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Uncertamtles of reactrvrtles due to those of resolved resonance parameters are evaluated
* by so-called” direct k-difference method” Then, effective cross section of an ‘individual 1sotope,
and reaction type is described in terms of. infinitely diluted cross section 6. and resonance
self-shielding factor £ (x reaction, i 1sotope k: sequence number of resonance) as a function
of resonance parameters, and reactivity is evaluated from the neutron balance usmg the effective
cross section and neutron flux. Consequently, reactlvrty unceértainties ' such as effective
multrplrcatlon factor can ‘be estimated by the sensrt1v1ty coefficients of the 1nﬁn1tely dlluted
cross section and resonance self-shielding factor to the changes of resonance parameters of
interest. In the present work, the uncertainties of the resolved: resonance parameters for.the
evaluated nuclear data file JENDL-3.2 were estimated on the basis of Breit-Wigner Multi-level
" formula. For thie Reich-Moore resonance parameters. complied in the library, the uncertainties
equivalent to the Breit-Wigner resonance parameters are estimated. The resonarice self-shielding
factor based on NR-approximation is analytically described: Reactivity uncertainty evaluation
method for the effective multiplication factor kg, temperature coefficient a, Doppler reactivity
worth p is developed by means of the sensitivity coefficient against the resonance parameter.
. Final uncertainties of the reactivities are estimated by means of error propagation law using the
level-wise- uncertainties. Preliminary uncertainty evaluation of Doppler reactivity worth due to
the uncertainties of resolved resonance parameters results about 4% at the temperature 728 K
for large sodium-cooled fast breeder reactor.
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Notation

Isotope identification No.

Mass number of isotope 4

Atom density of isotope i (atom - cm™3)

Incident neutron energy (eV)

Nuclear reaction indicator

Sequence No. of resonance

Temperature in Kelvin (K)

Wave number

Nuclear reaction whose parameter is changed

Energy group number

k-th resonance energy of isotope

Spin statistical weight

Doppler width of the k-th resonance of isotope i (eV)
Boltzmann constant (eV - K1)

Effective cross section for reaction z of isotope i and resonance k
Macro-scopic potential scattering cross section (cm™!)

Neutron width (eV) :

Capture width (eV)

Fission width (eV)

Total width (eV)

T’ function

Microscopic Neutron capture cross section (barn)

Microscopic Fission cross section (barn)

Microscopic Total cross section (barn)

Total Resonance peak cross section (barn)

Potential scattering cross section of isotope i and resonance k (barn)
Potential scattering cross section per resonance atom (barn), o used for
plotting for simplicity.

Doppler symmetric function

Doppler asymmetric function

Neutron spectrum of group g (n/cm? - s)

W-table '

Complex W-function

Sensitivity coefficient of reactor parameter R to resolved resonance pa-

rameter I'; of isotope ¢ and resonance level k&
Resonance integral for reaction z of isotope i and resonance level k (barn)

Resonance self-shielding factor for reaction z of isotope ¢ and resonance

level k " .
f-value defined by Zpiiltack:

DeBroglie wave length of neutron (em)
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1 Introductlon

Uncertalnty of Doppler reactlvrty worth has been evaluated from the sample Doppler ex-
periments  made on critical assemblies such as in ZPPR and from limited whole core Doppler .
experiment made on SEFOR. The uncertainty of about:30% [1] (30) due to the nuclear data
and the .calculational method is estimated for large sodium cooled. fast breeder reactor(2).
such uncertainty evaluation, the reactivity worth is estimated from kes¢’s or perturbation. theory .
and then individual contribution of resonance level is masked by averaging procedure for multi-
group- cross. section. The contribution from the resonance parameters can be estimated from .
some.limited benchmark analyses based on the direct k-difference or perturbation theory-where .
some resonance parameters are artificially changed. Such a direct method, however, cannot be
applied for whole resonance parameters of interest because of a.huge amount of resonances in
practice. The present work is motivated from such a circumstance. _

Considering the resonance effect to the reactor characteristics, uncertainties of resonance
parameters mainly reflects the reactor characteristics such as criticality kesys through the reso-
nance self-shielding factor (f-factor) and infinitely diluted cross section. The f- factor, however,
is an indirect quantity of the resonance parameters because the shielding effect arises from the-
depression of neutron flux ¢ due to resonance absorption while the flux ¢ itself is a function of
the resonance parameters of all 1sotopes of interest. In addition to this mdrrect effect, a huge
amount of the resolved resonance parameters, about 3000 x 2{(fission and capture reactlons)
resonances of the whole resonant materials employed in a reactor, ‘gives a practrcal difficulty
to directly estimate ‘the uncertainty by about 3000 x 2 times flux calculations. Consequently,
development of uncertalnty evaluation method is requested from reactor design and Cross sectron
adjustment[3].

‘The reactwrty worth can be expressed by the perturbatron theory as well ‘as the difference
of the two kesf’s between the ‘perturbed’ core. by the change of resonance parameter and the’
reference core. The _perturbation theory requires the real and adjoint fluxes but the direct k-
difference method uses only real flux. In other word, the sensitivity study based on perturbatron
theory requires an extra study on adjoint flux as a function of admixture of cross sections mainly
contributed from fuel 1sotopes, but drrect k-difference method does not need such an extra work.”
As far as the uncertarnty evaluation, the direct’ k—drlference method is preferred to the pertur-
bation theory of the accurate neutron flux is given. On the other hand, uncertarnty of .the
reactor characterlstrcs can be expressed as the statrstrcal summation of uncertarnty cornponents"
come from constituent 1sotopes and the uncertarntres of their resonance parameters. Then, the’
uncertainty component can be descnbed by the sens1t1v1ty coefficients that are essentrally per- -
turbation effects in a sense that only net effects are withdrawn. Therefore sen51t1v1ty coefﬁcrent
method based on direct k-difference method is adopted in this work.

~ Inthe present work, Breit-Wigner multi-level formula is used. For recently evaluated nuclear‘
data files such as JENDL-3.2[4] and ENDF/B-VI[3], Reich-Moore formula for resolved resonance
is adopted for mainly fuel and structure material. It has an inverse matrix in the cross section
formula and thus its sensitivity coefficient formula against resonance parameter may be too com-
‘plicated to be out of analytical approach. However, the Breit-Wigner type well do as far as the
uncertainty evaluation since the peak cross sections based on both formula are nearly equal. The
sensitivity to the resonance parameter can be satisfactorily expressed by Breit-Wigner formula.

Uncertainties of the resolved resonance parameters are estimated for the evaluated nuclear
data library JENDL-3.2. For the Reich-Moore parameters, uncertalntres equ1valent to Breit-
Wigner parameters are estimated.

In Section 2, current status of the uncertainties of resolved resonance parameters are briefly
reviewed. Section 3 is devoted to the basic definition of the k.ss and Doppler reactivity worth
ba.sed on the direct k- dlfference method ’I‘reatments of the non—resonant Cross sect1ons are re-

B
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" marked. In the Section 4, Doppler-broadening functions as a basic quantities. to estimate the
-effective cross sections are extensively studied where analytical expressions for Doppler broaden-
ing: functions and resonance self-shielding factor aré emphasized: In the section:5, the resonance
self-shielding factor for individual resonance is shown together with its partial derivative with-.
respect to basic variables. In:the last half of this section'the basic formula‘of resonance self-
shielding factor in multi-group theory is discussed: In the Section 6, analytical’ formula for
sensitivity analyses are described for the k.sy, temperature coefficient o and Doppler reactivity
worth p. In Section 7, some’typical results of numerical analyses are:shown. -The overall and
detailed' numerical analyses will be reported as a separate document where the uncertainties of -
resolved resonance parameters and final uncertalntles of reactrvrty, especrally Doppler reactivity
worth; are emphasized. o L :

In this 'work, algebraic calculations and graphrcs ‘were carrled out by usmg Maple Computer
Algebra System[7 8]. ' . S

e

2 . Uncertamty of Resolved Resonance Parameter

‘ Neutron resonance effect in the nuclear engmeermg can be typlcally observed as the Doppler ’
reactivity effect through the change of resonance self—shleldmg factor as functlon of temperature :
and the potent1al scattermg Cross sectlon per resonance absorber Usually, mairn resonant mate-
rials i ina ‘nuclear reactor and thelr number of resonances are about 260 resonances for 23U, 1602
(s-wave 473 p-wave—1129) for 2387, 1015(s-wave) for 239 py,; 205(s—wave) for24°Pu and 127(s—
,p- and d-waves) for 6 Fe, respectlvely Therefore, in the nuclear engineering about total 3600° at
least resonances are considered and processed by resonance calculation code such as N JOY[12] :
and M 02 - 2[13] In order to evaluate ‘the reactlvrty uncertamty due to the uncertainties of
resolved résonance parameters, these resonances have to be srmultaneously consrdered

Relch-Moore Formula i 1s adopted in the recent evaluated nuclear data files such as JENDL‘
3. 2 ‘and ENDF/B—I 1% for main nuclear fuel elements ‘and structure materials. In this work
however equivalent resonance parameters and their uncertamt1es were evaluated by T. Nal\a- ,
£awa : and K. Shlbata[G] In general, the’ uncertainties of resonance parameters themselves based'
on experlmental and/or analytrcal evaluatron could’ not be deﬁmtely determlned because they‘
are multrd1mens1onal functlon of resonance energy and resonance w1dths, and these parameters
are correlated with one another as found in the area analysrs to determine the resonance param-
eters from. experlmental data. Therefore, consrdermg the ambiguity of the resonance parameter'
uncertamtles the srmpler Brelt-Wrgner multi-level formula is enough ' '

The uncertainties of the resolved resonance parameters of the typrcal fuel elements mamly
contrlbutlng the Doppler reactlvrty worth aré shown in Fig. 1 to'14. In order to convert the
Reich-Moore parameters with two ﬁssmn widths, namely |51 and T £2, to the Brelt ngner s
smgle ﬁssron w1dth and to estlmate 1ts uncertamtles are approxrmated by . '. .

2. 1 Uncertamty of 23":‘U Resolved Resonance Parameter R

The number of resolved resonances of 238U is 1602 as a whole, ie., 473 s—wave resoances as
shown in Fig. 1 and 1129 p-wave resonances in Flg 4. The errors of these resonance energies
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are very small and the absolute error of 0.1 % are assigned for all levels whose errors are not
available in the document for evaluation and/or measurement.

The uncertainties of 2380 s-wave neutron widths are smaller than about 15 % except 13
resonances as shown in Fig. 2. In this case, the 15 % is seemed to be assumed as a mean
uncertainty. The largest uncertainty of about 42 % is assigned for 1005.2 eV resonance. For
the p-wave, significantly large uncertainties ~ 100% exist around resonance energy 6000 eV as
shown in Fig. 5 where assumed uncertainty is about 15 %. Excluding these larger 6 resonances,
the uncertainties are smaller than about 40 %.

Mean radiation width for the 23U s-wave neutron are 23 meV and almost of all (1602)
resonances are assigned by this mean value except about 17 resonances as shown in Fig. 3. The
largest uncertainty of 45 % exists in the 145.66 eV resonance and larger ones can be found below
1600 eV. Above this energy, however, the constant uncertainties of about 5 % are assigned to
the mean radiation width as shown by a horizontal line.

2.2 Uncertainty of ?3° Py Resolved Resonance Parameter

The uncertainties of 23° Pu resonance energies are also significantly small in comparison with
those of other resonance parameters, but they are enhanced above 1000 eV as shown in Fig.
7 although the maximum uncertainty is about 0.16 % around 1700 eV. Below 1000 eV, the
resonance energy uncertainties are assumed to be about 0.005 %.

The uncertainties of 2% Pu s-wave neutron widths are scattered around the mean value of
10%, i.e., 10 £ 10% as shown in Fig. 12.

However the uncertainties of s-wave radiation widths are ass1gned to a limited levels as
shown in Fig. 9 whose maximum value is about 20%. The mean uncertainty of 15% is assigned
to the other levels.

The uncertainties of fission widths for s-wave neutron are shown in Fig. 10 for 2 Py, and
the maximum uncertainty of 20 % is the same to that of radiation width as shown in 9. The
mean uncertainty of 15% is assigned to 23° Py fission and capture resonances.

2.3 Uncertainty of ?4° Py Resolved Resonance Parameter

The uncertainties of resonance energies for 240 Py are also small, whose magnitudes are less
than 0.18 % assigned to the first resonance at Er = 1.05 eV as shown in Fig. 11. Below 600
eV, the uncertainties are seemed to be slightly enhanced.

The uncertainties of 249 Pu s-wave neutron widths are smaller than about 60 % except 3
resonances as shown in Fig. 12. The first 2 resonances with significantly larger uncertainties
are located in the subthreshold fission indicating in the Fig. 18 but the third one has no
correspondence.

The uncertainties of radiation widths of 240 py are asmgned below about 800 eV and above
it a mean value of 30% are adopted as shown in Fig. 13. Evaluated uncertainties are seemed
to be smaller than about 13% except most of levels assigned by mean uncertainty.

Fission width uncertainties of 24° Py are shown in Fig. 14, whose maximum uncertainty
is about 100 %. The larger fission widths of 23°Pu and ?4°Pu are seemed to be governed by
subthreshold fission and some grouping structure of resonances exist around the subthreshold
fission levels having extremely larger fission widths. Typical and famous structure observed
by Migneco and Theobald[9] can be found in the case of 24Py as shown in Fig. 18 and
similar structure can be also found in 23° Py fission in Fig. 17. The magnitudes of these larger
fission widths are greater than the 238U radiation width of about 23 meV. Such a large fission
width significantly enlarges the total resonance width which gives extremely large Doppler width
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because of A o %,(T: temperature) and then some problems arise in the numerical analysis of
-resonance self-shielding factor as discussed in Section 6.

0.06

0.04 1

Resonance Energy Error %Ef (%)

0.02

H
L

Il
J i_ﬁ\}é\_‘._. ..-.JJL..»J.}!. 8.

2000 3000 6000
Neutron Energy E.. (eV)

o} v

Figure 1: Uncertainty of S-wave Resonance Energy 55[ of 238y
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Figure 2: Uncertainty of S-wave Neutron Width ‘%} of 238y

3 Criticality and Doppler Reactivity

Reactivity worth can be.obtained as the difference of effective multiplication factors ke ’s,
so-called "direct ks difference method”, between two systems of interest. As long as the
accuracy of kess calculation is guaranteed, the direct kess difference method is preferred in a
sense that the k.s¢ can be described by neutron balance in terms of only real fluxes.

In the neutron balance equation, the k. is defined by the ratio of the neutron production
rate to the effective neutron absorption rates including the neutron leakage i.e.,

<visp >
koep =
eff <Tjp>+<Typ>+L’ (3)
: 1
= ke @
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< > = / / e (5)
dV JdE :
" dV : Volume element,

dE : Neutron energy interval,

where suffixes f and v mean the fission and neutron capture reactions respectively, and blakets
< .. > means the space-energy integration of macroscopic reaction rates. The k-infinite, denoted
by koo, and effective neutron leakage L* can be defined by reaction rates as shown below,

<visd >
kOO bl 6
<Tpp>+ <> . ©)
<vigsd SRes 4 < visd >Non—Res _ )
<Typ >Tot + <X ¢ >Tt
= L - ®

<Byp >Tot + < B ¢ >Tot”

While, total reaction rate for overall energy range denoted by superscript ?Tot” is the sum of
resonance part for individual resonance contribution and non-resonant parts in the higher energy
region above the top of resolved resonance or the top of unresolved resonance. In this work, the
unresolved resonance is treated as the non-resonant part since the present sensitivity study is
focused on the resolved resonance. The sensitivity analysis will be extended to the unresolved
resonance in near future. The explicit expression of the total reaction rates is as follow,
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<vE8>T = YN [ u(B)os(EY(E)IE, ©
. : 2 y E . N .4 . .
= <uEpg>he p cuppSNnRe (10)
<Tp5Tt = TN /E o1:(E)p(E)dE, (1)
= <Tsp>Pee < 3y SNon—Res _ (12)
<T65™ = TN [ ou(E)HENE, (13)
i
= <T,p>Re 4 <3 ¢ >Non—Fes, (14)
where | .
< VX Shes : Resolved resonance part of neutron production,
< vEs¢ >Non—Res . Non-resonant part of neutron production,
< Ty >hes : Resolved resonance part of (n, ) reaction,
<T o>V ""'R‘Zf : Non-resonant part of (n,7) reaction including struc-

ture and moderator materials,

and suffix ¢ means the isotope, and the volume integral is omitted here for simplicity and the
energy integration limit is up to the top (highest energy) of resolved resonance for the resonance
part. ' '

The critical leakage term L and the critical v — value to hold the system to be critical
can be related to the k. as

L% = k-1, - (15)
cﬁ' <y >Tot .
v = (1+<—27$->—) (1. (16)

In the present work, the criticality search is performed by adjusting the constant factor to be
multiplied by the reference v-value with a reference effective multi-group cross sections giving
nearly critical system.

. The Doppler reactivity worth p is defined by the direct k-difference as

!

