耐熱セラミックス複合材料の照射試験
－第1次予備照射試験（97M-13A）照射後試験中間報告－

2001年3月

馬場 信一・鈴木 世志夫*・高橋 常夫・石原 正博・林 君夫
斎藤 保・相沢 静男・斎藤 隆・関野 甫

日本原子力研究所
Japan Atomic Energy Research Institute
本レポートは、日本原子力研究所が不定期に公刊している研究報告書です。
入手法合反は、日本原子力研究所研究情報部研究情報課（〒319-1195 茨城県那珂郡東海村）で事務をお申し出下さい。なお、このほかに財団法人原子力広報会資料センター（〒319-1195 茨城県那珂郡東海村日本原子力研究所内）で複写による実費頒布を行っております。

This report is issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 〒319-1195, Japan.

© Japan Atomic Energy Research Institute, 2001
編集兼発行　日本原子力研究所
耐熱セラミックス複合材料の照射試験
－第1次予備照射試験(97M-13A)の照射後試験中間報告－

日本原子力研究所大洗研究所核熱利用研究部

馬場 信一・鈴木 世志夫*・高橋 常夫・石原 正博・林 君夫
斎藤 保**・相沢 静男**2・斎藤 隆**2・関野 甫**3

(2001年2月22日受理)

高温工学試験研究炉(HTTR)を用いた高温工学に関する先端的基礎研究の課題の1つである「耐熱セラミックス複合材料の照射損傷機構の研究」のため、材料試験炉(JMTR)を用いて一連の予備照射試験を進めている。本報告は、このうちの最初のキャプセル(97M-13A)において、温度573-843K、高速中性子照射量1.2-1.8×10²⁴m⁻²(1MeV)の照射を行った試料について、これまでに行った照射後試験の結果をまとめたものである。照射後試験では、(1)寸法変化、(2)熱膨張率、(3)X線パラメータ、(4)γ線スペクトルについて測定した。炭素系及びSiC系複合材料の測定結果は、既存の文献データと同様の傾向を示した。SiC繊維強化及びSiC粒子分散強化複合材料については、モノリシック材料と同様に、温度モニター効果が観察された。すなわち、熱膨張率曲線は、第1回目の昇温時(昇温速度10K/min)には照射温度+100℃付近から熱膨張率曲線の急速な低下を示したが、2回目の測定においては未照射材とほぼ同様の温度依存性を示した。
An Irradiation Test of Heat-resistant Ceramic Composite Materials
- Interim Report on Post-irradiation Examinations of the First
Preliminary Irradiation Test: 97M-13A -

Shin-ichi BABA, Yoshio SUZUKI, Tsuneo TAKAHASHI, Masahiro ISHIHARA,
Kimio HAYASHI, Tamotsu SAITO1, Shizuo SOZAWA2, Takashi SAITO2
and Hajime SEKINO3

Department of Advanced Nuclear Heat Technology
Oarai Research Establishment
Japan Atomic Energy Research Institute
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received February 22, 2001)

The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramic composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations (PIE) so far on specimens irradiated in the first capsule, designated 97M-13A, to fast neutron fluences of 1.2-1.8x1024m-2 (E\textgreater 1MeV) at temperatures of 573, 673 and 843K. In the PIE, measurements were made on (1)dimensional changes, (2)thermal expansions, (3)X-ray parameters and (4)\gamma-ray spectra. The results for the carbon /carbon and SiC/SiC composites were similar to those in existing literatures. The temperature monitor effect was observed both for SiC fiber- and particle-reinforced SiC composites as in the case of monolithic SiC. Namely, the curve of the coefficient of thermal expansion (CTE) of these specimens showed a rapid drop above a temperature around the irradiation temperature + 100 K in the first ramp (ramp rate: 10 K/min), while in the second ramp the CTE curves were almost the same as those of un-irradiated SiC specimens.

+1 Department of Nuclear Energy System, Tokai Research Establishment
+2 Department of JMTR
+3 Department of Hot Laboratories, Tokai Research Establishment
* Nuclear Engineering, Co. Ltd.
Keywords: Ceramics, Composite, Irradiation, Post-irradiation Examination, Radiation Damage, Dimensional Change, Thermal Expansion, Lattice Parameter, Graphitization, Temperature Monitor, Gamma-ray Spectrum
This is a blank page.
目次

概要 .. 1
1. 緒言 ... 3
2. 照射供試料及び照射条件 ... 6
 2.1 照射供試料 .. 6
 2.2 照射条件 .. 8
3. 照射誘起寸法変化 .. 24
 3.1 試料及び測定方法 .. 24
 3.2 結果及び検討 .. 24
4. 熱膨張率 ... 39
 4.1 測定方法 .. 39
 4.2 等方性／準等方性黒鉛及びC/C複合材料の測定結果及び検討 40
 4.3 モノリシックSiC及びSiC/SiC複合材料の測定結果及び検討 43
5. X線パラメータ ... 93
 5.1 測定方法 .. 93
 5.2 結果及び検討 .. 95
6. γ線スペクトル ... 100
 6.1 測定方法 .. 100
 6.2 結果及び検討 .. 101
7. 結言 .. 107
謝辞 ... 109
参考文献 ... 109
Contents

Executive Summary .. 1
1. Introduction ... 3
2. Irradiated Samples and Irradiation Conditions ... 6
 2.1 Irradiated Samples ... 6
 2.2 Irradiation Conditions ... 8
3. Irradiation-induced Dimensional Change ... 24
 3.1 Samples and Measuring Method ... 24
 3.2 Results and Discussion ... 24
4. Thermal Expansion .. 39
 4.1 Measuring Method .. 39
 4.2 Results and Discussion on Isotropic/Near-isotropic Graphites and C/C Composites 40
 4.3 Results and Discussion on Monolithic SiC and SiC/SiC Composites 43
5. X-ray Parameters .. 93
 5.1 Measuring Method .. 93
 5.2 Results and Discussion ... 95
6. γ-ray Spectra ... 100
 6.1 Measuring Method ... 100
 6.2 Results and Discussions .. 101
7. Summary .. 107
Acknowledgements ... 109
References .. 109
List of Tables

Table 2.1 Irradiation samples for 97M-13A capsule.
Table 2.2 Irradiation temperatures for 97M-13A samples.
Table 3.1a Irradiation-induced dimensional change of C/C composites and graphites at 573K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 3.1b Irradiation-induced dimensional change of C/C composites and graphites at 673K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 3.1c Irradiation-induced dimensional change of C/C composites and graphites at 843K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 3.1d Irradiation-induced dimensional change of SiC/SiC composites and monolithic SiC at 573K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 3.1e Irradiation-induced dimensional change of SiC/SiC composites and monolithic SiC at 673K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 3.1f Irradiation-induced dimensional change of SiC/SiC composites and monolithic SiC at 843K (fast neutron fluence: 1.8x10^{24} m^{-2}).
Table 5.1 Irradiation-induced change in X-ray parameters of isotropic graphite (IG-110).
Table 5.2 Irradiation-induced change in X-ray parameters of highly-oriented pyrolytic graphite (HOPG).

List of Figures

Fig.2.1 Structure of 97M-13A capsule.
Fig.2.2 Gamma heat and fluence monitor arrangement in 97M-13A capsule.
Fig.2.3a Shapes and dimension of sample holders A and B in 97M-13A capsule.
Fig.2.3b Shapes and dimension of sample holder C and D in 97M-13A capsule.
Fig.2.4 History trend of irradiated temperatures for 97M-13A capsule.
Fig.2.5 Axial distribution of fast neutron fluence in 97M-13A capsule.
Fig.2.6 Axial distribution of fast neutron flux in 97M-13A capsule.
Fig.2.7 Axial distribution of thermal neutron fluence in 97M-13A capsule.
Fig.2.8 Axial distribution of thermal neutron flux in 97M-13A capsule.
Fig.2.9 Radial distribution of thermal neutron flux in 97M-13A capsule (high temperature region).
Fig.2.10 Radial distribution of thermal neutron flux in 97M-13A capsule (middle and
Fig.2.11 Radial distribution of thermal neutron flux in 97M-13A capsule (Cd shielding region).

Fig.3.1 Irradiation-induced dimensional change of near isotropic and isotropic graphite at 300C, 400C and 570C (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.3.2 Irradiation-induced volume change of near isotropic and graphite (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.3.3 Irradiation-induced dimensional change of 2-D C/C composites at 300, 400 and 570C (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.3.4 Irradiation-induced dimensional change for C/C composites (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.3.5 Irradiation-induced dimensional change of SiC fiber/particle reinforced SiC composites and monolithic SiC (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.3.6 Linear expansion of various SiC samples as a function of irradiation temperature.

Fig.3.7 Irradiation-induced volume change of SiC fiber/particle reinforced SiC composites and monolithic SiC (fast neutron fluence: 1.8x10^{26} m^{-2}).

Fig.4.1 Principle of thermomechanical analysis.

Fig.4.2a Temperature dependence of the coefficient of thermal expansion for blank test with a standard specimen of alumina bar (uncorrected line).

Fig.4.2b Temperature dependence of the coefficient of thermal expansion for blank test with a standard specimen of alumina bar (corrected line).

Fig.4.3 Error estimation in thermal expansion measurement.

Fig.4.4 Temperature ramp rate dependence of coefficient of thermal expansion (CTE) and thermal expansion for isotropic graphite (IG-110).

Fig.4.5 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 573K.

Fig.4.6 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 673K.

Fig.4.7 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 843K.

Fig.4.8 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 573K.

Fig.4.9 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 673K.
Fig.4.10 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 843K.

Fig.4.11 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 573K.

Fig.4.12 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 673K.

Fig.4.13 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 843K.

Fig.4.14 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 573K.

Fig.4.15 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 673K.

Fig.4.16 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 843K.

Fig.4.17 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 573K.

Fig.4.18 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 673K.

Fig.4.19 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 843K.

Fig.4.20 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 573K.

Fig.4.21 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 673K.

Fig.4.22 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 843K.

Fig.4.23 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 573K.

Fig.4.24 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 673K.

Fig.4.25 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 843K.

Fig.4.26 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 573K.
Fig.4.27 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 673K.

Fig.4.28 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 843K.

Fig.4.29 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 573K.

Fig.4.30 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 673K.

Fig.4.31 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 843K.

Fig.4.32 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 573K.

Fig.4.33 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 673K.

Fig.4.34 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 843K.

Fig.4.35 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 573K.

Fig.4.36 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 673K.

Fig.4.37 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 843K.

Fig.4.38 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 10% dispersive SiC composite irradiated at 573K.

Fig.4.39 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 10% dispersive SiC composite irradiated at 673K.

Fig.4.40 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 10% dispersive SiC composite irradiated at 843K.

Fig.4.41 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 573K.

Fig.4.42 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 673K.

Fig.4.43 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 843K.
Fig.4.44 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 573K.

Fig.4.45 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 673K.

Fig.4.46 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 843K.

Fig.4.47 Illustration of 1-dimensional, 2-dimensional and 3-dimensional fiber woven types.

Fig.5.1 Evaluation for lattice strain by Eq.(5-5).

Fig.6.1 γ-ray energy vs detecting efficiency for Ge detector.

Fig.6.2a γ-ray spectrum of before heating SiC/SiC composite (HiNicaloceram)

Fig.6.2b γ-ray spectrum of after heating SiC/SiC composite (HiNicaloceram)

Fig.6.3 Specific activities of irradiated SiC/SiC and C/C composites specimen.
This is a blank page.
概要

原研では、高温工学試験研究炉（HTTR）を用いた高温工学に関する先端的基礎研究の課題の1つである「耐熱セラミックス複合材料の照射損傷機構の研究」のため、材料試験炉（JMTR）を用いた予備照射試験を進めている。この予備照射試験では3本のキャプセルを使って、主に照射温度をパラメータにした試験を実施してきた。本報告は、このうちの最初のキャプセル（97M-13A）に装荷した試料について、これまでに行った照射後試験の結果をまとめたものである。

本キャプセルの照射試料には耐熱セラミックス複合材料の中から、①炭素繊維強化炭素複合材料（C/C）6種類、②炭化ケイ素繊維強化材料（SiC/SiC）1種類及び炭化ケイ素粒子分散強化材料（SiC/SiC）2種類の複合材料（SiC系複合材料と総称する）、ならびに、③それらの基本構成素材である炭素繊維、SiC繊維及びSiC粒子を装荷した。更に、これまでに照射実績のある参照材として微粒等方性黒鉬IG-110、準等方性黒鉬Gilso-carbon、高配向性熱分解黒鉬（HOPG）及びモノリシック（monolithic）α-SiCを照射効果の比較あるいは指標とするために装荷した。C/C複合材料は、原子力関連分野、例えば核融合炉では第一壁としてのプラズマ対向材料の候補材、高温ガス炉では将来の高度化を目標に開発中の制御棒用構造部材としての使用が検討されている。一方、SiC系複合材料は、核融合炉用低放射化材として研究開発が進められている。

照射試験はJMTRの反射体領域M-7孔において1サイクル、約600時間行った。照射量は高速中性子で1.2-1.8×10¹⁷m⁻²(E>1MeV)、熱中性子で6.5×10¹⁷m⁻²(E<0.625eV)、照射温度は573K、673K及び843Kの3領域、照射中の温度変動率は0.5%以下であった。照射後試験は、寸法変化、X線パラメータ（格子定数、結晶子径、黒鉬化度、格子歪み）、熱膨張係数（CTE）及びγ線スペクトルの測定を行った。このうち、寸法変化とX線パラメータの測定は、ホットラボのセル内において行ったが、CTEとγ線スペクトルの測定は大洗研究所内のRI利用開発棟の実験施設において実施した。

(1)照射誘起寸法変化

2次元繊り炭素繊維強化複合材料の長さ/径方向の照射誘起寸法変化率は繊維配列方向との有意な相関は見られなかったが、長さ方向に膨張/収縮した供試料は径方向では逆に収縮/膨張を示す傾向が見られた。また、熱処理温度の差異による長さ方向の寸法変化率は、照射温度573Kにおける3273K熱処理した供試料のみ膨張傾向を示した。一方、2次元繊りSiC/SiC複合材料の照射誘起寸法変化率は、径方向に収縮し長さ方向には膨張を示したが、照射温度843Kの場合のみ長さ方向にも収縮した。SiC粒子分散強化複合材料の場合には、径方向及び長さ方向に無関係で一様に膨張した。その変化率は照射温度の増加につれて減少した。
（2）照射誘起熱膨張率

炭素繊維強化複合材料では、熱膨張率測定方向が強化繊維配列に平行/垂直方向の供試料の場合における相違点は、平行方向の CTE が事実上ゼロであるのに対して、垂直方向では 6～9 × 10⁻⁶/K であった。最終熱処理温度が 2273K/3273K 供試料の相違点は CTE が前者で 6～7 × 10⁻⁶/K，後者で 8～9 × 10⁻⁶/K と，わずかな差があることのみである。照射による熱膨張率及び CTE に対する効果は今回照射条件においては，ほとんど認められなかった。

一方、SiC 系複合材料の熱膨張率及び CTE に及ぼす照射効果については、照射温度依存性が顕著に現れた。すなわち、SiC 繊維強化／SiC 粒子分散強化の何れの複合材料についても、照射温度 + 100K 付近から熱膨張率曲線の屈曲が始まり，2 回目の測定においては未照射材とほぼ同様の温度依存性を示す，いわゆる温度モニター効果が観察された。

（3）照射誘起 X 線パラメータ

微粒等方性高密度黑鉱及び高配向性熱分解黒鉱の 2 種類について，X 線回折による測定を行い，格子定数，結晶子径，黒鉱化度及び格子歪みを解析・評価した。それらの結果は，これまでに得られた結果と同様の傾向を示すことが分かった。

