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Introduction: Soft Gamma Repeaters and Anomalous X-ray Pulsars as Magnetars

Ultramagnetized neutron stars (‘magnetars’) have been invoked to interpret several
astrophysical phenomena associated with an activity of Soft Gamma Repeaters (SGRs)
and Anomalous X-ray Pulsars (AXPs). Such high-energy astrophysical sources display

0345 — 10° erg/s which are considerably smaller

persistent X-ray luminosities Ly ~ 1
than the Eddington limit Lgqq = 1038(MNS/M®) erg/s (see, e.g., Shapiro & Teukolsky
1983). However, the applicability of an accretion. model (Chatterjee, Hernquist & Narayan
2000, Chatterjee & Hernquist 2000) to these objects meets serious difficulties (Li & Wang
2000). The observed periods and period derivatives of SGR 1806 + 20 (Kouveliotou et
al. 1998) and SGR 1900 + 14 (Hurley et al. 1999, Hurley et al. 1999a, Kouveliotou et
al. 1999, Murakami et al. 1999) , and AXPs 1E 18414045 (Gotthelf, Vasisht & Dotani
1999) and 1E 22594586 (Kaspi, Chakrabarty & Steinberger 1999) yield large values, up
to 10** G, for the strength of dipole-surface-field components when assuming a magnetic-
braking spin-down mechanism. Some more involved models e.g. accounting for a loss of
angular momentum due to a wind of particles require an order of magnitude smaller dipole
fields (Harding, Contopoulos & Kazanas 1999, Marsden, Rothschild & Ligenfelter 1999)
to explain such high spin-down rates. Nevertheless, observed properties of SGRs and
AXPs strongly support the magnetar hypothesis (Duncan & Thompson 1992} suggesting
an ultra-magnetized stellar media (with- B ~ 10'"® G). Such a magnetization can be
understood, e.g., as an effect of the “dynamo action” process which might operate in
fast rotating stars, or spontaneous magnetization of hadron liquid due to ferromagnetic
exchange coupling (Tatsumi 2000).

It i1s worth noticing here that the surface magnetic field does not necessarily reflects
the strength of interior fields (Ruderman, Zhu & Chen 1998, Thompson & Duncan 1995,
1996). For instance, toroidal fields below the Sun surface are stronger than average surface-
dipole fields (~ 1 G) by at least a factor 10 — 10* (Galloway, Proctor & Weiss 1977),
an excess corresponding to an interior field sirength B ~ 10 — 10'® G in neutron stars.
The estimates based on an application of the Newtonian scalar virial theorem (cf. Lai &
Shapiro 1991 and refs. therein) in conjunction with more involved numerical calculations
(see, e.g., Duncan & Thompson 1992, Cardall, Prakash & Lattimer 2001, Thompson
& Murray 2001) further corroborate the assertion of a possibility for ultra-high stellar
magnetic fields. Indeed, the multipeaked pulse profile in the tail of the 1998 August
27 flare and following August 29 event (afterglow) of SGR 1900+14 gives an evidence
(Thompson et al. 2000, Ibrahim et al. 2001, Feroci et al. 2001) for essentially multipolar
geometry of surface fields with high order multipoles plausibly stronger than the respective
dipole component By ~ 10**® G. The energy associated with such super-strong fields

dominates the star free energy and powers the magnetar emission. Actually, the change
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of the persistent X-ray flux suggests the magnetic reconnections during the giant flare
events (Woods et al. 2001).

Apart from mentioned above giant flares of a superhigh intensity Lx ~ 10%**

erg these
sources more generally emit the short (~ 0.1 s} outbursts with super-Eddington himi-
nosities ~ 10% — 10*Lgqq. Such burst emissions tend to concentrate into short intervals
(weeks to months) of intense activity separated by relatively long (years) quasi-regular
quiescent periods (Kouveliotou et al. 1998, see also Fq. (128) of sect. 9 and discussion
therein). Many properties of SGR activity are well explained within ‘magnetar’ concepi
assuming that the emission of SGR bursts originates from the crust dynamics driven by
the magnetic field (Thompson & Duncan 1995, 1996, Duncan & Li 1997, Duncan 1998).
However, quasiperiodicities in SGR active phases in conjunction with rather stable (with-
out noticeable spin-up glitches) spinning down provide arguments opposing the star-quake
triggering mechanism of SGR bursts. Some alternative models have considered exotic pro-
cesses, like collisions of a strange star with asteroids (Zhang, Xu & Qiao 2000, Usov 2001),
or effects of boson condensate in superconducting core (Suh & Mathews 2001).

We argue in this paper that these properties of the bursis activity can be as well
understood within the magnetar concept and they are consistent with burst iriggering
mechanism due to a release of magnetic energy stored in neutron star crusts. The periods
of intense activity are related to the quantization induced step-like anomalies in magnetic
field dependence of the magnetic moments of crust nuclides. At such conditions the
demagnetization proceeds as erratic jumps associated with crust magnetic avalanches,
similar to the Barkhausen effect (see, e.g., Feynman 1965 and sect. 5); and causes sharp
energy release to the magnetosphere. Significant difference from the Barkhausen noise
1s the strongly magnetized system far from conditions of magnetization reversal. As
demounstrated such model yields accurate quantitative description of the burst statistics
during the active period which displays features of self-organized criticality, e.g., power
law dependence of number of events on the intensity, lognormal distribution of waiting
tunes between the bursts (Hurley et al. 1994, Gogiis et al. 1999, 2000).

Quantization of spaftial motion naturally arises in the inhomogeneous crusty nuclear
matter suggested by numerous theorefical studies (cf. Shapiro & Teukolsky 1983, Baym,
Pethick & Sutherlan 1971, Haensel, Zdunik & Dobaczewski 1989, Oyamaisu & Yamada
1994, Pethick & Ravenhall 1995, lida & Sato 1997, Maruyama et al. 1998, Heiselberg &
Njorth-Jensen 2000 and refs. therein) at the density D less than the saturation density D;.
An analysis of free-energy minima indicates that at the transition from a homogeneous
neutron-proton-electron plasma to the solid crust with separated nuclides (at D < D,/3)
the ground state of nuclear matter is transformed to “neutron bubbles”, “nentron tubes”,
“slabs” and “rods” which behave like liquid crystals (Pethick & Potekhin 1998).

As shown recently by Kondratyev, Maruyama, & Chiba (1999, 2000, 2000a, 2001, 2001a)
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the structure of neutron star envelopes and the nuclide composition can depend on the
magnetic field (see also Kondratyev 2001a). Such an effect originates from the modi-
fication of shell-oscillations in the nuclear level density (and, consequently, the masses
of atomic nuclei) under an influence of magnetic fields, similarly to atomic clusters and
quantum dots (cf. Kondratyev & Lutz 1998, 1999 and refs. therein).

This paper represents an extensive study of magnetic response of nuclear matter at
various densities. We develop the thermodynamic formalism (next section) to analyze
magnetic reactivity of a system with strong interaction in varying magnetic field. Partic-
ular attention is paied for quantization effects due to , e.g., confinement of spatial wotion.
As demonstrated in sect. 4 the quantization of nucleon levels gives rise to abrupt sharp
change of nuclear magnetization in strong magnetic fields. We focus on an analysis of light
and medium mass nuclei with mass numbers up to the iron region, where the simplified
version of the Nilsson model (NM) can be employed (see Ring & Schuck 1980, Nilsson
& Ragnarsson 1990). For these systems the step-like change of, e.g., nuclear magnetic
moment arises at the level crossing. As shown in sects. 5, 6, and 7 for realistic system
such anomalies in conjunction with magnetic coupling give rse to critical behavior with
specific features of magnetic Equation of State. As a consequence, magnetodynamics of
‘magnetar’ crusts exhibits irregular jumps of the magnetization. The statistics of such a
noise is analyzed in sect. 8. As illustrated in sect. 9 the magnetic noise properties at
critical conditions are favorably compared to the SGR burst activity.

The principal results of the present study and possible perspectives are discussed in
sect. 10.

2. Magnetic Response of Nuclear Matter within Thermodynamic Formalism

As specified in sect. 1 present study focuses on the magnetic field range H ~ 10%° — 1018
G when one can apply a non-relativistic description of nucleons. Relativistic effects be-
come important when the particle cyclotron energy we, = 2wy, = 2unH (pn = eh/2mye =
3.15-107'8 MeV-G~! is the nuclear magneton) is comparable to its rest mass (times ¢?).
The magnitude of the so-called critical field for nucleons HY = m,c?/2un ~ 1.487 - 107
G corresponds to a flux &y = fic/we through the area of a radius given by the nucleon
Compton wavelength n/(myc) &~ 0.21 fm. These fields may affect conditions of the 3-
equilibrium of the nentron star bulk matter (Broderick, Prakash & Lattimer 2000). They
are Siglliﬁ(:a,ntly larger of mentioned above range of strengths which are related to re-
spective flux associated with an area covered by the nuclear size (Kondratyev, Maruyama
& Chiba 1999, 2000). We note, however, that the respective critical field for electrons
He = (m/my)?HY ~ 4.414-10% G implies an importance of respective relativistic effects
(cf., e.g., Broderick, Prakash & Lattimer 2000).
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2.1. Observables versus Thermodynamic Potentials

The magnetic response of nuclear matter can be described in terms of the magnetic
susceptibility which is convenient to define within the thermodynamic formalism. At a
chemical equilibrium the relevant thermodynamic function is given by the grand canon-
ical potential (GCP) Q which represents the logarithm of the grand canonical partition

function Z
Q=-T Wz, Z2="T(exp{-(H—- Y Na:)/T}), (1)
N=n,p
where the total Hamiltonian ﬂ,‘the nucleon number operators NN, the chemical potentials
AN for neutrons (N = n) and protons (N = p), and the temperature 7" provide the
description of a system. We recall that GCP per occupied volume V gives the measure
of a pressure P = Q/V.
At statistical equilibrium the magnetic moment of a system is given by the thermody-

namic relation

M= -<an/aﬁ) h (2)

T
In the following we also consider the magnetization P = M/V. The magnetic suscepti-
bility is defined by

g x=(1 /V)(@M/@H) _ -(1/»!)(8‘29/3H2> S (3)
7,5 T,
When the number of nucleons Ny (or density Dx = Ny/V)
o0
Ny =—5—
YT )

is fixed the system is described in terms of canonical ensemble. The respective thermo-
dynamic function is represented by the free energy

N=n,p

while the magnetization and susceptibility are given by respective derivatives.

2.2. Shell Fffects within the Mean-Field Treatment

Within the Hartree mean-field treatment the description of a system is reduced to a
single-particle (sp) representation, when the nuclear structure is determined by sp Hamil-

tonians

. A2
hy = 2N 4 V() + Vio(r) + 643 (6)
ZmN

which include the kinetic energy (first term of the rhs) with the nucleon momentum

Py and mass my, the mean-field (i.e. the confining potential Viy(r)) and the spin-orbit
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interaction, :
Vio(r) = -g(§ (B Va X f)N])h/2(mNc)2. (7)
Here the components of the spin operator § are given by the Pauli matrices, and the

fitting parameter { depends on a mass number A. |- x -] denotes the vector product.

The magnetic field B gives rise to an additional term in the Hamiltonian
SRE = —BMy + (75 + 1/2)0%, (8)

where the first term in the right hand side (rhs) of Eq. (8) represents an interaction of
the field with the nucleon dipole-spin-magnetic moment My = gnpnS. Here gy denotes
the nucleon Lande g-factor. ¢, = —3.8263 for neutrons and g, = 5.5856 for protons, the
second term is related to the orbital magnetism of protons due to the Coulomb charge.
Incorporating this interaction as a shift of the momentum p — p + A - e¢/c with a field
vector potential A = [B x r|/2 leads to the form
m A '

dhyt = —z—p—wﬁri —wrls (9)
with the proton spatial coordinate component perpendicular to the magnetic field ), and
the operator of the orbital angular momentum projection on the direction of the field 5.

The sp level densities pn(€) can be introduced as

p(e) = 3 8(c — ) (10)
¢

for given sp eigen-energies ei\ with quantum numbers ( of the sp Hamiltonian hy. Within

such an approximation the GCP is simplified to be

O = ——T/_Z de pn(e) -Tn[l +exp{(0n — )/T}H. (11)

Representing the level density in the form, pn = pX" + dpn, with the smooth pf* and
the oscillating dpn parts of neutrons (N = n) and protons (N = p) we re-write the GCP

as a sum of respective components
Q=0+, =0" 460, + 60, , (12)

where the smooth component " is associated with the Thomas-Fermi (i.e. semi-
classical) approximation for the nuclear structure and can be treated in terms of the
Liquid Drop Model (LDM) (Ring & Schuck 1980), while 6§1, and 6§, are shell-correction
contributions of neutrons and protons, respectively.

The oscillating part of the free energy contains an additional term due to the fluctuations -
AN = An — AR of the chemical potential Ay around its mean value A\F". Using Eqs. (4)

and (11) the nucleon number is obtained to be

MnOw) = /_ ‘: de pu(F (e~ ) = N"(w) + EMs ) - (13)
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where the Fermi distribution function F(z) = 1/[1 +‘exp{x/T}], while the smeoth
N{™(An) and oscillating 6 Nn(An) parts are related to the smooth and oscillating com-
ponents of the level density, respectively. The upper limit of § Nn(AN) is given by the
‘level degeneracy which is the highest for the spherical Harmonic Oscillator (HO) yielding
SNN(AN)™** < (np + 1)(nr + 2). The principal quantum number of the Fermi level np is
determined by the number of nucleons Ny = (1 + np)(2 + ng)(1 + np/3).

