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Evaluation of nuclear data has been performed for 2*'Np, **'Am, 2*®Am and ***Am. Neutron data
were obtained at energies from 20 to 250 MeV and combined with JENDL-3.3 data at 20 MeV. Evaluation
of the proton data has been done from 1 to 250 MeV. The coupled channel optical model was used to
obtain angular distributions for elastic and inelastic scattering and transmission coefficients. Pre-
equilibrium exciton model and Hauser-Feshbach statistical model were used to describe neutron and
charged particles emission from excited nuclei. These evaluation is the first work for producing full sets of

-

evaluated file up to 250 MeV for 237Np and Americium isotopes.
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1. Introduction

The nuclear data evaluation at intermediate energies has the principal meaning for increasing of
accuracy of data used in different applications. Such applications include developments of concepts of the
accelerator-driven waste transmutation system, radiation therapy, isotope production for medicine, material
research using the accelerators and others. In data evaluation special attention should be given for incident
particle energies below 250 MeV, where application of codes based on the intranuclear cascade evaporation
model and the QMD-model is rather questionable due to the physical limitations or the deviation of the
calculated and measured nuclear reaction characteristics.

The goal of this work was to obtain the nuclear data for 'Np, **' Am, **Am and **"Am suitable
to study neutron transport, heating, change of nuclide composition of the nuclear fuel and for other
applications in the whole energy range from thermal energy up to 250 MeV. Both neutrons and protons
were considered as incident particles in the present work. The evaluation has been done with theoretical
models, as semi-empirical and empirical approaches, whose validity has been approved based on the large
number of experimental data. Neutron data at the energy 20 MeV were combined with new JENDL-3.3

evaluation. Proton data are obtained from 1 to 250 MeV.

2. Brief Description of the Nuclear Models and Codes used in the Present
Work

Coupled-channel optical model has been used to provide total cross section, angular distributions
for elastic and inelastic scattering, and to calculate transmission coefficients for neutrons and charged
particles. Parameters of the optical potential were obtained to perform the calculations up to 250 MeV. The
numerical calculations were carried out with ECIS96 code [1]. The Hauser-Feshbach statistical and pre-
compound models realized in GNASH code [2] were used for the calculation of particle emission spectra
and nuclide production cross sections.

Nuclear level density was obtained on the basis of generalized superfluid model with the
parameters fitted to the cumulative number of low-lying levels and observed neutron resonance densities

[3]. The expression for nuclear level density is written as follows

p(U I, m)=p, (U I MK, (U)K, U), M
where pqp(U’,J,m) is the density of quasi-particle nuclear excitation [4], K,;(U”) and K;(U”) are vibrational
and rotational enhancement factors at the effective energy of excitation U’. The vibrational enhancement

coefficient K,;,(U’) was calculated according to Ref.[3].
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For the inner saddle and axially symmetric saddle deformation rotational enhancement factors
were obtained as follows K,(U)= & i , for the asymmetric saddle point Ko(U’) = 24/2T 0'1 Oy, and for

the outer saddle K (U’) = 20‘i [5], where G, and G, are perpendicular and parallel spin cutoff
functions. The attenuation of the rotational enhancement with the excitation energy growth was considered
according to Refs.[3,6].

The nuclear level density parameters were calculated according to the following expression [3,4]

a(l+8Wo(U'-E_,
a(U_), ifU'<U,_

YI(U-E_,)if U>U,_

a(U) = { ; @)

where the asymptotic value of level density parameter is equal to 3 =A(0+BA™"), 0:=0.073, B = 0.115,
o(U)= 1-exp(—yU), y‘=0.4/A”3 MeV™', 8W is the shell correction. The effective energy of excitation U,
“critical energy of the phase transition U, and the condensation energy E.o¢ were defined according to

Refs.[3,4]. For the ground state the shell corrections W in Eq.(2) were calculated on the basis of Myers,

Swiatecky approach [7]. For the inner and outer saddle points the values of SW.* and SWSB were taken

s
from Ref. [5] considering the difference between types of the saddle symmetry.