すなわち，格子定数は六方晶黒鉱の c 軸方向に増加し，a 軸方向に収縮した。
結晶子径は HOPG の場合，573 ～ 843K の照射温度条件において大きく減少し，照射温度の増加とともに変化率は低下する傾向を示した。黒鉱化度は IG-110 で照射温度 573K の場合，約 10%の減少を示したが，HOPG では 1.6 ～ 7%の減少幅であった。格子歪みは，照射温度の増加とともに低下する傾向を示した。

（4）γ線スペクトル

供試料取扱上の安全基準の目安を設定するため，γ線核種及び放射能量を測定した。また，同一供試料について 1673K 加熱前後の γ線スペクトルの相違から，加熱による消失元素の評価を行った。その結果，最も大きな比放射能を有するのは SiC 系の HiNicaloceram で，逆に最も低い比放射能を有するのは炭素系の CX-270G であった。加熱前後の消失核種は，Gilso-carbon 以外は全ての供試料において 1 ～ 6 種類の放出元素であることが確認された。
1. 緒言

原研（核融合利用研究部高温照射研究室）では、高温工学試験研究炉（HTTR）を用いた高温工学に関する先端的基礎研究の課題の1つである「耐熱セラミックス複合材料の照射損傷機構の研究」のため、材料試験炉（JMTR）を用いた予備照射試験（第1次照射実験、キャプセル名：97M-13A）を進めている。本報告は、同キャプセルに装荷した試料について、寸法変化、X線パラメータ、熱膨張率及びγ線スペクトル測定等の照射後試験（Post-irradiation Examination: PIE）の結果をまとめたものである。

予備照射試験の全体計画は、第1次予備照射試験では573、673、843K（実験値）、第2次予備照射試験では973、1073、1173K、最終段階の第3次予備照射試験では1273、1373、1473Kの各々3温度領域での照射試験を行う。第1次及び第2次照射試験の照射は現時点で（2001年2月）で終了しているが、第3次照射試験については2001年4月以降にJMTR照射を予定している。

本キャプセルの照射試料には耐熱セラミックス複合材料の中から、①炭素繊維強化炭素複合材料（C/C）6種類、②炭化ケイ素繊維強化材料（SiC/SiC）1種類及び炭化ケイ素粒子分散強化材料（SiC/SiC）2種類の複合材料（SiC系複合材料と総称する）、ならびに、③それらの基本構成素材である炭素繊維、SiC繊維及びSiC粒子を装荷した。更に、これまでに照射実績のある参照材として微粒等方性黒鉛IG-110、準等方性黒鉛Gilo-carbon、高配向性熱分解黒鉛HOPG及びモノリシック（monolithic）α-SiCを照射効果の比較あるいは指標とするために装荷した。

C/C複合材料は、原子力関連分野、例えば核融合炉では第一壁としてのプラズマ対向材料の候補材、高温ガス炉では将来の高度化を目標に開発中の制御棒用構造部材としての使用が検討されている。一方、SiC系複合材料は、核融合炉用低放射化材として研究開発が進められている。

(1) 照射誘起寸法変化

黒鉛材料の照射誘起寸法変化については、1960年代から70年代にかけて多くの試験データ及び解析結果が報告されている1)。それらの結果によると、寸法収縮率はおよそ1123K付近で最も小さくなり、照射温度がそれより高くても低くても大きくなる1)。これらの照射誘起寸法収縮の傾向は微粒等方性黒鉛IG-110以外の鉱柄でも同様である。このように寸法収縮率が照射温度によって大きく変化を受けることは、支配的となる照射欠陥の種類が照射温度によって顕著に異なることを示唆している。IG-110のような原子炉用黒鉛材料の巨視的な照射誘起寸法変化率に影響を及ぼす因子は、材料の微結晶の大きさ、分布状況及びその周囲の気孔、格子定数、バインダーの種類などである。C/C複合材料の場合、基本的には黒鉛材料の特徴から類推することに大きな誤差は生じないと考えられるが、炭素繊維の配向性、充塡密度、マトリックスとの相互作用の問題などについて注意深い検討を加えなければならない。
一方、SiCの照射誘起寸法変化率はα-SiC、β-SiCあるいは熱分解SiC等、何かの結晶型を問わず、膨張傾向を示す。この寸法変化率は照射温度が低いほど上昇（大きな膨張率）し、照射温度の増加とともに低下していく。1273K付近で寸法変化率はほとんどゼロとなる。

しかし最も重要な現象は、SiCが照射温度モニター効果を示すことである。この現象は、照射損傷の焼絶回復効果によるものであり、SiC結晶の格子定数変化と巨視的寸法変化が対応することから、巨視的寸法変化を照射温度のモニターとして利用することができる。実際には、SiC試験片長さについて照射後の等温焼絶曲線の変曲点が照射温度を明瞭に示すと同時に、電気抵抗の等温焼絶曲線においても照射温度を示す変曲点が出現することが報告されている2)-6)。

(2)照射誘起熱膨張係数変化

多結晶黒鉛材料の照射誘起熱膨張係数の変化は、多くの場合、照射初期には増加する傾向を示すが、その後は徐々に低下していく。この理由は照射による軸方向の格子が伸びることにより緩和の原因である層間面に平行なマイクロクラック（Mrozowski cracks）7)が閉じるためである、と言われている。熱膨張率の変化は寸法変化と密接に関連している。照射の増加に伴う微結晶の寸法変化が進行し、そのため周囲に応力場が形成され、マイクロクラックが発生して応力を緩和するというモデルが確立されている17)。この結果、照射寸法収縮率は熱膨張係数の大きい材料ほど小さいことが明らかにされている1)。C/C複合材料の場合、炭素繊維軸方向への熱膨張率は小さく、従って繊維を沿った方向のC/C複合材料の熱膨張率も小さい。一般的に、複合材料のマトリックス組織が繊維軸に平行に配向する傾向があるので、繊維軸に垂直な方向での熱膨張率は大きい。また、C/C複合材料の製造工程における高密度化処理温度は炭素素／黒鉛化によっても異なるため、熱膨張率は大きく変化する。

一方、SiC複合材料の熱膨張率変化は寸法変化と同様に、照射によっていくらか大きくなるが、照射温度以上の熱処理により照射前の特性に回復する。1273K以下の照射温度領域においては、SiCの照射欠陥のほとんどがフレンケル対（Frenkel pair、格子間原子と原子空孔の対）であり、温度の上昇とともにフレンケル対の生成速度よりも消滅速度が増大してくるため飽和膨張率も低くなる。1273K以上の高温照射領域では、フレンケル対の易動度が増してクラスター（Cluster）生成が容易になる。このクラスタリングによりマクロ的にも膨張量は照射量とともに増加するようになる。このようにC/C複合材料とSiC複合材料の熱膨張率の変化はかなり挙動が異なる。

(3)X線パラメータの測定

X線パラメータの測定は等方性黒鉛(1G-110)と高配向性熱分解黒鉛(HOPG)の2種類について実施した。黒鉛材料の性質が鉱柄によって異なる理由は、微細構造の差が大きな原因である。微細構造の特性を表す3つの要素としては、①結晶構造の完全さ、すなわち黒鉛化度、②結晶構造の並び方、すなわち結晶配向性、及び③黒鉛素材の均質度の20%程度を占める気孔の形状あるいは分布の差である。今回の照射後試験では黒鉛結晶のa軸及びc軸の格子定数と結晶子径及びc軸方向
向の格子歪みについても測定を行った。
(4)不純物放射能の測定
材料自身の不純物等についての情報を得ると共に、試料取扱上の必要性からセミホット的な測定環境かもしくは完全に隔離したセル内部での測定環境において実験すべきかの判断材料とするため、個々のC/C複合材料とSiC複合材料についてのγ線スペクトル分析及びグロス放射能測定を行った。
2. 照射供試料及び照射条件

2.1 照射供試料
(1)炭素繊維強化炭素複合材料

(a) PAN 系高強度炭素繊維炭素化熱処理材（日本カーボン株）製、CCM-190C
本供試材は強化繊維として PAN（ポリアクリロニトリル）系高強度炭素繊維（フィラメントヤーン、引張強さ: 3500MPa、ヤング率: 240GPa）の織布を用いて積層成形したものので、マトリックス前駆体としては樹脂系（1次）とピッチ系（2次）で形成。繊維充填率（Vf）は約 50～55%である。高密度化の最終熱処理温度は2273Kで炭素化した製品である。

(b) PAN 系高強度炭素繊維黒鉱化熱処理材（日本カーボン株）製、CCM-190G
本供試材は上記(a)CCM-190C とほぼ同様の製品であるが、高密度化の工程で炭素化処理した後、さらに黒鉱化のため最終熱処理温度を3273Kで行っている。従って、黒鉱化により引張強度、固有抵抗などは半分以下に低下しているが、熱伝導率は逆に8倍に上昇している。

(c) ピッチ系含浸炭素化熱処理材（東洋炭素株）製、CX-270C
本供試材は樹脂含浸クロス積層した前駆体を熱成形、ピッチ含浸・焼成したもので、これを2273Kで炭素化熱処理している。ピッチ含浸・焼成を数回繰り返した後、熱処理し所定寸法に機械加工したものである。

(d) ピッチ系含浸黒鉱化熱処理材（東洋炭素株）製、CX-270G
本供試材は上記(c)CX-270C とほぼ同様の製品であるが、(b)と同様に最終熱処理温度を3273Kで行って、黒鉱化したものである。

(e) ピッチ系フェルト積層含浸黒鉱化熱処理材（日立化成株）製、PCC-25S
本供試材は原料炭素繊維としてピッチ系フェルトを使用し、化学処理、乾燥を行った後、含浸焼成を繰り返し行い、3273Kで黒鉱化させて、精製、仕上げ加工を施して完成させたものである。

(f) 石油Pitch系炭素繊維積層プレス成形材（呉羽化学工業株）製、Kureca-K_500
本製品に使用している炭素繊維は石油ピッチ系であり、前駆体にカーボンペーパー積層、樹脂及びカーボン粉末の混合体をプレス成形したものである。これを真空内2673Kで最終熱処理し、ハロゲン処理している。

(2) SiC系複合材料

(a) 5%SiC粒子分散強化 SiC基複合材（日立化成株）製、特注品
本供試材は、(3)(d)の Hexaloy モノリシック SiC をベースに、平均粒径25μmの SiC粒子（Green Silicon Carbide, GC #400）を強化用粗粒子として5%添加したものを乾式混合し、ラバープレス成形、生加工した後、不活性雰囲気中2423Kで無加圧焼結した製品である。ベースの平均粒径1μm以下の微細粒子に25μmの粗粒子を分散強化した複合材料となっている。

(b) 10%SiC粒子分散強化 SiC基複合材（日立化成株）製、特注品
本供試材は上記(a)と同様であるが、強化粒子の添加率を10%にしたものである。
(c)SiC 紡織強化 SiC 基複合材（日本カーポン（株）製、Hi_Nicaloceram”）
Hi_Nicaloceram”は HiNicalon 紡織を強化繊維とした複合材料であり、同繊維の特徴はポリカルボシラン（polycarboxilane ：PCS）を溶融紡糸して連続繊維としたものを電子線照射により不融化解繊維とした点にある。これ
を焼成して酸素成分の少ない（0.5wt.%O2）Si-C 系繊維が出来上がる。この繊維を 500 本束ねて HiNicalon_yarn とし 8 枚織子織りして PCS 系パイ
ンダーによりプリプレグ積層したものを変性 PCS 溶液（Ti 含有）の中で含
浸し、473 〜 573K 空気中にてプレス硬化し更に 1273K の窒素雰囲気で
焼成する。この含浸、硬化、焼成を数回繰り返すことにより緻密化させ
て、製品としての Hi_Nicaloceram” が完成する。

(3)参照材料
(a)高純度微粒等方性高密度黑鉛（東洋炭素（株）製、IG-110）
通常の等方性黒鉛の製造は、石油コークスにコールタールピッチを混合
したものを原料として、これを粉碎砕い分け、焼成した後黒鉛化の工程
で完成する。本供試材はこれをさらに高純度化したものであり、黑鉛製
造の後にハロゲン処理による高純度化工程を経て、灰分 10ppm 以下の
製品としたものである。HTTR の炉心及び炉心支持構造材に使用する検
査基準 8）としては、灰分 100ppm 以下、ホウ素 1ppm 以下、放射化性不
純物として Si, Fe, Al, Ni, V, Ca, Li について、それぞれ目安値が設定さ
れている。

(b)準等方性黒鉛（米国 UCAR 社製、Gilso-carbon）
この Gilso-carbon 黒鉛の原料コークスは、米国ユタ州に産する天然ビチ
ューメンの一種である gilsonite pitch から作られているもので、85 〜 86%
の炭素含有量をもっている 9）。このコークスはニードルコークスとと
もに易黒鉛化性炭素に属する。本供試材は準等方性黒鉛で米国 UCAR
社が Mold 法により製造したものである。

(c)高配向性熱分解黑鉛（米国 Advanced Ceramics, Co. 製、HOPG）
本供試材 HOPG は、熱分解炭素を応力存在下で熱処理することにより
得られる。用いられる熱分解炭素は 2273K 以上に加熱された黒鉛基材
上に、メタン、プロパン、ベンゼンなどの炭化水素ガスの気相熱分解物
を沈積させて得る。このままでの結晶では黒鉛類似の炭素六方網面が不規
則に積層した乱層構造と呼ばれるもので、高い配向性はない。これを
3273K 以下で c 軸方向に 30 〜 50MPa 程度の圧縮応力を負荷させながら
の熱処理を行うことにより高い配向性を有する HOPG が完成する。

(d)無加圧焼結 SiC（日立化成（株）製、Hexaloy, モノリシック α-SiC）
本供試材は、サブミクロン（1μm 以下）の α-SiC 微粉末に焼結助剤のホウ
素（炭化ホウ素）とカーボンを配合し、成形用有機バインダーを添加して
スプレードライヤーで造粒する。この造粒粉を金型プレスあるいは静水
2.2 照射条件
(1) キャプセル構造
本キャプセルは3温度領域に区分された熱媒体内部に、4本の試料ホルダーが直接挿入された構造となっている（Fig.2.1）。573Kを目標の照射温度とする熱媒体部分をL（低温）領域、同様に673KをM（中温）領域、823KをH（高温）領域と略称する。なお、L領域の上部には、熱中性子を低減した照射領域とするためにカドミウム製遮蔽容器に挿入した超伝導試料（Bi-2212）を配置した。L領域及びM領域の熱媒体材料にはアルミニウム（A1050）を、H領域の熱媒体には鋼（C1020）を用いた。熱媒体を収納する内筒及び外筒には高純度ヘリウムガスを大気圧封入した。温度制御は真空温度制御方式であるがγ発熱を考慮するとともに、各熱媒体外周部に巻き付けた3本のヒーターにより行った。炉心線方向のγ発熱率は最大値（5.5 W/g）がH領域となるように配置した（Fig.2.2）。各領域の試料温度はインコネル合金被覆熱電対（K型）7本により測定した。また、高速中性子照射量は鉄（Fe）製モニター、熱中性子照射量はコバルト（Ti-Co）合金のモニター（計7カ所に挿入）により測定した。

