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Self-similarity is a descriptive term applying to a family of curves,
Tt means that the family is invariant to a one-parameter group of affine
(stretching) transformations. The property of self-similarity has been
exploited in a wide variety of problems in applied superconductivity, namely,
(i) transient distribution of the current among the filaments of a superconductor
during charge-up, (ii) steady distribution of current among the filaments of
a superconductor near the current leads, (iii) transient heat transfer in
superfluid helium, (iv) transient diffusion in cylindrical geometry (important
in studying the growth rate of the reacted layer in ALl5 materials),
(v) thermal expulsion of helium from quenching cable-in-conduit conductors,
(vi) eddy current heating of irregular plates by slow, ramped fields, and
(vii) the specific heat of type-II superconductors. Most, but not all, of
the applications involve differential equations, both ordinary and partial.
The novel methods explained in this report should prove of great value in

other fields, just as they already have done in applied superconductivity.

Kevwords,; Superconductivity, Differential Equations, Lie Groups,

Similarity Solutions
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"Holmes laughed., 'Watson insists that I am the dramatist
in real life,' said he, 'Some touch of the artist wells up
within me, and calls insistently for a ﬁéll—staged performance.
Surely our profession...would be a drab...one if we did not
sometimes set the scene so as to glorify our results....The quick
inference...the clever forecast of coming events, the triumphant

vindication of bold theories--are these not the pride and justifi-

cation of our life's work?™

————————— A, Conan Doyle, The Valley of Fear.
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SELF-SIMILARITY IN APPLIED SUPERCONDUCTIVITY
*
Lawrence Dresner
Japan Atomic Energy Research Institute,

Tokai-mura, Ibaraki-ken, 319-11 Japan

I. Introduction

Self-similarity is a property of a one-parameter family of curves:
it means any two curves of the family may be brought into congruence by
stretching transformations of the ordinate and abscissa of one of them.
An example is the family of temperature profiles arising from a pulsed

3/2. From the

point source in an infinite medium, T = exp{-r?/4Dt)/ (47D¢t)
temperature profile at time t, we can find the temperature profile at time
t'=A%t with the stretching transformations T' = 27T, ' o= Ar.

Self-similarity is a rather descriptive term. In more mathematical
language, it means the family of curves is invariant to a one-parameter
group of affine (stretching) transformations. The curves of the family are
caried into one another by the transformations of the group so that the
family as a whole is carried into itself. As in many problems involving
group invariance, we can draw useful conclusions from the group invariance
alone without making detailed calculations.

Dimensional analysis bears a strong relation to self-similarity:
dimensional homogeneity requires invariance to certain groups of affine
transformations. But many physical problems are invariant to affine groups
not derivable from dimensional arguments. So self-similarity is a broader
notion than dimensional homogeneity.

Self-similarity has been applied to three kinds of problems in applied
superconductivity. First there are applications that involve solving a
partial differential equation. Here the group invariance of the partial
differential equation allows us to reduce the partial differential equation
to an ordinary differential equation, a great step forward. Furthermere,
the group invariance enables us, using methods developed a century ago by
Sophus Lie,  to simplify treatment of the ordinary differential equation.

Problems that can be dealt with this way include (i) transient distribution

*0n assignment by the Oak Ridge National Laboratory of the U. 5., Department
of Energy under the terms of the Japan-U. §. Personnel Exchange Program AL-4

in Fusion Energy.
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of the current among the filaments of a superconductor during charge-up,
(ii) steady distribution of current among the filaments of a supercon-
ductor near the current leads, (iii) transient heat transfer in superfluid
helium, (iv) transient diffusion in cylindrical geometry (important

in studying the growth rate of the reacted layer in Al5 materials), and (v)
thermal expulsion of helium from quenching cable-in-conduit superconductors.
A second kind of applicationm, also involving a partial differential equation,
which is not, however, reduced to an ordinary differential equation, is to
eddy current heating of irregular plates by slow, ramped fields. A third
kind of application, not involving partial differential equations at all,

is the specific heat of type-IT superconductors.

The foregoing applications all break new ground. Their number and di-
versity show the broad applicability of the idea of self-similarity. Only
a few will be dealt with in detail in this review. However, we begin with
an already solved problem, simpler than any of the foregoing, in order first
to show the reader how the notion of self-similarity is used and how Lie

applied it to the treatment of ordinary differential equations.

L . Partial Flux Penetratdion in a Hard Superconductor

(1) When a magnetic field is created parallel to the face of a supercon-
ducting slab, shielding currents are induced in the slab that oppose entry of
the magnetic field. If the critical current JC is treated as independent of
the local magnetic field, the profiles of magnetic induction B are parallel
straight lines of slope —ugJC that form a self-similar family (at least until
the field penetrates to the middle of the slab). Is there any other depend-
ence of Jc on B for which the B-profiles are gelf similar, as illustrated in
Fig.1b?

Self-similarity of the B-profile means that the image B'(x') of a flux

profile B(x) under the transformation
B' = A% (1a)
x' = A x (ib)

is also a flux profile. All the flux profiles must satisfy the same first-

order differential equation

a8

T~ Mo JC(B) (2)
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48

L= u I (B )
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go this differential equation itself must be invariant to the group of
transformations (1). What is the most general first-order differential
equation invariant to the group (1)7?

Any differential equation of first-order in B takes the form F(x,B B) =0
where F is an as yet undetermined function and B is an abbreviation for
dB/dx. Since the primed variables are supposed to satisfy this differential

equation as well, we must have
Fx, A28, A271B) =0 (3)
for all A. Differentiate (3) with respect to A and set A=1:

+ aBF_ + (a- 1)BF; =
XFX aBF g (a-1)B 5 0 (4)
Here the subscripts indicate partial differentiation of F(x,B,E) with respect
to its wvarious arguments.

The standard method of finding the general solution of a first-order,
linear partial differential equation like (4) is to set F equal to an arbi-

trary function of two independent integrals of the so-called characteristic

equations:
dx _ds___db
X aB (afl)B (5)
. (a-1)/a
Two such integrals are B/x? and B/B ; thus
-y B B
F(x,B,B) = G( ta=1y/a —~g—) 6)
B X

where F is as yet entirely undetermined. Setting G=0 is the same as writing

§ = pla-l)/a H(—) %)

X

where H is another as yet undetermined function.
If (7) must be the same as (2), H can only be a coenstant in order that

the right-hand side of (7) be independent of x. Thus
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1 B(a—l)/a
C

(8)

is a necessary (and as it turns out also sufficient) condition that the
penetrating field profiles be self-similar.

The total magnetic flux ¢ that has penetrated the sample is ¢ = I?de
per unit width. The penetrating flux $' corresponding to the field profile

B'(x') 1is
' =‘£ Bvdxr___)\a“l'ljo de:)\a+1¢ (9)

The parameter A is related to the ratio of the external magnetic fields B’'
0

and B : A= (B'/B )l/a. Now, (9) can be written
8] Q o)
p' ) 9
B,(a+l)/a B (a+l)/a (10)
0 0

Thus the pentrating flux varies as the (a+1)/a power of the applied field
when the critical current varies as the (a-1)/a power of the field. This
conclusion is entirely a consequence of the group invariance of the problem.