1 kesr — ks
kopp  kers kesrkoss

p= - (17)
where k, 75 and kess mean the effective multiplication factors of high temperature system and
reference (low temperature) systems, respectively, which are functions of micro-scopic cross
sections as shown by Egs. (9), (11) and (13). These cross sections, ;(E) and a.;(E), have to
be prepared by considering the resonance self-shielding effects as functions of potential scattering
cross section per resonance absorber and reactor temperature as discussed below.
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4 - Resonance Self-Shielding Factor

4.1 Effective Cross Section

Effective cross section ocfy - for isotope ¢ and reaction z at temperature 7' is deﬁned by a flux
weighted average cross section as shown below;

. |2 o(E, T)$(E, T)IE
%ess=lT) = JE 4(E, T)dE

where E means the neutron energy, Ey and E; are energy boundaries of a broad groups, and
¢(E) indicates the neutron flux. Consequently, the ol 77z can be obtained from the microscopic
cross section based on nuclear data including resonance parameters as far as the neutron flux is
available. Usually, fine or super-fine group flux obtained by neutron spectrum calculation code
such as MC? — 2[13] is used. The flux depression effects due to resonance to the effective cross
section ogf = 18 taken into account by N R(Narrow resonance) -approximation as,

) (18)

6:(E, T) ~ E_ztlﬁT) (19)
Eif'L(-EIy:Z—‘) = iNiati(E,T)a (20)
=1 .

and then the effective cross section for a single ultra-fine group k becomes the following simple
form, ‘

fEEl U:z.ikS‘E;T)dE
paa) = TH— )
IE, 'E'E_gmd

Zpi Ey O’Iik(E,T))
AvF Jg, B Sea(E,T)

dE, (22)

where macroscopic potential scattering cross section Xp; and lethargy width AuF are introduced
together with the macroscopic total cross section Lisx. The oz (F,T) is the resonant cross
section for a reaction z of the i-th isotope at neutron energy E. For instance, the Breit-Wigner
form for the resonant cross section at T' = 0 (K) is,

m 9Ll ikly ik
avik(E,) T K (E-Ea)? +Zrtik/2)2’ #)
where,
k  : Wave number = 2.19685 - 10~° [ 4] VE,
Ejx :  Resonance energy of i-th isotope and k-th resonance (eV),
gik = % spin statistical weight,
I :  Target spin,
J : The spin of compound nucleus,
Thi : Neutron width (eV),
Tise : Total width (eV).”

For an arbitrary temperature, the partial cross sections such as radiative capture cross section
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can be expressed by taking into account the Doppler broadening effects expressed: by symmetric
function 9 and asymmetric function x as shown below,

(B, T) = oou(B) T2 $(B,T) Ny
oralB,T) = oou(B) L y(B,T), (29)
Utik(EvT) = UOik(E)'w(EaT)Jra'pik'X(E7T)+Upi) . (26)

where the Doppler broadening function can be expressed in terms of dimensionless eflergy x and
relative resonance width 6 to Doppler width as,

62
O [+ ezp|—4 (@ — p)°] -
Y @ik, Oix) = N 5 o2 dy, (27)
ik Vik ,——4.ﬂ_ - 1+y2 3
i cnst A—I, +1 2 g]-_‘noik
enst = 2.6039953 x 10°, (30)
904k Upi] 1/2
ik = |Tm—— ) 1
Gpik [ Lik 004k B
(Thosk: Neutron width at a resonance position) , .
Ty :
Ox = A'k, (32)
4k g1, TE; '
D = |, | (33)
2E — E, .
vu = HE_Bw) )
A; : Mass number of an isotope ¢,
T : Temperature in Kelvin (K),
Ay : Doppler width (eV), ‘
opi  : Potential scattering cross section (barn),

kBl =8.6171-107%(eV/K) : Boltzmann constant.

The Doppler widths A;’s as functions of temperature are shown in Figs. 19 and 20 for
238[J resonance at Er = 6.67 eV and for 23°Pu resonance at E, = 214.56 eV, respectively.
The latter 23° Py resonance is shown as an example of ”wide resonance” with total width of
I' = 11.22 eV due to large fission width I'y = 11.17 eV, where suffix z ik is omitted for simplic-
ity. The A;x-value of 23U is in general small, at most about 220 meV at temperature T = 5000



JAERT-Research 2004-026

K because of the smaller total width, on the other side, that of 2% Py is also small except larger
total width whose Aik-value exceeds 1 eV as shown in Fig. 20 than 1 eV because of the larger
resonance energy.

The relative resonance widths to the Doppler width, 6;;’s, are shown in Figs. 21 and

0.22 ] -
0.2 : -

0.18 e

0.16 . P
014 -

0.12 1 yd

-l

0.08 ’
1/

10,06 /

Doppler width Ay (eV)
\

1000 2000 3000 4000 , 5000
' Temperature (K)
Figure 19: Doppler width A (eV) of 238U 6.67 eV Resonance with total width I’y = 24.89
meV as Function of Temperature. This resonance is cited as a typical case with relatively narrow
total width.

20 for 238U narrow resonance and 23° Py wide resonance with T' = 11.22 eV at E, = 214.56 eV
mentioned above, respectively. The 6-values are smaller than unity for 233U narrow resonance
but greater than 36 for the 23° Pu wide resonance due to the larger fission width of I'y = 11.17
eV. The § function as temperature has the maximum value at the lowest temperature of interest
since it is proportional to the inverse temperature as well as the total width I" as expected from
the 6 definition Eq. (32). It is a severer problems that the larger 6-values of wide resonance
tends to induce an overflow error in the numerical evaluation of 4 and x functions. _

Such a wide fission width was observed for 24Py subthreshold fission by Migneco and
Thebald[9] and was introduced in terms of the states associated with the second minimum of
the potential energy surface as a function of deformation in nuclear fission. Typical example can
be found in the 2 Py and 24° Py evaluated resonance parameters in JENDL-3.2[4] as shown in
Figs. 17 and 18, respectively. '

Typical example of Doppler broadened cross section as a function of neutron energy and
temperature is shown in Fig. 23 for the ?4°Py 1.05 eV resonance. The Doppler broadened
240 Py, capture cross section is strongly coupled with the 1/v thermal cross section because the
resonance energy 1.05 eV is in the thermal neutron energy range. At extremely high tempera-
ture of 3.6 x 108 K close to the innermost temperature of the solar, the resonance peak cross
section is reduced to about 21—5 of that at the room temperature.
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as Function of Temperature. This resonance is shown as an example of wide resonance with extremely
large resonance width.
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Figure 21: Relative total resonance width (= %) of 238U 6.67 eV Resonance as Function of
Temperature. This resonance level is adopted as an example of ” Narrow Resonance”.
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4.2 Doppler Bfoadening Function
4.2.1 4 and yx Functlons based on Complex w(z) Function

The Doppler broadening functions defined by Egs. (27) and (28) have the mtegratlons over
infinite range of dimensionless energy z and consequently numerical integration by using Gaus-
sian integration formula is not effective from accuracy point of view. Usually, complex w(z)
function is used and its numerical table, so-called ” W-table”, is installed in many calculational
codes. The w(z) function is defined by,- : '

w(z) = 'w(u,v)—ewp( 2?) - erfc(—iz), | | . (35)
z = u+w I | ‘ (36)

Then,. the Doppler bloadening functions 9 and x can be expressed by its real and imaginary

parts as shown below and whose arguments are function of § and z variables defined by Eq. (32)
and (34)

V(T ik, 0ik‘) "=‘ "“/— Rw ( ’k;’k, H;k ) , : - (37
' 2 13 01. o o )
Xi(Tak, Oik) . = ;k\/_ ) ( k;k, 2"). . ' (38)

" . The symmetric Doppler broadening function % (u,v) and asymmetric one x(u,v) are shown
in Figs.: 24 and 25 as functions of v and v.. As shown in Eqgs.(37) and (38), the variable v is
the function of u, i.e., u = v - &, and thus small bump can be found below v ~ 0.1. .
The symmetric Doppler broadening function 4(En,T) and asymmetric one x(E,,T) defined
'by Eqgs.(39) and (40) are shown in Figs. 26 and 27 as functions of E,, and T. As well known, the’
Y(E,,T) function has a peak at the resonance position and decreasing as the energy E, apart
from the resonance energy E,. While, the x(E,,T) function is the asymmetric with respect to
the resonance energy E, and tends to be vamshmg at the both wings. Consequently, the total
cross section has a dip in front of the resonance energy because it has a composite function of
the 9 and x as shown in Eq. (26).. The dip arises from the behavxor of asymmetrlc function yx
characterlzmg the mterference between the potentlal and resonance scatterings.
By using the power series expansion of error-function, the w(z)-function can be completely
separated into rea.l and 1magmary parts, and resultant analytlcal formula for ¢ and X are shown
below; -

| b0 =vAgR [e"{%““‘).}f‘ hrar{e-fera}]], o
x(z, 0) \/_04[ z("“)} [ll—erf {zg(x+z)}H ' : (40)
These Doppler broadenmg functlons can.be related to the complex w(z)-function as,
21/)(; )+z x( 2v> —Zﬁvw(u 'u) (i=+v-1), (41)
where ' o . | |
1 1 _ u
u= 3 -0z, v= 2 -0, inversely z= >’ 0 = 2v, . (42)

— 16 — !
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Figure 26: Exact Symmetric Doppler Broadening Function % (z, 9) for 240 Py, 1.05 eV Resonance:
as a Function of Neutron Energy E,, and Temperature T. The Doppler broadening function ¢/(z, )
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as a Function of Neutron Energy -E,, and Temperature T'. The Doppler broadening function x(u,v)
expressed by the imaginary part of complex w(z)-function, Eq.(40), is shown on the E, — T plane.
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and thus the left-hand side of Eq.- (41) is the same to 2¢v(x 6) + ix(z,6)-:
For wide resonance such as 23° Pu’s resonance at 214.65 eV with the fission width-T'y = 11. 17,

eV, numerical calculation of w(z) function takes overflow because of large 6(= 5). In this case,
an asymptotic approximation for w(z) function can be adopted, i.e., :

» w(z) = % . % E (forlarge I'). - ' (43)
This approx1matlon gives the same result to so-called "Natural Line Width” ‘based on ”Low
Temperature Model”, since the large T is equivalent to the low temperature as expected from
the @ definition Eqgs. (32) with (33) As long as this approximation adopted, Doppler broadening
functions as well as the broadened cross sections.do not depend on the temperature as shown in

Fig. 28.
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Figure 28: Asymptotic Doppler Broadening Functions %(F, 9) and x(E, 6) for 238U 6.67 eV
Resonance based on w(z) ~ -‘/1—; . The asymptotic functions do not depend on the temperature

variable T through the 6 71=, so-called ”Natural Line Width”.

4.2.2 1 and x Functions based on Infinite Series Expansion ’

The complex w-functlon defined by Eq. (35) can be also separated into an exponentlal and
error- functlon terms as;

w(e) = emp(-2)-[1-erf(~i-2) (44)
— exp{-(u? -.vv2)} feos(2uv) ~ - sin(2u)]
« Heerfici-@aio) - (45)
since
—f#%ﬁ—ﬂ—rmu. ) | (46)
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1

Therefore, the w(z) function can be completely éeparated into real and imaginary parts if the
error function er f can be separated According to H. E. Salzer[lO], the. complex error function
can be expanded into the infinite series as, r . i T

erf +ivf) = Epeti-Eim, - L. | (an)
: , —ut? [ N\ - nmez  odn? _
Ere = erf(ul) + & [? 'Jcoifﬁu.“’.?)Jr‘?_,;;% pue v*)} (18)
B, o ‘e‘"ff?f’ sin(2liﬂvt)‘j“'‘2"""lm i "r ; " o T :
R [ ot ;m-gn(u,v)}, | )
7 faluf, vT') = 2ul =24l cosh(nv') cos(2utvl) + n sinh(nvt) sin(2ufvl), - (50) ‘.
gn(iﬁ,v") = 2ut -cosh(ﬁvt) sin(2u’1_‘vf)_+n sinh(nv') eos(ZiLTvT), _ ‘ | (5)1)

where u! and v' are defined by

u"+i~_v1_ :—z(u+zv), S . (52)
g _yt = 0 = 50, . "UT = —y : —50:5. - . (53)

The truncation error € of this series expansion is € ~ 107 6|er f(u + iv)| for nmaz = co. The
numerical test in the present work results that nmaz is about 10 around z = 0, but for the
wings of ¥ and x functions the magnitude of nmaz had to be extended up to about 40. Typical
.examples of ¢ and x functlons based on this infinite series expansion are shown in Figs. 29
and 30. o

Fmally, the 7'and x functions can be expressed in terms of real functxonal funcmons based
On power series as shown below, :

vt = ot o () fimcr (8) e}
| | | . .+sz’n<%02w>-Gn(w,>9)],‘ S “ , .(54).
x(@,0) = '—ﬁoe*{(%);@“”}' [sz’h (%025:)5'f{1—‘eff"l(g),—:Fn(:i,f))}..‘.,,
ol qen), W

where the power series F, (z; 0) and Gn(z; 0) are expressed in terms of auxiliary functlons falz, 0)
and gn(:b ) defined by Egs. (50) and (51) as shown below,

. . N . . 12 N
F 9 ]. (9)'.2 l 1 - COS (_20 x) nmax e~ an )
\ n(x ) ’ - € 2 - + -. E f ( 9) ~(. )
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n=1

» 1 _(8)? sin 02 nmazx 1 n2 - LT
Gn(:l:, 0) = ; -e (2) [ ( ) 2 Z 2 + 92 gn(CL,B) , - (57)
with | '
folz,0) =60-0 -cosh{g -9:1;} ces {l 0% } +tn sinh {E'- Hac}sm {% 0%} ,  (58)

gn(z, 9):—9-eosh{ Ox}s;n{ Gz}-—n smh{g-ﬁx}cos{—;— 0’z } (59)

Predominant part of. 1/} is. the 0 x exponentzal X cos X (1 —error f unctzon) terms while in
X is 8 x exponential x sin.x (1= error function) terms; respectlvely, and the F, and G, terms
are minor correction terms. as shown in Figs. 32 for.¢ and in Figs. 34 for x. At the high
temperature limit W_hqse 0-yalqe is nearly.equal to 0, ¥(z, 0) cari be approximated by Fezp(z,6)

Main Term of 1

. o o

© L ©°O b @
- [3,] [\ (4] w
] I} L 1 1

N &6 .. 68

v T 62 64 © 6 '
ST _ Neutron Energy En (eV)

Figure 31: The Main Term of Eq Eq (55) without F;, of 1/) Functlon for 238U 6. 67 eV Resonance

¢~£0 A®re _1)}cos(102$) {1—37'f( )}

Fupp(z,0) = g 9. e (8)(=-1) cos {%021:} {1 —erf (g-)} o (60)
Ferp(0,0) = \/77?0 . e"'(g)zeffc (g) ,(ata resonance position, z =0) | (61)
~ %%-'0 . e+(%).2, (for small @ at a fesonance position, z = 0) - (62)

which is the same form to the 1-function derived from the original definition of 1-function for
the small § value (high temperature) as shown in the Section 4.2.4(a).
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Figure 33: Main Term of x Function: x =~ —ﬁ@e‘{(%)z(’z‘l)}sin(%W z)-{1—erf (%)}
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X =

—/70 e {(9rE*-n} [si'ri (36°z) - F, + cos (16% ) -Gp]. ‘In the low temperature region, the conver-
gency is not good as’shown in the slightly downward slope around (74 eV, 500 K). :

4.2.3 v and x Functions based on Hermite Polynomial

The w(z) function introduced as Eq. (35) can be expreséed by an inﬁ'rﬁte series expansion '

based on Hermite polynomials[11] as

T

L s

s

A‘2‘,r

. ;oo Lt
= L. / CE at
c.T '__05'_z—t .

1

R i )y
ﬂ__n“—foonzl.: V.sz'a’_;cn)

v+z : {u - asgf‘)}
{u— xi")}2 +o2 | '

=" Ljim S HM
n=1

T n—oo

(63) -

(64)

(65)

,Conseq‘uently, 9 and x functions can be obtained as an infinite series in relative to the
definitions Eqs. (37) and (38) based on the w(z) function as shown below,

- Y(E,8) =

X(E,0) =

.

O
R R DT oY

B

s 4

2
— lim

o o (8)-{(5) -er — o}
R (¢

) Ty — Scin)}2 + (%)2,

(66)-

T (e7)
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where the k-th zero-point wi")‘ of n-th order of Hermit polyndr_nial H™(z) and its weight H ,g")

are found in Table 25.10 of [11].

Convergences of ¥ and x functions are not so good for small 6-value at high temperature
but for large f-value at low temperature the convergences are significantly improved as shown
in Figs. 35 and 37. Therefore, these expressions Eqs. (66) and (67) can be used an alternative
expressions for the natural line width as discussed in the following 4.2.4(b), which are much
- milder functions of temperature as shown in Figs. 36 and 38. .

