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A preliminary consideration has been made on an undulator with mag-
netic poles quasi-periodically aligned along the path of electron beams
to discriminate the rational higher harmonics of radiation that are
harmful in some synchrotron radiation experiments. The harmonics with
irrational ratios in energy generated by the undulator is never simul-
taneously reflected by a crystal monochromator in the same orientatiom.
A combination of the new undulator and high-resolution crystal monochro-
mator is expected to be very useful on beamlines of high energy radiation
in which X-ray mirrors are useless because of too small critical angles
of total reflectiomn., Further, a possibility of manufacturing the new

undulator has been discussed.
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Glossary

Positional variables in 2D real space.

Positional variables for the lattice point in real space.
Nearest neighbor distance in the 2D real lattice. This is the
lattice constant of the primitive square lattice.

Lattice constant of the composite lattice with two kinds of
matters defined in Fig. 6. a’=aV2.

Positional variables in a coordinate system rotated by a

from the xy system.
Positional variables for the lattice point corresponding to

(xi, yi).

Angle of the inclination of the R/ axis from the x axis.

A typical irrational number for creating a quasi-periodic
lattice, which is known as the golden mean taking a valuc of
(1+V5)/2.

Width of the window defined in real space, the lattice points
in which are projected onto the R/ axis.

2w. Width of the window doubled in real space.

Distances realized in a quasi-periodic array of matters on the
R/ axis.

Structure function revealing the 2D lattice.

Window function defined in eq. (13).

Structure function of the lattice in the window.

Structure of E(R) projected on the R/ axis.

Structure amplitude from the 2D lattice.

Fourier transform of the window function.

Positional variables in 2D reciprocal space.

Positional variables for the reciprocal lattice point.
Positional variables in a coordinate system rotated by a from
the hk system.

Positional variables of the reciprocal lattice point
represented in the (g7, g1) system.
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1. Introduction

Conventional sources for synchrotron radiation generate X-ray
photons with a wide band of energy or with strong higher harmonics.14)
Silicon crystal is properly used for monochromating the radiation, which
simultaneously reflects some higher harmonics through the same lattice
planes. The higher harmonics of radiation are generally harmful in
experiments and are usually removed by use of total reflection mirrors
characterized by a critical angle depending on the radiation energy and
atomic weight of mirror-materials. In some cases, we detune a double
crystal monochromator to eliminate the higher harmonics by taking
advantage of narrower Darwin curves for the higher order reflections. In
the third generation facilities of synchrotron radiation, the accelerating
voltage of electrons is raised up to 6-8 GeV and very high photon energies
will be actively used. The conventional ways to get rid of the higher
harmonics must be unsuitable or useless in such high energy usages,
because of a very small critical angle of total reflection and a very narrow
angular width of the Darwin curve even of the first harmonic.

For the same purpose as we described above, recently, an undulator
to suppress the higer harmonics by adding a horizontal magnetic field has
been reported.S) From a completely different viewpoint, we here propose
an undulator never generating rational higher harmonics but irrational ones
that are never diffracted in the same orientation of monochromator crystals.
Our idea originates in the diffraction property of the quasi-periodic
lattices.6-8) We know the analogy between the following two equations:

1)X-ray intensity from a one-dimensional scatterer with electron density

of p(r);
pA

I(g) = f p(r) exp(2migr) dr | . (1)

2)Spectral-angular intensity distribution from undulators;?)

2

dﬁ%: f: s(®) exp(2mifty dt | , (2a)
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s(t) = nx{n- ‘r'/c) X _rjc] exp(-2nifnr/c) . (2b)
(1 - n .¥/e)?

Time, ¢, in eq. (2b) is usually known as "the retarded time" or "the emitter
time". Replacing dr by (1/n.r)d(n.r) and s(f) by s(n.r), we can express the
equation as a function of a distance along the lining direction of magnets,
(n.r). Here, we do not remark the notations in these equations, because we
intend only to show the equivalence in the formulations.

We here extend the irrationality experienced in the quasi-periodic
system to designing a new undulator instead of the conventional ones with
periodic arrays of magnets. We do not necessarily give a complete
expression of the properties of radiation from undulators. It will be
developed in a separate paper.

2. Creation of a Qausi-Periodic Lattice

It is known that a quasi-periodic lattice causes sharp diffraction peaks
irrationally spaced from each other in reciprocal space. We here review
diffraction properties of the quasi-periodicity.

One of the most intuitive ways for creating quasi-periodic lattices is
the projection method in which the lattice points on a higher dimensional
periodic lattice are projected onto a lower dimensional general plane
inclined with irrational gradients against the periodic lattice axes. This
method is readily applied to designing a configuration of the magnetic
segments on a undulator and the properties of radiation. We here develop
the projection method by starting with a simple square lattice to create a
1D quasi-periodic lattice for the sake of basic comprehension.

In Fig. 1, we illustrate a two-dimensional (2D) regular (square) lattice
with a cell parameter of a, in which shaded circles refer to scattering
matters, for example, corresponding to atoms, molecules and so on in
crystals and scattering centers for electron in time domain on the insertion
devices. The circles are positioned at the lattice points (x;, yi), which can
be represented by integers in unit of a.

To produce a quasi-periodic array of matters, we first draw a window,
AA'B'B, inclined with a slope of tan against the x axis, where tane must
be irrational. We here adopt an irrational number, 1/7, for tana,where 7 18
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s() = [nx(n- rfc)x ric] exp(-2nifnr/c) . (2b)
(1 -n .Ffc)?

