JAERI- M 9 8 1 9

A THROUGH CALCULATION OF 1, 100 MWe PWR LARGE BREAK LOCA BY THYDE-P

(SAMPLE CALCULATION RUN 20)

November 1981

Takasi SHIMIZU and Yoshiro ASAHI

日本原子力研究所 Japan Atomic Energy Research Institute

この報告書は、日本原子力研究所が JAERI-M レポートとして、不定期に刊行している 研究報告書です。入手、複製などのお問合わせは、日本原子力研究所技術情報部(茨城県 那珂郡東海村)あて、お申しこしください。

JAERI-M reports, issued irregularly, describe the results of research works carried out in JAERI. Inquiries about the availability of reports and their reproduction should be addressed to Division of Technical Information, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan.

A Through Calculation of 1,100 MWe PWR Large Break LOCA by THYDE-P

(Sample Calculation Run 20)

Takasi SHIMIZU and Yoshiro ASAHI

Division of Reactor Safety Evaluation, Tokai Research Establishment, JAERI

(Received November 5, 1981)

THYDE-P is a code to analyze loss-of-coolant accidents (LOCA's) of the pressurized water reactor (PWR). In this report, the calculated results of THYDE-P sample calculation Run 20 is presented, which is a through BE (best estimated model) calculation of LOCA for a comercial 1,100 MWe class PWR plant.

Keywords: LOCA, PWR, THYDE-P Code, Code Verification, Through Calculation, Best Estimated Model THYDE-Pコードによる1,100 MWe PWR 大破断事故の一貫計算 (サンプル計算 Run 20)

日本原子力研究所東海研究所安全解析部 志水 孝司·朝日 義郎

(1981年11月5日受理)

THYDE - P コードは、加圧水型原子炉の冷却材喪失事故を解析するコードである。本報告書には、サンプル計算 20 の計算結果が載せてある。サンプル計算 20 は 1.100 MWe クラスの商用加圧水型原子力発電プラントのBE (最適予測)計算による冷却材喪失事故の一貫計算である。

JAERI-M 9819

Contents

1.	Introduction	1
2.	Code Modifications	2
;	2.1 Mass Equation	2 3
3.	Main Assumptions and Conditions for Run 20	4
	3.1 Run 20 Plant Representation	7 8 8
4.	Calculated Results 1	7
	4.1 Overall Description 1 4.2 Fuel and Core 1 4.3 Downcomer and Lower plenum 1 4.4 Break 1 4.5 Pressurizer 1 4.6 Pumped Injection 1 4.7 Accumulator 1 4.8 Steam Generator 2 4.9 Pump 2 4.10 Diference due to Drift Velocity 2	7 8 9 9 9 9 0 0
5.	Concluding Remarks 4	7
	Acknowledgments4	7
	References 4	7
	Appendix A4	8

目

次

1.	序…		1
2.	-	- ド修正	2
	2. 1	皙量方程式·······	2
	2. 2	流動モデル	2
	2. 3	燃料棒温度の陰的解法	3
	2.4	CHF および熱伝達相関式の改良	3
3.	Ru	n 20 の主要な仮定と条件	4
	3. 1	Run 20 におけるプラント表現	4
	3. 2	CHF 相関式 ·······	7
	3. 3	熱伝達相関式	7
	3. 4	臨界流	8
	3. 5	緩和パラメータ	8
	3. 6	ドリフトフラックス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4	計算	章結果	17
	4. 1	全体的記述	17
	4. 2	燃料と炉心・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	4. 3	ダウンカマーと下部プレナム	18
	4. 4	破断口	19
	4. 5	加圧器	19
	4. 6	ポンプ注入	19
	4. 7	蓄 圧器注入······	19
	4. 8	蒸気発生器	20
	4. 9	ポンプ	20
	4. 10	ドリフト速度の違いによる	20
5.	6.7	論	47
	謝	辞	47
	参	考文献	47
付	録A	Run 20 の入力データ	48

IAERI-M 9819

List of Figures

```
Nodalization
3-1
        Steady State Pressure Distribution
3-2
        Relative Velocity
3-3
        Pressure in Core
4 - 1 - 1
        Average Channel Surface Température
4-2-1
        Average Channel Surface Temperature
4-2-2
        Hot Channel Surface Temperature
4-2-3
        Hot Channel Surface Temperature
4-2-4
        Average Channel Center Temperature
4-2-5
        Hot Channel Center Temperature
4-2-6
        Heat Transfer Coefficient at Average Channel
4-2-7
        Heat Transfer Coefficient at Average Channel
4-2-8
        Core Inlet Flow
4-2-9
4-2-10 Core Inlet Flow
4-2-11 Core Outlet Flow
4-2-12 Core Outlet Flow
4-2-13 Heat Generation in Fuel
4-2-14 Gap Pressure
4-2-15 Heat Transfer Coefficient at Gap
4-2-16 Quality at Average Channel
        Enthalpy at Core Inlet
4-2-17
       Enthalpy at Core Outlet
4-2-18
4-2-19
        Core Cross Flow
        Flow in Downcomer
4-3-1
        Flow in Lower Plenum
4-3-2
        Quality in Downcomer
4-3-3
        Quality in Lower Plenum
4-3-4
        Break Flow
4-4-1
4-4-2
        Enthalpy at Break Point
        Quality at Break Point
4-4-3
4-4-4
        Pressure at Break Point
        Pressurizer Surge Flow
Pressure in Pressurizer Duct
4-5-1
4-5-2
        Flow in Intact Loop Hot Leg
4-5-3
        Water Level in Pressurizer
4-5-4
        Flow in Pumped Injection Duct
4--6-1
        Pressure in Pumped Injection Duct
4-6-2
4-6-3
        Enthalpy in Pumped Injection Duct
4-7-1
        Pressure in Accumulator Duct
        Flow in Accumulator Duct
4-7-2
        Enthalpy in Accumulator Duct
4-7-3
        Enthalpy in ECC Injection Point
4-7-4
4 - 8 - 1
        Steam Generator Feed Water
        Heat Transfer Coefficient in Intact Loop S.G.
4-8-2
        Heat Transfer Coefficient in Broken Loop S.G.
4-8-3
4-8-4
        Heat Flow in Steam Generator
        Pressure in S.G. Secondary System
4-8-5
```

JAERI-M 9819

4-9-1	Pump Speed
4-9-2	Pump Head
4-10-1	Average Channel Surface Temperature
4-10-2	Average Channel Surface Temperature
4-10-3	Heat Transfer Coefficient in Average Channel
4-10-4	Heat Transfer Coefficient in Average Channel

List of Table

3_1	Node	Geometrical	Data
J-1	NOUC	OCOMOCI LOGI	D C C C

3-1 Node Geometrical Data
3-2 Loss Coefficient
3-3 Heat Transfer Correlations
3-4 Heat Transfer Correlations in Mode-4
4-1 Chronology of Events

1. Introduction

THYDE-P(1) is a computer code to analyze the transient thermal hydraulic response of a PWR plant to a postulated LOCA

loss of coolant accident).

The present status of THYDE-P may be considered to be at the stage of verification, so that what is needed at present for THYDE-P development may be to conduct a systematic study by sample calculations.

Thus far, sample calculations $10^{(2)}$, $30^{(3)}$ and $40^{(4)}$ have been reported. In these calculations, a large break in the cold leg is assumed to occur. Run 10 is calculated for a typical

4-loop comercial PWR, while Runs 30 and 40 for LOFT.

In this report, sample calculation Run 20 by the latest version (SVO2LO3) for a typical 4-loop PWR plant will be presented, which is characterized by

(1) BE calculation,

(2) two core channels calculation with single cross flow area,

(3) discharge coefficient 0.6,

(4) through calculation to end of reflooding,

(5) locked rotor of centrifugal pumps,

(6) ECC water enthalpy 30kcal/kg,

- (7) same heat transfer correlations in reflooding as in blowdown, and
- (8) double ended guilotine break at the cold leg

The geometrical plant data are almost identical with those used in RELAP4/MOD5 sample problem $^{(5)}$.

2. Code Modifications

The detail of the THYDE-P code was described in Ref.(1), part of which, however, had been revised since its publication. Among those, main items were;

(1) solution technique at low pressure,

(2) flow model at low pressure,

- (3) implicit solution of fuel rod temperature, and
- (4) improvement of CHF and heat transfer correlations

2.1 Mass Equation

In Run 10 calculation, the mass and energy conservation equations were used in the form of

$$\dot{h} = \frac{1}{\rho h} \{ G_A h_A - G_E h_E - h(G_A - G_E) + I_A - I_E + Q \} --- (1)$$

$$\{ 1 + \frac{1}{\rho} \frac{\partial \rho}{\partial h} (h - h_A) \} G_A - \{ 1 + \frac{1}{\rho} \frac{\partial \rho}{\partial h} (h - h_E) \} G_E$$

$$- \frac{1}{\rho} \frac{\partial \rho}{\partial h} (I_A - I_E + Q) - L \frac{\partial \rho}{\partial h} \frac{\partial \rho}{\partial t} --- (2)$$
where
$$I = \times \rho_{fs} u_{gj} (h_{gs} - h_{fs})$$

They were obtained from

$$L\frac{\partial P}{\partial t} = G_A - G_E \qquad --- (3)$$
and
$$L\frac{\partial Ph}{\partial t} = G_A h_A - G_E h_E + I_A - I_E + Q \qquad --- (4)$$
with the help of

$$d\rho = \frac{\partial \rho}{\partial \rho} dh + \frac{\partial \rho}{\partial \rho} d\rho \quad --- (5)$$

Since it was found in the course of sample calculation Run 10 that relationship(5) broke down at low pressure and low quality, it was decided to implement Eq. (3) instead of Eq. (2) in THYDE-P so that mass is strictly conserved.