The fission barriers were considered as spin-dependent and described as follows [8],
B; (1)=C'B,,(J) +£(T) g(J) BW, —W,,), 3)

where B, (J) is the spin-dependent barrier calculated according to Sierk liquid-droplet model [9], SWgs

and 5Wsi are the shell corrections for ground state and the i-th saddle point, respectively, C' is the

adjustment factor, f(T) and g(J) are temperature and spin fade-out functions. Factors C' were defined in the
present work to provide an agreement between calculations and available experimental data for neutron

interactions with uranium isotopes. The nuclear temperature fade-out function f(T) in Eq.(3) was calculated

according to Ref.[8]:
1, for T<1.65MeV
f(T) = ) “
5.809exp(—1.066T), for T > 1.65MeV
The function g(J) was defined according to the following expression [8]:
1
g = )

1+exp( ~1J,,,)/ AT’

where the parameters I, and AJ are equal to Jjp=24, AJ=2.5 [10]. Nuclear dissipation effects resulting in
reduction of fission width with growth of excitation energy were taken into consideration based on the
results of Refs.[11,12]. '

The pre-equilibriam nucleon spectra were calculated with exciton model. Values of averaged

squared matrix element for two body interactions were obtained from Ref.[13], where the parameterization

_2_



JAERI—Research 2002—032

of <]MP> has been done as a function of E/n (where E is the excitation energy and “n” is the number of
excitons). The description of the pre-compound model including angular momentum effects can be found
in Refs.[2,14].

Multiple pre-compound emission has been considered. Certain improvement in the description of
Su’Ch emission has been done in the present work comparing with the GNASH algorithm [2]. The general
expression for the second pre-equilibrium particle emission spectra calculation used in GNASH code has

the following form [15]

o™ vy UT‘ do!™ [a)(lp,O,E+Q)0)(P—1,haU‘E_Q)

= R® |T.(E)dU 6
(i]fi (1‘_] I) (1)(1)’ l], I_I) 1) :] ] ( ) ( )

n i=mYU=E+Q

(13411 (X111
1

where and “j” is the type of the first and second pre-compound particle emitted, respectively; E is

emission energy and Q is separation energy for “j”-particle; do™/dU is differential cross section of p-h

3th
1

state after pre-equilibrium emission of “i”-particle; R(")i,j is the neutron-proton distinguishability factor
calculated according to Ref.[16]; Ti(E) is the probability of the “j’-particle to escape with energy E;
summing is for all “n”-exciton states and primary particle types.

Calculation of Tj(E) from Eq.(6) in the GNASH code [2] is based on simple approximation
considering s-wave transmission coefficient. The actual values used in the code are shown in Fig.1. In the
present work the probability of particle emission, T;(E), is calculated as follows
. M@

B FAME+Q

T,(E) (7
where 1% is the particle emission rate and A'; is the intranuclear transition rate corresponding to the

[1342)

absorption of “j”-particle in nucleus. The emission and intranuclear transition rates are calculated according

to the following relations

2S. +D)u. Ec™(E
xj.:( i )zujz ,()’ ®
Thg;
A =V;6"(E+Qp, ©)

where S;and p; are the spin and the reduced mass of *j”-particle, ci“vj, is the inverse reaction cross section,
g; is the single level density, V; is the velocity of the particle of “j”-type inside the nucleus, ¢™; is the
nucleon-nucleon interaction cross section corrected for the Pauli principle, p is the nuclear density.
Calculation of Tj(E) according to Egs.(7)-(9) corresponds to the basic assumptions of the hybrid exciton
model [16,17]. Values of T;(E) calculated in such a way are shown in Fig.1 for neutrons and protons. An
example of particle spectra calculated with the T;j(E) values obtained by Eqs.(7)~(9) is shown in Fig.2 for
*®Bi(p,p’) reaction at the incident proton energy equal to 62 MeV. The experimental data are taken from

Ref.[18]. The use of Eqgs.(7)-(9) improves an agreement with experimental data as shown in Fig.2.
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The model used in the original GNASH code [2] to describe the pre-compound spectra of the
composite particles contains the noticeable shortcomings. The example is given in Fig.3. This figure shows
the o-particle spectra for p+2°9Bi reaction at the primary energy E,=90 MeV, calculated on the basis of the
approach described in Ref.[2] and with pre-equilibrium model described below. The calculations with
GNASH code are not in good agreement with the available experimental data [19]. It should be noted that
any variation of the main parameters of pre-equilibrium model [2} coulﬁ not provide a reasonable
agreement with experimental data for complex particle emission from heavy nuclei. The shortcomings of
the GNASH algorithm [2] for description of the pre-compound emission for the particles with A = 2 were
pointed out also in Ref.[20].