Time, ¢, in eq. (2b) is usually known as "the retarded time" or "the emitter
time". Replacing d¢ by (1/n.r)d(n.r} and s(¢) by s(n.r), we can express the
equation as a function of a distance along the lining direction of magnets,
(n.r). Here, we do not remark the notations in these equations, because we
intend only to show the equivalence in the formulations.

We here extend the irrationality experienced in the quasi-periodic
system to designing a new undulator instead of the conventional ones with
periodic arrays of magnets. We do not necessarily give a complete
expression of the properties of radiation from undulators. It will be
developed in a separate paper.

2. Creation of a Qausi-Periodic Lattice

It is known that a quasi-periodic lattice causes sharp diffraction peaks
irrationally spaced from each other in reciprocal space. We here review
diffraction properties of the quasi-periodicity.

One of the most intuitive ways for creating quasi-periodic lattices is
the projection method in which the lattice points on a higher dimensional
periodic lattice are projected onto a lower dimensional general plane
inclined with irrational gradients against the periodic lattice axes. This
method is readily applied to designing a configuration of the magnetic
segments on a undulator and the properties of radiation. We here develop
the projection method by starting with a simple square lattice to create a
1D quasi-periodic lattice for the sake of basic comprehension.

In Fig. 1, we illustrate a two-dimensional (2D) regular (square) lattice
with a cell parameter of a, in which shaded circles refer to scattering
matters, for example, corresponding to atoms, molecules and so on in
crystals and scattering centers for electron in time domain on the insertion
devices. The circles are positioned at the lattice points (xi, yi), which can
be represented by integers in unit of a.

To produce a quasi-periodic array of matters, we first draw a window,
AA'B'B, inclined with a slope of tang against the x axis, where tan@ must
be irrational. We here adopt an irrational number, 1/7, for tana,where T18
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known as the golden mean.and frequently used in case of discussing alloy
crystals with the icosahedral or decagonal quasi-periodic lattice;

r=Y5+1 3)

2

We will start with this number to develop our model.
We let the window be spanned with an a X a square cell md1cated by
thick lines in Fig. 1, which has a width given by

w = a(sina + cosa), - 4)
. 1
sino = , (5a)
1+72
cosQ = . (5b)
1+72

We then project the lattice points (x;, yp's included within the window onto
the inclined axis, AA'. This axis will be referred to as 'R¥ axis' and its
normal as 'RL axis'. The coordinates of the lattice point (x;, y;) are related
to (Ry/, R +) as

Ri//
Rit

o) ©

_ ( cose  sina

-sing  cosc
The lattice points in the window satisfy the following inequality;
O<R*'t<w, (7
or in the Xy system
X tana<y < x tano+ a(I—Ftanoc), (8a)
using w/cos = a(l+tanc), or
(lf)x <y < (lr)x +7a. (8b)

The projected points align with two kinds of inter-site distances,
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d=asino (9a)
d=acosq (9b)
having a ratio of

d’ 1
LI 9
d tan & : )

This is equal to 7 (=1.618...) in the present case, and the points are never
positioned in a periodic fashion.

We next formulate the projecting procedure mentioned above. We
express the lattice structure within the window by a function £(R) defined
as

ER) = S(R)V(R) | (10)
R=(y), (11a)
or
R=R" R, (11b)

where S(R) is the structure factor which represents the 2D.regular lattice of
N matters (N:a sufficiently large number) being expressed by

S(R) = i S(R-Ry) , (12)
i=1

and V(R) the window function defined as

1, if R is within the window,
V(R)z{ if R is within the window (13)

0, otherwise,
or

P 1, forO<R e w,
VR, R ={ (13b)

(0, otherwise.

E(R) can also be represented in the (R7, R system. The projection of
the lattice points onto the R# axis is mathematically expressed as
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PR" = f E®R" RDHAR". (14)

This function P(R/) represents a quasi-periodic array of matters on the R#
axis. The positions of the lattice points and their projected coordinates are
listed in Table 1 in unit of the cell parameter, a. Further, the distances
between the neighboring points along the R/ axis are given in the column
of ‘Distance to next’. A part of the quasi-periodic lattice is drawn in Fig.
2. _

We turn to calculating the Fourier transform of P(R/). We know that
Fourier transform of a projected function is given by a cross-section of the
Fourier transform of the original function before projection. We first
Fourier-transform eq. (10) and have

E(q)=S(q) «+V(q), (15)

where (*) stands for the convolution operation. E(q), $(q) and V(g) are the
Fourier transforms of E(R), S{R) and V(R), respectively. The function
S(q) has delta functions at shaded circles in Fig. 3 which reveal the
reciprocal lattice, that is,

S(@) =N, d(g-q) , (16)

]=-ca

where q; is the lattice points and the summation is taken all over the
reciprocal lattice. V(q) is depicted by a spike (or streak) running normal to
the q/ axis irrationally inclined against the h axis. We here quantitatively
calculate V(q) as follows; From the definition (13), the Fourier
transformation of V(R) is carried out as

©a

Vig) = r V(R) exp(-2riq.R)dR

—o0

han?
= f exp{-27i(g/R "+ g R *)}dR "dR *
Jo 70
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_sin(nLg”) sin(nwg )
g’ gt exp(e), (17)

where exp(@) is a phase factor being meaningless at present. (4, &) and (g7,
g1) are the conjugate coordinates of (x, y) and (R/, R4), respectively. Using
egs. (3), (4) and (5a and b), we can rewrite eq. (17) as

sin(nLg ) sin(1.3764...nag )
g’ ng* . (18)

