front calculated by the code at each time. The following remarks are
recognized from these figures, _

(1) Steam mass flow rate is gradually increased from around the quench front to the top
of core, and the radial distribution of steam mass flow rate becomes almost flat even
for the steep power test due to a cross flow in the core,

(2) Negligible small liquid mass flow rate is calculated in the upper part of core for
both tests,

(3) For flat power test, the radial distribution of liquid mass flow rate is almost flat
above the quench front and however a systematic distribution is not recognized below
around the quench front and

(4) For steep power test, the liquid mass flow rate in higher power bundles tends to be
higher than that in lower power bundles for both regions below and above the
quench front except at 500 sec. This tendency is realized by the flow circulation

around the -quench front.

4.3 Thermal Behavior in Core

Figure 4.3.1 shows the comparison of clad surface temperature in bundle 4 in flat.
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power test. Although the TRAC code gives a higher turnaround temperature, the shape
of transient curve and the time of quench are almost predicted. Since the heat transfer
at the clad surface is dependent on the local void fraction in the TRAC models®, the
agreement for the clad surface temperature means the necessity of improvement of heat
transfer model because the void fraction was not predicted well as discussed in section 4.2.

Figures 4.3.2 through 4.3.5 show the comparison of important parameters on the clad
surface temperature along the axial direction, those are the tumaround time ,the turnaround
temperature, the quench time and the quench temperature in bundles 2, 4 and 8 for flat
power test. For the turnaround items, the TRAC code overestimates the turnaround time
and the turnaround temperature at almost all elevations and bundles. For the quench
items, the TRAC predictions almost agree with the measured results. No significant
differences among bundles are recognized in the measured results for both items in this
test and the TRAC code predicts the tendency.

Figures 4.3.6(1) through 4.3.6(3) show the comparison of clad surface temperature
in bundles 2, 4 and 8, respectively, for steep power test. The characteristics of the
qualitative and quantitative agreement arc almost the same as those for flat power test
shown in Fig. 43.1. Figures 4.3.7 through 4.3.10 show the comparison of the important
parameters mentioned above in bundles 2, 4 and 7 for steep power ftest. For the
turnaround items, the TRAC code qualitatively predicts the difference among bundles, the
difference which is the shorter turnaround time and the higher turnaround temperature in
higher power bundle, although the overestimation for the turnaround items are also
recognized for all bundles as those in the flat power test. For the quench items, the
TRAC predictions almost agree with the measured results qualitatively and quantitatively.
The TRAC code predicts qualitatively the variation along axial direction for the difference
of quench time among different power bundles, the variation which is that the difference
of quench time becomes smaller with propagating the quench front to the upper elevation.
This result might support the remark that the TRAC code has a capability to predict the
heat transfer enhancement in higher power bundles®, and the enhancement is supposed to
be caused by the higher liquid up-flow rate in higher power bundles as shown in Figs.
42.14(1) through 4.2.14(5). However since the void fraction was not predicted as
discussed in section 4.2, the investigation of the mechanism of heat transfer enhancement
would be the future subject after improving the one—dimensional thermal-hydraulic model

in core.
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4.4 Run Statistics ,

| Total CPU time and time step size are plotted in Figs. 4.4.1 and 4.4.2 for flat and
steep power tests, respectively. Time step size for both tests is reduced after the reflood
initiation for each test. Time step size is not significantly affected by the difference of
the radial power profile in core and however total CPU time divided by total transient
time or by total time step number are higher in steep power ftest as shown in the
following table. These two calculations were conducted on a FACOM M-780 computer.

Summary table for run statistics as follows:

T e s t|{Transi.|T ot al| Total time | CPURT CPU/ST | RT/ST (s)
name time (s) | CPU time | step num. (s)

RT (s) CPU | ST
F I a t|595 10630 31546 17.731 0.337 0.019
power
test
Steep]| 9690 19280 52536 19.897 0.367 0.018
power
test
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5. Conclusions

The predictive capability of TRAC-PF1/MOD1 code version 12.5 was assessed for
the thermal-hydraulic behaviors including two-dimensional behaviors in the pressure vessel
during reflood phase of a LBLOCA in a PWR. The assessments were performed by the
measured results using SCTF at JAERI, the results which were obtained under the flat or
the steep radial power distribution.

Main conclusions derived from this study are as follows:

(1) The TRAC code slightly overestimated the turnaround time and the turnaround
temperature but the transients of the clad surface temperature were almost predicted
especially for the quench front propagation. Radial distribution of the clad surface
temperature caused by the different bundle power were also predicted well. Heat
transfer in higher power bundles was predicted to be enhanced.

(2) The TRAC code predicted well the pressure transients in the pressure vessel and the
steam mass flow rate generated in the core. However, the following defects were
observed for the hydraulic behaviors in the pressure vessel:

1)  The axial and the radial distribution of void fraction in the core were not
predicted qualitatively and quantitatively.  The mechanism for the water
accumulation was different between the prediction and the test. The prediction
showed a peculiar axial and radial distributions of void fraction. The peculiar
void distribution was caused by the interface sharpener model in the code.

