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Stability of the INTOR plasma is investigated from various viewpoints.
Instabilities considered in this article are positional instability, low-n
kink and internal mode instabilities, high-n ballooning mode instability
and resistive dinstability. Considering that the high-n ballooning
mode instability is very important from the viewpoint of the beta
optimization it is investigated minutely. Possibility of attaining a
very high beta equilibrium in the second stable region of the ballooning
instability is presented.

Both the MHD and kinetic approaches are adopted to understand

the behavior of the INTOR plasma coemprehensively.
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1. Intreduction

In designing a new tokamak device it 1s needless to say that macro— -
scopic behavior of a plasma should be first investigated., This kind of
investigations include linearized or nonlinear, and ideal ot dissipative
MHD analyses which are, sometimes, approached directly from the kinetic
theory. From the viewpoint of performance of the device the maximum
attainable beta value is the most important parameter to be considered
in designing the device and, presently, the detailed analysis of MHD
instabilities is almost the only method to estimate the beta value.
In this connection the above analysis is indispensable to determine the
configufational or physical parameters of the device which realize the
optimized performance, Nonlinear analyses of the plasma give us important
informations on disruptive instabilities or other deteriorative plasma
behavior.,

1)

In our program of analyses of the INTOR plasma ' we investigate the

above phenomena as comprehensively as possible, The phenomena we
investigate are positional instability, low-n kink mode instability,

low-n internal mode instability, high-n ballooning mode instability,

and resistive instability. As the high-n ballooning mode instability

is very important to asses the maximum attainable beta value, we investigate
it very minutely. In this analysis the finite-n correction and kinetic
effect are taken into account. We present a result of analysis on a tearing
mode instability by the kinetic theory and a result of numerical analysis

on formation of large-scale magnetic island due to a resistive internal
mode. No conclusions on analyses of the major disruptions are presented

in this article.

2. Equilibrium

By solving the Grad-Shafranov equation two types of equilibria are
prepared for the further stability calculations. One is the equilibrium
derived as a solution of a nonlinear eigenvalue (pressure gradient)} problem
and the other is the flux conserving tokamak (FCT) equilibrium.

In the former calculation the functional forms of the pressure P{y)

and toroidal field function T(y) are specified beforehand as

P = 8P "iim Sy ) 2]+ Lm0 P )M,
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where wo js the flux function () at the magnetic axis, r is the major
radius (r=RO: position of the magnetic axis), and BJ is the approximate
value of the poloidal beta. The plasma shape is specified and the calcu-
lations are carried out as a fixed boundary problem. Hereafter, we call
this type "the model equilibrium #1", There are infinite possibilities
to choose the functional forms of P(y) and T(b), and we also try to use
different choice for the caluclation of high-n ballooning instabilities

as

b
IP"lin) ’

0

Py) = (

' - ¢ L _ 2 o1
TT' (y) (BJ 1) R P

We call it "the model equilibrium #1'".

In the case of FCT equilibrium we start from the former type of
equilibria and specify the safety factor profile q(¢) according to the
initial equilibria. Then we increase the plasma pressure so that

d v,y _ av, Y
EE'P(w)(Ea) = S(¢)(d¢)

where S(y) is the heat source profile and v = 5/3. We solve the Grad-

Shafranov equation keeping q(y) and P(¢)(%§>Y constant using iterative

procedure based on the combination of PDE(partial differential equation)

_and ODE (ordinary differential equation). As for the shape of the plasma

surface several points belonging to the assumed plasma surface are
specified beforehand and the corresponding number of multipole components
of the vacuum magnetic field are adjusted so that the specified points
are always on the plasma surface throughout the iteration process. This
procedure, however, gives rise to a skin current at the plasma surface
due to the difference of toroidal componeat of magnetic fields inside and
outside the plasma. To avoid it the primary current flux is controlled
and the plasma cross-section is enlarged by conserving the shape of the

cross—section. We call this type "the model equilibrium #2",

__2_
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The model equilibrium #1 is appropriate to study phenomena which
are strongly dependent on the poloidal beta value because the approximate
poloidal beta value is specified before the equilibrium calculation. By
this formulation, however, we cannot get a very high beta equilibrium
without a negative toroidal current. On the other hand by the FCT calcu-
lation a very high beta equilibrium is easily obtained but the poloidal

beta value is not known before calculation.

3. Positional instability

Analysis of a positional instability is very important for an
elongated tokamak plasma as INTOR. And stabilization of the instability
should be first considered when designing a device. If one can locate
a perfectly conducting wall close enough to the plasma surface the
instability can be stabilized. From technological requirements, however,
the distance between the plasma surface and conducting wall is restricted
above a certain value and, moreover, the wall is not perfectly conducting.