‘ w(E,'T) b'afséd on Hermitian

<,

fe L) 18030000 . 7 Tempetat“‘e T

Figure 35: Symmetric Doppler Broadening Function %(E,T) for 23 Pu.214.56 eV Resonance -
‘based on Hermite Expansion. The first order approximation (k = 1) of Hermite polynomial Eq.(66) is
used. The temperature dependence is shown by 8(T) while the "natural line width” approximation does
not have the temperature dependencé. '

4.2.4 1 and x Functions for Special Cases
(a): High Temperatl'u"el Approximation o S L _

The 9 and x functions for the high temperature with lim7_.0 O(T') =0'can be obtained as
the limiting case of the Egs. (54) and (55) as [T '

¥(e,0) = \/T*ee—{(%mﬁ-n}.erfc (g) T )
= g”e"{@“"z““’ﬁ;, R @
. .ﬁe :,_{(g_z)z} T T N L o ien2 ) R
~ e »2 - (because 6 ~ 0 and e_a:p{(@/?) ‘}_fz“l), o (:7(_))
Xz, 0) ~ 00, . )
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Figure 38: Ternperature Dependence: of Asymmetric. Doppler Broadening Function x(E,T) for |
239 Py 214.56 eV Resonance based on Hermite Expansmn Relative deviation to the reference
temperature 273 K is shown in percent ) '

The temperature and energy dependencies. of approximated function were shown in Figs.
29 and 30. The functional value of symmetric Doppler broadening function. ). tends to' zero
as temperature increasing towards infinity, while, the asyrnmetrlc functlon X is automatlcally
,vamshmg due to its. mherent relation to 1 as, : - :

N ,w(w 0 )+( .>‘2 gzp:.vg-»,’, jl T ‘, (72)

X@o) =
= 2-(z’—a:) ¥=0 o | (73 ¢

-Therefore, at present work, null-x- functlon is used so as to keep con51stency between P and X
functions when the high temperature approximation is applied to the formulation of resonance
_self-shielding factor in Section 5.2. ’

(b): Low Temperature Approx1mat10n— Natural Llne Wldth :

Inversely, for an extremely low temperature, the argument of the exponential function- of the
1 definition Eq. (27) becomes significantly large and the exponential function can be approx1—.
mated by é-function. Then the 1-function tends to a natural line shape as; -

Taa

> §(z-y) y)

1+2 ’ ot . (74)

¢(m,é) : Rnorm - —/

= Rno'rm \/_ g 1:2 , o (75)

- 27 —
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= 1T . (76)
Y N “2wu—y)
8) ~ Rnorm - —— / o
.. x(x ) -.norm \/_ 1+y2 dy, (77
- mem L ()
. s ’2x . ‘ :' | E . .
T T | oo

where Rnorm was introduced to satlsfy the lntegratlon condltlon for z/) to be [ z,b(x, G)da: =,
and this condition results Rnorm = 55

. The same results can be obtarned from the 9 and x formula based on the Hermite polyno-
- mials Egs. (66) and (67) by taking the first order of Hermite polynomials 7i = 1 for simplicity. -

L o ~(\1) . = |

S Y(z,0) x —=H) —— (80)

RV {z-3 (1)} i1 |

~ 211 -.-.(.for }arge oevalue),;' '. o -A (81) |

NEH = E ol twhe @)
X\&,0) = 211 or arge -value),

where the #-value at-low temperature was assumed‘to be significantly large and the second term -
-in the {..:} of denominator of Eq. (80) can be assumed to be 0, and it: was. used ‘that the
weight of the first. order Hermit polynomials is.y/m. As previously remarked in "High: Temper-
ature Model” in the bottom of Section 4.2.4(a), "Low Temperature” is equivalent to the large
(wide ) resonance width. :

In ordinary computer code such as MC? — 2[13], the % and x functions are defined by Egs.
(37) :and (38) using the ”W-table” :installed in the code. In the present work, however, in order
to take precise temperature dependence and smoothly trends against the changes of resonance
parameters, an analytical derivation of the sensitivity coefficient formula are preferred to the
numerical approach. - As shown in Section 5.2, final form of resonance self-shielding factor and

its sensrtlvn;y coefficients are functions of 1-value at the resonance position and then accurate

1, and X functional values based on the exact formula Eqs. (37) and (38) are needed.

(c): ¥ and x at a Resonance Position :

For the present work, the resonance self-shleldlng factor in- Section 5.2 is. expressed by .an-
alytical function using only this 1(0, v/26)-value as. the resulted from analytical integrations of
¥™x™ . (m,n:integers). terms.. Therefore, only precxse 1/;(0 V2 0) values are requested as w1ll be
shown in Egs. (120) to (128). :

At a resonance energy, the functlons 1/)(0 6) and x(O 0) based on the hrgh temperature ap-
proximations, Eqgs. (68) and (71), become a smple analytical and null functions, respectively,
as shown below, oo :

¢"(o,é) - goap{(g)? erfc{g}, | - (®3)
x(0;6) E erl, | | o ; '..(84)_
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While, the 9(E, §)-function at an extremely high-temperature (8- = ALik:<<' 1) can be
' ~ expressed by an exponential function as shown by Eq. (70), - ' o

. w(E,a) _ gevexp[— (g)z{@}z}, ' o - A
X(E,0) = 0,0."»,4 | o | ('86)‘

 The ”High Temper‘ature Approximation in' the present work is used for small #-value be-
cause of 6 o< —= T, which is equivalent to narrow resonance with small I'-value.
As long as considering the limited cases with larger 0 ‘the 1/1(0 6) function can be approxi-
mated by the following 1nﬁn1te series, ,

¢o(€)—1+2( 1)”\/3"1;22““2). . (87)
n=1 -

As shown in Fig. 39, in the low temperature region (large 6) this model is consistent with the
exact expression defined by the complex function but in the high temperature (small 6) region
the sharply decreasing trend is found. That is, an extended use of this Y8 (¢) function to the
higher temperature region is impossible. Finally, in present work, the numerical table based on
the exact 1 function defined by the complex w(z)-function is used for the resultant formula of
sensitivity coefficient, since an exact temperature gradient of the f factor is needed in order to -
estimate the Doppler sensitivity coefficients and S0 on. ‘ '

. ‘ L]
_ 0.96 . - » A _ TR
Q . . . . .o . .’...o'.. s N

for=4 . .o'.,.

= 'o°. .
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Figure 39: -Asymptotic Doppler Broadenmg Function ¢0 {6(T)} at the resonance- posmon based
on the asymptotlc expansmn Eq (87). , o
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4.3 'Resona-nce Integral and Resonance Self-Shielding Factor

The effective cross section Eq. (22) based on the niarrow resonance (NR) eppiexiﬁlatiehf can
be expressed in terms of the effective resonance integral J;x and peak total cross section gk as -

| T, | ' |
Oeffzik = 00k Kok - E ﬁzk«]zk(ﬂ ) (88)
1 Foo ; :
2 Jooo Bk it apak - Xs + 2 A% + Bjxs) '
1 e oy : L - -
~ o= / 2 dz - .- when interference megrected, (90)
2 Jowo Bik + Vit apik - Xs ’ :
Opi + Obacki - o . '
e = Lt . : 91
o o | o)
Obacki. = EiN—i]—‘zt’—], - : - " o e .(92)
-. . Njooj o T . A : : ‘ |
By = a0 0@

where the summation with respect to suffix j in the denominator of integrand of Eq. (89) is
over all resonant materials except a resonance of interest, and opacks is the potential scattering
cross section per resonant absorber atom. It is assuined that the neutron energy E is close to
the resonance energy E; because in the wing region far from the resonance position the Doppler
broadening functions rapidly decrease. and consequently minor contrlbutlons to the resonance
1ntegral The other quantities are defined below,

N;jy  Atom density of i(j)-th isotope (atom - cm‘3)l,'

ooki - Peak total cross section of i-th isotope and k-th resonance (barn),
Obacki : Potential scattering cross section per absorber atom (barn),
opi - - Isotopic potential scattering cross section (barn).

Usually, obqck,: is called as ”gy” in Bondarenko type cross section set. In the present work the
oo+ is-used for the peak total cross section and thus the gpqck,i is. for the potential scattering
cross section per resonance absorber instead of ordinary ”oy” to avoid confusion. As shown
by Eq: (91), for infinitely diluted absorber the (-value ténds to oo and then Sk - Ju of Eq.
(90) becomes 7, and consequently gess ik becomes Fook; - ﬁT Therefore, total resonance -
integral I including 1/v-term can be given by "

I,=2g ~¢fth

i+ 12 z" Fv;i
Ewn enst [A+ ] Foie glnak (95)

E,. +§ A; Ei Tu ;

where g is Westcott g factor, and Eth and. E; mean the thermal Tneutron energy and thermal
cut-off energy, respectively, and ¢** is thermal cross sectin. - : o
In this work, the J-function is approxnnated by Eq. (90) where mterference effect is mlssed
since present work aims at the uncertainty evaluation by the sensitivity analysis defined by
relative deviation of J-value where the interference effect is assumed to be the second order

~ 30 —
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,correctlon term.

The resonance self-shleldlng factor f(t,00) can be defined by the ratio-of the effective cross
section of intérest to that of infinitely diluted cross section, Wthh is sunply expressed by intro-
ducmg H—functron as shown below,

How(T,fs) = Badoa(T,B), . . (96)

\ e = 2 M@, o)

where 7 came from the definite integrafion of the '4,[) functlon in the range from [—oo, +oo] in
case of infinitely diluted cross sectlon and was introduced so that fo:x(t, k) converges to unity
. as ﬂ-value tends to oo.

- By using the resonance self-shielding fa.ctor defined above, the resonance part deﬁned in
the Section 3 can be expressed in term of the total peak cross section ¢£%° and resonance self-
shleldlng factor fk as, . : - Ca '

R | R o
| <'/2f¢ )R ZZQ NR“¢ AV i ( E””‘) ?ff f_m . %)

where Nfes and AV mean the atom density of resonant isotope denoted by < and volume
element, respectively. While, for the non-resonant part, the multl—group reactron rates based on
the effective cross sections are used;

< V2f¢ >Non —Res__ } ZZ NNon—Res¢gAugAVVNan Reso,é\f?;n —Res (99)
i g _ . '

Consequently the total reaction rate including the non-resonance part can be expressed in terms
of the peak total cross-section, resonance width and f- factor as;

) rfe ffz

k
keg rik

o Res

Tot _ . y . Res Res ( J0i

< Tsp >Tet = ;;AV, { > NFe g (E
+NNon Res Non Reso_fl}fzzn Res¢gAu g} A(IOO)

<27¢>Tot — ZZAV{ ZNRes¢ VRes <EDZIZ>F$3:f‘yz
S i g T .

keg

,-+Nz-”°’t‘.".‘ef¢g_4\ugu{§°~?f“-“a$;;" Resk, (101)

where the non-resonance parts are assumed to be for infinitely dilution and estimated from a
typical multi-group cross section set such as ABBN Cross Section Set.

5 Analytlcal Formula for Resonance Self-Shleldmg Factor

5. 1 Power Serles Expansron of Resonance Self-Shleldmg Functlon

The H-function defined by Eq. (96) is essentially the resonance integral function and is-a
functional function with respect to the Doppler broadening functions 1 and . Such a function

- 31 —
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cannot be analytically integrated in general because these Doppler-broadening functions- are-
transcendental functions. For a special case like extremely high or.low temperature system,
an analytical integration can be performed. However, actual reactor is not so in high or low
* temperature but in an intermediate temperature. Therefore, the % and x functions-have to be
shown by an approximated expressions for analytical formulation. In order to obtain analytical
expression of the resonance self-shielding factor and related sensitivity coefficients, the integrand
of Eq. (90) has to be transformed to a series expansion in termsof 9 and y functions.
Explicit form of H function is a functional function of ¥ and x functions as shown below,

1/ By(z,0)

DR VBN e Era ey R
L 1[* U0 .
_ 2 / ﬂ + ’l,b(.’l: 0 (103)

~ Possibility for the power series expansmn of the fractlonal functlon H(y; ) can be examined
from the magnitude of the denqmlnator of H-function. For simplicity, the integrand of H
function is expressed by Q(z, B, 9) and its-denominator by D(z, 3, §) as shown below,

L B(z,0) . BY(z,0) -

Ye0D) = TR+ ox@d)  Dep e

D(z,8,0) = BHY@O+ax@0) : S (109)
~ T, (e, 0+ apx@8]\] :
- Gy [u- {1l e o w

As expected from Eq. (104), the convergence criteria for the power series expansion of - Q is the.
second term in [...] of Eq. (106) which is denoted by E(z, 8, §),

E(.’L‘ ﬂ, 0) = { W’(x g)_:'lap)f(-'l? 0)]} . o ) | (107)

' The integrand function Q(x f3,6) defined by Eq. (104) will be expanded in terms of the
intermediate function E(z,(3,6).- In prior to the expansion, the behavior of the E(z,3,0,z)

- function in the practical ranges of variables 8, 6 and z is discussed to examine the convergence.

“As evident from the form of E(:z; B, 8) the following relatlon ex1sts for arbitrary positive 3

Blo.p10) = ¢“§Lf““0) wuermn@oxh' (o)

and the E(m B,0) has the followmg characteristics at special pomts of z for arbltrary positive

B,

=

: g - |lg| = o0 (far from resonance position),
E(z,B,0) = Y L ' '
o %ﬂ—) for z=0 (at resonance posmon)
As shown in Flg 40 the’ magnitude ‘of E-function is smaller than unity 'in the overall
range of temperature T' and .neutron energy E even at the smaller ﬂ-value for gpacki = 10 barn

which is nearly equal to the potential scattering crass section 0p: of heavy (fuel) élement. For
an éxtremely large 6(c . -2 ), ie., extremely low temperature, the E(z, 8, §)-value along: with

the valley = 0 (at resonance pos1tlon) tends to zero as indicated by natural line width for 3
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Flgure 40: Criterion Function E(E,, 3,{) of Infinite" Power Serles Expansion of Functional
Function ‘Q(v, x) for 238U 6.67 eV Resonance. E, means the neutron energy, and 8 and ( are

expressed in terms of neutron energy E, and temperature T The potentlal scatterrng cross section per

resonant materral is set to Obacki = 10 ba,rn

function defined by Eq. (76) T T PR

=iy 0.0+ 30,0} _1-4(000)

1 1 1-1 '
. B ., -.:ﬁlurrz-—>0[ﬂ+l{1 x2+1}]==>ﬂ+1 1-0" N (109)
where the absolute temperature T .is assumed -to be. 0: However acceptable lower absolute
temperature is restricted to 273 K of the room temperature. Considering. the behavior around
z = 0.in Fig. . 40, the E-function at § = 0(T — o) is unity: for overall z.range. This.special
case: cannot be :expected physical. point -of view -since 6: = 0 appéars either- at null resonance
width T';x =0 or at an infinitely high temperature (I" — o0).- Therefore, the E-function has'a
" functional value-less than unity and the series expansion is possible. - _ : ‘
According to the above discussion, the integrand of H—functlon can be expanded to an
infinite power series in terms of ¥ and X functrons as shown below,

s = vt gy o
‘ : ,3,—?—1 z, 0) Z{E(z ,3,9)} sy :;(111)
: -n=0" "' - : -
_ L oo N n—r ner_n n—r
RS ()
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(112)

_with T E

CLE ,.Cr = _n_ Bmomla.l coefﬁments B (113)
4 : (n - r)! r ' _—

(114)

This power series can glve an exact r%ult for @ function by taking a higher. order of n.
However, the formula for analytlcal integration of the power series terms Pt x? (3,5 > 0) for
an arbitrary ¢ and j are not available. As will be shown from Egs. (120) to (130), the terms at -
- most i+ j < 3 can be analytically integrated and dominant contributions come from these lower
order terms since the 9 and x function is smaller than unity. Therefore, in the present work,
exact analytical integration is performed up to the third order terms and the remamder hlgher
order terms are replaced by approx1mated expressions of ¢ and x functlons ie.,

Qti,ﬁ,o)“=:;éfl(1+w+w)¢ <w+2w2)¢2 (apw+2ap P )ix

it W e’ WX + 20,0 X -

e non—r ' . S o

f 2 g (us)

n=3r=0s=0 ) T T e K

“where w”-terms in % — x polynomials are truncated up to 3 and hlgher order terms of w™ is

included in power series. The power series expansion term f7 is defined as function of Doppler’
broadenmg functlons ¢ and X as shown below

: sd:;is(¢’ X) = ( 1)n-r n(Z) (n s“"') ('zpn—r—s ; ,¢s+1'xﬁ—'r‘-s: ' (116)

An acceptable form for the higher -order term in the series expansion can be set on the
_ approximated high or low temperature model of Doppler broademng function as discussed in
“the case (a) or (b) of Section 4.2.4 depending on the temperature and/or total resonance width-
‘of interest:. The:lower: temperature model in 4.2:4(b), namely "Natural Line Width”, has no -
temperature dependence and thus temperature effects such as’ Doppler react1v1ty worth are
-missed. As shown in the high temperature model introduced in 4.2.4(a), the Doppler symmetric
function 1 is non-vanishing function but the Doppler asymmetric function x is automatically
vanishing in the high temperature, and consequently the higher order terms in the power series
_expansion becomes as,’ - L : o

sum = (= 1)”" "(:) YT >3 . (117)
5.2 Resonance Self-Shielding Factor of Individual Resonance

~.. The resonance self-shielding. factor; namely "f-factor”, for single level resonance can be
obtained by lntegratlon of Q(z, B8,8) in the range [-oo, +00] with respect to dimensionless energy
z as,

7(6,0) = ﬂ'—g-‘f [(1 rota?) [ Z Y(0;7)ds (w0 +27) [ Z (=, 0 dz
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T (Vd,,w+2a,,w2,) / m'iiﬁ(x, é)x(rc,-ﬂ)da: +“w2‘ / ~ w(x;G)de o

Ct aptw? / Y(z, O)x(z, 0)2dm+2ap / Y(x, B)X(m G)da: ‘,

oo nn'r"

© P ’*’5@9)] R N CC

n=3 r=0 s=0

where the mtegrated power series expansmn term F fieikag (,6, 9) is deﬁned by..