Vg’ gt =

Intensity is represented by a square of eq. (17) or (18), that is,

sin?(rLg /) sin®(1.3764...naq +)

V2l qh= ; -
(ngq”) (ng L)

(19)

The first factor on the right hand side of eq. (19) determines the thickness
of the spikes depending on the limited length of the window, L., along the
R/ axis The second factor in eq. (19) is evaluated as shown in Fig. 4. The
profile along the spike is depicted by a curve decreasing to zero at
I qt | =1/w =0.73/a in the present model and therefore the full length of the
spikes can be deduced to be 2/w =1.45/a. This can be approximated by

1.8934exp{-(laqi|/0.255)2/2}. Convolution of this function with S(q)
[see eq. (15)] means that spikes can be drawn through the lattice points in
Fig. 3. Thus, the 2D lattice points included within the region shaded in the
figure become meaningful. In Table 2, we list the positions of the lattice
points contained in the window represented both in (h, k) and (g/, g+)
systems. The intensity distributed on the g/ axisis determined by the
second factor on the right hand side of €q. (19) being a function of l gt .
Fig. 5 shows the intensity distribution along the g axis.

There is another factor of intensity modulation in actual case. That is,
the size of the scattering elements results in a monotonous decrease on the
intensity with increasing g”. We here ignored this effect in Fig. 3,
moreover in Table 2. Provided the scattering matters are arranged in a
regular way with the same density, the intensity peaks should appear with
the same magnitude of 1.8934... (being indicated by a dotted level-line in
Fig. 5) and the same inter-peak distance of 1/w=0.7265...(1/a).
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The shaded band in Fig. 3 includes a few pairs of the reciprocal lattice
points related by factor 2 in coordinate, for example, (4, k)=(1, 1)(1/a) and
2, 2)(1/a), (2, 1)(1/a) and (4, 2)(1/a). This kind of pairing corresponds to
a generation of second harmonics in undulator radiation. This will make
the undulators useless to some extent. To recover this contradiction, we
can narrow the band width in Fig. 3, or widen the window width in real
space (in Fig. 1). The column of ‘Case of 2w’ in Table 2 indicates the
peaks appearing after halving the band width in reciprocal space. This
problem will be discussed again in creating a quasi-periodic array of
magnets on the undulators. '

3. Creation of Quasi-Periodic Array of Magnets on Undulator

We here develop a method for creating a quasi-periodic array of
alternate positive and negative matters corresponding to the alternate
magnetic field on the basis of the principle mentioned above. Three
examples will be developed, through which we can establish a way to
devise any other quasi-periodic arrays of magnets.

3.1 Straightforward application to two kinds (+/-) of matters (Type 1)

Expecting an alternate arrangement of positive and negative matters
on a line that corresponds to the magnet array on undulator, we provide
two kinds of sites with open and full circles in Fig. 6. That is, open circles
represent some positive matter and full circles negative one with the same
magnitude. A new unit cell is defined to include two sites, an open circle
and a full circle, with a cell parameter of @’, which is rotated 45 degrees
against the xy coordinate system as shown in Fig. 6. That is,

a' =av'2. (20)

The two kinds of matters are positioned at the lattice points (xi, yi)'s
satisfying a relation

xi+y; _ ( eveninteger, for positive contribution,
a

1)
odd integer, for negative contribution.
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The shaded band in Fig. 3 includes a few pairs of the reciprocal lattice
points related by factor 2 in coordinate, for example, (A, k)=(1, 1)(1/a) and
(2, 2)(1/a), (2, 1)(1/a) and (4, 2)(1/a). This kind of pairing corresponds to
a generation of second harmonics in undulator radiation. This will make
the undulators useless to some extent. To recover this contradiction, we
can narrow the band width in Fig. 3, or widen the window width in real
space (in Fig. 1). The column of ‘Case of 2w’ in Table 2 indicates the
peaks appearing after halving the band width in reciprocal space. This
problem will be discussed again.in creating a quasi-periodic array of
magnets on the undulators.

3. Creation of Quasi-Periodic Array of Magnets on Undulator

We here develop a method for creating a quasi-periodic array of
alternate positive and negative matters corresponding to the alternate
magnetic ficld on the basis of the principle mentioned above. Three
examples will be developed, through which we can establish a way to
devise any other quasi-periodic arrays of magnets.

3.1 Straightforward application to two kinds (+/-) of matters (Type I)

Expecting an alternate arrangement of positive and negative matters
on a line that corresponds to the magnet array on undulator, we provide
two kinds of sites with open and full circles in Fig. 6. That is, open circles
represent some positive matter and full circles negative one with the same
magnitude. A new unit cell is defined to include two sites, an open circle
and a full circle, with a cell parameter of a’, which is rotated 45 degrees
against the xy coordinate system as shown in Fig. 6. That is,

a' =a2. - (20)

The two kinds of matters are positioned at the lattice points (x;, ¥i)'s
satisfying a relation

Xi+y _ g even integer, for positive contribution, @1

a odd integer, for negative contribution.
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Here, « is the nearest neighbor distance. All the nearest neighbors around
an open circle are entirely full circles and vice versa. This is to cause an
alternate array of positive and negative magnetic ficlds along the electron
path in the undulator.