(2) Brechna’has given a direct solution of the flux penretration problem.
when JC = J*B*/(B+QQ. If we take the limit of his formulas when B+ 0, with
J*B* approaching a finite limit, we should obtain the case Jc ~ B~ i.e.,
the case a=1/2. Then ¢ ~ B?, and this in fact is what Brechna's formulas
reduce to.

(3} The same result is obtainable by dimensiomal analysis. For if JC
=CB(3-1)/a 2

T(l—a)/a_

, the proportionality constant C must have the dimensions A m
The penetrating flux has the dimensions T m, and the only other
relevant parameters are BO (dimensions T) and Yy (dimensions henry/m). There
is no quantity having the dimensions of length because we are confining our
interest to the case of partial penetration, in which the field has not reached
the centerline of the slab. Then dimensional homogeneity requires that ¢ ~
B§a+l)/a/poc.

(4) In this simple problem, the same conclusion can be reached in several
ways. But the first way, emphasizing the property of self-similarity, helped

us to introduce some of the basic ideas we shall be using in the rest of this

paper. Moreover, as we shall see next, it paves way for the explanation of an
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old ‘and powerful method of treating ordinary differential equations due to

Sophus Lie, which, sorprisingly, is not used very much much these days.

. Application of Self-Similarity to First-Order Differential Equations

(i).The moét general first-order differential equation involving the
dependent variable y and the independent variable x can be written f(x,y,§)=0,
where f can be any function. The solution of this differential equation is
a family of curves ¢(x,y}=C labelled by the single parameter c, the so-called
constant of integration. If this family is self-similar, i.e., 1f a trans-
formation like (1), mamely, x'=Aix, y'=kay, carries one curve of the family
into another, then it must transform the differential equation into itself.

Then, repeating the steps of (3) - (6), we see that

JERNIE g(—j&— 1) (11)
X

where g is an arbitrary function. The seemingly mild restriction of f(x,y,§)
to the form g{u,v), where u = y/xu, v = &/xu—l, and g is arbitrary, is the
only effect of self-similarity.

But a moment's work more will show that if we take u to be the new
dependent_variable, the differential equation f(x,y,§)= 0 will go over into

one in which the variables u and x are separable. For

X —— = —— - —Z- =y -qgu = F{u) - ou (12)

since g(u,v) = 0 can be solved in the form v = F(u). It is important to note
here that the differential equation has not been assumed to be linear and

does not have to be.

(2) Often first-order differential equations are written in the form

M(x,y) dx + N(x,y) dy = 0 (13)
Now since

6 @x + o dy = &9 = dc =0 (14)
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we must have

¢

X - X =

i N u(x,y) (15)
where pn(x,y) is an as yet undetermined function. The function H{x,y) is
an integrating factor because if we multiply (13) by it, the left-hand side
of (13) becomes the perfect differential left-hand side of (14).

The requirement of self-gimilarity means that ¢(x,y) = C transforms

into ¢(x',y') = C', where c'=Cc'(A,C):
o (s A%y) = €' (1,C) (16)

Again we can use the trick of differentiating with respect to A and setting

A= 1:

_ {3 _a function of C
xo, +O¥ey = ( ED) )x=1 independent of x,y r

Substituting for ¢X and ¢y from (15), we find

_[ sC’
u{xM + oyN) —( o )A=1 (18)

Ignoring the constant, as we may, we see from (18) that (xM + OtyN)'"1 is an

integrating factor for (13).

(3) This last conclusion is a special case of a much more general the- -

orem of Lie's. Lie did not restrict himself to stretching groups but studied

the completely general group

Y= X(x,¥3A) (19a)

™
il

g
I

'o= Y(x,y32) (19b)

Now when we differentiate ¢(x',y') = ¢' with respect to A and set A =1,

we get

AL =( "g%) N (20)
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where E(x,y)==(BX/8A)A=1 and n(x,y) = (8Y/8A)A=1. Following the rest
of the previous derivation without change, we find the celebrated formula

of Lie for the integrating factor, i

p= M+ (21)

IV. Application of Self-Similarity to Second-Order Differential Equations

The most general second-order differemtial equation involving the
dependent variable y can be written f(x,¥,y,¥ ) =0, where f again can be
any function. As before, the invariance of the differential equation
to the transformation x'=Ax, y'==hay requires that f have the form

y Y ¥y

f(X,Ys§,§f-) = g(_" L | "‘""'_)
B Y (22}

when g can be any function. In view of (22), the stipulation f = 0 is

- equivalent to

&12 = h{u,v) (23)
X

where u==y/xa, V==i/xa_l, and h can be any function.

Lie noticed that if we form the derivative dv/du, it will only involve
functions of u and v. This means that the second-order differential
equation f =0, when written in terms of the variables i: and v, becomes

a first-order differential equation. The calculation is a short one:

du _ ¥ oy oL -

dx ol o+l T x (n-av) (24a)
X X

dv _ ¥ __fely _ 1 ~ (am

dx | a1 o — (h(u,v) - (e=1)v) (24b)

so that, dividing, we obtain

v _ hiu,v) - (p=1)v
du u-av

(24c)

a first-order equation for v in terms of u.
This reduction does not alter the necessity for two integrations to

find y in terms of x. Ifwe succeed in integating {24c) to get v in
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terms of u, we have really gotten a first-order equation for y in terms
of x. This second equation must also be integrated.
However, it, too, is invariant to the group x'= A, v'= luy and hence can
be treated by the methods of section IIL.

What if we cannot integrate (24c), by far the commonest situation?
All is far from lost: because (24c) is of first order, we can study its
direction field and determine much useful information about the solutions
of the second-order equation £=0. How this is done will be made clear
next by working an example. The second-order differential equation will be
obtained in the course of solving a partial differentiél equation exactly

as announced in the Introduction.

V. Partial Differential Fquations: Example-Unsteady Heat Conduction in He~1I

(1) Heat conduction in He-II, an unusual low-temperature liquid phase
of helium, is characterized not by Fourier's linear law but the non-linear
Gorter-Mellink law q==—k(8T/82)1/3

temperature gradient, and k a thermal conductance parameter. The heat balance

Here q is the heat flux, 3T/9z the

equation pc (3T/ot) + (Bq/az)-o combined with the Gorter-Mellink law leads,

when sultably dlmen51onallzed to the non-linear partial differential equation

‘ 1/3
-5 (3

Eq.(25) is invariant to the stretching transformations

T = A%
e = 2Pt 0<h<e (26a)
z' = Az
where
200 - 3B+ 4 =0 (26B)

What is the most general solution, T=f(z,t), of (25) invariant to (26)?