2.2 Flow Model

When low enthalpy ECC water was injected into primary loop, depressurization of the system caused by a rapid condensation took place and the calculations by the homogeneous equilibrium models failed. In the refill-reflood phase of a large break LOCA analysis for a comercial PWR plant, the enthalpy of ECC water was 30 kcal/kg, whereas the coolant enthalpy was about $500 \sim 600 \text{kcal/kg}$, so that the situation was beyond equilibrium model. In the present calculation, a non-equilibrium model for

density calculation was introduced to cover this non-equilibrium phenomenon by means of a relaxation equation;

$$\frac{dp}{dt} = \frac{p - p^*}{\tau} \qquad --- (6)$$

ρ; equilibrium density

p*; non-equilibrium densiyt

τ; delay parameter

2.3 Implicit Solution of Fuel Rod Temperature

The heat conduction equation within a fuel rod was given by

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (kr \frac{\partial T}{\partial r}) + \frac{\partial}{\partial z} (k \frac{\partial T}{\partial z}) + Q \quad --- \quad (7)$$

Radial mesh width was the order of $10^{-3}\,$ m, while axial mesh width was the order of 1 m. So the equation was simplified ignoring the second term of the right hand side which was originally included in the equation, and was solved using a fully linear implicit method. By this improvement coupled with other implicit techniques for various parameters, calculations go ahead with a larger time step width.

2.4 Improvement of CHF and Heat Transfer Correlations

In the present version, various types of correlations for CHF and heat transfer were included in THYDE-P code, and the user can select appropriate correlations.

Presently available CHF correlations are;

- (1) Biasi correlation
- (2) GE correlation
- (3) B&W-2, Bernett, Modified Bernett correlation
- (4) Modified Zuber correlation

and available heat transfer correlations are;

for nucleate boiling condition

- (1) Jens-Lottes correlation
- (2) Thom correlation

for post-CHF forced convection condition

- (1) Groenevelt correlation and
- (2) Dougall-Rhosenow correlation

for post-CHF pool condition

- (1) Berenson correlation
- (2) Modified Bromley correlation
- (3) Bromley-Pomeranz correlation

- 3. Main Asumptions and Conditions for Run 20
 - 3.1 Run 20 Plant Representation

An overall description of the specified 4-loop 1,100MWe PWR

is given in section 2 of Ref. (2).

The input data used in the present calculation are listed in Appendix A. In the following, the main inputs and assumptions for Run 20 are shown.

- (1) The specific enthalpy of ECC water in pumped injection and accumulator injection were assumed to be 30 kcal/kg.
- (2) The nodalization of the present calculation is shown in Fig.3-1.

Nodes from 23 to 28 represent average core channel and a hot core channel was nodalized into nodes from 29 to 34. Node 36 was added for a cross flow simulation. The lower the upper plenum were expressed by a single plenum and (node 22 and node 37, respectively), and the node downcomer was simulated also by a single node (node 21). The upperhead was simulated by linkage node 38. The steam generator and the accumulator were modeled as special nodes and were nodalized into nodes 46,47 and nodes 41,42, respectively.

- (3) The double-ended break were assumed to occur at junction 8 at 0.01 sec after the calculation started. The pressure the break was assumed to drop to the containment pressure exponentially with a time constant 0.4 sec.
- (4) In the steady state adjustment, THYDE-P requires initial mass flux and enthalpy at one point of the primary loop. They were selected to be

 $G = 9.0 \times 10^3 \text{ kg/m}^2.\text{sec}$ h = 360 kcal/kgat point A of normal node 1.

The geometrical data and loss coefficients for each node are shown in Table 3-1 and Table 3-2. Fig.3-2 shows the distribution of node average pressure in the primary loop which was obtained following the procedure described in section 4 of Ref. (2).

(5) Steam generator was modeled by the following data.

secondary system pressure $3.0 \times 10^{-2} \text{ m}$ U-tube pitch 3265 number of U-tubes of one unit specific enthalpy of feedwater 222 kcal/kg 474.0 kg/sec feedwater mass flow rate 4.0 m subcooled water level 0.95 void fraction of saturated region

initial heat flux

node no.	heat flux(kcal/m².sec)
14	65.65
15	49.24
16	41.03

The feedwater was cut off at 0.4 sec after LOCA initiated. In the present calculation, a relief valve could not be simulated.

(6) The core was divided radially into two regions, i.e. average channel region and hot channel region. The hot channel simulated the most hottest assembly in the core, and its hot channel factor was assumed to be 1.30. Input data for the core nodes were;

reactor themal power 3,479 MWt initial heat flux and number of fuel rods

	hot chan	nel region	average channel region		
	node no.	heat flux (kcal/m².sec)	node no.	heat flux (kcal/m².sec)	
initial heat flux	29 30 31 32 33 34	non-heated 203.0 304.0 304.0 203.0 non-heated	23 24 25 26 27 28	non-heated 156.0 234.0 234.0 156.0 non-heated	
number of rods	200		391	70	

fuel length plenum gas volume clad outer diameter clad thickness	3.66 m 1.235 x 10 ⁻⁵ m 1.0732 x 10 ⁻² m 6.187 x 10 ⁻⁴ m
clad thickness	
pellet diameter	9.31 4 6 x 1 ₀ 0 ⁻³ m
fuel rod pitch	1.42 x 10 ⁻² m

(The last four values are those at a full power operating condition)

(7) Input data for the pressurizer were;

cross-sectional area	3.58 m²
height	15.56 m
subcooled water level	9.0 m
void fraction of saturated region	0.99
stand pipe length	0.1 m

(8) ECC water was assumed to be injected into mixing junction 28 in the intact loop, and into mixing junction 34 in the broken loop. Input data for ECC were;

Accumulator
initial water volume
initial nitrogen volume
specific enthalpy of water
initial pressure

23.3 m³
10.0 m³
30 kcal/kg
44 atm

Pumped injection
specific enthalpy of water
mass flow rate

30 kcal/kg
220 kg/sec

for each loop.

Pumped injection was initiated after the break took place with a delay time of 25 sec.

- (9) No structual heat source or sink was assumed.
- (10) No paticular model for the container was provided except the temporary behavior of the container pressure which was an input function of time, i.e.;

time(sec)	0.0 7	, 5	15.0	30.0	1000.0
pressure(atm)	1.0 2	. 7	4.0	4.0	4.0

- (11) Reverse flow at the break point occurred when the pressure in the primary loop became below the containment pressure. The quality for this reverse flow was set to 0.001. The loss coefficient at the break point for a reverse flow was 20.0, so that the total amount of reverse flow turned out to be small compared with ECC water injected.
- (12) Because the flow area at the pump node was small compared with the other nodes, the pressure in the broken loop pump node dropped very rapidly in the early stage of blowdown. To avoid this unrealystically great pressure drop, the momentum flux term was omitted from the momentum equation only in the pump node.
- (13) Core bypass area was nodalized into a single node, so condensation at this node became so large in reflooding stage that flow tended to go into the bybass region rather than into the core nodes. To prevent this flow pattern, the loss coefficient of bypass node was increased gradually from 47.9 to 150.0 after 60.0 sec.
- (14) Loss coefficient of node 10 for a reverse flow was increased gradually from 0.1 to 10.0 to account for a form loss at the connection between the downcomer and the pipe after 21 sec.

3 2 CHF Correlations

In the present calculation, in the same way as RELAP-4 code(6), B&W-2, Bernett, and Modified Bernett correlations Bernett, and Modified Bernett correlations were used as follows;

ď	>1500	B&W-2 correlation
1500> p	>1300	Iterpolation between B&W-2
•		and Bernett
1300> p	>1000	Bernett correlation
1000> p	>725	Interpolation between Bernett
		and Modified Bernett
725> p		Modified Bernett

in pool condition i.e. $G < G_{min}$, CHF was calculated by

$$\phi = (\phi_{CHF} - \phi_{min})G/G_{min} + \phi_{min}$$

 ϕ_{min} ; 67.9 kcal/m².sec (90000 Btu/ft².hr) G_{min} ; 271.2 kg/m².sec (20000 lbm/ft².hr) ϕ_{CHF} ; CHF value at $G=G_{\text{min}}$

3.3 Heat Transfer Correlations

The heat transfer correlations used the in calculation were summarized in Table 3-3 and Table 3-4. In the post CHF calculation, heat transfer correlations which assume film boiling conditions are likely to be underestimated compared with experimental data at low qualities. So transition boiling are assumed if quality becomes smaller than a threshold value in the following way.

(1) Forced convection transition boiling

$$h^{tr} = (h_0^{tr} - h_c^{tr}) (\frac{x}{x_T})^2 + 2(h_c^{tr} - \bar{h}_0^{tr}) \frac{x}{x_T} + h_0^{tr}$$

 h_o^{tr} ; H.T.C. in transition boiling h_o^{tr} ; H.T.C. by Mode 4 at x=0.0 h_c^{tr} ; H.T.C. by Mode 4 at x=x x ; quality x_{T} ; threshold quality (=0.5)

(2) Pool transition boiling

$$h^{tr} = \phi_{CHF}/(T_W - T_B)$$

h ; H.T.C. in transition boiling Φ_{CHF}; CHF value at present condition T_W; wall temperature T_B; bulk temperature

 x_{T} ; threshold quality (=0.1)

3.4 Critical Flow

Zaloudeck equation and Moody table are implemented for a subcooled condition and a saturated condition respectively. At the region, 0.0<x<0.02, critical flows calculated by these two models are connected smoothly. The discharge coefficient for Moody model was 0.6.