We let a window AA'B'B have a width of w given by eq. (4) and be
inclined with a slope of 1/7 against the x axis by simply following the
previous procedure. This method for creating a quasi-periodic lattice will
be referred to as ‘Type 1°. We then project the lattice points (xi, yi)’s
inctuded within the window on the inclined R/ axis. All the equations
from (3) to (9) can be used in common with the present case.

See Fig. 6. The positive and negative matters are alternately aligned
in an aperiodic fashion on the R/ axis. This configuration is again
illustrated in Fig. 7, and the positions of the 2D lattice points within the
window and their projected points are listed in Table 3, indicating a quasi-
periodic array of @ and d distances between the points. Further, properties
of their contributions are listed in the column of ‘Contribution’, in which
we can see an alternate arrangement of positive and negative contributions.
It is compared to the alternate magnetic field (or electron trajectory) in the
undulator. _

All the equations from (15) to (19) can be applied to this model in the
same form. S(q) here is the structure factor for the arrangement of matters
defined in Fig. 6 and has amplitude peaks only on the reciprocal lattice
points (A, ki)’s of

(i, k) = (n1, 12 )(l&), ny, nz being half-integers, (22)

which are plotted by small circles in Fig. 8. The intensity diffracted from
the quasi-periodic structure created on the inclined K7 axis in real space is
realized on the g/ axis in the figure. Resultant intensity distribution is
shown in Fig. 9 and numerical results are listed in Table 4, where we
omitted the two kinds of intensity modulations. One is on the thickness of
the spikes depending on the size L along the R/ direction, and the other
appears on the amplitude of the spikes as a monotonous decrease along the
q' direction. The latter effect is entirely ignored in this paper. Provided
the (+/-) scattering matters are alternately arranged in a regular manner
with the same density, the intensity peaks should happen with the same
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magnitude of 1.8934... (being indicated by a dotted level-line in Fig. 9) and
the same inter-peak distance of 2/w=1.453...(1/a).

Here, we must note an appearance of a pair of intensity peaks on the
g/ axis. That is, we can see in Fig. 9 or Table 4 that there is a first strong
peak at ¢/=0.688...(1/a) (due to the reciprocal lattice points G in Fig. 8) and
a relatively strong peak at ¢/=2.065...(1/a) (due to H) which is three times
the ¢/ value of the first peak. This kind of harmonicity has been briefly
noted in the elementary model discussed in section 2. This contamination
of the third harmonic corresponds to an intersection of the streak from the
(1.5, 1.5)(1/a) point and the g/ axis, which is marked by a small dotted
square in Fig. 8 and is considered to be avoided by

1) widening the window,
2) changing the inclination of the g/ axis, or
3) choosing different kinds of 2D lattice.

We will present the first and second methods in next subsections. Before
going there, we here shortly explain them.

We know that the length of the spike is inversely proportional to the
width of window. If we employ a window spanned by a square (2a X 2a),
instead of the a x a cell as we used, the reciprocal lattice points must have
spikes with half length of the present one and small intensity peaks
(including the third harmonic) are to disappear. We can also avoid the
rational contamination by choosing another irrational slope for the inclined
g’ axis in Fig. 8. A line DD' shows an example of another possible slope
that generates no peak at the third harmonic position.

3.2 Method of widening the window in 2D real space (Type 2)

We double the width of window as shown in Fig. 10. The cell drawn
with a corner at the origin, O, includes 4 lattice sites, and the projected
pattern on the R/ axis, which is schematically presented in Fig. 11,
becomes a little complicated in comparison with the previous case.
Numerical values of the coordinates are listed in Table 5.

We can see an interesting feature that pairs of the same (+ or -)
contributions are alternately aligned. Fig. 12 reveals the reciprocal lattice,
on which the length of the spikes is half in comparison with the previous



JAERI—M 94—055

model. That is, only the lattice points within the narrower region BB'C’C
selectively contribute to the intensity distribution on the ¢/ axis, which are
marked by ‘A’ in the column ‘Case of 2w’ in Table 4. This shortening of
the spikes suppresses the third harmonic that appeared in the previous case.
Fig. 13 is the intensity distribution with peaks irrationally separated.

3.3 Method of changing the inclination angle of the q/ axis (Type 3)

If the inclined line, i.e., the q/ axis does not intersect the spike
elongated from the reciprocal lattice point H in Fig. 14, the third harmonic
never appears. The extremity of the spike touches the g axis, if the point

H is distant from the axis by g; satisfying eq. (19) =0, i.e.,

- i
sin(mwgg) _ 0. (23)
T

Then, we have

y=4= l . (24)
™= (sin¢ +cos)a

According to the geometry in Fig. 14, we can evaluate the inclination
angle, o, as

IH= (——) sin B= (—4 sm(— Q)= ———1—-—
sinQ + coso

This is developed into

cos?o - sinor = % \
then

1.1
o = tan (__), (25 a)
NG

or

o= 24.0948... (degrees). (25b)
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This inclination generates an irrational number +/5 and never creates a
periodic contamination both on the R/ and g/ axes (See Figs. 15 and 16).
The creation of the R(real)-space distribution is illustrated in Fig. 17.
Table 6 lists the coordinates used in the creation procedure, which shows
two kinds of nearest neighboring distances of 0.9129... and 0.4082...
having a ratio of ~/5. This ratio is 1.38... times larger than 7. Table 7 is for
g-space in this case. If the (+/-) scattering matters are alternately arranged
in a regular manner with the same density, the intensity peaks should take
place with the magnitude of 1.7454...(being indicated by a dotted line in
Fig. 16) and the inter-peak distance of 2/w=1.5139... (1/a).