(2) 試料配置
3温度領域に配置した熱媒体内部にはホルダーA、B、C及びDの4本を直列に挿入した（Fig.2.3）。ホルダーAには、耐熱セラミックス複合材料の基本構成素材となる繊維及び粒子を高純度石英ガラス製アンプル内にヘリウムガス封入した。ホルダーBには主として炭素系複合セラミックスを、ホルダーCにはSiC系複合セラミックスを、ホルダーDには等方性黒鉛（IG-110）、高配向性熱分解黒鉛（HOPG）等の参照材料を挿入した。これらのホルダーA、B、C、Dは、L、M及びH領域に共通の配置となるようにした。詳細はTable 2.1に示す。

(3) 照射記録
照射はJMTR第125サイクル、平成10年11月17日から12月12日まで照射孔M-7において積算で591時間行った。11月18日の原子炉出力50MWを達成後4日に昇温し、L領域試料温度（熱電対TC03）が573K（300℃）、H領域試料温度（TC05）が823K（550℃）、M領域試料温度（TC07）が673K（400℃）の連続運転に入った。しかし、L及びH領域の試料平均温度が定められた目標温度より低かったことから、
約8時間の運転後、L領域の制御温度を583K（310℃）、H領域の制御温度を843K（570℃）に変更し、それ以降はこの状態を維持して運転継続した。照射実績及び照射温度履歴を、各々Table 2.2とFig.2.4に示す。

中性子照射量の評価はフルエンスモニター（F/M）により行い、高速中性子束8.5×10^{18}m^{-2}s^{-1}(E>1MeV)、高速中性子照射量はキャプセル中心軸方向ピーク値で1.8×10^{18}m^{-2}(E>1MeV)と評価された。

F/M位置及びキャプセル中心における高速中性子照射量と高速中性子束の軸方向分布を各々Fig.2.5及びFig.2.6に示す。

F/M位置における熱中性子照射量及び熱中性子束の軸方向分布を各々Fig.2.7及びFig.2.8に示す。SRACコードによるキャプセル径方向の熱中性子束相対分布の計算結果を、H領域（Fig.2.9）、M領域及びL領域（Fig.2.10）、カドミウム遮蔽領域（Fig.2.11）について示す。なお、F/MNo.268についてはキャプセル解体作業中に容器破損のためモニター取り出しが出来なかった。

中性子スペクトルの計算は、材料試験炉部計画課によって行われた。1次元輸送計算コードANISNを用いて、JMTR炉芯は平板モデルとして取り扱われた。

熱中性子スペクトルの計算は、SRACコードを用いてキャプセルを円筒モデルとして取り扱うことによって行われた。
Table 2.1 Irradiation samples for 97M-13A capsule.

<table>
<thead>
<tr>
<th>照射後試験項目</th>
<th>微細組織·構造</th>
<th>実験装置・寸法 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 単結晶・粒状素材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC微粒子 (A社)</td>
<td>A-1 (1) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td>炭素繊維 (B社)</td>
<td>A-2 (2) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td>炭素繊維 (C社)</td>
<td>A-3 (3) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td>炭素繊維 (D社)</td>
<td>A-4 (4) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td>炭素繊維 (D社)</td>
<td>A-5 (5) φ5×50～55L (3温度域に1本每)</td>
<td>なし</td>
</tr>
<tr>
<td>SiC繊維 (B社)</td>
<td>B-1 (1) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td>SiC繊維 (B社)</td>
<td>B-2 (2) φ5×35～45L (3温度域に1本每)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>小計7本×3 = 21本</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-1 (1～5), B-1 (1,2) はハナジマ形状</td>
<td></td>
</tr>
<tr>
<td>2. コンポジット材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1. 炭素系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCC-25P (A社)</td>
<td>C-1 (1) φ10×2.0t (3温度域に2個每)</td>
<td>C-2 (2) φ5×20L (3温度域に2個每)</td>
</tr>
<tr>
<td>CCM-190C (B社)</td>
<td>D-1 (1) φ10×2.3t (3温度域に2個每)</td>
<td>D-2 (2) φ5×18.5L (3温度域に2個每)</td>
</tr>
<tr>
<td>CCM-90G (B社)</td>
<td>D-2 (2) φ10×2.7t (3温度域に2個每)</td>
<td>D-4 (4) φ5×19.5L (3温度域に2個每)</td>
</tr>
<tr>
<td>PCC-2S-V (A社)</td>
<td>E-1 (1) φ9.6×2.0t (3温度域に2個每)</td>
<td>E-2 (2) φ4.7×20L (3温度域に2個每)</td>
</tr>
<tr>
<td>カートン (E社)</td>
<td>F-1 (1) φ10×3.2t (3温度域に2個每)</td>
<td>なし</td>
</tr>
<tr>
<td>CX-2720 (F社)</td>
<td>G-1 (1) φ10×3.8t (3温度域に2個每)</td>
<td>G-3 (3) φ5×16L (3温度域に2個每)</td>
</tr>
<tr>
<td>CX-270 (F社)</td>
<td>G-2 (2) φ10×4.2t (3温度域に2個每)</td>
<td>G-4 (4) φ5×17L (3温度域に2個每)</td>
</tr>
<tr>
<td>(C→G各2個を1つマザーに植入する)</td>
<td>小計 (3マザーカー, 72個)</td>
<td>(C→G各1個を1つマザーに植入する)</td>
</tr>
<tr>
<td>(C→G各1個を1つマザーに植入する)</td>
<td>小計 (6マザーカー, 30個)</td>
<td></td>
</tr>
<tr>
<td>2-2. SiC系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi-Nicaloceram (B社)</td>
<td>H-1 (1) φ10×5.5t (3温度域に2個每)</td>
<td>H-3 (3) φ4.5×20L (3温度域に2個每)</td>
</tr>
<tr>
<td>Hi-Nicaloceram (B社)</td>
<td>H-2 (2) φ9.6×5.5t (3温度域に2個每)</td>
<td>H-4 (4) φ4.7×20L (3温度域に2個每)</td>
</tr>
<tr>
<td>Hitachi-X1 (A社)</td>
<td>I-1 (1) φ10×6.0t (3温度域に2個每)</td>
<td>I-3 (3) φ4.5×19L (3温度域に2個每)</td>
</tr>
<tr>
<td>Hitachi-X2 (A社)</td>
<td>I-2 (2) φ10×6.2t (3温度域に2個每)</td>
<td>I-4 (4) φ4.5×18.5L (3温度域に2個每)</td>
</tr>
<tr>
<td>XIはSiC粒子分散型</td>
<td>(H, I各2個を1つマザーに植入する)</td>
<td>(H→I各2個を1つマザーに植入する)</td>
</tr>
<tr>
<td>X2はSiC粒子分散型</td>
<td>小計 (3マザーカー, 4個)</td>
<td>小計 (6マザーカー, 18個)</td>
</tr>
</tbody>
</table>

3. 参照材

α-SiC (A社)	K-1 (1) φ10×6.5L (3温度域に2個每)	K-2 (2) φ4.5×18L (3温度域に2個每)
IG-110 (F社)	L-1 (1) φ10×4.5t (3温度域に2個每)	L-2 (2) φ4.5×17L (3温度域に2個每)
IM-P (B社)	M-1 (1) φ10×5.0t (3温度域に2個每)	M-3 (3) φ4.5×16L (3温度域に2個每)
IM-V (B社)	M-2 (2) φ9.6×5.0t (3温度域に2個每)	M-4 (4) φ4.7×16L (3温度域に2個每)
HOPG (POCO社)	N-1 (1) 5×5×2 (3温度域に2個每)	小計 (3マザーカー, 8個)
(K→N各2個を1つマザーに植入する)	小計 (6マザーカー, 18個)	
Table 2.2 Irradiation temperatures for 97M-13A samples.

<table>
<thead>
<tr>
<th>測定項目名</th>
<th>略号</th>
<th>単位</th>
<th>照射条件</th>
<th>95%信頼区間</th>
<th>最小値</th>
<th>最大値</th>
</tr>
</thead>
<tbody>
<tr>
<td>原子炉熱出力</td>
<td>PT01</td>
<td>MW</td>
<td>50.0</td>
<td>49.6±0.5</td>
<td>48.9</td>
<td>50.7</td>
</tr>
<tr>
<td>97M-13A No. 1 熱電対温度</td>
<td>TC01</td>
<td>℃</td>
<td>202±6</td>
<td>194</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 2 熱電対温度</td>
<td>TC02</td>
<td>℃</td>
<td>254±5</td>
<td>260</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 3 熱電対温度</td>
<td>TC03</td>
<td>℃</td>
<td>310±1</td>
<td>300</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 4 熱電対温度</td>
<td>TC04</td>
<td>℃</td>
<td>506±9</td>
<td>501</td>
<td>526</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 5 熱電対温度</td>
<td>TC05</td>
<td>℃</td>
<td>569±3</td>
<td>564</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 6 熱電対温度</td>
<td>TC06</td>
<td>℃</td>
<td>394±5</td>
<td>386</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>97M-13A No. 7 熱電対温度</td>
<td>TC07</td>
<td>℃</td>
<td>400±4</td>
<td>396</td>
<td>407</td>
<td></td>
</tr>
</tbody>
</table>

備考：このデータは、1998/11/16 09:00 から 12/12 19:30 の期間について、次の条件を満たすデータについて処理したものです。

- 原子炉熱出力
- 45 kW 以上
- 95-1 ヒータ温度制限状態: 自動
- 97M-13A No. 5 熱電対温度: 570±10 ℃

全データ数 = 1270
欠足データ数 = 0
条件満足データ数 = 1147
Fig. 2.1 Structure of 97M-13A capsule.
Fig. 2.2 Gamma heat and fluence monitor arrangement in 97M-13A capsule.
温度領域（300℃、400℃、550℃）

ホルダA

ホルダB

ホルダC

ホルダD

キャプセル下端側

Φ33

50 45 45 45

185

ホルダA仕様（Φ33×58.4, 材質：Gr）

<table>
<thead>
<tr>
<th>孔No.</th>
<th>孔径</th>
<th>孔材</th>
<th>試料名</th>
<th>試料数</th>
<th>備考</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>φ6</td>
<td>A-1</td>
<td>1本</td>
<td>ｱﾝﾎﾟﾙ入り</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>φ6</td>
<td>A-2</td>
<td>1本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>φ6</td>
<td>A-3</td>
<td>1本</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>φ6</td>
<td>A-4</td>
<td>1本</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>φ6</td>
<td>A-5</td>
<td>1本</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>φ6</td>
<td>B-1</td>
<td>1本</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>φ7</td>
<td>B-2</td>
<td>1本</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>φ8</td>
<td>C-1</td>
<td>1本</td>
<td>ｱﾝﾎﾟﾙ入り</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ホルダB仕様（Φ33×45.6, 材質：Gr）

<table>
<thead>
<tr>
<th>孔No.</th>
<th>孔径</th>
<th>孔材</th>
<th>試料名</th>
<th>試料数</th>
<th>備考</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>φ5.5</td>
<td>C-2</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>φ5.5</td>
<td>D-3</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>φ5.5</td>
<td>D-4</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>φ5.5</td>
<td>E-2</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>φ5.5</td>
<td>G-3</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>φ5.5</td>
<td>G-4</td>
<td>2本</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>φ6</td>
<td>C-1</td>
<td>1本</td>
<td>ｱﾝﾎﾟﾙ入り</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>φ8</td>
<td>Q-1</td>
<td>2個</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G-2 2個</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D-2 2個</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E-1 2個</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F-1 2個</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G-1 2個</td>
</tr>
</tbody>
</table>

注）アンホールの照射試料は全て黒鉛シートに包んで装荷（黒鉛シートは支給）

Fig.2.3a Shapes and dimension of sample holders A and B in 97M-13A capsule.
温度領域（300℃、400℃、550℃）

ホルダA ホルダB ホルダC ホルダD

50 45 45 45

φ33

ホルダC

ホルダD

Fig.2.3b Shapes and dimension of sample holder C and D in 97M-13A capsule.
Fig. 2.4 History trend of irradiated temperatures for 97M-13A capsule.
キャップセル名 | 97*M13A
照 射 孔 | M - 7
照 射 サイクル | 125-125
モニター | FE

Fig.2.5 Axial distribution of fast neutron fluence in 97M-13A capsule.
Fig. 2.6 Axial distribution of fast neutron flux in 97M-13A capsule.
Fig. 2.7 Axial distribution of thermal neutron fluence in 97M-13A capsule.
キックセル名	97*M13A
照射孔 | M - 7
照射サイトル | 125-125
モニタ | TI-CO

Fig.2.8 Axial distribution of thermal neutron flux in 97M-13A capsule.
Fig. 2.9 Radial distribution of thermal neutron flux in 97M-13A capsule (high temperature region).
Fig.2.10 Radial distribution of thermal neutron flux in 97M-13A capsule (middle and low temperature region).
Fig. 2.11 Radial distribution of thermal neutron flux in 97M-13A capsule (Cd shielding region).
3. 照射誘起寸法変化

3.1 試料及び測定方法

照射誘起寸法変化を測定する試料は、熱膨張率測定用に装荷した円柱状試料を用いた。試料寸法は銘柄毎に寸法を変えて区別し易いようにした。炭素系複合材料試料は直径5mm、長さ16〜20mm、SiC系複合材料試料は直径4.5〜4.7mm、長さ18.5〜20mm、参照材料試料は直径4.5〜4.7mm、長さ16〜18mmの寸法をして別々に用いた。異方性のある2次元複合材料試料の場合には、繊維の配向に関し平行方向と垂直方向の2種類を作製したが、外見上から識別が容易な試料については同一寸法とした。

照射前の寸法測定は、原則としてマイクロメータを用いたが垂直方向の測定個所は中心部を1カ所とした。照射後の寸法測定は、JMTRホットトールのコンクリートセル内に設置した非接触レーザー寸法測定器(LS5000、キーエンス(株)製)を用いた。本器は670nmの赤色半導体レーザー光源を利用したもので、測定精度±2μm以下、測定範囲は0〜40mmである。測定に先立ち、試料寸法に近い基準寸法用試料を製作し、これを用いて補正した。寸法測定用に特別に製作したV型台座に試料を設置し、遠隔操作により連続10回測定した平均値を照射後寸法値として採用した。

3.2 結果及び検討

炭素系複合材、SiC系複合材及び参照材の各試料の照射前後の寸法変化測定結果を銘柄別、照射温度領域別にTable 3.1に示す。

(1)参照材料

参照材料試料について、等方性及び準等方性黒鉛試料の照射温度領域別に試料長さ方向と径方向別に寸法変化率をFig.3.1に示す。準等方性黒鉛試料であるGilsocarbonは、長さ方向が結晶配向方向に平行と垂直の2種類の試料を装荷・照射した。両試料間に顕著な差異はなかった。一方、843K照射試料の径方向の寸法変化率は、結晶配向方向に平行な試料に対して垂直方向では平均で約2倍の膨張率を示した。また、673K照射試料の場合、長さ方向の寸法変化率は、他の照射温度(573、843K)の試料に比べて約2倍の寸法収縮率であった。更に、同試料の体積変化率を調べた結果、Fig.3.2に示すように結晶配向方向や照射温度に関係なく全て膨張傾向であった。一方、等方性黒鉛試料の径方向寸法変化率は、照射温度に比例して膨張率が増加していく傾向であったが、長さ方向は概ね収縮方向の変化を示した。また、同試料の体積変化率は573K照射の場合には収縮したが、他の照射温度では僅かな増加率を示すに留まった。