For designing of INTOR the following should be studied; (i) within
the framework of the linear theory if plasma equilibria with given plasma
parameters are stable against the positional instability under the given
external conditions such as the given wall position, and (ii) within the
framework of the nonlinear theory if the above instability can be stabi-
lized with or without a technologically realizable feedback stabilization
system. In the present work, however, we only analyze the dependence of
the positiomal instability on the wall position and elongation?)

First, we study the effect of the conducting wall on the positional
instability for several different shapes of a plasma cross-section by

using the code ERATOB). The plasma parameters are! q, = 2.5, Bp = 1.3,

‘and other parameters are standard values of the INTOR device. The growth

rate of the instability is computed by varying the plasma-wall distance

(A =b/a ; b and a are the short radii of the wall and plasma, respectively)

and the critical value of A is determined by extrapolation according to
the 1 - A_3 scaling lawé) (Fig. 3.1). The figure shows that the critical
wall position AC for an elliptical plasma is about 2.0, which agrees well

5), (E-1)/(E+1) = A_Z. It is concluded

with the result of Laval et al.
that the plasma of INTOR can be made stable against the positional insta-
bility by locating a perfectly conducting wall at A < 1.5, irrespective

of small triangularity or rectangularity.

— 3 —
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Secondly, we investigate the dependence of the positional instability
on the ellipticity of the plasma surface. The motivation of this study is
to know whether the ellipticity of 1.5 is appropriate from the viewpoint
of the positional instability. 1In this analysis we choose the safety
factor and poloidal beta value as qg = 4,0 and Bp=2.0. Figure 3.2 shows
the growth rate of the instability vs. ellipticity for the cases with a
conducting wall at A = 1.6 and without the conducting wall.

Conclusions from the above analyses are summarized as follows:

(1) A plasma with ellipticity less than about 1.3 is stable against the
positional instability if a perfectly conducting wall is located sufficiently
close to the plasma surface (A ¢ 1.6).

{2) If there is mno conductihg wall with long skin time, a plasma with any
ellipticity is unstable against the positional instability.

The above conclusions suggest that decreasing of the ellipticity of
the INTOR plasma does not hlep to improve the positional stability
appreciably. Remaining problems which have not been studied yet are;

(1) From our preliminary calculations it seems that triangular deformation
of the plasma surface deteriorates the positional stability. This problem
is related to a case with separatrices of the vacuum field, but it has not
been studied yet as all the analyses of the positional instability up to
now are carried out for equilibria with given shapes of a plasma surface.
(2) In our analyses it is assumed that the conducting wall completely
surrounds the plasma surface, but in the actual device the conducting

wall has some slits and/or holes which may deteriorate the stability.

The positional stability will be worsened by taking into account this
effect but it will be recovered by comsidering the nonlinear saturation

of the mode. For the purpose of analyzing the effect we are now developing

a 2-dimensional nonlinear code AEOLUS—P6).

4, Low-n kink mode instability
A conducting wall surrounding the plasma is also effective to
stabilize a low-n external kink mode instability. This was numerically

confirmed by Berger et al. for the case of a tokamak with the Solov'ev

7)

and by Tsunematsu et al. for the case of a conventional

8)

circular cross—sectional tokamak with a more realistic current profile™”,

equilibrium

Both the calculations are carried out by using the code ERATO as in the

previous section. According to the latter calculation the external n=l
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mode instability is completely stabilized and the n=2 mode determines the
beta limit if the position of the conducting wall A is less than about 1.2.

This result is obtained for the model equilibrium #1. Almost same
result is obtained for the model equilibrium #2, i.e., a series of the
FCT equilibria (Fig, 4.1)1’9>. For this series of equilibria the n=1
kink mode is stabilized completely by a conducting wall at a practical
position (A= 1.2). In order to stabilize the n=3 kink mode, the wall
should be located more closely to the plasma surface but the position
is still possible to realize. And for the higher beta plasma, the wall
position should be more close. The difference of the critical wall
position for the high and low beta plasmas, however, 1is slight among the
instabilities with the same toroidal mode number. It is remarkable that
the critical wall position is almost independent on the beta value. As
the perturbations of higher mode number are localized near the plasma
surface, the mode with n23 does not seem to be dangerous for the
confinement (Fig. 4.2).

