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A three-dimensional steady state thermoelastic analysis has been conducted
on the hot leg of a pressurized water reactor (PWR) containing localised hot
spots resulting from fission product aerosol deposition occuring during a
hypothetical severe accident. The boundary element method (BEM) of numerical
solution was successfully employed to investigate the structural response of the
hot leg.

Convergence of solution can be realised provided sufficiently large number
of elements are employed and correct modelling of the temperature transition
region (TTR) adjacent to the hot spot on the inner surface is conducted. The
only correct temperature field across the TTR is that which can be represented
by the interpolation functions employed in the BEM code. Further, incorrect
solutions can also be generated if the TTR is too thin.

The nature of the deformation at the hot spot location depends on whether
the thermal boundary condition on the outer surface of the hot leg is one of
constant temperature or adiabatic. In the former only inner surface swelling
was obtained, while, in the latter bulging of both the inner and outer surface
was obtained.

The analysis shows that at the location of the hot spot on the inner
surface large compressive stresses can be established. On the outer surface at

the same location, large tensile siresses c?n be established. The presence of
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these large stress elevations in the vicinity of the hot spot could be
detrimental to the integrity of the hot leg. The tensile stresses are extremely
important since they can act as sites of crack initiation and subsequent
propagation. Further, if a crack like defect is already present prior to the
formation of the hot spot then it is possible that once a hot spot is formed
the elevated tensile stresses could lead to its propagation. Once a crack
propagates through the thickness, leak worthiness of the hot leg comes into
question. Consequently, additional analysis incorporating the effects of
plasticity and temperature depeqdence of the material properties must be

conducted to ascertain the integrity of the hot leg.

Keywords: Severe Accident, BEM, Integral Equation, 3D Thermal Stress, Linear

Elastic, Reactor Piping, Hot Spot.
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Chapter 1

Introduction

1.1 General

Since the accidents at the Three Mile Island Unit 2 (TMI-2) in 1979 and at the Chernobyl
Unit 4 in 1986 many research activities have been conducted to gain a better understanding of
severe nuclear accident sequences and consequences. This is a direct consequence of the fact
that such a severe accident in a nuclear power plant anywhere in the world can affect nuclear
operations considerably.

The consequences of a severe nuclear accident necessitates research to be conducted to pre-
dict possible accident scenarios. To this end, Japan Atomic Energy Research Institute (JAERI)
has initiated many severe accident research programs to better understand and to predict the
physical and chemical phenomena which might occur in severe accidents. Abe, Sugimoto and
Kajimoto [1] have summarized the analytical and experimental research activities at JAERL

In 1993, JAERI initiated the ‘Wide Range Piping Integrity Demonstration’ project,
WIND. The aim of WIND is to demonstrate the reliability of piping in nuclear power plants
under severe accident conditions. The objectives of this project are two fold, firstly, to eval-
nate the fission product aerosol behaviour (i.e., deposition, revaporization and resuspension)
and secondly to demonstrate the reliability of piping under localised heat input due to decay of
deposited fission products.

1.2 Structural Response of RCS piping

During a hypothetical accident, degradation of the reactor core could give rise to the
release of fission product aerosols. There is a possibility these fission product aerosols could
get transported into the Reactor Coolant System (RCS) piping. If such an event does occur,
then it is also possible that deposition of the aerosols could occur on the reactor piping wall
due to sedimentation or inertial impact. These deposited fission product aerosols will produce
decay heat. This decay heat will generate localised hot spots which in turn will produce thermal
stresses. Therefore, it is imperative that the structural response of the RCS piping is understood
to predict possible RCS piping failure in advance of the reactor containment failure.