The mean chemical potential AF" is defined by the condition of accommodating Ny

nucleons to the smooth level density pJ®
Ny = Nn(An) = NFHORY) - (14)

As seen from Eqs. (13) and (14) the relative value of fluctuations Ay /Ay is of the same
- order as the ratio § N/ N with an upper limit (1 + np/3)™* = N~Y3 (see above). Further-
more, at a finite temperature the exponential suppression of oscillating components (i.e.
the factor R in sect. 4 and Appendix A) lowers additionally quantum fluctuations which
are washed out at 7' Z'w/m. For stable nuclei of average mass numbers this estimate gives
very large temperature 7' ~ 1 MeV. At small temperatures the estimate of the suppression
factor B =~ 1 — (k27T /w)?/6 indicates a stronger suppression for higher harmonics k in
an expansion of oscillating GCP (see sect. 4). |

Thus for sufficiently large systems canonical corrections fo the free energy can be eval-

uated perturbatively. In a linear order in N/N Eq. (14) leads to
AN = AN — AN = —ONN(A)/ pR O - (15)

We have used here an approximation NF*(AF") — N3™(An) ~ —(ONZ*/OAN)6 x and
ONE™ /OAN = pR.
Expanding the relation Eq. (5) to a second order in §Ay we get
Fi & (O 4+ 8An) Ny + QO — Nu(OZ)6Ay — R /2. (16)

Here we have taken into account Eqs. (4) and introduced the “thermally smoothed” level

density according to the relation
ON,/OX, =R, . (17)

Using decompositions of U(AF™) and N()") on the smooth and oscillating parts and
eliminating 6Ay (i.e. Eq. (15)) in the second order term we obtain an expansion of the

free energy to the second order in 6N/N as
Py~ FQ + 6F% + 6F2 (18)
with

FS = MPNy + Q™) . (19)
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SFE = §001), (20)
8FF = [6Na(AR)]*/2p™. (21)

In the semiclassical regime (i.e. to the leading order in &) NF™(AR™), AF* and Q"™ (")
remain constants as a function of the magnetic field. Therefore, F§ represents the field
independent component of the free energy regardless of considered system.

As we see from Eqgs. (20) and (21) at a finite temperature the canonical correction S
is exponentially suppressed as compared to the leading term 6F. Since the case of a
high temperature can be identified as a classical limit the term §FL can be considered
as a leading quantum correction term which depends on the magnetic field. Therefore
at a finite temperature within the semiclassical accuracy the magnetism of a canonical
ensemble is determined by the term §F% which is just given by the oscillating part of the
grand canonical potential at a mean chemical potential. The first canonical correction
6F% has a grand canonical form since it is expressed in terms of a temperature smoothed
integral of the level density for a fixed chemical potential. As shown by Kondratyev,
Maruyama & Chiba (2000,2001) the first canonical correction corresponds to nearly 10%
contribution which we neglect in calculations.

At zero temperature the GCP reduces to a grand potential ()} which is expressed as

ep V _
Q% = QN{T-—%‘) = /.. .dE (6 - 6};} pN(E) y (22)

where the Fermi energy ¢p represents the chemical potential at T = 0. The oscillating

part of the free energy of nuclei Eq. (5) at zero temperature
OEN = 6FN|r—0 = / " de e 6pn(e) (23)

1s usually referred for as the shell-correction energy.

We note the relations

0 = — _O;de Fle — M%), (24)
Fo= _]_i de F'(e — N Ee), (25)
I L IO} (26)
R = — _ide F'le — Np(e), (27)

where the energy derivative of the Fermi distribution function F'(¢) = F(e)[1—F(¢€)]/T" =
(4T cosh(e/2T))~*. Note that in the vicinity of a maximum this function is well fitted by
[exp{—¢?/5T?)/4T]. We have introduced zero temperature nucleon number N°.

Making use of the equality A
dN°/de = p(e) (28)
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and integrating Eq. (11) by parts we find
Oy = — / Z de N3(e)F(e~ \). (29)
Furthermore, assuming the condition :
No(e) = ep(e)/x (30)

with a constant « and employing the relation Eq. (28) we derive a general solution
N°(e) = Ce", representing a form which is often met for smooth level density components.
For instance, for the case of Harmonic Oscillator « = 3, while square well potential
corresponds to k = 3/2. Then one can readily see that at such condition the GCP is

expressed in terms of a total energy
Oy = —k f " de epn(€)Fle— \) = —C T L,(\/T), (31)
where the Fermi illtegl*a,ls
r¥dx

Liz) = /0 exp{z —z} +1

(32)

are discussed in Appendix B.

After the pioneering works by V.M. Strutinsky (1967, 1968) the shell-correction ap-
proach has been successfully applied for the description of ground state binding energies
of nuclei with various shapes and compared to the Hartree-Fock calculations (cf. e.g.
Ring & Schuck 1980, Nilsson & Ragnarsson 1990 for review and Moller et al. 1995, Brack,
Reimann & Sieber 1997, Vertse et al. 1998 for recent developments). Such a case clearly
corresponds to the canonical ensemble at zero temperature.

The picture of a grand canonical ensemble is well suited for a system at chemical equilib-
rium, especially, for an inner crust with nuclides abutted by a neutron liquid. Therefore,
in present paper we concentrate on a study of the magnetic field dependence of the leading
semiclassical term §F" in the free-energy expansion. We note, that in cases of spherical
HO (Kondratyev, Maruyama & Chiba 1999, 2000, 2000a) and the uniform Fermi liquid
(see sect. 3) the correction terms arising from the nucleon number conservation (i.e.
canonical corrections) contributes less than 20% to the total shell-correction energy and
do not affect qualitative results. Thermal effects reduce further canonical corrections.
We note, however, that the envelope temperature is relatively low (~ 10 — 107° K, see
Tsuruta 1998, Schaab, Weber & Weigel 1998, Heiselberg & Njorth-Jensen 2000) even

assuming SGRs as an early phase of magnetars (i.e. relatively young stars ~ 103 — 10*

y)

3. Uniform Neutron Star Matter

The uniform neutron star matter is predicted (see, e.g., Heiselberg & Njorth-Jensen

2000) for over-saturated nuclear densities 2D; 3 D % D, with predominant concentra-



JAERI-Research 2001-057

tion of neutrons, while the proton-electron component contributes of order of a percent.
Therefore, we first analyze the magnetism of the neutron bulk as an example of the Fermi

liquid magnetic response. -

3.1. Neutron Paramagnetism

The neutrons exhibit only the Pauli-type of the magnetization since they are neutral
particles and their orbital motion is not affected by the magnetic field. Such a magneti-

zation is simply related to the relative shift o; A,
Ay = —gnwr,/2 (33)

of energy levels with neutron spins directed along the field (spin-up: oy=y = 1, minority-
spin neutron levels) and in the oppoéite direction (spin-down ;=) = —1, majority-spin
neutron levels). Here the quantity wy, = unB gives the energy of the first proton Landau
level.

The shift Eq. (33) modifies GCP and defines paramagnetic response properties. It
is worthy to point out here that, in contrast to the Pauli-magnetism of bulk electrons
exhibiting the paramagnetic response with spins directed preferably along the field, the
neutrons display the magnetization with the spin alignment reversed to the magnetic field
vector. Such a behavior of the magnetic response. of the neutron bulk is caused by the
negative value of the neutron gyromagnetic ratio. It is therefore energetically favorable in
the magnetic field the formation of a state with the number of spin-down neutrons (V)
exceeding the number of spin-up neutrons (N,).

The field dependent neutron contribution to GCP is given by
O = Qg+ Ot = Q2000 — An) + 2200 + AW)]/2, (34)

~ where Q0 is the neutron part of GCP at zero field.

Using Eqs. (2) and (4) and accounting for the relation (69/8[?[) = (39/8)\n> .

(3)51 JOH ) we obtain the neutron magnetic moment as

1 P .
Mn = é‘gnﬂNNa (35)
where
N == Nn+ - Nn_

gives the difference in numbers of (Npy = Np(An + An) = Nypj) majority- and (Np- =
Ni(An — An) = Npt) minority-spin neutrons (see Eqgs. (13) and (34)). Since for a uniform
matter p, = Vmyup, /2725 (with p, = /2Zmye) neutron numbers are given by expressions

Vm3/?  jeo :
Nox = NaOn £ Ay) = \/_2—737{5/0 de Ve Fle = F A)

_9_
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V(mg1)3/* . .
- W[I/Z()‘n/f} - Vpnﬂ:v (36}

where the Fermi integrals [,(z) are defined by Eq. (32).

Using Egs. (3) and (35) we write the neutron magnetic susceptibility as
Xn = (I/V)(gnlﬁN/Q)z{RnO‘n = Ap) + Ruldn + An)] - (37)

In zero temperature limit (77 — 0) only the first term of the expansion Eq. (B5)

contributes to the Fermi integration. Then Kqgs. (36) and (37) are further reduced to

) Vﬁmiﬂ 2/ . N
]\/ll:i: o W[EF _j: An}3/2 (38)
L,V 2m3? )
Xn = (gnpn ,TZW {\/6}» + Ap + \/ep - An] (39)

The number of minority-spin neutrons vanishes at fields H > Hyp = 1.5¢r/(gnpn) for
canonical, and H > Hp, = 2ep/(gnpn ) for grand canonical ensembles, respectively. Such
a condition of the complete neutron spin-polarization at saturated nuclear density corre-
sponds to relatively large fields Hp ~ 10'®° G which is consistent with respective evalua-

tion by Broderick, Prakash & Lattimer (2000). The saturated magnetization of canonical
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Fig. 2.— Density in units of D, of the neutron bulk matter versus magnetic field given in (2er/gn ).

ensemble remains a constant ! (see ﬁg. 1)
Prs = gn/uNDn/z ~ 10" Oe. (40)

This results in an abrupt behavior of the magnetic susceptibility at saturation fields
H = Hp as seen in fig. 3. The grand canonical ensemble magnetization increases further
at over-saturation fields because of growing neutron density. As shown in fig. 2 such a
density increase is noticeable at over-saturation fields, while the change is negligible for
small fields. The complete neutron polarizability is displayed in this case as a discontinuity
in the magnetic susceptibility at H = Hp,, see fig. 3.

As seen in fig. 1 at undersaturation fields the canonical and grand canonical calculations
yield very similar results with a difference of a couple of percent at canonical-saturation
fields. Thus the mentioned in sect. 2.2 estimates for the difference between grand canon-
ical and canonical ensembles are supported by numerical calculations. The magnetic re-
sponse of the neutron bulk exhibits a linear regime for a wide range of the field strengths.
Some nonlinearity arises at nearly saturation fields. Such a behavior can be clearly seen
on the field dependence of the magnetic susceptibility displayed in fig. 3. As shown the

nonlinear effects contributes less than 20 % for the entire interval of the field strength.

1Estimate is given for normal nuclear density Ds.
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Fig. 3 -— Magnetic susceptibility measured in units of x; given by Eq. {41} of the neutron bulk matter
versus magnetic field presented in (2ep/g,pn)-

In the linear regime of the magnetic response (i.e. at H S Hp) the neutron magnetic
susceptibility is easily calculated from Eq. (39) to give a constant

2 Tnnp n

972k

which is nearly an order of magnitude smaller than the familiar (cf. Landau & Lifshitz

Xn = (9npin) ~ 107D, - fm (41)

1985) Pauli magnetic susceptibility of an electron gas of the same density as the neutron
density Dp.
We note finally that the contribution to the magnetic response of the proton component

can be considered in terms of the magnetic impurities.

4. Crusty Neutron Star Matter

The proton concentration grows in importance at sub-saturated nuclear densities, when
the structure of neutron star matter becomes noticeably inhomogeneous (see Shapiro
& Teukolsky 1983, Baym, Pethick & Sutherlan 1971, Haensel, Zdunik & Dobaczewski
1989, Oyamatsu & Yamada 1994, Pethick & Ravenhall 1995, lida & Sato 1997, Maruyama
et al. 1998, Heiselberg & Njorth-Jensen 2000 and refs. therein). At relatively large
densities D g D, the nuclear matter is predicted to transform from a uniform liquid

to the structures containing spherical and cylindrical ‘bubbles’. With further decreasing
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densities the neutron liquid is filled by slabs, rods and, finally, bec lattice of spherical
nuclei. However, some recent studies by Watanabe, Iida & Sato (2000, 2001) suggest that
the two ‘inside-out’ and the slab phases might be missing because of thermal fluctuations.
Furthermore, as pointed out by Douchin, Haensel & Meyer (2000) at some choice of the
nuclear interaction no exotic phases show up in the crust if one accounts for nuclear
curvature energy. One of the most recent studies by Bulgac & Magierski (2001) suggests
that accounting for the shell-correction type of energy in such structures may lead to a
mixture of several types of shapes at the same density. In proceeding section we consider

the magnetic response of a primitive element of such phases.

4.1. Nonspherical Inner Crust Structures

We consider in this section the magnetism of slabs as an example of the non-spherical

nuclear configuration.

4.1.1. Proton Orbital Magnetism in "Slabs’

In a slab-like structures the mean-field Wy is given by a periodic potential dependent
only on one coordinate component, say 23, and the s-o potential can be neglected (Baym,
Pethick & Sutherlan 1971, Oyamatsu & Yamada 1994, Pethick & Potekhin 1998). Protons
are confined in plates which are arranged periodically with a step a. The sp eigen-energies
€q3 arve of a typical level spacing wg = 4 — 5 MeV (Oyamatsu & Yamada 1994) and an
overlap between wave functions of the nearest neighbor plates can be neglected. For
simplicity we assume at first that only one from such levels is occupied. The magnetic
field gives an additional Hamiltonian Eq. (8). The first term of the ths of Eq. (8) gives
rise to the Pauli-spin magnetic response which has been discussed in sect. 3.1 for a case
of 3 dimensions (3D).

We first consider an effect of the second term in the rhs of the Hamiltonian Eq. (8). At
field strengths _

H < Hy, Hy=wq/pun~10"G (42)

eigen-states |ng > are not affected and the orbital magnetic response is determined by
two dimensional motion localized in the plate. We can assume a simple geometry with
the magnetic field perpendicular to the plate. Then the proton eigenstates are given by

the Landau levels with eigen-energies (see Hamiltonian Eq. (9))
&n = wr(2n + 1), n=0,1,2,.. ‘ (43)

and degeneracy ®/®, for one sort of proton spin (i.e. up or down), ® = HS gives the
flux of field H through an area .S, and the volume V = Sa. Making use of the Poisson

summation formula the level density Eq. (10) associated with the spectrum Eq. (43) can
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be decomposed into the smooth and oscillating parts

po(€) = o 7;2 (l +22 cos(n’ke/wL>>. : (44)

Incorporating Eq. (44) into Eq. (13) a‘nd integrating over energy we obtain (see Ap-

pendix A) the proton density in the following form

D, = D, (1+ ZWLZ

Pkl

sin (wml,/wﬂ R(KT/w1)), (45)

where zero field density of such two dimensional gas D! = myA,/27h%a, and R(z) =
m2z/ sinh(n%z) gives a thermal damping factor. Replacing such a factor B by p*, p =

exp{—(Ap/wL}, the summation in Eq. (45) is calculated analytically to give
> {..} = —arctg <p sin(mAp/wy,)/(1 — p cos (W)xl,/w]) )) .
P

As seen the quantum fluctuations of the proton density vanish at relatively large tem-
peratures (with respect to the field strength), while at small temperatures the density
displays discontinuities (1.e. step-wise behavior) at the Fermi energies corresponding to
the closure of the Landau levels (cf. fig. 5 and discussion therein). In the limit of zero
termperature the number of filled Landau levels 1s found as A,D,/ (D’ wy, ).