Generally the critical safety factor(qsc) is increased by increasing
the poloidal beta value. The total beta value, however, increases with
the increase of Bp in the range of lower Bp. Therefore, the maximum
attainable beta is determined by the tradeoff of how much Bp is gained
against the loss of stability. The dependence of the beta value on the
poloidal beta value is studied for the model equilibrium #1 of the INTOR
plasma. In our analyses, we assume that a perfectly conducting wall is
located at A=l.1. Therefore, it will be safe to say that the n=1 mode
instability is strongly stabilized. It is also confirmed by the present
analyses which show that the beta value is determined by the n=2 mode
instabilities rather than the n=l mode. By this analysis it is found

that the stability sharply deteriorates in the parameter range of INTOR

.when the poloidal beta is increased (Fig. 4.3). In the higher Bp case

of INTOR the instability of ballooning feature seems to determine the

stability limit.
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5. Low-n internal mode instability
From the viewpoint of beta optimization internal modes are very
important. Numerical calculation of the low-n intermal modes by ERATO
is, however, rather difficult because of the small growth rates of the
modes by comparing with the previously described external modes.
Before obtaining definite conclusions on the behaviours of the modes
from the results of the numerical calculations, therefore, it seems
that we had better critically investigate the convergence properties
of the numerical results and make some improvements on the code.g’lo’ll)
As a part of the investigation we calculated the growth rates for
the n=3 internal modes for the model equilibrium #2 of INTOR. The results
(Fig. 5.1) are consistent with those obtained by extrapolation from the
higher-n results, which is described in the following section. The low-n
internal modes for the lower beta equilibriuﬁ (B<10%) are marginally

stable and those for higher beta equilibrium are slightly unstable.

6. High-n ballooning mode instability

Ballooning mode instabilities generally become more unstable as the

toroidal mode number n becomes larger. Therefore, high-n balleconing mode
instability is, usually, considered to be the most plausible cause which
determines the limiting beta value of a present tokamak plasma. From
this point of view we investigate the high-n ballooning mode instabilities

in detail.

6.1 Numerical code BOREAS for the analysis of infinite-n ballooning
9,12)

modes

We develop a mew high-n ballooning code BOREAS which solves the CHT
‘ '(Connor, Hastie, and Taylor) equationlB) on the basis of the finite
element method. The equation which we solve is a one—dimensional

eigenvalue equation defined on each magnetic surface of a tokamak,

2_3
R'B 2
3 1 X .2, 3F 2P' 3 B
— {[-=—+ 21 =31+ S—— (P +5)
ds RZBX BZ es B2B YL 2
X
r%B
. :
e b e R Ak L
B RBX B
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2.3

R“B 2
3 1 X .2, aF 2p' 3 B
% R%, B °s 3%, ’
X
%8
' ,
-t e Algg+r—£21r -0,
B B, B
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where

¥
Z = j'\)'dy ,
Yo

s is the arc length along the magnetic surface and the other notations

are standard. From this lowest order equation a Lagrangian is reconstructed

as
L = foo [-B (—aF)2 + P! ;3 F2+w2B Fz]ds
- 1%s 2 3 ’
where L RZB3 ,
B = t—
R°B, B
2 2
A 2P' 3 B 2P'1 3 B
=‘ - —h———— —— ) — ] —
By = B'By = 5 — 3y B+ 3 7 Z3s 7)o
B°B B
X
2
R“B
By= 53t 5 L
R°B, B

On the basis df the above Lagrangian'the finite element formulation of the
system is very easily derived and the problem is converted to a general
eigenvalue problem of matrices.
The code BOREAS has two options., One solves the CHT equation directly
as an eigenvalue problem of mz. The other calculates approximately the
critical pressure gradient P' for the marginally stable equilibrium (w2=0).
This scolution is obtained by letting w2=0 and considering the equilibrium
quantities are almost comstant near the parameter range of interest.
Before using the code for the analyses of the INTOR plasma we apply
the code for calculation of ballooning spectra of the Solov'ev equilibrium.
Examples are shown in Figs. 6.1 and 6.2, In the respective order the
subfigures a, b, and ¢ correspond to the ballooning-and Mercier-stable
equilibrium, ballooning-unstable but Mercier-stable equilibrium, and
‘ballooning-and Mercier-unstable equilibrium. Several remarkable features
are found in these figures. For example, number of unstable modes
increases as the plasma becomes more unstable against the Mercier mode.
Profiles of the eigenvectors show that unstable modes localize arround
the center and, on the other hand, stable modes spread over the whole
range of calculation. The most remarkable is found in the convergence
curves of the eigenvalues (Fig. 6.2), which suggest that the positive
spectra are continuous as thé theory predicts. All these results seem

very reasonable and the code BOREAS works well,
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6.2 Dependence of the maximum beta on the poloidal beta

From the technological point of view it is one of the most important
things to know the dependence of the maximum beta on the poloidal beta.
For this purpose we calculated the maximum beta value obtained for the
model equilibrium #1 and #2'%)
follows.

(1) The maximum attainable beta value depends strongly on the class of

The results (Fig. 6.3) are summarized as

equilibria. Therefore, it is still possible to find out some new stable
equilibria with higher beta value by adopting some special functional shape
for the source term of the Grad-Shafranov equation.