4. Real Array of Magnetic Poles of the Undulator

As an example, we choose Type 3 of the pole-array given in Fig.15.
That is, let the bars in the positive side correspond to the positive poles and
bars in the negative side to negative poles. We can illustrate the quasi-
periodic array of magnets as in Fig. 18b). The notes of 4" and 4 put in the
figure indicate the distances between the bars, that is, between the centers
of the magnetic poles. In the model, we employed the same magnets of d
in length and we insert a spacer of (d’-d) between the two magnetic
segments of inter-pole distance of d’. The electrons passing through this
kind of undulator equally interfere with the fields of positive and negative
poles and return to the original orbital path. This model array of magnets
will generate a spectrum analogous with the pattern in Fig. 16. Of course,
the g/ axis must be taken for the energy axis. The width of the maxima (or
energy width) depends on the length of the undulator.

Type 1 is also presented in Fig. 18a) for the sake of comparison.

5. Summary and Discussions

We proposed a very different concept for undulator to suppress the
rational higher harmonics. By analogy with the diffraction theory, the
quasi-periodic array of magnets on the undulator was understood to have a
possibility of suppressing rational higher harmonics.
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This inclination generates an irrational number +/5 and never creates a
periodic contamination both on the R/ and g/ axes (See Figs. 15 and 16).
The creation of the R(real)-space distribution is illustrated in Fig. 17.
Table 6 lists the coordinates used in the creation procedure, which shows
two kinds of nearest neighboring distances of 0.9129... and 0.4082...
having a ratio of ~/5. This ratio is 1.38... times larger than 7. Table 7 is for
g-space in this case. If the (+/-) scattering matters are alternately arranged
in a regular manner with the same density, the intensity peaks should take
place with the magnitude of 1.7454...(being indicated by a dotted line in
Fig. 16) and the inter-peak distance of 2/w=1.5139... (1/a).

4. Real Array of Magnetic Poles of the Undulator

As an example, we choose Type 3 of the pole-array given in Fig.15.
That is, let the bars in the positive side correspond to the positive poles and
bars in the negative side to negative poles. We can illustrate the quasi-
periodic array of magnets as in Fig. 18b). The notes of 4" and 4 put in the
figure indicate the distances between the bars, that is, between the centers
of the magnetic poles. In the model, we employed the same magnets of d
in length and we insert a spacer of (d’-d) between the two magnetic
segments of inter-pole distance of d&’. The electrons passing through this
kind of undulator equally interfere with the fields of positive and negative
poles and return to the original orbital path. This model array of magnets
will generate a spectrum analogous with the pattern in Fig. 16. Of course,
the g/ axis must be taken for the energy axis. The width of the maxima (or
energy width) depends on the length of the undulator.

Type 1 is also presented in Fig. 18a) for the sake of comparison.

5. Summary and Discussions

We proposed a very different concept for undulator to suppress the
rational higher harmonics. By analogy with the diffraction theory, the
quasi-periodic array of magnets on the undulator was understood to have a
possibility of suppressing rational higher harmonics.
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This inclination generates an irrational number ~/5 and never creates a
periodic contamination both on the R/ and q/ axes (See Figs. 15 and 16).
The creation of the R(real)-space distribution is illustrated in Fig. 17.
Table 6 lists the coordinates used in the creation procedure, which shows
two kinds of nearest neighboring distances of 0.9129... and 0.4082...
having a ratio of +/5. This ratio is 1.38... times larger than 7. Table 7 is for
g-space in this case. If the (+/-) scattering matters are alternately arranged
in a regular manner with the same density, the intensity peaks should take
place with the magnitude of 1.7454...(being indicated by a dotted line in
Fig. 16) and the inter-peak distance of 2/w=1.5139... (1/a).

4. Real Array of Magnetic Poles of the Undulator

As an example, we choose Type 3 of the pole-array given in Fig.15.
That is, let the bars in the positive side correspond to the positive poles and
bars in the negative side to negative poles. We can illustrate the quasi-
periodic array of magnets as in Fig. 18b). The notes of 4" and 4 put in the
figure indicate the distances between the bars, that is, between the centers
of the magnetic poles. In the model, we employed the same magnets of d
in length and we insert a spacer of (d’-d) between the two magnetic
segments of inter-pole distance of d’. The electrons passing through this
kind of undulator equally interfere with the fields of positive and negative
poles and return to the original orbital path. This model array of magnets
will generate a spectrum analogous with the pattern in Fig. 16. Of course,
the q/ axis must be taken for the energy axis. The width of the maxima (or
energy width) depends on the length of the undulator.

Type 1 is also presented in Fig. 18a) for the sake of comparison.

5. Summary and Discussions

We proposed a very different concept for undulator to suppress the
rational higher harmonics. By analogy with the diffraction theory, the
quasi-periodic array of magnets on the undulator was understood to have a
possibility of suppressing rational higher harmonics.
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The conventional size of the magnetic segments is about 30 mm in
length along the beam path and the length of the undulator can be 4000
mm in the SPring-8 and the total number of magnets becomes about 70.
This indicates the band width of the harmonics can be 1% of the energy for
a radiation from single electron. We should design the magnet array so
that the energy deviations from the higher order reflections by a crystal
monochromator may be larger than 1%. This condition could not be
difficult to be achieved in real designing. By employing this kind of
undulator, we can avoid the band-filtering with total reflection mirrors and
the detuning of the coupling of double crystals.