Fos(p.0) = / 1T

Analytical integration can be performed by mtroducmg the approxi\mate'd' expressions of 1 and’
x functions, i.e., the high temperature approximation Eq. (83) for narrow resonance width with’
" small §-value and the low temperature model Eqs (76) and (79) for w1de resonance width with
large 6-value. : ;

"Integration of 9 and x polynomlals Eq (116) w1th respect to dlmensmnless energy x can be
analytlcally obtained from the follow1ng integration formula, v ‘

/ Vi kdTik = L - (120)

/ Xikdivik = 0, ' i . ' . ' (121)
/ ¢zkd1‘zk = g'iﬁz‘k((); \/50“;),- o . (122)

/ X@kd‘”zk,.j = 2m9uk(0, ‘@iu_k;)s O R )

. ‘ szzl zk 8 — : sz +F szla . S . - “ .

/ «/)wdx!w LT )

i kVilQLik — ( zk+r zkl, . .- - . A

[ btz - \/— O (Ilkz+12kz> SR )

/ _Xz?k"/}ildzik' = \/7 Osz +1" (Ilkz lel;l)j? o : (127)

/ in- qdeik = 0 (m,n>= 1, m,n:ihtegers), " : (128)

Emk~E011 Fik;+ril:‘~ I
w‘ikl = wzk ) = - =, | . - (129)
. sz+le "/Aik2+Ail2

2

(130)

Egk — Eoir T+ T }

Tk +.Fil" JARZ + A2

Xikl. = Xikl
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Doppler ‘broadening function 1;x; and x; ki are introduced by Hwang[14] for the resonance
“overlapping between'the k- and l-th resonances. - As the limiting case of [ — k, these functions -
tend to the ordinary Doppler broadening function introduced by Eqs. (27) and (28) Where suffix
klis dropped for simplicity.

BeSIdes, the following mtermedlate functions I; and I are needed for Egs. (126) and (127),

' ' OXiki 92 szz 03Xk
I = Ay |Asv;p — - A - . 131
1 4 [ sYikt = Arg As 522 +. 97523 | (131)
: 2 BX{kl 2 28 szl . o ' ) ., .. oy
I T _ e . o L i o 132

where! the coefficients :A; can be related to the ratlonal,funcfieh of exp(t?) - er fc(t) as made in A
the M C:"’A— 2 code of which formalism is basically used for present work. Its rational expression

imazx

2 _ el P e
~ S -(133).

: v ; : e:z:p(t) erfc(t) Z 1+pt e :.(‘33)

whlch is based on the followmg expansmn of -eITor functlon

tmazx .

rfe) = 1-ap(-h) Ly re@ (39

b= o : (135)

1+px

and truncation error |e(z)| is 2.5 x 105 for émaz = 3 or 1.5 x 10~ " for imaz-= 5[15]. In

Sl : " Table 1. © Coefficients for the rational expression -

imaz | p ax ‘ as as E ay as . -
, '3 0.47047 0.3480242 - -O0. 0958798 _0.7478556 Coa . .
5 '0.3275911 0.254829592 -0. 284496736 1:421413741 -1.453152027 1.061405429

present work the imaxz = 3 set of the coefficients is used. : .

As mentioned above final expression of resonance properties such as resonance self-shielding
factor can be described’ by the Doppler broademng function” at a-resonance energy, namely
¥(0,/26), as expected from Egs. (120) to (130). Therefore, only functional value at the reso-
- nance energy is used for the'numerical analysis. The functional values of- 1,b is estimated from
~ the numerical table prepared by MAPLE Release V(8] with'the option ”digits=18" based on
the exact formula Eqgs. (37) and (38). The highly accurate value by 18 digits is needed since
the difference of the resonance self-shielding factors is essential for the sensgtmty analysis of
Doppler reactivity worth. .

In the present.work, an intermediate variable  is mtroduced as the result of the study on
the power series expansmn of the resonarce self-shleldmg factor The ¢ variable is defined as

e

+ 1The partial derivative inéonsietencies‘fodnd in the original formula used for MC 2 _ 2 code are corrected.

- (136)
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For extremely high temperature the ¢ tends to unity due to the vanishing of 6 resulted from the
extremity. of the Doppler width Ajx-value and the §-value vamshmg The 6 and temperature T
can be expressed by the § variable as shown below; '

(1-9
V2 ¢’

4 ' - 2E kp: 201-¢))
The conSisterrcy between newl& introduced variable ¢ and temperature T is shown in Fig. 41 .
as a function of temperature. The linearity between the temperature T and temperature 7T'(¢)
as a function of ¢ i is hold good in Fig. 41. It means that the auxiliary variable  defined by the .

relative resonance width # to Doppler width can reveal the given temperature T'. A
The auxiliary functions {()’s are shown in Fig. 42 as functlons of temperature for the

(137)

-(138)

5000 - C
7
= s
=~ c ¢ P P ;/./ [
R Ve // oL
o
° . /.//'
-
S 3000 - ' : prd
2 -
= /// L
< X ) //
& 2004 . RIS
2 ' ! e
= . //
E -
L //'
-9 o7
g 1000 - ,/ :
Lo} e
= L
e
v
\ // . . .. ) )
1000 2000 - 3000 4000 5000

, leen Temperature T (K) . , .
Flgure 41 Temperature as Functlon of intermediate varlable ( defined by Eq. (138)

narrow resonance of 2380/ with width T';z = 24.89 meV at Er =6.67 eV, the wide resonance of
239Py with Ty = 11.22 eV at 214.65 eV and the first resonance of 240 Pu at 1.05 eV, respectively.

The coefficients A;’s introduced in Eqgs. (131) and (132) for narrow resonances are shown
as a function of the another coefficients a;’s for the rational approximation of er f(z) as

A3
Ay

As

o S |
4—_4—'C, ‘ N , (139)

C) ’ . o -
al +a2(+ a3 ¢? '

(140)

(141)



JAERI-Research-2004-026

-oo;o°°°°°
©
b
0.8
Bnnn
u.
o
o
Q -
@ - ot
. +
0.6 +
= .|~
E{ +
D =
D
——
A
' , 0.4“
0.2 1
o°°°°°
-]

‘°°°°°0°°°°°000009000000000000000000
. U238 ‘with Gt= 24.89 meV

nﬂnonnnnnnnnnaun!

soeoae®°°°% " BZagith Gt= 19292meV |
-+~ Q-'.'*"""""'“"'.‘""f***
P
J

et M Pu239 with Gt=11223.57 meV
+ -

Pu240 with Gt- 168 78 meV B

o ooo°°
ooooooooo°°°°
000

1000 ' 2000 ' 3000 4000 © . 5000

i

Temperature T' (K)

Figure 42: ( (T) s as Functions of Temperature for Typical Resonances. The resonance data for
four resonances are for the 233U Resonance energy Er = 6.67 eV, total width I';(i.e. G’t) = 24.89 meV,
for the 239 Py Er =10.928 eV, Iy = 0.192 eV, for the 2°Pu: Er = 214.65 eV, Ft = 11.224 eV, and
for the 2‘“’Pu Er =1.057 eV, I'; = 0.1688 eV, respectively.

below,
: A3
Ay

As

Ag

too= - o 4
VAB; ¢¢°”+3§4+6”“Nv B  @%)
A = bﬁgf(az+4_zic+10a3'g2),' - : )

‘While, for wide resonances the A;’s are defined as an inverse of # i.e. (67! o -2%), as shown -

- @m0 R (146)
R 1o 3¢ [/ P\ L
= \/—(l_c)ll 2{1 ?(l_c)}(l_c)], L (14.7)
= 1, o D . )
- i - S ;049)
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%(T%%)z K S o : o)
4 :%(%)4 e o
| Aéi; - G S

. By using these constants A’s, the resonance self—shleldlng function f(8,¢) can be shown as
below ;

f8,6) =" ﬂi [(1 T wz)’r - (w + 2w2) wo |

+ 0 (Il+12)+ap2 2 ——0 (Ii-L)

E ZZF;:,%}‘ R R (s
n=3r= .
; = 12[3— [1+w+{1——\/‘0 (I p2 \/‘9 (I + Ip2) ap Jw?
— % ' w/—j- 2w? — %\/g{(tl# 4a,")Ip1 ~ (1.—f4%2)1p2}9_ -f ¢0}
3y, . o (154
n=31=0 ' ‘ '
$(0,0) = \f b-exp (92)6176(%) S .
b= YOV =VE0 e () s L as)

where g means the - value at the resonance energy x = 0 and it is a function of only (-varlable
or temperature T, and the other mtermedlate functlons such as Id(C) are shown below For
instance, for the narrow resonance, S

For Narrow Resonance

B o a1+’2"42c+3a3{2'

2U-QIC (ol et cr108E)) )

In@) = ¢{or+a2¢+a3¢’
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R (1_4)(51 +2a2¢+3a3¢%)

4
(1 —¢)? g?(a1+3a24+6a3c4)'
+ : .
16 .
. »3p4(1 () (4(a1+4a24+10a342)}, .-(158)
128
L (1=9) |
b= 5 -

Although similar equations can be defined for wide resonance, these equations are missed
here since they are temporally used to derlve the ﬁnal express1on of the ‘resonance self-shleldmg
factor. ~
By substituting these aux111ary functions into Eq. (154), the ﬁnal expressxon of the resonance
self shielding fact;or f(8,0 can be obtalned as -

Lo HBO = -e®) [1+w(ﬂ)+'( S fze@)) (o))"

- { w<a)+( f = fu(()) {w(ﬂ)}?}-ipq(o;f;fm(m] o (60)

(1= w@) {1 +‘w(ﬂ)~4:%¢o(4)w’(@) F0() 0.0+ Fam() ], (161

where

g;«)—l—w«)—ﬁ(_—f) ()~ 90O 2} )
o~ (V-0 f(l—o f(l—o .
wo(o—f{ o7 } [{ e }} { "o } (163)

The mtermedlate functlons fzI (C) and “f2(¢) based on the Ipl, 'I,;_z and’ 1. functions &fré
deﬁned for’ the narrow or widé resonance as showhn’ below ‘ G erna R

For Narrow Resonance

fa(Q) = (1+4.‘0,‘a,p?).C'{all‘-'l-?,a2§l+;a.3.<2 :

1-9 (af +2a2¢ +3a8 cg) o

+ 4
2 (;1’:-!' & (41 302¢ 4648 ¢4)
t 16
- 3pt (1—() {4(a1+4a2c+10a3§2)
+ . 128 '

_40_
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o 1-40af (1-¢ S o N
A '<pC>, S oD

. (N)
L= (1—|—4O az),CEOCOf~ 13) C - \//_ ( ) .(16'5)

al +2a2(+3a3¢>

fal) - (1 +4-0a¢2) (1-¢)? c{

M=o - |
p%2@1+4wc+idwﬁﬂ,;1—40ﬁ,:1‘4 56
e } e () (166)

, ._A8 ' - . 1-40-a% /1-
= (a0 oo ¢ - 2 () as

For Wide Resonance

(1+40am) p¢ .
VT 1fC

3 [ p¢\* 1—404% 1o¢\ : ' o h .
m (%) }s‘ zﬁ” '(‘pg) S
: m+4pﬁ% ' o "1fiee?ji;¢H .
- L S () ()
(1+40a2) p¢ [ 1/, 8 p¢\ (p¢\ L1 1/ pC !

20 = ——= 1_(;{1“5(1_5_4) <_<) }-{4+32 (1-_4)
1"4-0%2@' 1-¢ . s . . -
Sl G L o,
_ (1+4.0-a12,). O Wy o[PS Y 1—4.0-(1}2,. 1'—'<->‘”' '
= TR Tyt (Z) - (% o

with the coefficients Co fVW). given below

lel(C)_
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e
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I

1
OpitOback i
1+ﬂ 1+—1"—' o

w(ﬂ) ~(172)
The w(,@) value is vamshlng when the [ tends to oo indicating 1nﬁn1tely dlluted mxxture with
‘Obacki = 00, while for dense mixture with —P‘j"& << 1, i.e., Opacks =~ 0 the w(B) becomes
unity and then the f-factor proportional to {1 — w(ﬂ)} is vanishing.

The power series term Faum (6, ¢) can-be obtained by substituting the %-function based
on hlgh temperature approxnnatlon for narrow resonance or that based on low temperature

approximation for wide resonance as shown below,

" For High Temperature Apprbximation (Narrow Resonance)
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Table 2. Coefficients for f,1(¢) and f.2(¢)

Order j Narrow Resonance . - Wide Resonance
Cof™M(1,5) Cof™M(2,4) [ Cof™(1,4) - Cof™(2,5)
0 0.43503025  0.08700605 5/4 1/4
1 -0.23082575  -0.13494595 0 0
2 . 1.36150172  0.61123886 -9/16 —3/32
3 -0.57449992  -0.57317353 15/16 3/16
4 0.01317248  0.07678339 —1/128 —1/64
5 -0.00521879  -0.23246056 3/64 .3/128
6 0.07194213 - 0.32339063 —3/256 0
T -0.14176389  -0.20956762- 9/512 0
-8 0.07066175  0.05172871 0 0
Fam(B,0) =2 ) For(B,0), (173)
n=3r=0
" where - ‘ ,. «
on (D) (n {\/? (1 - g>}"" ‘
Frr = —_ | . ——= , 174
ny . I'(n+1) ' '
= . ) 175
(r) 'r+1)T'(n—r+1) ( _)

~ Convergence of this power series Fyym (43, ¢) is shown in Fig. 43 as a function of order nmax.
Up to nmaz = 8, the power series is conversed to about 90 % of nmaxz = co.

- 0.135 A

0.13 1

0.125

Power Series Term Feym (0, ¢) .

-0.12

5 10 15 20 25 30

: ' " Order of Power Series ' o
Figure 43: Converzence Criteria of the Power Series Term Feum (8, ) of Eq. (173) as a function
of the order nmaz at o = 10! barn and T = 293 k.
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For Low Temperature Approximation (Wide Resonance)

= oo “"“’"( J(7) )

« _B(n—r—s+1’n——r+s+l)7.:"_:" '(17(‘3)
2 -2 e
where B(z,y) is the Beta functlon FEE -

The resonance self-shielding factor of the ﬁrst resonance of 238U existing at E, = 6.67 eV is
shown in Fig. 44 as a function of the potentlal scattering cross section per resonant absorber
oo (barn), instead of gpacks for simplicity, and the temperature T' (K). As a whole, the smooth -
trends are found since the present model neglects the interference terms between resonance -of
interest and those of the different resonant materials as evident from Eq. (90). The magnitude
of the f-factor tends to unlty as the potential scattering cross section og becomes infinity. In this
287 case, around o9 = 10* (barn) the f-factor almost saturates. While, the f-factor tends to

zero when oy is getting small as expected from the definition of H-function giving the resonance
' self-shielding factor Eq. (97). -For these extreme cases, the f-factors can be expressed by the
following approxnnatlons : :

For extremely large 20 ;

. 1 gt .'i' T 1 +00 o
fik = —-. — Bucth : da:=—-/ %dw
T J—oor ﬂzk‘*‘w"f‘@pekx T Jew 1+_ﬂit¢
1 +oo i o : -
~ ;-/ 1/)da,_1 o )

~ For extremely small. &g

1. [too | Batp

E o= = : d : 178
i 1 oo Bt O apax 3 _( )

w "—oo "/J + GpikX ) .
« Ba -0 1 (179)

In order to examine such a s'peciél trend of the f-factor, the individual components of the
- f-factor are shown in Fig. 45 for ”Constant term”, Fig. 46 for "Non-3 term”, Fig. 47 for
- "ip-term” -and Fig. 48 for ”Power Series Term” which are defined by

Constant — Te7;m =1-w(B), _
Non—1v — Term = {1-w(B)} [w(ﬂ, O+ (1 - £ fzz(C)) {w(ﬂ)}z} ;

\/_1

YTerm =~ {1 - w(B)) [{ S9(®) + ( e (0) {w(ﬂ)}z} wo(o]

Power Series Term = {1 — w(8)} [Fsum(B)] ,

— 43 =



" JAERI-Research 2004-026

SO
—_
£
<
»S
[sal
=1
.. «<
" — °
, — Q
. -
P S m
P a> A
—t Q
: — [o'ed
—t2
A 5 <3 >
: 5557 s ok Foos Z 2 S o
: R i e T > = <
e B S Sennt R oS B aaaouseatnt SRS monoanaats WSS miotont 17207 7 15 S L e ’ e
%».%ﬁm%aﬁ%vz ; wﬂg% z"_.3..%ﬁ?ﬁz«‘:z.nﬁ.wgfﬁf%%és%%:Sﬁ%%%ﬁs%@? L ©
R e o800 % So e emone e S amaon ey HL e sessanst SR s sonesnotd BT cutodns s%%s%zﬁ % KR =
w%%.ﬁmvﬁ%w%ﬁ pe ns%?ﬁz,.w Frs e Frae s BRSNS a%%% s S = - o
5% %%&QM%%%E;&&% 5 pssspmmsnoennitlt SR nsmmnnnind MORE oo ST s BRNING S ¥ -
m%&%%%%%%%&@s&% s om0 XOIEE {0t 202 R 3¢
wﬁ%ﬁ%%ﬂﬂﬂ o S E st Rt : S . 2r
X e ] X ~r
peiete =
3% 3
i =
AR AT A et
FA A A e
i (XA Rt S5 03
49,8 8 St Tion ¥
[} ﬁﬂﬂm%v e
A
Y g
_w. . B et

u‘:{‘
3
SO
Sy
‘%\g

8 s B 8
4 At
e
XA
A
% £ o8 oot

L2
e
Vs

\

o

f-Shielding Factor f(aq,

r v —. = T T 1 1

L= ' [ [y ’ L

(5 ‘@) 4 xo30eg SUIPIETUSIIOS OOUEUOSIY -

Figure 44: Resonance Sel
of Narrow Resoriance.

