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The thermal-hydraulic analyses of the JMIR and the JRR-2 with LEU
(low-enriched uranium) fuels were performed as part of analyses for
converting the JMTR and the JRR-2 to utilize LEU fuels. The thermal-
hydraulic calculation code used in these analyses is COBRA-3C/RERTR which
was developed for the RERTR (reduced enrichment research and test)
reactor) program by ANL. It was found that the JMTR and the JRR-2 with
LEU fuels would be able .to retain nearly the same margin to ONB (onset
of nucleate boiling) and DNB (departure from nucleate boiling) without
changing the present pump systems as that of the present HEU fuel cores.

These analyses were performed by the author at ANL as part of the
JAERI-ANL joint study on the use of reduced enrichment fuels in the JAERI

research reactors.
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1. Introduction

In view of the proliferation resistance of fuels and fuel cycles, the

"use of HEU (high-enriched uranium) fuels in research and test reactors

was discussed at INFCE and IAFEA, and the enrichment reduction in research
and test reactors was proposed. Following this trend of times, JAERI is
implementing the core conversion of JAERI reactors to utilize MEU (medium-
enriched uranium)fuels. A joint study has been in progress between JAEREL
and ANL since January, 1980, to assess the feasibility of converting the
JAERI reactors to use of reduced enrichment fuels. Table 1 shows the
outline of the JAERI-ANL joint study.

The enrichment reduction in research and test reactors is based on the
practical criterion that enrichment reduction should not cause reduction of
significant flux performance and burnup performance relative to the HEU
core. This requires that the reduced enrichment fuel element contains more

235U than the high enrichment fuel element. In the case of the LEU (<20%)
core, the LEU fuel element should have thicker fuel meat than the HEU fuel
element based on the present fuel technology, so that the LEU core might

keep the LEU core performances. For this reason, the LEU core have a trend
toward smaller thermal safety margin compared with the HEU core, and thermal-
hydraulic analyses are important as well as neutronic analyses in the
feasibility studies on the use of LEU fuels.

As can be seen in Table 1, the Phase A, which was the first stage of
the joint study, ended in July, 1980. The thermal-hydraulic analyses were
performed preliminary in the Phase A, but the additional details of thermal-
hydraulic data about the JMIR and the JRR-2 with LEU fuels are necessary
in order to assess the feasibility of the use LEU fuels in the JMIR and
JRR-2. This report describes the results of thermal-hydraulic analyses
of the JMTR and the JRR-2 performed by using a thermal-hydraulic calculation
code, COBRA-3C/REFTR, as part of the joint study. This code was written
for the RERTR program by ANL.

2. Thermal-Hydraulic Code COBRA-3C/RERTR

COBRA-3C/RERTR is a thermal-hydraulic subchannel code prepared for the
RERTR program centered at ANL. This code was developed by modifying
COBRA-3C/MIT, and by extending its applicability to research and test
reactors which operate at low pressure and temperature, and which may use

plate-type fuel elements. COBRA-3C/MIT is an advanced version of COBRA-IIC,
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which has been widely used and accepted by the power industry.

A number of other similar codes exist for subchannel analysis, such
as COBRA-TIC, MACABRE, THINC, and TORC. But most were developed for high-
power commercial reactors, Therefore, the heat transfer correlations,
critical heat flux correlations, and boiling flow regimes considered in

these codes are not adequate for analysing research and test reactors.

3. Check Calculation of COBRA-3C/RERTR

In order to examine whether COBRA-3C/RERTR is suitable for thermal-
hydraulie calculations of JAERI reactors, the fuel surface temperature
distribution and the coolant bulk temperature distribution in the present
JMTR were calculated with COBRA-3C/RERTR and FUELTEMPZ, and compared.
FUELTEMP is a thermal-hydraulic code developed by JAERI for analysing the
thermal safety margin of the JMTR. Table 2 shows the data used in these
check calculations. Figure 1 shows the heat flux distribution. Figure 2
shows the comparison of the results calculated with COBRA-3C/RERTR and
with FUELTEMP using thése data. The coolant bulk temperatures are in
very good agreement, and the fuel surface temperatures are fairly in

agreement,

4. Thermal-Hydraulic Analyses for the JMIR

JMTR is a 50 MW tank type research and test reactor, cooled and moderated

by light water and utilizing 93%EU fuel in the modified ETR type element.
The present core consists of 22 standard and 5 follower fuel elements
which are shown in Figure 3 and Figure &4, respectively. Figure 5 shows
the present JMTR core configuration,

The JMTR has little thermal-hydraulic margin left. Thus, in the
féasibility studies on the use of the LEU fuel in the JMTR, the thermal-
hydraulic analyses were first made, and the neutronic analyses will be

performed taking account of results of the thermal-hydraulic analyses.