(2)炭素系複合材料

2次元繊り炭素系複合材料の径方向と長さ方向の寸法変化率をFig.3.3に示す。これらの試料は全て炭素繊維配列方向に平行と垂直の2種類を装荷・照射したものであるが、長さ/径方向の寸法変化率と繊維配列方向との有意な相関は見られ
なかった。しかし、長さ方向に膨張／収縮した試料は径方向には逆に収縮／膨張を示す傾向であった。熱処理温度の差異による長さ方向の照射誘起寸法変化率をFig.3.4に示す。
3273K 熱処理した試料の場合、C/C 複合材料のマトリックス領域はほぼ完全に黒鉄化が終了していると見られるが、炭素繊維の黒鉄化は不十分な領域が多いと言われている。一方、2273K 熱処理ではマトリックス領域ではやや黒鉄化が進むものの不十分な領域が多く、乱層構造の炭素質の多い領域と炭素繊維が共存する結晶構造となっている。2273K 熱処理温度の測定結果は概ね収縮傾向であったが、3273K 熱処理温度の試料では、照射温度573Kの場合のみやや膨張傾向を示したが、他の照射条件に特徴的な変化はなかった。
(3) SiC 系複合材料
2次元繊り SiC 繊維強化複合材料と SiC 粒子強化複合材料試料及びモノリシック SiC 試料の照射誘起寸法変化率をFig.3.5に示す。SiC 繊維強化複合材料試料の場合、径方向寸法変化率は収縮傾向を示したが、長さ方向は843K 照射温度条件の試料以外は膨張傾向であった。一方、SiC 粒子強化複合材料試料及び SiC 試料モノリシックは長さ／径方向ともに膨張したが、その変化率は照射温度の増加と反比例しており、約1273K 付近でほぼゼロとなった。
Fig.3.6に示すように、Price の報告した結果 と本試験データはほぼ良い一致を示すことが分かった。すなわち、巨視的な寸法変化率のデータと SiC の格子定数変化率のデータに相関性のある証明となっている。さらに、Fig.3.6に示すデータから明らかのように SiC の照射誘起寸法変化率の特徴としては、α型とβ型結晶の差異、熱分解 SiC、単結晶 SiC などとも共通する要因であることが理解出来る。異方性の強い2次元繊り SiC 繊維強化複合材料以外の材料、すなわち、均一組成 SiC 材料の場合には、同一の評価基準が適用できると考えられる。
次に、体積変化率について整理した結果をFig.3.7に示す。一見して明らかのように、SiC 繊維強化複合材料試料は、573K 〜 843K の照射温度条件の全てにおいて収縮傾向であるのに対して、SiC 粒子強化複合材料及びモノリシック SiC 試料は約2％の膨張率を示した。このような照射誘起寸法変化率の特徴からも明確なように、材料の均質性は設計・評価基準を検討する際の誤差要因を小さくすることに寄与すると考えられる。
Table 3.1a Irradiation-induced dimensional change of C/C composites and graphites at 573K (fast neutron fluence: 1.8x10^{21} m^{-2})

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-260</td>
<td>CX-270G</td>
<td>CC-1900</td>
<td>CC-1900</td>
<td>CC-1900</td>
<td>CC-1900</td>
<td>CC-1900</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Irradiation (h)</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Irradiation (m²)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Change (mm)</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Data sheet for C/C composite materials and graphites at 573K (fast neutron fluence: 1.8x10^{21} m^{-2})

Table 3.2a Irradiation-induced dimensional change of E/E composites and carbon fibers at 573K (fast neutron fluence: 1.8x10^{21} m^{-2})

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>E2-1 G4-1</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Irradiation (h)</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Irradiation (m²)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Change (mm)</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Table 3.3a Irradiation-induced dimensional change of E/E composites and carbon fibers at 573K (fast neutron fluence: 1.8x10^{21} m^{-2})

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>E2-1 G4-1</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Irradiation (h)</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Irradiation (m²)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Change (mm)</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Table 3.1b Irradiation-induced dimensional change of C/C composites and graphites at 673K (fast neutron fluence:1.8x10^12 m^(-2))

<table>
<thead>
<tr>
<th>鍛造</th>
<th>燃素複合材</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CC-190G</td>
<td>CC-190G</td>
<td>CC-190G</td>
<td>CC-190G</td>
<td>CC-190G</td>
<td>CC-190G</td>
</tr>
<tr>
<td>試料番号</td>
<td>G3-2</td>
<td>G3-12</td>
<td>G4-2</td>
<td>G4-12</td>
<td>D3-2</td>
<td>D3-22</td>
<td>D4-2</td>
<td>D4-22</td>
<td>C2-3</td>
<td>C2-4</td>
</tr>
<tr>
<td>測定方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
</tr>
<tr>
<td>燃射幅 (mm)</td>
<td>4.940</td>
<td>4.976</td>
<td>4.952</td>
<td>4.941</td>
<td>4.987</td>
<td>4.962</td>
<td>5.003</td>
<td>5.047</td>
<td>5.031</td>
<td>5.002</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.211</td>
<td>-0.475</td>
<td>-1.360</td>
<td>-0.936</td>
<td>-0.261</td>
<td>-0.568</td>
<td>-0.329</td>
<td>0.932</td>
<td>0.704</td>
<td>-0.270</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>4.974</td>
<td>4.994</td>
<td>4.925</td>
<td>4.979</td>
<td>4.987</td>
<td>4.987</td>
<td>4.985</td>
<td>5.021</td>
<td>5.035</td>
<td>5.004</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.555</td>
<td>-1.889</td>
<td>-1.271</td>
<td>-0.281</td>
<td>-0.461</td>
<td>-0.497</td>
<td>0.411</td>
<td>0.531</td>
<td>-0.232</td>
<td>0.957</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>4.983</td>
<td>4.983</td>
<td>4.947</td>
<td>4.990</td>
<td>4.972</td>
<td>5.030</td>
<td>4.991</td>
<td>5.012</td>
<td>5.003</td>
<td>5.014</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.050</td>
<td>-0.300</td>
<td>-1.457</td>
<td>-0.004</td>
<td>-0.559</td>
<td>0.799</td>
<td>-0.576</td>
<td>0.232</td>
<td>0.739</td>
<td>-0.999</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.106</td>
<td>0.288</td>
<td>0.943</td>
<td>-0.475</td>
<td>-0.146</td>
<td>-1.056</td>
<td>0.297</td>
<td>-0.189</td>
<td>0.003</td>
<td>-0.190</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>309.518</td>
<td>311.887</td>
<td>329.461</td>
<td>329.209</td>
<td>380.887</td>
<td>382.476</td>
<td>383.325</td>
<td>388.863</td>
<td>397.347</td>
<td>397.347</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.523</td>
<td>-0.599</td>
<td>-2.158</td>
<td>-1.268</td>
<td>-1.169</td>
<td>-0.297</td>
<td>-1.086</td>
<td>1.354</td>
<td>1.138</td>
<td>-0.402</td>
</tr>
</tbody>
</table>

等方性及び準等方性黒鉄板材料の段, 長さ, 体積の照射誘起寸法変化率

<table>
<thead>
<tr>
<th>材料</th>
<th>専等方性黒鉄板</th>
<th>準等方性黒鉄板</th>
<th>準等方性黒鉄板</th>
<th>準等方性黒鉄板</th>
<th>準等方性黒鉄板</th>
<th>準等方性黒鉄板</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料番号</td>
<td>Gismonite</td>
<td>Gismonite</td>
<td>Gismonite</td>
<td>Gismonite</td>
<td>Gismonite</td>
<td>Gismonite</td>
</tr>
<tr>
<td>試料番号</td>
<td>M3-3</td>
<td>M3-4</td>
<td>M4-3</td>
<td>M4-4</td>
<td>L2-3</td>
<td>L2-4</td>
</tr>
<tr>
<td>測定方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
<td>横線方向</td>
<td>積層方向</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>256.087</td>
<td>254.518</td>
<td>276.519</td>
<td>276.711</td>
<td>270.898</td>
<td>271.945</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.120</td>
<td>0.133</td>
<td>0.152</td>
<td>0.166</td>
<td>0.146</td>
<td>0.181</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>256.087</td>
<td>254.518</td>
<td>276.519</td>
<td>276.711</td>
<td>270.898</td>
<td>271.945</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.100</td>
<td>0.103</td>
<td>0.105</td>
<td>0.105</td>
<td>0.105</td>
<td>0.105</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>256.087</td>
<td>254.518</td>
<td>276.519</td>
<td>276.711</td>
<td>270.898</td>
<td>271.945</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.165</td>
<td>-0.169</td>
<td>-0.169</td>
<td>-0.169</td>
<td>-0.169</td>
<td>-0.169</td>
</tr>
<tr>
<td>燃射幅 (mm^3)</td>
<td>256.087</td>
<td>254.518</td>
<td>276.519</td>
<td>276.711</td>
<td>270.898</td>
<td>271.945</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.043</td>
<td>0.291</td>
<td>0.197</td>
<td>0.240</td>
<td>-0.044</td>
<td>0.078</td>
</tr>
<tr>
<td>材料名</td>
<td>炭素複合材1</td>
<td>炭素複合材2</td>
<td>炭素複合材3</td>
<td>炭素複合材4</td>
<td>炭素複合材5</td>
<td>炭素複合材6</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>銘柄</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
<td>CX-270G</td>
</tr>
<tr>
<td>試料番号</td>
<td>Q3-3</td>
<td>G3-13</td>
<td>G4-3</td>
<td>G4-13</td>
<td>D3-3</td>
<td>D3-23</td>
</tr>
<tr>
<td>準定方向</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
</tr>
<tr>
<td>照射温度 (°C)</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
</tr>
<tr>
<td>照射量 (m²)</td>
<td>0.000</td>
<td>4.990</td>
<td>4.990</td>
<td>5.010</td>
<td>5.070</td>
<td>4.970</td>
</tr>
<tr>
<td>照射前横断 (mm²)</td>
<td>314.395</td>
<td>313.999</td>
<td>336.178</td>
<td>364.890</td>
<td>373.691</td>
<td>378.689</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.321</td>
<td>-0.325</td>
<td>-0.575</td>
<td>0.178</td>
<td>-1.659</td>
<td>-0.453</td>
</tr>
<tr>
<td>照射後長さ (mm)</td>
<td>-0.156</td>
<td>-0.284</td>
<td>-1.008</td>
<td>-0.042</td>
<td>-1.647</td>
<td>-0.403</td>
</tr>
<tr>
<td>照射後横断 (mm²)</td>
<td>0.381</td>
<td>-0.340</td>
<td>-1.357</td>
<td>-0.149</td>
<td>-1.722</td>
<td>-0.477</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.100</td>
<td>0.069</td>
<td>-0.105</td>
<td>-0.621</td>
<td>0.054</td>
<td>-0.126</td>
</tr>
<tr>
<td>照射後横断 (mm²)</td>
<td>313.844</td>
<td>311.376</td>
<td>329.141</td>
<td>362.601</td>
<td>361.485</td>
<td>374.860</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.160</td>
<td>-0.550</td>
<td>-2.093</td>
<td>-0.029</td>
<td>-3.372</td>
<td>-1.011</td>
</tr>
</tbody>
</table>

表3.1c 照射温度-変化率の変化に対する影響

<table>
<thead>
<tr>
<th>材料名</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
<th>準等方性基準材</th>
</tr>
</thead>
<tbody>
<tr>
<td>銘柄</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
<td>Gilsonite</td>
</tr>
<tr>
<td>試料番号</td>
<td>M3-9</td>
<td>M3-9</td>
<td>M3-9</td>
<td>M4-5</td>
<td>M4-5</td>
<td>M4-5</td>
<td>M5-5</td>
</tr>
<tr>
<td>準定方向</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
<td>繊維配列</td>
</tr>
<tr>
<td>照射温度 (°C)</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
</tr>
<tr>
<td>照射量 (m²)</td>
<td>4.990</td>
<td>4.464</td>
<td>4.711</td>
<td>4.665</td>
<td>4.519</td>
<td>4.492</td>
<td></td>
</tr>
<tr>
<td>照射前長さ (mm)</td>
<td>16.090</td>
<td>16.064</td>
<td>15.993</td>
<td>16.077</td>
<td>16.996</td>
<td>16.955</td>
<td></td>
</tr>
<tr>
<td>照射前横断 (mm²)</td>
<td>254.289</td>
<td>253.673</td>
<td>278.720</td>
<td>274.788</td>
<td>272.164</td>
<td>268.700</td>
<td></td>
</tr>
<tr>
<td>照射後長さ (mm)</td>
<td>4.983</td>
<td>4.943</td>
<td>4.722</td>
<td>4.689</td>
<td>4.520</td>
<td>4.492</td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.059</td>
<td>0.204</td>
<td>0.116</td>
<td>0.151</td>
<td>-0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射後横断 (mm²)</td>
<td>4.500</td>
<td>4.490</td>
<td>4.714</td>
<td>4.659</td>
<td>4.521</td>
<td>4.494</td>
<td></td>
</tr>
<tr>
<td>照射後長さ (mm)</td>
<td>0.226</td>
<td>0.135</td>
<td>0.058</td>
<td>-0.123</td>
<td>0.038</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>照射後横断 (mm²)</td>
<td>0.199</td>
<td>0.235</td>
<td>0.112</td>
<td>0.021</td>
<td>-0.019</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td>照射後長さ (mm)</td>
<td>-0.025</td>
<td>-0.018</td>
<td>-0.038</td>
<td>0.000</td>
<td>-0.059</td>
<td>-0.062</td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.286</td>
<td>0.367</td>
<td>0.233</td>
<td>0.255</td>
<td>0.054</td>
<td>0.039</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1d 段法変化(低温域)/data sheet

SIC/SIC複合材料の径、長さ、体積の照射起立寸法変化

<table>
<thead>
<tr>
<th>材料名</th>
<th>SIC複合材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>素材数</td>
<td>Hinicalo.</td>
<td>Hinicalo.</td>
<td>Hinicalo.</td>
<td>Hinicalo.</td>
<td>Hinicalo.</td>
<td>SiC5% SiC</td>
<td>SiC5% SiC</td>
<td>SiC5% SiC</td>
<td>SiC5% SiC</td>
<td>hexalloy</td>
</tr>
<tr>
<td>試料番号</td>
<td>H3-1</td>
<td>H3-2</td>
<td>H4-1</td>
<td>H4-2</td>
<td>13-1</td>
<td>13-2</td>
<td>14-1</td>
<td>14-2</td>
<td>K2-1</td>
<td>K2-2</td>
</tr>
<tr>
<td>演算方向</td>
<td>織維配列</td>
<td>織維配列</td>
<td>織維配列</td>
<td>織維配列</td>
<td>非特定</td>
<td>非特定</td>
<td>非特定</td>
<td>非特定</td>
<td>非特定</td>
<td>非特定</td>
</tr>
<tr>
<td>照射温度 (℃)</td>
<td>300</td>
</tr>
<tr>
<td>照射負荷 (mm)</td>
<td>320.833</td>
<td>304.216</td>
<td>352.885</td>
<td>352.408</td>
<td>309.750</td>
<td>309.848</td>
<td>315.988</td>
<td>316.172</td>
<td>292.797</td>
<td>292.764</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.771</td>
<td>-1.723</td>
<td>-0.399</td>
<td>-0.281</td>
<td>0.848</td>
<td>0.730</td>
<td>0.686</td>
<td>0.683</td>
<td>0.724</td>
<td>0.976</td>
</tr>
<tr>
<td>照射負荷 (mm)</td>
<td>4.520</td>
<td>4.472</td>
<td>4.726</td>
<td>4.724</td>
<td>4.404</td>
<td>4.404</td>
<td>4.404</td>
<td>4.404</td>
<td>4.573</td>
<td>4.573</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-1.107</td>
<td>-0.480</td>
<td>-0.293</td>
<td>-0.101</td>
<td>0.865</td>
<td>0.870</td>
<td>0.890</td>
<td>0.890</td>
<td>0.856</td>
<td>0.856</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-1.866</td>
<td>-0.056</td>
<td>-0.899</td>
<td>-0.201</td>
<td>0.728</td>
<td>0.683</td>
<td>0.717</td>
<td>0.680</td>
<td>0.856</td>
<td>0.782</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.023</td>
<td>-0.083</td>
<td>-0.278</td>
<td>0.270</td>
<td>0.663</td>
<td>0.647</td>
<td>0.626</td>
<td>0.685</td>
<td>0.625</td>
<td>0.625</td>
</tr>
<tr>
<td>照射負荷 (mm)</td>
<td>312.907</td>
<td>289.910</td>
<td>350.217</td>
<td>351.774</td>
<td>316.101</td>
<td>318.071</td>
<td>322.478</td>
<td>322.470</td>
<td>298.188</td>
<td>298.782</td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-2.501</td>
<td>-1.413</td>
<td>-0.756</td>
<td>-0.180</td>
<td>2.050</td>
<td>2.008</td>
<td>1.952</td>
<td>2.182</td>
<td>2.049</td>
<td></td>
</tr>
</tbody>
</table>