L

— 44 —



- JAERI-Research 2004-026

 then,

f(5,0) = (C’onstdnt) + (Nony)+ (¢) + (Power Series). (180)

The oo-dependence of f-factor is mainly expressed by:the constant term and Non — ¢ — Term,
while temperature dependence is characterized by 1/ — Term in low temperature and by Power ‘
Series Termin high temperature which chancel one another.” - - o '
The f.2-terms with the coefficient function v/7(1—¢)/(4 -p¢) is a monotonously decreasing
function like 1/v/T as shown in Fig. 49, but the f21(¢) term is monotonously increasing function
whose magnitude is much smaller than Fyy’s.- At least, the F;1-term can be omitted for f-factor.
'Therefore, the resonance self-shielding factor can be approximately expressed as shown below,,

CF(8,0) = (1= w(®)} |1+w(B) + {w(B)Y 5 {w(8) +2 {w<ﬁ>}2}¢o<<)] (8
. where the F,o-term was also -missed because it is much smaller than unity. . This simplified
~ expression makes an important. role for the wide resonance such as 2Py at E, = 214.56 eV.
The simplified formula can be obtained by setting f.; = f,2 = 0 in Eq. (160). The relative
error of this approximation is shown.in' Fig. 50 as _f (Eq.;s(g;{égq.mm in percentage where two
resonance self-shielding factors (exact and approximated ones) are shown in the upper half of
tlh'e figure. ‘ '  . S ‘ ) o

~ As an example of the wide resonance, the resonance self-shielding factor (f-factor) of the
239 Py resonance at the resonance energy E, = 214.65 eV with gT', = 9.57 meV, T, = 42.00
meV and I'y = 11.17 eV is shown in Fig. 51 as function of the potential scattering cross section '
and temperature. The magnitude of the f-factor is localized in a limited range from 0.9 to.1.0,
so-called "Frozen to the 1.0 Ceiling”, and the temperature dependency is extremely small.

- Constant Term of f(3,()

. , " 6
6/@ 2 . 1og{00(b)}

Figure 45: Constant - Term of Reédnanée Self-Shie_ld‘ing Factor Eq. -(1‘_80);Afor 2817 6.67 eV
Resonance. , i



JAERI-Research 2004-026

© 0.35
0.31
025"
024

.0.15 ]

Non-p Term of f(8,¢) -

1 10 Temperat

Figure 46: Non-y) Term of Resonance Self-Shielding F'a(;:to'r Eq. (180) for 238U 6.67 eV Reso-
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Power Series Term of f(8, ()
o
®
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- 0
5 1000 Temperature T K)

Figure 48: Power-Series Term of Resonance Self-Shielding Factor Eq. (180) for 23U 6.67 eV
- Resonance.
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Figure 49: The f,1(¢) and f,2(¢)-functions for Narrow Resonance like 233U 6.67 eV Resonance
as functions of Temperature T". The variable ( is a function of temperature T'.
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Figure 50: Comparison of Approximated f-factor f,(8,(¢) with the Exact one f(83,() for 28U
6.67 eV Resonance. The approximation is made by setting f,1 = f,2 = 0 as shown by Eq. (181).
In the upper half of the figure, two f-factors are shown and in the lower half the relative error defined
by JL;L is shown in percent. The approximated f-factor-denoted by fx is shown by 0.7 x fz since two
f-factors cannot be distinghed because of the small error.
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JAERI-Research 2004-026

5.3 Partial Derivatives of Resonance Self-Shielding Factor

Partial derivatives of f-factor with respect to 8 and ¢ providing the sensitivity coefficients
are as follow,

5 = w0590 -2 {50+ 5 %0 }o(6) + 300y

5 .
+a_13 {1 _ w(ﬂ)} Fsum(ﬁv C) : (1‘82)

with the partial derivatives of the series expansion term with respect to  as shown below.

Narrow Resonance Approximation

a%{z—w(m}nm(ﬂ,o - ZZ (1 - w(B)} FAR(5,0) (183)

n=3m=

Il

- Sl (-t () FERALC) (184
n=3r=0

Wide Resonance Approximation

iiw B){n—(n+1w(B)} Fam'(8,¢() (185

3m=01[=0

M8

3[3{ —w(B)} Foum(B,¢) =
The partial derivative 2 8—6 for the first resonance at E, = 6.67 eV of 23/ is shown in Fig. 52

as function of potential scattering cross section og and temperature 7', and that for the 23°Py

214.56 eV resonance is shown in Fig. 53.

' The partial derivatives %g of f-factor with respect to  is given by

Il

n

5= 1-w} -5 25 o) 1w 2o+ Lz (186)
where 3’/’5’,;( can be given by |
do(Q) _ [2v2(1-¢) 28 ,
a¢ _{ K \/i(l—c)} WOM( 4)2 (187)

and the partial derivative of Fum (8, ¢) can be defined by the two different approximations, High
and Low temperature Approximations, as

For High Température Approximation

o B . |
0 mm o on-m .. ]
5EF;Lm(ﬁ,C) = o Fom(8,¢) (189)
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For Low Temperature Approximation

0

oo n m a
—F.s'um ) = ar snml 'S ’
TSI D P DR (NS (190)
2 LRI, = 00 (191)

as expected from the FLu7 for the low temperature defined by Eq. (176), which is not a function
of { as well as the temperature

The partial derivatives of (2 B¢ Ly’s are shown in Fig. 58 for the 2380 6 67 eV resonance and in
Fig. 59 for the 239 Py, 214.65 eV resonance. The former has a maximum value around oo ~ 104
barn, but the latter is monotonously increasing function of temperature in the smaller og-region
below 104 barn.

"~ The Doppler broaden1n§ function and its derivatives with respect to { at a resonance po-
sition, namely 1o({) and , are shown in Figs. 54 and 55 for the narrow resonance of
2381] and in Figs. 56 and 57 for the wide resonance of 3° Pu, respectively. As shown in the
three-dimensional plot of ¢ in Fig. 26, the 1¥(() is decreasing function with respect to the
temperature, which means the change of the resonant total peak cross section shown in Fig. 23.
The derivatives of 9({) for the 6.67 eV narrow resonance of 2*8U is also monotonous decreasing
function as shown in Fig. 55. While, the 1p(¢) for the 214.65 eV wide resonance of 23° Py are
nearly linear function of temperature and its derivative %é() is nearly equal to zero as shown
in Fig. 57 and milder behavior than 2380s.

The derivatives of the resonance self-shielding factors ﬂfa%) are shown in Fig. 58 for

0524
054}
0.481 \
0467
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0.26 1 e
. 0.24 TN
0.22 1 T~
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—
—
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Figure 54: Symmetric Doppler Broadening Function 1p(¢) at the Resonance Position of 233U
6.67 eV Resonance as a Function of Temperature.

the narrow resonance of 28U and Fig. 59 for the wide resonance of 23° Pu, respectively.
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Figure 55: Partial Derivative of Symmetric Doppler Broadening Function %&@ at the Reso-
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214.65 eV Resonance as a Function of Temperature.
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Flgure 57: Partial Derivative of Symmetric Doppler Broadening Function M at the Reso-

nance Position of 23° Py 214.65 eV Resonance as a Function of Temperature.

As shown in Fig. 44, the temperature dependence of the f-factor for 23U is an increasing
function and tends to constant value in the high temperature region, and the oy dependency
of the derivative 2 3¢ f has the maxmlum value around og ~ 1.0 barn and is decreasing towards
zero as shown in Fig. 58. The op = 10 barn is a turning point of the temperature dependence
“of f-factor as shown in Fig. 44. On the other hand, for the wide resonance of 23%Pu, the
magnitude of -ag is extremely small, about one tens of 238U s, and slightly increasing trend with

temperature can be found but the turning point could not be found in this case.

Further derivatives with respect to temperature T' or a resonance parameter Iy of the re-
action z of the [-th resonance can be obtained by

of _ of op

O 88 0Ty (192)
of  of & A

- xE (52

5.4 Multi-group Resonance Self-Shielding Factor

The effective cross section for the k-th resonance of an isotope ¢ and reaction z is defined
by the infinitely diluted cross section 0o zs multiplied by the resonance self-shielding factor f¥,
as, : ,

k k k -
Oeffxi :Uoozi‘fzi' . (194)

The ultra-fine group effective cross section aff iz Can be obtained from the average cross
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Flgure 60: Neutron Spectrum of a, Typlcal Large Fast Breeder Reactor based on MC? —2 Ultra-
fine Group Calculation. Typical resonance posrtlons of fuel matrrals (U238 Pu240 U235), coolant
(Na23) and structural material*(Fe56) are shown. "

section of point-wise cross Sections based on nuclear data with- the weight of neutron flux in ‘an
ultra-fine group. As the reaction rate of the g (broad) group has to be equal to the sum of the
contributions from ultra-ﬁne groups, ‘the following balance equatlon of reaction rates has to be
satisfied.

Z ffxl ¢ A’U, =Ueffa:z Z¢kAu . (195)

keg keg

The ultra-fine. group neutron spectrum was obtained by using the MC? — 2 code w1th the
lethargy width Au* 120 -The neutron spectrum for typical large fast breeder Teactor is shown
in Fig. 60 where flux dips due to resonance absorption and/or scattering can be found..

Even if taking about two thousands of energy groups such as 2024 in present case, individual '
resonance profile could not be faithfully revealed The magnitude of reaction rates, however, are
seemed to be reasonably evaluated since MC? =2 code exactly évaluate isotopic and resonance-
wise reaction rate by using the resonance mtegral J-function in cooperation with continuous
slowing down theory coupled with the criticality search. In these processes, resonances of all
constituent isotopes are taken into ‘account. . Therefore, a few thousand groups calculation can
give consistent result Wlth more finer group calculatlon so as to conserve the reaction rates as
shown by Eq.(Eq:179). : s -
Consequently, the effective cross section of a broad group can be obtained as _t-he summation ‘of
the ultra-fine group contributions as shown below,

g fk ¢k Au

keg oo i

N o, =
o ef f,xi i keg ¢’°Auk o ,

. (196)
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where k €.g means the ultra-fine group k falling into to the broad group g. While, the g group

resonance self-shielding factor fg is summatlon of the ultra-fine group contributions with weight -
AE; as, )

o= SN f o (197)

keg

‘ kL oEA k - : .
A = oot ¢ e o (198)
Zleg Too,ai ° ¢ Au

The ultra-fine group resonance self-shielding factor fX was provided by Eq. (160) as a
function of temperature and the resonance parameters, and thus the effective cross section
defined by Eq. (196) can be obtained if the ultra-fine group neutron spectrum is available. In
the present work, the k-th resonance in a resonance sequence of all resonant materials belongs
to an ultra—ﬁne group. : '

6 Sensitivity Coefficient to Resolved Resonance Parameter
6.1 Sensitivity Coefficients of Resonance Self-Shielding Factor fr-
: 6 1.1 Sensitivity Coefﬁcierrts for Multi-variable Function

Sens1t1v1ty coefficient SP“ of the resonance self-shleldlng factor f5,(8,¢) agalnst an arbitrary
resonance parameter szk 1nclud1ng resonance energy E, is deﬁned by -

s _ Fﬁé'.ﬁfﬁiw,c) I o
SF‘T"" - TEBO T (199)
Dok OH (B, ¢)

:mk(,@’ C) 6I‘mk al ‘

(200)

_The sensitivity coefficient of an arbitrary functional function: f[g{h(a;)}] can be obtained
: by a successive product of the sen51t1v1ty coefficients for mt;ermedlate parameters as a result of
followmg algebra, : : )

'9f() Bg(h) ,0h(z)
.09  Oh Oz 7

— @) sle) sy 40 e

5f@) = - (201)

»Therefore, an effective sensr’clvrty coefﬁment Sf of functlonal functlon f(z) to the change of z
can be expressed by :

)

% (gi ) sf—sf(g) SA(h) - S3(@). ‘ ('203)i

In the present work the resonance self-shleldmg factor f(8, C) is a typical functional function of
B and ¢ which are also function of total resonance width T', resonance energy E, and so on, i.e.,

NE

_56;
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flB {sz 9Tn04, E } C{O(lem 9n0s. T)}]
~ For a multi-dimensional function such as f(8, ¢), the sensrtrvrty coefficient can be obtained
as a'linear combination of intermediate sensitivity coefficients as shown below,

k © ek . ) ‘
SI{zi :ngi‘ B +SC:“' S[* k‘ (204) :

This formula implies that the sensrtrvrty coefﬁcrent SF“” of the resonance self-shleldmg factor f
to an arbitrary resonance parameter I'z ;x can be expressed in terms of the sensitivity coefficients

for intermediate variables 3 and 6. In general, as far as the sensitivity coefficient is defined by
a dimensionless quantity S = % g’;, such a successive operatron can be used even xf a lot of

intermediate variables are concerned.
The sensmvrty coefﬁc1ents of f-factor to individual resonance parameter are given by

st = % (2-85-s8,-sl-s) | | '(205).
o) (B) ) e
s{‘j %. _F’—FV .A(s;,‘-sf?; {S{ -557) o - ‘ (207)
st = —% (sf:.sf’ _Sg.sgf)- " - (208)

Explicit sensitivity coefficient of the resonance self-shleldlng factor to individual mtermedlate
variable are as shown below : :

6.1.2  Sensitivity Coefficient of f-factor to §: Sg ,

~ The sensitivity coe_ﬂicient of f-factor to B(= %) can be shown by a fractional function

as, '
f(ﬂ, O N

S5(8,¢) = R (209)

where the numerator and denomrnator functions are deﬁned by

NB.O = w0 [0 -2 {5:0)+ 30l =1} (8)

+30(000(60) g5 (1~ D) Fam(B,0], @10

DjB.C) = 1- Lpol0) + {gz(cwo(c) — 1}w(8)?

—yz(C)w(ﬂ) {1 - w(ﬂ)} Foum (B, €), (211)

'and o {1 -w(B)} Fsum(ﬂ ¢) was deﬁned by Eq. (184) for narrow resonance and Eq. (185) for
wrde resonance respectively. :

The sensitivity coefficient S[f; for the first resonance of 238U at E, = 6. 67 eV is shown in Fig.
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61 which is vanishing in the region of o larger than 10° barn because of the saturation profile
of the f-factor as shown in Fig.. 44. The temperature dependence is monotonous decreasing
function similar to ﬁ 4 S : A

As shown in Fig. 44, the f-factor smoothly trends to flattening in both oy — 0 and
‘9 — 0o where the gradients tend to zero’s. For op — 0o, the f-factor is unity.and thus S/’; is

zero. However, for og = 0 the f-factor itself is vanishing and then % : % becomes unity. -

—
M|

o
@
Ll

* Sensitivity Coefficient S{,(ﬂ, ¢)

&) " s000 0 8 \O/g'{(,lo O}

'Figure 61: Senéiti_vity COeIﬁcient Sg(ﬂ,g) of Resonanée Self-Shiélding Factor f to B for 22U
6.6"(' eV Resonance as a Function. of og and 7. o S S ~ S

6.1.3 _Sensitivity Coefficient of f-factor to ¢: S/

The sensitivity coefficient of the resonance self-shielding factor to the ¢ is shown below. -

f —C¢-{1- M
SH0.0.=¢ 0w o (212)
‘where '
s S e o p S '(213)
((ﬂ?() _ _58_4-’(/)0(() gz(g)w(ﬂ) _'& sum ag)’ : -
DLB,O) = 1= 590(0) + {9:(O(O) - 1hl@) — g:(w(6)*
| ~ {1~ 0(8)) Faun(6,) e

‘and Q%é‘m(ﬁ, ¢) was defined by Eqgs. (188) and (190) for high apd low temperature appfdxima—
tions, respectively. - : . ) ) T _
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The sensitivity coefficient Scf for the first resonance at E, = 6.67 eV of 228U is shown in
Fig. 62 as function of potential scattering cross section and temperature. This sensitivity coef-
ficient is essentially the temperature dependence of f-factor and monotonous increasing function
overall range of potential cross section op. L S '

© 6.1.4 Sehsitivity Coefficient of: f-factor to 6: Sg = Sg . Sg _v

The sensitivity coefficient of f-factor to 0(¥ L) can be.obtained from the formula Eq. (203)
for derivative of functional functions, i.e., SCf - Sg , and can be expressed by the previous Sg ,
multiplied by ({ — 1) as ' R , o
| s{B,0=¢-1)-8f. (215)
. 0( ’ C ; C ) ¢ . .
The ¢-function is monotonous function of temperature T and less than unity as shown in Fig.

