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The FEL pendulum equation in a intermediate gain small signal
regime is investigated. By calculating the energy loss of the electron
beam in terms of the solution of the pendulum equation, we confirm the

consistency of the FEL equation in intermediate gain regime.
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1 Introduction

Accelerators dedicated to FEL operation are designed to provide an e-beam with large
current and good quality, so that the FEL gain values easily exceeding 100 %. Although
the FEL gain has been extensively analyzed in the low-gain and high-gain regimes, the
feature of FEL operation in the intermediate regime has scarcely explored except [I,
9]. For this range of gain values, the laser dynamics is significantly different from that
predicted by the linear theory.

In [1, 2], the dynamics of the laser electric field in the intermediate gain region is
extensively investigated, which is reviewed in §2 in the self-contained way. The aim of
this paper is to bring insight into the electron dynamics in the intermediate region. In
§3 we study the electron pendulum equation in the intermediate gain regime and derive
the expression for the energy loss of electron beam. The expression results in the form
described by the laser field amplitude, so that the consistency of the FEL equation in the
intermediate gain regime is confirmed.

2 FEL Integral Equation and Laser Gain

The FEL equation is the collection of the Maxwell’s and the electron pendulum equations
(1, 2, 3, 4] The former describes the evolution of the electromagnetic field, and the latter
determines the electron trajectories. To make the equations analytically tractable, we
consider the case of neglecting the transverse and longitudinal effects of the electron
distribution. Hence the FEL equation can be expressed as follows:

a(r) =~ 1),

d

17 (1) = v(7),

(;i’ry(:r) = %a(.}.)eiq"') + c.c.. (1)

Here, for the sake of simplicity, we have introduced the dimensionless variables and pa-
rameters explained in Table 1. In a planer undulator case, the complex field amplitude

complex field amplitude a(r)
electron phase ¢(r)
electron phase velocity v(T)
dimensionless current density jo
characteristic time T

Table 1: Dimensionless variables and parameters in FEL equation.

a(T) is related to the electric field amplitude £(7) as follows:

_ 2me[JJ]JKAyN?

2.2
moc™yy

£(r), (2)

a(7)
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where Ay is a period of an undulator, N the number of the period, K the undulator
parameter, [JJ] the famous Bessel factor for a planer undulator. On the other hand, the

dimensionless current density is expressed as

(3)

NAE A2
= (2 K{-) v
jo= Gt (2) 2

where I is an electron beam current, /4 Alfvén current, ¥, the cross section of the electron

beam.
If we eliminate the electron phase { and the phase velocity v in the FEL equation

(1), we obtain the single mode FEL integral equation [1, 2|
d

'CF(I
with setting 2mgo = jo. This integral equation can be easily converted into the third order
differential equation:

(1) = imgoe™ ™7 /T dmn fﬂ dryea(ry), (4)
0 0

d? . d? d .
(T + 221/0“7_— — I/g&'; - Z?Tgo> a(’r) = 0, (5)

which is easier to be handled. With the initial condition
a(0) =gy, a(0)=0, a&(0)=0, (6)

the complex amplitude a(7) is determined by the differential equation (5) as follows [2]

a(r) = g-‘(f{—im [(m C ) FRT LRy 4 zyo)e%ﬂw{cosh[—?(ﬂ_ + z'I_)T}
+iﬁ%3mh[‘/§’m_ + z‘I_)T} }]] o
where R = R(pLq).
(8)
I: =S(pxq),
with . /i 13
p:[fm d)]l,s’ (9)
q= [5 (r— \/3)] 3
and

re=27rgy — 208, 10)

d = 2T7go(2Tmge — 403) .
After getting the amplitude a(r) from the FEL integral equation (4), we can easily
obtain the gain G{vp,7) by the usual definition:

la(T)I? — laof®

|ag|?