The spacers inserted among the magnetic segments mentioned in
section 4 do not positively contribute to the magnetic field, that is, the
power of radiation. To recover this power loss, we are required to seek for
optimum conditions to create the quasi-periodicity. We can adopt any
periodic lattice, for example, triangular, hexagonal, etc. It is worth while
trying those possible models in case of real designing of the undulators.
We do not discuss more about them in the present work.

We finally suggest a generalized process for designing an undulator
with a quasi-periodic array of magnets;

1) Define a 2D or higher dimensional lattice with two kinds of
scattering matters (+/-) arranged in an alternate manner.

2) Fourier-transform the higher dimensional lattice structure and
get a reciprocal lattice.

3) Draw a line (one-dimensional) irrationally inclined against
the lattice axes in the reciprocal lattice and determine the
length of the spikes at the reciprocal lattice points so as to
avoid a generation of rational harmonics.

4) If 3) is not successful, return to 1).

5) In the real lattice defined in 1), draw a line conjugate to the
line defined in the reciprocal lattice in 3) and determine the
width of the window by inversing the length of the spikes.

6) Project the lattice points within the window on the line drawn
in 9).

7) Check a possibility of realizing the quasi-periodic pole array
in the undulator. If impossible, return to 1).
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Table 1 List of the coordinates in unit of 4 appearing in creating a quasi-

periodic lattice in the case of a primitive square lattice. The
inclination of the ¢/ axis, tane, ts 1/7 and the width of window, w,
is spanned by a single cell (axa).

x (i) y (i) R A(i) Ri() Distance to next
(@ @ (a {a} (@
1 0 0 0.0000 0.0000 0.5257
2 0 1 0.5257 0.8507 0.8507
3 1 1 1.3764 0.3249 0.5257
4 1 2 1.9021 1.1756 0.8507
5 2 2 2.7528 0.6498 0.8507
6 3 2 3.6034 0.1241 0.5257
7 3 3 T 4.1291 0.0748 0.8507
8 4 3 4.9798 (:.4490 0.5257
9 4 4 5.5055 1.2997 0.8507
10 5 4 6.3562 0.7739 0.8507
il 6 4 7.2068 0.2482 0.5257
12 6 5 7.7326 1.0989 0.8507
13 7 3 8.5832 0.5731 0.8507
14 8 5 9.4339 0.0474 0.5257
15 8 6 9.9596 (.8981 0.8507
16 9 6 10.8102 0.3723 0.5257
17 9 7 11.3360 1.2230 0.8507
i8 10 7 12.1866 0.6972 0.8507
19 11 7 13.0373 0.1715 0.5257
20 11 8 13.5630 1.0222 0.8507

Table 2 Intensity distribution on the ¢ axis in the case of a primitive square

lattice with a window (of w in width} spanned by a single cell in 2D
real space lattice. The coordinates are represented in unit of 1/a. The

inclination, tane, is taken to be 1/t. Column ‘Case of 2w’ indicates

the intensity peaks appearing in case of the half band width [lpl(i} k<
0.36327...(La)].

A k(D) Fl(D gH(i) Intensity Case of 2w
(lay (l/a} (1/a) (1fay
1 4] 0] 0.0000 0.0000 1.8934 A
2 1 0 0.8507 -0.5257 0.2135
3 1 1 1.3764 0.3249 0.9336 A
4 2 1 22270 -0.2008 1.4637 A
5 2 2 2.7528 0.6498 0.0254
6 3 1 3.0777 -0.7265 0.0000
7 3 2 3.6034 0.1241 1.7194 A
8 4 2 4.4541 -0.4016 0.6110
9 4 3 4.9798 0.4490 (0.4365
10 5 3 5.8304 -0.0767 1.8260 A
11 6 3 6.6811 -0.6024 0.0730
12 6 4 7.2068 (0.2482 1.2700 A
13 7 4 8.0575 -0.2775 1.1429 A
14 7 5 8.5832 0.5731 0.1169
15 3 5 94339 0.0474 1.8681 A
16 9 5 10.2845 -0.4783 0.3420
17 9 6 10.8102 0.3723 0.7298
18 10 6 11.660% -0.1534 1.6324 A
19 10 7 12.1866 0.6972 0.0033
20 11 6 12,5115 -0,6791 0.0091
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Table 3 List of the coordinates used in ¢reating a quasi-periodic lattice

for Type 1 {tanax=1/T and a window spanned by an g X g
cell).

; D ¥ R/M(1)  Contribution Distance to next
(a) (a) (@ (@
1 o 0 0.0000 1 0.5257
2 0 1 0.5257 -1 0.8507
3 1 1 1.3764 1 0.5257
4 1 2 1.9021 -1 0.8507
5 2 2 27528 I 0.8507
6 3 2 3.6034 -1 0.5257
7 3 3 4,1291 1 0.8507
8 4 3 4.9798 -1 0.5257
9 4 4 5.5055 1 0.8507
10 5 4 6.3562 -1 0.8507
11 6 4 7.2068 1 0.5257
12 6 5 7.7326 -1 0.8507
13 7 5 8.5832 1 0.8507
14 8 5 9.4339 -1 0.5257
13 8 6 9.9596 1 0.8507
16 9 6 10.8102 -1 0.5257
17 9 7 11.3360 1 0.8507
18 10 7 12.1866 -1 0.8507
19 11 7 13.0373 1 0.5257
20 11 8 13.5630 -1 0.8507

Table 4 Intensity distribution on the g7 axis in the case of a composite

square lattice with a @' @’ unit cell. The inclination is 1/7 and the

window, w, is spanned by a square of a Xa . Column ‘Case of
2w’ indicates the intensity peaks appearing in the case of the half

band width [ lg1(i} < 0.36327...(1/a)] in reciprocal space for Type
2.