(2) It seems that the maximum beta value is realized for relatively low
poloidal beta equilibrium. This result is similar to that for the external
kink mode. But variable range of classes of equilibria is limited and

further studies are required to obtain a definite conclusion.

6.3 Ballooning-stable FCT equilibria and beta scaling

In order to obtain equilibria with high beta value for a given ¢-
profile (model equilibrium #2) a 1~1/2 dimensional tokamak transport
modell’g’lé) (APOLLO code) 1is applied to follow the evolution of tokamak
equilibria subject to additional heating. Starting from a force-free
equilibrium, we examine at every time step the stability condition for
infinite-n ballooning modes (BOREAS code), and when they become unstable
in some region the plasma transport is enhanced locally. We simply assume
the infinite heat conduction due to the unstable modes which yields the
marginally ballooning-stable pressure profile at each time step. We
finally reach a high beta equilibrium marginally stable over the whole
plasma column, in which the heating power balances the pressure transport
due to the instabilities. To manifest the effects of ballooning modes on
‘beta limitation, we ignore other dissipations in plasma transport and
assume a temporally constant pressure source profile.

Now we describe the results of calculation for a class of plasma
equiliblia with INTOR parameters, whose standard values are the aspect
ratio A=4, ellipticity E=1.6, triangularity 6=0.3, safety factor at the
magnetic axis and on the plasma surface q0=l and qs=3, respectively.
Figure 6.4 shows a typical time evolution of the pressure profile (Fig.
6.4a) and of the toroidal and poloidal beta values B=2uo<P>/Bi and
BJ=4V<P>/uORDI§ (Fig. 6.4b). After the plasma becomes unstable at B=2.8%Z,

the beta value continues to increase up to 4%, by changing the pressure

— 8 —
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profile. We find that the slight reduction of the pressure gradient near
the unstable region ensures the stability of ballooning modes, and the
attainable beta value and the pressure profile are almost independent of
the pressure source profile. In the calculation the external poloidal
coil system is adjusted such that the plasma shape remains unchanged and
no surface current appears. The finally established equilibrium configu-
ration is shown in Fig. 6.4c.

From the systematic parameter survey according to the above procedure
we obtain scaling laws of beta values on several parameters. Figure 6.5
summ%Fizes the scaling laws, i.e., the attainable 8 and BJ, and also B* =
ZUOVQP2>/B% as functions of E, §, q, and A. Higher 5 values can be
reached as expected with increasing E and/or decreasing A and o while
the effect of § is found to be insignificant. It should be noted that

these scaling laws are for the series of the FCT equilibria (model equi-

librium #2).

6.4 Finite-n correction and kinetic effect on the high-n

ballooning modes

The beta limit obtained from the infinite-n ballooning mode analysis
in the previous subsection is too restrictive. It has been shown that the
growth rate of these modes are reduced by decreasing nl3’15). Another
stabilization is expected from kinetic effects. The FLR effect stabilizes
high-n MHD modes, and can be included in the MHD eigenmode equation
simply by replacing wZ to w(w+w*i), where Wyeq is the ion diamagnetic

,16)

Taking account of these effects, we can formally

write the growth rate in the form Yz(n) = yi—y?n—w§1/4 (y_:the growth

drift frequencyl

rate for n>«, the second and third terms correspond to the stabilization

due to the finite-n correction and FLR, respectively). Note that this

formula can determine the n value and the corresponding growth rate for

the most unstable mode because an scales as n_l, while m§/4<=n2.

We calculate Yz(n) for standard parameters in the previous subsection

under the plasma heating with rather broad source profile Sfr(l—w)l'5.

In Fig. 6.6a, the dashed line denotes the MHD growth rate, Yi—an, derived
15)

by WKB method , and the solid curve the growth rate including w, effect,
yz(n), for the temperature Ti=20 keV. The critical n is about 20 and

the corresponding growth rateé is Y220.06 wz(m2=32/u pRz). In this
A A13) o 0

figure, the dotted line denotes the CHT theory , and it is completely

stabilized by w, effects. Figure 6.6b shows the y-n-8 diagram; we can

— g —
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see that the critical beta value is larger than the one predicted by the
infinite-n calculations and that the maximum growth rate starts to decrease
for the beta value 12%. This result suggests that if we carefully control
the plasma shape and the pressure profile, we can reach higher beta wvalue,
although the critical beta is rather small in the present case. Moreover,
the self-healing effect of the pressure profile due to unstable modes, as
described in the previous subsection, must be included in crder to determine

the critical beta wvalue.