3.5 Relaxation Parameters

In the THYDE-P the relaxation models are implemented to avoid discontinuity or rapid change which may be brought about by various mode transitions.

(1) In order to ensure smooth variation in enthalpy with the flow direction change, we introduce parameters for each node such that

$$\frac{d\eta_i}{dt} = \frac{S - \eta_i}{C_i} \quad --- \quad (8) \qquad (\eta_i = A \text{ or } E)$$

where S 1 when G < 00 when $G \ge 0$ T, delay parameter (=0.05 sec)

Eq. (8) is calculated using a linear implicit method.

(2) To ensure continuous transition of the heat transfer coefficient with mode changes, h^{tr} is smoothed by

$$\frac{dh^{tr}}{dt} = \frac{h_c^{tr} - h^{tr}}{T_2} \qquad --- (9)$$

where h_c^{tr} ; effective H.T.C. h_c^{tr} ; H.T.C. calculated by correlations τ_2 ; delay parameter (=0.08 sec)

Eq. (9) is calculated using a linear implicit method.

(3) As shown in Section 2.2, to avoid a rapid depressurization caused by a condensation, coolant density change is moderated as follows;

$$\frac{d\rho^*}{dt} = \frac{\rho - \rho^*}{\tau}$$

Since there is no theoretical basis to determine T until now, we have no choice but to set the values empirically in the way that au is proportional to node volume. In the present calculation, 7 was set as follows;

after 8 sec

1.0 sec for nodes 8,9,19,20 and nodes 41,44
0.08 sec for other nodes
1.0 sec for mixing junctions 28 and 34
0.08 sec for other mixing junctions

after 21 sec

for nodes 23 and 29 1.0 sec 2.0 sec for nodes 24 28 and nodes 30 34 for nodes 17 20 and nodes 41 44 4.0 sec for nodes 5 7 and node 9 6.0 sec for nodes 10,22 and 35 for node 8 10.0 sec 12.0 sec for node 21 (downcomer node) 20.0 sec for other nodes 0.1 sec 4.0 sec for mixing junctions from 28 to 34 0.1 sec for other mixing junctions

3.6 Drift Flux Model

In the THYDE-P code, the relative velocity between gas and liquid is given by

$$u_{\text{rel}} = \frac{u_{\text{gj}}}{1 - \Omega} \qquad --- (10)$$

where Ugj is the drift velocity,

$$u_{gj} = u_{gj}^{0} S_{\alpha}^{2} = 1.41 \left[\frac{9\sigma (P_{ts} - P_{gs})}{P_{ts}} \right]^{1/4} S_{\alpha}^{2} --- (11)$$

and So is chosen to be of the form

$$S_{d} = 1 - e^{\frac{1-dc}{1-dc}}$$
 --- (12)

so as to avoid that Upel becomes unrealistically great as dapproaches unity.

As the energy equation is the form of (1) in section 2.1, the term 'I' plays an important role, when flow becomes stagnant i.e. G=0. On the other hand, in the RELAP4 $\operatorname{code}^{(6)}$ a vertical slip model is introduced to account for the energy transport effect by two phase flow, using the vertical slip velocity defined only by void fractions as follows;

$$V_{slip} = (10.0 + 4.0 \times \Delta O) O (1 - 0) (1 - 1.25 O) --- (13)$$

In the reflooding stage, flow in the core becomes nearly

stagnant and void fractions are great, so the drift flux model becomes important in energy transport calculation and the value of the drift velocity has a great influence on a quenching time.

In the reflooding stage, the system pressure becomes nearly equal to the containment pressure (in the present calculation 4.0 atm), so the drift velocity U_{3j}° has almost the same value anywhere in the system (in the present calculation, about 0.21 m/sec). Plot data in Fig.3-3 are calculated using these values.

As be seen from Eqs. (11) and (12), the relative velocity in

a high void region depends greatly on the value of O_c .

In Fig.3-3 Urel for $\phi_c=0.8,\,0.97,\,0.99$ are shown with V_{slip} clculated by Eq. (13). In the present calculation ϕ_c was set to 0.97, as will be discussed in section 4.10.

Table 3-1 Node Geometrical Data

Node No.	Description	Flow Area	Node Length	Node Volume
11000		A (m ²)	L (m)	v (m ³)
	D / l has les	0.4266	5.240	2.235
1	Broken loop hot leg	2.8953	1.665	4.821
2	SG inlet plenum	0.9952	5.000	4.976
3 4	SG U-tube	0.9952	5.460	5.434
	SG U-tube	0.9952	10.460	10.410
5 6	SG U-tube	2.8953	1.665	4.821
6	SG outlet plenum	0.4865	7.340	3.571
7	Broken loop cold leg	0.4005	12.412	2.379
8	Pump	0.1317	2.825	1.084
9	Broken loop cold leg	0.3837	3.130	1.201
10	Broken loop cold leg	1.2798	2.000	2.560
11	Intact loop hot leg	1.2798	3.240	4.147
12	Intact loop hot leg	8.6859	1.665	14.462
13	SG inlet plenum	2.9856	5.460	14.928
14	SG U-tube	2.9856	5.460	16.301
15	SG U-tube	2.9856	10.460	31.229
16	SG U-tube	8.6859	1.665	14.462
17	SG outlet plenum	1.4594	7.340	10.712
18	Intact loop cold leg	0.5750	12.412	7.137
19	Pump	1.1512	5.955	6.855
20	Intact loop cold leg	2.7435	7.248	19.885
21	Downcomer	4.8578	6.075	29.511
22	Lower plenum	4.3552	0.230	1.002
23	non-Active core in average	4.3552	0.800	3.484
24	Active core in average		0.800	3.484
25	Active core in average	4.3552	0.800	3.484
26	Active core in average	4.3552	0.800	3.484
27	Active core in average	4.3552	0.230	1.002
28	non-Active core in average	4.3552	0.230	5.11-3
29	non-Active core in hot	0.0222	0.800	1.78-2
30	Active core in hot	0.0222 0.0222	0.800	1.78-2
31	Active core in hot	0.0222	0.800	1.78-2
32	Active core in hot	0.0222	0.800	1.78-2
33	Active core in hot	0.0222	0.230	5.11-3
34	non-Active core in hot	0.0222	3.660	0.885
35	Core bypass	9.079-4	0.100	9.08-5
36 27	Core cross area	9.2941	4.341	40.346
37	Upper plenum	3.8568	3.658	14.108
38	Upper head	0.0661	15.00	0.992
39 40	Pressurizer surge line	0.0661	14.30	0.945
40	Pressurizer surge line	0.0001	12.00	2.630
41	Pumped injection duct	0.2132	12.00	0.877
42	Pumped injection duct	0.0/31	120.00	13.932
43	Accumulator duct	0.1181	120.00	4.644
44	Accumulator duct	0.0007	120.00	****

Table 3-2 Loss Coefficient

Node No.	К	K ^{Af}	K ^{Ar}	κ ^{Ef}	κ ^{Er}
1 2 3 4 5 6 7 8 9 0 1 1 2 13 4 15 6 17 8 19 0 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4	0.023 0.021 0.011 0.008 0.017 0.030 0.019 0.028 0.013 0.025 0.027 0.027 0.029 0.022 0.303 0.011 1.398 6.416 6.072 6.218 6.737 5.642 6.737 5.642 6.737 5.642 6.104 47.857 12.354 2.08-2 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 1	0.043 3.73 0.033 0.0 0.0 0.0 0.0 0.042 0.273 0.0 0.043 0.0 0.043 0.0 0.042 0.273 0.0 0.0 0.042 0.273 0.0 0.0 0.0 0.0 0.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.084 1.97 0.048 0.0 0.0 0.0 0.077 0.367 0.0 0.083 0.0 1.97 0.048 0.0 0.0 0.077 0.367 0.0 0.0 0.074 0.0 0.0 0.0 0.74 0.0 0.0 0.0 0.34 0.83 0.0 0.0 0.34 0.83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.203 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44	10.0				

Table 3-3 Heat Transfer Correlations

Mode	Conditions		Correlations
	Coolant Condition	Other Conditions	
1	subcooled	T _w < T _{sat}	Dittus-Boelter
2	subcooled	$T_w > T_{sat}$	Interpolation between Model and Mode3
3	saturated	ϕ < ϕ_{CHF}	Thom
4	saturat e d	Φ>Φ _{CHF}	(see Table 3.4)
5	superheated	Re < 3000	Forced convection
6	superheated	3000 <re<5000< td=""><td>Interpolation between Mode5 and Mode7</td></re<5000<>	Interpolation between Mode5 and Mode7
7	superheated	Re > 5000	McEligot

Table 3-4 Heat Transfer Correlations in Mode-4

Mode	Conditions	Correlations
4-1	<pre>G > G_{min} , x > x_{c1}</pre>	Groenevelt and Dougall-Rhosenow
4-2	<pre>G>Gmin , x<xcl< pre=""></xcl<></pre>	Forced convection transition boiling
4-3	$G < G_{min}$, $x > x_{c2}$	Modified Bromley
4-4	$G < G_{min}$, $x < x_{c2}$	Pool transition boiling

 T_{W} ; Wall temperature

 G_{min} ; Minimum mass flux (=271.2 kg/m²sec) X_{cl} ; Threshold quality (=0.5)

 x_{c2} ; Threshold quality (=0.1)

Fig. 3-1 Nodalization for 4-loop PWR

- 15 **-**

Fig. 3-3 Relative Velocity

4. Calculated Results

In this section, we will show the calculated results of Run

20 along with the discussions on them.