1.3 Scope & Objectives of Present Work

A numerical study is conducted on the hot leg of a pressurized water reactor (PWR)
containing a localised hot spot, resulting from fission product deposition. This problem could
have been solved using the finite element method (FEM), by employing shell elements, which
would reduce the numerical problem size considerably. The main drawback of these elements is
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they only generate an average value of the field quantities such as displacements and stresses,
they cannot show the variation of the field quantities through pipe thickness. In the analysis
of the hot spot, it is envisaged that the inner and outer surfaces of the pipe in the vicinity
of the hot spot will behave differently due to the complex thermal stress boundary conditions.
Consequently, only a complete three dimensional analysis can represent this type of problem
accurately. :

The objectives of the present study are three fold. Firstly, to investigate the linear elastic
structural response of the hot leg resulting from the presence of hot spots. Secondly, show that
the Boundary Element Method (BEM) can be successfully employed to solve problems of such
complexity. And thirdly, conduct an extensive numerical convergence study based on mesh
refirement to ascertain the validity of the solutions obtained.

To case the computation, the hot leg, which comprises of a circular cross—section pipe
with a straight section and a bend will be considered in two separate parts. The first part of
the analysis will concentrate on the straight section of the hot leg containing a local hot spot
without the presence of the bend. The latter part of the analysis will investigate the bend section
containing the hot spot.

This report is divided into five chapters, the first of which is the Introduction. In Chap-
ter 2, the numerical formulation of the Boundary Element Method (BEM), in conjunction with
thermal stress analysis is presented. The main advantages of this numerical solution technique
are presented with respect to the well established finite element method. A brief discription of
the BEM code is also given. In Chapter 3, the modelling assumptions and numerical conver-
gence analysis are presented. Iere a convergence analysis is performed on the straight section
of the pipe containing the hot spot. Attention is also focused on the region adjacent to the hot
spot where the temperature changes from the average inner wall temperature to the hot spot
temperature. Solution sensitivity to the size of this region and different temperature bound-
ary conditions (i.e., linear and step change) are presented. In Chapter 4, more realistic severe
accident thermal boundary conditions and more accurate hot leg geometry is employed in the
analysis. Here solutions are presented for the straight and bend section of a hot leg containing
a hot spot. To get a better understanding of the structural behaviour of the straight section
of the hot leg containing a hot spot, an auxiliary problem is also solved containing no hot spot
but otherwise employing identical boundary conditions. In the analysis of the bend section the
solution obtained, is based on an extremely complex interaction of the bend geometry and the
boundary conditions. Two separate solutions are presented, one employing a constant temper-
ature and the other an adiabatic boundary condition (i.e., zero heat flux) on the outer surface.
The final conclusions and recommendations for future work are presented in Chapter 5.
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Chapter 2

Thermoelasticity & BEM

2.1 Governing Equations of Thermoelasticity

Derivation of the governing equations of thermoelasticity can be found in the work of
Boley and Weiner [2]. Essentially, for infinitesimal deformations and linear isotropic materials
the strain—displacement relationship in cartesian coordinates (1,2,3) is

1 .
ey = 5wy +uis),  47=1,2,3 (2.1)
and the following notation is used to denote differentiation:
af
fr=%-
The stress—strain relationship can be expressed as
3
oi; = Aby; ZE;;}; + Zue;; — (3A + 2u)6;;2(0 — Sg) (2.2)
k=1

and the Fourier law of heat conduction as
g =—-kO;. 3 (2.3)

In equations (2.1)~(2.3), u; is displacement vector, &;; is strain tensor, o;; is stress tensor, Op is
initial temperature, © is final temperature, g; is heat flux vector, o is the coeflicient of thermal
expansion, s is thermal conductivity, é;; is the Kronecker Delta, A and u are Lamé constants.