平均線膨張率
SIC, 5% & 10%: 0.641 %
Table 3.1e Irradiation-induced dimensional change of SiC/SiC composites and monolithic SiC at 673K (fast neutron fluence: 1.8\times 10^{14} m^{-2})

<table>
<thead>
<tr>
<th>Materiale</th>
<th>SiC複合材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料記号</td>
<td>H3-3</td>
<td>H3-4</td>
<td>H4-3</td>
<td>H4-4</td>
<td>K3-3</td>
<td>K3-4</td>
<td>K4-3</td>
<td>K4-4</td>
<td>K2-3</td>
<td>K2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度</td>
<td>400</td>
</tr>
<tr>
<td>照射前体積 (mm³)</td>
<td>311.052</td>
<td>306.917</td>
<td>352.181</td>
<td>353.982</td>
<td>309.783</td>
<td>309.489</td>
<td>318.990</td>
<td>318.973</td>
<td>292.602</td>
<td>292.538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-1.561</td>
<td>-0.901</td>
<td>-0.580</td>
<td>-0.311</td>
<td>0.619</td>
<td>0.568</td>
<td>0.590</td>
<td>0.682</td>
<td>0.638</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.671</td>
<td>-0.347</td>
<td>-0.372</td>
<td>-0.275</td>
<td>0.597</td>
<td>0.607</td>
<td>0.600</td>
<td>0.592</td>
<td>0.590</td>
<td>0.586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-0.771</td>
<td>-1.889</td>
<td>-0.288</td>
<td>-0.335</td>
<td>0.598</td>
<td>0.624</td>
<td>0.549</td>
<td>0.572</td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>0.267</td>
<td>-0.003</td>
<td>-0.012</td>
<td>0.000</td>
<td>0.526</td>
<td>0.642</td>
<td>0.546</td>
<td>0.457</td>
<td>0.512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射後体積 (mm³)</td>
<td>305.736</td>
<td>301.773</td>
<td>349.214</td>
<td>351.723</td>
<td>315.249</td>
<td>315.350</td>
<td>321.467</td>
<td>321.497</td>
<td>287.843</td>
<td>287.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>変化率 (%)</td>
<td>-1.709</td>
<td>-1.876</td>
<td>-0.837</td>
<td>-0.813</td>
<td>1.964</td>
<td>1.890</td>
<td>1.701</td>
<td>1.716</td>
<td>1.723</td>
<td>1.735</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

平均線膨張率
SiC, 5%10% 0.534
<table>
<thead>
<tr>
<th>イオン種</th>
<th>SC/SIC合金</th>
<th>H-3</th>
<th>H-4</th>
<th>H-6</th>
<th>H-9</th>
<th>K-3</th>
<th>K-4</th>
<th>K-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.53</td>
<td>0.54</td>
<td>0.55</td>
<td>0.56</td>
<td>0.57</td>
<td>0.58</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.50</td>
<td>0.51</td>
<td>0.52</td>
<td>0.53</td>
<td>0.54</td>
<td>0.55</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
<td>0.50</td>
<td>0.51</td>
<td>0.52</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1f Irradiation-induced dimensional change of SC/SIC composites and
monolithic SIC at 843 K (fast neutron flux: 1x10^{17} n/m^2 s)

平均線維厚さ

SC/SIC配合比

0.397

91M-13A-PIE
Fig. 3.1 Irradiation-induced dimensional change of near isotropic and isotropic graphite at 300C, 400C and 570C
(fast neutron fluence : $1.8 \times 10^{24} \text{ m}^{-2}$)
Fig. 3.2 Irradiation-induced volume change of near isotropic graphite
(fast neutron fluence: 1.8×10^{24} m$^{-2}$)
Fig. 3.3 Irradiation-induced dimensional change of 2-D C/C composites at 300, 400 and 570°C (fast neutron fluence: 1.8×10^{19} m$^{-2}$).
Fig. 3.4 Irradiation-induced dimensional change for C/C composites
(fast neutron fluence: $1.8 \times 10^{14} \text{ m}^{-2}$).
Fig. 3.5 Irradiation-induced dimensional change of SiC fiber/particle reinforced SiC composites and monolithic SiC (fast neutron fluence: $1.8 \times 10^{24} \text{ m}^{-2}$)
Fig. 3.6 Linear expansion of various SiC samples as a function of irradiation temperature.
Fig. 3.7 Irradiation-induced volume change of SiC fiber/particle reinforced SiC composites and monolithic SiC (fast neutron fluence : 1.8×10^{14} m$^{-2}$)
4. 熱膨張率

4.1 測定方法

(1) 試験片

熱膨張係数（CTE）測定用の試料は、C/C 複合材料が5種類、SiC 複合材料が3種類、参照材としてはモノリシック α-SiC（hexaloy*）、等方性及び準等方性黒鉛（IG-110, Gilso carbon）である。試験片寸法は装置の制約から直径 4.5〜5.0mm、長さ 16〜20mm の範囲とし銘柄、積層方向毎に変えた。これは照射後試験の際、試験片判別を誤認なく判別可能とするためである。試験片温度を正確に測定するため、C/C 複合材料の試験片中心部に直径 1.5mm × 長さ 8mm の熱電対挿入孔を設けた。

(2) 装置

CTE 測定は熱機械分析法（Thermomechanical Analysis, TMA）を用いて、大洗研究所の RI 利用開発棟のホット実験室（放射化学第 1 実験室）において行った。用いた装置は市販品の熱機械分析装置（理学電機製 TMA8310-高温型圧縮荷重方式）である。

測定の原理を Fig.4.1 に示す。本装置ではプログラム温度制御装置により任意の加熱・冷却・保持が 100 パターン設定でき、最高 1773K まで 0.016 〜 100 K/min の範囲で昇温・降温ができる。パソコンにより任意の時間間隔で温度・熱膨張デジタルデータを自動的に取り込む方式となっている。相対測定用の基準材はアルミナ（α-Al₂O₃）を使用した。

同一寸法のアルミナ基準材 2 本を用いて行ったフラックス試験結果を Fig.4.2 に示す。なお、Fig.4.2a は測定データをそのままプロットしたもので、それを基準材のデータファイルから参照補正したもののが Fig.4.2b である。Fig.4.2a から、相対的な長さの測定精度（precision）は 0.1%以下であり、相対測定による精度としては十分であることがわかる。

(3) 熱膨張係数の定義

測定しようとする物体の温度が T₁ から T₂(T₂>T₁) に変化したとき、軸方向長さが L₁ から L₂ に変わったとすると、T₁ 〜 T₂ 間における平均の線熱膨張 ε は

\[
\varepsilon = \left(\frac{(L₂-L₁)}{L₁} \right)
\]

(4-1)

で示される 10)。また、両温度間の平均線熱膨張係数 \(\bar{\alpha} \) は

\[
\bar{\alpha} = \varepsilon/(T₂-T₁) = (L₂-L₁)/(L₁(T₂-T₁))
\]

(4-2)

で定義される。温度 T₁ と T₂ との差 \(\Delta T \) が無限小の極限値をとると、温度 T₁ における \(\alpha \) は
\[\overline{\alpha}_{v_{(T)}} = \lim_{\Delta T \to 0} \frac{(L_v - L_T)}{L_T (T_v - T_T)} = \lim_{\Delta T \to 0} \frac{(1/L_T) \cdot (\Delta L/\Delta T)}{ } \quad (4-3) \]

となる。体積変化についても長さの変化と同様にして平均体積熱膨張係数 \(\overline{\alpha}_v \) は

\[\overline{\alpha}_v = \frac{(V_v - V_T)}{V_T (T_v - T_T)} \quad (4-4) \]

と定義できる。なお、等方性物質では次式の関係が近似的に成立する。

\[\overline{\alpha}_v \simeq 3\overline{\alpha}_v \{(1 + \overline{\alpha}_v)(T_v - T_T)\} \quad (4-5a) \]
\[\alpha_v \simeq 3\alpha_v \quad (4-5b) \]

(4) 測定誤差

熱膨張の測定誤差は、(4)式に示した試料長さ \(L \)、変位長さ \(\Delta L \)、温度差 \(\Delta T \) の測定値にそれぞれの誤差が含まれるととして考えることができる \(^{11}\)。すなわち、熱膨張率 \(\alpha \) の測定誤差 (\(da/\alpha \)) は

\[da/\alpha = \left\{ \left(\frac{dL}{L} \right)^2 + \left(\frac{d\Delta L}{\Delta L} \right)^2 + \left(\frac{d\Delta T}{\Delta T} \right)^2 \right\}^{1/2} \quad (4-6) \]

で与えられる。試料長さの測定誤差は、通常のマイクロメータを使用した場合には 1 \(\mu \)m、変位量を測定する変動変圧器では 0.1 \(\mu \)m、また、熱電対による温度測定誤差は 1K 程度と想定される。この場合の誤差評価条件を Fig.4.3 に示す。同図より試料長さ 20mm、温度差 200K、熱膨張係数が 10\(^{-4}\)K\(^{-1}\) から 10\(^{-4}\)K\(^{-1}\) まで変化したときの測定誤差は 25\%から 0.56\%まで大きく変動することがわかる。また、同図下部に示すように熱膨張係数が 1 × 10\(^{-4}\)K\(^{-1}\)の材料の試料長が 10mm から 1m まで変化したときの測定誤差は、5\%から 0.5\%まで変動することがわかる。すなわち、試料の熱膨張係数が大きく、試料長が長いほど測定誤差は小さくなると言える。

(5) 昇温速度の影響

本実験に用いた試料寸法での最適な測定条件を定めるため、参照材 (IG-110) を用いて 5, 10, 15 及び 30 K/min の 4 種類の昇温速度により CTE 測定を行った。その結果、Fig.4.4 に示すように、15 K/min より遅い昇温速度では有意な差は認められなかった。このため、標準的な昇温速度として推奨されている 10 K/min を測定条件とした。測定の最高温度はヒーター劣化を考慮して、装置の最高性能限度である 1723K よりも 100K 低い 1623K とした。また、試験片の高温酸化を防止するため、測定中は流動ヘリウムガス雰囲気 (90 ml/min)とした。

4.2 等方性／準等方性黒鉛及び C/C 複合材料の測定結果及び検討

(1) 等方性／準等方性黒鉛の測定結果
微粒等方性黒鉛（IG-110）の573、673及び843K照射後CTE及び熱膨張率の温度依存性をFig.4.5～4.7に示す。測定は同一照射条件の同一銘柄試料2本について、照射後の第1回測定と同一条件で第2回回測定を実施した。これは照射効果の回復挙動と同時に測定の再現性を確認するためである。この測定方法は原則として、他の照射条件試料全てに適用した。本試料の特性としては、顕著な照射効果は見られなかったが、843K照射試料の場合、1123Kを越えた測定領域において熱膨張率が未照射材よりもやや低下する傾向が示された。なお、2回目測定値はほとんど全ての試料において未照射材と同程度のCTEに回復した。

結晶粒に沿った方向から採取した準等方性黒鉛（Gilso-carbon）試料の照射後CTE及び熱膨張率の温度依存性をFig.4.8～4.10に示す。本試料の場合、573及び843K照射試料が未照射材のCTEよりも約20%低下したものの、673K照射試料では照射による低下は見られなかった。結晶粒に垂直方向から採取した準等方性黒鉛（Gilso-carbon）試料の照射後CTE及び熱膨張率の温度依存性をFig.4.11～4.13に示す。573K照射試料の場合（Fig.4.11）第一回目測定のうちの一本は通常荷重すべき0.098N（10gf）の荷重が無荷重であったため、適正値に達しない測定結果となっ

本試料の場合は最初に述べたIG-110試料と同様、843K照射試料のみ1123Kを越えた測定領域から熱膨張率が未照射材よりもやや低下する傾向が示された。それらの照射条件の試料では顕著な変化は現れなかった。

(2) C/C複合材料の測定結果

まず、2273K熱処理温度のCCM-190C試料の炭素纖維配列に平行方向(parallel)と垂直方向(veertical)の試料2種類について、CTE及び熱膨張率の温度依存性を各1本ずつ測定した結果をFig.4.14～4.16に示す。ここでも573K及び843K照射の垂直方向試料は照射効果が明瞭に現れているが、673K照射試料の場合、むしろ逆転した測定結果となっている。一方、平行方向試料の場合、垂直方向に比較して熱膨張率が極めて小さく、10^{-6}～10^{-8}K^{-1}では測定誤差が2.5～25%に達することを考慮する必要がある。従って、10%程度異なる測定值を評価するにはやや信頼性に欠けると推定される。

3273K熱処理温度のCCM-190G試料の炭素纖維配列に平行方向(parallel)と垂直方向(veertical)の試料2種類について、CTE及び熱膨張率の温度依存性を各1本ずつ測定した結果をFig.4.17～4.19に示す。573K照射で垂直方向試料の場合、照射前のCTEに比較して約10%低下していたが673K照射試料では逆転した結果となっていた。さらに、843K照射試料は照射前後の測定値に大きな差異は見られなかった。

2273K熱処理温度のCX-270C試料の炭素纖維配列に平行方向(parallel)と垂直方向(veertical)の試料2種類について、CTE及び熱膨張率の温度依存性を各1本ずつ測定した結果をFig.4.20～4.22に示す。573K及び843K照射で垂直方向試料の場合、CCM-190Cと同様、照射効果が明瞭に現れているが、673K照射試料の場合、1023K付近から屈曲し逆転した結果となっていた。なお、本銘柄の平行方向843K照射試料は破損したため測定不能であった。
3273K 熱処理温度の CX-270G 試料の炭素繊維配列に平行方向(parallel)と垂直方向(vertitical)の試料 2 種類について、CTE 及び熱膨張率の温度依存性を各 1 本ずつ測定した結果を Fig.4.23 ～ 4.25 に示す。573K 照射で垂直及び平行方向試料の場合、照射前の CTE に比較して約 10%低下していたが 673K 照射試料では大きな差異は示さなかった。一方、843K 照射試料では同様に照射 1 回目の測定値の 1073K 付近に屈曲点が現れた。また、本試料の熱膨張率の小さな平行方向試料については、2 回目測定に引き続いて 3 回目測定を実施し再現性を確認したが、Fig.4.25 に示すとおり照射回復効果のあることが分かった。