In the present work pre-equilibrium o-particle emission spectra were calculated in the framework
of coalescence pick-up model [21] combined with the knock-out model as shown in Refs.[22,23]. Multiple
bre—equilibrium emission was taken into consideration. For deuteron, triton and *He spectra calculation thé
exciton pick-up model [24] was applied. Contribution of direct mechanism to deuteron emission was
considered on the basis of phenomenological approach [25]. All approaches considered above were tested
using available experimental data in the intermediate energy region of primary particles.

Fission neutron and y-spectra were obtained on the basis of the model described in
Ref.[26]. This model is the refined Fong approach [27] adjusted to experimental data for fission fragment
yields and other fission characteristics in the wide energy range of primary particles. The algorithm
described in Ref.[26] was used before as the part of the intranuclear cascade evaporation code [28]. In the
present work to increase accuracy of the obtained results this algorithm was introduced in ALICE code
[29,30], which is at the same time the modified and extended version of the original Blann code [31].
Application of this code (ALICE/ASH) allows to use more sophisticated models, such as optical model for
inverse cross sections and superfluid model for nuclear level density calculations, comparing with the

approaches usually used in the codes based on the INC model.

3. %'Np

3.1 Neutron Data Evaluation

Total, elastic and reaction cross sections calculated in the present work with coupled-channel
model are shown in Figs.4-6 in comparison with systematics predictions [32, 33] and JENDL-3.3 data.
Neutron elastic and inelastic scattering angular distributions for the selected excited levels are shown in
Figs.7-9 at the primary neutron energy equal to 20 MeV together with the data from JENDL-3.3, ENDF/B-
VI and CENDL-2. The calculated elastic scattering distribution for E,=50, 100 and 250 MeV is presented
in Fig.10. Figure 11 shows the direct neutron inelastic scattering cross sections calculated for the excited
levels 7/2% and 9/2" at the energies up to 250 MeV.



JAERI—Research 2002—032

Fission cross sections calculated with GNASH and ALICE/ASH codes are compared in Fig.12
with Fukahori’s systematics predictions [33], evaluated data in Ref.[34] and experimental data [35-39]. The
evaluated (n,f) reaction cross section is shown in Fig.13 at the energies up to 250 MeV. Figure 14 shows
the evaluated (n,f) cross section in more detail at the energies up to 50 MeV. Contributions of nuclides with
different Z in (n,f) cross section is presented in Fig.15.

Neutron production cross section calculated by GNASH and ALICE/ASH codes without the
consideration of the post-fission evaporation is shown in Figs.16 and 17. Contributions of different nuclei
in neutron production is shown in Fig.18 Figure 19 illustrates the neutron double-differential cross sections
calculated by GNASH code at the primary neutron energies equal to 50-200 MeV. Evaluated (n,xn)
reaction cross sections are shown in Fig.20. Figures 21 and 22 show the post-fission neutron characteristics.
Comparison of total neutron production cross section for uranium isotopes and 237Np is presented in Fig.23.

Evaluated charged particle production cross sections are shown in Figs.24-30.

3.2 Proton Data Evaluation

Basic characteristics of the proton interaction with 5 "Np evaluated in the present work are shown
in Figs.31-40. Figure 31 shows the proton reaction cross section calculated using different sets of coupled-
channel model parameters and evaluated according to the systematics from Ref.[32]. Calculated elastic
scattering angular distribution is shown in Fig.32 for the primary proton energy equal to 10, 50 and 250
MeV.

Figure 33 shows the fission cross section calculated with GNASH and ALICE/ASH codes, the data
measured in Refs.[40-44], the cross section estimated according to the systematics [33] and evaluated data
in Ref.[34]. Data from Ref.[40] is cited in Ref.[45]. There is a good agreement between calculated and
evaluated cross sections based on Refs.[33,34]. The ratio data of proton induced fission cross section (p,f)
to neutron fission cross section (n,f) evaluated in the present work and are obtained in Ref.[46] are shown
in Fig.34. Figures 35 and 36 illustrate contribution of different nuclei in total fission cross section (p,f) for
2Np.

Neutron and proton production cross sections are shown in Figs.37-39. Charge particle production

cross sections are shown in Fig.40.