At relatively weak fields with respect to the crust temperature 7' (~ 10% — 1034 eV),
H < Hp, Hp=T/px = 10" — 10" G, (46)
the oscillating component is washed out yielding for e.g. an energy integration in Eq.
(11) (with the level density Eq. (44)) the following result

mypS AL N pimy, S H?
2rh? 2 brh” 2
Note that the second term in the rhs of Eq. (47) originates from an integration of the

'Q'o ~ Q;m —_ (4_7)

rapidly oscillating part of the level density Eq. (44). Using Eqgs. (3) and (47) we obtain
the proton Landau diamagnetic susceptibility to be

XL = g‘;;ﬁp ~ —0.407-107* fm/a . (48)

The smooth component of the spin magnetic susceptibility can be calculated in a way
similar to the case of the neutron bulk (see sect. 3.1). Since the smooth level density (see

Eq. (44)) is given by a constant

o mpS

n( ) P 5
2nh

the smooth Pauli magnetization exhibits a linear regime for a wider field range than

(49)

those given by conditions Eq. (46). Infact, the grand canonical Pauli magnetic response

is always linear with the value of the susceptibility

Xp gpuN/z) ~0.38-107% fm/a (50)
a .
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Fig. 4 The proton grand canonical potential in units of (Q29), see Bq. (53), of a slab versus magnetic
field in units of (Ap/un). :

which is larger than respective orbital component Eq. (48) by a factor 3g§, 1.e. nearly
two orders of magnitude. At a period a & 20 fm this value of the susceptibility is slightly
less than the respective quantity for bulk neutrons at normal nuclear density.

For large magnetic fields (i.e. at wy, 2 T') the oscillating part of GCP is noticeable

50,(0,) = T i(—-l}k<%>zcos (mD /wL>R(kT/wL). (51)

2
YTﬁ k=1

Note that the ratio [A,/wy]-counts the number of occupied Landau levels (see Eq. (43)).
This term displays characteristic oscillations with a period ~ 1/H. The change in the field
strength AH = H, — H_ associated with a single oscillation corresponds to an increase

by 1 in the number of occupied Landau levels. This leads to a change
AH = HoH /Ay (52)

which goes to zero at low field limit. The oscillation amplitude is defined by the relation-
ship between the number of occupied Landau levels (increasing with decreasing H) and
the thermal damping factor (exponentially suppressed at small H). '

Thus combining Egs. (47) and (51) the grand canonical potential of slab protons ac-
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Fig. 5. The proton relative density (indicating the number of the filled Landau levels) of a slab versus
magnetic field in units of (Ap/pun).

counting for the orbital dia-magnetism only reads

O, 1/ w? 12.& .
i -1 g(AT) (j + ;—ﬁ;(—d) k Z(iOS<W]€AP/wL>R(]C7 /wL)) (53)

with slab proton GCP at zero magnetic field Q02: (Q%/V) = —mpA2/4mh’a. As seen in
fig. 4 the relative proton contribution to the slab GCP (i.e. pressure) displays oscillations
which are familiar for electron systems as the de Haas-van Alphen oscillations (Landau &
Lifshitz 1985). Originating from Landau levels such a diamagnetic suppression increases
as a square of the field strength. The minima in the magnetic field dependence of the
slab proton GCP corresponds to a closure of the Landau levels, while the maxima are
associated with a case of the half filled highest occupied level, similarly to the shell effect
familiar for nuclear masses (see sect. 4.2.1).

The number of filled Landaun levels is shown on fig. 5 as function of the magnetic
field. We see that when the proton cyclotron frequency wr, = unH exceeds the Fermi
energy A, only the first Landau level is occupied. Consequently, above such saturation
field strengths, i.e. H > A,/pun ~ 10'® G, the proton orbital contribution to the pressure
vanishes. Such unltrahigh fields correspond, however, to very large magnetic pressure Fy =

. H?[87 = Q) -2a/r, ~ 10°Q. Here the classical proton radius r, = €2/m,c? ~ 1.535-1073

fm.
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Fig. 6.— The proton orbital magnetization measured in P2, see Eq. (54), of a slab versus magnetic field
in units of (Ap/pn)-

Using Eqgs. (2) and (53) the orbital magnetization of a slab is given by

Poo ey B ket )
0 = <}\p)+ S (—1)%k (bm<7rk)\p/w1_,

<] 7T k=1
ZwL

TN

cos <7rk/\p/w[,)) R(kT/wr) , (54)

where P? = —unm, A, /67h%a =~ 1045 G - fm/a.

As illustrated in fig. 6 the proton orbital magnetization displays rather sharp, abrupt
change at the magnetic field strengths corresponding to a closure of the Landan levels.
At the conditions wy, > A, the orbital L‘eép()llse vanishes. We note in this regards that for
electrons respective saturation fields are relatively small H, = \./ug ~ 10***° G, where
the Bohr magneton ug &~ 5.788 - 107" MeV G~!. Therefore, within the considered range
of the field strengths we expect to find no step anomalies in electron magnetic response.

Bringing together smooth and oscillating parts the proton orbital magnetic susceptibility

can be represented as the Landau and Haas-van Alphen contributions

Xpo _ _q _ 6<ﬁ>2 i(-—l)'C cos (ﬂ'k)\p/(.UL)R(kT/wL)- (55)

IXLI WL k=1

Employing again a substitution R(kT /wy,) — p* the summation in Eq. (55) is cal¢ulated
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Fig. 7.— The proton orbital magnetic suscepiibility in the units of zero-field proton diamagnetic suscep-
tibility x|, see Eq. (55), of a slab versus magnetic field measured in units of (A,/pun)-

analytically to give

> {..} = pcos (w)\p/wIJ)/(l —2p cos(\ﬁ)\p/wb) +p%).

This relation indicates that when p — 0 the susceptibility is negatively defined and rep-
resented as a sum of é-functions at the positions of the Landau level closures. With
increasing temperature such d-peaks are smeared out. As shown in fig. 7 the osciliat-

g part becomes almost invisible at large values of the parameter ( > 2. Such a case

corresponds, however, to very large temperatures T > 1 MeV.

1.2, Paramagnelism versus Orbital Magnetism

Including the first term of the rhs of Eq. (8) to the Hamiltonian switches on the Pauli-
spin magnetic reactivity, which we discussed in sect. 3.1 with respect to the neutron
magnetization. It is worthy to nofice, however, that in contrast to the case of neutrons

the relative shift o; A,

Ap = —gywr, /2 (56)

of the proton energy levels corresponds to the down-shift of the majority-spin levels with
spins parallel to the field (spin-up, o;—1 = 1) and the up-shift of the minoritv-spin proton

levels with spins antiparallel to the field direction (spin-down, o;=; = —1). Thus similarly
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Magnetic Field

Fig. 8.— The oscillating component of proton grand canonical potential in units of (2Fgr,/a), see Eq.

(53) and discussion therein, of a slab versus magnetic field in units of (A, /pn).

to the electron bulk system the protons show positive paramagnetic response in magnetic
fields, when proton spins are preferably directed along the field vector. The positively
defined proton gyromagnetic ratio (see Eq. (8)) favors the preferential occupation of lower
laying spin-up proton energy levels as compared to spin-down levels. Such an excess of
the number of spin-up protons originates from the relative shift of minority- and majority-

spin levels in the presence of a field. This shift leads to a change in the grand canonical

potential which can be expressed as
6521} = 5QPT + 69}:1 ~ [5{2;(,\13 - Apj + 59’1(;()‘13 + A‘1))]/2 3 (57)

[

where the index “o” denotes the orbital magnetism and implies that 6029 vields the dis-
cussed i1 the previous section (sect. 4.1.1) oscillating part of proton GCP corresponding
to the case, when the proton orbital magnetism associated with the second term in the
rhs of Eq. (8) (see also Eq. (9)) is accounted for, while the first term in the ths of Eq.
(8) 1s excluded.

In the case of grand canonical ensemble the first term of rhs of Eq. (57) vanishes when
the minority-spin energy levels are shifted above the Fermi energy, i.e. A, < A,. The

magnetic response is given by diamagnetism of majority spin protons. At such fields the

system shows a single discontinuity anomaly.
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field presented in (A,/pn)-

When the condition A, > A, is satisfied the superposition of first and second terms of
Eq. (57) gives rise to an interference effect in the quantum oscillations. Accounting for a

shift o;A, (see Eqs. (56) and (57)) we write the oscillating part of GCP as

mpS wr,\ 2
M) = T3 (04
k=1

) cos (Wkgp/Q) R(kT Jwy). (58)

cos (W‘k‘)\p/wL

We see that presence of Pauli magnetic reactivity gives rise to a constant shift of the
phase in GCP oscillation components. As seen in fig. 8 such a phase shift between
two oscillating contributions yields in addition some beats in the total oscillating GCP
resulting in a slight suppression. Such beats can be seen as well in the dependence of the
proton density on the ratio of Fermi energy to the magnetic field displayed on fig. 9.
Accounting for both spin- and orbital-magnetism at A, > A, the grand canonical

potential is written as
Qp . 1 Wi, 2 2
= 1"3(»\1,) (1_391"
12 & k-2
(—1)%k cos(ﬂ'k/\p/wL) cos(ﬂkgp/2>R(kT/wL) . (89)

+ )
k=1
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Fig. 10.— The quantum fluctuations of the slab proton orbital magnetization measured in P2, see Eq.

(54), versus magnetic field given in the units (Ap/pn).

Using Eqgs. (2) and (59) the orbital magnetization of a slab is given by

42 6 & , :
‘7'3§ = <%>(l — 393) + p g(“l)kkq (sm (Wk’\p/wb>
+ 71_2;0;' cos (Wk)\p/wb)> cos (Wkgp/Q) R(kT [wy) . (60)
7 p Y

As seen in fig. 10 the relative shift of spin-up and spin-down levels gives rise to more

frequent jumps of magnetization with slightly reduced amplitude.
Finally, collecting the contributions of smooth, Egs. (48) and (50), and oscillating, cf.

Eq. (55), components we obtain the proton magnetic susceptibility to be

%;j = 3g§,—— I (61)
- 6(—35) : gl(—l)k oS (wk)\p/wL> cos (Wkgp/Z) R(kT [wy,).

4.2, Magnetic Response of Outer Crust Nuclides

As we have seen in the previous section (sect. 4.1) the quantization of proton spatial
motion (i.e. the Landau levels in magnetic fields) gives rise to some magnetic response

anomalies associated with the de Haas-van Alphen oscillations. Such anomalies become

p— 21 pa—
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noticeable at relatively large fields and result in a step-like change of proton magnetization
‘at conditions corresponding to the closure of the Landau level. As demonstrated in
proceeding section the step-like magnetization jumps are particularly pronounced for the
case of finite nuclei. Such a feature is due to the discrete (i.e. shell) level structure of the
confined (i.e. dot-like) system (see Kondratyev, Maruyama & Chiba 1999, 2000, 20004,
2001, 2001a, Kondratyev 2001a). The level crossing in a varying magnetic field leads to

a jump of the nuclear magnetic moment.

4.2.1.  Struciure of Spherical Nuclei: The Nilsson Model
Great success in the understanding of many properties of stable nuclei is associated
with the Nilsson model (NM) (cf. e.g. Ring & Schuck 1980, Nilsson & Ragnarsson 1990)
~ which is based on the HO confining potential approximation for the nuclear mean-field.
Due to the simplicity of the Hamiltonian this model provides rather clear and realistic
picture of the nuclear structure.
For nuclei with N, Z < 40 one can assume the form of Eq. (6) for the sp Hamiltonian
with spherical HO

2

F4

Va(r) ~ ZNGET L wg ~ 41/AY2 MeV, (62)
and spin-orbit interaction, cf. Eq. (7).
Vie ® —2n0 wo-(1-8), (63)

where | represents the orbital angular momentum operator, the components of the spin
operator $ are given by the Pauli matrices, and the parameter 7,, depends on the principal
quantum number. Alternatively, the value of the parameter 7,, can be assumed to be A-
dependent (cf. e.g. Moller et al. 1995). In our experience we find that the choice of
Tso Parametrization affects only slightly élua]ita,tive results for the magnetic field effect
on the structure of nuclei in the iron region. As discussed by Kondratyev, Maruyama &
Chiba (1999) qualitative magnetic effects remain also for deformed shapes of nearly stable
nuclei.

The oscillating part of GCP for a case of the unperturbed arbitrary HO (i.e. without
the spin-orbit coupling term) is discussed by Kondratyev, Maruyama & Chiba (1999,
2001) and briefly outlined in Appendix A. Since the condition 7, < 1 is sutisfied we
include the effect of the spin-orbit coupling term, Kq. (63), perturbatively. Using the
cylindrical coordinate representation and the first order of perturbation theory the sp

energy spectrum is written as

€n,l3nas ~ €n lzng — 2T]soWO[BCTi ) (64)
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where o;—; = 1/2 for the spin-up nucleons (i.e. with the spin directed along the quantiza-
tion axis, 2 =1) and ;=) = —1/2 for the spin-down nucleons (i.e. with the spin directed

opposite to the axis direction, 1 =]). The sp energy levels of spherical HO are given by
€nilzna — wO(zn_L + lzsl + ns + 3/2) (65)

where n; =0,1,2,... indicates the radial quantum number for the motion perpendicular to
the quantization axis, I3 = 0, + 1, =2, =+ 3,... denotes the quantum number of the |
projection of the orbital angular momentun to the axis, and n3 is the quantum number
associated with the motion along the axis.

The represented by Eqs. (64) and (65) spectrum is identical (Fock 1928) to that of a

triaxial HO with frequencies
w1 = wo(l + Mso), wo = wo(l — 7s0), and w3 = wp. (66)

Therefore, the equations derived in Appendix can be used for an analysis of the shell-
correction GCP when accounting for the spin-orbit coupling as well. Using Eqgs. (62),
(63), and (66) we write the kth component of GCP as

wo(~1)* cos(kX)
42k (sm(iwr(l + g0 ) ) sin(km (1 — neo))
(1 = ne) cos(EX/(1 = 1))
sin(km /(1 — 1g0)) sin{km(1 + 150) /(1 — 71s0))
(1 + nse) cos(kAX/(1+ ns))
sin(km /(1 + 7g0)) sin(km (1 — 750) /(1 + 7s0))

0 = R(kT) (67)

Rk /(1 = 150))

Rkt /(1 + nso))),

where the superscript “0” indicates zero magnetic field, X = 2w\ /wy = 27(3N)** counts
the number of filled shells, 7 = 2727 /w, gives the suppression factor of the shell-oscillation
amplitude due to the temperature. In applications below we focus on very low temperature
limit (i.e. 7 < 1, R &~ 1 ) and refer for the oscillating part of the grand potential, Eq.
(67), simply as the shell-correction energy.