2 次元フェルト C/C 複合材料 PCC-2S 試料の CVD 積層面に垂直(vertitical)方向について、CTE 及び熱膨張率の温度依存性を各 2 試料ずつ測定した結果を Fig.4.26 ～ 4.28 に、同じく積層面に平行(parallel)方向については Fig.4.29 ～ 4.31 に示す。本銘柄の垂直方向 573K 照射試料は、Fig.4.26 に示したように 1073K 付近に屈曲点が現れ 1373K 付近で終了する温度依存曲線を示した。これは未照射の垂直方向試料の場合と同様の現象であった。その後、同照射試料の 2 回目測定においては未照射試料と同様の測定値に戻る、照射損傷回復過程が示された。垂直方向 400℃照射試料は、Fig.4.27 に示すように 573K 照射試料とは異なり 1273K 付近から CTE が増加に転じる傾向を示した。さらに、1073K 付近の屈曲点は 2 回目測定でも回復しなかった。843K 照射試料でも同様に屈曲点が現れたが、2 回目以降 3 回目まで測定した結果の再現性がなかった。一方、積層面に平行方向の 573K 照射試料については、Fig.4.29 に示すように急速加熱～一定温度保持（等温焼結）の昇温方法による照射損傷の活性化エネルギーを求める試験法を実施したため、照射効果の明確な測定結果は得られなかった。また、平行方向の 673K 及び 843K 照射試料は未照射試料と同様の屈曲点が現れたが、2 回目以降の測定結果には再現性がなかった。

(3) 検討

多結晶黒鉄材料の熱膨張は結晶子自体の熱膨張が主な原因であるが、結晶子の配向性やその周囲と内部の気孔容積、形状、分布によって大きく影響を受け、巨視的な熱膨張係数は黒鉄結晶の c 軸方向の値よりもかなり小さい。黒鉄材料の熱膨張について、Nelson & Riley(12) を初めとした数多くの研究者(13-16)の報告がある。ここでは黒鉄材料の熱膨張係数に及ぼす中性子照射効果を理解するために、結晶の異方性を考慮することが必要であるとともに、種々の形状、分布を持った気孔が多数存在している場合の熱膨張係数を扱うには、気孔緩和モデルを考慮する必要があることを注記する。

すなわち、Price ら(17)は結晶子が不規則に並んでいる材料（等方材）ほど結晶子相互の干涉による力が強く、黒鉄化処理温度からの冷却により生じるクラックの数が多いと考えて、緩和量の差をマイクロクラックの数の差のみで説明した。一方、斎藤ら(18)は緩和量を決定する要因はクラックの数だけではなく「クラックの強さ」すなわちクラックが伸縮する際の抵抗力を考慮する必要のあることを提唱した。
4.3 モノリシック SiC 及び SiC/SiC 混合材料の測定結果及び検討

(1) 結果

モノリシック α-SiC(Hexaloy) 照射試料の CTE 及び熱膨張率の温度依存性を各2試料ずつ2回測定した結果を Fig.4.32～4.34に示す。第1回目の測定では照射温度573K、673K及び843K いずれの条件においても、照射温度 + 100K 付近から屈曲が始まり、測定終了温度の1673K まで熱膨張平衡状態を示した。その後、同照射試料の2回目測定においては未照射試料と同様の測定値に戻る、照射損傷回復過程が示された。

前記のモノリシック α-SiC を基材として、これに中心粒径30μm の SiC 強化粒子を5%添加した Sicp/Sicc 複合材料の CTE 及び熱膨張率の温度依存性を各2試料ずつ2回測定した結果を Fig.4.35～4.37に示す。同様に SiC 強化粒子10%添加した Sicp/Sicc 複合材料の測定結果を Fig.4.38～4.40に示す。これらの温度依存性曲線は前記のモノリシック α-SiC と同様の傾向を示しており、第2回目測定で573K～843K の全照射温度条件においてほぼ完全な照射損傷回復過程が示された。

SiC 繊維(Hinicalon)を強化材に用いてポリカルボシラン(PCS: Polycarbonosilane)含浸焼成・緻密化処理した2次元 Sicp/Sicc 複合材料(Hinicaloceram)の SiC 繊維配向に平行方向の試料について、照射後 CTE 及び熱膨張率の温度依存性を2試料ずつ各2回測定した結果を Fig.4.41～4.43に示す。また、SiC 繊維配向に垂直方向の試料についても Fig.4.44～4.46に示す。本研究の 573K 照射試料2本のうち1本については、照射損傷の活性化エネルギーを求めるための急速加熱－定温度保持の昇温方法による試験を実施したため、ステップ状の測定曲線となっている。

本試料の平行方向試料の場合、モノリシック α-SiC 及び Sicp/Sicc 複合材料と同様に明瞭な熱膨張率の屈曲点が現出したが、相違点は屈曲後の熱膨張が平衡維持するのではなく収縮方向に進展し、1500K 付近で反転することである。一方、垂直方向試料の場合も同様に屈曲点は出現し、1300K 付近まで収縮進展するが、その後反転し再び収縮する(Fig.4.44)。843K 照射垂直方向試料は、収縮せず平衡維持し1400K 付近から膨張に転ずるもの 1600K 以上では再び収縮する、という複雑な挙動を示す(Fig.4.46)。2回目測定の結果、照射損傷回復傾向は全ての SiC 照射試料に見られるが、843K 照射試料では回復挙動が解明のとく推移し、完全には未照射試料と同様の温度依存性曲線には戻らない(Fig.4.46)。

(2) 検討

セラミックス複合材料の場合、フィラーとしての繊維は 10μm であるが、これをどのように集合させるのか言ったマクロ組織の制御は、複合材料の機能発現の上で非常に重要な問題である。Fig.4.47に示すように、たとえば一向向に繊維を用いれば、複合材料はその方向に高い強度を持つが、その方向に向かす塩孔が生じ易く層間剥離を起こしやすい。平行(2D)の場合は変性でフィラーが屈曲するため強度低下の原因となる。3次元処理(3D)の場合は、繊維束に囲まれた隙間(ポケット)が出来て
気孔が生じやすいなどの問題がある。いずれにせよ、セラミックス複合材料の場合には、結晶の異方性及び気孔緩和モデルの考慮に加えて、繊維強化方法の違い、積層方向などが熱膨張係数に大きく影響を与えていることに注意すべきである。
Fig.4.1 Principle of thermomechanical analysis.
Fig. 4.2a Temperature dependence of the coefficient of thermal expansion for blank test with a standard specimen of alumina bar (uncorrected line).
Fig. 4.2b Temperature dependence of the coefficient of thermal expansion for blank test with a standard specimen of alumina bar (corrected line).
\[
\frac{d\alpha}{\alpha} = \left\{ \left(\frac{dL}{L} \right)^2 + \left(\frac{d\Delta L}{\Delta L} \right)^2 + \left(\frac{d\Delta T}{\Delta T} \right)^2 \right\}^{1/2}
\]

Error estimation condition A

Length of specimen: 20mm
Temperature: 473K
Error of measurement
 - for specimen: 1\(\mu\)m
 - for expansion rate: 0.1\(\mu\)m
 - for temperature: 1K

\[\text{CTE}(\alpha) \rightarrow 10^{-7} \sim 10^3 (\text{K}^{-1})\]

Error estimation condition B

\[\text{CTE} \rightarrow 10^{-6}\]
Temperature: 473K
Error of measurement
 - for specimen: 1\(\mu\)m
 - for expansion rate: 0.1\(\mu\)m
 - for temperature: 1K

Length of specimen
\[0.01\text{m} \sim 1.0\text{m}\]

Fig.4.3 Error estimation in thermal expansion measurement.
Fig. 4.4 Temperature ramp rate dependence of coefficient of thermal expansion (CTE) and thermal expansion for isotropic graphite (IG-110)
Fig. 4.5 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 573K.
Fig. 4.6 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 673K.
Fig. 4.7 Neutron irradiation effects on coefficient of thermal expansion for isotropic graphite (IG-110) irradiated at 843K.
Neutron fluence ($E>0.16\mu$) : 1.8×10^{18} (m2)
Irradiated temperature : 573K
with grain direction

Fig. 4.8 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 573K.
Fig. 4.9 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 673K.
Fig. 4.10 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 843K.
Fig 4.11 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 573K.
Fig. 4.12 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 673K.
Fig. 4.13 Neutron irradiation effects on coefficient of thermal expansion for near-isotropic graphite (Gilso-carbon) irradiated at 843K.
Fig. 4.14 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 573K.
Fig. 4.15 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 673K.
Fig. 4.16 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190C) irradiated at 843K.
Fig. 4.17 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 573K.
Fig. 4.18 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 673K.
Fig. 4.19 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CCM-190G) irradiated at 843K.
Fig. 4.20 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 573K.
Fig. 4.21 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 673K
Fig. 4.22 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270C) irradiated at 843K.
Fig. 4.23 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 573K.
Fig. 4.24 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 673K.
Fig. 4.25 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (CX-270G) irradiated at 843K.
Fig. 4.26 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 573K.
Fig. 4.27 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 673K.
Fig. 4.28 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 843K.
Fig.4.29 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 573K.
Fig.4.30 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 673K.
Fig. 4.31 Neutron irradiation effects on coefficient of thermal expansion for 2-D C/C composite (PCC-2S) irradiated at 843K.
Fig. 4.32 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 573K.
Fig.4.33 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 673K.
Fig. 4.34 Neutron irradiation effects on coefficient of thermal expansion for monolithic SiC (Hexaloy) irradiated at 843K.
Fig. 4.35 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 573K.
Fig.4.36 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 673K.
Neutron fluence ($E=0.16$ MeV): 1.8×10^{14} (n m$^{-2}$)
Irradiated temperature: 843K
Content of dispersive particle: 5%

Fig. 4.37 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 5% dispersive SiC composite irradiated at 843K.
Fig. 4.38 Neutron irradiation effects on coefficient of thermal expansion for SiC particle
10% dispersive SiC composite irradiated at 573K.
Fig. 4.39 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 10% dispersive SiC composite irradiated at 673K.
Fig. 4.40 Neutron irradiation effects on coefficient of thermal expansion for SiC particle 10% dispersive SiC composite irradiated at 843K.
Neutron fluence ($E>0.16$ MeV) : 1.8x10^{16} (cm^{-2})
Irradiated temperature : 573K
Fiber direction : parallel

Fig. 4.41 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 573K.
Neutron fluence ($E>0.16$ MeV): 1.8×10^{14} (cm$^{-2}$)
Irradiated temperature: 673K
Fiber direction: parallel

Fig. 4.42 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 673K.
Fig. 4.43 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 843K.
Fig. 4.44 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 573K.
Fig. 4.45 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 673K.
Fig. 4.46 Neutron irradiation effects on coefficient of thermal expansion for 2-D SiC/SiC composite (HiNicaloceram) irradiated at 843K.
Fig. 4.47 Illustration of 1-dimensional, 2-dimensional and 3-dimensional fiber woven types.
5．X線パラメータ

5.1 測定方法
(1) 供試材
供試材としては、微粒等方性黒鉛（IG-110）及び高配向性熱分解黒鉛（HOPG）の2種類とした。

(2) 装置及びデータ解析ソフト
測定に使用した装置（東海研究所ホットラボに設置）を以下に示す。
X線回折装置：理学電機 RAD-2C 改造型（遮蔽体付）広角 X線回折装置
X線管球：Cu ターゲット 2 kW 封入管（40kV-50mA）
ゴニオメータ：W合金遮蔽体付 半径 185mm 標準型（集中法）
スキャン可能範囲：2θ = −3° 〜 +150°（仕様精度 2θ ± 0.05°）
モノクロメータ：湾曲型グラファイト結晶
標準使用スリット：DS；1°、SS；1°、RS；0.15mm、RSM；0.6mm
検出器：サイドウィンド比例計数管
検出器遮蔽体：タングステン合金（遮蔽能力 185GBq）
解析に使用したソフトを以下に示す。
ピークサーチ処理：Rigaku-RAD システム／RINT-2000 シリーズ
Kα ／Kα ピーク分離：Rigaku-RAD システム／RINT-2000 シリーズ
定性分析（同定）：Rigaku-RAD システム／RINT-2000 シリーズ
データ解析用コンピュータ：HP/Apollo シリーズ（HP-712/60CPU）

(3) 試験方法
照射済供試料の測定に先立ち、Si 標準試料（Si 粉末）を測定し、文献値（DSI 系統誤差補正値）に基づいて測角精度の確認を行った。また、粉末状 Si 標準試料を測定した X 線回折図形から Kα ／Kα ピーク分離処理を行い Kα 除去値を求めた。供試料は測定時 X 線入射方向に対して試料面が垂直に保持されるため、エポキシ樹脂埋め込みホルダーの中心にプラスティックコンパウンドで固定し、これをゴニオメータの試料ホルダーに設置した。

(3-1) 格子定数
IG-110 の c 軸方向格子定数は (002), (004) 及び (006) について、a 軸方向格子定数は (100) 及び (110) について各々測定した。HOPG は供試材の切り出し方向の制約から c 軸方向の (002), (004), (006) 及び (008) について測定した。
算出方法は学振法 を参考にして次の手順により実施した。573K 照射の IG-110 供試料の hkl: (002) を例にして記述する。
① 2θ の実測値代入 → 照射黒鉛試料：26.294° (002)C meas (2θ)
 → Si 標準試料：28.423° (111)S meas (2θ)
② 補正值 C cor (2θ) の計算

\[C_{cor} (2\theta) = S_{meas} (2\theta) - C_{meas} (2\theta) = 26.3129 \]
3. 格子定数の計算

\[d = \frac{\text{波長} \lambda (\text{Cu}: 0.1540562)}{2 \sin \left(\frac{(\text{Cor} \ (2 \theta)/2)}{(\pi/180)}\right)} = 3.3842, \quad 2 \times d = 0.67684 \quad (5-1) \]

(3-2) 結晶子径

結晶子径についても同様に、573K 照射の IG-110 供試料の hkl:(002)を例にして記述する。半価幅はピーク高さの 1/2 位置における幅を測定した。
①半価幅の測定値代入→照射黑鉛試料: 0.407° (B)
 → Si 標準試料: 0.076° (b)
②真の半価幅 (β) の計算
 β の算出は b/B に対する β/B としての数値を示す図から求めること (学振法) とされているが、これを次に示す 4 次の近似式にして、より計算し易くした。
 \[\beta/B = 0.9981 - 0.06815 \times (b/B) - 2.59 \times (b/B)^2 + 2.62 \times (b/B)^3 - 0.958 \times (b/B)^4 \]
③結晶子径 (L_mm) の計算

形状因子 K の値は材料の種類によって異なるが、学振法 (3) では試料を人造黒鉛に限定した場合 K=1 と定めている。

\[(L_{mm}) = \frac{K \cdot \lambda}{\beta \cos \theta} \quad (5-2) \]

但し、K : 1 (定数)

\[\lambda : 0.1540562 (\text{Cu の波長 (nm)}) \]
\[\theta : (\text{Cor} \ (2 \theta)/2)/ (\pi/180) \]

この結果、Lc(002) は 24.451 nm となった。

(3-3) 黒鉛化度

六方晶黒鉛の格子定数は、炭素繊維平面上に平行な方向 (a 軸) と垂直な方向 (c 軸) の値で代表され、室温で a = 0.24614nm、c = 0.6707nm となる。また、層面の重なり方に規則性のないものが「乱層構造炭素」であり、その層間距離は 0.344nm 程度とされ黑鉛構造の値 (c/2) より大きい。焼成温度の増加により層間距離が収縮し、乱層構造から黒鉛構造に移行していく現象を「黒鉛化」という。黒鉛化の程度を表す指針は、X 線回折強度をフーリエ級数に近似する方法 (Houska and Waren (20)) の他に、層間距離 (c/2) の測定値からも得ることができる。本報告では回折強度から求める Maire & Mering (21) の算出方法を適用した黒鉛化度 (g) について、同様に 573K 照射の IG-110 供試料の hkl:(002)を例にして記述する。