Following our usual procedure, we note that invariance means T'= f(z',t') or

* We shall play fast and loose with physical constants in this section
because our purpose here is to explore the treatment of partial differ-

ential equations rather than derive specific practical results.
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T _a?z_ (%J1/3 (25)

Eq.(25) is invariant to the stretching transformations

T = A%
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where
20 - 3B+ 4 =0 (26b)
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* e shall play fast and loose with physical constants in this section
because our purpcse here 1s to explore the treatment of partial differ-
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g

Wiz, t) = A% = £0z,0 ") (27)

Differentiating with respect to A and setting A=1, we get the first-order

linear partial differential equalion

of = z2/—— + 3t — (28)

7 T Bt of (29)
. . 1/8 a/B
Two independent integrals of (29) are z/t and f/t so the most general
solution of (28) has the form
a/B z
T =f(z,t) =t y'(——7~) (30)
1B

where y 1s an arbitrary function.
Eq. (30) is the most general form an invariant solution of (25) may have.
If we substitute (30) into (25), the partial derivatives of T will all be

expressed in terms of the ordinary derivative v of the function v:

8T  (a/B)-1{o 1 . _ .z

T t ( By 3 xy) where x = ;T?E_ (31a)
AT _  (a-1)/8. (31b)
3z t ¥

Substituting (3la) and (31b) into (25) and also using (26b) we find

1/3
gd<£’l> +xL ooy =0 (32)

dx | dx b

Any solution of the ordinary differential equation (32) will provide a solu-
tion of the partial differential equation (25) invariant to the group {26a).
What about the wvalues of o and B? These are determined by the boundary
conditions as we shall see next.
{2) Let us consider the problem of a of half-space, zi>0,‘the temperature
of whose front surface z=0 is suddenly raised at t =0 and thereafter held

constant. The boundary conditions corresponding to this problem are
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T{D,t) =1 t>0 (33a)
T(w,t) = 0 t>0 (33b)
T(z,0) =0 z>0 (33c)

Eqs(33b) and (33c) are invariant to (26a) whatever the values of o and B,
but (33a) is invariant only if o =0 and R=4/3. Then (33a-c) become, when

written in terms of vy,

(34a)

]
—

(33a): y(0)

(34b)

]
o

(33b,c):  y(=)

These two boundary conditions are just sufficient to select a unique solution
of second order deq (32), taken for o.=0 and B=4/3, It is fortunate that
boundary conditions (33b) and (33¢) for T collapse to the same boundary con-
dition (34b) for y, so that three conditions become two. This will not always
happen, and the fact that it does not means that the partial differential
equation (25) has many more solutions than the ordinary differential equation
(32). Or said in other words, the solutions of (25) invariant to the trans-
formations (26) are only a small subclass of all its solutions.

When =0 and B=4/3, (32) can easily be solved by introducing v® as a
new independent variable. Mark well, this will not always happen either.

The solution , which the reader can verify by differentiation is

X

y=1- ( 5 Xz)l/Z (35)

T
But whether or not we bothered to solve for y, we could already have seen at
the time we had determined that oo=0 and 8=4/3 that a point on front of
rising temperature marked by a constant value of x would advance in a time
t a distance z proportional to t3/4.
(3) Let us now consider the problem of a instantaneous heat scurce in

the plane z=0 pulsed at t=0.

The boundary conditions for this problem are

I
a3

T(z,0) = |zf3>0 {(36a)

T(w,t) = 0 t>0 (36b)
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Tdz =1 (36c)

]

plus the obvious symmetry condition T(z) = T(-z). Eq.(36c) requires that
= -1 to be invariant to (26). Then B=2/3. Again (36a) and (36b) collapse

to the same condition
y(=) =0 (37a)

while (36¢) becomes

co

jo v dx = 1 (37b)

[Actually, for (37a) to satisfy (36a), y must vanich at infinity faster then
-%—because T==t_3/2 y(z/t3/2) = %? ‘xy(x). We shall have to verify this
for the solution we actually obtain.]

When a=-1 and R=2/3, (32) is once again easily soluble, for when o= -1,
the last tweo terms become just d(xy)/dx. The solutiom, which the reader again

can verify by differentiation, is

_ & b, uy—1/2
y = ij— (x'+ a™) (38a)
and the value of a determined from the integral in (36c¢) is
1 2
M)
8 = ———— = 1.42727 (38b)

It is already clear, even without solving (32), that the central temper-
ature falls as t-3/2.

(4) In the previous two examples, the ordinary differential equation
that arose from the search for invariant solutions could be solved and an
explicit formula for the temperature distribution achieved. In the problem
we discuss now, this is not the case and we shall have to proceed somewhat
differently. We consider the clamped-flux problem in which the plane z= Q
is imagined to be a heater that is turned on suddenly and delivers a constant

flux of heat te the half-space.

The boundary conditions for this problem are

%2— (O,t) = =1 t>0 (398.)
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H
(=

T(®,t) t>0 (39h)

[}
=]

T(z,0) z>0 (39c)
Eq. (39a) requires that ¢ =1, so that B=2. Written in terms of y now, (39%a)

becomes

je0) = -1 (40a)

and (39b) and (39c) will both be satisfied if
y (=) =0 (40b)

[Actually this condition is stronger than necessary to satisfy (39c) but

ig sufficient.] Eq.(32) now becomes
1
d {dy 3 dy -
de(dx) +X-a—£—y-'-0 (41)
which is not simply integrable in terms of elementary functions. How shall
we now praceed?

(5) Eg.(32) is invariant to the stretching group

0 << (42)

This is an easy thing to discover after only the briefest calculation, but
it is no lucky accident like the easy integrability of the ordinary differ-
ential equation (32) in the first two problems we did. In fact, the group
{42) could have been written down from the information contained in Eq.{(26)
even before Eq.(32) was worked out. The proof of these assertions with be
given later.

The group invariance of (32) will allow us to reduce (32) to a first-
order differential equation using Lie's theorem described in Section IV.

.1/3 Xy1/2

We take v = Xy as the first differential invariant and u = as the

invariant. Then
3

2 v
- B

dv .1/3 2 d . 1/3

[+
Xgx T XY + x = (y ) = v + 7 (43a)
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3
du _ __1/2 1 2 -1/2. _ v
X g = Xy + —E—x v y = u+2u | (43b)
so that
cdv _ _u(2Bv - 2v3 + 2au2)
du 28u2 4 Bv3 (44)
or, when oo = 1 and R =2,
dv _ u(2v - v3 + u%)
o 7 3 (43)
2u + v

We now proceed by aralyzing the direction field of the first-order
equation (45). This stage of the analysis is closely reasoned and some
might consider it tedious. I personally find it interesting. In any case
the reader is strongly advised to study the next sections carefully because
it exemplifies a pattern found in many problems.

(5) Because the temperature rise is positive and falls as we move away
from the heated plate, u>0 and v<0. Hence we shall only be interested in
the fourth quadrant of the (u,v)—plaﬁe (see Fig.2). First we find the curves
on which dv/du equals either zerc or infinity. Only on these curves does
dv/du change sign, and only where curves of dv/du = 0 and dv/du = = inter=
sect are there singular points. Now dv/du = 0 on the v-axls: u=0, and on
the curve Cl: u2 = v3—2v. Furthermore, dv/du = « on the curve Cz: 2ul4v3= 0,
The origin O and the peint P are singular points.