The maximum time step width was set to 32 ms after 20sec, the total CPU time required for Run 20 by a FACOM M-200 computer was about 1.5 hours.

4.1 Overall Description

The chlonology of events is shown in Table 4-1. If we define the end of blowdown to be the time when the system pressure stops decreasing and the injected ECC water starts to flow down the downcomer, then it was 38 sec after the break occurred. The accumulator in the intact loop started injection at 16 sec and a duct node (node 20) was filled with subcooled water at 25 sec, but almost all of injected ECC water flowed out directly through the break until 38 sec. After ECC water penetrated the downcomer, an upward flow persisted in the heated section of the core by 49 sec which we define to be the time of the start of the reflooding. The accumulator was exhausted at 62 sec, but the P.I. kept injecting low enthalpy water. The driving force of the P.I. together with the static head of water in the downcomer supplied subcooled water to the heated section of the core and eventually quenching took place. After 140 sec all heated nodes in the average channel quenched, so that the average quench velocity was about 3.5 cm/sec.

The system pressure was shown in Fig.4-1-1. At 0.05 sec after the break occurred, the system was depressurized to 14 Mpa and bubbles appeared at the core nodes. After 0.1 sec, the upper plenum and the hot leg region became saturated successively so the system depressurized more gradually to the containment pressure. Except the period of ECC water penetration through the downcomer and the lower plenum, the system pressure was kept constantly at a little bit above the containment pressure after

45 sec.

4.2 Fuel and Core

In Figs. 4-2-1 to 4-2-4, the clad surface temperatures in the average channel and in the hot channel are shown. The fuel center temperatures for two channels are shown in Fig.4-2-5 and

in Fig.4-2-6, respectively.

The clad surface temperatures reached the peak temperature after 10 sec, and then they dropped owing to a reverse flow in After 25 sec the core flow became stagnant again so the core. surface temperature rose gradually till 50 sec when reflooding began. After reflooding started, the surface temperature began to decrease and the lowest part of the heated section of the average core became quenched at 74 sec. After that, the core quenched from lower part to upper part successively and all of the heated section of the average core became quenched by 140 sec. On the other hand, in the hot channel region quenching delayed compared with the average channel.

The period during which film boiling was dominant was rather long after reflooding started (see Figs.4-2-7 and 4-2-8). By taking a node average quality as the arithmetic mean of x_A and x_E instead of the outlet quality, an average quality would decrease more rapidly and as a result, the heat transfer mode would shift to the pool transition mode more earlier.

Fig. 4-2-7 and Fig. 4-2-8 show the behavior of the heat transfer coefficient in the average channel along with the heat

transfer modes designated by

; subcooled boiling 3 ; nucleate boiling 4 ; film boiling 4'; transition boiling

5; forced convection by superheated steam

In Figs. 4-2-9 to 4-2-12, the mass flux in the core inlet and the core outlet are shown. Fig.4-2-13 shows the heat generation rate in fuels. Fig.4-2-14 and Fig.4-2-15 show the behavior of the fuel gap pressure and the heat transfer coefficient in the gap, respectively. The gap pressure was controlled mainly by the temperature in the gas plenum. The heat transfer coefficient in the gap was almost constant during the transient, so the initial value would become an important factor for the calculation of fuel temperatures. Fig. 4-2-16 shows qualities in the average channel, which indicates that qualities oscillate around 0.1, because the heat transfer modes change between the film boiling condition and the pool transition boiling condition at the threshold quality of 0.1.

Figs. 4-2-17 and 4-2-18 show enthalpies in the core inlet and in the core outlet. Fig.4-2-19 shows a core cross flow. By comparing the core inlet flow with the core outlet flow in the hot channel region, it is seen that a cross flow flattens the flow distributions in the upper region of the core. This fact

coincides with our phisical intuition.

4.3 Downcomer and Lower plenum

Figs. 4-3-1 and 4-3-2 show the mass flux in the downcomer and in the lower plenum, respectively. Figs.4-3-3 and 4-3-4 show qualities in the downcomer and in the lower plenum. By 44 sec, G_{21}^{C} started to increase and at 48 sec G_{21}^{E} became positive. After that, the difference between G_{21}^{C} and G_{21}^{E} became small indicating that the downcomer was filled with liquid.

As for the flow in the lower plenum, in the early stage of blowdown from 1 sec to 3 sec the value of $G_{22}^A - G_{22}^E$ was negative, indicating that flashing occurred in the node, but water flowed out of the system through the downcomer rather than into the core. The reason is supposed to be that the upperhead reached saturation earlier than the lower plenum on account of the high initial enthalpy, and that the water from the upperhead flowed down the core during this period.

From 46 sec till 72 sec, the value of $G_{22}^A-G_{22}^E$ remained positive and a moderate condensation occurred in the lower plenum. This is because a large delay parameter for the density

calculation was used in the downcomer node.

4.4 Break

Fig. 4-4-1 shows break flows G_{00}^{E} and G_{00}^{A} . In Fig. 4-4-2 enthalpies at the break point are shown. It should be noted that G_{0}^{E} took on a positive value at the initial steady state. As soon as the break occurred, G_{0}^{E} deccelerated and began to reverse its direction. But the other break flow G_{0}^{A} remained mostly positive throughout the LOCA.

From 30 sec till 47 sec, the break flow G_{10}^{E} increased and its enthalpy was below 100 kcal/kg. It shows that the ECC water bypassed over the downcomer to the break during this period. Fig. 4-4-4 shows the pressure at the break, P_{io}^{E} and P_{io}^{Q} , which indicate that break flows G_{io}^{E} and G_{io}^{Q} returned to inertial flows

at 26 sec and 30 sec, respectively.

4.5 Pressurizer

At 1.9 sec, region 2 (the lower region of the pressurizer) became saturated. At 22.5 sec, the level of region 2 reached the top of the stand pipe so that the coolant in region 1 started flow out of the pressurizer. Fig.4-5-1 shows the surge flow $G_{\rm SI}^{\rm A}$, whose rate of change varied at 1.9 sec and 22.5 sec, corresponding to the times when region 2 became saturated and when its level reached the top of the stand pipe. Fig.4-5-2 shows P_{3q}^{A} and P_{40}^{E} , the former of which has the same tendency as those in the primary loop, and the latter is pressure in the pressurizer. The difference between P_{40}^{E} and P_{39} can be regarded as the driving force for the flow in the pressurizer Fig. 4-5-3 shows the mass flux in the intact loop hot leg. The surge water from the pressurizer flowed into the core from 10 sec till 25 sec and it cooled the core effectively.

Fig. 4-5-4 shows the water level in the pressurizer. At 22.5 sec it vanished. From 76 sec the water level increased to about 3.0 m, but the integrated mass of this flow was about 50 kg and

had no effect on core cooling.

4.6 Pumped Injection

Figs. 4-6-1, 4-6-2 and 4-6-3 show the behavior of the P.I. system. When the P.I. system was actuated at 25 sec, P_{41}^{E} deviated from P_{41}^{A} as shown in Fig. 4-6-2, and their difference accounted for the driving force of P.I. flow shown in Fig. 4-6-1. Fig. 4-6-3 shows h_{4i}^{E} which gradually approached to the ECC water enthalpy of 30 kcal/kg after the actuation of P.I.

The mass flow rate in the intact loop P.I. duct was 660 kg/sec, and about one third of it flowed into the core after the termination of the accumulator injection. So the P.I. system

played an important role on core cooling.

4.7 Accumulator

The accumulator was actuated at 16 sec and it was terminated at 62 sec with a time constant of 3.0 sec. Fig.4-7-1 shows $P_{43}^{\,6}$ and $P_{43}^{\,E}$. The former is practically the system pressure, while

the latter the pressure of the accumulator. The difference between P_{43}^A and P_{43}^E is the driving force of the accumulator. Fig. 4-7-2 shows G_{43}^E . Fig. 4-7-3 shows h_{43}^E , which started to decrease at 16 sec to 30 kcal/kg and after the termination of the accumulator injection increased due to flow reversal at the injection duct.

Fig. 4-7-4 shows entalpies at 19E and 20A, which tend to deviate from each other with the actuation of A.I. and P.I. When A.I. terminated at 62 sec, the quality at 20A increased because of the superheated steam flow through The S.G., but a steady flow to the core continued due to the low enthalpy water from P.I. system.

4.8 Steam Generator

Fig. 4-8-1 shows the S.G. feedwater flows in the broken and intact loops. Figs. 4-8-2 and 4-8-3 show the heat transfer coefficient between nodes 47 and 14, and between nodes 46 and 3, respectively. Fig. 4-8-4 shows the heat inputs to nodes 3 and 14 from the corresponding steam generators, both of which became heat sources to the primary flow at 17 sec. Fig. 4-8-5 shows the pressure in the S.G. secondary system. The pressure in the broken loop S.G. reached 8.2 MPa, but a relief flow was not taken into account.