2)  The TRAC code underestimated the liquid carry—over flow rate from the core
to the upper plenum and from the upper plenum to the exit of the hot leg in
the early period. On the other hand, the flow rate from the upper plenum to
the exit of the hot leg was overestimated in the later period.

3) The TRAC code predicted a flatter radial distribution of the liquid fraction in
the upper plenum compared to the measured results.

The results related to' the hydraulic behaviors suggest the necessity of the hydraulic
model improvement especially for the void fraction in the core and in the upper plenum
such as the interface sharpener model and the interface friction model. Since the heat
transfer mode! is closely related to the local void fraction in the code, the core heat
transfer model should be improved.

Since the predicted void fraction distribution is different from the measured results

qualitatively, the predicted two—dimensional behavior may be strongly distorted by the
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error in the evaluation of the void fraction. As the first approach, it is recommended to

improve the hydraulic models related to the qualitative difference of the void fraction

between the prediction and the data. After the elimination of the difference, another

assessment of two~dimensional flow behavior should be performed including the ‘cross flow

model in the radial direction.
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Table 2.1.1 Principal dimensions of SCTF core-II

i. Core Dimension

(14) Steam Water Separator Fluid Volume

(1) Quantity of Bundle § Bundles
(2) Bundle Array 1x38
(3) Bundle Pitch 230 mm
(4) Rod Array in a Bundle 16x16
(5) Rod Pitch in a Bundle 14.3 mm
{6) Quantity of Heater Rod in a Bundle 234 rods
(7) Quantity of Non-Heated Rod in a Bundle 22 rods
(8) Total Quantity of Heater Rods 234x8=1872 rods
(9) Total Quantity of Non-Heated Rods 22x8 =176 rods
(10) Effective Heated Length of Heater Rod 3660 mm
(11) Diameter of Heater Rod 10.7 mm
(12) Diameter of Non-Heated Rod 13.8 mm
2. Flow Areca & Fluid Volume
(1) Core Flow Area - 0.259 m’
(2) Core Fluid Volume 092 m’
(3) Baffle Region Flow Area 0.10 m?
(4) Baffle Region Fluid Volume (nominal) 036 m’
(5) Effective Corc Area Based on the 5
Mnchading Gon betweon Core Barel pad 2w
lr;gisgtt;;?io\geﬁg%cyaﬂ and Various 035 m®
(6) Downcomer Flow Area 0121 m?
(7) Upper Annulus Flow Area 0.158 m®
(8) Upper Plenum Horizontal Flow Area 0.525 m®
(9) Upper Plenum Fluid Volume 116 m’
(10) Upper Head Fluid Volume 0.86 m
(11) Lower Plenum Fluid Volume 1.305 m’
(12) Steam Generator Inlet Plenum Simulator 0.626 m*
Flow Area
(13) Steam Generator Inlet Plenum Simulator 0931 m’
Fluid Volume
53 mw



(15)

(16)
(17)

(18)

(19)
(20)
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Table 2.1.1 (Continued)

Flow Area at the Top Plate of Steam
Generator Inlet Plenum Simulator

Hot Teg Flow Area

Intact Cold Lc% Flow Area
(Diameter=297.9 mm)

Broken Cold leg Flow Area
(Diameter=151.0 mm)

Containment Tank-I Fluid Volume
Containment Tank-IT Fluid Volume

3. Elevation & Height

ey,

@)
)

(4)
&)
(6)
™)
(8)

®

(10)
(11)
(12)

(13)
(14)
(15)
(16)

Top Surface of Upper Core Support Plate
(UESP) pp pp

Bottom Surface of UCSP

Top of the Effective Heated Length of
Heated Rod

Bottom of the Skirt in the Lower Plenum
Bottom of Intact Cold Leg

Bottom of Hot Leg

Top of Upper Plenum

Bottom of Steam Generator Inlet
Plenum Simulator

Centerline of Loop Seal Bottom
Bottom Surface of End Box
Top of Upper Annulus of Downcomer

Height of Steam Gencrator Inlet
Plenum Simulator

Height of Loop Seal
Imner Height of Hot Leg Pipe
Bottom of Lower Plenum

Top of Uppcr Head

0195 m
0.0826 m
0.0697 m
0.0179 m

30 m

50 m

0 mm

- 76 mm
- 303 mm
-5270 mm
+ 724 mm
+1050 mm
+2200 mm
+1933 mm
- —-2281 m
-185.1 mim
+2234 mm
1595 mm
3140 mm
737 mm
-5770 mm
+2887 mm
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Table 2.1.2 Comparison of dimensions between SCTF and

the reference PWR

- Item SCTF
Quantity of Bundle 8
Number of Heater Rod ‘ 1872
Number of Rods 2048
Effective Length of 3660
Heater Rod (mm)

Rod Pitch (mm) 14.30

Diameter of Heater Rod (mm) 10.70
Diameter of Unheated Rod (mm) 13.80
Flow Area between Core Walls (m?) 0.259
Effective Core Area 032~
Based on the Measured | 0.35
Level-Volume Relationship (m?)