In the absence of body forces, heat sources, inertia and rate of change of temperature,
application of the laws of conservation of momentum and energy gives

puigs + (A + plusig = (32 + 2u)a0; (2.4)

and
£0 ;= (BA+ 2p)aBot;; - (2.5)

Where the dot over the displacement term u in equation (2.5) denotes differentiation with respect
to time. It has been shown, see Boley et. al., [2], that the term #;; is generally negligible from
an engineering point of view. Thus, equation (2.5) can be simplified further to

kB ;; =0. (2.6)

This simplification leads to uncoupling of the momentum and energy balance equations and
implies that a steady state thermoelastic problem can be solved in two steps. The first step
involves solving equation {2.6) for the temperature distribution. Subsequently, equation (2.4) is
solved for the displacements with the known temperature distribution.
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2.2 Boundary Element Method (BEM)

Due to the difficulty of obtaining analytical solutions for three-dimensional problems,
the governing equations must be solved numerically. Generally, the two most popular numerical
solution techniques are the finite element method (FEM) [3] and the boundary element method
(BEM) [4]. The main disadvantage of FEM is the cost of preparing mesh data since the whole
problem domain has to be discretized. Further, it generates vast amounts of unwanted infor-
mation at internal nodal points and elements which may never be used in linear homogeneous
problems. For steady state problems BEM gives better numerical accuracy than FEM.

The boundary element method gives rise to integral equations which relate to boundary
data onty. This method offers a reduction in the dimensionality of the problem by one i.e., for
three—dimensional problems only the surface of the domain reed be discretized. This reduction
in dimensionality gives rise to a substantial reduction in data preparation, a smaller system of
equations to be solved, and also significant reductions in computer storage requirements.

2.2.1 Regularised Boundary Integral Equation

A regularised boundary integral equation relating displacements u;, tractions t;(= oi;n;),
temperature © and heat flux ¢ at the surface T, can be expressed in the absence of body forces

/rng(::',m) {ui(x’)uui(x)} dl = /FUgj(z’,x)i,-(;c’)dI‘

+ ap (1+V>/FG’I-J;,,';C(:':!,:n)ni(:r')@(:c’)dl"

1-v
ap (14w / o , .
+ p (1—1/) FG;;;,,[z,x}q(x)dI'. (2.7}

This equation is valid providing u; is assumed to be Hdlder-continuous. Details of the regular-
ization procedure can be found in the work of Matsumoto and Tanaka [5]. This regularization
of the boundary integral equations implies that no Cauchy—principal-value integrals need to be
defined. In equation {2.7), ni(2') is the unit outward normal vector, ¥ is Poisson’s ratio, 2’
and z are points on the surface I' and represent the collocation and field points respectively.
The tensors Usj(z ,z) and T3;(2', z) are known fundamental displacement and traction solutions
respectively for a point force in an infinite domain. The term Gij(:t:', z) is the Galerkin tensor.
Expressions for the tensors Ui;(z, @), Ti;(z',z) and Gy;(z’,z) can be found in ref [6]. Terms
G)(J:') and g(z') represent known temperature and heat flux respectively. The solution proce-
dure is that the integral equations are solved for unknowns i.e., u;, if t; is prescribed or for 1,
if u; is specified. Resulting solutions give displacements, tractions and stresses everywhere on
the boundary. A knowledge of these allows displacements and stresses to be obtained at any
specified interior points.

The boundary integral equation (2.7) requires knowledge of thermal input data at each
node. Integral equations using similar ideas as above can also be established for ® and ¢. Thus,
0O and ¢ can also be obtained using BEM. Analysis for the heat transfer problem is much easier

due to its scalar characteristics.

2.2.2 Numerical Discretisation of Integral Equation

The boundary integral equation {2.7) can be solved numerically by discretizing the surface
T of the problem into N elements with M nodes per element. For 2 three—dimensional problem,
the surface of the problem domain is divided into two—dimensional elements. These elements
can be curved, the surface of which is defined in terms of intrinsic coordinates of the element £, n

i4_



JAERI—Research 94—007

where (—1 < £, < 1). Over each element the geometry, displacements, tractions, temperature
and heat flux are represented in terms of nodal values z?, u®, 1%, ©% and ¢° as