G(vo,7) = (11)
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- Inserting the solution (7) into eq.(11), we obtain the exact form of the intermediate gain
case [2]:
G(V 0» T)

= ! 2, 2Ry 4 21’0)2{ 2 2 2 (R—'r)
T R ) [(R+ —vp)" + RT T 12 (RZ + 12 4+ 3u5) cosh 7

+(R* + 12 ~3v0)cos<l\—/;> Zx/_yo{’R sm(%) I smh(fjf/;)]}
+4(R+ - ) (R4 + 2u1p)

x{cos (R;T) cosh(———?\}%) cos(gz_\/—;) — sin(R;T) sinh (722\}_) sin (%)
R;/%I2 {{'R sm(RgT) —-7_ cos(R;T)}sinh(—-?f) cos (2%_7—1;)
Ryt Ryt R_TY . T
+{R_ cos( 5 )+I_ 1n( 5 )}COSh(Q\/—) sm(zz\/_ﬂ}y —1. (12)

For the low gain case (277 go/4v® < 1), this exact form is converted into the well-known

formula 5
T
50 [2(1 — cos voT) - voT sin uoT] . (13)
Lg
As shown in this section, we can calculate the exact form of the intermediate gain
case by means of solving the complex amplitude a(7). In the next section, we confirm

the correspondence of the energy loss of the electron beam to the electromagnetic energy

gain.

G(Vo, ’J") =

3 FEL Pendulum Equation and Electron Energy Loss

For the purpose of confirming the consistency of the FEL equations, we calculate the
energy loss of the electron beam in intermediate gain regime [5, 6]. If we scale out the
initial amplitude ao from the complex amplitude a(7) as

a(r) = aog(7). (14)
we have the following electron pendulum equation
a 1 i¢(r)+4o]
Fr= (r) = §|a0|g(1')e +cc.. (15)

Here ¢ is the phase of the éomplex amplitude ap. The constant field amplitude ag (cf.
eq.(2)) 1s explicitly given by

N?
ag = QWQI{)\U[JJ]WEU y (16)

with Fy an initial electric field amplitude.

Now, we solve the above equation perturbatively with respect to the field amplitude
lag|, so we expand the electron phase as follows:

)= Gt wor+ e+ () e+ an)
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- This expansion has the advantage indicating that the phase {{7) is manifestly real. Then,
since the pendulum equation can be expanded to the order of |aol* as

d? 1 : ao]
el T (s 7+{o+d0) oy
77 (1) = 2|a0|g(7)e ‘ [1 +1 ” Q(T)] 4 ce., (18)
we have the following iterative equation
2 2 _
%Q(T) = —I%J—g(f)e’(””"'c"w"] +c.c., (19)
@ g {vo7+Co+ o)
() =i o)t —ce ). (20)

The energy change in electrons is expressed in terms of the change of the phase
velocity as follows:

L= e
- 47r1N ['_I‘j;‘,;_%%g(f))@ + 'f/f(%@(f))@] , (21)

where ()¢, denoting the average over the initial phase (p:

(Flo=5= [ dof(G). (22)

Since the linear term (;(7) is periodic in (g, the contribution of the linear deviation to
the energy change automatically vanishes:

Ay ao)? <d >
v  ArNud dez(T) - (23)

The change in energy of the electromagnetic field is minus Avy/~, multiplied by the initial
energy movyoc®, and by the electron density n.. Hence, the FEL gain is given by

A

Y moroctn,
G(VQ,T) = AI’DI—“‘“ - (24)
560[5012

- Comparing eq.{16) with the definition of the dimensioniess current (3), we have

4T N

|CE[}|2 = 4
HoTlpYoC e

Jol Eof® . (25)
After all, the gathering of the above expressions results in the following gain formula:

Glvo,7) = — 190 <%@(7)>® . (26)

6]

Before calculating the gain based on the electron energy loss in the intermed:ate
gain regime, we derive the low gain formula. In the low gain regime the energy change
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of the electron beam is calculated with setting g(7) = 1. Then, the iterative pendulum
equations {19) and (20) becomes

%G(‘T) = v2 cos((p + voT + ¢o) (27)
& () =~ sin(Go + o7 + d0)Ga (7). (28)
Under the initial condition ;
G0) = 6(0) =0, (29)
the linear deviation (;(7) is
() = o fo " dny /0 " dry cos(vors + (o + do) - (30)