In fig. 11 the total sheli-correction energy is plotted versus the number of neutrons for
symimetric nuclei (N = Z). We see that neglecting the spin-orbit interaction gives the
magic numbers, N = & 20,40, ... corresponding to closed shells with principal quanium
numbers n = 1,2,3... The shell-correction energy displays pronounced minima at these
numbers. We note that values of the shell-correction energy are large when the spin-orbit
interaction is omitted. This is a consequence of the high degeneracy of the sp energy
levels (see above).

Making nse of the condition 7, < 1 Eq. (67) can be further simplified (cf. e.g.
Kondratyev & Lutz 1998)

wo(—],)k

0~ _
e ~ 8mk?

X(X + 1) cos(kX)jo(nsek X ) R(kT) - (63)
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Fig. 11.— The shell-correction energy as a function of the number of neuirons for symmetric nuclei with
the spherical HO potential. The solid line denoies the resulis of calculations for 6 F* with the spin-orbit

coupling inciuded perturbatively at the values of parameter 75, = 0.16 for n = 1, 0.14 for n = 2, and 0.2
for n = 3. The dashed line corresponds to zero spin-orbit coupling constant and gives the energy in the

units 0.5 AY/3 MeV. The full dots represent the deviation of the experimental masses Audi & Wapstra
1995 from the liquid drop model (c¢f. Ring & Schuck 1980) prediction, the open circles show the results

of ref. Moller et al. 1995,
where jo(x) denotes the spherical Bessel function of zero-th order. We note that in Eq.

(68) zero point motion is accounted for as compared to previous results by Kondratyev,

Maruyama & Chiba (2000, 2001). A-dependence of the amplitude of shell-oscillations Eq.
(68), 6E ~ A3, is determined by A-dependence of the HO level spacing wy, Eq. (62), and
the degeneracy of the Fermi energy level ~ A%/3. The spin-orbit coupling removes such

a degeneracy resulting in weaker shell effect as well as slower increase of an amplitude of

shell-oscillations with the mass number as suggested by Eq. (68).

Including the spin-orbit term Eq. (63) allows to reproduce properly experimentally
observed nuclear magic numbers of light and medinm mass nuclei (see fig. 11 and Ring
& Schuck 1980). Accounting for zero point motion improves the agreement with exper-
imental data for the mass numbers in the oxygen region. In particular, we note that an

excess of the binding energy associated with the spherical shell closure at N = Z = 28 is

stronger than at N = Z = 20. This property is corroborated with the experimental find-
ings. From fig. 11 we see that the closed neutron and proton shells for 20 nucleons hardly

show up at all as an extra experimental binding for *°Ca whereas both the nuclei *2S and
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Fig. 12— Magnetic field dependence of the spherical HO sp energy levels. The solid and dashed lines
indicate the majority- and minority-spin levels, respectively. The energy is measured in the units of level
spacing wq, while the field is given in wo/un.

36 Ar appear to be “stronger bound” than *°Ca. The comparison to predictions obtained
within a more involved treatment (Moller et al. 1995) suggests that the present model
vields similar accuracy in the description of the experimentally observed shell-oscillations
in binding energies of light nuclei up to the iron region.

Thus accounting for the splitting of nucleon energy levels due to the spin-orbit coupling
is crucial for an understanding of nuclear magic numbers observed in the laboratory.
We remark, however, that the neutron rich crust nuclides correspond to the confining
potential with smaller stiffness (cf. Haensel, Zdunik & Dobaczewski 1989, Oyamatsu &
Yamada 1994}, i.e. smaller value of the spacing between the major shells wy. This gives
rise to a suppression of spin-orbit splitting, ¢f. Eq. (7). Therefore, in present work we
extensively analyze also the case of zero spin-orbit term which gives rather transparent
picture of the field effect and can be directly applied to analyze the shell structure of e.g.

atomic clusters in magnetic fields.

4.2.2. Neutron Spin-Magnetization in Nuclei: Pauli-Paramagnetic Response

In this section we argue that the shell effect of nuclei leads to the jump anomalies of

neutron magnetization as well. The magnetic field B effect for neutrons is represented by
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Fig. 13.~~ Maguetic field dependence of the sp energy levels for NM with spherical HO confining potential.
The units are the same as in fig. 12.

the first term in rhs of Eq. (8) arising due to an interaction of the field with the neutron
dipole magnetic moment M,, = gnpns. The orbital motion is not affected by the magnetic
field at small s-0 coupling since neutrons are neuiral particles and, therefore, exhibii only
the Pauli-type of the magnefization associated with ths of Hamiltonian FEq. (8). The field
dependence of the neutron contribution to GCP as well as magnetization are determined
then by Eqs. (34) and (35), respectively. Similarly to the uniform neniron liquid (sect.
3) such Pauli type magnetization originates from the relative shift Eq. (33) of minority-
and majority-spin neutron energy levels.

The shift q. (33) modifies the level structure of nuclides and defines paramagnetic
response properties. Figures 12 and 13 display the field dependence of the neuniron single
particle levels for spherical HO and NM, respectively. As seen for the case of spherical
HO Hamiltonian the levels show reguiar crossing at the same values of the field strength.
Such a behavior is due to highly degenerate equidisiant sp energy spectrum of HO po-
tential. Including the s-o coupling removes the spherical HO degeneracy leading to a
non-equidistant spectra. Consequently, the level crossings are met more frequently with
changing magnetic field.

These properties of sp levels are reflected in the magnetic field dependence of the shell-

correction energy. As demonstrated in fig. 14 the regular level structure of spherical HO
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Fig. 14.-— The spherical HO model prediction of the neutron semiclassical shell-correction energy versus
the neutron number and magnetic field. The smaller energies are indicated by white regions, while the
dark regions denote the larger energies. The contours are plotted with the step 1 starting from -3 in the
units AY/® MeV.

gives rise to periodic behavior of the neutron shell-correction energy as a function of the
magnetic field. The NM displays similar gualitative features as have been extensively
discussed by Kondratyev, Maruyama, & Chiba (1999, 2000, 2000a, 2001). Therefore, to
illustrate in the simplest way the qualitative picture of the considered effect we present
the results for magnetic reactivity of nuclei on an example of spherical HO.

Figure 15 represents the magnetic field dependence of the difference A between the
majority- and minority-spin neutron numbers at various values of the total neutron num-
ber. As seen this dependence exhibiis a step-like behavior at field strengths corresponding
the majority- and minority-spin level crossing. Such a behavior resembles properties of
magnetic phase transition.

The physical origin of such a jump of nuclear magnetic moment can be rather clearly
understood within the following qualitative picture applied for the spherical HO potential.

Let us consider a magic nucleus with a filled neutron shell (i.e. the number of neutrons
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Fig. 15.— The quantity /' (i.e. magnetic moment, see Eq. (35)) versus magnetic field b and neutron
number N. :

on the highest occupied shell corresponds to the degeneracy number). For a case of zero
spin-orbit coupling such a nucleus could have e.g. 40 neutrons (N = 40) when the shell
with the principal quantum number n = 3 is just filled. At zero magnetic field such a
magic nucleus has zero magnetic moment and corresponds to a negative minimum of the
shell-correction energy (see fig. 14). The magnetic field shifts majority- and minority-spin
neutron levels down and up, respectively (see fig. 12). At the field strength corresponding
to the energy shift on a half of HO frequency (i.e. b = [0.5/g,|) the majority- and minority-
spin energy levels cross. Therefore, 20 spin-up neutrons of n=3 shell (at b < [0.5/g,|) are
rearranged to occupy the spin-down n=4 shell. Consequently, the magnetic moment of
such a nucleus is changed step-wise at the level crossing.

We recall here that the neutron magnetization corresponds to the spin alignment re-
versed to the magnetic field vector due to the negatively defined neutron gyromagnetic
ratio. Therefore, in the magnetic field the relative number of spin-down neutrons (V)
exceeds the number of spin-up neutrons (N;). However, the actual balance between the

minority- and majority-spin neutrons is rather sensitive to the shell structure.
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Fig. 16.— Magnetic field dependence of the sp energy levels of spinless protons for spherical HO confining
potential. The units are the same as in fig. 12.

4.2.5.  Orbital Magnetism of Protons in Nuclei

As discussed in sect. 4 the proton magnetic response is given by a superposition of
orbital and spin magnetism. In this section we briefly consider some properties regarding
the orbital magnetic reactivity of protons with confined spatial motion.

The Landau-type proton orbital response in the magnetic field arises due to an inter-
action of the field with the charge moving on an orbit. As a consequence, the proton
shell-correction GCP exhibits an additional field dependent modification as compared to
the neutron GCP as extensively studied by Kondratyev, Maruyama, & Chiba (1999, 2000,
2000a, 2001). The sp energy level spectrum of spherical HO including the Hamiltonian
Eq. (9) can be written as (Fock 1928) (cf. Eq. (65) of sect. 4.2.2)

€nylans — UJQ[VI + é2<2n_§_ -+ [[3[ -+ 1) - b[g -+ Thg + 1/2], (69)

where the notations are identical to those of Eq. (65) with a quantization axis directed
along the magnetic field.

As seen in fig. 16 the degree of the degeneracy for the proton energy levels is reduced

' dramatically because of an interaction of the orbital magnetic moment with a field. The

proton shell structure is almost washed out as compared to the case of neutrons (cf. figs.
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12 and 13 and discussions therein). As evident from ﬁg; 16 the degeneracy is restored,
however, at certain relatively large fields.. Such bifurcation points of a system appear
similarly to cases of large deformations {(cf. (Kondratyev, Maruyama & Chiba 1999) and
refs. therein) .

One can easily see that the spectrum given by Eq. (69) is equivaieni (Fock 1928) to

that of a friaxial HO with the frequencies

Wy = Woly, wy = wor_, and ws = wy, (70

where vy = V1482 4 b, This allows to utilize the results for GCP of HO for the nuclei
in magnetic fields (Kondratyev, Maruyama & Chiba 2000, 2001). Applying the condition
b < 1 we obtain (cf. e.g. Kondratyev & Lutz 1998) the k—th component of the proton
GCP in the form

wo(—1)*

Q) ~ —
k 4rik?

X(X + 1) cos(kX)jo(bkX ) R(kT) (71)

which represents the £—th componeni for the nonperturbed HO modulated by the spher-
ical Bessel function of zero order with the field dependent argument. Similarly to Eq.
{ 68;) in Eq. (71) it is accounted for zero point motion as compared to previous results by
Kondratyev, Maruyama & Chiba (2000, 2001 ).

The relation Eq. (71) properly describes some slight re-increase of shell oscillation
amplitude at small values 6. However, rather pronounced re-enhancement of the level
degeneracy at, e.g., the field strength b = 0.75 (see fig. 16) is not reproduced within such

a perturbative treatment.

4.2.4.  Paremagnetism versus Orbital Magnetism in Nucles

Switching on the spin-magnetism leads to further reduction of the energy level degener-
acy. From the comparison of figs. 16 and 17 we see that the spin magnetic moment gives
rise to more frequent level crossings with changing magnetic field. The re-enhancement
of the degeneracy remains, however, almost at the same field strengths. The levels cross
at fields corresponding to the relative shift of proton majority- and minority-spin energy
levels A, comparable to the energy difference between major shells given by the HO level
spacing wo. The energy of the first Landau level is by the factor 2 — 3 smaller than the
energy difference between major shells, while the radius of the proton cyclotron orbit is
larger than radii of nuclei on approximately the same factor. Consequently, Landau levels
give practically no contribution to the outer crust magnetism at such a field strength.
The proton Landau diamagnetism is expected to dominate at the condition 6> 1 i.e. at
a field strength exceeding B ~ 10'%% G.

The proton contribution to the magnetic moment of a nucleus is given as a combination
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Fig. 17— Magnetic field dependence of the proton sp energy levels for spherical HO confining potential.
The units are the same as in fig. 12.

of the spin and orbital magnetic components
My =[gp 2 + 3 lijun & glo pw, (72)

where Z = (Z1— Z')/2 measures the difference between majority-spin (Z1) and minority-
spin (Z*+) proton numbers, 5 denotes the projection of angular momentum on the field
axis.

Figure 18 shows the quantity g/, as a function of the magnetic field at different values
of the proton number. The step-like behavior of nuclear magnetization is displayed for
protons as well. The associated field change between jumps is significantly smaller as
compared to the neutron magnetic response as seen in more details on fig. 19.

It should be noticed an important difference beiween the proton orbital magnetism con-
sidered here and the Landau diamagnetism of a homogeneous liquid or slab-like structures
considered in sect. 4.1. The latter is originating from the quantization of Landau levels.
Since at relatively small field strengths (i.e. b < 1, which are considered below) the radi
of Landau levels are much larger than nuclear radii they give practically no contribution
to the magnetic response. The orbital magnetism in such a case is mainly caused by an

interaction of magnetic field with magnetic dipole arising from the quantum orbital mo-
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Fig. 18.— Proton magnetization (g/p) versus magnetic field b and proton number Z.

tion of protons inside the nucleus. The orbital magnetic response of such inhomogeneous
systems is considerably amplified as compared to the case of a homogeneous liquid.

We stress here that in contrast to the homogeneous liquid the neutron star crust may
display positive as well as negative proton linear magnetic response of Pauli-type due
to inhomogeneous structure. The nuclear shell effect infiuences the relationship in the
occupation of minority- and majority-spin proton energy levels and modifies properties of

the magnetization.