M
n =3 N, (2.8)
=1
M
=S NME (2.9)
»
t(&,n) =Y NE M, (2.10)
a=1
M
O(&,n) = D N°(E,me* (2.11)
and ”
g(&,n) =) N°(E:mg® , (2.12)
a=1

where A?(£,n) are shape functions or inferpolation functions. These shape functions can be
found in ref [4, 6). With the boundary discretised, the integral equation can be written as

N ‘ , N e
);/g;;(-’ﬂ , ) [Un(ﬂ? ) — Um(m)] dl's =Z /;U.;j(:r 2t {z )dl s

+ay(””>}:/c;mk(z ) (z)0%(z')dTs

K (1+V)Z/G131 ', 2)gP(z )dTs. (2.13)

1-v

where

T= irﬁ . (2.14)

In equation (2.7) the integrals are evaluated locally and the differential area dI's(z) must be

redefined according to
dTs(z) = JP(€,m)dEdn . (2.15)

This is the transformation required to go from the global coordinates z; to the local coordinate
system (£,7) defined on the 3** element. The term JP(£, ) is the Jacobian of the transformation.
Substitution of equations (2.8)—(2.12) and (2.15) into (2.13) results in

S5 [ute) - (et ] | / TE(a', a6, m)N(E, (€ mddn =
f=1a=1
N M 1
S @) [ [T ate it Nl e mdgan +
fB=1a=1
1 i .
““(1“)}2“ (e f / G 28 e (2 )N (€, )T (&, mdgdn +

ST o
ol (1+V>i§ ,Ga )] G AC JB ded 2.16
)L S [ [ S s en e ndn 210

a=1
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Defining,

o, 1
P:vjo“(z‘,m(f,n)):];I . T’G“(z (&, M€, M7 (&, n)dedn , (2.17)
Qe et = [ [ 0B e W6 P mdedn, (228)

D e(en) = an;2)[ [t aem i I Em P lemacan (219)

and

) 2 R
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equation {2.16) can be reduced to
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If the collocation point ' and the field point « are coincident the term [u.;(z') - u?a(:c(é, n))]

tends to zero and the fundamental traction tensor Tj;(z’,z) becomes weakly singular. Using
mapping techniques [5, 7] this weak singularity can also be cancelled and the kernels can be
e\a,lua,ted very accurately using standard Gaussian quadrature formulae. As the collocation
point z' passes through all the nodal points, the following system of linear algebraic equation is
obtained:

Hu = Ct + DO + Wq, (2.22)

where the matrices H, C, D and W contain integrals of T};, Uy;, Gijir and G Tespectively.
The vectors u{= u{z’ ) — u(z)) and t contain boundary displacements and tractions compo-
nents, respectively. Known nodal temperature and heat flux are contained in vectors @ and q.
Equations (2.22) are then rearranged in the form

Ax =1, (2.23)

where the vector x contains the boundary unknowns u; and ;. The matrix A results from
rearrangement of H and C. The vector f is composed {rom rearrangement of H and C together
with the addition of the terms (D@ +Wq). The coefficient matrix A is both non-symmetric and
fully populated. A banded matrix can be obtained if the domain is divided into sub-regions, for
each of which an integral equation can be established. These systems of algebraic equations can
be solved with any matrix solution technique. The final solution gives.the boundary unknowns in
a piece-wise approximation. It must be noted that the unknowns are a mixture of displacements
and tractions, rather than the displacements only as in FEM. This is a consequence of the BEM
being a “mixed” formulation and constitutes an important advantage over the FEM.

ia_
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2.2.3 Code Development

The program written in Fortran code, which solves the regularised boundary integral
equation was developed at Shinshu University. All the integrals are evaluated numerically using
standard Gaussian quadrature. The merit of this code is that since the singularities of the
kernels have been explicitly cancelled out in advance through the regularization procedure, all
the integrals can be evaluated accurately. '

The input data file for this code requires thermal boundary conditions (i.e., temperature
and heat flux) at each nodal point of the mesh, in addition to the displacement and traction
boundary conditions. Thus variation of temperature and heat flux must be known in advance
of solving equation (2.7).