42. Therefore, the resultant Sg for the first resonance at Er = 6.67 eV of 238U is a negative
and monotonously decreasing function with temperature as shown in Fig. 63. =~ = -

6.1.5 Sensitivity Coefficient of f-factor to T: 5§ = S{-S§- 5%
The sensitivity co_efﬁcient of f-factor to temperature T can be obtained as a triple product

of partial sensitivity coefficients, Sf_ .85 S8, and the resultant st is
, : ¢ 96 OT T

Sh=-3(-1-5L. (216)
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where the following partial sensitivity coefficients were used

Cs§=¢=1, h=—1 | (217)

S
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Figure 63: Sehsitivit& Coefficient S%(ﬁ,_(). for 2380 of Resonance Self-Shielding Factor f:tq
Temperature T for 23U 6.67 eV Resonance as a Function of o and T -

6.1.6 Sensitivity Coefficient of f-factor to Resolved Resonance Parameter

Finally, in order to obtain the sensitivity coefficients of f-factor to the resonance parameter,
the sensitivity coefficients for intermediate parameters 3 and 6 against the resonance parameters
are needed. Resultant sensitivity coefficients are shown in Table 3. S

Table 3. Sensitivi‘ty Coefficient of 4 and 6.

.- B Sensitivity - 0 Sensitivity
QB _ Qb _ _1
SEik =1 SEr‘ik - 2.
B (1 _Tai) | @@ - _ Luu
an’k - ' 1 Tir Srnik _ Lix
:3 ' o Flzk 4 l ‘ 9. — r‘lzk
I'yi = Tk I'yik — Tik
B _ Trax ) _ Drux
"SFfik — Tk ' SFf — Tik
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Figure 66: Sensitivity Coefﬁciént Slf (8,¢) of f-factor to Radiation Width ]i, for 238U 6.67 eV
Resonance as a Function of g and 7. - o
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Figure 67: Sensitivity. Coefﬁcient»SI{f.(ﬁ,'C) of f-factor to Fission Width I'y for 23U “6.67 eV
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~ The sensitivity coefficients of f-factor to individual resonance parameter are shown in
Fig. 64 to.67 for the 238U 6.67 eV resonance as a narrow resonance, and in Fig. 68 to 71 for the
239 Py, 214.65 eV resonance as a wide resonance, respectively. As long as these cases, the 239 Py is
less sensitive to resonance parameter as expected from the béhaviors of resonance self-shleldlng'
factor on the op — T plane as shown i in Fig. 44 and 51. :

ofka . , : :
Uncertalnty of the resonance self-shielding factor Tpik of a single resonance due to the

f:':.k
'uncertalnty of the resonance parameter —F?"—“ can be estimated by, 5
off, v (Tu ) ' |
AR Rl = ‘ . : 218
’]’gz d ka ( I‘pzk - ' ( ! )

The effective cross section as well as the resoriance self-shleldlng factor of a broad or ultra-fine
,group is a function of many sets of resonance parameters for many isotopes, and consequently the
sensitivity coefficients is also a function of these many parameters. The uncertalnty of the broad "

group resonance self-shielding factor for the reaction 'z, denoted by (—é) , can be obtained by

the error propagatlon law w1th the broad group weighting function wf  as,

-y (=) .

11])1'1: ’

where p: for resonance parameters to be changed, i.e., E,, I'y, Iy and I'y, while 2: for reaction -
of interest, i.e., (n,7) and (n, f) :

The weighting function wf"”c can be obtamed from the effectlve resonance self—shxeldlng factor
as shown below,

wfk _ Akf (ﬁo,Co)
i Iifal:ci(/aﬂ)co)

i ¢0k (amk)rzik ffz(ﬂOaCO) . v : ) (221)
ik (60 (54) Tase £2:(60, )] o
and the reference point (8y,(y) can be set on the inﬁnitely diluted system at room temperature

for simplicity. The coefficients multlphed by f (ﬂo, ¢p) in Eeq (221) come from the infinitely
diluted cross sections. :

(220) .A

6.2 Sensitivity Coefficient of Effective Multiplication Factor. keff

The effective multiplication factor k. #£ defined by Eq. (3) can be explicitly described by the
level-wise resonant cross sections multiplied by the f-factor and additional non-resonant cross
sections as ;

Z Zk Nz¢ka (Eu )Ffzk ffzk+A<VZf¢>

55 Nigh () (et Toy) - B+ A< o> 1L

keps = v (222)

— 65 —
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where .
T : Isotope indicator,
k : Resonance indicator,

A(vZs¢) : Non-resonant neutron production rate,

A(Tad) - Non-resonant absorption rate,
ff;  : Resonance self-shielding factor for fission reaction,
f(fz . : Resonanc_e'selﬁshiélding factor for absorption reaction f}‘i + f,’;i =2 f}“i.

As evident from the definition Eq. (96) with Eq. (90) of resonance self-shielding factor (f-factor)
for an individual resonance in a ultra-fine group k, the fission and capture resonance self-shielding
factors are equal to the one another i.e., frik = fyi since the f-factor is a function of 8 as a
function of only total peak cross section as shown by Eq. (91). Therefore, foix/2 in Eq. (222) is
equal to frik or foi. : S . '

The change of k.zr due to the change of a resonance parameter 0lp 4k is defined by;

~

Shrs _ zzz[{ sy (%) e

k eff Tpik

The Sllfef { is the sensitivity coefficient of the k.ss against a resonance’ parameter Ipir of a

reactlon p(= Er,l"n,l" and, Ff at k-th resonance position. Explicit forms of the sensmwty'
coefficients are given by,

kert _ V<X > 994
57 v <X >+AWEs) (224) -
SElh = —2{0 —kess) Nl = kers Mgy, | (225)
" ke . R . i Tnie) '
‘ke . . — - _i .i_-,F i s ) . : " r "
K = - {(V — kess) Agwix I{k — kepr AL ik (1 - —]-:/z_k> } , (227)
k. ' = i i Tyir i' i Ty
Sk = {(V = kess) Mpswis ( I{z " ) +keps AWy - I‘fik }s (228)
,.ke ’f:i ) = . i 3 o [ ‘L z: .> ’
SFP";Z = {(l/:— keff) Afkwfk - keff A.,-kw.yk} S Coik? - . . . (229)
Speae = ik O (AWE9) ~ ket fAGd) — ks L}, (230
Fpex v <Xp>+AWSs) par -~ 0 C av) T Rel I 0

where Tpik = Erik, Tnik, Dyiky Trik, and L: Leakage Term: and the weighting functions are;

;o <Zsp >} :
i = 231
T < T > +AWVE )’ (231)
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a o <B,6>i
vk y<zf¢>+A(uzf¢)

(232)

. N1¢k( )Ffzk s -
5 Nk (i )szk ff,

z
'LU,Y k

Nz(bk( ) vk f”' | | (234)
SN (B ) Ty Sl o

where the A"f,c is for total fission reactlon and Afy « that for total neutron capture reaction rates
relative to the total neutron production rates in the overall energy range, and w;}k means the
weighting function for ultra-fine group resonance fission reaction rate relative to total fission
reaction rates in the resonance region of all isotopes, and w,y . that for total neutron capture
rate of the k’th resonance relatlve to total neutron capture rates in the resonance region of all

isotopes. The Sp 17 z’.c and Cf 7k are sensxt1v1ty coefﬁ(:lent of f-factor to resonance parameter Ty

and coefficient for St 17 Zk, and < Xs¢ >% and < b ~¢ >z mean-the ﬁsswn and capture reaction
rates of the k-th resonance of i-th, 1sotope respecmvely

6.3 Sensitivity Coefficient of Temperature Coefficient o

‘The temperature coefﬁcient a can be expressed as-a superposition of isotopic temperature
coefficient o since the ke is defined by the ratio of neutron production rates to the absorption-
rates. The a-value is essentially equal to the change of resonance self-shielding factor due to the
temperature change when geometric expansion effect is missed. The resultant expression for a
is expressed by the temperature sen51t1v1ty coefﬁc1ent of f-factor deﬁned by Eq. (216) as shown
below :

a(8,0). = T "”“e” ZZwk aw (235)

- C _ e.r_;-e. i e ' »
a6, = € ’“;’;fikffpvfk“*"}-{SfT(ﬂ,o+>s¥*+s#<ﬁ,<_>
<DB%> ppes) onh
~ ket S5 oo SF %} (236)
o NP —keg) Ty —keg Tyir} of o |
» =kl A B sfs, ). (231

The numerator {(l/ — eﬁr)Ff,k keg I'yix} of Eq. (237) is propomonal to the effective neutron
production cross section and the denominator, I % + Iy, is also proportional to the absorp-
tion cross section. Therefore, the first term in right-hand side of Eq. (237) means the infinite
multiplication factor. The flux terms in both reaction rates are 1ncluded in the weighting func-
tion wg defined by '

Co Mgk (3) (Drat Tya) S8, ) S
wg = (238)
Yk [N Ok ( ) (Ffzk + F—yzk) fix(B, Co)]
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Temperature coefﬁcxent of the 238U first. resonance at Er = 6.67 eV is ‘shown in Fig. 72.

In this case, the [,k is zero and the first term of Eq. (237) is —keysy (—r.f—i'_ﬁﬁ < 0. The asx
is increasing function with temperature on gp-axes as expected from the temperature gradient
- of f-factor and the null a-value above g > 108 as shown in Fig. 44.

Uncertainty of the temperature coefficient a;x(8, ¢) due to the resonance parameters can be

obtained by the error propagation law using the sen81t1v1ty coefficients as,

5a1k ' zzz[{wﬁc sap,t}2'(wﬂ>2}‘ | | (239)

Fp zk

“where the eensitivity coefficients for Ey i, Tn ik, Iy, and Ty are shown below

. ; |
o« _ ¢ Bra 05
SEr ik - 2‘ + S&f 3E”~k (240)
Frw = TR W .
P‘yilc ‘y'zk 85( l '
.= —Cya~C- 242
- Sr’y ik ik C Fik S'(f ar‘yzk ( )
o« Tra | Tpa 905
- with . 1
o - '.(f—keﬁt)Pfikx - Iy ..
i = ' SN L ST 244
ik (V= keg)Tpix — keg I'yix  Trax + Iyix (- )
C-fz‘k kegsLyix Ty (245)

(7 = keg) Tyix — kegy F'ydc " Trat Dya

and the sen51t1v1ty coefﬁc1ent SC of the resonance self-shleldlng factor to ¢ was glven by Eq. (212)

6 4 Sen51t1v1ty Coefficient of Doppler React1v1ty Worth p
6.4. 1 Reference Case w1thout Correlatlon between Two Temperature Systems

Doppler reactivity wo_rth is the difference of react1_v1t1es between two different temperature
systems, namely target and reference systems, and consequently perturbation of the reactivity
worth due’ to the change of resonance parameter are expected in both systems. Even if the

. pertiirbations are simultaneously taken placed for both systems in phase, the resultant Doppler

reactivity worth is reduced, but if out of phase it is enhariced. Therefore, the sen31t1v1ty coeffi-
cient ¢an be defined for uncorrelated case when the reference system is fixed and only the’ target
systemis perturbed by the change of resonance parameters, and for correlated case between the
reference and target temperature systems when the snmultaneous changes of resonance parame-
ters are taken placed. :

The Doppler react1v1ty worth pzk for a single resonance denoted by ik (i:isotope, k: resonance)

— 68 —
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Figure 72: Temperature Coefficient a;x(83, () defined by Eq.(237) of 38y 6.67 eV resonance as
a Function of o9 and T This figure is the sign inverted Fig. 63 since oy = {("_kf%jlz_:‘akfr""} X
Fig. 63 and the coefficient is -1 for the present-238U .6.67 eV resonance with Tru=0.

is defined by the direct k-difference as shown by Eq. (17), 'and'the_forfnula for its sensitivity
coefficients to a generalized resonance parameter I'p; including the resonance energy E, are
derived from the sensitivity coefficients of kefs as shown below, '

| o, T keg)Tya —heg Tya Ju(8,0) = (B, o) |
P Goo) = we Lyt Tyw falBC) )

with

, N; g v (”E‘:';) {7 = ke ) Ty = ke Tyax} 8fir (B, €, o)
ik [Ni P Auk (;‘3‘:‘;) {\(17 — keg) Ty ik-— ke Tyik} 6 fir (B, €, CO)]

where wf; is the weighting function for the k-th resonance contribution relative to total Doppler
reactivity worth, and (p is the reference (-value corresponding to the reference temperature
To(= 273 K). The v is the average neutron yield per fission. S '

The second term of Eq. (246) is essentially the infinite multiplication factor koo and the third
one means the temperature dependence of the effective cross section through the resonance self-
shielding factor. o ;

As a typical example, Doppler reactivity worth of the 2381 first resonance at Er = 6.67 eV
is shown in Fig. 73 as functions of the poténtial scattering cross section o and temperature T'.
The p-value at the reference temperature #; is vanishing and for larger oy is also vanishing where
temperature and op dependencies are diminished as evident from Fig. 52. Below g ~ 108 -
barn, the Doppler reactivity worth p;x is monotonously increasing function in absolute like

Pik X ATf X — (‘/%—; - 1) under the assumption f(T) o< VT. It is noticed that the absolute

p-value is significantly enhanced from og ~ 103 and. reach to maximum around op =~ 102 while

_ b —
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-above g > 10° it is completely vanishing. |

The other example of Do'ppler reactivity worth of the wide resonance at E, = 214.65 eV
of the 239 Py is shown in Fig. 74 as functions of the potential scattering cross section oo and
~ temperature T'. In this ﬁssiqnéble‘material,\the_ second term corresponding to ke of Eq. (246)
is no longer negative, whose the neutron production term is emphasized and thus the positive
p-value is given. The magnitude, however, is negligibly small as the result that its f-factor is

“almost flat along with temperature as shown in Fig. 51 - - o ‘
The sensitivity coefficient S, of the Doppler reactivity worth can be obtained from Eq.

0 San
1 R
— SRR SRR ,&S’; %,
< *‘ﬁxﬁ;ﬁ&&ﬁ%@}%@ﬁ
A A R AR T a8 6
X 02 *“qﬁ%§§%§§§§§§§%§§
o 358
S 0.4 %%
B
é —0.6 1
Q
<
Q
2
vy —0.8 ;
<
(o9 2,
3 =
D- 14 & 2 o

.4 ‘

Figure 73: Doppler Reactivity Worth b(ﬁ,’ ¢) defined by Eq. (247) for 238U 6.67 eV Resonance
as Function of Potential Cross Section o9 and Temperature T'. ‘

(246). The resultant expressions for individual resonance parameter are shown below

85,08,,0) = 5 — Fa(6,¢,Co) + 3 Fo(6, G, o), e

8060 = 2+ (1- ) B - EREGW, @)

' 518'7(:37 t’ CO) = f]_‘l {1 - (-17_ keﬂl‘:)elﬁﬂfll keﬂ F‘Y - Fﬁ(ﬂ? C7¢0) - F9(137<7C0)} ) (250)
(17 - keﬁr)f

S{:f(ﬂ, Cv CO) - T {1 + (1./___ keﬂ)rf _ keﬁ‘ F‘y - Fﬂ(ﬂ7 C’CO) - F9(ﬁ’ Ca CU)} ) (251)

where for si'mplicity suffixes 1k meaning the isotope and resonance are omitted and auxiliary '
functions are defined by -

Fa(8,¢,60) = 1-64(8,6,C0), . - (252)

. ? Sf ’ - ) Sf a.-
<%W££wé:fw()%%%_ﬁZ%3Aﬂgx (253)
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Figure 74: Doppler Reactivity Worth p(B, ¢) defined by Eq. (247) for *° Py 214.65 eV Resonance
as Functlon of Potentlal Cross Section 0 and Temperature T

‘Fe(ﬂ.xCaCO)‘ = 1- 90(ﬂ7 ¢, €o)- ' : : (254)

£(8,0)54(6.¢) — 1(8,60) 548, o)
TIGO-IBW

where the 9 and 6 functions are introduced in order to define the sensitivity coefficients of
Doppler reactivity worth through only the changes of resonance self-shielding factors as defined
below.

The sensitivity coefficients defined by Egs.(248) to (251) include the contributions from
resonance self-shielding factors and the others as evident from the definition of the Doppler
reactivity worth Eq.(246), i.e., the second term. Considering only the contributions from the
resonance self-shielding factor, the Doppler reacti\/ity sensitivity coefficients can be defined by; -

6084, G0) = (255)

S8/(6,¢. o) = 65(8, ¢, Co) - 199(@4 W (256)
588,660 = = (1= ) €6(6,.0) + 72 60(6,6, ), (257)
SRI6,¢.00) = 2 (058, o) + BB, C.Co)) (258)

521 (6,6,C0) = =L (66068, C) + Bu(B, GG} . (259)

The functions Fs(B,¢, <o) and Fg(ﬂ, ¢, Co) are shown in Figs. 75 to 79 for the narrow
resonance of 238U, respectively and those of 22° Py in Figs. 81 to 85. Alternative presentations
are shown by multiplying the factor § f existing in the weighting function in order to show the
effective contributions of the Fg and F; to the sensitivity coefficients.

The Fp is essentlally the welghted difference of the f-factors with the weights of 3 sensitivity
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coefficients themselves Sé’s as defined by Eq. (209) and its trend is similar to the (1 — S,'Gf) The
‘same interpretation can be made for the Fa(8, (, (o). Less sensitive regions for both Fz and Fp
functions can be found in the 8 range greater than about 10° where the f-factor is flat. While,
in the ‘sensitive region below 8 < 10° barn, the temperature dependencies of Fz and Fy are .
opposite, i.e., increasing and decreasing, respectively.