5. Modeling the Magnetodynamics of Crusty Nuclear Matter

As shown in sect. 4 the quantization of spatial nucleon motion gives rise to the step-
like jumps of the magnetic response in varying magnetic fields. In particular outer crust
nuclides display such an anomaly at the crossing of nuclear levels. In this section we
demonstrate that these properties result in the noise during the crust demagnetization.
As a consequence, the time evolution of magnetic fields experiences erratic jumps leading
to a sharp energy release to the magnetosphere of the magnetic energy stored in, e.g., the
nuclear degrees of freedom of neutron star crusts. Therefore, within present picture the
mechanism of SGR burst emission by a magnetar is similar to the generation of a noise in

the loudspeaker by the coil of a wire surrounding a ferromagnet and being put under the
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Fig. 19.— Proton magnetization (gly) versus magnetic field b at proton number Z = 40 (solid line), 47
(dashed line}, 55 (dotfed line) and 70 (frequent dots).

conditions of magnetization reversal by external varying magnetic field, i.e. the magnetic
Barkhausen emission (see, e.g., Feynman 1965). Because of the domain structure the
dynamics of magnetic field exhibits some sharp changes with time. Such a jump induces
a current in a wire. The energy released to the coil-wire is determined by the applied field
Hexi, magnetization of a ferromagnet Pr as well as respective volume Viaen and estimated
to be

Egark = Hext PrVimagn - - (13)

The analogy can be seen between the crust and ferromagnet as well as between the
magnetosphere and the coil-wire. We note that ‘magnetar’ related processes considered
here correspond to ultramagnetized media and energy scale larger by about 30 orders of
magnitude. Furthermore, the sharp change of crust magnetization originates from step-

wise behavior of the nuclide magnetic moments rather then from magnetization reversal.

5.1. Magnetic Coupling, Disorder and Fluctuations in Outer Crusts

In this section we quantify some observables related to crust magnetodynamics on the

basis of theoretical analysis.
The induced magnetic moment of nuclides contributes to the magnetization of neutron
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star crusts on the basis of theoretical analysis. For aligned moments the magnetization

component is given by

My . My Dy
Vs Aun D
where the nuclear magnetic moment My = M, + M, is represented as a sum of neuiron

Py = 10" Oe , O (74)

M, and proton M, contributions, see Eqs. (35) and (72), respectively, while an average
density of bound nucleons Dnp = A/ Vs is related to the Wigner-Seitz volurme Viyg and
evaluated as several tenths of normal nucléar density Dy.

We consider the outer crusts as a polycrystalline structure with nuclei arranged in a
closed packed (plausibly bce) lattice and assume the dipolar interaction between magnetic
moments M; and M; of nuclei ¢ and j
(M M) — 3(M:f5; ) (M) ’

3

7

Jd = (75)

ij

where I;; denotes the unit vector indicating the direction from 2 to j, while r;; gives
respective distance. Such a system shows the ferromagnetic ordering (see e.g. Luttinger
& Tisza 1946, Weis & Levesque 1993, 1994) with the easiest magnetization axis {100}.
The. coupling constant J and an anisotropy energy density K can be estimated from the

lattice parameters as
Ja & M;M;/a® ~0.01 MeV , (76)
Ky =~ 0.1J3/V ~ 10% ergs/cm”, (77)

where a ~ 101 fm stands for the lattice constant as in previous sections. The coupling
strength Kq. (76) corresponds to an effective magnetizing field P = J3/M =~ 10*° Qe, cf.
Eq. (74).

In the energetics of magnetized systems a noticeable effect is represented by demagne-
tization energy, see (Feynman 1965). Such an energy gives rise e.g. to domain structure
of ferromagnets. In our studies we account for such a contribution to the total energy in

a global form

Ey = nP?, (78)

where the value of coefficient 17 depends slightly on the geometry of the magnetized sample.

Another essential feature of realistic systems is associated with fluctuations and ran-
domness. Usually the system contains inhomogeneity and disorder in the form of defecis,
grain boundaries, impurities, leading to random crystalline anisotropies, and varying in-
teraction strengths in the crystalline structure. Apart from such static spatial flnctuations
/£ we bear in mind dynamical components f£ due to inexactness of the model description
(see sect. 5.2).

Simple way to implement a certain kind of uncorrelated quenched disorder as well

as fluctuations is provided by identifying such effects with uncorrelated random fields f;,
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associated with each site of the lattice, and distributed according the gaussian distribution
function

W(f;) = exp{—fi*/2R*}/V2r R (79)
as one expects from the central limit (or normal convergence) theorem. We refer to the
width R as for the disorder parameter, or just disorder. In the order of magnitude this
quantity can be evaluated as an effective magnetizing field B ~ P ~ 10** Qe (cf. Eq.
(75)).

It is worthy to notice here that such a value of R is smaller than an expectation for
the inter-jump magnetic field spacing Sy, Average value of the spacing is defined by
the field interval between the successive jumps b, and by, i.e. Bimy =< B, — B,_1 >y,
where < .- >, denotes averaging over n.

To calculate the field spacing we note that two levels with energy difference e cross in

the field interval
dde

-1
6B =be\ —= | .
B 5e< 3 B) ' (80)
For neutrons the change rate of the energy difference is given by (d&e/ dB> = gnfN R

107" MeV/G. The inter-jump field spacing can be, therefore, evaluated from the total
nuclear level spacing < de > as

Bimp & (%) ] < be>= (%%) 1/W. (81)
In the second equality of Eq. (81) we take into account that the level spacing is given
as an inverted total nuclear level density < §e >= W' (Ring & Schuck 1980, Nilsson &
Ragnarsson 1990). Sirice the case of shifted energy levels in the magnetic field corresponds
to an excited nucleus, the field spacing is estimated, Bimp ~ 10'* G, to be an order of

magnitude larger as compared to disorder effects.

5.2. The Randomly Jumping Interacting Momenis Model as an Extension of the Ising
Model
To model the long-range, far from equilibrium, collective behavior mentioned in the
beginning of the section (sect. 5), we define the crusts as a collection of I domains on a
hypercubic lattice with magnetic moments per nucleus m; which changes step-wise as a

function of local magnetic fields b
m; = vy 0(b—by) (82)

with jumps of a height v, at field strengths b, corresponding to level crossings. Here the
step-function 8(z < 0) = 0 and 8(z > 0) = 1.
According to an analysis of previous sect. 5.1 the coupling between nearest neighbor

(nn) domain-moments is ferromagnetic of a strength J;;, and they interact with a uniform
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magnetic field H. Then accounting for the demagnetizing energy in a global form, see Eq.
(78) and discussion therein, we introduce the total magnetization (below is also referred

to as a mean-field) _
P = Z m; (83)
§

and express the Hamiltonian of the outer crust domains as

H=-— Z Jijmimj — (H(t) - n’P) Zm, y {84}

ty€nn i

where it is understood that the sum runs over nearest neighbor pairs of moments on sites
¢ and j. The parameter 7 is determined by a strength of the demagnetizing effect. When
moments m; are allowed for two values £1 at vanishing 7, the Hamiltonian Eq. (84) rep-
resents the Ising model which reliably describes the effects of spontaneous magnetization
as well as hysteresis and discontinuities in reversing the magnetization (i.e. magnetization
curve). As outlined below in this section within the dynamical picture such effects can
be interpreted as magnetic avalanches in the system.

As pointed out in sect. 5.1 in order to simulate realistic systems it is required to
incorporate in the Hamiltonian Eq. (84) fluctuating fields (see Eq. (79) and discussion
therein). Such fluctuations can prevent the spontaneous magnetization of entire system by
keeping it on a metastable state. As a consequence, the magnetization curve is modified,
Le. not all the domain-moments jump at the same value of the external magnetic field.
Instead, they jump in avalanches of various sizes that can be broken up or stopped by
strongly “pinned” magnetic moments or clusters of previously jumped moments. When
the diserder in the crust is small, the picture is qualitatively similar to the pure case of
the Ising model. One would expect the predominant, macroscopic discontinuity at critical
field with a few small precursors in the vicinity. Large disorders, as compared to the
coupling strength J, can wash out the sharp transition and result in smooth and almost
macroscopically continuous magnetization curve.

Applying random fields the Hamiltonian is then given by

M=~ 3 Jymim; =Y (H—qP + fiym;. (85)
ij€xm i
For a,na.lytic calculations and simulations we set the interaction between the moments to
be independent of the moments and equal to J for nearest neighbors J;; = J and zero
otherwise.
The crust magnetodynanﬁcs is determined by the magnetic moment m; jumps which

occur when the difference between its local effective field

bi=JY mi+H—qP+f (86)

j€nn
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and some of the quantities b,, i.e. the value §b, = b; — b,,, changes sign. At the condition
byt1 — by, > 6b, > R almost all the moments equal to the value

om=3 u (87)

i=1

and point along the field H direction (i.e. m; = v, for all 7). As the field adiabatically
decreases the moments progressively jump to v,_1, Up-2, ... Because of the nearest neigh-
bor interaction, the jumped moment can result in the jump of a neighbor which in turn
might lead to the reducing moment of another neighbor, and so on, generating thereby an
avalanche of moment jumps. The adiabatically changing field H(#) implies that the exter-
nal field is kept constant during each avalanche, while the magnetization varies according
to the definition of the mean-field Eq. (83). At large disorders corresponding to the wide
distribution of random fields the magnetic moments tend to jump independently of each
other. Small avalanches give rise to the smooth (on a macroscopic scale) magnetization
curve. On the other hand, small disorder implies a narrow random field distribution which
allows for large avalanches. This leads to noticeable discontinuities in the magnetization
curves similarly to what is found for the Ising model at zero temperature. At transitional
values of the parameters R = R. and H = H_ the system shows critical scaling behavior
and the widest distribution of the avalanche sizes.

We refer for such a model as randomly jumping interacting moments (RJIM) model.

6. Numerical Simulations for Hysteresis and Avalanches in Outer Crust Magnetodynamics
The simplified description of the neutron star crust magnetodynamics within RJIM
model allows to analyze numerically such complex systems of very large size. The com-
parison of computational resulis with observational data can provide the quantitative
picture of crust magnetic properties. In this section we briefly consider some numeri-
cal algorithms for avalanche propagations and results for magnetotransport in terms of
avalanche dynamics. As discussed in sect. 5.1 the magnetic field intervals between jumps
of nuclide magnetic moments are expected to be large as compared to the disorder. There-
fore, we can consider a single jump of the height »; in magnetic moment Eq. (82) at field

strength b; because of relatively large gaps between the jumps.

6.1. Algorithms for Avalanche Propagation

The evolution of the above (sect. 5) described RJIM model can be simulated numer-
ically by ¢mploying various algorithms. In this section we briefly outline some methods
for an evolution with increasing and decreasing external fields, which we refer for as mag-

netizing and demagnetizing, respectively. Since the case of decreasing field is well suited
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for practical applications in the crust magnetodyna,micsiwe mostly concentrate on such
demagnetizing evolution.

The simplest but most time and memory consuming method starts by assigning a ran-
dom field to each domain-moment on the hypercubic lattice. For the demagnetizing
simulations at the beginning all the moments m; = v; and are pointing along the field.
The external field A is then decreased by small increments starting from a large posi-
tive value. After each decrease of the field all the domain-moments are inspected to find
whether some of them can be triggered to jump (a moment jumps when its effective field
changes sign, see Bq. (86) and discussion therein). When a moment jumps the neighbors
are checked to satisfy the conditions for the moment to reduce with subsequent examina-
tion of next neighbors and so on unfil no moments are left to jump. Then the external
field is further decreased and the process repeaied. Since the external magnetic field is
decreased by an equal increments a large amount of time is spent searching the lattice
for potentially jumping moments. The increments have to be sufficiently large to avoid
searching the lattice when there are no jumping moments, but small enough to exclude
the case when two or more moments far apart jump at the same field. This method
resembles. indeed, an actual crust evolution.

When no jumping moments show up the searching through the lattice can be skipped by
using a variation on the described above method. Within such an algorithm one examines
all the non-zero moments, finds the next jumping one, and then decreases the external
field H(t) to trigger an avalanche. This algorithm is rather efficient for small disorders,
since the average searching time for a jump becomes small. However, at over-critical
disorders such a method is still very time consuming. Far above from the critical point,
where moments tend to jump independently of each other, the checking time scales as N?
with the number of domain-moments V in the system.

The searching time can be further decreased when the random fields are initially ordered
m a list. The ‘top’ of the list is occupied by the first jumping moment, i.e. the smallest
random field for demagnetizing evolution and the largest one for magnetizing direction.
The external field is decreased until the effective field of the top moment become &;, and
the moment jumps. We then inspect its nearest neighbors, and the subsequent one, while
keeping the external field constant. When no moments are left to jump, the external
field needs to be reduced again. The change in the external field § H which is required to
induce a jump of the next moment is found by looking for the moment with the random

field f; satisfying the following inequality
fz < ()1 + 7773 - (HpreV'+ 5H) . 1/1711.], (88)

where H ., denotes the field triggering the previous avalanche, and n, is the number of

nearest neighbors keeping m; = v; for a moment m; with the coordination number k.
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In general, as a minimum there are k£ + 1 moments from the list to be checked, since
the number n; can have the integer value between zero and k. We trigger to jump the
moment with the random field f; which satisfies Eq. (88) for the smallest §H, and with
the number of non-zero neighbors n,. It is required to inspect, in fact, more than & + 1
moments because moment random field can satisfy Eq. (88) for some value of ny but might
not have sufficient number of zerc moment neighbors, or the moment might be already
zero. Since not all the moments have to be exanined in order to find the nexi jumping one
this algorithm decreases the searching time. In practice, within such a method about half
of the time is spent for the N log, NV initial sorting of the list of random field numbers,
where N 1s the total number of domains in the system. Some disadvantage of this method
(similar to those mentioned above) cousisis in the huge amount of storage space required
to keep random fields, positions, and values of each moment. This becomes particularly
complicated for simulations of large size systems.

The problem of a large storage space can be overcome by exploiting somewhat more
sophisticated algorithms making use of an idea that the change éH in the external field
between two avalanches foliows a probability distribution. Such a probability is associated
with the random fields f; satisfying the gaussian distribution. Therefore, the increments
6H in the external field can be chosen according to that distribution as well. The proba-
bility density itself is not, in principle, known explicitly. However, an integral value from
0 to some finite strength increment 6 H of such a probability density can be evaluaied.
Such an integral just corresponds to the probability wi,. (6 H) that no moment jumps in
the entire system during a field change less than the value §H. This quantity can be

calculated according to the relation

where the product is taken over ny = 0,1,2...k, and w;, (6H) denotes the probability for
remaining a constant non-zero moment m; = »; with n; non-zero nearest neighbors when

the external field changes less than 6 H
Ab(ny}

0 (§H) = (E / R )‘ df/ Jnojump (Ab( ))) N (go)
Wy 1€ ) - \ J Dot () } Y " ) o
The function W ( f) represents the random field distribution function (cf. Eq. (79)), while

Ab(ny) and A (n,) are defined respectively as
Ab(ny) = b +n9P —H—vingJ, (91)
A ny) = b+nP —H—6H —nyJ. (92)
The quantity w;:‘;j”m”(b) mdicates the probability that a moment with n; non-zero nearest

neighbors is unchanged until the field reaches the external magnetic field value H

wiem (Ab(n)) = [ W(F) df = exfe(Ab(nm)/VIR) (93)

—00

Ab(ny)
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In the second equality of Eq. (93) we have used an explicit form Eq. (79) for the random
field distribution function W(f). The quantity N,, in Eq. (90) represents the number of
vanished moments with n; non-zero neighbors.