4.1 Correlations Used in Thermal-Hydraulic Calculations for the JMIR.
Correlations used in thermal-hydraulic calculations for the JMIR are
summarized in Table 3.
4.1.1 Friction Factor
In the case of smooth surface, the friction factor3 can be expressed

a8t
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£ =0.316 Re 027 o))

in the range 5,000 < Re < 51,094

£ = 0,184 Re’*Z (2)

in the range 51,094 < Re ,
According to the rough estimation, the Reynolds number for the JMTR fuel is:
Re = 90,000 .

Therefore, Eq. (2) was used.

4.1.2 Heat Transfer Coefficient
The modified Colburn correlation4 was used for the single phase heat

transfer coefficient.

Nu = 0.023 (Ref)o'8 (Prf)0-3 (3)
where
f = physical properties based on the film mean temperature.
This calculation was used for the design calculations of the JMTR and the
HFBR.
The Bergles-Rohsenow correlation5 for the subceool boiling heat
transfer was used in order to predict the onset of nucleat boiling. Using
this correlation, the heat flux at the onset of nucleate boiling is

expressed as:

2.30
0.0234
1.156 P
L S— -_
q" = 15.6 p (T, Tsat) (4)
where

q" = heat flux at ONB (Btu/hr-ftz)

P = pressure (psia)

T, = fuel surface temperature (°F)

Tsat = saturation temperature at the pressure P (°F),.

The applicable range for the parameter is:
P =15 ~ 2000 psia .
The heat transfer regims are identified by using the correlation

TW ;=Tw.s * : (3
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TW is the cladding wall (fuel surface) temperature based on single-phase
heat transfer, and the cladding wall temperature, TW g can be calculated

with various correlation for subcool heat transfer. Thus, the fuel surface

temperature at the onset of nucleate boiling is defined by:

T . (6)

TP oxg = Tw.s

In the case of the present JMTR, (Tw) calculated by using the modified

ONB
Colburn correlation and the Bergles-Rohsnow correlation is 201°C.

4.1.3 Critical Heat Flux

In order to estimate the margin to DNB, the following critical heat
flux correlations were used.

1) Bermath Correlation6

'r= -
q" =g (T, - Ty ™
where
De 48 Vv
hc = 10890 ( De+Di) + 0.6 , and
De

- r___¥
Tw,c =1.8 (57 1nP 54 P+15 4) + 32
T. = coclant bulk temperature (°F)

coolant velocity (ft/$)

P = system pressure (psia)

hydraulic diameter (inch)

=)
1)
]

=1
n

heated perimeter/m (inch)
The applicable ranges for the parameters are:
23 - 3000 psia

4.0 - 34 ft/sec

0.143 - 0.66 inches

2) Labuntsov'Correlation7

2 0.25 15¢ At

0.232 V
Ty ) (1+ 0.5,
fg

5

q" = 4.,61%¥10°" F (P) (1 + ) (8)

where
q" = surface heat flux (Btu/hr'ftz)

1/3

F(P) is a function of P, = P (l—Pr)‘M3

P = the system pressure in abs atm
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Pr = reduced pressure (P/PG)
P = critical pressure (abs atm)
V = yvelocity (ft/s)
C_ = specific heat (Btu b-l °F-l)
At = saturation temperature minus bulk water temperature (°F)
Hfg = heat of vaporization (Btu/lbm)
The applicable ranges for the parameters are:
1 atm < P < 200 atm
0.7 m/s <V < 45 m/s
This correlation was used to determine the burnout heat flux for each

element configuration in the Oak Ridge Research Reactor?

4.1.4 Critical Velocity

The Miller correlation9 was used to compute the critical velocity.