6.5 Possibility to attain higher beta equilibrium in second

stable region

Existence of the second stable region was pointed out theoretically
since the early stage of the high-n ballooning mode analysesl7). The
theory predicts that a plasma on an unstable magnetic surface will
become again stable when the pressure gradient on the surface is further
inereased beyond a certain critical value., However, an equilibrium in the
second stable region over the whole plasma cross-section has not been
found up to now. Therefore, it is not evident if a simple procedure to
get over the ballooning-unstzble band will be always found for any kind
of initial equilibrium. We find out an example of the procedure by which
a high beta equilibrium stable against the ballooning meode in a whole
plasma region is obtainedls) (Fig.6.7).

The procedure is based on the combination of the APOLLO and BOREAS
codes as in subsection 6.3. We start from the force-free equilibrium
with circular cross-section and heat up the plasma with constant source
profile S(y) = (1—w2)2. When the plasma is heated up to B=2%, it becomes
unstable at the region where the pressure gradient is maximum. But the
heating is continued beyond this beta value. During the process the
unstable region spreads in both directions and finally the second stable
region appears in the midway of the unstable region. Then we introduce
the stabilization transport process as described in subsection 6.3 and
whole plasma is made stable, Figure 6.7 shows the example of the equi-
librium with g ~15% which is stable against the ballooning mode in a whole
plasma region. In this figure| ggacritl is the critical pressure gradient
for the ballooning mode and Iaaocrit |3J EEW ensures the ballooning mode
is marginally stable. 1In this stabilization transport process the pressure
profile changes only slightly and the beta value changés very slightly.

Thus a ballooning-stable equilibrium with very high beta value is attained
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by this procedure,

In an experiment of an actual plasma more realistic method to get
over the ballooning unstable band should be adopted, though the simplest
may be to heat up the plasma very quickly. The example shown in Fig. 6.7
is for a circular cross-sectional tokamak and the result is not directly
applied to the INTOR plasma. But we consider that the above procedure

will be also successful for the INTOR plasma and it is now in progress.

7. Resistive instability

7.1 Kinetic theory of a tearing mode instabilitylg’zo)

As the temperature becomes high enough, the growth rate of the
resistive tearing mode, Yoo becomes smaller than the drift frequelrlcyl(::.k._3
For plasma parameters of INTOR such as B=5.5T, a=1.3m, R=5.2m, no=lO cm ",
Te=10keV and (m,n) = (2,1), i.e., 8%1010 (S: resistive skin time / Alfvén
time), the growth rate obtained from the fluid theory is of the order of
10_3w*. The stability is dominated by the kinetic interactions near the
mode rational surface.

We have developed a unified theory of the low frequency modes in a
circular cylindrical tokamak: the density inhomogeneity, plasma current, 8
value, gq-profile, magnetic shear, finite gyroradius, electron temperature
gradient and kinetic parallel conductivity effects are correctly taken into
account., The stability is exaﬁined in the collisionless limit. We find
that the lowm {m = 2.3, ....) drift tearing instabilities can appear in
low density regime and are stabilized due to ion Landau damping when the
density increases. These are further stabilized by increasing the electron
temperature gradient,

Numerical calculations are performed for_model distribution of the
equilibrium as N(r) = n(0) exp(-rZ/ZLi), Jo(r) = JO exp(—nJrz/ZLi), Te(r)=
T0 exp(—nerZ/Li). We take the density inhomogeneity scale length Ln equal
to a/2; in this case the line averaged density N(r) = n(0)/2 holds.

Furthe¥ choice of the parameters are B = 4T, a = 50cm, R = Zm, Te(O) =
4keV and Ti = Zkev. For these parameters a/pi'b500 holds.

The figure 7.1 shows the eigenvalue w of the (2,1) mode as a function
of the density n(0) for the parameters q(O) = 1.49, q(a) = 3.43, n; = 1
and A'a = 12.1 (unstable region for MHD tearing mode). When the plasma
density is low, the (2,1) mode is unstable with the growth rate of the

order 0.luwx; as the density increases y reduces and the drift-tearing mode
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by this procedure.

In an experiment of an actual plasma more realistic method to get
over the ballooning unstable band should be adopted, though the simplest
may be to heat up the plasma very quickly. The example shown in Fig. 6.7
is for a circular cross-sectional tokamak and the result is not directly
applied to the INTOR plasma. But we consider that the above procedure

will be also successful for the INTOR plasma and it is now in progress.

7. Resistive instability

7.1 Kinetic theory of a tearing mode instabilitylg’zo)

As the temperature becomes high enough, the growth rate of the
resistive tearing mode, Yoo becomes smaller than the drift frequency uwg.