Since y(0) and &(O)_are finite, when z=0, u and v also equal OC.
Therefore, we are interested in integral curves that pass through the origin
0. The integral curves in the fourth quadrant passing through the origin -
are of two kinds, those that eventually intersect the curve C1 and those that
eventually intersect the curve Cz. These two kinds are separated by a single,
exceptional integral curve, S, called a separatrix, that joins the singular-
ities 0 and P. Curves intersecting curve Cl eventually intersect the u-axis.
There v=0 and u>0, i.e., y = 0 and y > 0. Such curves have a minimum and
so do not conform to the temperature profiles we are seeking. Curves inter-
secting C2 eventually intersect the v-axis: u=0, v<0, i.e., y=0, v < 0.
Such curves reach zero temperature with a negative slope, a possibility we
also reject. All that is left is the separatrix. Later we will see that it
is possible to predict that peints of the separatrix near the singularity P

correspond to the asymptotic behavior y ~ b4y 3/9x2. Such behavior is what we

are looking for in the solution we seek. To find the separatrix, we must
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perform a numerical integrationm. Owing to the divergence of the integral
curves as we approach P and their convergence as we approach 0, we expect
integration in the direction P>0 to be stable and integraticn in the di-
rection 0+ P to be unstable. Furthermore integration in the direction
P~ 0 involves no trial and error, as integration in the direction O—+F
would. Application of L.'Hospital's rule shows that (dv/du%?= —(3+/T3 Y/
2-33/4= -1.5624. We use this slope to advance a short distance from P
and then we continue by numerical integration towards 0. (All numerical
computations were carried out on a programmable desk calculator.) The
resulting curve for the separatrix approaches the origin with a slope

of -1.,095.

To find y(x), one procedure is the following. Near the origin

91/3 v
—-—17-2- = ‘a‘ = - 1.095 (46)
y
so that if we arbitrarily normalize y(0y = 1, then ¥(0) = -1.313. With this

{nitial condition, we can integrate forwards numerically to obtain y(x).

The results of such an integration are shown as small circles in Fig.3.
Because we are integrating in the direction 0P, the integration eventually
becomes unstable. But we can integrate close enough to the asymptotic limit
y = 4/3 /9x2 that there is no difficulty in graphically continuing the numer-

ical solution valid for small x.

VI. Partial Differential Equations: Recapitulation

(1) Our starting point was the group invariance of the partial differ-
ential equation. We saw that solutions of the pde invariant to the group
involved only a function of one variable. So for these solutions the partial
differential equation must reduce to an ordinary differential equation. Then,
we have avoided all the difficulties ordinarily associated with pdes, espe-
cially non-linear pdes (where we lose the property of superposition).

(2) The initial and boundary conditions that determine an invariant
solution must themselves be invariant to the group. The initial and boundary
conditions needed to specify a unique solution of a pde are more extensive
than those needed to specify a unique solution of an ode. Some of the initial
and boundary conditions for the pde must "eollapse" to the same condition the
solution of the ode. Otherwise, the initial and boundary conditions over-

determine the sclution the ode and generally cannot be fulfilled simultaneously.
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computations were carried out on a programmable desk calculator.) The
resulting curve for the separatrix approaches the origin with a slope

of -1.095.

To find y(x), one procedure is the following. Near the origin

3-]1/3 v
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¥
so that if we arbitrarily normalize y(0) = 1, then y(0) = -1.313. With this

initial condition, we can integrate forwards numerically to obtain y(x).
The results of such an integration are shown as small circles in Fig.3.
Because we are integrating in the direction 0=+P, the integration eventually
becomes unstable. But we can integrate close enocugh to the asymptotic limit
y = 4/ 3 /9x2 that there is no difficulty in graphically continuing the numer-

ical solution valid for small x.

VI. Partial Differential Equations: Recapitulation

(1) Our starting point was the group invariance of the partial differ-
ential equation. We saw that solutions of the pde invariant to the group
involved only a function of one variable. 5o for these solutions the partial
differential equation must reduce to an ordinary differential equation. Then,
we have avoided all the difficulties crdinarily associated with pdes, espe-
cially non-linear pdes (where we lose the property of superposition}.

(2) The initial and boundary conditions that determine an invariant
solution must themselves be invariant to the group. The initial and boundary
conditions needed to specify a unique solution of a pde are more extensive
than those needed to specify a unique solution of an ode. Some of the initial
and boundary conditions for the pde must "collapse' to the same condition the
solution of the ode. Otherwise, the initial and boundary conditions over-

determine the solution the ode and generally cannot be fulfilled simultanecusly.
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(3) The ordinary differential equation can sometimes be solved in
terms of the elementary functions, but usually it canmot. Very often,
howeveér, the ode is invariant to a group of stretching transformations-
—this is no coincidence, as we shall see in sec. VII--and the group of
the ode is related to the group of the pde. If the ode is of second order,
which is the usual case, its group invariance can be used to reduce it to
a first-order ode.

(4) The first-order ode can be dealt with by studying its direction
field. A large part of this study involves the behavior of the direction
field near singular points. The differential equation can often be sim~
plified near the singular points because some terms may become small
compared with others. Occasionally, when some terms are dropped, the
simplified first-order ode is invariant to a group of stretching trans-
formations and can be readily integrated.

(5) Quite often, the integral curve of the first-order ode being
sought is a separatrix joining two singular points. The behavior of the
separatrix near its two ends can often be represented analytically, and
these analytical representations usually can be converted into simple
descriptions of the asymptotic behavior of the solution of the pde.

(6) Often a numerical integration is necessary to calculate the entire
separatrix. Here especially, knowledge of the direction fleld is wvaluable
in choosing the direction of stable integration.

This procedure, in the hands of a practiticner who has had the patience
to become skilled in its use, is very powerful, as the reader perhaps will

now appreciate from the example just worked.

VIL. Group Invariance of the Ode.

(1) The group invariance of the ode is connected with Eq.(26a)'s rep-
resenting not just a group of stretching transformations but a one-param-
eter family of groups of stretching transformations. The boundary con-
ditions determine the particular values of o and B, say oo and By, that

rule the solution we seek

f(z,t) = tOLO/80 y (—T§§;> (47)
t

where oy and By satisfy

Moy + NBy; =L (48)
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these analytical representations usually can be converted into simple
descriptions of the asymptotic behavior of the soluticn of the pde.

(6) Often a numerical integration is necessary to calculate the entire
separatrix. Here especially, knowledge of the direction field is wvaluable
in choosing the direction of stable integration.

This procedure, in the hands of a practitiocner who has had the patience
to become skilled in its use, is very powerful, as the reader perhaps will

now appreciate from the example just worked.

VIL. Group Invariance of the Ode.

(1) The group invariance of the ode is connected with Eq.(26a)'s rep-
resenting not just a group of stretching transformations but a one-paranm-
eter family of groups of stretching transformations. The boundary con-
ditions determine the particular values of o and B, say oo and By, that

rule the solution we seek

f(z,t) = (o /Bo y (TZB_O> (47)
t

where o and B, satisfy

MO’_D + NSO = L (48)
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this being a generalization of linear relation (26b) with coefficients M,

N, and L. If we transform (47) with respect to transformations of (26a)

belonging to the values of O and B, we recover (47) again. If we transform

(47) with respect to transformations of Eq.(26a) belonging to other wvalues

of o and B, we must still get a gsolution of the partial differential equation.

Transforming and rearranging, we find

_ (Bag - 0Bg) /Bo  0c/Be 1-B/8¢ z (49)
f(z,t) A t YQ)\ t—176—0'>

is also a solution of the pde. If we set kl_B/BO =y, (49) can be written

Bug ~abo ‘
Fey = B8 ol y (2 (50a)
Sy
ao/B —
=P M y(ux) (50b)
where x = z/tli80 and (48) has been used to show that
Bag -0Bo _ _ L
Be-B M S

Note that the functiom f(z.t) in (50b) is invariant to (26a) when o =0p

-L/M
and B=Ry. Therefore the function i / y(p x) will pﬁ?vide an invariant

solution if the function y(x) does. The function U~ M y(u x) is an image

of y(x) under the group

L
y' = Aty
0 <A< (52)
x' = Ax
- L - L
[Proof: Take A==u_1. Then y'(x') = M y(x) = U M y(u x").]