3 3 1/2
- ( 15gE (a” —tm™) h ) (9)

¢ o b4 (1 - vz)

where

p = density (0.988 g/cm3)

b = chanﬁel width (6.66 cm)

v = Poisson's ratio (0.34)

g = gravity acceleration (980 cm/secz)
E = Young's modulus (6.3 x 108 g/cm)

tm = meat thickness (cm)

=a
I

channel width (cm)

plate thickness (cm) .

joh}
]

(COBRA-3C/RERTR does not compute critical velocity.)

4,2 Parametric Study

Different cases considered in the parametric study are summarized in
Table 4. In calculations for the 18-plate fuel element, fuel plates were
assumed to be uniformly spaced, and the average heat flux was estimated
assuming that the fuel follower had 15 fuel plates. Case 1l corresponds to
the present HEU fuel element, and Case 7 corresponds tc the present HEU fuel
element where the plates are assumed to be uniformly spaced.

The velocities used in Cases 2 and 3 were estimated based on the assump-

tion that the flow rate per fuel element was the same as that in Case 1,
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According to the JMIR Final Design Calculation Reportlo,the velocity of 11

m/sec is the maximum permissible velocity at normal operation in order to

 avoid the flow induced vibration of the fuel plate. Thus, the velocity of

11 m/sec was used in Cases 4, 5, 6, 8, 9 and 10,
The peaking factors F, and F_. were estimated, assuming that the standard

b
235U£1

fuel element contained 340 g and that the maximum burnup was 60%.

4.3 Results

The results are summarized in Table 5, and the fuel surface temperature
distributions and the bulk water temperature distributions are shown in

Figures 6 through 15.

4.3.1 Coolant Velocity

The coolant velocity shown for each case of 19-plate fuel element designs
is that for the narrowest channel in the element. Coolant velocities in the
differnt channels of the element were calculated to give the same inlet pres-
sure gradient. Figure 16 shows the comparison of the measured10 and computed
velocity distributions in the present HEU fuel element. These are in good

agreement.

4,3.2 Total Pressure Drop APT
The total pressure drop for each case was estimated based on the value
of 3.2 kg/cm2 for the present HEU core. The pressure drop excluding that

due to friction across the active fuel region, APT—APf, can be expressed as:

AP, - ﬁPf = cv2
where

¢ = constant

v = coolant velocity in the element excluding the active fuel

region.
Therefore,
AP, — 4P v 2
(AP,;O - (zpt)o =(5) (11)

o]
The subscript o denotes the present HEU core,
The relationship between the coolant velocities in the active fuel

region and in the element excluding the active fuel region is:
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AV = a.v (12)
where
A = flow area in the active fuel region
a = flow area in the element excluding the active fuel region
(This is kept constant.)
V = coolant velocity in the active fuel region
v = coolant velocity in the element excluding the active fuel region.
Thus,
Aj-go B V: (13)

From Egqs. (11) and (13), the total pressure drop can be expressed as:

AP, = AP, + [(AR,) ~ (aP.) ] -+ (2 ? (14)
T £ 0 o AV )

4.3.3 Total Flow Rate

The total flow rate was estimated based on the fact that in the present

HEU core the flow rates through the fuel region and the reflector region
were about 3000 m3/hr. The flow rate through the fuel region can be

expressed as:

A .V A -V
o o

_ R _ o] e}
FRF = (FRF)o vl 3000 x AV (15)

The flow rate through the reflector region can be expressed as:

PR, = C (ap )" (16)

where
(FR_)
C = ___Ehiil__ = 1677
(AP.) 0.5
T o

Therefore, the total flow rate can be estimated by the following equation:

A -V

FR, = 3000 x == +1677 x (2p)°"7 . an

As can be seen in Table 5, the total flow rates are less than the maximum
flow rate of 6300 m3/hr attained by the present pump system without losing

the pump efficiency.
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4.3.4 Margin to Critical Velocity
The margin for the LEU fuel case is larger than that for the present

HEU case.

4.3.5 Margin to ONB
The margin to ONB is the minimum ratio of the actual heat flux to the
heat flux at the onset of nucleat boiling. The margin for the LEU fuel

cage is larger than that of the present HEU fuel case.