For plasma parameters of INTOR such as B=5.5T, a=1.3m, R=5.2m, n0=1014cm_3,

Te=10keV and (m,n) = (2,1), i.e., S’\f1010 (S: resistive skin time / Alfvén
time), the growth rate obtained from the fluid theory is of the order of
lO_Bm*. The stability is dominated by the kinetic interactions near the
mode rational surface,

We have developed a unified theory of the low frequency modes in a
circular cylindrical tokamak: the density inhomogeneity, plasma current, 8
value, gq-profile, magnetic shear, finite gyroradius, electron temperature
gradient and kinetic parallel conductivity effects are correctly taken into
account. The stability is examined in the collisionless limit., We find
that the lowm (m = 2.3, ....) drift tearing instabilities can appear in
low density regime and are stabilized due to ion Landau damping when the
density increases. These are further stabilized by increasing the electron
temperature gradient.

Numerical calculations are performed for model distribution of the
equilibrium as N(r} = n(0) exp(—rZ/ZLi), Jo(r) = JO exp(«nJrZ/ZLi), Te(r)=
Ty exp(-nerzlLi). We take the density inhomogeneity scale length Ln equal
to a/2; in this case the line averaged density N(r) = n(0)/2 holds.
Furthe; choice of the parameters are B = 4T, a = 50cm, R = 2m, Te(O) =
4keV and Ti = Zkev., . For these parameters a/pi'b500 holds.

The figure 7.1 shows the eigenvalue w of the (2,1) mode as a function
of the density n(0) for the parameters q(0) = 1.49, q(a) = 3.43, ny; = 1
and A'a = 12.1 (unstable region for MHD tearing mode). When the plasma
density is low, the (2,1) mode is unstable with the growth rate of the

order 0.lwx; as the density increases y reduces and the drift-tearing mode
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finally is stabilized for n(0) 2 7X1013cm_3. The judgement of the

stability in terms of a simple A’ analyses, A' Z 0, is no longer valid
for collisionless kinetic tearing mode.

The wave structure implies that the stability is determined by the
balance between excitations by electrons and the convective loss. The
stability criterion of (2,1) mode is shown in Fig. 7.2 for T = T and
T = ZTi and other parameters are the same as Fig. 7.1, The stability

e
condition is approximately obtained as

u/v, < 0.4,
i

for the present parameters (JO = -Neu). We see that the local current
density, not A', is crucial to excite the drift tearing instability. The
value 0.4 itself should depend on the equilibrium configurations (q, nJ,

... ), but the dependence is not investigated here. The figure 7.3 shows
y/w, as a function of Ti for n(0) = lOlacm”B. The solid line is due to
the theory where the electron-ion collisions are taken into account. This
shows the relation of the kinetic tearing mode to the resistive tearing
mode.

In summary, for the high temperature plasmas, all electromagnetic
helical modes (2 < m ¢ 50), which have the mode rational surface in the
hot core of the plasma, are stable in the high density cylindrical tokamak
equilibria with the moderate current and temperature inhomogeneities Ny Y
ng w 1 — 2. When the mode rational surface is near the plasma edge, T
(rational surface) g 0(100)eV, MHD tearing mode can be unstable if AT > 0
is satisfied.

Qur analyses shows the importance of the energy convection as the

21)

atabilization mechanism. This implies that the toroidal effect and

22 . .
the steep ion temperature gradient ) remains to be possible candidates

as the cause of destabilization of kinetic tearing mode.

The growth of the (2,1) tearing mode is believed to lead the onset
of the major disruption; the stabilization of the tearing mode due to the
kinetic interactions suggests that the occurance of the major disruption
becomes less frequent in high temperature plasmas. These problems and
also the study of m = 1 drift tearing mode remain open and still require

further investigatiomns.
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7.2 Saturation of the m=1 magnetic island due to a resistive

internal mode

When the safety factor at the magnetic axis becomes below the unity,
the internal disruption (or the sawtooth oscillation) is observed in a

23)

tokamak , and this phenomenon is well explained by the m=1 resistive

24)

mode, which was proposed by Kadomtsev and confirmed numerically by

25,2
other authors > 6). The recent high power neutral beam injection experi-

ments of the JFT-2 tokamak27), however, showed the suppression of the
internal disruption and the appearance of the m=1 stationary gscillation
with large amplitude. One of the possible explanations of this new phencme-
non is the stability of the m=l internal mode. As was predicted by Bussac
et al.za), the internal mode becomes unstable in a toroidal plasma, when
the poloidal beta value exceeds a certain critical value, Although the
saturation level of this mode is quite low due to the development of the
skin current at the gq=1 surface, as pointed out by Rosenbluth et al.zg),
the finite resistivity n can relax this skin current and cause the large
magnetic island. From this point of view, we studied the linear stability
and nonlinear evolution of the resistive internal modeSO).