4. Americium Isotopes with A=241 and 242

Basic features noted above for the neutron and proton interactions with Neptunium isotopes at the
intermediate energies remain valid for Americium-241 and —242. The shape of the evaluated cross sections,
particle spectra, Z- and A- dependence of integrated values, like as particle production cross section, are

similar for various actinides considered in the present work. The examples are shown in Figs.41-48.
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Figures 41 and 42 show neutron total and elastic scattering cross sections for ! Am calculated by
coupled-channel optical model, cross sections evaluated according to the systematics from Refs.[47,48] and
data taken from JENDL-3.3. Fission cross section for **'Am calculated with GNASH and ALICE/ASH
codes is shown in Figs.43 and 44 together with measured data from Refs.[49,50], cross sections evaluated
with Fukahori’s systematics [33], JENDL-3.3 and ENDF/B-VI data. There is a good agreement among
JENDL-3.3 data, cross section calculated by GNASH code and experimental data from Ref.[50]. The
calculated result by GNASH code was adopted as a final evaluation. Neutron production cross section for
*'Am and ***Am are presented in Fig.45 for neutron induced reactions. Neutron induced fission cross
section for 2*Am and **™Am are compared in Fig.46. The main difference of cross sections is observed
below 20 MeV. Recommended proton induced fission cross section and y-production cross section for

*'Am and *”2Am are shown in Figs.47 and 48. The corresponding cross sections for *2%Am and 2"Am

are similar.

5. Conclusion

New data evaluation has been performed for 237Np, 2 Am, 2 Am and **™Am at the intermediate
energies. For the first time the evaluation for actinides has been done for neutron and proton induced
reactions at the energies up to 250 MeV.

The evaluation procedure has included applications of theoretical models and analyses of available
experimental data. The coupled-channel optical model, pre-compound and equilibrium models were used
for nuclear reaction characteristics calculation. Neutron data obtained were combined with the JENDIL-3.3
data at the energy 20 MeV to get full data set at the energies from 107 eV to 250 MeV. The data for the

proton induced reactions were evaluated in the energy region from 1 to 250 MeV.

Acknowledgements
Authors are grateful to Dr. S. Chiba, Research Group of Hadron Science, and members of Nuclear

Data Center, for their valuable discussions. The author, A.Yu. Konobeyev, also thank Japan.Atomic

Energy Research Institute, for giving the opportunity to perform this work.



JAERI—Research 2002—032

References

[11 J.Raynal, ECIS96 code, unpublished

[2] P.G.Young, ED.Arthur, M.B.Chadwick, Comprehensive Nuclear Model Calculations: Theory
and Use of the GNASH Code, Pfoc. Int. Atomic Energy Agency Workshop on Nuclear Reaction
Data and Nuclear Reactors, April 15-May 17, 1996, v.1, p.227; Report LANL, LA-12343-MS
(1992).

[3] A.V.Ignatyuk, Level Densities, In: Handbook for Calculations of Nuclear Reaction Data, [AEA-
TECDOC-1034, p.65 (1998).

[4] A.V.Ignatyuk, K.K.Istekov, G.N.Smirenkin, Yadernaja Fizika 29, 875 (1979).

[5] V.M.Maslov, Fission Level Densities, In: Handbook for Calculations of Nuclear Reaction Data,
TAEA-TECDOC-1034, p.81 (1998).

[6] G.Hansen, A.Jensen, Nucl. Phys. A406, 236 (1983).

[71 W.O.Myers, W.J.Swiatecky, Ark. Fysik 36, 343 (1967).

[81 A.D.Arrigo, G.Giardina, M.Herman, A.V.Ignatyuk, A.Taccone, J. Phys. G: Nucl. Part. Phys. 20,
365 (1994).

[9] A.Sierk, Phys. Rev. C 33, 2039 (1986).

[10] M.Herman, EMPIRE-II Statistical Model Code for Nuclear Reaction Calculations (v.2.13
Trieste), April 5, 2000, unpublished. _

[11] E.M.Rastopchin, S.L.Mulgin, Yu.V.Ostapenko, V.V.Pashkevich et al, Sov. J. Nucl. Phys. 53, 741
(1991).

[12] A.V.Ignatyuk, G.A.Kudyaev, A.R.Junghans, M.deJong et al, Nucl. Phys. A593, 519 (1995).

[13] C.Kalbach, Phys. Rev. C32, 1157 (1985).