A k(D) gli) g Intensity ~ Case of 2w
(V) (la) (V@ (1/a}

—
farBRVa R RN B ST R R S

e e e —
~1 N B N —

18
19
20

0.5 -0.5 0.1625 -0.6882 0.0058
0.5 05 0.6882  0.1625 1.6026 A
1.5 0.5 1.5388  -0.3633 0.7678
1.5 1.5 2.0646  0.4874 03151
25 L5 2.9152 -0.0384 1.8771 A
35 1.5 3.7659 -0.5641 0.1329

35 25 4.2916  0.2866 1.1030 A
45 2.5 5.1423  -0.2392 1.3084 A
45 3.5 5.6680  0.6115 0.0617

55 3.5 6.5186  0.0858 1.8092 A
6.5 3.5 7.3693  -0.4400 0.4679

6.5 4.5 7.8930  0.4107 0.5759

75 4.5 8.7457 -0.1151 1.7432 A
85 4.5 9.5963 -0.6408 0.0324

8.5 535 10.1221  0.2099 1.4283 A
8.5 5.5 10,9727  -0.3159 0.9735 A
9.5 6.5 11.4984  0.5348 0.1926
10.5 6.5 12.3491  0.0091 1.8935 A
11.5 6.5 13.1997  -0.5167 0.2356

11.5 7.5 12,7255 0.3340 0.893% A




JAERI—M 94—055

Table 5 List of the coordinates in creating a quasi-periodic lattice for Type
2 (tane =1/7 and a window spanned by 2a x 2a cell).

i x(i) v RI(1) Contribution  Distance to next
(@ (al (a) {a}
1 -2 -1 -2.2270 -1 0.5257
2 -2 0 -1.7013 1 0.3257
3 -2 1 -1.1756 -1 0.3249
4 -1 0 -0.8507 -1 0.5257
5 -1 1 -0.3249 1 0.3249
6 0 0 0.0000 1 0.2008
7 -1 2 0.2008 -1 0.3249
& 0 1 0.5257 -1 0.5257
9 0 2 1.0515 1 0.3249
10 1 1 1.3764 1 0.2008
11 0 3 1.5772 -1 0.3249
12 1 2 1.9021 -1 0.5257
13 1 3 2.4278 i 0.3249
14 2 2 2,7528 I 0.5257
15 2 3 3.2785 -1 0.3249
16 3 2 3.6034 -1 0.2008
17 2 4 3.8042 1 0.3249
18 3 3 4,1291 1 (0.5257
19 3 4 4.6549 -1 0.3249
20 4 3 4.9798 -1 0.2008

Table 6 List of the coordinates used in creating a quasi-periodic lattice
for Type 3 (tane =1AS and a window spanned by a a xa cell.)

x(1)  y(i) R Contribution Distance to next
@ @ (@) (@

-

1 o 0 0.0000 1 0.4082
2 ¢ 1 0.4082 -1 0.9129
3 11 1.3211 1 0.9129
4 21 2.2340 -1 0.4082
5 2 2 2.6422 1 0.9129
6 3 2 3.53551 -1 0.9129
7 4 2 4.4680 1 0.4082
8 4 3 4.8762 -1 0.9129
9 5 3 5.7891 1 0.9129
10 6 3 6.7020 -1 0.4082
11 6 4 7.1102 1 0.9129
12 7 4 8.0231 -1 0.9129
i3 8 4 8.9360 i 0.4082
14 8 5 9.3442 -1 0.9129
15 9 5 10.2571 1 0.9129
16 10 5 11.1700 -1 0.9129
17 11 5 12.0828 1 0.4082
18 11 6 12.4911 -1 0.9129
19 12 6 13.4039 1 0.9129
20 13 6 143168 -1 0.4082
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Table 7 Intensity distribution on the g7 axis for Type 3 (window spanned
by aa xa cell). Coordinates used for creating the hk space lattice
are also listed.

AN kD gil(i) () Intensity
(Mfa) (fa) (1/a) (lfa)
1 05 -03 0.2523 -0.6606 0.035
2 0.5 0.5 0.6606 0.2523 1.194
3 1.5 05 1.5734 -0.1559 1.515
4 2.5 0.5 2.4863 -0.3642 0.164
5 2.5 1.3 2.8945 (3487 (.321
6 3.5 1.5 3.8074 -0.0596 1.710
7 4.5 1.5 4,7203 -0.4678 0.402
8 4.5 2.5 5.1285 0.4451 0.473
9 5.5 2.5 6.0414 0.0368 1.732
10 6.5 2.5 6.9543 -0.3714 0.734
11 65 35 7.3625 0.5414 0.210
12 7.5 3.5 8.2754 0.1332 1.575
13 8.5 35 9.1883 -0.2751 1,107
14 g5 4.5 9.5965 0.6378 0.056
15 95 3.5 10.1011 -0.6833 0.020
16 9.5 4.5 10.5094 0.2296 1.277
17 10.5 4.5 11.4223 -0.1787 1.448
18 10.5 5.5 11.8305 0.7342 0.002
19 11,5 46 12.3596 -0.5322 0231 -
20 11.5 5.5 12.7434 0.3259 (0.909
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Fig. | Creation of one-dimensionai quasi-periodic lattice from a 2D square
lattice. Lattice points in the window AA'B'B are projected onto the
AA line. As the slope of the line, tane is taken to be 1/7, where 7
ig an irrational number known as the golden mean. Lattice points
on the line BB' are excluded. A quasi-periodic lattice is achieved
on the AA"

g8 9 10 11 12 13 14 15

2 6
R//(a)