So each function y(x) that provides and invariant solution to the pde when

a=a0g and p=Ry gives rise to an entire one-parameter family of functions

that do the same thing. These families are invariant to (52) because they

consist of an entirety of curves that map into each other. The families all

taken together represent the sclution of the crdinary differential equation

%
for the function y. Since they are invariant to (52), so, too, must be the

% For the more mathematically inclined reader, I mention that imaging

under (52) is an equivalence relation that therefore defines a partion

of the integral curves.
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ode. Since (52) does not depend on the particular values of « and B,
this conclusion is true for any O and B obeying (48). Therefore, the
ode is invariant to the group (52).

In the example of section V, L/M = -2, It is easy to verify directly
that (32) is invariant to (52) with this value of L/M.

(2) Knowing only the structure of the groups (26) and (52), we can
go one step further. An invariant and a first differential invariant of
(52) are u = y/xa and V'=§/xa_l, where a is an abbreviation for L/M. Then

(v —-au) jgi (53a)

du

and

2% d
av =l 52y - (-Dv)
X

H

(F ()= (a-1)v) (53b)

ee; a—-2 .
because Lie's theorem tells us that y/xa must be a function of u and v. Thus

dv _ Flu,v)-{a-1)v (53c)
du v - au

We know nothing about the function F(u,v) because it depends on the differ-
ential equation and not just on the group aleone. In general, however, the

singular points of (53c¢) are the roots of the simultaneous equations

F(u,v) = (a-1)v (54a)

au (54b)

v

A pair of values of ug and vy connected by (54b) correspond to an exceptional
solution of the ode for y(x) of the form y = uoxa. Integral curves in the
(u,v)-plane which enter this singularity will have uoxa as a limiting behavior,
This is how we found the asymptotic behavior 4J§79x2 for the separatrix in
section V(S)f

(3) Remark on Separatrices. In my experience with problems of diffusiocn,
heat and mass transfer, and applied superconductivity, the integral curve of
the first-order equation (53c) we seek is often a separatrix. If we do not

know a group to which the first-order ode is invariant, as was the case in

* A word of caution: because the choice of an invariant and first-differ-
ential invariant in section V(5) is slightly different than that used here,

2
there y = uoxa. From Fig.3, we see that up = 2*(573.
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the example of sections V:(4)-(5), we must usually resort to some numerical
method of claculation. On the other hand, if we know a group to which the

first-order ode (53¢c) is invariant, its solution can be expressed in terms

of an indefinite inteeral. There is no euarantee. however, that the integral

can be carried out. We can find separatices without any integration at all
by noting that they are invariant curves of the group. [If this is not al-
ready clear to the reader, let him consider Fig.2, for example. Invariance
of the ode to a group means the image of Fig.2 under transformations of the
group is again Fig.2. Since the deq has the same form in the primed var-
jables as in the unprimed, singular points like O and P have the same
coordinates in the primed variables as in the unprimed, i.e., they are
their own images. But so then must the separatrix S, which passes through
0 and P, be its own image.]

Suppose the group of (53¢c) is the general group

c
H

! U(U,V ,A)
0 < A < (55)
' s V(u,v 5A)

«
]

The most general curve f{u,v) = 0 invariant to (55) obeys the condition

f(u',v') =0

too. Differentiating wrt * and then setting A=1 as before, we find

of af " _
S ©7

where §==(dU/dk)k_1 and n==(dV/dk)A_1. The level lines of the functions f
that solve (57)(i.e., the curves in the (u,v)-plane on which such functions

f are constant) are the curves

- du + e du =0 (58)

v _ 1 (59)

If we replace the left hand-side of (53¢) by the ratic n/& we obtain an

algebraic equation for the invariant curves of (53c). These include but
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are not limited to, the separatrices (e.g., envelopes, i.e., singular

solutions, are also obtained by the same calculation).

VII. Approximate Sclutions: Diffusion in Cylindrical Geometry

(1) The procedure outlined so far gives exact solutions to the pde in
some, but not all, problems. At first sight it would seem to be of no use
in problems in which all its conditions of applicability are not met. But
a deeper look shows the method of self-similarity can be used to get valuable
information about asymptotic behavior in such problems. An excellent illus-
tration is the clamped-flux problem in cylindrical geometry for the ordinary
diffusion equation. Suppose at t=10 the cylindrical surface r=R is suddenly
caused to begin emitting a steady heat flux. What are the resulting temper-
ature profiles?

The pde, boundary and initial conditions describing the problem, again

sujtably dimensionalized, are

6T _ 1 9 9T
56 - % % (T ar ) (602)
BTy

or ’ r=1 t>0 {60b)
T(r,0} = 0 r>i {(60c)
T{wo,t} =0 t>0 (60d)

The pde is invariant to the group
7' = A% |
2

t' = At (0 <A <=) (61b)

]
1

\
{
A r)

but the boundary conditions (60b) and (60c) are not invariant because of the
appearance of the value r=1.

{2} Very early, the heat form the scurce surface r =1 has net diffused
far. When the thickness of the heated layer is still <<, the curvature of
the heated surface should not matter. So the problem goes over, for short

times, to its plane analogue
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solutions, are alsoc obtained by the same calculation).

VID. Approximate Solutioms: Diffusion in Cylindrical Geometry

(1) The procedure outlined so far gives exact solutions to the pde in
some, but not all, problems. At first sight it would seem to be of no use
in problems in which all its conditions of applicability are not met. But
a deeper loock shows the method of self-similarity can be used to get valuable
information about asymptotic behavior in such problems. An excellent illus-
tration is the clamped-flux problem in cylindrical geometry for the ordinary
diffusion equation. Suppose at t=0 the cylindrical surface r=R is suddenly
caused to begin emitting a steady heat flux. What are the resulting temper-
ature profiles?

The pde, boundary and initial conditions describing the problem, again

suitably dimensionalized, are

3T _ 1 ) aT
praiale rA (602)
(_?..E = -]

ar” r=1 t>0 (60b)
T(r,0) = 0 r>1 (60c)
T{ee,t) = 0 t>0 (60d)

The pde is invariant to the group

T o= A“T}I
t*:AZtP ©<h<®) (61b)

!

r'! A r)

but the boundary conditions (60b) and (60c) are not invariant because of the

appearance of the value r=1.