Fluid Volume of Core Enveloped  0.92
by Honeycomb Insulators*

Fluid Volugnc of Lower

Plenum (m”) 1.305
Fluid Volume of Upper
Head (m’) 0.86

Baffle Region Flow Area (m®) 0.10
Upper Plenum Fluid Volume (m*)  1.16
Downcomer Flow Area (m°) 0.121
UCSP Thickness (m) 76

Steam Generator [nlet Plenum  0.931
Simulator Volume (m”)

Height of Steam Generator 1.591
Inlef Plenum Simulator (m)

Flow Area at the Top Plate of
Steam Genergtor Inlet Plenum  0.19
Simulator (m®)

Major Axis Length of Hot Leg 737
Cross Section (mm)

Flow Area of hot Leg (m’) 0.0826
(4 Loops)

Flow Area of Intact Loop (m?) 0.0696
(3 Loops)

_17 e

PWR

193
39372
43425
3660

14.30
10.72
13.87
4.76

4.76

17.95

29.62

19.8
1.76
23.8
2.47
76
4.25x4

1.595

4.0
736
1.704

1.149

Ratior -

(SCTE/PWR)
1/24.1
1/21.0
1/21.2
1/1

171
1/1
i1
1/17.7

1/13.6

1/19.5

1/22.7

1/23.0
1/17.6
1/20.5
1/20.4
111

1/18.3

1/1

1721.2
11
1/20.6

1/16.5
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Table 2.1.2 (Continued)

Flow Azrea of Broken Cold
Leg (m?) 0.0179 0.383

* Fluid Volume of Core Including
Gaps between Core Barrgl and 1.74
Pressure Vessel Wall (m’)

1/21.4
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Table 2.2.1 Test conditions fer flat power test S2-14

Specified Conditions Measured Conditions

Initial Pressure (Core Center) 0.20 MPa 0.20 MPa
Pressure (Containment-II) 0.20 MPa 0.22 MPa (Max.)
Max. Core Temp. 922 K 940.7 K
(at reflood initiation)
Power Holding after Acc 0s 0s
Initiation

g%NS+Actinidcs)x1.02 .
Decay Curve om 40 sec see Fig. 3.2.3

(Reac. time)
Max. Ecc Injection Rate 26.1 kg/s see Fig. 3.2.1
Injection rate in LPCI Period 4.8 kg/s see Fig. 3.2.1
Max. Core Inlet Subcooling not specified 16 K
Ecc Water Temperature in 368 K see Fig. 3.2.1
Acc Period _
Ecc Water Temperature in 393 K see Fig. 3.2.1
LPCI Period
Set Value of Maximum Liquid 0.13 m see Fig. 4.1.8

Level above UCSP

Table 2.2.2 Test conditions for steep power test 52-16

Specified Conditions Measured Conditions

Initial Pressure (Core Center) 0.20 MPa 0.20 MPa
Pressure (Containment—II) 0.20 MPa (.22 MPa {Max)
Max. Core Temp. 1160 K 1158 K
(at reflood initiation)
Power Holding after ECC .
Initiation 40 sec (nominal) 40 s

: ANS+Actinides)x1.02 i
Decay Curve om 40 sec see Fig. 3.2.4

(Reac. Time)

Max. Injection Rate 12.3 kg/s see Fig. 3.2.2
Injection Rate in LPCI Period 5.06 kg/s see Fig. 3.2.2
Max. Core Inlet Subcooling not specified 19 K
ECC Water Temperature in Acc 363 K see Fig. 3.2.2
Period
ECC Water Temperature in LPCI 393 K see Fig. 3.2.2
Period
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Table 2.2.3 Chronclogy of major events for flat power test S52-14

TIME AFTER TIME AFTER
CORE POWER "ON" REFLOOD INITIATION
Core Power "ON" 0 sec -114 sec
Ecc Injection Initiation 111 -3
Core Power Decay Initiation 111 -3
Reflood initiation 114 0
Maximum Core Temperature (965 K) 124 10
Maximum Containment-Il Pressure 137 23
( MPa)
Maximum Core Pressure (0.266 MPa) 142 28
Initiation Time for Controllin 191 77
the Liquid Level above UCS
Whole Core Quenched 482 368
Stop Time for Controlling the 491 377
Liquid Level above UCS%

Table 2.2.4 Chronology of major events for steep power test 52-16

TOR: BOWER oN' REFLOOD INITIATION

Core Power "ON" 0 sec ' -149 sec

Ecc Injection Imitiation 148 -1

Reflood Initiation 149 0

Maximum Containment-II Pressure 175 26

(0.22 MPa) :

Core Power Decay Initiation 188 39

Maximum Core Temperature (1224 K) 192 , 43

Maximum Core Pressure (0.273 MPa) 202 33

Whole Core Quenched 642 493

_20 ——
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