The nonlinear evolution of the resistive modes in a tokamak has been
studied by using the reduced set of MHD equation326). But this set of
equations cannot express the unstable m=1 internal mode because of neglect-
ing the second order terms of the inverse aspect ratio. Therefore, we
developed the new reduced set of MHD equations in a cylindrical plasma
under the assumption of the incompressible fluid motion V-; = 0. This
new set of equations is reduced to the conventional one when the longi-
tudinal wave number kz goes to infinity with keeping szz constant., This
set of equations has been solved by expanding variables into Fourier
components and using the predictor-corrector explicit time integration

“scheme. Figure 7.4 shows the temporal change of the position of the
magnetic axis r, due to the resistive mode, the resistive internal mode,
and the internal mode. The safety factor and the pressure profile are
chosen as q(r) = 0.8(1+r2) and p(r) = 2(l—r2), respectively, and the

magnetic fields B, and BZ are given by solving the equilibrium equation

gnder the conditign of Be = 1 at r=0.5. When kZ = () and n=10_4, the

internal mode is marginally stable and the magnetic axis shifts to the
cooler region exponentially:in time due to the resistive mode, and the
internal disruption occurs when the magnetic axis touched the critical

surface r = r,, as predicted by Kadomtsev. When kz = 1/3 and n= 0, the
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internal mode shifts the magnetic axis, but this shift saturates at low
level, which is consistent with the analysis by Rosenbluth et al. When
we take into account the finite resistivity n = 10_4, then the magnetic
axls shifts beyond this level due to the magnetic island formation, as the
resistive mode, but the shift saturates before touching the critical
surface. This saturation of the magnetic shift is caused by the island
formation of the B field, which is constant in time for the resistive
mode. Figure 7.5 shows the magnetic flux surface at the saturation level.
In this simulation, we have shown that the internal disruption can be
suppressed in a tokamak with low g value and high poloidal beta value. As
was pointed out in DIVA experiments3l), the internal disruption decreases
the energy confinement time considerably in a low q discharge. Therefore,
the suppression of the internal disruption will improve the energy

confinement. The results of the simulations will be reported in detail

elsewhere.

8. Conclusions

Results of the analyses are summarized as follows.

Positional instability of the INTOR plasma is stabilized by a
conducting wall located at A g 1. 5. 1In the present design of INTOR the
positional 1nstab111ty does not seem to limit the maximum attalnable beta
but if higher elllptlclty is adopted the situation changes to be more
restrictive.

Low-n kink instability is stabilized by a conducting wall located at
technologically possible position (4 = 1.1). Higher-n kink instability
seems to be safe by judging from the radial mode structure. In this sense
it seems that there is no serious beta limitation due to the mode.

Low-n internal mode instability is well understood as the extrapolation
from the higher-n ballooning mode instabilities and, generally, the low-n
mode has smaller growth rate than the higher-n modes.

As for the high-n ballooning mode instabilities there are many points
to be mentioned.

{1) Higher beta equilibrium which is stable against the high-n ballooning
mode is obtained by incorporating the stabilization-transport process to
the 1-1/2 dimensional tokamak code (equilibrjum-transport code). In this
procedure of optimization the g-profile is not altered and usually the

gain of beta value due to the process is not very large.
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internal mode shifts the magnetic axis, but this shift saturates at low
level, which is consistent with the.analysis by Rosenbluth et al. When
we take into account the finite resistivity n = 10_4, then the magnetic
axis shifts beyond this level due to the magnetic island formation, as the
resistive mode, but the shift saturates before touching the critical
surface. This saturation of the magnetic shift is caused by the island
formation of the B field, which is constant in time for the resistive
mode. TFigure 7.5 shows the magnetic flux surface at the saturation level.
In this simulation, we have shown that the internal disruption can be
suppressed in a tokamak with low q value and high poloidal beta value. As
was pointed out in DIVA experimentsBl), the internal disruption decreases
the energy confinement time considerably in a low g discharge. Therefore,
the suppression of the internal disruption will improve the energy

confinement. The results of the simulations will be reported in detail

elsewhere.

8. Conclusions

Results of the analyses are summarized as follows.

Positional instability of the INTOR plasma is gtabilized by a
conducting wall located at A ¢ 1.5. 1In the present design of INTOR the
positional 1nstab111ty does not seem to limit the maximum attalnable beta
but if higher elllptlclty is adopted the situation changes to be more
restrictive,.

Low-n kink instability is stabilized by a conducting wall located at
technologically possible position (A = 1.1). Higher-n kink instability
seems to be safe by judging from the radial mode structure. In this sense
it seems that there is no serious beta iimitation due to the mode.

Low-n internal mode instability is well understood as the extrapolation
from the higher-n ballooning mode instabilities and, generally, the low-n
mode has smaller growth rate than the higher-n modes.

As for the high-n ballooning mode instabilities there are many points
to be mentioned.