(2) Very early, the heat form the source surface r=1 has not diffused
far. When the thickness of the heated layer is still <<l, the curvature of
the heated surféce should not matter. So the problem goes over, for short

times, to its plane analogue



JAERI-M 9716

2
dT )
= - __% (62a)
Jz
T N
(577 ,=0" -1 t>90 (62b)
T(z,0) = 0 z>0 (62¢)
T(w,t) = O t>0

where z = r-l1

All of these equations are invariant to the group (61). If we set

=y, x =2t (63)
we find

1 :

¥ = 5 - =) (642)

F00) = -1 | (64D)

y(=) =0 (64c)

Eq. (64a) is linear, and in this cases it is easier to solve it using the

properties of linear deqs than to exploit its group invariance. We can see

immediately that y=x is a special solution of (64a). To find a second, in-
dependent solution, we use the classical procedure of setting y =wx. Then we

find the following separable equation for w:

W.o_2_ZX (65)
w X 2
Thus
-2 —x2/4
w=-0(Cx e (66)

where C is a constant of integration. After a second integration we find

= 2
y = wx = Cx ,L e * /4 j%; (67a)
X
2 o 2
_ -x"/4 X -x [4
= Cle -3 Jxe ] (67b)
which satisfies (64c). In order to gatisfy boundary condition (b4b), we



must take C=:£%=.

for short tines.
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This gives a complete solution for the temperature valid

We shall especially be interested in T(r=1,t) gven by

2
T(r=1,0) = y(O)t ' *= o=t

(3) The boundary condition (60b) 1s

(68)

equivalent to the integral condition

© oo
d ‘ 2
EE_J]_ Trdr =1 ot ')1 Trdr = ¢t (69)

which follows by integration of (60a) over the region l<r<w. Late in the
history of the problem, when the tempereture profile hds spread very far

from r =1, the value of the integral in (69) should be affected very little

if the lower limit is extended to zero. I1f we replace (60b) by the condition
J rrdr=t (70)
i

we again have a totally Invariant problem. Eg.(70) requires a=0, so we take

1/2

T = y(x), x = r/t (71)
and obtain
e . 1 X
—_ 4 — =
v+ ( - 5 ) 0 (72a)
i vyxdx =1 (72¢)
Eq.(72a) integrates at once to give
C e—x2/4
y = - ;  C = constant of integration (73)
Integration by parts turns (72¢) into
[
j vy x dx = -2 (74)
0
from which it follows at once that C = -1, Then
o 2
-x /& dx 1 %2
= = = = = 75
7 'L © X 2 El( 4 ) (75)
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where E1 is the exponential integral discussed by Abramowitz and Stegumn.
Eq.(75) gives the late temperature profiles. The temperature of the

heated surface is gven by

11,6 = 5 E, b}t—)” 1n [T+ 1n2 -y + OH‘) (76)

when v is the Euler-Mascheroni constant 0.5772Z1-+-. Fig.4 shows the

1imiting curves (68) and (76) and a graphical interpolation between them.
[(4) Fig.5 shows the results of constant-flux experments done with

a 0.05~mm-dia wire in LN2 by 0. Tsukamoto and T. Uyemura [Adv. Cryo. Eng.

25: 475 (1980)]. The abscissa g is the constant heat flux; the ordinate

td is the time at which the surface temperature rise AT of the wire reached

25K. This is the so-called "take-off" point, at which the rate of temper-

ature rise suddenly increases strongly. Written in fully dimensional form,

(68) and (76) are

4t L
kAT - 1 d ) 2
qR T RZ (77a)
and
20N
®AT J; R
gR T2 EI (\éth } (77b)

where k is thermal conductivity, R is the radius of the wire, and k¥ = k/pc

iz the thermal diffusivity (pcp = heat capacity per unit volume.) On a
log plot with KAT/qR as ordinate and Ath/R2 as abscissa, the curves in
Fig.4 and Fig.5 should be the same except for shifts of the axes.
Shown in Fig.5 is the curve of Fig.4 shifted both vertically and
horizentally until it agrees well with the experimental points. The value
of kpcp implied by the fit of (77a) to the experimental points is much
larger that the value calculated from the properties of saturated nitrogen
at 1 atm (k=1.4 x10=° W em™! K71, c:p=2.o Jeg bk, 0p=0.80 g cm™°)
Perhaps vapor is already forming before "takeoff', which would make the
apparent specific heat higher. The formation of this vapor could also be
accompanied by convection, which would increase the apparent thermal
conductivity.]

(5) Reddi, Ray, Raghavan, and Narlikar  have studied the clamped-

temperature problem in cylindrical geometry as part of an investigation
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of the formation of Al5 compounds like NbBSﬁ in multifilamentary composites.
This problem, too, is described by Eq. (60a), (60c), and (60d), but (60b) is

changed to

T(l,t) =1 t>0 (78)

As before, the problem goes over to its plane analogue for short times.
This latter problem is very easily soluble by the method under discussion

and only the result will be quoted:

T({r,t)= erfc (%) £ << 1 (79

where erfc is the complementary error function. The flux out of the surface

r=1 is then given by

3T 1
- (E) r=1 /71t (50
(6) For long times, we proceed by setting
T(r,t) = g(t) yx), x = == (81)
We find
| x\ _ Bt
y+y(x+2>—gy (82)

I1f g varies slowly enough with t, the ths of (82) may be taken as zero.
2
The ihs, the same as (71b), integrates to give y==El (%r) (any constant

of integration may be subsumed in g). To satisfy (78) we now must have
g(0) = B, 7 (83)
11 4t

For long enough t, g ~ In t so that gt/g = IﬁLE’ which eventually does

become small as required.

Thus

(84a)

and
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- -1/4¢
aT _ 2e
- (\8r>r=1 B El(l/4t) (84b)

Fig.6 shows the limit (80) (marked slab) and the limit {84h) for
-(égé)r=l as well as the corresponding quantity for a spherical heated
surface. The problem for a sphere is solved by introducing rT as a new
unknown; the equations then reduce to those for a slab for which the so-
lution is rT = erfc(ié%i).

(7) Reddi et al. calculated —(8T/8r)r=l by assuming a linear profile
the slope of which chanced with time. Fig.6 also shows their result.

It departs substantially from the correct result for cylinders at about the
same point that the cylinder and slab results begin to diverge. The main
conclusion that Reddi et al., draw from their calculation is, in their words,
the following: 'When the diffusion of B atoms [in the formation of A B
compounds] in the alloy matrix is rate controlling, the n values [in the
growth law R ~ * for the reaction layer thickness] derived from growth model
range from 1/2 to 2/3." ( brackets mine). Our more careful analysis shows
that the range of exponents is from 1/2 to 1, but expoments >2/3 occur

only for very long reaction times. The basic idea of Reddi et al., namely

that the growth expomnent varies because the diffusion occurs in a cylin-

drical geometry, is correct, but their supporting analysis is deficient.

IX. The Method of Assigned Level Curves

(1) In this section we apply the idea of self-similarity to a problem
involving a partial differential equation in another way than in previous

sections. The problem is an old one.

v2s = -1 (85a)

(b(c) = 0, (85hL)

where § is a region of the (x,y)-plane bounded by the closed curve C(see
Fig.7). Several different physical problems lead to the mathematical
formulation (85a,b). 1In one, $ is a thin fiat, conducting plate being
exposed to a slow ramped magnetic field in the z-direction. The function
¢ is then the stream function of the induced eddy currents. From it we

can calculate the eddy current power being dissipated. In a second probliem,
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T _ 2 e*I/At
_ (?;?>r=1 - Haw (84b)

Fig.6 shows the limit (80) (marked slab) and the limit (84h) fof
_(égé)r=l as well as the corresponding quantity for a spherical heated
surface. The problem for a sphere is solved by introducing rT as a new
unknown; the equations then reduce to those for a slab for which the so-
lution is rT = erfc(zé%i).