4.3.6 Margin to DNB

The margin to DNB, MDNBR, is the minimum ratio of the actual heat flux
to the critical heat flux calculated using the Labunstov correlation or the
Bernath correlation. The margin for the LEU fuel case is larger than that
for the present HEU fuel case. The JMIR parameters are within the applicable
ranges for the parameters used in the Bernath correlation. But the margin
calculated using this correlation seems to be in error because it is unreason-
able to expect that the value for DNB increases as the meat thickness increases

at the same average heat flux and the same coolant velocity.

4.4 Conclusions
Based on the results from the thermal-hydraulic analyses as shown in

Table 5, the core conversion into the LEU core without changing the present
pump system however with increased flow rate appears to be possible. 1In
order to estimate the specification of the LEU fuel, further neutronic calcu-
lations must be performed. The ranges of possible design changes to be
considered are as follows.

a, Meat thicknesses of 0.7 mm and 0.8 mm for 19-plate design.

b. Meat thicknesses of 0.8 mm and 0.9 mm for 19-plate design.
These ranges are concluded from the results of the thermal-hydraulic analyses,
the relations between the fuel meat thickness and the uranium density (see
Table 6), and the present fuel technology (see Table 7). 1In these LEU fuel

235U 12

designs, each LEU fuel element has 340 gr , and the uranium density is

less than 3.0 gr/cm3.
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5. Thermal-Hydraulic analyses of the JRR-2

The JRR-2 is a 10 MW research reactor moderated and cooled by heavy
water with 93% EU fuel elements. The present core consists of 20 MTR-type
fuel and 4 cylindrical typé fuel elements shown in Figure 17. The core
configuration is shown in Figure 18.

In the case of the JRR-2, a specification of the LEU fuel was estimated
roughly by neutronic and thermal-hydraulic analysesll. In these analyses,
it was assumed that the LEU fuel core consisted of 24 cylindrical type fuel
elements. The uranium density of this LEU fuel is 2.4 g/cm3, and the meat
thickness is 1.0 mm. (Based on the present fuel technology, it seems to be
difficult to fabricate curved fuel plates with the meat thickness of 1.0 mm).
Thus, the thermal-hydraulic analyses with COBRA-3C/RERTR were performed on
the core with these LEU cylindrical type fuel elements.

5.1 Thermal-Hydraulic Calculations

Correlations and data used in thermal-hydrauliec calculations are
summerized in Tables 8 and 9, respectively. The coolant velocity for the
LEU core is increased to 4.03 m/sec from 3.80 m/sec as in the HEU core.

Figure 19 shows the heat flux distribution in the JRR-2.

5.2 Results

Table 10, Figures 20 and 21 summarize the results. As can be seen in
Figures 20 and 21, the maximum fuel surface temperature is at the core
inlet, and the maximum fuel surface temperature for the LEU case is lower
than that for the HEU fuel case. Thus, the LEU fuel core has larger margin
to ONB and DNB than the HEU ccre.

5.3 Conclusions

The margin to ONB and DNB for the LEU fuel case are larger than that
for the HEU fuel cases due to increased coolant velocity. Therefore, based
on the results from the thermél-hydraulic analyses the conversion into LEU

fuel with the meat thickness of 1.0 mm appears to be feasible.
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Table 1 Qutline of ANL-JAERI Joint Study on Reduced
Enrichment Fuel for JAERI Reactors

Phase A (October 1979 - July 1980)

- Normalization calculations of IAEA benchmark problem.

« Transmittal by JAERI of detailed information on JAERI
reactors.

+ Feasibility studies on the use of LEU (<20%) Fuels in
JAERI reactors,

%% Planning and Preparations for Burnup Tests.
- Planning and preparations for critical experiments and full-

core demonstration.

Phase B (July 1980 - December 1981)
+ Burnup tests in the ORR (<20%, 45%).
« Burnup tests in the HFR Petten (<20%).
« Burnup tests in JAERI reactors (<20%, 45%).
- Critical experiments and full-core demonstration in the
FNR (<20%).
. Critical experiments in the JMTRC (45%).
« Hydraulics tests at JAERI

- Further feasibility and analytical studies.
Phase C (December 1981 - | )

« Full core demonstration tests in JAERI reactors.

+ Final studies and evaluations.