Fig. 2 Quasi-periodic arrangement of matters by bars. d’ and d indicate
the two kinds of distances between the quasi-lattice points. @'=7d.
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V g

Fig. 3 Fourier transform of the structure given in Fig. 1. Circles reveal the
Fourier transform of the two-dimensional regular lattice.
Restriction of the lattice peints within the window AA'B'B in Fig. 1
causes a spike through the peak positions indicated by small circles.
The Fourier transform of the projection is given as a cross-section
of the spikes by the inclined g/ axis.

Exact S _

Approximate

iiw T

0 0.2 0.4 0.6 0.8 1

Fig. 4 Type l:Intensity profile of the spike along the g! direction. The
curve behaves sinusoidally. Damping of the profile along the g+
direction is very fast and is approximated by a Gaussian function
that is drawn in a dotted line.
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11 1 1
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4 6 8 i0
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Fig. 5 Distribution of intensity peaks from the quasi-periodic array. The
peak positions are dispersed irrationally on the g¥ axis.

Negative
Matter

Positive
Matter

® O ® @)

Fig. 6 Type 1 : Creaticn of one-dimensional quasi-periodic lattice with
two kinds of matters from a regular lattice. Open circles represent a
positive matter and full circles negative one. Lattice points in the
window AA'B'B are projected onto AA'. The slope, tane, is taken
to be 1/7. Lattice points on the fine BB' are excluded.

O & 0, ——
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Contribution{+/-} of Matter

..

4
R i (a)

Fig. 7 Type 1 : Quasi-periodic arrangement of +/- matters. Bars represent
positive and negative contributions of the matters. &’ and d indicate
the distances between the quasi-lattice points. d’=7d.

Fig. 8 Type 1 : Fourier transform of the structure given in Fig. 6. Circles
reveal the Fourier transform of the two-dimensional regular lattice

with positive and negative contributions, The Fourier transform of
the projection is given as a cross-section of the spikes by an
inclined g axis.
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Fig. 9 Type 1 : Intensity distribution from the quasi-periodic array, The
peak positions are dispersed irrationally on the g¥ axis.

® O

® ) e

Fig. 10 Type 2 : The width of window, w', is twice that of Type 1. Lattice
points in the window AA'B'B are projected onto AA'. The slope of
the g axis, tana, is taken to be the same 1/7as in Type 1. A quasi-
pericdic lattice is created on the AA'. '

— 22 —
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+

Contribution(+/-) of Matter

4
R f/(a)

Fig. 11 Type 2 : Quasi-periodic arrangement of +/- matters. A pairing of
positive or negative matters is characteristic. There are three kinds
of inter-matter distances.

Fig. 12 Type 2 : Fourier transform of the structure given in Fig. 10.
Circles revealing the Fourier transform of the two-dimensional
regular lattice are the same as in Ty'pe 1. Restriction of the lattice
points within the wider window AA'B'B of w’ in Fig. 10 causes
shorter spikes.
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B,

Fig. 13 Type 2 : Intensity Distribution diffracted from the quasi-periodic
array of Fig. 11. The peak positions are dispersed irrationally on
the g# axis. The density of peaks is less than that in Type 1.

Fig. 14 Type 3 : Geometry to determine an inclination of the g/ axis with
which a contamination of the third harmoric is suppressed. The
circles, G and H, are related in a rational fashion. The point is to
avoid a contact of the spike from H and the g# axis. The dotted
cirele, 1, is the extremity of the spike from H. The window in the
real space lattice is supposed to include a square of axa. The
cross-section of the spikes does not include any rational

contaminations.
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L 1 1

4 6
R "(1ia)

Couatribution(+/-) of Matter

Fig. 15 Type 3 : Arrangement of matters. d’ and d are different from those
in Type 1, whose ratio is 1.38... times larger.

2 i T T T T T I T I T 1 ! T T 1
1.5 ]
= I
z 1r
2 L
=
= I
0.5+
0 L
0

g/l (lia)

Fig. 16 Type 3 : Intensity distribution given by the geometry in Fig. 15.
The peak positions are dispersed irrationally on the g7 axis.
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Negative
Matter X

o O—0—

Positive
Matter
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Fig. 17 Type 3 : Real space construction. The slope of the line AA', tana
is 1/V5. & and d are different from those of Type 1.
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Spacer

Fig. 18 a) Type 1 : A model structure of magnetic segments on the
undulator. This is created by analogy with the structure given in
Fig. 6 or Fig. 7. Two kinds of inter-magnet distances are necessary.
The distance d is made by the size of the magnet itself and &' the
sum of d and a spacer of @/7. b) Type 3 : This is created by analogy
with the structure given in Fig. 15 or Fig. 17. The distance d is
made by the size of the magnet itself and &’ the sum of 4 and a
spacer of aes-1).