Generally, if two separate codes are used, one to generate thermal boundary conditions
and the other to perform the thermal stress analysis then two sets of input data files are required.
For realistic problems these data files tend to become large. Further, for two input data files
the possibility of errors being introduced increases relative to the case when only one data file
is used.

The ideal case would be, one in which a single program performs both the thermal
analysis and thermal stress analysis. This coupling is difficult due to the scalar and vector
characteristics of the two problems. Nevertheless, the original code was modified enabling the
heat transfer analysis and the thermal stress analysis to be conducted consecutively in a single
program. Thus a single input data file is required, which contains boundary conditions for the
heat transfer analysis (i.e., a mixture of temperature and heat flux) and boundary conditions
for the stress analysis (i.e., a mixture displacements and tractions). This reduces the likelihood
of errors being introduced since only a single data file is needed, furthermore, the combined
code requires less user intervention. The program first solves the thermal problem, generating
temperature where heat fiux is prescribed and heat flux where temperature is prescribed. The
temperature and heat flux is then automatically fed into the thermal stress analysis part of the
program.

Additional programs have also been written which facilitate the pre-processing and
post—processing of the data needed and generated by the BEM code. In the pre-processing an
interface program has been developed which can be used to prescribe different thermal stress
boundary conditions at the nodal points of the mesh. A simple mesh generator is also included
in the interface program which allows use of eight-node quadrilateral and six-node triangular
elements. The triangular elements are generated from the quadrilateral elements. Without this
interface program the generation of the boundary element mesh and the associated boundary
conditions at each nodal point would be extremely laborious. In the post-processing a mesh
plotting program has been developed that allows the boundary element mesh before and after the
analysis to be examined. This program produces a global or local view of the mesh deformation
relative to the original undeformed mesh.
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Chapter 3

PWR Hot Leg Modelling

Part of the primary circuit of a Pressurized Water Reactor (PWR) comprises of the
reactor pressure vessel, hot leg and the steam generator, see figure 3.1. The hot leg consists

Steam
Generator

Containment Atmosphere

Reactor
Pressure T
Vessel s Ll Ll L £ L
Ta
Hotl.eg
o ki 2 S LLLTIS s
5.233m
| 3.9762m * o
I Straight Section Bend l

Pipe inner radius = 0.3683m
Pipe thickness = 0.0635m

Figure 3.1: PWR Hot leg

of a circular cross—section pipe with a straight section and a bend. Typically, the length of
straight section is 3.9762m and the total length of the pipe is 5.233m, with inner radius and
pipe thickness of 0.3683m and 0.0635m, respectively. The quantities T; and T, denote the inner
and outer wall temperatures of the hot leg.

The actual bend section comparising the hot leg forms an angle of approximately 60°
with the axis of the horizontal pipe. A 90° bend is chosen for the present analysis since the
fission product aerosal deposition models under development at JAERI are at present limited
to this geometrical configuration.

Water at high temperature and pressure from the reactor pressure vessel is fed via
the hot leg into the steam generator. During a hypothetical severe accident, fission product
aerosols could be transported in the primary circuit. Fission product aerosol deposition due to
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sedimentation and inertial impact could occur on the piping wall. The amount of deposition
will be governed by the flow rate. This deposition could occur in the straight section, the bend
section or in both. Fission product decay heat from the deposited aersols will subsequently
determine the structural behaviour of the hot leg. Analysis conducted at JAERI show that
during a possible severe accident, the inner and outer pipe wall temperatures of the hot leg can
be of the order 926°C and 150°C, respectively. :

3.1 Modelling Assumptions

Due to the complexity of the problem, assumptions must be made in the modelling so
that solutions can be obtained. As regards this it will be assumed that the pipe behaviour is
governed by the laws of linear elasticity. The temperature of the inner surface of the pipe is
the same as the average temperature of the fluid. The deposited fission product aerosols form
a regular surface patch on the pipe wall whick can be characterised by an average temperature.
No modelling of the fission product aerosols is attempted, only the effects of temperature are
considered. Decay heat from the deposition does not change the average temperature of the
inner and outer surface of the pipe. All temperature values are steady state.