JAERT-M 9449

Table 2 Data Used in the Check Calculation of COBRA-3C/RERTR

Number of Plates 19
Meat Thickness (mm) 0.5
Plate Thickness (mm) 1.27
Active Fuel Length (mm) 750
Active Fuel Width (mm) 6l.6
Coolant Chammel Width (mm) 66.6
Coolant Channel Thickness {(mm) 3.02 x 4
2,92 % 2
2.67 % 12
Average Heat Flux (W/cmz) 115.0

Hot Spot Factors

Nuclear Unvertainty Factor F_ = F_.F

N R 2

Axial Peak to Average Fz Fig. 1

Radial Peak to Average FR 2.86
Uncertainty Factor for Bulk Water Fb 1.28
Uncertainty Factor for Film Temp. Ff 1.36
Coolant Velocity (m/sec) 10.0
Coolant Temperature at Core Inlet °C 49
Coolant Pressure at Core Inlet (kg/cm2 A) 15.0

Table 3 Correlations Used in Thermal-Hydraulic Calculatiomns for the JMIR

Correlation
Friction Factor f = 0.184 Re~0-2
(RE)JMTR = 90,000
Single Phase Heat Modified Colburn
Transfer Coefficient Nu = 0.023 (Ref)O.S (Prf)0'3

This correlation takes into
account the temperature rise
in the film.

Subcool  Boiling Heat Bergles-Rohsenow
Transfer Coefficient

Critical Heat Flux Bernath, Labuntsov

Critical Velocity Miller
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Table 6 Meat Thickness vs. Uranium Dencity and Vp/Vc

MEAT PLATE Urantum DensiTy’ VP/VC**
THickNESS  THIckNEss 19 PraTes 18 Prates 19 Piaves 18 Prates

(MM) (Mm) 6/cm3

0.5 1.27 4.0 4.22 0.313 0.296
0.6 1.37 3.33 3.52 0.337 0.319
0.7 1.47 2.86 3.01 0.362 0.342
0.8 1.57 2.50 2-b64% 0.386 "~ 0.366
0.9 1.67 2-22 2.34 0-411 0.389
1.0 1.77 2.00 2.11 0.-436 0-413
1.1 1.87 1.92 0-436

*340 ¢ 235U/ELEMENT-

%
Vp : Volum of fuel plates per element

Ve : Volum of coolant channel per fuel element

Table 7 Anticipated Uranium Loadings, g/-cm3

Existing

Techno- Near—Term+ Near-Term +
. Fuel System logy Very Likely Some Uncertainty Long—-Term
UAL -Al 1.7 1.5% 1.72 3.0%
2.47 2.6 2.8P
2.2 2.4 2.5 - 2.8°
U,0g-AL 1.7 1.3% 2.6° 3.3%
2.8% 3.0% 3.2¢
2.7° 3.0% -
a NUKEM
b  EG&G Idaho *,  rod-type
e CERCA rk plate-type
d  ORNL

+
Footnote — near—-term 1-3 vears, long-term > 5 years.
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Table 8 Correlations Used in Thermal-Hydraulic Calculations for the JRR-2

Correlation
Friction Factor f = 0.316 REHO'ZS
(Re)JRR—2 = 30,000

Dittus-Boelter
Nu = 0.023 (Reb)o's )"

Single Phase Heat
Transfer Coefficient

This correlation cannot take
into account the temperature
rise in the film.

Subcool Boiling Heat
Transfer Coefficient

Bergles—Rohsenow

Critical Heat Flux Labuntsov

Table 10 Thermal-Hydraulic Analysis for the JRR-2

HEU Fuel LEU Fuel
Fuel Plate Thickness {(em) 0.127 0.176
Water Channel Thickness (cm) 0.30 0.25
Water Channel Area/Element (cmz) 40.82 38.23
Reactor Thermal Power (MW) 10 10
Primary Flow Rate (m3/min) 22 22
Core Inlet Water Temperature (°C) 57.1 57.1
Core Qutlet Water Temperature (°C) 67.5 68.9
Clad Surface Temperature (Maximum) (°C) 115.8 111.9
Water Velocity (m/sec) 3.8 4,03
Average Heat Flux (W/cmz) 31.7 31.9
Margin to ONB 1.34 1,46
Margin to DNB 11.6 11.9
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Heat Flux (arbitrary unit)
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Fig. 19 Heat flux distribution in the JRR-2
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