The ©p and ©; functions are shown in Figs. 77 and 80 for 23U 6.67 eV resonance and
those for 239 Py, 214.56 eV resonance in Figs. 83 and 86, respectively. The ©4/9 and Fjy/p are

in the relation of ©g/9 + Fg/9 =1 as evident from their definitions Eqgs.(252) and (254).

N, DT

:“&w*“" ,m;gﬁn
e e X3
S SSL AN

1.4 1 A ' - < v.'? ‘:&\5‘;;;%‘%

Function Fj3(8, ¢, Go).

~ 'sobo0
A Figure 75: Function Fp(, ¢,(o) for **U 6.67 eV Resonance as a Function of o and T.

" Final sensitivity coefficients of the Doppler reactivity worth are 'shown in Fig. 87 to

91 for narrow resonance of *¥U and those for wide resonance of 2**Pu in Figs. 92 to 95,

respectively. General trends of each sensitivity coefficients are hardly interpreted since they are .

the second order change of f-factor in a sense of p o< 8 f(3, () and cancellation is made between
f(8,¢) and f(Bo, (o) as well as among resonance parameters. ' .

The uncertainty of the Doppler reactivity worth ‘—spﬁ can be estimated by the error propagation

law-as shown below, ' ‘ - ’

s, |AukAuR T ST N\ - _
9 _ ; ) {sfzm} (ﬁ) . (260)
' p. 2 .

where Tpi © Erik, Tnak, Dysk and Ty The sensitivity coefficients Sl’lpik s were given by
Eqs.(248) to (251). In this formula, the contributions from the second term based on the
infinitely diluted cross section of Eq. (246) are taken into account. When the Doppler reactivity
worth: uncertainty due to the change of resonance self-shielding factor is needed, the sensitivity
coefficients Sﬁpik should be replaced by Sﬁ:f‘ik‘deﬁned-by Egs. .(256) to (259). - - R
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Figure 76: An Alternative Presentation of Fp(8,(, (o) shown in Figure 75b as 6f - F3. - The
6f means the difference of f-factors at two different temperatures, i.e..0f = f(8,¢) — f(B3,¢) which
comes from the weighting function Eq. (247). This presentation implies the net contribution of Fj to the
Doppler reactivity worth. :

Function Qg(8, ¢, o) '
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Figure 77: Function Qg(5, ¢ ,.C(‘)) for 238U 6.67 eV Resonance as a Function of g and T. Reso-
nance part of Fj. . .
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Figure 78: Function F¢ (8, (, (o) for 28y 6.\67 eV Resonance as a Function of oo and T.
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Figure 80: Function @¢(8, ¢, (o) for >**U 6.67 eV Resonance as a Function of o9 anid T. Reso-
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- Figure 81: Function Fz(8, ¢, (o) for 23° Py 214.65 eV Resonance as Function of g and 7.
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Figure 82: An Alternative Presentation of F3(8,¢;¢o) shown.i.n Figure 81 as §f x F bt.
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Figure 83: Function Qg(5,(, (o) for 239Puv 9214.65 ¢V Resonance as Funétion of oo and T

Resonance part of Fp.
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Figure 84: Function F¢(8, ¢, (o) for 2°Pu 214.65 eV Resonance as a Function of gg and T.
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Figure 85: An Alternative Presentation of F¢(8, ¢, (o) shown in Figure 84 as 6f - F¢(8, (, (o).



JAERI-Research 2004-026 -

1974
S ]
& ~1e8 i
< ] ‘}%;35:_ R
3 el e
g ,
= ]
Q
: §
2 2
2014 - di
] , g : - 10
; 5000 . s '
. - - 4 . .
: 2000 M
. - 1000 2 b)
) Temperature (K) e ) 0% s\"“K

Figure 86: Function Q¢(8, ¢, (o) for 23°Pu 214.65 eV Resonance. as a-Function of op and T .
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Figure 87: Sensitivity Coefficient S%, of Doppler Reactivity Worth to Resonance Energy. Er for
238 6.67 eV Resonance as Function of 8 and (. : : '
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Figure 89: Sensifivity Cogfﬁcient Sfl; of Doppler Reactivity Worth to Radiation Width I, for
238[J 6.67 eV Resonance as Function of 8 and ¢.
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Figure 90: An Alternative Presentation of S{f“’ asdf x Sf .
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Figure 91: Se_nsiti'vity Coefficient S{if of Doppler Reactivity Worth to Fission Width T's for 238U
6.67 eV Resonance as Function-of § and (. - I S
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Figure 92: Sensitivity Coefficient S%,. of Doppler Reactivity Worth to Resonance Energy Er for
239 Py 214.67 eV Resonance as Function of o and 7. :

6.4.2 Correlated Case between Two Témperaturé Systems

The sensitivity coefficients of Doppler reactivity worth in the reference case were shown by
Eqgs. (250) and (251). The 8 sensitivity coefficients Sé(ﬁ, ¢) and ‘Sg(ﬂ, ¢o) in the Fj function
defined by Eq. (252) have the same signs and thus a cancellation between them is taken placed
'so as to reduce the net sensitivity coefficient. The same trend is also expected for Fy function.

Statistically, the probability finding that a temperature system has a set of resonance pa-
rameters belonging to some statistical distribution may be independent on the other system,
and consequently some correlation between both terms having ¢ and (o in the numerator of Egs.-
(252) and (254) may be expected. o - »

Composite probability density function for a system-to be in temperature 77 and to have
résonancg parameter I';; in a system ”s” can be expressed by;

” | 1 (1 i
S S, = . . —_— S S
PrIfT) = e emp{~3-Qu(TT)} (6
oTiqP: 7Tipi. : .
. ] .2 ._ »2
- 1 Ts —T% rs, —T5,\*
TS TS) = - s T2 pi i
Upr (T8 T50). = 1= yrip? |\ om ors,
>.s_1Ts s —Ts.
—29T;p; - -1 2P, (262)
ST oTs . ors, Lo
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Figure 93: Sénsitivity Coefficient Slﬁ’n of Doppler Reactivity Wd_rth to Neutron Width I',, for
239 py 214.67 eV Resonance as Function of o¢ and T'. : :
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Figure 94: Sensitivity Coefficient .S’ffq of Doppler Reactivity Worth to radiation Width I, for
239 Py, 214.67 eV Resonance ‘as Function of o9 and T
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Figure 95: Sensitivity Coefficient Sf ; of Doppler Reactivity Worth to Fission Width I‘f for
#33Py 214.67 eV Resonance as Function of oo and T'-

- where
e : System indicator; s =0, 1, . -
T_f : Temperatqfe expectdtion value, _
ﬁ; " . Resonance pérémeter e*bectatibﬂ \’ralue.',.
or, : Variance of T}, ‘
~ors, : Variancee of I';,.

pi

DTipi Correlation coefﬁcienfc between 7T and I‘]Tn..

The ”System” means a reactor core system which has a set ‘of resonance parameters I';)’s at
a.definite temperature 77 -under the same geometry and composition. For instance, consider
the Doppler sample experiment, there exits a sample system having two temperatur.es T? + oro
‘and T + or:, and two different sets of resonance parameters I'; + oro; and T+ or1, Where
the or¢, (s = 0, 1) means the uncertainty of sample temperature and ors, the uncertainty of
resonance parameters in one standard deviations. . -

In general, the uncertainty of the temperature may be a.few degrees and its effect to the
Doppler reactivity may be -negligibly small. While, the correlation between the temperature
and resonance parameter can not be expected as long as the evaluatéd ‘resonance parameters
are used since the Doppler effect to the resonance cross section and/or resonance area had been
removed by the experimenters and/or nuclear data evaluators. -

The probability density function for two sets of resonance parameters can be expressed in

the similar equation to Eq. (261) with ‘the following argument Q{;,; '
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The correlatlon factor denoted by 7yo1p: between" the resonance parameters FO for reference
system and Fl for perturbed system is vanishing in the sense that a choice of a resonance
parameter in the reference system does not affect the perturbed system and vise versus, i.e., the
. error distributions in both systems are quite 1ndependent Consequently, the probablllty den51ty

distribution functron is .
o : N2 —\ 2
1 Tl 1l I‘O-—FO~ . .
B P v :

—

0 ply _
Pr(Ty,Ty) = =

R.°

_ Therefore the probability finding.the resonance parameters in the one standard deviation(lo).
in the both systems can be obtained by

, 1+l 1
Prob = 2—/ / exp
. m J-1 jl
) 1 1 2 r / N
= [%/ e:vp(———2- : x2)dx] =0.46606" - (266)

. " In order to consider the correlation and to define an effectlve Fﬁ as Well as F( functlons the ‘
correlation factor yr, is introduced as;

’*%{(xo)?+'(a;1)’}]-dxodw1 e

(f 8= foSolys = (F:80+(foS0)*+2 wro-f oSS0, - (267)

= (f+5~ oS0 +2- (1 +77m0) <1 168 o, (268)

where the left-handed term means the effectlve numerator in the correlated case and sufﬁxes
or superscripts are missed for simplicity. As evident from the ‘above deﬁmtlon the T = -1
'is completely anti-correlation case as shown by Eq. (252) or (254). Contrarily, if yrr, = 0,
(f-S-— foSO) = (f S)? + (f0S0)? which implies completely random without correlation:
Therefore, The possible range of yrr, is from 0 to -1. A typlcal 'yTTo-value is about —-0 46 as
shown by Eq. (266). -

. The Fbt-value is shown in Fig. 96 as function of the potential scattering c¢ross section and
temperature under the assumption yr1, = —0.46 and its alternative presentation with help of
Fig. 97:is shown in Fig. 98. Significantly rapid change of Fj-value is found' around the
reference temperature Tp = 293 (k) since the denominator of Eq. (252) is' vanishing. ‘Such a
trend is unavoidable as far as the Doppler effect is based on the relative change of the resonance
self-shielding factor. As shown in Fig. -98, this rapid change, however, is flattened by multi-
plying the difference term §fix =: fix(8, T) — fir(8,To) of the weighting function. Eq. (247). .A
dip abound log(oo) = 3 comes from the second term of Eq. (268) for the interference between
two temperature systems as evident from the comparison with Fig. 76 without the interference
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and the derivative of f-factor changes its sign around og = 10* as shown in Fig. 58. Similar
behaviors are found in the Fig. 98 concernmg the ﬁ derivatives of f-factor. In the both wings
of og, the  f - F3 tends to zero because of 2 aﬂ =0 in the both sides of the turning point of f-factor .
“as shown in Fig. 52.
The another intermediate functlon Fzt is shown in Flgs 99 and 100. In this case,

L]

Furlction Fp (rﬂ, ¢, o)

5000 ~  gemp

Figure 96: Intermediate ‘Function Fﬂ(ﬂ ¢,¢o) of 238U 6.67- eV Resonance When Correlation
between Two Temperature Systems

the significant deep valley can be found in Fig. 100 in comparison with Fig. 79 without -
correlation where a hill was found around the turning point at oo ~ 10* barn.

By using these intermediate functions, the sensitivity coefficients of Doppler reactlvrty
worth in case of correlating systems can be obtained as shown in Figs. 87 to 107 for the 233U
6.67 eV resonance with narrow resonance width. As shown in Fig. 103 and 104, the sensitivity
coefficient of Doppler reactivity worth to neutron width has interesting behavior, i.e. ; hegative
sensitivity in low temperature region but pos1t1ve in the relatively high temperature

For the wide resonance of 2*° Py, the Fbt and Fzt functions become rapidly vanishing func-
tions towards o = 0o (b) as shown in Figs. 108 to 111. Their characteristic behaviors can be
expected from the resonance self-shielding factor as shown in Fig. 51. Especially, the effective
'F¢-function has a interesting behavior as shown in Flg 111 but its magnitude is negligibly.
small. o » .

‘Final sensitivity coefficients of the Doppler reactivity worth for wide.resonance of 2Py
114.65 eV resonance are given by Figs. 112 to 119, respectively. In these sensitivity coeffi-
cients, the sensitive domain are restricted in the smaller 3 region less than about 105 barn.

The resonance energy sensitivity coefficient S%, as shown in Fig. 114 can be interpreted

from its definition Eq. (248), i.e., its magnitude is determined by the first two terms in the
right-hand side of Eq. (248) where Fp is greater F¢ by about one order as shown in Figs. 109

— 85 — -
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Figure 103: Correlated Sensitivity Coefficient S” for- Doppler Reak:tivity Worth to Neutron -
Width T, of 2’3’8U 6.67 eV Resonance ‘ ‘ c
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and 111. It implies that the energy dependence of Doppler reac_fivity worth is more sensitive to
the potential scattering cross section.than the Doppler width. :

Correlated Sensitivity Coefficient Sf, |

T ogloo®Y

Figure 107: Correlated Sensitivity Coefficient Sf.for Doppler Reactivity Worth to Fission
Width 'y of 228U 6.67 eV Resonance. '

'7 Prellmmary Result of Numerlcal Analy51s

Doppler react1v1ty uncertalnty for typlcal large fast breeder reactor due to the uncertam—
ties of resolved resonance parameters is estimated for the numerical verification of the present
method. - Uncertalntles of i Tesonance’ parameters of the 1602 (s-wave=473, p-wave=1129) reso-
nances of 238U, 1015 (s-wave) I resonances of 23° Py, 205 (s-wave) resonances of 24°Py and 127
(s-,p- and d-waves) of 5¢Fe are’ glven by T. Nakagawa and K. Shibata[6] of Japan Nuclear data
Center in JAERL ‘As mentloned in’ Section 2, the uncertainties were estimated on the basis
of Breit-Wigner Multi-Level Formula cons1stent with the original JENDL-3.2 evaluated nuclear
data file[4} using: Relch-Moore Formula -More detailed document on the uncertalnty analysis
will be.désctibed in the other report in near future. ‘ -

Large s sodium-cooléd fast breeder reactor fueled by mixed oxide PuO; — UQO; is considered,

whose neutron spectrum Was. shown in Fig. '60. The two-region core is simplified to a single
 region by taking an average atom density and assumed to be homogeneous core.
’ Uncertainties of 238U r resonarice self—shleldlng factor due to the uncertainties of resolved
resonance parameter are evaluated and resultant uncertainties are shown in Table 4 where the
neutron energy group is the 70 group structure of JAERI-FAST-SET(JFS- J3) The (—)F in
the Table 4 is the statistical sum of the uncertainty contributions from partial widths based on
the error propagatlon law. i

The uncertainty of 28U resonance self-shielding factor is about a few percent except 45 and
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Figure 108: Inter>media_te.' Function Fz(8, ¢, (Q)'" of ?39Pu‘214‘.5' eV Resonance ‘When Correlation
between Two Temperature Systems. ' - ST B
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Table 4  Uncertaity of 2387 Resonance Self-Shielding Factor for Neutron Capture Cross Section

On, due to Uncertainty of Resonance Parameters at Room Temperature T = 239° K and gg = 37.0

(barn). _ - y

Grow | Upper Bnerey. | (#), | (F)e, (o, (F)e, (%)

28 | 117090 . © ° KeV. |.7.7442D-05 | 1.4244D-02 3.6049D-03 0.0 1.4693D-02
2 - o188 4.8535D-05 9.7650D-03  2.5230D-03 - 0.0 1.0087D-02
30 | 71017 | 45776D-05 | 9.9927D-03 3.0268D-03 0.0 1.0441D-02
31 | 55308 45410D-05 .| 8.9504D-03 3.4519D-03 0.0 9.5931D-03
32 | 4.3074 5.5019D-05 | 1.0910D-02 4.1993D-03 0.0 1.1691D-02
33 | 3.3546 4.0562D-05 | 9.7053D-03 5.0455D-03 0.0 11.0939D-02
‘34’ 2.6126 4.0520D-05 | 1.2261D-02  55380D-03 0.0 ~1.3453D-02
35 | 2.0347 5.1624D-05 | 1.2912D-02- 6.6644D-03 0.0 1.4531D-02
36 1.5846 4.4436D-05 | 1.2006D-02 7.3594D-03 0.0 1.4082D-02
37 12341 , 5.2758D-05 | 1.5191D-02 7.0644D-03 0.0 1.6753D-02
38 961.1200 ¢V | 8.8490D-05 | 2.0869D-02 8.9665D-03 0.0 2.2714D-02°
39 748.5200 | 5.8584D-05 | 2.7365D-02  1.0788D-02 0.0 2.9415D-02
40 582.9500 1.3814D-04 | 2.9016D-02 1.1331D-02° 0.0 3.i1501’)-pz"- .
41 454.0000° 7.0428D-05 | 2.3704D-02 1.6745D-02 0.0 2.9022D-02
42 353.5800 | 05333D-05 | 4.4013D-02  4.2348D-02 0.0 6.1078D-02
43 275.3600 7:2140D-05 | 5.3218D-02  9.4965D-03 0.0 5.4059D-02 .
44 214.4500 7.7085D-05 | 5.3554D-02  3.7927D-03 0.0 5.3688D-02

| 45 167.0200 4.1371D-05 | 2.2803D-02 2.6665D-01 0.0 2.6762D-01
46 | 130.0700 1.3171D-04 | 4.1469D-02 1.4592D-02 " 0.0 4.3962D-02
47 | 101.3000 8,4537D-04 1.2097D-01  1.0381D-02 0.0 . 1.3039D-0L
48 78.8930° . .| 1:7234D'04 | 3.2619D-02 2.0267D-03 0.0 3.2682D-02
49 61.4420 - | 2.7565D-04 '6.8508D-02  2.0435D-04 0.0 6.8509D-02
50 47.5810 | 4.1062D-04 | 8.8865D-02 3.1507D-04 00  8.8866D-02
51 ‘-37.2670 2.8743D-05 | 3.1535D-04 0.3484D-04 0.0 9.8701D-04
52 | 200230 6.0701D-04 | 9.1266D-02  2.2975D-04 " 0.0 9.1269D-02
53 | 22.6030 5.2088D-05 | 1.0628D-02 1.2398D-03 0.0 1.0700D-02
54 - [17.6030 0.0 00 0.0 0.0 0.0