Note that it is easier to calculate the gain after averaging over the electron initial phase
(o than before. Similarly, with the initial condition

d
(2(0) = dTCZ(O) =0, (31)
we obtain the first integral of d*(;/dr?:
d T T T2 .
E;CQ(T) = _Vg,/o dTl/(‘) deL d'T3 Sln(VoTl + Cg -+ ¢0) COS(V0T3 -+ Co -|- qbo) . (32)

Averaging the above expression over the electron initial phase (3, we obtain

d 4 T 1 T2 N
<E’FC2(T)>C = —I;—OA dﬁfo d’Tz/{; drysin vo(my — 73) . (33)
]

Then, the integration of eq.(33) is easily calculated and results in
d Vg .
<—C2(7')> = —[2(cos voT — 1) + Vo7 sin veT). (34)
dr o 2

Inserting the above equation into the expression of the gain (26), we obtain the low gain

formula: 9
Glre,7) = Trgo [2(1 =~ cos voT) — woT sin voT] (35)
Yo

which agrees with (13}).
Let us calculate the energy loss of the electron in intermediate gain regime. Before

averaging the expressions over the electron phase (o, the linear and the square deviation
(1(7) and (a(7) are given by

2 T 11 .
Gy =2 [an [ anfgmetemro yec] (36)
and
d vy [T i(voms +Co+d0)
d——g'z('r) =j—= [ dny [g('rl)e eTi+lo+eo) c.c.] G(m) . (37)
T 2 Jo
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- After averaging the above expression over the electron initial phase {5, we obtain

d o [ w T: 1 T2 * —1lig T
(Frem), =i Z|f dnatmien [[dn [Fing e n o] @9

Here, from eq.(4), we know

d . —1gT i n ivg T
7 (7) = irgoe™™® V/o dTl/o drae™ ™ g(ry), {39}
so that we have
d vy 7 d ,
<E;¢2(T)>(D - [ ]0 drig(n) =" (m) + c.c.] . (40)

With the initial condition g(0) = 1, we obtain

d
(£a) = feonp-1. (41)

Taking the expression of the gain (26) into account, we can confirm the correspondence
between the energy change in the electron beam and the evolution of the electromagnetlc

field amplitude.

4 Conclusion

As shown in this paper, the FEL integral equation (4) plays an important role in electron
dynamics in the intermediate gain regime as well as laser field evolution. In other words,
when we study the electron dynamics in the intermediate regime, we should take the time

evolution of the laser field into account.
Acknowledgement
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- After averaging the above expression over the electron initial phase (o, we obtain

d _y4 7 LT n ™2 * — g T:
<E;C2(T)>£o = ZZO[/O drig(m)e™® 1/0 dTg/O drsg™{ra)e™™™ —c.c.| . (38)

Here, from eq.{4), we know

d . —ivgT M n TUpT
g;g('r) = imgoe ™° /0 dﬁfo drae™ ™ g(1,), (39)
so that we have
d Rz [ T d ,
<dTC2(T)>CU = —47FQO '/0 dﬁg(ﬁ)dﬁg (1) +ec|. (40)

With the initial condition g(0) = 1, we obtain

4

() =gl -1 (1)

4mgo

Taking the expression of the gain (26) into account, we can confirm the correspondence
between the energy change in the electron beam and the evolution of the electromagnetic

field amplitude.

4 Conclusion

As shown in this paper, the FEL integral equation (4) plays an important role in electron
dynamics in the intermediate gain regime as well as laser field evolution. In other words,
when we study the electron dynamics in the intermediate regime, we should take the time

evolution of the laser field into account.

Acknowledgement

The author would like to thank Dr. Y. Suzuki and colleagues in the FEL laboratory for
discussions with them.



JAERI-M 84-025

- After averaging the above expression over the electron initial phase (o, we obtain

d _1/4 T : n 2 * —2UgT:
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