彼らの算出方法では、黒鉛化を綱平面の表面に付着した炭素原子や不純物原子がなくなった状態と考え、次式が提案された。
\[c_v/2 = 3.44(1-g)^2 + \{(3.44+3.354)/2\}2g(1-g)\} + 3.354g^2 \]
(5-3)

ここで、

\(c_v/2\): 層間距離

\((1-g)^2\): 網平面の表と裏の両面ともに不完全な状態の確率

\(2g(1-g)\): 網平面の表と裏の片面のみ黒鉛化した状態の確率

\(g\): 網平面の表と裏の両面が完全に黒鉛化した状態の確率

整理すると,

\[g = (3.44 - c_v/2)/0.086 \]
(5-4)

従って、層間距離 \(c_v/2\) が完全に黒鉛化した場合の数値である 3.354 の時、黒鉛化度 \(g\) は、1 となる。

(3-4) 格子歪み

格子歪みは実在する層間距離と回折実験データによる平均的な値とのずれを表すパラメータであり、第 1 の意味を「層間の不整」すなわち、面の歪みあるいはたわみと考える。第 2 の意味は「層間距離の変動」である。本報告では特に後者についての既存のモデルを使い検討した。すなわち、Ergun\(^{22}\)の提案した \(c\) 軸方向の格子歪み \(\delta_c\) の分布を正規分布型で表した次式を用いた。

\[\beta \cos \theta / \lambda = K/Lc + 8 \pi (c_v/2) \delta_c^2 (\sin \theta / \lambda)^2 \]
(5-5)

\(\beta\) : 回折図形の半価幅

\(\lambda\) : X 線の波長

\(\theta\) : 回折角

\(K\) : 形状因子 (=1)

\(Lc\) : \(c\) 軸方向の結晶子の大きさ

\(c_v\) : \(c\) 軸方向の格子定数

\(\delta_c\) と \(Lc\) は \((\sin \theta / \lambda)^2\) に対する \(\beta \cos \theta / \lambda\) プロットの直線性から求めることができる。すなわち、Fig.5.1 に示すように 573K 照射の IG-110 供試材の場合、直線の近似式から \(x\) 偏配: \(4 \pi (c_v) \delta_c^2\), \(y\) 切片: \(1/Lc\) であるから \(\delta_c=0.0187, Lc=285.7\) を得る。

5.2 結果及び検討

格子定数、結晶子径、黒鉛化度、格子歪みについて得られた結果を、Table 5.1 及び 5.2 に示す。

(1) 格子定数

Table 5.1 及び 5.2 に示したように IG-110 及び HOPG の両供試材ともに 573K 照射試料では、未照射材と比較して \(c\) 軸方向に 0.15～0.19%増加しているが、673K
及び 843K 照射試料では一様な変化とはなってない。すなわち、HOPG は 673K の場合にも 573K と同程度の増加率を示したが、IG-110 では 673K と 843K 何れの場合も変化率は小さく測定誤差の範囲に留まっていた。一方、a 軸方向の格子定数については IG-110 のみ測定したが、c 軸方向の変化率とは逆に今回実施した全ての照射温度で 0.08 ～ 0.20%の減少率を示した。すなわち、微粒等方性黒鉛材料の格子定数は 573K 照射条件では c 軸方向に増加し、a 軸方向には減少することが分かった。照射温度 673K 以上の試験条件では、格子定数の変化率は低下しているのはほとんど変化しないことが示された。

(2) 結晶子径

573K 照射した IG-110 は、未照射材と比較して a 軸及び c 軸方向の変化率はともに減少したが、673K 及び 843K 照射条件における c 軸方向の変化率は格子面によって増加あるいは減少の両様様を示した。一方、a 軸方向の結晶子径の変化率は照射温度の上昇とともに低下していく傾向を示した。HOPG の結晶子径の変化率は全ての照射温度条件で、未照射材と比較して大きく減少しており、概ね照射温度の上昇とともに変化率は小さくなる傾向を示した。

(3) 黒鉛化度

573K 照射した IG-110 の場合、未照射材に比較して 7 ～ 10%の減少率であったが、673K 及び 843K 照射条件の場合は変化率は小さく測定誤差の範囲であった。一方、HOPG の場合は (002)、(004) 回折線から求めた黒鉛化度の変化率は増加と減少の両様様を示しており不安定な測定結果であったが、(006) 及び (008) 回折線から求めた黒鉛化度の変化率は 1.6 ～ 6.7%の減少を示した。

(4) 格子歪み

IG-110 供試料の場合、未照射試料と比較した変化率は温度の上昇とともに低下していく傾向が認められた。すなわち、573K 照射条件では 13%の減少であったが 673K 及び 843K ではそれぞれ 5.8%及び 0.6%に減少することが示された。未照射 HOPG 供試料の場合、格子歪み算出のための近似式の X 係数が負値を示したため、変化率として算出することが出来なかったので、各照射温度条件間の相対的な比較を試みた。その結果、(002) 及び (004) 回折線から得た格子歪みは、温度の上昇とともに低下する傾向を示した。
Table 5.1 Irradiation-induced change in X-ray parameters of isotropic graphite (IG-110)
97M-13A/PIE.data(XRD-1)

<table>
<thead>
<tr>
<th></th>
<th>IG-110</th>
<th>IG-110</th>
<th>IG-110</th>
<th>IG-110</th>
<th>IG-110</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>未照射</td>
<td>300℃</td>
<td>(x−x₀)/x₀</td>
<td>400℃</td>
<td>(x−x₀)/x₀</td>
</tr>
<tr>
<td>c軸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>格子定数(Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>6.7554</td>
<td>6.7684</td>
<td>0.192</td>
<td>6.751</td>
<td>-0.064</td>
</tr>
<tr>
<td>004</td>
<td>6.7441</td>
<td>6.7567</td>
<td>0.187</td>
<td>6.745</td>
<td>0.010</td>
</tr>
<tr>
<td>006</td>
<td>6.7484</td>
<td>6.7582</td>
<td>0.145</td>
<td>6.747</td>
<td>-0.016</td>
</tr>
<tr>
<td>008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c軸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結晶子径(Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>257.0</td>
<td>244.5</td>
<td>-4.861</td>
<td>270.068</td>
<td>5.085</td>
</tr>
<tr>
<td>004</td>
<td>179.5</td>
<td>160.2</td>
<td>-10.760</td>
<td>179.536</td>
<td>-0.002</td>
</tr>
<tr>
<td>006</td>
<td>109.2</td>
<td>107.4</td>
<td>-1.643</td>
<td>73.878</td>
<td>-32.352</td>
</tr>
<tr>
<td>008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a軸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>格子定数(Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.4634</td>
<td>2.4585</td>
<td>-0.199</td>
<td>2.460</td>
<td>-0.158</td>
</tr>
<tr>
<td>110</td>
<td>2.4637</td>
<td>2.4604</td>
<td>-0.134</td>
<td>2.462</td>
<td>-0.087</td>
</tr>
<tr>
<td>a軸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>結晶子径(Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>308.4</td>
<td>291.5</td>
<td>-5.499</td>
<td>286.255</td>
<td>-7.194</td>
</tr>
<tr>
<td>110</td>
<td>433.0</td>
<td>369.1</td>
<td>-14.775</td>
<td>399.210</td>
<td>-7.813</td>
</tr>
<tr>
<td>黒鉛化度(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>0.7287</td>
<td>0.6489</td>
<td>-10.706</td>
<td>0.749</td>
<td>3.110</td>
</tr>
<tr>
<td>004</td>
<td>0.7898</td>
<td>0.7167</td>
<td>-9.256</td>
<td>0.786</td>
<td>-0.532</td>
</tr>
<tr>
<td>006</td>
<td>0.7649</td>
<td>0.7081</td>
<td>-7.426</td>
<td>0.771</td>
<td>0.837</td>
</tr>
<tr>
<td>008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>格子歪(δ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>0.0173</td>
<td>0.0196</td>
<td>13.295</td>
<td>0.018</td>
<td>5.780</td>
</tr>
<tr>
<td>002</td>
<td>0.0189</td>
<td>0.0187</td>
<td>-1.058</td>
<td>0.026</td>
<td>38.095</td>
</tr>
<tr>
<td>Nelson&Riley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₀</td>
<td>6.7439</td>
<td>6.7538</td>
<td>0.147</td>
<td>6.745</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Table 5.2 Irradiation-induced change in X-ray parameters of Highly-oriented Pyrolytic Graphite (HOPG)

<table>
<thead>
<tr>
<th></th>
<th>HOPG unirrad.</th>
<th>HOPG 300°C (x=x₀)/x₀</th>
<th>HOPG 400°C (x-x₀)/x₀</th>
<th>HOPG 570°C (x-x₀)/x₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice Parameter (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>6.70591</td>
<td>6.6856</td>
<td>-0.303</td>
<td>6.715</td>
</tr>
<tr>
<td>004</td>
<td>6.70855</td>
<td>6.7120</td>
<td>0.051</td>
<td>6.719</td>
</tr>
<tr>
<td>006</td>
<td>6.70932</td>
<td>6.7192</td>
<td>0.153</td>
<td>6.716</td>
</tr>
<tr>
<td>008</td>
<td>6.70887</td>
<td>6.7204</td>
<td>0.171</td>
<td>6.712</td>
</tr>
<tr>
<td>a-axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice Parameter (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g-Value (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>1.0122</td>
<td>1.1301</td>
<td>11.648</td>
<td>0.962</td>
</tr>
<tr>
<td>004</td>
<td>0.9968</td>
<td>0.9770</td>
<td>-1.986</td>
<td>0.935</td>
</tr>
<tr>
<td>006</td>
<td>0.9920</td>
<td>0.9323</td>
<td>-6.018</td>
<td>0.954</td>
</tr>
<tr>
<td>008</td>
<td>0.9949</td>
<td>0.9282</td>
<td>-6.704</td>
<td>0.979</td>
</tr>
<tr>
<td>δc (°c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002, 004</td>
<td>0</td>
<td>0.0276</td>
<td>-</td>
<td>0.024</td>
</tr>
<tr>
<td>002～006</td>
<td>0</td>
<td>0.0243</td>
<td>-</td>
<td>0.035</td>
</tr>
<tr>
<td>002～008</td>
<td>0</td>
<td>0.0219</td>
<td>-</td>
<td>0.032</td>
</tr>
<tr>
<td>Nelson&Riley</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₀</td>
<td>6.7096</td>
<td>6.7248</td>
<td>0.227</td>
<td>6.715</td>
</tr>
</tbody>
</table>
Fig. 5.1 Evaluation for lattice strain by Eq. (5.5)
6. γ線スペクトル

6.1 測定方法

装置 - 高純度 N 型 Ge 検出器（γ-X ピュア Ge 同軸型半導体）
大洗研究所 RI 利用開発棟（精密測定室）に設置

結晶タイプ：N 型 Ge

検出器サイズ：直径53.4mm × 長さ63.4mm

モデル：GMX-20190-P-PLUS, CFG-PH-1（セイコー・イージーエンジニアリング社）

相対効率：≥18%（3”φ × 3”φ NaIに対して）

分解能：≤1.9keV FWHM at 1.33MeV
≤1100eV FWHM at 5.9keV

ビーグ／コンプトン比：46 at 1.33MeV

クライオスタット：水平ストリームライン型

エンドキャップ：2.75”φ × 9”

波高分析器 - シリーズ 35 PLUS（CANBERRA）

高圧電源 - Model 459 3000V（Bias）

前置增幅器 - Model 672、時定数 6.0μsec

(1) γ線エネルギー対測定効率の決定

真の放射能値を決定するため γ線エネルギーに対する測定効率の関係について、低エネルギーから高エネルギーの標準線源を用いて所定の測定距離における測定効率を求めめた。用いた標準線源は Am-241（59.5keV）、Ba-133（81,303,356keV）、Cs-137（662keV）、Co-60（1173,1333keV）及び Na-22（1275keV）である。Fig.6.1に本測定に使用した γ線検出器の効率 ε (%) と γ線エネルギー E（keV）との関係を各測定距離別に示した。これを計算し易いように距離別の近似式として次に示す。

<table>
<thead>
<tr>
<th>距離（cm）</th>
<th>近似式</th>
<th>相関係数（R）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2cm</td>
<td>ε₂ = 216.44 E⁻⁰.7358</td>
<td>0.9985</td>
</tr>
<tr>
<td>3cm</td>
<td>ε₃ = 107.58 E⁻⁰.6855</td>
<td>0.991</td>
</tr>
<tr>
<td>4cm</td>
<td>ε₄ = 74.72 E⁻⁰.767</td>
<td>0.9946</td>
</tr>
<tr>
<td>11cm</td>
<td>ε₁₁ = 13.055 E⁻⁰.8271</td>
<td>0.9766</td>
</tr>
<tr>
<td>13cm</td>
<td>ε₁₃ = 6.72 E⁻⁰.5524</td>
<td>0.9537</td>
</tr>
<tr>
<td>18cm</td>
<td>ε₁₈ = 6.5572 E⁻⁰.6584</td>
<td>0.9903</td>
</tr>
<tr>
<td>19cm</td>
<td>ε₁₉ = 4.1189 E⁻⁰.6008</td>
<td>0.9707</td>
</tr>
</tbody>
</table>

(2) 測定

照射供試料は鉛厚さ 5cm の放射線測定用遮蔽箱（木村化工機（株）製）の内部で測定した。測定時間はライブタイム一定（1800秒）にして測定した。これは入射放射線を ADC（Analog Digital Convertor）で処理する間の不感時間を補償するため
の回路が加算されたもので、経過時間をその分延長して、True Time としてデータ収集時間が別途記録される。従って、試料毎にデータ収集時間は 1800 秒×8 となるが、この増加時間分をほぼ一定に抑えめるため測定距離を 2cm 〜 19cm まで適当に変えて測定した。最も放射能強度の大きい SiC/SiC 複合材料試料（Hi_Nicaloceram）の場合には 19cm としたが、最も放射能強度の小さい C/C 複合材料試料（CX-270）の場合には 2cm とした。

(3) γ線スペクトルの評価
γ線スペクトル測定結果から測定時点における放射能量を次のようにして評価した。
(4) 個々のピーク面積を求める、(5) 測定距離毎にγ線エネルギーに対応した測定効率を、換算式（近似式）を使用して求める、(5) 全てのγ線エネルギーに対応した検出効率を使って正味のピーク面積の総和を求める。この総和を測定時点における放射能量とした。放射能評価とは別に、室温から 1673K までの熱膨張率測定時の加熱による放出核種の有無を調べるため、加熱前後のγ線スペクトルを供試料各々毎に測定した。SiC/SiC（Hi_Nicaloceram）複合材料のγ線スペクトル測定結果を Fig.6.2a 及び Fig.6.2b に示す。

6.2 結果及び検討
Fig.6.3 に示すように、最も強い比放射能は SiC/SiC（Hi_Nicaloceram）複合材料で 3.2 × 10^2（Bq/g）であったが、逆に最も弱い比放射能は C/C（CX-270G）複合材料で 6.6 × 10^2（Bq/g）で、これは前者は約 1/500 に相当する。表面線率量は前者が 500 \mu Sv/h、後者が 4 \mu Sv/h であった。供試料中不純物の化学分析結果から代表的な 5 元素について比較すると、次のようだった。