(7) Reddi et al. calculated —(8T/8r)r=1 by assuming a linear profile
the slope of which chaneed with time. Fig.6 also shows their result.
It departs substantially from the correct result for cylinders at about the
same point that the cylinder and slab results begin to diverge. The main
conclusion that Reddi et al. draw from their calculation is, in their words,
the following: "When the diffusion of B atoms [in the formation of A3B
compounds] in the alloy matrix is rate controlling, the n values [in the
growth law R ~ ¢® for the reaction layer thickness] derived from growth model
range from 1/2 to 2/3." ( brackets mine). Our more careful analysis shows
that the range of exponents is from 1/2 to 1, but exponents >2/3 occur
only for very long reaction times. The basic idea of Reddi et al., namely

that the growth exponent varies because the diffusion occurs in a cylin-

drical geometry, is correct, but their supporting analysis is deficient.

IX. The Method of Assigned Level Curves

(1) In this section we apply the idea of self-similarity te a problem
involving a partial differential equation in another way than in previous

sections. The. problem is an old one.

726 = -1 (85a)

#(C) = 0, (85b)

where S is a region of the (x,y)-plane bounded by the closed curve C(see
Fig.7). Several different physical problems lead to the mathematical
formulation (85a,b). 1In one, S is a thin flat, conducting plate being
exposed to a slow ramped magnetic field in the z-direction. The function
¢ is then the stream function of the induced eddy currents. From it we

can calculate the eddy current power being dissipated. In a second problem,
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S is the interior of a long, hollow, cylindrical pipe filled with a viscous
fluid in steady laminar flow (Poiseuille's problem). The function ¢ is
then the flow velocity for a given pressure gradient in the pipe.
A third problem is the torsion of a long cylindrical bar whose cross sec-
tion is the area S. In this case, ¢ is the Airy stress function and can
be used to find the torsional rigidity of the bar. A fourth problem is
the distortion of an elastic film stretched over a wire rim having the
shape of C by a uniform unbalanced pressure on one side. In this case &
is the displacement of the film from its original position.

(2) The problem represented by Egs.(83a,b) can be solved exactly when
C is a circle, an ellipse, or an eguilateral triangle. " When it is a rec-
tangle, a convenient solution exists in the form of a series. TFor other

shanres, no such solutions are available., However, the functional

114] - .L (6 ~ +T8)7] dxdy (86)

can be calculated from approxmate solutions with a higher accuracy than
that with which ¢ itself is known. That means, for example, if the approx-
imate ¢ differs from the correct ¢==¢* by about 10%, the approximate I may
only differ from the exact I = I by , say, 1%Z. The functicnal I repre-
gsents each of the physical quantities mentioned earlier, namely, the eddy
current dissipation in the plate, the total flow in the pipe, or the
torsional rigidity of the bar. These important physical quantities can be
estimated with very good accuracy using only a crude guess for ¢. In
carrying out this procedure we shall encounter some interesting problems
involving self-similar families of functions.

(3) Suppose ¢, represents the correct solution of (85) and ¢(x,y)

¢*(x,y) + eb{x,y), & << 1, represents some guess at ¢,- Then

It

J [= %?(V¢*)2~ eVo, s Vb - {%ez(vw)z

I[p, + e¥] A

+ ¢* + ey] dxdy (87a)

]

I [0,) - e 220+ e-g (W76, + ) dxdy

an "C

2
- £ j'(vw)z dxdy (87b)
S

Now if ¢ obeys the same boundary condition on C that ¢, does, then Ww(C)
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= . So the second term in (87b) vanishes. Furthermore, since V2¢*= -1

the third term vanishas, too. Thus
2
€ 2
I=1I, - —E—J&vw) dxdy (87¢c)
5

Eq.(87c) shows that I differs from I, only by terms of second grder in €.
This is the origin of its high accuracy. Moreover, in this case, I, is
the largest value that I can attain for any choice of ¢. So far these
are well-known facts of the variational calculus.

{4) Polya and Szegﬁ*propose that we make the approximation that the
level curves of ¢ are a self-similar family. By level "curves we mean
curves on which ¢ = constant. Their procedure is outlined in Fig.3.
They select a point O as origin and specify the boundary curve C in polar

coordinates r = R(6). Then they choose the similar curves
r =g R(O) d<gog<1 (88)

as the level curves of ¢. This means they take ¢ = ¢(0); the dependence of
¢ on 0 will be chosen later to max1mlze I[¢(o)] Next we must overcone
some gecometric problems to express (V¢) in terms of ¢. This we do with
the aid of the sketch in Fig.9. If we advance along a radius OAB from

A to B, ¢ changes by d¢ = (dd/dd) doug and r changes by dr = R d0up-

Thus(a¢J - L de . If we advance along the arc of a circle AE from A
ar/ B R |do a6
to E, ¢ again changes by d¢o = Fr dO . The point E has on the surface
c+dc given by the requirement OR(B) = = r. = (o+dc) R(8+d0)= oR(E)+RdC
oRd8 e ok (dp)
+7Rd0O, so that dGAE = - 3R . Therefore ’(T?j}r = - “ﬁ"(iﬂ?} . Then
2 2 2,22 2
2 {9 1 3y _ RT+R da¢
Vo)~ = (Br) t (ae Tz 1o (89)

Furthermore, rdr d@==R2 odadf, so we have finally

1= } odo fﬁ d6i L Biétﬁ_ (fﬁl)z + R2¢] (90)
0 Z g do
(5) Polya and Szego's next step 1s to carry out the f-integrals.
The 1ntegral J-R de*-ZA,where A is the area of §, the interior of C. The
1ntegralj'il— %49 = 27a, while a geometric quantity, has no such simple inter-—
pretatlon The important point is that both A and are independent of o.

Now (90) becomes
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2
I = J gdo [—ﬂ(1+a)( _g_g;_) + 240 1 (91}

A straightforward variatiomal calculation shows that I will be a minimum

whén ¢ gsatisfies the.Euler—Lagrange egquation and boundary condition

n(1+a) dd—g (Uddgq’)} GA = 0 (92a)

¢$(1) =0 (92b)

This equation is integrable and gives

(1-c9)a

LTI (93)

Eq.(93) represents the best assignment possible of values of ¢ to the self-
gimilar level curves T =0R{8). If we insert (93) into (91), we find

2
1= o (94)

16m{l +a)
A convenient representation of (94) is to express it as a fraction f of 1
for a circle of the same area A as the figure 3 we are considering.

Then, since I = A2/16ﬁ exactly

L (95)

f=(1+a)

This fraction f gives a second-order estimate of (i) the eddy current power
dissipated in a plate compared with a circular disk of the same area, (ii)
the viscous flow through a pipe of irregular shape compared with a circular
pipe of the same area, and (iii) the torsional rigidity of a bar of irre-
gular shape compared with a circular bar cof the same cross-secticnal area.

(6) The assignment of values of ¢ to level curves labelled by the
various values of ¢ has been carried out in an optimal way. But we have
said nothing so far about the origin 0. The value of a depends on the
choice of the origin 0; and since the value of f given by (95) is a lower
limit, we shall get the best (highest) lower limit by choosing O to make
a as small as possible. So our variational problem has led us to an amus-
ing geometric problem.