4.9 Pump

Fig. 4-9-1 shows the relative pump speed. It was shown that the rotor was locked when the break occurred and pump speed decreased exponentially with a time constant 0.05 sec.

Fig. 4-9-2 shows pump heads in each loop.

4.10 Difference due to Drift Velocity

In Fig.4-10-1, the clad surface temperatures calculated on the condition that $O_c=0.97$ (see Eq. (12) in section 3.6) are shown, and in Fig.4-10-2 the clad surface temperatures for $O_c=0.8$ are shown. In Figs.4-10-3 and 4-10-4, heat transfer coefficients for each case are shown.

In the case where ϕ_c was set to 0.97, the lowest part of the heated section in the average channel became quenched at 74 sec, while in the case where ϕ_c was set to 0.80, the quenching time was delayed. The reason is that when ϕ_c is set to small value such as 0.80 the drift velocity becomes nealy zero at the quench front where a large amount of bubbles are formed, and energy transfer by rise effect of these bubbles can not be taken into account.

At the quench front, heat from fuel rods is transferred to coolant by forming bubbles, and these bubbles rise faster than liquid. To evaluate a relative velocity between vapour and liquid at the quench front is difficult, though, in the present calculation this velocity was limited to about 2.5 m/sec (when $\sigma_c = 0.97$) as the maximum velocity.

Table 4-1 Chronology of Events Table

Time (sec)	Events
0.01	Break took place and pump was tripped.
0.221	Upperhead became saturated.
0.40	SG feed water was tripped.
1.40	Lower plenum became saturated.
16.0	Accumulator in intact loop started injection.
. 22.5	Pressurizer water level reached stand pipe.
25.01	Pumped injection started.
38.0	ECC water penetrated the downcomer. (start of refill)
47.0	Bypass ended.
49.0	Subcooled water reached the bottom of core.
74.0	Bottom core node in average channel quenched.
140.0	All nodes in average channel quenched.

5. Conluding Remarks

This work was a through LOCA calculation for a commercial 1,100 MWe class PWR plant from the occurence of a double-ended till complete fuel quenching due to core reflood. break Therefore, the calculated chronology of events discussed in section 4 is of great interest. The assumptions and conditions for Run 20 are shown in section 3. Their effects on the calculated results should be examined in comparison with other sample calculations by THYDE-P under different assumptions.

The discharge coefficient for critical flow at break points the delay parameters for non-equilibrium effects have a big influence on the calculation of clad surface temperature and on

the quenching time of the core.

It was shown in the present calculation that surge flow from the pressurizer, drift flux model during reflooding phase, pumped injection flow rate and its enthalpy play important roles on core cooling.

Acknowledgments

The authors would like to express thier thanks to Mr. K Sato, Chief of Reactor Safety Code Development Labolatory, for his valuable suggestions to this work.

The authors are also very grateful to the members of

labolatory for thier useful discussions.

References

- (1) Y. Asahi, 'Description of the THYDE-P Code (Preliminary Report of Methods and Models), JAERI-M7751, 1978.
- (2) Y. Asahi and M. Hirano, Verification Study of LOCA Analysis Code THYDE-P (Sample Calculation Run 10)', JAERI-M8560, 1979.
- (3) M. Hirano and Y. Asahi, 'Through Analysis of LOFT L2-2 by THYDE-P Code', JAERI-M9535, 1981.
- (4) M. Hirano, 'Through Analysis of LOFT L2-3 by THYDE-P Code', to be published.
- (5) T.R. Chalton, et al., 'RELAP4/MOD5 Users Manual Volume (Checkout Applications), ANCR-NUREG-1335 (Vol.3), 1976.
- (6) K.R. Katsuma, et al., 'RELAP4/MOD5 Users Manual Volume 1 (RELAP4/MOD5 Description), ANCR-NUREG-1335 (Vol.1), 1976.

5. Conluding Remarks

This work was a through LOCA calculation for a commercial 1,100 MWe class PWR plant from the occurence of a double-ended break till complete fuel quenching due to core reflood. Therefore, the calculated chronology of events discussed in section 4 is of great interest. The assumptions and conditions for Run 20 are shown in section 3. Their effects on the calculated results should be examined in comparison with other sample calculations by THYDE-P under different assumptions.

The discharge coefficient for critical flow at break points

The discharge coefficient for critical flow at break points and the delay parameters for non-equilibrium effects have a big influence on the calculation of clad surface temperature and on

the quenching time of the core.

It was shown in the present calculation that surge flow from the pressurizer, drift flux model during reflooding phase, pumped injection flow rate and its enthalpy play important roles on core cooling.

Acknowledgments

The authors would like to express thier thanks to Mr. K Sato, Chief of Reactor Safety Code Development Labolatory, for his valuable suggestions to this work.

The authors are also very grateful to the members of the

labolatory for thier useful discussions.

References

- (1) Y. Asahi, 'Description of the THYDE-P Code (Preliminary Report of Methods and Models)', JAERI-M7751, 1978.
- (2) Y. Asahi and M. Hirano, 'Verification Study of LOCA Analysis Code THYDE-P (Sample Calculation Run 10)', JAERI-M8560, 1979.
- (3) M. Hirano and Y. Asahi, 'Through Analysis of LOFT L2-2 by THYDE-P Code', JAERI-M9535, 1981.
- (4) M. Hirano, 'Through Analysis of LOFT L2-3 by THYDE-P Code', to be published.
- (5) T.R. Chalton, et al., 'RELAP4/MOD5 Users Manual Volume 3 (Checkout Applications)', ANCR-NUREG-1335 (Vol.3), 1976.
- (6) K.R. Katsuma, et al., 'RELAP4/MOD5 Users Manual Volume 1 (RELAP4/MOD5 Description)', ANCR-NUREG-1335 (Vol.1), 1976.

5. Conluding Remarks

This work was a through LOCA calculation for a commercial 1,100 MWe class PWR plant from the occurence of a double-ended till complete fuel quenching due to core reflood. Therefore, the calculated chronology of events discussed in The assumptions and conditions section 4 is of great interest. effects on the Their for Run 20 are shown in section 3. calculated results should be examined in comparison with other sample calculations by THYDE-P under different assumptions.

The discharge coefficient for critical flow at break points the delay parameters for non-equilibrium effects have a big influence on the calculation of clad surface temperature and on

the quenching time of the core.

It was shown in the present calculation that surge flow from the pressurizer, drift flux model during reflooding phase, pumped injection flow rate and its enthalpy play important roles on core cooling.

Acknowledgments

The authors would like to express thier thanks to Mr. Sato, Chief of Reactor Safety Code Development Labolatory, for his valuable suggestions to this work.

The authors are also very grateful to the members of

labolatory for thier useful discussions.

References

- (1) Y. Asahi, 'Description of the THYDE-P Code (Preliminary Report of Methods and Models)', JAERI-M7751, 1978.
- and M. Hirano, 'Verification Study of LOCA (2) Y. Asahi Analysis Code THYDE-P (Sample Calculation Run 10)', JAERI-M8560, 1979.
- (3) M. Hirano and Y. Asahi, 'Through Analysis of LOFT L2-2 by THYDE-P Code', JAERI-M9535, 1981.
- (4) M. Hirano, 'Through Analysis of LOFT L2-3 by THYDE-P Code', to be published.
- (5) T.R. Chalton, et al., RELAP4/MOD5 Users Manual Volume (Checkout Applications), ANCR-NUREG-1335 (Vol.3), 1976.
- (6) K.R. Katsuma, et al., 'RELAP4/MOD5 Users Manual Volume 1 (RELAP4/MOD5 Description), ANCR-NUREG-1335 (Vol.1), 1976.

Appendix A. Input Data List

```
-- 1000 MWE PWR BLOWDOWN ANALYSIS ( WITH HOT CHANNEL) 81.05.13 --
                                                                      00000020
                                                                      00000030
/ **** DIMENSION DATA ****
                                                                      00000040
BB01
 0 0 9 3 16 49 40 92 2 2 2 3 6 5 3 0 2
                                                                      00000050
                                                                      00000060
                                                                      00000070
/ **** MINOR EDIT DATA ****
                                                                      00000080
PRE-08 PRA-12 GLA-23 GLA-29 GLE-35 GLE-36 GLA-37 GLA-38 PRA-26
                                                                      00000090
                                                                      00000100
                                                                      00000110
/ **** TIME STEP CONTROL DATA ****
                                                                      00000120
BB03
                                                                      00000130
SB0301
                                                                      00000140
   0.2 0.2 100.
                                                                      00000150
SB0304
                                                                      00000160
               0 1.0E-3 1.0E-6 0.3 0.1
   20
       3 50
                                                                      00000170
SB0305
                                                                      00000180
               0 8.0E-3 1.0E-6 90.0 0.1
   30
      3 50
                                                                      00000190
$80308
                                                                      00000200
               0 4.E-3 1.E-6 2000.0 0.1
   30 3 50
                                                                      00000210
                                                                      00000220
/ **** TRIP CONTROLL DATA ****
                                                                      00000230
8804
                                                                      00000240
SB0480
                                                                      00000250
      1 0 1000-0
                         0.0
 1 0
                                                                      00000260
SB0481
                                                                      00000270
                0.4
                         0.0
 5 46
      1 0
                                                                      00000280
SB0482
                                                                      00000290
           0
                0.4
                         0.0
 5 47
       1
                                                                      00000300
$80483
                                                                      00000310
                         0.0
                0.01
           0
 281
                                                                      00000320
SB0484
                                                                      00000330
                0.01
                         0.0
 2 19
        1 0
                                                                      00000340
SB0485
                                                                      00000350
                         0.0
      1 0
                0.01
 3 0
                                                                      00000360
SB0486
                                                                      00000370
               25.01
                         0.0
 4 1 1 0
                                                                      00000380
SB0487
                                                                      00000390
                         ٥.
             1000.0
 -4 1
       1 0
                                                                      00000400
SB0488
                                                                      00000410
                         0.0
                25.01
 4 2
       1 0
                                                                      00000420
SB0489
                                                                      00000430
             1000.0
                         Ο.
 -4 2
       1 0
                                                                      00000440
$80492
                                                                      00000450
                         0.005
 6 1 -3 1
               240.0
                                                                      00000460
SB0493
                                                                      00000470
                         0.0
 6 2 -3 1
               250.0
                                                                      00000480
SB0494
                                                                      00000490
                         0.0
 6 3 -3 1
               360.0
                                                                      00000500
SB0495
                                                                      00000510
                         0.0
              350.0
 -6 1 3 1
                                                                      00000520
SB0496
                                                                      00000530
 -6 2 3 1
                         0.0
               305.0
                                                                      00000540
SB0497
                                                                      00000550
 -6 3 3 1
               380.0
                         0.00
                                                                      00000560
                                                                      00000570
/ **** FLOW AJUST DATA ****
                                                                      00000580
BB05
                                                                      00000590
 1 9000.0 360.0
```