(1) Higher beta equilibrium which is stable against the high-n ballooning
mode is obtained by incorporating the stabilization-transport process to
the 1-1/2 dimensional tokamak code {equilibrium-transport code). In this
procedure of optimization the g-profile is not altered and usually the

gain of beta value due to the process is not very large.
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(2) The scaling laws of the optimized beta value are obtained. The
remarkable is the l/JE;'~ scaling of the beta wvalue which is different

from the usually obtained l/qsz—scaling. Studies of scaling laws on

other parameters are now being carried out,

(3) 1It is quantitatively shown that the combination of finite-n correction
and kinetic effect stabilizes the ballooning mode instability considerably.
More systematic parameter survey is now planned.

(4) An example of a very high beta equilibrium in the second stable

region of the ballooning mode instability is obtained successfully.

Kinetic approach of the tearing mode instability shows that the
usual MHD approach is not always appropriate in the case of a high
temperature plasma. In the case difference of stability criterion between
the two approaches seems rather serious. More detailed studies are needed
on this problem.

In order to understand mény nonlinear MHD phenomena which include
major disruption and large-scale oscillations in a tokamak plasma several
time-evolutional codes are being developed. As an example of the analyses
a resistive internal mode instability is successfully analyzed to inter-
prete a large amplitude stationary oscillation observed in the JFT-2
experiment by a large-scale island formation., This kind of analysis

on the INTOR plasma is not completed yet.
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Fig. 4.1 Square of growth rate (I'®) of kink instability versus
the position of a conducting wall (A=b/a) for a series
of FCT equilibria. Symbolsa,d, ¥V, and & denote the
cases with B=8.4, 15,8, 22.6. and 28.8% for n=1 (black
symbol) and n=3 (cpen symbol) modes, respectively.
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n=3 kink mode (A=l;l, Fig.4.2a) and internal mode (Fig.
4.2b) of the equilibrium with 8=22.6%.
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Fig. 5.1 Convergence curves of I?vs., N—2 (N = NIp = NX is the

number of meshes) for the n=3 internal modes.
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Eigenvalues (wz) and eigenfunctions of the infinite-n

modes on a magnetic surface w/ws=0.5. An equilibrium

is of the Solov'ev type with A=3.

obtained by using the
(b) q0=l.0, where the

The lowest eigenvalue

Solutions are
integration boundary 8 =50T7.
‘ max

Mercier-mode is stable.

becomes negative

and corresponding eigenfunction is strongly localized

near 6=0.
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mode versus the poloidal beta value.




JAFERI-M 9466

09

_h__rwh____k_—____rrﬂ»___k___

*y7' =9 UITM uorjeandTjucy wnTiqrTInb2 TRUT}

ayy, () ‘ooezans ewserd 2yl WO SNTEA PYI 03 SpuU0dSIIIOD S XTFINS Syl puE
*nT3 Teproiol =8yl STt ¢ mumﬁB.Mth\uu Aq peurjep ST (®B) ul 1 SNTpel 10UTH
ayl " ((q) ur SUIT PITOS Pailop 3yl) %g° 7=y 38 2TqEISUn JWOIS] sapou
SuTuooTTBq Yl I231Ie pezITERl ST Y%7 =4 UITM ruserd a1qels AJJRUT3IRW

aYy] - pounsse ST Nnmaiﬁv5m a1Tjoad avinos vanssaid YL .mumw pue

,Hnov ‘cr0=9 ‘9°T=H ‘y=y :saelowexed YOINI YITH ruse1d ® JO senlea B19q

TeproTod pue TepTOiol 2yl (q) pue 271Foad aanssaid syl (®) JO UOTINTOAH

('q4D) |

08 0y

hrgnsterenbigaa g

\

00

y'g 811

0l

f!lafr?liillllrrTr

(Q)

(‘qin)d



JAERI-M 9466

B B By B
(%) %)
ot gt
al al (0) al 8-—“3)
7+ 7F
3+ 6 3+ 6
. X Wy
ar ¢ 2r 4r M
O~
3+ .-
> T
b2 - 2r
1+ 1
— i 1 L 1 1 0_ O 1 1 1 1 ]
© © 10 12 .4 16 1.8 -02 00 02 04 06
Bi B E Bi B 2
M (%) [ (%)
ot 9
al  gf fe 4t 8f
7+ 7+
3 e 3k 6F
sk 5¢
2+ 4 =5 2+ 4ar
3+ 'O"‘." 3
1L 2k o T+ 2r
e (b
i+
i n ] O— O ! { 1 1
o © " 2 3 4 > 3 4 5
Qe A
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aspect ratio. Black symbols correspond te standard

INTOR parameters.
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TIME=2.31E+02

Fig. 7.5 Magnetic flux surfaces at the saturation level

of the resistive internal mode.