For certain probability wg (6 H) = p the required field increment §H is found by solving
Eq. (89) for 6H. In practice, such probability p can be chosen, e.g., as a random number
uniformly distributed between zero and one. Once the increment § H is determined we find
the next jumping moment. We first calculate the probability w™™®(n,) that associated
with n; non-zero neighbors non-zero moment m; = vy jumps to zero within an interval

[H, H + 6H]
R,

I
Rtyui‘

u/_jlunh(nl) — (94)
where

_ N WAt m)) (95)
- wg?jumP (Abnext(nl)) .

gives & jump rate for non-zero moments with n; non-zero neighbors, while R,,, denotes

Te3

the sum of the rates R,, which is taken over the index n;. The jumping moment has

non-zero neighbors which are found by satisfying the following inequality

{ {—1
Z wjump<nl} >po> Z ’ wjmnp<nl”} (96}
nq =0 [t

where the cutoff p is chosen as a random number between 0 and 1. Once [ is known,
a moment is then randomly picked from the st of non-zero moments with ! non-zero
neighbors.

Thus, when the first moment has jumped, we check the neighbors. Let assume that one
of the neighbors corresponds to the moment m; = v; and has (ny + 1) nearest neighbors
with the same moment. Then its probability to jump, while the field approaches H + 6 H,
is evaluated to be
Ah“e’” (n1+1) W(f) df
P

erfc(Ab(ny + 1)/v/2R)
 erfo(Ab(ny)/v2R)
Here we have employed again an explicit form Eq. (79) in the second equality of Eq. (97).

wnext(nl H + 6H) =1-

(97)

When all the neighbors are inspected, the size of the avalanche is stored, as well as all the
other observables. The external magnetic field H is then incremented again by making
use of Eq. (89) as to find the next step 6H.

Within this method the random fields are not assigned to the moments at the beginning
of the simulation and, therefore, are not stored. This represents an important feature
“of the algorithm which is useful for large system sizes, since memory requirements is

significantly reduced.
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Fig. 20.— Magnetization curves for the cubic lattice of a size (30)3 at the disorder R = 1.1 and demagne-
tizing parameter n = . The solid lines denote the demagnetizing evolution, while magnetizing direction
is indicated by dashed lines. Total nurnber of avalanches (the left upper part — a), the magnetization (in
units of 10* domains, the right upper part - b), the rate of the avalanche number (the left bottom part
- ¢), and of the change of magnetization (in 10* domains per field unit, the right bottom part — d) are
shown as a function of the magnetic field measured in the units of the coupling constant.

6.2. Magnetization Curves from Simulations

In this section we present some numerical results for the magnetization curves at various
values of the crust parameters. We at first neglect the demagnetizing energy, i.e. assume
n = 0, in order to analyze also the sensitivity of magnetotransport phenomena to the
choice of the Hamiltonian.

The case of the subcritical value of the disorder pa,rameter is shown n fig. 20. We
see very pronounced hysteresis in the magnetization versus the magnetic field (see panel
(b) of fig. 20). In fact, the change of overall magnetization is rather rapid in this case
and shows diverging slope. From the comparison of magnetization curves with magnetic
field dependence of avalanche numbers (panel (2)) we see that the total number changes -
sharply in the vicinity of the magnetization-step. This corroborates the magnetic field
dependence of the rate of the avalanche number shown in panel (c) of fig. 20. The change

rates of the magnetization (panel (d)) suggest, however, that the magnetization jumps in
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Fig. 21— Magnetization curves at K = 1.7. The parts (a)-(d} represent the same observables as.in
fig. 20. However, the top part {iie. panels (a} and (b)) displays magnetizing as well as demagnetizing
dynamics, while the bottormn part (i.e. panels (¢) and {(d)) shows the resulis only for demagnetizing
direction. The gnantities indicated by solid lines include. all avalanches, while dashed lines correspond
the large avalanches, i.e.. spanning large number of domains with S > 20.- The avalanche number is in
the units of 300 for total and 30 for large avalanches, while the event rates are in the units of 100 and
1000 avalanches per field unit, respeciively. The magnetization is given in 10* domains, and the field
change rates are in units of 1000 and 10° domains per field unit for total number and large avalanches,
correspondingly. : :

panel (b) are due to avalanches which span almost entire lattice.

As seen from fig. 21 the magnetodynamics in the vicinity of the critical point display
diverging slope with slightly smaller hysieresis as compared to the subcritical conditions
(cf. fig. 20). However, the number of avalanches (panel (a) of fig. 21) varies much
smoother with magnetic field and corresponds to a wide non-zero rates shown on panel
(c). The large avalanches concenirate in vicinity of fields related to sharp change of the
magnetization (cf. panel (b)). We note that the case of subcritical disorder of fig. 20
exhibits only a single large avalanche.

As illustrated in figs. 22 and 23 the hysteresis remains noticeable up to relatively large
values of the disorder. At such over-critical disorders the magnetization curve shows
always finite slope at macroscopic scale, in contrast to sub-critical and critical magneto-

transport. Similarly, the number of avalanches changes almost continuously as a function
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Fig. 22.— Magnetization curves. The'same as in fig. 21 but at & = 2.5. The avalanche number is in
the units of 1000 for total and 100 for large avalanches, while the event rates are in the units of 100 and
2000 avalanches per field unit, respectively. The magnetizaiion is given in 10% domains, and the field
change rate is in units of 1000 and 2 - 10° domains per field unit for total number and large avalanches,
correspondingly.

of magnetic field, while the respective rate indicates that the region of triggering events
is even wider than the region of the noticeable hysteresis loop. However, the large size
avalanches match an order of magnitude smaller field interval. With further increasing
disorder the number of such large size jumps sharply decreases.

Switching on the demagnetizing energy we obtain on the macroscopic scale the finite

slope for the magnetization curve also at the critical conditions, see fig. 24.
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Fig. 23.— The same as in fig. 21 but for the disorder R = 5. The avalanche number is in the units of
2000 for total and 2 for large avalanches, while the event rates are in the units of 100 and 10 avalanches
per field unit, respectively. The magnetization is given in 10% domains for total set of avalanches and 100
for large avalanches, and the field change rate is in units of 1000 for both cases.
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Fig. 24.— The same as in fig. 21 but including the demagnetizing energy with n — 1. The avalanche
number is in the units of 300 for total and 30 for large avalanches, while the event rates are in the units
of 160 and 1000 avalanches per field unit, respectively. The magnetization is given in 10¢ domains, and
the field change rate is in units of 1000 and 3 - 10° domains per field unit for total number and large .
avalanches, correspondingly.
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7. Mean-Field Approximation

The general properties of the nonequilibrium model corresponding to the Hamiltonian
Eq. (85) can be clearly seen by employing the mean-field approximation which assumes
an equal interaction strength between the crust domains ( i.e. all domain-moments act as
nearest neighbors). The coupling is of a strength J;; = J/II, where II is again the total
number of moments. The Hamiltonian then takes the simplified form

H=—> (JaP+H+ fi)m (98)

2

with an effectively reduced coupling constant Jug = J — 7 because of the demagnetizing
effect. In the same way as in the Curie-Weiss mean-field theory (see, e.g., Stanley 1987)
for the Ising model the interaction of a moment with neighbor one is replaced by the
interaction with the overall magnetization P of the system. This woild be, indeed, the
correct Hamiltonian when the coupling constant for all the moment pairs would be the
same, i.e. for infinite range interactions. For such a case the local field of each side, Eq.
(86), 1s reduced to the form :
b= P+ H o+ f.. (99)

We see, therefore, that random fields can be viewed as mean-field fluctnations (cf, e.g.,
Kondratyev 1994, 1996, Kondratyev & Di Tore 1996).

It turns out that such simplified treatment already reflecis most of the essential fea-
tures of the long-length scale behavior of the system in finite dimensions, e.g., the model
exhibits hysteresis, while sweeping the external field through the value b, (cf. sect. 6.2)
. At growing disorder one finds a continuous transition from the case of the macroscopic
discontinuity in the magnetization (corresponding to an avalanche spanning almost entire
sample) to the series of magnetic jumps of the smallest size. At transitional values of
the disorder the system displays the power law distributions of noise {avalanches) and an

universal behavior providing thereby criticality signals.

7.1. Magnetization Curves and Equation of State

To investigate the magnetization versus an external field H we consider initially the
case by > H > b, when all sides have finite value of the moment m; = v, and they
are directed along the field vector H. At adiabatically decreasing field each moment
m; exhibits a jump at a position of the level crossing, i.e. when its local effective field
b = JgP + H + f; passes the value b,. At a given field strength A all moments with
the side local field b > b, & f; > b, — J.gP — H have the value v, and point along
the field vector, while all moments with b; < b, < f; < b, — J.gP — H are reduced to
Un-1. For the ensemble average P of the magnetization P defined by Eq. (83) we find
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Fig. 25— Mean-field magnetization curves at the disorder R = K./2. The solid line denotes the
demagnetizing evolution, while the magnetizing direction is indicated by dashed line.

the self-consistency equality
P = / W(fym: df (100)
which gives the relation between the averaged mean-field magnetization and the external

fleld H. The step-wise m; (see Eq. (82)) yields the self-consistency equation in the form
_ bosi—JogP=H o
P=viit, [ Wif) df. (101)

Jby— T P—H
Here we have accounted for the relation v, — v,y = v,, which is obvious from Eq. (82).
We assume the inequalities b, — b, > bny1 — JegP — H > R and replace in Eq. (101)
the upper integration limit by co. Then making use of the functional form Eq. (79) we

derive the magnetic Equation of State (MEoS)

Uy, -’ +Bn
w = 2 -+ erf rj j} ' (102)

which is expressed in terms of reduced magnetization @ = 2P/y, — 1, disorder o =
2\/§R/Jeﬁrun, and external field B, = 1+ 2(H — b,)/Jesvn. The error function erf(h) =
212 |y exp{—y®}dy.

The corresponding to MEoS Eq. (102) magnetization curves are displayed in figs. 25,

26, and 27 for various disorders. At small values (i.e. subcritical region, see fig. 25)
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Fig. 26.— Mean-field magnetization curve at the disorder R = R,.

the curve shows the magnetic hysteresis similarly to simulation results (cf. fig. 20 of
sect. 6.2 and discussion therein). The magnetization changes step-wise indicating thereby
diverging slope at critical fields. The hysteresis gap decreases with increasing disorder.
In contrast to simulation results the mean-field approximation yields vanishing hysteresis
loop above the critical point. As shown in fig. 26 at critical disorder the magnetization
curve exhibits the diverging slope as well, while the slope become finite for over-critical
conditions. Such properties are in agreement with the simulations, cf. figs. 20 — 23 of
sect. 6.2 and discussion therein.

It is worthy to stress here that the relation Eq. (102) gives the continuous dependence
of the magnetization as a function of external field since it corresponds to the smoothed
quantity P associated with the ensemble average over magnetization events. The indi-
vidual events, however, represent the magnetization (or demagnetization) processes as

successive erratic jumps between metastable states.

7.2. Mean-Field Phase Diagram

Employing the mean-field MEoS Eq. (102) we consider some general magnetic proper-
ties of a crust with respect to the position in {H, R}-plane corresponding to strengths H
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Fig. 27.— Mean-field magnetization curve at the disorder R = R,.

around the value b,. Making use of Eqgs. (3) and (102) we find the magnetic susceptibility

of interacting nuclei in the form
x = dP/dH = v, W (h)/(—t(h)) )
with h = b, — J.gP — H and |
t(h) = v JgW(b, — JgP — H) — 1. (104)

The singularities of the susceptibility given by roots of the function ¢(h) (i.e. solutions of
t(h.) = 0) define the critical conditions h.. Such solutions never exist for real values of
the field H at large disorders B > v, Jeg/ Vor = R., when the function #(h) is negative
at any field H, while the value of y and the slope of magnetization curve are always
finite. Correspondingly, for such disorders the solution P(H) of Eq. (102) is analytic at
all values of H, indicating thereby the stable regime of magnetic field evolution.

For B < R., however, the condition t(h.) = 0 is fulfilled at critical fields H.(R).
Applying the functional form Eq. (79) we find two roots

he = £/In(vaJug/ V27 R). (105)
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Fig. 28.— The mean-field phase diagram for the RJIM model Eq. (98). The upper HY (solid line) and
low H! (dashed line) coercive fields meet at the critical point H(Re) = by — Jegury /2.

Using the mean-field MEoS Eq. (102) again we obtain the strengths

HYNR) = b, — ””;2]‘3“ (106)
+ (21%\/111(U7LJ63/V 2nR) — %L;eﬁerf[\/ln(unJeH/V 27rR)]>

with -” and ‘+’ corresponding to low H.(R) and upper H%(R). critical fields, respectively.
At magnetic fields far from the conditions of level crossings, e.g., b,_1 < H < bpt1, the
crust experiences a stable phase.

The phase diagram obtained within the mean-field treatment is shown in fig. 28. The
spinodal regions are located between the fields H}(R) and H*(R) (i.e. at the field strengths
corresponding to the level crossings of crust nuclei) which meet at the critical point. At
such critical values of disorder £ = R. and magnetic field BS(R.) = 0 the magnetization
curve P(H) shows diverging slope. For R < R. the solution P(H) is unique only for H
outside of a certain interval [H1(R), H*(R)]. In the range between the two “coercive fields”
H(R) and H¥(R), the equation has three solutions, two — stable and one — unstable.
Unlike equilibrium systems which in zero temperature limit always occupy the state with
the lowest overall free energy, the considered nonequilibrium system is trapped due to the

specific local dynamics in the current metastable state (i.e. local energy minimum) until
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it is destabilized by the external magnetic field. For decreasing external magnetic field
such a behavior implies that the system always remains in the metastable state with the
largest possible magnetization. On the other hand, for increasing external magnetic field,
the system is located in the metasiable state with the smallest possible magnetization.
As a consequence one obtains a hysteresis loop for P(H ) with macroscopic discontinuities
at the upper and lower critical fields H*(R) and H!(R), respectively (see fig. 25).