TAERI-M 9819

```
00000600
                                                                         00000610
  **** NODE DATA ****
                                                                         00000620
8806
                                                                         00000630
SB0601
 1 1 26 1 0 1
                     158.4538 0.737 0. 5.24 0.0
                                                                         00000640
                     0.043 0.084 0.0 0.0
                                                                         00000650
                                                                         00000660
$80602
                     158.9708 1.92 0. 1.665 1.665
3.73 1.97 0.0 0.0
 2 1 1 2 0 1
                                                                         00000670
                                                                         00000680
                                                                         00000690
SB0603
 3 7 2 3 1 3265 158.7624 0.0197 0. 5.0 5.0
                                                                         00000700
                     0.033 0.048 0.0 0.0
                                                                         00000710
                                                                         00000720
SB0604
                    158.1581 0.0197 0. 5.46 5.46
0.0 0.0 0.0 0.0
4 7 3 4 1 3265
                                                                         00000730
                                                                        00000740
                                                                        00000750
SB0605
5 7 4 5 1 3265 157.4898 0.0197 0. 10.46 -10.46
0.0 0.0 0.033 0.048
                                                                         00000760
                                                                         00000770
                                                                         00000780
SB0606
                     157.7862 1.92 0. 1.665 -1.665
0.0 0.0 3.73 1.97
6 1 5 6 0 1
                                                                         00000790
                                                                         000000800
                                                                         00000810
SB0607
                     157.4466 0.787 0. 7.34 -3.54
                                                                         00000820
7 1 6 7 0 1
                     0.042 0.077 -1. -1.
                                                                         00000830
                                                                        00000840
SB0608
                     154.7227 0.494 0. 12.4117 3.54
-1. -1. 0.2029 0.2027
8 8 7 34 0 1
                                                                         00000850
                                                                         00000860
                                                                        00000870
                     162.0607 0.699 0. 2.825 0.0
                                                                        00000880
9 1 34 8 0 1
                     0.0 0.0 0.0 0.0
                                                                         00000890
                                                                        00000000
SB0610
10 1 8 29 0 1
                     162.0332 0.699 0. 3.13 0.0
                                                                         00000910
                     0.0 0.0 0.0 0.0
                                                                        00000920
                                                                         00000930
SB0611
11 1 26 27 0 3
                     158.4538 0.737 0. 2.0 0.
                                                                        00000940
                                                                        00000950
                     0.043 0.083 0.0 0.0
                                                                         00000960
SB0612
                    12 1 27 9 0 3
                                                                        00000970
                                                                        00000980
                                                                        00000990
SB0613
                     158.9528 1.92 0. 1.665 1.665
3.73 1.97 0.0 0.0
                                                                        00001000
13 1 9 10 0 3
                                                                        00001010
                                                                        00001020
14 7 10 11 1 9795 158.7445 0.0197 0. 5.0 5.0
                                                                        00001030
                     0.033 0.048 0.0 0.0
                                                                        00001040
                                                                        00001050
15 7 11 12 1 9795 158.1387 0.0197 0. 5.46 5.46
0.0 0.0 0.0 0.0
                                                                        00001060
                                                                        00001070
                                                                        00001080
SB0616
16 7 12 13 1 9795 157.4691 0.0197 0. 10.46 -10.46
0.0 0.0 0.033 0.048
                                                                        00001090
                                                                        00001100
                                                                        00001110
SB0617
                              1.92 0. 1.665 -1.665
3.73 1.97
                                                                        00001120
17 1 13 14 0 3
                     157,7645
                     0.0 0.0
                                                                        00001130
                                                                        00001140
SB0618
                                                                        00001150
                     157.4249 0.787 0. 7.34 -3.54
18 1 14 15 0 3
                     0.042 0.077 -1. -1.
                                                                        00001160
                                                                        00001170
SB0619
                    154.6997 0.494 0. 12.4117 3.54
-1. -1. 0.2029 0.2027
                                                                        00001180
19 8 15 28 0 3
                                                                        00001190
```