55| 13.7100 1.8083D-06 | 3.9327D-04. 5.6009D-04 0.0 6.8437D-04
56 10.6770 5.0797D-06 | 11876D-03 2.7721D-03 00 ©  3.0158D-03
57 83153 3.2437D-05 | 1.8905D-03 1.8915D-03 0.0 2.6745D-03
58 6.4760 0.0 00 00 00 0.0

| 59 5.0435 2.0813D-06 | 3.9660D-04 4.8468D-04 . 0.0 6.2626D-04

98 —




JAERI-Research 2004-026

Table'5 Uncertainties of Resonance Self-Shielding Factors and
Errors of Resolved Resonarice Parameters. '

: Group-wise Un- j
Group cerf‘,a;ill)'lty o E - AEH(eV) (é}[)gr (éft')rn (éfi)rL (éfz)r
rameter ey [P Pesit. B | () (&) (B)
45 Group-wise’ 167.02 - 13007 | 4.14D-05 2.28D-02 2.67D-01 2.68D-01
o Resonance- 11 -133.24 3.75D-04 2.50D-01 4.35D-02-
" Resonance-2 13595 1.00D-03 1.50D-01" 4.35D-02
‘Resonance-3 145.66 - 6.87D-05 4:96D-02 4.48D-01
Resoniance-4 152.42 | 1.31D-04 '545D-02 4.35D-01
" | Resonance-5 158.94 1.89D-04 1.66D-01 4.35D-01
Resonance-6 164.50 9.97D-04 1.50D-01 4.35D-01
Resonance-7 16529 " | 6.05D-05 2:23D-03 1.14D-01
46 | Group-wise T 130.07 - 101.30 [ 1.32D-04 4.15D-02 1.46D-02 4.40D-02
' Resonance-1 102.56 : 9.75D-05 -2.51D-03 8.33D-03 C
Resonance-2 |+  111.15 .. o 3.60D-04 -3.65D-03 1.13D-02
Resonance-3 ' - + 116.90 | 8.55D-05 - 9.14D-03 4.07D-02
-Resonance-4 119.28 . : 9.98D-04 1.50D-01 4.35D-02
: : Résonance-5” | - .124.99 -+ .| 2.40D-04 1.00D-01 4.35D-02 .
47 Group-wise 101.30 - 78.89 8.45D-04 1.30D-01 - 1.04D-02 1.31D-01
1 | Resonance-1. :|.. 80.75 =~ - 2.48D-05:- 1.18D-02 2.47D-02 - - ‘
Resonance-2 .| -  83.06. . ' | 1.00D-03 1.50D-01. 4.35D-02. -
‘Resonance-3 :83.70 - - |-1.08D-04 6.60D-02 4.35D-02 -
Resonance-4 - 89220 ¢ ~{ 1.00D-03 1.50D-01 4.35D-02
Resonance-5 . | - 83.08 .- {215D-04 1.00D-01 4.35D-02
Resonance-5 | - '98.00 1.00D-03 1.50D-01 4.35D-02
Resonance-7 | 10256 9.75D-05 2.51D-03 8.33D-03
57 Group-wise 851 - 648 | 3.25D-05 1.89D-03 1.89D-03 2.67D-03 -
| Resonance | T 667 3.00D-04 1.54D-03 1.83D-03

- ). All resonances in the energy group of interest are shoewn

Table 6.1 * Uncertainty of ?*U Doppler Reactivity Worth (%)
with Correlation between Two Temperature Points.

ao(b) - Temperature (k)

(barn) 239 644 | 794 | 9354 | 1087 .| 2000 | . 5000

2.000D+01 0.0 | 1.456D+01 | 1.365D+01 | 1.392D+01 | 1.484D+01 | 1.565D+02 | 6.183D-01
3.700D+01% || 0.0 | 7.238D+00 | 6.217D+00 | 5.752D+00 | 5.472D+00 | 6.206D-+00 | 1.074D+00
6.858D+01% || 0.0 | 5.001D+00 | 4.173D+00 | 3.754D+00 | 3.471D+00 | 3.050D+00 | 1.690D+00
1.000D+02 0.0 | 4.375D+00"| 3.620D+00 | 3.231D+00 | 2.965D+00 | 2.450D+00 | 1.896D+00
1.000D+03 - || 0.0 | 2.634D+00 | 2.179D+00 | 1.940D+00 | 1.776D+00 | 1.392D+00 | 1.153D+00
1.000D+04 [ 0.0 | 1.837D400 | 1.557D+400 | 1.411D+400 | 1.311D+00 | 1.077D+00 ‘| 9.339D-01
1.000D406 [ 0.0 | 1.268D+00 | 1.094D+00 | 1.009D+00 | 9.468D-01 | 8.024D-01 | 7.138D-01

*): estimated by cell calculation code SLAROM.
*): estimated by the criticality serach for two region homogeneous cell model described by resonance
parameters as shown in section 3.
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Table 6.2
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Uncertainty of 2*° Py Doppler Reactivity Worth (%)
with Correlation between Two Temperature Points.

ao(b) Temperature (k)

_(barn) 239 644 | 794 | 9354 1087 . 2000 5000
2.000D+01 | 0.0 | 1.243D+00 | 1.166D+00.|,1.189D+00 | 1.268D-+00 | 1.342D+01 | 5.353D-02
3.700D+01 |( 0.0 | 3.228D-01 | 2.767D-01 |-2.557D-01 | 2.429D-01 | 2.745D-01 | 4.745D-02
6.858D+01 || 0.0 | 9.806D-02 | 8.151D-02 | 7.311D-02 | 6.741D-02 | 5.866D-02 | 3.218D-02 °
1.000D+02 [ 0.0 | 5.021D-02 | 4.134D-02 | 3.676D-02 | 3.362D-02 | 2.743D-02 | 2.094D-02
1.000D+03 | 0.0 | 2.293D-03 | 1.862D-03 | 1.635D-03 | 1.478D-03 | 1.107D-03 | 8.699D-04
1.000D+04 || 0.0 | 6.295D-04 | 5.122D-04 | 4.504D-04 | 4.077D-04 | 3.054D-04 | 2.397D-04
1.000D+06 || 0.0 | 4457D-04 | 3.616D-04 | 3.191D-04 | 2.882D-04 | 2.141D-04 | 1.657D-04

47 groups. As evident from Table 5, significant large uncertainties in these two groups are due
to the larger uncertainties of resonance parameters themselves. For instance, 26.8 %(2:68D —01
. in absolute) uncertainty of the resonance self-shielding factor 8 ) cameé from the uncertainties
of radiation widths for the 3rd to 6th resonance as shown in this Table 5 as.well as Fig. 6.
The larger uncertainty of 13. 1% in. the 47-group is due to the larger uncertainties of neutron
widths. : :

Resultant uncertainties of Doppler react1v1ty worths are shown in Tables 6. 1 to 6:3 as

Table 6.3 Uncertamty of 29 Py Doppler Reactivity Worth (%)
with Correlation between Two Temperature Points.

ao(b) Temperature (k) ,
(barn) 239 644 [ 794 | 9354 | 1087 | 2000 | 5000
2.000D+01 | 0.0 | 6.988D-02 | 6.753D-02 | 7.032D-02 | 7.635D-02 | 8.558D-01 | 3.600D-03
3.700D+01 |l 0.0 | 4.565D-02 | 4.028D-02 | 3.800D-02 | 3.674D-02 :| 4.398D-02 | 8.031D-03
6.858D+01 . || 0.0 | 3.551D-02 | 3.036D-02 | 2.778D-02 | 2.605D-02 | 2.397D-02 | 1.388D-02
1.000D+02 (| 0.0 | 3.106D-02 | 2.628D-02 | 2.383D-02 | 2.215D:02 | 1.908D-02 | 1.535D-02
1.000D+03 || 0.0 | 5.913D-03 | 4.985D-03 | 4.496D-03 -| 4.157D-03 | 3.354D-03 | 2.838D-03
1.000D+04 || 0.0 | 1.385D-03 | 1.189D-03 | 1.087D-03 | 1.017D-03 | 8.529D:04 [ 7.510D-04
1.000D+06 || 0.0 | 9.800D-04 | 8.390D-04 '| 7.700D-04 | 7.193D-04 | 5.987D-04 | 5.208D-04

a function of potential scattering cross section and temperature, where the reference one Tj is
fixed at the room temperature(293 K). The og = 37 (b) or gg = 65.58 (b) is for the fast breeder
reactor of interest. The former one is obtained by cell calculation code SLAROM taking into
account heterogenelty but the:latter one is estimated by the neutron balance at crltlcal core
" after criticality search as shown in Section 3.. _

As evident from the Table 6, the uncertainty is enhanced around the reference temperature
-due to the denominator of intermediate functions Fp; and F,;, and at the larger op the uncer- .
tainty is tends to vanishing. For the o smaller than about 20 (b), however, the uncertainty is
rapidly magnified since the resonance self-shielding factor is nearly flat as shown in Fig. 44
and the temperature dependence fo0; T) = f(o0, To) is also vanishing as indicated by Eq. (246)
implying null reactivity. The uncertainty of p can be described by the fractional change of
" f-factor due to resonance parameters to the temperature change of f-factor, i.e., % é(f_ ’;")
Therefore, in general the Doppler reactivity uncertamty 1s SIgnlﬁcantly enhanced in the such a
low 90 region. '
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8 Conclusion

“In order to evaluaté the uncertainties of nuclear performance parameters due to the uncer-
tainties of resolved resonance parameters, an analytical method for ‘the sensitivity analyses of
effective multiplication factor k.fy, temperature coefficient-o and Doppler reactivity worth p to
the resolved resonance parameters has been developed. The following facts were obtained in
this work.

1) Resonance integral as a functional function of Doppler. broadening function -
~and x could be expanded to a power series as function of 4 and x, and up to the
third order term of ¥*x? (i,j:integers) could be analytically integrated and the
remainders greater than'3, i.e. (i + j) > 3, were integrated as the power series.
'~ 2) By introducing an intermediate variable ¢ together with the conventional 3 vari-
‘ able, the resonance self-shielding factor f(8,() could be expressed by a simple’
analytical function such as _ -

16,0 = 2 0vee o)

| o, .1 S
: . T w S V7w

where G(f3,(): modulation function, p = 0.4707, I": total width, o,: potential
scattering cross section per resonance material, op: peak total cross. section, A:,

Doppler width and T: temperature. :
3) The sensitivity coefficients of the f-factor to the varlables B and { were prov1ded
- as the basic quantities for the sensitivity analyses. Then, the final sensitivity
coefficients for functional function were expressed as a successive operations from
outer variable to the inner one such as Sf = S - Sf for flz{y(z)}] as the result

of algebra.

~4) Doppler reactivity worth p. was expressed as a welghted sum of all resonance
contributions. The resonance contribution from each level could be shown as
a function of resonance parameters and the level-wise resonance self-shielding

factor.
5) Preliminary analysis was made for a typlcal sodium-cooled fast breeder reactor

and the uncertainties. of the Doppler reactivity worth due to the uncertainties
- of the resolved resonance parameters were obtained. The main contributor was
the %0 having about 80% of the total Doppler reactivity worth, and the others
239 Py and 24 Py had nearly equal and small contributions. For the temperature
increment from the room temperature of 239 K to 644 K, the uncertainty of the
238y Doppler reactivity worth due to those of resolved resonance parameters was
about 4.6 to 6.8 % depending on the magnitude of op-value. ,
6) Uncertainties of Doppler reactivity worth due to errors of unresolved resonance
parameters were out of present scope. ’ '
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% B # s y o5 b |l L 02l = 5 T
& w7 v =7 A b vt 10° | ¥ A4 G
BOTERE |7y v v v K BEFENLL | eV 10°¢ K n M
G vl wol RFHRBL | u ol I
% gEln v 57 5 cd 02| ~7 ¢ h
————————————— - —_——— 1 =
F @ A|7 v 7 v | rad 1eV=1.60218x 10™'*J 0|7 #| da
YOk AT IVTY sT 1 u=1.66054% 102 kg w7 d -
- N 1072 £ v F C
107 | 3 Y| ‘m
£3 BEHOLHE 6D SUATL L w0 | 4s0]  u
x4 SI&EHICHENIC C e
. 10 ¥ 7 n
& 5w |es |ROSIEL e 5 Wt O A
53] 14 ¥|~ n v] Hz s™! % kb i 5 107 724t f
A —.—Fv| N m-kg/s AVFR O - A 107" 7 b a
E H ., W Al A | Pa| N/m? e _ > b .
IinF—fHHEH. BBV 2 — v J N-m N - w bar ()
I H, mHRT » | WL Js # Al Gal L &1—513 TEBRRMR] 85K EE
BER, B#|s —o v C| As £ a2 ) - Ci ERER 1985 FMITIc &k 5, /2L, 1eV
Bhi, B, BN (KX o~ b V| W/A A N R HBLU 1 uDfEiiz CODATA @1986515#&*“
Hn 8 % #|7 7 7 F| F C/v 5 K rad i L »1-
® SO flF - 4| Q) VA v 4| rem -
av s s svalv-—xvzl s | AV 2. RAWEBE /o b, T, ~2S
e #|v = — x| Wb | Vs L A= 0.1 nm=10"""m —AEEENTVAHAEOHEEDTT
i ﬁ & ‘ B |7 «Z. 5 ; yvb;r:z 1 b=100 fm?=10-? m* ZTIREBELT, )
1757 A I ) —| b { bar=0.1 MPa=10°Pa 3. bari3, JISTREGKDOENEEDTIS
vy ZBE |ervurE] C . | Gal=1cm/s?=10"2m/s’ BBV R2DH T ) — LI hTY
¥ #|lw - 2 ¥| Im | cd-sr al=lem/s =10 "m/s 2
7 2 1Ci=3.7x10"°B °
Bav 7 Ak lm/m ' » 4 4. ECHBREE2154TId bar, barnkk
i 5 lx2s L ol B o 1 R=2.58x10"C/kg )
: . ql s - U [MEOBA) mmHg % &2DhF 3y
% X K ®|7 v 4| Gy | Jkg trad=1cGy=10"Gy CRARTOS
woBR Y B|v-~wb]| S J/kg 1rem=1¢cSv=10"%Sv °
#a & %
71| N(=10°dyn) kgf Ibf F | MPa(=10 bar) kgf/cm? atm .mmHg(Torr)| Ibf/in’(psi)’
1 0.101972 0.224809 ‘ 1 10.1972 9.86923 7.50062 x 10° 145.038
9.80665 1 2.20462 #| 00980665 1 0.967841 735559 14.2233
4.44822 0.453592 1 0.101325 1.03323 1 760 14.6959
¥ B 1Pa-s(N.s/m?)=10P(#7 %) (g/(cms)) 1.33322 x 107* | 1.35951 x 10™* | 1.31579 x 10~* 1 1.93368 x 1072
BHE 1m%s=10'St(X F — 7 2) (cm¥/s) 6.89476 x 10™° | 7.03070 x 1072 | 6.80460 x 1072 | - 51.7149 1
x| J(=10"erg) kgf-m kW* h cal Gt&#) Btu ft = 1bf eV 1 cal = 4.18605 J (Gt &H:)
-3
W 1 0.101972 2777718 x 1077 0.238889 9.47813 x 107 0.737562 6.24150 x 10 =4.184J (BLF)
*
i 9.80665 1 272407 x107° | 2.34270 9.29487 x 10°* 7.23301 6.12082x 10 =4.1855J (15°C)
% 36x10° | 3.67098 x 10° 1 8.59999 x 10° 3412.13 2.65522 x 10° | 2.24694 x 10%* =4.1868 J (BB ESKR)
- 4.18605 0.426858 | 1.16279x107¢ 1 3.96759 x 1073 3.08747 261272x10°  (®m®E | PS (LEH)
B 1055.06 107.586 2.93072x107* | 252.042 1 778.172 6.58515 x 102! =75 kgf-m/s
1.35582 '0.138255 | 3.76616x 1077 |  0.323890 | 1.28506 x 107 1 8.46233 x 10 = 735.499 W
1.60218 x 107" | 1.63377 x 1072 | 4.45050 x 1072¢| 3.82743 x 10"%°| 1.51857x 107??| 1.18171 x 10™* 1
174 Bq Ci % Gy rad i} C/kg R g Sv rem
o i 8 i s
1 2.70270 x 107! 8 1 100 5 1 3876 % 1 100
(13 &7 = g
3.7 x 10% 1 0.01 1 2.58 x 10°* 1 0.01 1
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