7.3. Scaling Relations

At critical conditions the system displays some universal scaling behavior which we ana-
lyze by considering respective singularities of magnetic susceptibility. To obtain potential
scaling behavior in the vicinity of such conditions we expand the denominator of magnetic

susceptibility Eq. (103) t(h) around critical values h, = b, — JugP(H.(R)) — Hs(R)

t o= v dugW(h) — 1 = —1 + vy Jeg(W(hs) (107)
W h)(h — ho) + (1/2)W"(he)(h = ho)* + - - )

Since by definition of k.
tHhe) = vpdegWih,) —1 =10 (108)
we find for the singularity of magnetic susceptibility at small values (h — k) the foliowing

form
X = d73/dH (109)
= (=W )/ (Jeg{W' (he)(h = he) + L/ 2W"(he)(h — he)® +--2)) .

For general analytic form of random field distributions Wi(h) with a single maximum
and nonvanishing second derivative (W”(h,) < 0) the form Eq. (109) of the singularities
suggests two different scaling behaviors which can be classified with respect to the cases
W' (h,) =0 and W(h.) # 0.

We at first consider the case of vanishing first derivative of the distribution function at
critical conditions W/(h.) = 0. For a Gaussian distribution of width £ = R. with zero
mean value such a condition corresponds to the relation i, = b, — JgP(H.) — H. = 0
and, consequently, leads to the equalities W (h,) = 1/(v27R.) and W"(h,) = 1/(~/27 R?).
Using Eq. (108) one obtains K. = Jugvn /27, This situation is related, in fact, to the
Jargest possible value of R for which the average magnetization P(H ) exhibits a point of
diverging slope within the mean-field approximation.

Integration of Eq. (109) over an external field H leads to a cubic equation for AP =
P — P(H(R)) and the leading order scaling behavior in the vicinity of the critical point
(i.e. for small AH = H — H(R.) and r = (R. — R)/R < 1)

AP(r,AH) ~ [rlPM(AH/|r|P), -(110)
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where the mean-field theory predicts the critical exponent § = 3, while the function M
is given by the smallest real root Gi(y) of the cubic equation

. 12 12+/2

G*F—G - v2

T 7r3/2Rcy -

0. (111)

Hereafter + refers to the sign of r.

In a sunilar manner for distributions with B < K. we obtain the relations W (he) =
1/(vndeg) and W'(h) # 0. Integrating Eq. (109) over H at critical conditions k. =
bn — JexP(H(R)) — H.(R) yields a quadratic equation for the magnetization. Then the

scaling behavior reads
AP =P —P(H(R)) ~ (H — H(R))*, (112)

where the mean-field critical exponent ¢ = 1/2 for H in vicinity of critical field H.(R).
As is evident from Eq. (106) H.(R,) = b, — Jugv,/2, while for small » > 0 we obtain
(Ho(R) — by — Jegvn/2) ~ rPPwith 36 = 3/2. At zero disorder H*(R = 0) = b,, and
HYR =0) = b, — Jogvn. The corresponding phase diagram is shown in fig. 28.

It 1s worthy to notice here that the scaling results for disorder parameters K close to
critical values R. (as given by Eq. (110)) resemble those of the Curie-Weiss mean-field
theory for the equilibrium Ising model (see, e.g., Staniey 1987) near the Curie temperature
(7' = Tg¢). For the case T' < T the equilibrinm model, however, has a discontinuity in the
magnetization at vanishing external field, while for B < R. RJIM-model displavs a jump
in the magnetization at a (history d-ependent) nonzero magnetic field H.(R), where the
corresponding metastable solution becomes unstable. The macroscopically large avalanche
lines HY'(R) are in fact similar to the spinodal lines in spinodal decomposition (Stanley
1987). At the same time, the mean-field theory does not show any hysteresis for R > R,
(see figs. 26 and 27), in contrast, to numerical resulis (cf. figs. 20, 21, 22, 23, 24 and

discussion therein).

8. Avalanche-Size Distribution

As discussed above the adiabatically varying external magnetic field induces the moment
jump avalanches. Due to the ferromagnetic interaction a jumping domain-moment can
cause some of the nearest neighbors to jump, which may in turn trigger some of their
neighbors, and so on, generating thereby (de)magnetizing avalanche. In this section we
demonsirate that in vicinity of critical conditions such a process exhibits some universal
statistical properties, in particular, the size (i.e. number of jumped domain-moments)

distribution displays a self-similar power-law behavior.
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Fig. 29— Cumulative avalanche size distributions from numerical simulations in demagnetizing direction
at zero demagnetization energy, i.e. 1 = 0. Results for subcritical disorder R = 1.6 are shown by dashed
line, the vicinity of critical poini R = 2.4 and 2.5 are indicated by open and solid circles, respectively,
while solid squares correspond to over-critical value R = 3. Solid line displays a power law size dependence
with an exponent 7 = 0.8,

8.1. Simulation Resulis

As seen from numerical (sect. 6) and mean-field (sect. 7) analysis of the magnetization
curves the avalanche sizes depend strongly on the position of a system in {R, H}—plane.
We analyze the size distribution integrated over the demagnetizing branch of the hysteresis
loop, i.e. for the decreasing magnetic field H. We consider the cumulative size distribution
corresponding to the number of avalanches of a size exceeding certain value

C(S) = Y DIL). (113)
L>8

where differential size distribution D(S) is proportional to the number of avalanches with
the number of jumped domains S. We note that for large sizes S > 1 the power law
distribution D(.S) ~ 577 yields for Eq. (113) the following relation C(S) ~ S*=7 ~ SD(S)
providing thereby relationship for respective exponents. Employing cumulative values

C(S) allows to reduce statistical errors in the data analysis.
For cases of zero demagnetizing energy, i.e. n = 0, the distributions C(.S) are presented

in fig. 29. One sees a clear transition from ‘U’ shape distribution at small disorders to an
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Fig. 30~ The same as fig. 29 for scaled avalanche size distributions, S7C(5).

abrupt exponential suppression of large size avalanches at large disorders. At transitional
values the distribution shows a behavior close to the power law dependence with an
exponent 7 ~ 0.8 corresponding to 1.8 for the differential size distribution (see Eq. (113)
and discussion therein) and providing, thereby, a signal for self-organized criticality.

Further visualization of such a signal can be achieved by analyzing scaled avalanche size
distribution which is defined as the distribution normalized with respect to the power law,
1.e. Cgaea ~ S7C(S). As shown in fig. 30 such a presentation makes rather transparent
the change from ‘U’-shaped distribution form to the strongly enhanced number of small
avalanches and sharp nearly step-like reduction of large sizes.

As illustrated in fig. 31 the large avalanches are suppressed as well due to the effect of
demagnetization energy. The effect is particularly pronounced for the scaled avalanche
size distribution displayed in fig. 32. One sees that, in addition, demagnetizing effect
gives rise to noticeable enhancement in the number of middle size avalanches. Such an
enhancement becomes more proneunced with encreasing the demagnetizing energy, i.e.

the parameter 7.
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Pig. 31.— Avalanche size distributions at nearly critical disorder R = 2.4 and the demagnetizing energy
parameters 7 = 0 (solid squares), 0.1 (solid circles), 0.5 (open circles). Solid line represents the power

law with an exponent + = (.8.

8.2. Avalanche Sizes within Mean-Field Approximation

The discussed in sect. 8.1 characteristics of numerical results for avalanche size distri-
butions can be understood within the mean-field treatment which is introduced in sect.
7. To consider the distribution properties we first evaluate an average number of the trig-
gered domains per a single jump. Since within the mean-field treatment all the moments
are coupled as nearest neighbors with a strength (Jg /1), the single moment jump from
v, t0 v, changes the effective field of all other moments by a quantity (J.g/11). Here
Il stands for the domain number as in previous sections. In case of a large system with
Il > 1 the average number of secondary domain-moments (which are triggered to jump

in response to such a change in the effective local field) is then given by
Nivig = (VpJog /[ INIIW (b, — JogP — H) = v, Jeg W (b, — JeaP — H). (114)

When an inequality 7y, < 1 is satisfied, the avalanches quickly terminate and size distri-
bution displays a suppression for large number of domain jumps. For & case figig = 1 the
avalanches are able to sweep almost entire system, since each jumping moment triggers

on average one other moment. Such conditions are met when the magnetic field H takes
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a value at the macroscopically large (‘infinite’) avalanche line H = HY'(R) at R < R.,
since the condition iy, = 1 s equiva,lént to the relation t = 0 (cf. Eqs. (104) and (114)).
As is evident ftom the discussion leading to Eq. (100} an avalanche of the size S in
some magnetization event originates from certain configuration of random fields. The
probability to find respective configuration and. therefore, an avalanche can be easily
evaluated for sufficiently large systems, i.e. for 5 < II. Let us assume that the random
field f; on a side i corresponds to the primary moment m; triggering an avalanche of
the size 5. This implies that the random fields of exactly (S — 1) sides associated with
successive moment jumps are located in the interval [(f; — v, S Jeg/I1), f;]. When the
number II is sufficiently large, i.e. v, 5Jg/Il <« R, the probability density of random
fields W (f) is approximately constant over this interval. Then the probability P(S5) to
generate corresponding configuration of random fields is given by the Poisson distribution
A (5-1)
G
with the average value A = v, JegSW (b, — JogP — H) = S(t + 1), where t = figyg — 1 =
UnJesiW (b, — JegP — H) — 1. We recall in this regards Eq. (104) pointing out thereby the

relationship between the average number of triggered moments 7y, given by Eq. (114)

P(S) = exp(—A) (115)
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and determinator of the magnetic susceptibility:

To obtain the avalanche size distribution D(S,t) the probability P(S) Eq. (115) has
to be multiplied by a factor 1/5, a value corresponding to the probability that among S
moments the chosen one has the highest random field and triggers the avalanche. Then
accounting for the relationship between A and ¢ the avalanche size distribution D(S,t)

reads
D(S,1) = SG=2/(§ — 1)I(t + 1)5~ D50+ (116)

It is worthy to clarify further the difference between the probabilities P(S) and D(S,%)
expressed by Eqs. (115) and (116), respectively. The probability P(S) includes cases in
which the random fields of the S moments are arranged in the interval [( f; — v, SJe/11), fi]
in such a way that they can jump not in one extended avalanche, but rather in some sepa-
rate avalanches triggered at slightly different external magnetic fields. Imposing periodic
boundary conditions on the interval [(fi — v,,SJes/1I), fi] it can be seen that for any ar-
rangement of random fields in the interval there is exactly one moment which can trigger
the rest in a single extended avalanche. Thus the random field configuration with the
smallest random field domain triggering an avalanche is met in (1/5) part of the cases
accumulated in the probability P(S). The ratio of the probabilities P(S) and D(S,t) is
given then by the total number of moments in the avalanche since the value D(S5,t) cor-
responds specifically to an avalanche of size S starting with a moment jump at a random
field f; = b, — JgP — H.
Employing Stirling’s formula

St /21§52 exp{—S}
in Eq. (116) we find for large S the relation
D(8,1) ~ S exp{—5t%/2} . (117)

The distribution at large sizes is essentially determined by the determinator of magnetic
susceptibility which classifies the critical behavior, see Egs. (107) and (109) as well as
discussion therein. To obtain the scaling behavior of avalanche size statistics for two

different. criticality classes we make use of Bq. (107) for the expansion of #(h) around k.

i the expression Eq. (117).

8.2.1. Awvalanche Sizes in the Vicinity of the Critical Point

In the vicinity of the critical point (R, H.(R.)) the relations k. = 0 and W'(h.) = 0

yield an expansion

t = v Jeg(W(0) — 1) + JgW"(0)h% + O(R®). (118)
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Employing Eq. (110) leads to the scaling relation
t~r[lF1/4rGL(AH/|rP%)?], ©(119)

‘where G. is the solution of Eq. (111), while + again refers for the sign of r = (R, — R)/R.
Combining Egs. (117) and (118) we obtain scaling form for the avalanche size distribution

in the vicinity of the critical point

D(S,r,AH) ~ ST K4(S/|r|7, AH/|r|?®) (120)
with the mean-field critical exponents 7 = 3/2, o = 1/2, 86 = 3/2, and respective scaling
function _

* 4
e = b o
Vor

8.2.2.  Awalanche Size Disirtbutions at Critical Fields

Since in the case R < R, the first derivative of random field distribution is not vanishing

W'(h¢) # 0 the expansion ¢ contains the linear term with the difference (b — k) as well

t = vpdegW(he) =1+ vy dugW/ (h)(h — he) + - - -
~ v JegW'(he)(h — he) (122)
= v, JegW'(he)Jeg(P — P(H(R)) — AH

Following the steps that led to Eq. (112) we arrive to an expression

t =2/ JgW'(h)AH + O(AHY?) (123)

so that for the field strengths H approaching the onset to macroscopically large (infinite)
avalanche (with H < H¥(R) for increasing field H and H > H!(R) for decreasing field)

the avalanche size distribution is given by
D(S,AH) ~ 573 exp {—2[W'(h)J.g]S|AH|}. (124)
This relation can be re-written in more general form
D(S,AH) ~ ST"Y(SIAHM*) , (125)
with the exponents £ = 1 and 7 = 3/2 in mean-field theory, and corresponding s’caling

function Y.