<table>
<thead>
<tr>
<th>Elements</th>
<th>SiC/SiC（Hi_Nicaloceram）</th>
<th>C/C（CX-270G）</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td><20</td>
<td>0.37</td>
<td>54.1</td>
</tr>
<tr>
<td>Ti</td>
<td><10</td>
<td><0.09</td>
<td>110</td>
</tr>
<tr>
<td>V</td>
<td><2</td>
<td><0.07</td>
<td>28.6</td>
</tr>
<tr>
<td>Fe</td>
<td>24</td>
<td>0.19</td>
<td>126</td>
</tr>
<tr>
<td>Ni</td>
<td>12</td>
<td><0.1</td>
<td>120</td>
</tr>
</tbody>
</table>

（mass ppm）

すなわち、Ti、Fe、Ni などの放射能強度に大きく寄与する重金属元素の質量比が、何れも 100 倍以上含有していることからも、上に述べた比較結果は当然であるといえる。従って、放射能を低減化するためにはこうした重金属元素を除去することが求められる。

次に、1673K 加熱前後の核種の変化について調べた結果、Gilso-carbon のみ全く変化なかったが、それ以外の供試料は 1 種類以上の消失核種のあることが分かった。加熱後の消失核種を以下に列挙する。

SiC/SiC（Hi_Nicaloceram）— Ag-110m
Monolithic SiC ー Sn-113, Eu-152
C/C(CX-270C) ー Sb-124, Ag-110m, Sc-46
C/C(CX-270G) ー Ag-110m, Zn-65, Sb-124, Ta-182, Hf-180, Zr-95
C/C(CCM-190C) ー Ag-110m, Ta-182, Nb-95
C/C(CCM-190G) ー Ag-110m, Sb-124
C/C(PCC-2S) ー Sb-124, Zn-65
Isotropic Graphite(IG-110) ー Ag-110m, Zn-65, Sb-124

これらの加熱後消失核種のうち1673K以下の融点をもつ元素は、Sn-505K、Ag-1234K、Sb-904K、Zn-692K、Eu-1095K、Sc-1673Kである。また、1673K以下の沸点はZnの1181Kのみである。Ta, Nb, Hf, Zr以外の元素は加熱溶融して試料受け台に流れ落ちた結果、見かけ上は供試料から消失したものと考えられる。1673K以上の融点をもつ元素の消失原因は、微量のために生じた測定誤差と考えられる。
Fig. 6.1 γ-ray energy vs detecting efficiency for Ge detector
<table>
<thead>
<tr>
<th>Specimen Name</th>
<th>Specific Activity (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC–Hexaloy</td>
<td>5.849E+06</td>
</tr>
<tr>
<td>SiC–10%SiC</td>
<td>1.318E+06</td>
</tr>
<tr>
<td>SiC–HiNicaloceram</td>
<td>3.200E+07</td>
</tr>
<tr>
<td>Graphite IG–110</td>
<td>2.028E+05</td>
</tr>
<tr>
<td>Graphite Gilso–Carbon</td>
<td>2.375E+07</td>
</tr>
<tr>
<td>C/C Composite PCC–2S</td>
<td>4.491E+05</td>
</tr>
<tr>
<td>C/C Composite CX–270C</td>
<td>9.960E+04</td>
</tr>
<tr>
<td>C/C Composite CX–270G</td>
<td>6.588E+04</td>
</tr>
<tr>
<td>C/C Composite CCM–190C</td>
<td>1.239E+06</td>
</tr>
<tr>
<td>C/C Composite CCM–190G</td>
<td>9.980E+06</td>
</tr>
</tbody>
</table>

Fig.6.3 Specific activities of irradiated SiC/SiC and C/C composites specimen.
7. 結言

(1) 供試料及び照射条件
炭素繊維強化複合材料6種類、SiC/SiC系複合材料3種類及び微粒等方性黒鉛等の参照材4種類について、573K、673K及び843Kの各温度領域において高速中性子(E>1MeV)軸方向ピーク値1.8×10^{11} (m^{2}) の照射条件で試験を実施した。

(2) 照射誘起寸法変化
(a) 炭素繊維強化複合材料
2次元繊り炭素繊維強化複合材料の長さ／径方向の照射誘起寸法変化率は繊維配列方向との特徴ある関連性は見られなかったが、長さ方向に膨張／収縮した供試料は径方向では逆に収縮／膨張を示す傾向が見られた。また、熱処理温度の差異による長さ方向の寸法変化率は、照射温度573Kにおける3273K熱処理した供試料のみ膨張傾向を示した。
(b) SiC系複合材料
2次元繊りSiC/SiC複合材料の照射誘起寸法変化率は、径方向に収縮し長さ方向には膨張を示したが、照射温度843Kの場合のみ長さ方向にも収縮した。SiC粒子分散強化複合材料の場合には、径方向及び長さ方向に無関係で一様に膨張した。その変化率は照射温度の増加に対して減少した。

(3) 照射誘起熱膨張率
(a) 炭素繊維強化複合材料
熱膨張率測定方向が強化繊維配列に平行/垂直方向の供試料の場合における相違点は、平行方向の熱膨張係数(CTE)が事実上ゼロであるのに対して、垂直方向では6〜9×10^{-6}K^{-1}であった。最終熱処理温度が2273K/3273K供試料の相違点はCTEが前者で6〜7×10^{-6}K^{-1}、後者で8〜9×10^{-6}K^{-1}と、わずかの差があることのみであった。照射による熱膨張率及びCTEに対する効果は今回の照射条件においてはほとんど認められなかった。
(b) SiC系複合材料
SiC系複合材料の熱膨張率及びCTEに及ぼす照射効果としては、照射温度依存性が顕著に現れた。すなわち、SiC繊維強化／SiC粒子分散強化の何れの複合材料についても、照射温度+100K付近から熱膨張率曲線の屈曲が始まり、2回目の測定においては未照射材とほぼ同様の温度依存性を示す、いわゆる温度モニター効果が観察された。

(4) 照射誘起X線パラメーター
微粒等方性高密度黒鉛及び高配向性熱分解黒鉛の2種類について、X線回折による測定を行い、格子定数、結晶子径、黒鉛化度及び格子歪みを解析・評価した。その結果、これまでに得られた結果と同様の傾向を示すことが分かった。すなわち、格子定数は六方晶黒鉛のc軸方向に増加しa軸方向に収縮した。結晶子
径は HOPG の場合、573 〜 843K の照射温度条件において大きく減少しており、
照射温度の増加とともに変化率は低下していく傾向を示した。黒鉛化度は IG-110
で照射温度 573K の場合、約 10%の減少を示したが、HOPG では 1.6 〜 7%の減少
幅であった。格子歪みは照射温度の増加とともに低下していく傾向を示した。

(5) γ線スペクトル

供試料取扱上の放射線安全基準の目安を設定するため、γ線核種及び放射能
量を測定した。また、同一供試料について 1673K 加熱前及び後のγ線スペクト
ルの相違から加熱による消失元素の評価を行った。その結果、最も大きな比放射
能を有しているのは SiC 系の HiNicalceram で、逆に最も低い比放射能は炭素系
の CX-270G であった。加熱前後の消失核種は、Gilso-carbon を除き全ての供試料
において 1 〜 6 種類の放出元素が確認された。
謝辞

本研究にあたり、企画室（研究評価推進室，東海駐在）の荒井長利氏には、本照射試験計画を立案されたほか、適宜適切な助言を頂いたことに感謝申しあげます。中性子照射量評価では計画課の武田卓士課長ほか同課の皆様、キャプセル製作では東海研究所技術部工作課の菊池泰二氏、照射後試験では解体・試料搬出においてホットラボ課の岩松重美氏、照射後試験全般においてご協力を頂いたホットラボ課星屋泰二課長ほか同課の皆様に感謝申し上げます。熱膨張率及びγ線スペクトル測定にあたって、大洗研究所 RI 利用開発棟のホット実験室の使用及び器材の貸与について多大の御協力及び御協力を頂いたアイソトープ開発課の黒沢清行課長、本木貫蔵氏及び立川登氏に感謝申し上げます。また、本報告書の刊行にあたって、星屋泰二ホットラボ課長に関係のうえ、貴重なコメントを頂いたことに感謝申し上げます。

参考文献

1) 松尾：炭素，150，290-302（1991）。
3) Primak W., Fuchs L.H. and Day P.P. : Phys. Rev. 103，No.5，1184-1192（1956）。
8) 豊田純二，伊与久達夫，石原正博，多喜川昇，塩沢周策：JAERI-M 91-102（1991）。
9) 稲垣道夫，玉井洋三，中重治：炭素，75，118-125（1973）。
10) 日本機械学会編： "熱物性値測定法"，養賢堂，146-147（1991）。
11) 前園明一：金属，68，No.7，593（1998）。
13) Matsuyama E. : Tanso, 7，12（1958）。
18) 斎藤保，今井久：炭素，127，178（1986）。
19) 日本学術振興会第 117 委員会：炭素，36，25-34（1963）。
This is a blank page.
国際単位系 (SI) と換算表

表 1 SI基本単位および補助単位

<table>
<thead>
<tr>
<th>量</th>
<th>頭名</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>ケルビン</td>
<td>K</td>
</tr>
<tr>
<td>原子量</td>
<td>モル</td>
<td>mol</td>
</tr>
<tr>
<td>光長</td>
<td>カンデラ</td>
<td>cd</td>
</tr>
<tr>
<td>平面角</td>
<td>ランジANS</td>
<td>rad</td>
</tr>
<tr>
<td>立体角</td>
<td>ステラジアン</td>
<td>sr</td>
</tr>
</tbody>
</table>

表 2 SIと併用される単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>分、時、日</td>
<td>min, h, d</td>
</tr>
<tr>
<td>度、分、秒</td>
<td>°, ′ , ″</td>
</tr>
<tr>
<td>リットル</td>
<td>L</td>
</tr>
<tr>
<td>トン</td>
<td>t</td>
</tr>
<tr>
<td>電子ボルト</td>
<td>eV</td>
</tr>
<tr>
<td>質子質量単位</td>
<td>u</td>
</tr>
</tbody>
</table>

1 eV = 1.60217646 × 10^−19 J
1 u = 1.6605402198 × 10^−27 kg

表 3 固定の名称をもつSI関係単位

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>周波数</td>
<td>ハertz</td>
<td>Hz</td>
</tr>
<tr>
<td>压力</td>
<td>パascal</td>
<td>Pa</td>
</tr>
<tr>
<td>電気強度</td>
<td>ジオーム</td>
<td>Gm</td>
</tr>
<tr>
<td>電気抵抗</td>
<td>オーム</td>
<td>Ω</td>
</tr>
<tr>
<td>電気容量</td>
<td>ファラド</td>
<td>F</td>
</tr>
<tr>
<td>光速</td>
<td>速度</td>
<td>c</td>
</tr>
<tr>
<td>電磁気学</td>
<td>ウェーバー</td>
<td>Wb</td>
</tr>
<tr>
<td>タンデム</td>
<td>タンデム</td>
<td>T</td>
</tr>
<tr>
<td>セルシウス温度</td>
<td>デンシオ度</td>
<td>K</td>
</tr>
<tr>
<td>光度</td>
<td>ステルス</td>
<td>cd</td>
</tr>
<tr>
<td>放射能</td>
<td>ベクレル</td>
<td>Bq</td>
</tr>
<tr>
<td>吸収線量</td>
<td>グレイ</td>
<td>Gy</td>
</tr>
<tr>
<td>線量当量</td>
<td>セーベル</td>
<td>Sv</td>
</tr>
</tbody>
</table>

表 4 SIと併用される単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>オングストローム</td>
<td>Ω</td>
</tr>
<tr>
<td>バー</td>
<td>Pa</td>
</tr>
<tr>
<td>ガル</td>
<td>Gal</td>
</tr>
<tr>
<td>キュリー</td>
<td>Ci</td>
</tr>
<tr>
<td>レントゲン</td>
<td>R</td>
</tr>
<tr>
<td>レム</td>
<td>rem</td>
</tr>
</tbody>
</table>

1 Ω = 1 nm = 10^−9 m
1 Pa = 1 N/m^2 = 10^-5 m
1 bar = 0.1 MPa = 10^5 Pa
1 Gal = 1 cm/s^2 = 10^-3 m/s^2
1 Ci = 3.7 × 10^10 Bq
1 R = 2.58 × 10^-4 C/kg
1 rad = 1 cGy = 10^-2 Gy
1 rem = 1 cSv = 10^-2 Sv

表 5 SI換算表

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-1</td>
<td>E</td>
</tr>
<tr>
<td>10^-10</td>
<td>J</td>
</tr>
<tr>
<td>10^-12</td>
<td>T</td>
</tr>
<tr>
<td>10^-14</td>
<td>G</td>
</tr>
<tr>
<td>10^-16</td>
<td>M</td>
</tr>
<tr>
<td>10^-18</td>
<td>k</td>
</tr>
<tr>
<td>10^-20</td>
<td>h</td>
</tr>
<tr>
<td>10^-22</td>
<td>da</td>
</tr>
<tr>
<td>10^-24</td>
<td>d</td>
</tr>
<tr>
<td>10^-26</td>
<td>c</td>
</tr>
<tr>
<td>10^-28</td>
<td>m</td>
</tr>
<tr>
<td>10^-30</td>
<td>n</td>
</tr>
<tr>
<td>10^-32</td>
<td>p</td>
</tr>
<tr>
<td>10^-34</td>
<td>f</td>
</tr>
<tr>
<td>10^-36</td>
<td>a</td>
</tr>
</tbody>
</table>

（注）
1. 表 1 は国際単位系第 8 版、国際電気学会規格 1990 年公布による。ただし、1 eV および 1 uの値は CODATA の 1986年推奨値による。
2. 表 4 には、名前、ノット、アール、ヘクタールも含まれているが、日常の単位なのでここでは省略した。
3. bar は、JIS では気体の圧力を表す場合に限り表 4 のカテーテリーに分類されている。
4. EC関係理事会に於てはbar, barnおよび('血液の単位) mHgを表 4 のカテーテリーに入れている。

準換算表

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPa(=10 bar)</td>
<td>kgf/cm^2</td>
</tr>
<tr>
<td>atm</td>
<td>mmHg(Torr)</td>
</tr>
<tr>
<td>lbf/in^2(psi)</td>
<td></td>
</tr>
</tbody>
</table>

照明換算表

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pa(mPa/cm^2)</td>
<td>10 Pa(mPa/cm^2)</td>
</tr>
<tr>
<td>1 Pa(mPa/cm^2) = 10 Pa(mPa/cm^2)</td>
<td></td>
</tr>
</tbody>
</table>

体積換算表

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pa(mPa/cm^2)</td>
<td>10 Pa(mPa/cm^2)</td>
</tr>
</tbody>
</table>

重量換算表

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pa(mPa/cm^2)</td>
<td>10 Pa(mPa/cm^2)</td>
</tr>
</tbody>
</table>

エネルギー

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 J(=1erg)</td>
<td>kgf·cm</td>
</tr>
<tr>
<td>1 kWh</td>
<td>cal(計量法)</td>
</tr>
<tr>
<td>1 Btu</td>
<td>ft · lb</td>
</tr>
<tr>
<td>1 eV</td>
<td>1 cal</td>
</tr>
</tbody>
</table>

1 cal = 4.1868 J (計量法)
1 eV = 4.184 J (電子学)
1 eV = 4.185 J (15℃)
1 eV = 4.186 J (国際電気学会)

仕事

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PS(スルット)</td>
<td>100</td>
</tr>
</tbody>
</table>

線量

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sv</td>
<td>rem</td>
</tr>
</tbody>
</table>

1 Sv = 1 rem

(1986年12月26日現在)