[14] M.B.Chadwick, P.G.Young, P.Oblozinsky, A.Marcinkowski, Phys. Rev. C49, R2885 (1994).

[15] M.B.Chadwick, P.G.Young. D.C.George, Y.Watanabe, Phys. Rev. C50, 996 (1994).

[16] M.Blann, H.Vonach, Phys. Rev. C28, 1475 (1983).

[17] M.Blann, Phys. Rev. Lett. 28, 757 (1972).

[18] F.E.Bertrand, R.W Peelle, Phys. Rev. C8, 1045 (1973).

[19] J.R.Wu, C.C.Chang, H.D.Holmgren, Phys. Rev. C19, 698 (1979).

[20] A.V.Ignatyuk, V.P.Lunev, Yu.N.Shubin, E.V.Gai, N.N.Titarenko, A.Ventura, W.Gudowski, Nucl.
Sci. Eng. 136, 340 (2000).

[21] A.Iwamoto, K.Harada, Phys. Rev. C26, 1821 (1982).

[22] A.Yu.Konobeyev, V.P.Lunev, Yu.N.Shubin, Pre-equlibrium Emission of Clusters, Report IPPE-
2465 (1995).

23] A.Yu.Konobeyev, V.P.Lunev, Yu.N.Shubin, Acta Physica Slovaca 45, 705 (1995).

[24] N.Sato, A.Iwamoto, K.Harada, Phys. Rev. C28, 1527 (1983).

[25] A.Yu.Konobeyev, Yu.A.Korovin, Kerntechnik 61, 45 (1996).




JAERI—Research 2002—032

[26] A.Yu.Konobeyev, Yu.A.Korovin, M.Vecchi, Kerntechnik 64,216 (1999).

[27] P.Fong Statistical Theory of Nuclear Fission, (Gordon and Breach Science Publ., NY, 1969);
P.Fong, Phys. Rev. 135B, 1338 (1964).

[28] V.S.Barashenkov, A.Yu.Konobeyev, Yu.A.Korovin, V.N.Sosnin, Atomnaja Energija 87, 283
(1999).

[29] A.Yu.Konobeyev, Yu.A.Korovin, P.E.Pereslavtsev, Code "ALICE/ASH" for Calculation of
Excitation Functions, Energy and Angular Distributions of Emitted Particles in Nuclear Reactions,
Report INPE, Obninsk, (1997).

[30] A.LDityuk, A.Yu.Konobeyev, V.P.Lunev, Yu.N.Shubin, New Advanced Version of Computer
Code ALICE-IPPE, Report IAEA INDC(CCP)-410 (1998).

[31] Blann M. ALICE 87 (Livermore) Precompound Nuclear Model Code, Report IAEA-NDS-93
REV.0 (1988).

[32] V.S.Barashenkov, A.Polanski, Electronic Guide for Nuclear Cross sections, JINR, Dubna, (1995).

[33] T.Fukahori, S.Pearlstein, Report BNL-45200 (1991).

[34] S.Yavshits, O.Grudzevich, G.Boykov, V.Ippolitov, Proc. of the 2000 Symposium on Nuclear Data,
Nov. 16-17, 2000, Tokai, Japan, JAERI-Conf 2001-006, INDC(JPN)-188/U, p.277 (2001).

[35] V.M.Pankratov,N.A.Vlasov,B.V.Rybakov, Atomnaya Energiya, 9, 399 (1960).

[36] V.M.Pankratov, Afomnaya Energiya, 14, 177 (1963).

[37] J.W.Behrens, J.C.Browne, J.C.Walden, Nucl. Sci. Eng. 80, 393 (1982).

[38] P.W.Lisowski, J.L.Ullmann, S.J.Balestrini, A.D.Carlson, O.A.Wasson, N.W.Hill, Proc. Int. Conf.
for Nuclear Data for Science and Technology, Mito, May 30- June 3, 1988, p97.

[39] O.Shcherbakov, ISTC Project No.609, 2000.

[40] O.E.Shigaev, V.S.Bychenkov, M.F.Lomanov, A.l.Obukhov et al, Report Khlopin Radiev. Inst.,
Leningrad, Ri-17 (1973); M.F.Lomanov, G.G.Shimchuk, R.M.Yakovlev, Health Phys. 37, 677
(1979).