9. Implications in SGR-Burst Activity

As shown in sects. 5, 6, 7, and 8 the neutron star crust magnetotransport exhibits

irregular jumps, when magnetic fields match the vicinity of step-wise anomalies of nuclide



JAERI-Research 2001-057

T T T T T T T T —T T —r7 let+l®
le+18 | majority minority )l
4 Le+18
O le+17 | "
:_"g - levl7
[,
g le+16 | )
g — le+i6
a0
§ ]
le+15 ]
- le+l5
Bde fe 130G AX 7
zi."‘l“i‘r KxoKADRX
le+15 ,
le+14 L ‘ ' Li L T X |e+ld
2 3 4 5 LoD 1000 L0000 100000 los06
Energy Levels Age [years]

Fig. 33— Schematic view of neutron star crust magnetotransport. The left panel shows the magnetic
field dependence of neutron majority- and minority-spin energy levels for NM, decreasing and increasing
with the field, respectively {cf. figs. 12 and 13). The right panel represents the time evolution of overall
magnefic field with an inset displaying the magnetodynamics during the acfive bursting period. The
respective level crossing (see text) is indicated by horizontal line intersecting the left and right panels.

magnetic moments. Such an epoch of neutron stars is represented schematically in fig.
33. As shown in the inset of the right panel of fig. 33 the RJIM model confirms very short
periods for the burst activity with rather small time intervals between the bursts which
are associated with step-like change of the crust magnetic field. Such sharp decrease
of the magnetization is caused by avalanches of the magnetic moment jumps due fo
ferromagnetic coupling between nuclides. The proportional to the avalanche size excess of
magnetic energy is released to the magnetosphere. Assuming the field strength H ~ 10'%?
G in the outer crust of a linear size [, ~ 100 m and employing an estimate Eq. (74)

the energy upper himit is evaluated

EHGR ~ H’Plu

42 o
max crust ~1 0 GFgS (] 26}
to be in a good agreement with SGR-burst observations, the detailed comparison is given
in sect. 9.1. This energy is larger by about 30 orders of magnitude as compared to
the case of magnetic Barkhausen emission (see Eq. (73) and discussion therein). When

the de-magnetization jumps involve the inner crust as well, the linear size is an order of

Magnetic Field [(3]



JAERI-Research 2001-057

-« " SGR1900+14/rxte  m
1000 £ /batse @ 7
' SGR1806-20/rxte ¢
. /batse -~ A
§ e fice v
S 100 | :
> i e
“f@ h ".:f’:.
~
PN
§ 10 ¢ 3
=,
1E
0.01 0.1 1 1(8) 1002 1000
Fluence (10 “ergs cm )
Fig. 34— Cumulative fluence distribution of SGR-bursts as observed by various missions. SGR 190014
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The solid lines represent fits to the power law distributions.

magnitude larger and the energy release extends up to 10**% ergs, a value corresponding
to giant flare events.

The typical time for the energy release is determined by the spanning time of the
crust linear size, 7., & louse/cm. The speed of avalanche propagation ¢, is determined
by the relaxation time my of nuclear reconfiguration associated with magnetic response.
Applying familiar value 7v &~ 107°°% s we find for the speed ¢,, ~ a/7y ~ 10® cm/s. The
corresponding estimate for spanning time 7,, & 107" ms is in a good agreement with
rising time of SGR-bursts (cf. Kouveliotou et al. 1993, 1998, Thompson & Duncan 1995,
1996 ).

In the reminder of this section we analyze statistical properties of SGR-burst activity,
common for various pulsars. In particular, we show that the distribution of magnetization
jumps (i.e. number of jumped domain-moments and, respectively, the emitted energy or
fluence) displays an universal self-similar power-law behavior, while the scaled waiting
‘time distributions between successive bursts follow a function universal for various sources.

We also propose the systematics for periods of SGR active phases.
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9.1. SGR-Burst Statistics

Figure 34 represénts the cumulative distributions of detected fluence, i.e. the burst
number with a fluence exceeding certain value, as observed by different missions, sensitive
to individual regions of emitted energy. The observed distributions are well fitted by the
power law dependence. Relevant exponents range from 0.47 to 0.97.

To calculate the total energy released per respective measured burst fluence we assume
an isotropic emission of the sources at the remote distances R & 14.5 + 1.4 kpc for SGR
1806-20 (Corbel et al. 1997) and R =~ 7 kpc for SGR 1900414 (Vasisht et al. 1994).
Then the fotal energy associated with the ~-ray burst emission can be estimated to be
distributed uniformly over the surface of a size (47 R?) which is evaluated as (2.53 - 10%°
cm?) and (5.8 - 10*® cm?) for corresponding pulsars. The result of respective renormal-
ization in the fluence is shown in fig. 35. We see that the observed fluences cover rather
wide region of the emitied during the burst energies which extends, in fact, over nearly
6 periods. In particular, the set of RXTE/PCA detectors displays a sensitivity for the
fluence region from 7-10% to 2- 10 ergs for SGR 1900414 and from 3 - 10> to 4.9 - 10%°
ergs for SGR. 1806-20, while the observations by BATSE mission yield an information
about the burst activity in the range of larger energies 1.1-10% —~ 1.5 - 10! ergs for SGR
1900414 and 3.5 - 103 — 1.1 - 10* ergs for SGR 1806-20. The upper range of considered



JAERI-Research  2001-057

S > " SGRI900+14/rxte =

S j /batse  ® ]

S ol SGR1806-20/rxte & |

N /batse A :

O] .

S /ice v

S

i re T 0.67 e E

V

)

S

S o1l |

<= 5

NY

-

§ 0.0I 3 3

Z Py 4 i ad PR " Kook " P 1
0.01 0.1 1 - 10 100 1000

| Fluence (103 8 ergs)

Fig. 36.— Normalized cumulative fluence disiributions of SGR-bursts are compared with the avalanche
size distribution from RJIM for the cubic laitice of a size (150)® represented by the solid line. The
observational data represent the isotropic fluences accounting for different remoteness of pulsars (see text)
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here fluence distributions is also provided by the results of the ICE mission with isotropic
energies between 3.6 - 10% and 1.6 - 10*! ergs for SGR 1806-20. '

The cumulative avalanche size distribution in the vicinity of the critical point is com-
pared in figs. 36 and 37 with the normalized cumulative fluence distribution. In the energy
range exceeding 5 periods the observations by various missions are in a good agreement
with simulations when accounting for the scale of the energy release given by Eq. (126),
remoteness, and isotropic emission of such objects. The agreement is slightly better when
difference in the distances for sources is taking in to account as compared an assumption of
nearly equal remoteness ~ 10 kpc (Kondratyev 2001). Some difference between the data
and simulations at the regions corresponding to lower limits of the energies of detectors
could be due to reducing detector efficiencies. The obtained event number dependence is
well fitted by the power law with an exponent 0.67, which corresponds to the value 1.67
for the differential distribution and provides a signal of self-organized criticality in the
burst statistics.

For the case of a constant change rate B of the magnetic field the inter-avalanche field
interval is proportional to the time interval (i.e. waiting time) between the induced bursts.

Taking the respective normalized values, i.e. inter-burst time and inter-avalanche field, we
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Fig. 37.~ The same as fig. 36 but assuming the same remoteness ~ 10 kpc for both sources.

compare the theoretical predictions with observations in fig. 38. The theoretical results
are shown for the events, i.e. avalanches, covering entire range of intensities of fig. 36,
while the observations are only for bursts registered by RXTE/PCA detector set. As
we have seen, however, from analysis of simulation data, the applications of constraints
or limits on the avalanche sizes influences considerably the position of the distribution
maximurm, while the width is only slightly affected.

As seen in fig. 38 for different SGRs the waiting time distributions as a function of
the reduced time, i.e. the time normalized at the maximum, obey universal function.

The data are well reproduced by simulations and fitted at a maximum by the lognormal

o (1) (Int/ty)? o
LN(t) = ——=*— ———— 127
) V2t h”l(}“exp< 2(Ilno)? ) (127)

with o = 3.6. Such a property points out the single time scale for SGR-burst triggering

function

processes. Within RJIM such a fime-scale is determined by the ratio of the disorder
parameter A and the field change rate 7 = R/ B. Therefore, the scaling with respective
time leads to an universal function. It is worthy to point out here the difference in the

field change rate during quiescent and active phases.
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the fit to the lognormal distribution of the width 3.6.

9.2. Periods of Burst Active Phases

According to presented RJIM model the star enters the phase of intensified burst activity
when the magnetic field approaches critical values (see fig. 33 and discussion therein).
An expectation time T for an inactive evolution is then determined by the ratio of the
spacing [Jim, of magnetic moment jump anomalies (see Egs. (80) and (81)) and the rate
B of overall field change, T, ~ — i/ B. Since the magnetic energy Fg ~ B? dominates
and powers the emission we find B ~ —Ly/B. Using the familiar (Shapiro & Teukolsky
1983) relation L, ~ Blf and assuming the proportionality of the crust field to the field on

star magnetic poles * B ~ B, we obtain
T?L, = const. _ (128)

In fact, SGR 0526-66 has been reported to have nearly half a year period of burst activity
(Rothschild & Lingenfelter 1984). At the same time SGR. 1900414 has experienced four
active periods during 1979 (Mazets et al. 1981), June — August 1992 (Kouveliotou et al.

21t is worthy noticing here that such an assumption implies an exponential decay of the field with time B = By exp{—at}.
For some sufficiently small time interval it can be always a reasonable approximation.
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erg-s {see fext).

1993), May 1998 — January 1999 (Gogis et al. 1999, 2000), and April 2001 (Kouveliotou
et al. 2001). The active periods are short, and the interval between them varies from
2 to 12 years with an average expectation value of about 6 years. Although SGR 1806-
20 activity does not display a clear periodicity, a plausible two years period has been
suggested from an analysis of its fiming residual (Woods et al. 2000).

As iliustrated in fig. 39 SGR’s observables foliow rather well the systematics given by Eq.
(128). The evaluated constant can be compared, e.g., with total angular momentum of
neutron star (Shapiro & Tenkolsky 1983) with typical period 10°® s of rotation for SGRs,
I = 10°*% ergs - 5. The obtained systematics predicts an expectation time of 3-4 years for
the periodicity of intensive burst sets for SGR 1627-41 (Hurley et al. 2000}, suggesting
thereby the next probable active phase in fall of 2001 or 2002. We note, however, that
fluctnations of level spacing and. corresponding, intervals of magnetic moment jumps give

significant variations of activity periods, like in case of SGR 1900+14.
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10. Summary and Outlook

Magnetic response of neutron star matter at various densities have been considered by

employing the thermodynamic formalism within the mean-field treatment. As demon-
‘strated the uniform neutron liquid shows almost linear magnetization. We have seen that
quantization of spatial motion results in a sharp abrupt field dependence of the magne-
tization. Such a behavior is particularly pronounced in the case of outer crust nuclides
with three-dimensional confinement of spatial motion. In such a case the level crossings
give rise the jumps of magnetic momenis of nuclei.

The Pauli-type paramagnetic response of neufrons results in the moment jumps arising
almost periodically at crossings of majority- and minority-spin energy levels. The jump
period is determined by the distance between neighboring levels.

The proton magnetic response is determined by the relationship between spin- and
orbital-magnetism. It corresponds to more frequent jumps of nuclear moments.

As seen such jump anomalies of magnetic moments in conjunction with ferromagnetic
inter-nuclide coupling induce sharp steps in the crust demagnetization process due to
avalanche propagations. As a consequence, sudden energy releases to magnetosphere
lead to SGR-bursts. The crust seismic activity is not implied within such a triggering
mechanisin, corroborative with a lack of spin-up glitches in the rotation of such pulsars.
The quasi-periodic (with the field) magnetic moment jumps are consistent with some
regularities in the SGR-burst emissions and provide a tool for systematic analysis of SGR
activity.

For the description of such noisy magnetodynamics of nentron star crusis we develop
the RJIM model accounting for quantum fluctuations due to the discrete level structure,
internuclide coupling, disorder and demagnetization energy. The comparison of model
predictions with observational data allows, therefore, to quantify crust properfies in terms
of respective set of parameters. From numerical simulations and an analysis based on
the mean-field treatment we find the magnetic equation of state and identify conditions
corresponding to the occurrence of self-organized criticality. As demonstrated the system
exhibits universal scaling behavior at such conditions.

As shown the predicted by RJIM model scaling properties for, e.g., the burst intensity
and waiting time distributions, are in a good agreement with SGR observations supporting
thereby the credibility of RJIM model. As implied within considered treatment the specific
feature classifying SGRs is plausibly represented by the crust ultra-strong multipolar
magnetic field components matching the strength region of important quantization effect
in nuclide magnetization. For outer crusts such fields exceed 10'® G, while weaker fields
are expected for neutron-rich nuclides of inner crusts (Kondratyev, Maruyama & Chiba

2000, 2001, 2001a, Kondratyev 2001a). Further implications of the proposed magnetic
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emission mechanism in the analysis of SGR activity can provide better understanding of
neutron star crust, in particular, strengths and evolution of magnetic fields.

Finally, we note that arrays of atomic clusters and/or quantum dots (see, e.g., Kon-
dratyev & Lutz 1998, 1999) can display similar noisy magnetodynamics at conditions far
from magnetization reversal. Such an effect might be employed as a tool to analyze the

roughness and disorder in an array.
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Appendix
A. Thermal Effects in Shell-Corrections

The thermal effects in the oscillating parts of thermodynamic quantities are related to
the integrals of the form (cf. Eqgs. (24), (25), (26), and (27))

O(T) = /_ °; de - L(e) exp{iS(e) /R} F(c = \), (A1)

where the multiplier L(¢) exp{iS(¢)/h} originates from the oscillating level density com-
ponents. Within the semiclassical treatment such oscillations are associated with a con-
tributions of periodic orbits, while the quantity S(€) denotes an action integral along the
orbit with the period 7 (¢) = dS(¢)/de. In the case of Landau levels or HO the relation
Eq. (A1) with S(€) = 27e/w represents an exact result of quantum mechanical treatment.
At realistic temperatures 1" the energy derivative of the Fermi distribution function F'(¢)
exhibits a sharp peak of a width T at chemical potential ¢ = X and approaches zero
at other values of the argument. In the limit T — 0 the energy derivative becomes a
6-function F'(z) = —6(z).

Therefore, we can employ the linear expansion of an action S in the vicinity of chemical
potential S(e) =~ S(A) + 7 - (e — A). Then, integrating over the energy in Eq. (Al) and

making use of the relation

/ dz- = — ,
0 1+2z  sin(ry)
we obtain the thermally smoothed osciliating part in the following form

0 = L(\ expliS(V)/RMR(T/Ts), (A2)

where R(z) = z/sinh(z), Ty, = 1/ (xT), and T = T()).

B. The Fermi Integrals

We briefly outline here some properties of the Fermi integrals

L(z) = T(v+1)fonlexp{z}), (B1)
) = 0o [T (B2)
I'v) = /Ooo:v””lexp{——a:}d:c (B3)

which reflects the characteristics of the Fermi systems. '
At high temperatures T' 2 A, i.e. small fugacity y = exp{\/T'} < 7, the function f,(y)

can be expanded as a series

PO CTE | (B
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At low temperatures the Fermi integration can be written by making use of the Som-

merfeld lemma (Landau & Lifshitz 1985) as a quickly convergent series

) z

Tv(v —1)(v —2)(v —3) ;74
- E)'+e)

L) = (r(v>”z”<1+"”-9~?—”—(f->2

(B5)
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