JAERI-M 9819

SB0620	0	3	162.0373 0.699 0. 5.955 0.	00001200
20 1 28 29	Ü	3	0.0 0.0 0.0 0.0	00001220
SB0621				00001230
21 4 29 16	0	1	162.4638 1.869 0. 7.248 -7.248	00001240
			0.0 0.0 0.0 0.0	00001230
SB0622				00001280
22 5 16 30	0	1	162.9140 2.487 0. 6.075 1.948	00001270
			0.0 0.0 0.0 0.0	00001280
\$80623				00001290
23 2 30 17	0	39170	162.6047 1.0 0. 0.23 0.23	00001300
			0.74 0.74 0.0 0.0	00001310
SB0624				00001320
24 2 17 18	1	391/0	162.1173 1.0 0. 0.80 0.80	00001330
			0.0 0.0 0.0	00001340
SB0625			161.5410 1.0 0.0.80 0.80	00001350
25 2 18 31	1	391/0		00001330
			0.0 0.0 0.0 0.0	00001370
SB0626		70470	160.9517 1.0 0.0.80 0.80	00001390
26 2 31 19	1	39170	14.04.21	00001400
			0.0 0.0 0.0 0.0	00001410
SB0627		70470	160.3296 1.0 0.0.80 0.80	00001420
27 2 19 20	1	24110	0.0 0.0 0.0 0.0	00001430
000/00			0.0 0.0 0.0	00001440
SB0628		70470	159.7062 1.0 0.0.23 0.23	00001450
28 2 20 33	U	39110	0.0 0.0 0.0 0.0	00001460
000430			0.0 0.0 0.0 0.0	00001470
SB0629 29 2 30 21	^	200	162.6047 1.0 0. 0.23 0.23	00001480
24 2 30 21	U	200	1.284 2.482 0.0 0.0	00001490
\$80630				00001500
30 2 21 22	1	200	162.1173 1.0 0. 0.80 0.80	00001510
30 2 21 22	-	200	0.0 0.0 0.0 0.0	00001520
SB0631				00001530
31 2 22 32	1	200	161.5410 1.0 0. 0.80 0.80	00001540
51 L LL 51			o.o o.o o.o	00001550
SB0632				00001560
32 2 32 23	1	200	160.946155 1.0 0. 0.80 0.80	00001570
			0.0 0.0 0.0 0.0	00001580
SB0633				00001590
33 2 23 24	1	200	160.3296 1.0 0. 0.80 0.80	00001600
			0.0 0.0 0.0	00001610
SB0634				00001620
34 2 24 33	0	200	159.7062 1.0 0. 0.23 0.23	00001630
			0.76 0.34 0.0 0.0	00001640
SB0635			7 // 7 //	00001650
35 3 30 33	0	1	162.6047 0.555 0. 3.66 3.66	00001670
			0.77 0.83 0.87 0.78	00001680
SB0636		220	161.029550 0.034 0. 0.1 0.	00001690
36 1 32 31	Ü	500	0.0 0.0 0.0 0.0	00001700
020477			0.0 0.0 0.0	00001710
SB0637	0	1	159.17209 3.44 0. 4.341 1.64	00001720
37 1 33 26	U		0.0 0.0 0.0 0.0	00001730
SB0638				00001740
38 13 26 40	0	1	5.0 2.216 0. 3.658 2.073	00001750
JU 15 20 40		-	1.491E4 1.491E4 0.0 0.0	00001760
SB0639				00001770
39 13 27 25	0	1	5.0 0.29 0. 15.0 1.7	00001780
	-		0.41 0.87 0.0 0.0	00001790

```
00001800
SB0640
                               0.29 0. 14.3
                                                                              00001810
40 13 25 35 0 1
                                                1.6
                        5.0
                                                                              00001820
                             0.0
                                      0.0 0.0
                        0.0
                                                                              00001830
SB0641
                                                                              00001840
                               0.305 0. 12.0 0.0
41 13 28 37 0 3
                       10.0
                               0.0 0.0 0.0
                                                                              00001850
                         0.0
                                                                              00001860
SB0642
                                                                              00001870
                               0.305 0.
                                          12.0 0.0
                        10.0
42 13 34 38
             0
               1
                                                                              00001880
                                       0.0
                                            0.0
                         0.0
                               0.0
                                                                              00001890
$80643
                                                                              00001900
                               0.222 0. 120.0 0.0
                       10.0
43 13 28 36
              0
               3
                                                                              00001910
                         0.109 0.049 0.0 0.0
                                                                              00001920
                        0.0 0.222 0. 120.0 0.0 0.109 0.049 0.0 0.0
                                                                              00001930
                        10.0
44 13 34 39 0 1
                                                                              00001940
                                                                              00001950
                                                                              00001960
   **** JUNCTION DATA ****
                                                                              00001970
BB07
                                                                              00001980
             0.0
    1
        1
                                                                              00001990
        1
             0.0
    2
                                                                              00002000
             0.0
    3
        1
                                                                              00002010
             0.0
    4
        1
                                                                              00002020
             0.0
    5
        1
                                                                              00002030
             0.0
    6
        1
                                                                              00002040
    7
        1
             0.0
                                                                              00002050
             0.0
    8
        1
                                                                              00002060
    9
             0.0
                                                                              00002070
             0.0
   10
        1
                                                                              00002080
   11
        1
             0.
                                                                              00002090
             0.0
   12
        1
                                                                              00002100
             0.0
        1
   13
                                                                              00002110
   14
        1
             0.0
                                                                              00002120
   15
             0.0
        1
                                                                              00002130
             0.0
   16
        1
                                                                              00002140
             0.0
        1
   17
                                                                              00002150
             0.0
   18
        1
                                                                              00002160
   19
        1
             0.0
                                                                              00002170
             0.0
   20
        1
                                                                              00002180
   21
        1
             ٥.
                                                                              00002190
             0.
   22
        1
                                                                              00002200
   23
        1
             ٥.
                                                                              00002210
             0.
   24
        1
                                                                              00002220
             0.
   25
        1
                                                                              00002230
   26
        2
             1.027
                                                                              00002240
        4
             0.049
   27
                                                                              00002250
             0.351
   28
        4
                                                                              00002260
   29
        3
             0.531
                                                                              00002270
        4
             0.1
   30
                                                                              00002280
   31
        4
             0.01
                                                                              00002290
   32
        4
             0.01
                                                                              00002300
             0.05
        4
   33
                                                                              00002310
   34
        4
             0.117
                                                                              00002320
   35
             0.
        6
                                                                              00002330
        5
   36
             0.
                                                                              00002340
         7
             0.
   37
                                                                              00002350
         7
   38
             0.
                                                                              00002360
   39
         5
             ٥.
                                                                              00002370
         8
             ٥.
   40
                                                                              00002380
                                                                              00002390
   **** MIXING JUNCTION DATA ****
```

```
00002400
BB08
                                                                             00002410
SB0801
                                                                             00002420
                                        0.75
                                                 ٥.
                                                        0.
                     38
                           0
                               0.25
  26
        3
             1
                 11
                                                                             00002430
SB0802
                                                                             00002440
                      ٥
                               1.0
                                        0.0
                                                 ٥.
                                                        ٥.
   27
        2
            12
                           O
                                                                             00002450
SB0803
                                                        0.0
                                                                             00002460
                                       0.0
                                                 0.0
   28
            20
                     43
                           0
                               1.0
                                                                             00002470
SB0804
                                                                             00002480
                                       0.0
                               1.0
                                                 \Omega = \Omega
                                                        0.0
   29
             21
                  ۵
                      0
                           n
                                                                             00002490
SBORDS
                                                                             00002500
                               0.945
                                        0.005
                                                 0.05
                                                        0.0
                     35
                           ٥
   30
        マ
            23
                 29
                                                                             00002510
SB0806
                                        0.0
                                                  0.
                                                         0.
                                                                             00002520
                           0
                               1.0
                      ۵
                  n
   31
        1
             26
                                                                             00002530
$80807
                                                                             00002540
                                                        0.
                               0.99
                                        0.01
                                                 ٥.
                 36
                      0
                           0
            32
   32
                                                                             00002550
SB0808
                                                 0.0
                                                                             00002560
            37
                      0
                               1.0
                                        0.0
                                                        0.0
   33
                  ٥
                                                                             00002570
SB0809
                                                                             00002580
                                                        0.0
                                                 0.0
                                       0.0
   34
             9
                 42
                     44
                          0
                               1.0
                                                                             00002590
                                                                             00002600
/ **** PUMPED INJECTION DATA ****
                                                                             00002610
BB09
                                                                             00002620
SB0901
                                                                             00002630
   1
        37
               30.0
                                                                             00002640
   2 1
                                                                             00002650
                           666.0
   0.0
         666.0 1000.0
                                                                             00002660
SB0902
                                                                             00002670
   2
2 1
        38
              30.0
                                                                             00002680
                                                                             00002690
   0.0
         222.0 1000.0
                                                                             00002700
                                                                             00002710
/ **** PUMP DATA ****
                                                                             00002720
BB10
                                                                             00002730
SB1001
                                  105.0 749.0 1150.0 3460.0 0.5
                                                                      0.0
                                                                             00002740
   8 1 0 1185.0 5.58
                         4.33E4
                                                                             00002750
   0.05
                                                                             00002760
SB1002
                                                                             00002770
                   5.58 4.33E4 105.0 749.0 1150.0 3460.0 0.5 0.0
 19 1 0 1185.0
                                                                             00002780
   0.05
                                                                             00002790
                                                                             00002800
/ **** PUMP DATA TABLE ****
                                                                             00002810
BB11
                                                                             00002820
SB1101
                                                                             00002830
1
                                                                             00002840
 14
                    -0.85 1.33
                                                           -0.72 1.30
                                                                             00002850
                                       -0.80 1.28
 -1.0 1.56
                                                           -0.21 1.29
                                                                             00002860
                                      -0.34 1.34
 -0.62 1.35
                    -0.50 1.36
                                                                             00002870
                    0.0 1.22
1.0 0.98
                                       0.25 1.16
                                                           0.50 1.13
 -0.11 1.23
                                                                             00002880
 0.75 1.07
                                                                             00002890
 14
                                                                      0.48
                                                                             00002900
                                                    0.40
                                                         -0.72
             0.18 -0.85
                                 0.34 -0.80
 -1.0
                                                                      0.84
                                                                             00002910
                                                    0.77
                                                          -0.21
                                       -0.34
              0.556 -0.50
                                 0.67
 -0.62
                                                                      1.35
                                                                             00002920
                                                    1.16
                                                          0.50
                                 0.95
                                        0.25
              0.89
                    0.0
 -0.11
                                                                             00002930
                                 1.94
 0.75
              1.62
                     1.0
                                                                             00002940
 11
                                                           -0.32 -0.40
0.32 0.16
                                                                             00002950
                                        -0.50 -0.32
                    -0.75 -0.13
 -1.0 0.18
                                                                             00002960
                                        0.16 -0.28
 -0.16 -0.42
                    0.0 -0.39
                                                                             00002970
                     0.75 0.40
                                        1.0 0.98
 0.50 0.01
                                                                             00002980
 11
                                                   0.90 -0.32
                                                                       0.82 00002990
             1.56 -0.75
                                1.12 -0.50
 -1.0
```

```
0.71 0.32 0.76 00003000
-0.16 0.76 0.0
0.50 0.90 0.75
                                     0.71 0.16
1.33 1.0
                                                           1.94
                                                                                         00003010
                                                                                        . 00003020
14
                                           -0.80 0.68
-0.40 0.46
0.25 0.55
                                                                   -0.70 0.63
                                                                                         00003030
                       -0.90 0.70
-1.0 0.70
                                                              0.50 0.66
-0.60 0.53
                                                                                         00003040
                      ~0.50 0.47
                                                                                         00003050
                      0.0 0.48
 -0.20 0.45
                                                                                         00003060
 0.75 0.83
                       1.0 1.02
                                                                                         00003070
14
                                                          -1.23 -0.70
-0.91 -0.30
-0.49 0.50
              -1.42 -0.90
-1.07 -0.50
-0.77 0.0
-0.20 1.0
                                    -1.32 -0.80
                                                                                  -1.14 00003080
-1-0
                              -0.99 -0.40
-0.64 0.25
-1.10
                                                                                  -0.84 00003090
-0.60
                                                                                  -0.34 00003100
 -0.20
                                                                                         00003110
                                    -1.10
 0.75
                                                                                         00003120
  13
-1.0 -1.42 -0.8 -1.12 -0.6 -0.82 -0.5 -0.68 -0.4 -0.55 -0.2 -0.28 0.0 -0.08 0.11 0.0 0.25 0.12 0.50 0.33 0.75 0.61 0.92 0.82
                                                                                         00003130
                                                                                         00003140
                                                                                         00003150
                                                                                         00003160
 1.0 1.02
                                                                                         00003170
  13
            00003180
-1.0
                                                                                         00003190
 -0-4
                                                                                         00003200
  0.25
                                                                                         00003210
             -0.10
  1.0
                                                                                         00003220
/ 2
                                                                                         00003230
/ 0.0 1.0 1000.0 0.5
                                                                                         00003240
/ 2
                                                                                         00003250
/ -1.0 -50.0 1.0 50.0
                                                                                         00003260
  12
                                           -0.6
                                                                                         00003270
                                                       -2.8
                                                                    -0.5 -2.9
                         -0.9 -1.24
         -1.15
  -1.0
                                                      0.85
                                                                                         00003280
                                               0.12
                                                                    0.2
                                                                           1.1
         -2.7
                                 0.0
                          0.0
  -0.4
                                                                                         00003290
                                                0.9
                                                        0.95
                                                                     1.0
                                                                             1.0
                                  1.0
                          0.7
  0.5
           1.02
                                                                                         00003300
                                                                                         00003310
                                                                    1.0 -1.46
                                                0.5
                                                       -0.8
                          0.0
                                  0.0
           0.0
  -1.0
                                                                                         00003320
  7
                                                                                         00003330
                                                                     0.2 0.0
                                                      -0.02
                          0.0 0.0
                                                0.1
          0.0
  -1.0
                                                                                         00003340
                                 0.78
                                                1.0
                                                        1.0
                          0.9
          0.1
   0.3
                                                                                         00003350
  12
                                                                    -0.4 0.03
0.4 0.12
1.0 -1.46
                                                                                         00003360
                                                      -0.2
                         -0.8 -0.5
                                               -0.6
  -1.0
          -1.15
                                                       0.15
                                                                                         00003370
                        0.0 0.1
0.8 -0.5
                                               0.2
          0.04
  -0.2
                                                                                         00003380
           0.05
                                               0.9
                                                       -0.9
   0.6
                                                                                         00003390
                                                                                         00003400
  n
                                                                                         00003410
  0
                                                                                         00003420
  0
                                                                                         00003430
  0.0 0.0 0.05 0.0 0.1 0.025 0.15 0.075 0.2 0.18 0.3 0.475 0.4 0.625 0.5 0.74 0.6 0.82 0.7 0.87 0.8 0.84 0.9 0.72 1.0 0.08
 13
                                                                                         00003440
                                                                                         00003450
                                                                                         00003460
          0.87
  0.7
                                                                                         00003470
 11
                                                                 0.3 0.24
0.7 0.23
         0.0
                                                                                         00003480
          0.0 0.1 0.0 0.20 0.13
0.31 0.5 0.33 0.6 0.3
0.16 0.9 0.08 1.0 0.0
                                            0.20 0.13
  0.0
                                                                 0.7
                                                                                         00003490
  0.4
                                                                                         00003500
  0.8
                                                                                          00003510
  6 6
                                                                                         00003520
    0.0 0.2 0.4 0.6 0.8 1.0
  0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0 3.065E-5 7.7239E-5 1.3263E-4 1.946E-4 2.6207E-4

0.4 0.0 4.866E-5 1.2261E-4 2.1053E-4 3.0996E-4 4.1602E-4

0.6 0.0 6.376E-5 1.6066E-4 2.7587E-4 4.0485E-4 5.4514E-4

0.8 0.0 7.7239E-5 1.9463E-4 3.3419E-4 4.9044E-4 6.6037E-4

1.0 0.0 8.9628E-5 2.2585E-4 3.878E-4 5.691E-4 7.6631E-4
                                                                                         00003530
                                                                                         00003540
                                                                                         00003550
                                                                                         00003560
                                                                                         00003570
                                                                                         00003580
                                                                                         00003590
```