[41] A.N.Smirnov, I.Yu.Gorshkov, A.V.Prokofiev, V.P.Eismont, Proc. 21st Intern. Symp. on Nuclear
Phys., Gaussig, Germany, November 4-8, 1991, p.214; V.P.Eismont, A.V.Prokofiev,
A.N.Smirnov, Proc. Int. Conf. for Nuclear Science and Technology, Gatlinburg, May 9-13, 1994,
p.397.

{42] T.Ohtsuki, Y .Nagame, K. Tsukada, N.Shinohara et al, Phys. Rev. C44, 1405 (1991).

[43] V.A Konshin, E.S.Matusevich, V.I.Regushevski, Yadernaja Fizika 4, 97 (1966).

[44] P.Polak, A H.W.Aten, J. Inorg. Nucl. Chem., 42, 641 (1980).

[45] V.P.Eismont, A.V.Prokofiev, A.N.Smirnov, Proc. Int. Conf. for Nuclear Science and Technology,
Gatlinburg, May 9-13, 1994, p.397.

[46] V.P Eismont, A.V.Prokofiev, [.V.Ryzhov, A.N.Smirnov et al, “Up-to-Date Status and Problems

of the Experimental Nucleon-Induced Fission Cross section Data Base at Intermediate Energies,



JAERI—Research 2002—032

Proc. Int. Conf. on Accelerator-Driven Transmutation Technologies and Applications (ADTTA),
Prague, Czech Republic, June 7-11, 1999, text distributed on CD, P-C23.

[47] P.G.Young, Experience at Los Alamos with Use of the Optical Model for Applied Nuclear Data
Calculations, In: Handbook for Calculations of Nuclear Reaction Data, IAEA-TECDOC-1034,
p-131 (1998).

[48] V.S.Barashenkov Cross sections of Interactions of Particle and Nuclei with Nuclei, JINR, Dubna
(1993); http://www.nea.fr/html/dbdata/bara.html

[49] J.W.Behrens, J.C.Browne, Nucl. Sci. Eng. 77, 444 (1981).

[{50] J.W.T.Dabbs, C.H.Johnson, C.E.Bemis, Nucl. Sci. Eng. 83, 22 (1983).

[51] V.S.Bychenkov, M.F.Lomanov, A.L.Obukhov, G.G.Shimchuk, R.M.Yakovlev, 1989, 1992, cited
by [34].

[52] A.Yu.Konobeyev, Yu.A.Korovin, Atomic Energy 85, 556 (1998) (translated from Russian Journal
“Atomnaja Energija®).

[53] R.F.Coleman, B.E.Hawker, L.P.O'connor, J.L.Perkin, Proceedings of the Physical Society
(London) 73, 215 (1959).



JAERI—Research 2002—032

1.0
0.9
]
0.8 it
0.7 -
0.6
a5 05 !
= r ! old algorithm:
0.4 ' = neutrons
03 | -~ protons
i new algorithm:
02 & ' neutrons
5 - - ~ protons
0.1
0.0 i 2 i | 2 ! . | A ! x
0 50 100 150 200 250

Energy (MeV)
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experimental data are from Ref.[18].
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channel optical model parameters, evaluated according to Ref.[32] and taken from JENDL-3.3.
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obtained in the present work and taken from different evaluated nuclear data libraries.
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Fig.8 Neutron inelastic scattering angular distributions for * "Np at the primary energy E,= 20 MeV for
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Fig.9 Neutron inelastic scattering angular distributions for 2’Np at the primary energy E,= 20 MeV for
the excited level 75.9 keV (9/2") obtained in the present work and taken from different data
libraries.
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Fig.12 Fission cross section for 2*'Np calculated with GNASH and ALICE/ASH codes, cross section
estimated using the systematics [33], data evaluated in Ref.[34] and measured in Refs.[35-39].
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Fig.13 Fission cross section for 2'Np at the energies up to 250 MeV evaluated based on the results of
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Fig.22 Normalized fission neutron spectra calculated in the present work for *’Np (solid line) and
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Fig.31 Proton reaction cross section for 237Np calculated using different sets of coupled-channel optical
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Fig.42 Neutron elastic scattering cross section for ! Am calculated with coupled-channel optical model,
estimated by the systematics [32,48] and taken from JENDL-3.3.
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Nuclear Data Evaluation for *"Np, *'Am, “*?Am and **"Am Irradiated by Neutrons and Protons at Energies up to 250 MeV
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