(7) If the bounding curve ¢ is a convex polygon, we can evaluate f

as follows (Fig.10): choose the altitude 0P as the line 9 =10 and measure
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6 positive counter-clockwise. Then R=h sec along the side AB, and R=h

sec § x tan 8., The contribution of the side AB to a is

82
1 2 1 1
T ‘§ tan“® do = »—(tanf; - tanby)- = (S2= 01) (96a)
1
1 s fats)
= Q?Th ?1'- - 2—_5' (96b)

where s is the length of the side AB, h is the length of the altitude OP

and A8 is the central angle ABO. Summing over all the sides, we find that

1 °i
T v (972)
i i
so that
A
f=("§???} 970
i i
(8) If a circle can be inscribed in the polygon, the best choice for
- EX
0 is its center Q (the incenter, so-called). For then, d(f 1)= - ﬁ%z E—%—X

dhi where dhi is the increment. in hi when we move the origin O infinitésimally
away from the incenter Q. Now Zsihi = 2A, where A is the area of the polygon.

Therefore Is, dhi = 0. Since hi = R, the radius of the inscribed circle,

i
when O = Q, d(f'l)]Q= 0. Thus Q gives an extremum (and clearly a minimum)
of f_l. Furthermore, R = 2A/P, where P is the perimeter, so
£ = 4gA (98)
P

for any polygon in which a circle can be inscribed.

1f the polygon has reflection symmetry, it can be shown that the best
choice for the origin must lie on the axis of symmetry. Thus the best origin
for a rectangle is the intersection of the diagonals. Since any closed curve
can be approximated by a polygon, this symmetry theorem is true for any curve.
The method of assigned level lines has been applied by the author to bound
the quantity f from below for triangles, rectangles, rhombuses, and L-shaped
plates. Other methods have been used to bound f from above so that estimates
with bounded error have been obtained.” We break off the discussion here,
however, since we have already achieved our stated goal of showing how the

notion of self-similarity can be used in variatiomal problems.
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X. The Specific Heat of Type-I Superconductors

.The calculation of the specific heat of type-IL superconductors
presents an interesting example of the usé of self-éimilarity not in-
volving differential equations. The Gibbs free energy cof long cylinder
of a magnetic material in a paraxial magnetic field, G = U*-TS-*(Uo/Dm)HM,

can be written as

H_, (D)
c
G_(T,H) = G_(T) + == 5 MdH (99)
s Pn H

where the subscript s refers to the superconducting state and the sub-
script n refers to the normal state. Egq.(99) is purely a consequence of
the laws of thermodynamics-so far no hypotheses have been framed regarding
the behavior of type-I superconductors (save that their magnetization may
be treated as reversible.)

(2) Measured magnetization curves of soft (reversible} type-II super—
conductors look like the curves sketched in Fig.ll. The upper and lower
critical fields wvary with temperature as shown in Fig.12.

With good accuracy, we can write

H, (1) = H_ (0) [1 - T/ )% i =12 (100)
1 1

for both critical fields. According to (100}, the ratio HCI(T)/HCZ(T)
is independent of temperature. Hence as the temperature changes from T
to T', both the abscissas and ordinates of the point Q and the points on
the llne segment OP of the magnetization curve scale as (1- T' /T2 b
(l—T /T c). It is tempting to apply this factor to the abscissa and
ordinate of every point on the magnetization curve, i.e., to assume the

magnetization curves form a self-similar family.

If this is so, then

ch(T) / T2 2
j MdH = -a | 1 - —— (i01a)
T'z
0
C
where
H |
C
a = \L M(T = 0) dH | (101b)
i
i
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Thus

U a 2
GS(TV,O) = Gn(T)— 5 (1 5 ) ) o _(1023)

m Tc

So that at zero applied field

2
3G 4l a 2
C(T)= = T| ——] = ¢ (T)- =2 (—Eé)(l "Q%E) (103)

8T2 n P \T T
c c

The constant a can be determined from the empirical observation that the

specific heat of the superconducting phase at zero field vanishes faster

than linearly with vanishing temperature. Since this is so, the linear term

AuoaT/mecz must cancel the linear tern in Cn = yT + BTB.

Thus a = pj ¥ Ti/4u0 and

¢ -0y =g+ 2\ (104)
s 2;
T i
C.
(3) As it happens, formula (104) compares well with experiment. It
1
was derived long ago on the basis of the Gorter-Casimir two-fluid model.
But since we see it to be a consequence of a fairly non-specific hypothe-
sis, we may feel now it is not as supportive of the details of the two-

fluid model as we formerly thought. It any case, it represents an inter-—

esting application of the idea of gelf-gimilarity.
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XI. Concluding Remarks

The aspects of self-similarity dealt with in this paper all concern
the self-gimilarity of omne-parameter families of curves. But self-sim-
jlarity occurs widely in other ways as well in physics, mathematics, and
engineering. Drop an altitude onto the hypotenuse of a right triangle—-
it divides the triangle into two smaller triangles both similar to their
parent. As Baremblatt has shown.f the additivity of areas gives us a one-
line proof of the Pythagorean theorem. Join the midpoints of the sides of
any triangle with lines. These 1ines divide the triangle into four equal
triangles similar to their parent. With this construction done we can
easily complete a proof of the theorem that the medians of a triangle all
intersect in a peint two-thirds of the way along each from its vertex.
Divide a long solenoid in half--it becomes two long solenoids. Immediately
we see that the on-axis field at end of a long solencid is half as great

as the central field. Remember the schoolboy's algebra puzzle: if

how great is x? To realize that the foregoing equation is equivalent to
x2 = 2 brings us close to the idea of self-similarity. Kepler's law that
the cube of the major axis of a planetary orbit is proportional to the
square of the period is a direct consequence of the invariance of the
equation of motion in an inverse square field to the transformation r'=Ar,
B =6, ¢ =6, ! = A2

dynamically self-similar: their orbital velocities at the same angular

t. Thus elliptical orbits of the same eccentricity are

position are in the inverse ratio of the square roots of their sizes.
Finally, formulas written in terms of dimensionless numbers, like the ~
correlations of heat transfer and fluid flow, represent gelf-similar
families of phenomena any one of which is sufficient to specify the others
by change of scale.

By this time I hope the reader is convinced of the immense utility
of the concept of self-similarity. It represents a kind of inner sym=
metry that is widespread among the objects that interest us. That these
objects should often be endowed with self-similar aspects perhaps is best

thought of as part of the "wonderful gift which we neither understand nor
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Fig. 1 Sketches illustrating self-similar profiles of magnetic induction

S
X

penetrating a superconducting slab., a: field-independent Jc. b: field-

dependent Jc.

p:(2%3/3,-2/3)

Fig. 2 The direction field of eq.(453) in the fourth gquadrant.
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Fig., 3 The integral curve y(x} corresponding to the separatrix for

which y(0) = 1.
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Fig., 4 The limiting curves (68) and (76) of wall temperature vs, time

for constant wall flux in eylindrical geometry.
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Fig. 5 Time when vapor surrounds the wire, td’ vs. the heating power per

unit surface area of the wire.
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Fig. 6. The wall flux vs. time for spheres, cylinders, and slabs for
constant wall temperature. The approximation of Reddi et al. (ref. 3)

intended for use in cylindrical geometry is also shown,

Y

X

Fig. 7 Sketch of the region § bounded by the curve C.
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yh

Fig. 8 Sketch showing how Polya and Szego specify the self-similar curves

they assign as the approximate level curves of ¢.

Fig. 10 Sketch aid in the evaluation of f for polygons.



JAERI-M 97158

Fig. 11 Sketch of the magnetization curves of a soft type-1II superconductor.

He

Fig. 12 Variation of the upper and lower critical fields with temperature.