IAERI-M 9819

```
00003600
/ **** ACCUMLATOR DATA ****
                                                                            00003610
BB12
                                                                           00003620
SB1201
 48 36
0.9 3.0
                                                                            00003630
            70. 30.
                          30.0
                                  4.4
                                                                           00003640
                                                                            00003650
SB1202
                                                                            00003660
  49
        39
             23.3 10. 30.0
                                  44.
                                                                            00003670
  0.9 1.0
                                                                            00003680
                                                                             00003690
/ **** BREAK POINT DATA ****
                                                                            00003700
BB13
                                                                            00003710
 8 0.01 0.4 0.8 0.6 0.6 0.8 0.6 0.6
                                                                            00003720
   6
  0.0 1.0 7.5 2.7 15. 4.0 30. 4.0 60. 4.0 1000. 4.0
                                                                            00003730
                                                                            00003740
/ **** PRESSURIZER DATA ****
                                                                            00003750
                                                                            00003760
8814
   45 35 11 3.58 15.56 9.0 0.99 0.1
1.7 385.0
50.0 1.0 0.1 0.0 0.0
                                                                            00003770
                                                                            00003780
                                                                            00003790
   0.915 0.915 0.915 1.525 3.05 4.58
0.564 0.67 0.619
                                                                            00003800
                                                                            00003810
                                                                            00003820
   0. 1.0 1.0 1.0 1000. 1.0 1.0 1.0
                                                                            00003830
                                                                            00003840
                                                                            00003850
/ **** STEAM GENERATOR DATA ****
                                                                            00003860
BB15
                                                                            00003870
SB1501
 46 3265 3 5 3 1
5.5 18.9 0.7 0.5 3.0E-2 1.0E-2 10.4 4.0 222.1 474.5
                                                                            00003880
                                                                            00003890
                                                                            00003900
 0.1 0.95 62.0
                                                                            00003910
 2.0 11.0
-40. -30. -25.
                                                                             00003920
                                                                             00003930
     0.001 80. 0.5 0.5 0.5
                                                                            00003940
   3
  00003950
                                                                             00003960
SB1502
 47 9795 14 16 3 1
16.5 18.9 2.1 0.5
                                                                            00003970
                             3.0E-2 1.0E-2 10.4 4.0 222.1 1423.5 00003980
                                                                             00003990
 0.1 0.95 62.0 2.0 11.0
                                                                             00004000
  -40.0 -30.0 -25.0
                                                                             00004020
   0.003 80. 0.5 0.5 0.5
                                                                             00004030
  00004040
                                                                            00004050
                                                                             00004060
/ **** CORE DATA ****
                                                                             00004070
BB16
    --- AVERAGE CHANNEL ----
                                                                             00004080
                                                                             00004090
SB1601
                                                                            00004100
 1
                                                                             00004110
 39170 23 28 0 3 1 2 2
 9000.0 5.3658E-3 C.6187E-3 4.6573E-3 1.42E-2 0.6 1.0E-4
0.0124 0.0212E-02 0.0305 0.1402E-02
0.111 0.1254E-02 0.301 0.2529E-02
1.13 0.0736E-02 3.00 0.0269E-02
                                                                            00004120
                                                                            00004130
                                                                            00004140
                                                                            00004150
 5.0 0.6 4.91E-04 3.41E-06 1.2 1.54E03

0. 156. 234. 234. 156. 0.

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07
                                                                            00004160
                                                                            00004170
                                                                            00004180
                                                                            00004190
```

JAERI-M 9819

```
1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07 1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07 --- HOT CHANNEL ---
                                                                                               00004200
                                                                                                00004210
                                                                                                00004220
                                                                                                00004230
SB1602
                                                                                                00004240
  200 29 34 0 3 1 2 2

9000.0 5.3665E-3 0.6187E-3 4.6682E-3 1.42E-2 0.6 1

0. 203.0 304.0 304.0 203.0 0.

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07

1.6122E-07 6.42E-07 7.56E-07 7.56E-07 6.42E-07 1.622E-07
  2
                                                                                                00004250
                                                                                    1.0E-4
                                                                                                00004260
                                                                                                00004270
                                                                                                00004280
                                                                                                00004290
                                                                                                00004300
                                                                                                00004310
                                                                                                00004320
                                                                                                00004330
   **** REACTIVITY DATA ****
                                                                                                00004340
BB17
                                                                                                00004350
     3
                                                                                                00004360
       0. 0.5 -5. 1. -25.
  0.
                                                                                                00004370
      0.5 300. 0. 1500. -0.5 2500. -1. 4500. -5.
                                                                                                00004380
 20.
                                                                                                00004390
                                                                                                00004400
  0.0 0.0 1.0 -0.1 1.5 -0.2 2.0 -3.0 1000. -8.0
                                                                                                00004410
                                                                                                00004420
     ****METAL WATER REACTION DATA ****
                                                                                                00004430
B818
                                                                                                00004440
     1.54E03 0.775E-04 2.29E04
                                                                                                00004450
                                                                                                00004460
/ **** FUEL GAP DATA ****
                                                                                                00004470
BB19
 0.0301 0.0 1.235E-5 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.9495 0.0157 0.0028 0.0 0.032 0.0 0.0
                                                                                                00004480
                                                                                                00004490
                                                                                                00004500
/ **** BURST DATA ****
                                                                                                00004510
                                                                                                00004520
BB21
2 2 5.0E7 6.96E-08 2.87E4 2.86E-03 1.15E0 1.528E0
                                                                                                00004530
1.49E-07 2.0E-08 1.25E-16 1.85E-01 8.0E09 3.3E-03
                                                                                                00004540
                                                                                                00004550
        0.1
                                                                                                00004560
                                                                                                00004570
   **** OTHER DATA ****
                                                                                                00004580
BB22
                                                                                                00004590
   0. 1.4 1.4 0.
                                                                                                00004600
BEND
                                                                                                00004610
                                                                                                00004620
 0 0 0 0 0 0.0
                                                                                                00004630
  0. 1.0-7 0. 0. 0. 0.
                                                                                                00004640
                                                                                                00004650
  0 0.0
  0 0.0
                                                                                                00004660
```