3.2 Convergence Studies

To verify the applicability of BEM to piping problems of this type, a representive problem
was selected since the actual dimensions and boundary conditions of the hot leg were not available
when the convergence analysis was conducted. This problem which consists of a pipe with a
hot spot, differs slightly from the one shown in figure 3.1, nevertheless it will give an idea of
the general solution behaviour. The contents of this study will then form a basis on which an
analysis can be conducted on a hot spot located in the straight and bend section of the hot leg
as shown in figure 3.1.

For the convergence analysis consider a pipe of length L, inner and outer radius r; and r,
respectively, as shown in figure 3.2. The hot spot of length Ly, subtends an angle 7 on the pipe
wall. It is located at distance L/2 from either end of the pipe. The inner wall, outer wall and
hot spot temperatures are denoted by T;, T, and Tj, respectively. Values of the variables shown
in figure 3.2 are listed in table 3.1, where E is Young’s Modulus, v is Poisson’s ratio, & is the
thermal conductivity and ¢ is the linear thermal expansion coefficient. This analysis assumes
that the pipe has no internal pressure. In this convergence analysis attention is only focused on
the variation of the displacement components.

The inner surface of the pipe is at temperature T;, while the hot spot temperature is
T, thus in the vicinity of the hot spot there is a step change in the temperature boundary
conditions (i.e., jump from T; to Ty). Clearly, such a temperature discontinuity will not occur
in a real situation, where a small region will exist adjacent to the hot spot in which there is a
continuous change of temperature from 7; to Tj. In the modelling a thin region adjacent to the
hot shot is introduced in which a change of temperature from T} to T can be simulated.

Due to the symmetry of the problem only 1/4 of the geometry will be considered for
analysis. Boundary conditions needed by the BEM for the thermal analysis and the thermal
stress analysis are shown in figure 3.3. Here the shaded areas represents different boundary
conditions in terms of the temperature, heat flux, displacements and tractions. In the thermal
analysis, on the symmetry planes, adiabatic (i.e., zero heat flux) boundary conditions were
prescribed. In the thermal stress analysis, the inner and outer walls of the pipe are traction free
(i.e., t; = 0), the pipe is also constrained in the axial direction. The z—2 symmetry plane is
constrajned in the y—direction. At the point (0,r;,0), displacement in the z-direction was also

— g -
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AN

L Length of pipe
L, Length of hot spot
T; Inner wall temperature

T, Outer wall temperature

1; Pipe inner radius
T, Pipe outer radius
T, Hot spot temperature

¥ Angle subtended by hot spot

Figure 3.2: Problem definition

Variable Value

T 0.55 m

To 0.61 m

L 20m
Ly 04 m

7 20°

T, 500K

T; 750K
Ty 1500K

K 20.0W/(m - K)
o 18.0x10°¢°C-1
E 0.17x10%2kg/m?
v 0.3

Table 3.1: Problem dimensions.

v




JAERT—Research 94—007

Thermal analysis Thermal stress analysis

Zero heat flux B1t,—0 t,=0 u,=0
t,=0 u,=0 t,—0
—0 For all other surfaces

Hot spot temperature
Inner surface temperature e,

Outer surface temperature At nodal points must also prescribe
temperature & heat flux as obtained

from the thermal analysis.

RN B

Figure 3.3: Boundary conditions

constrained to prevent rotation and translation of the body.

The thick line adjacent to the hot spot in figure 3.3 represents a small region referred
to hereafter as the temperature transition region (TTR), in which an approximation for the
temperature change from T; to T}, can be prescribed. No information is available for this region.
A linear temperature rise from T} to T, will be assumed although any other variation is equally
valid for the analysis. This region was defined to be of constant width (i.e., §1 = 52} adjacent to
the hot spot, see figure 3.4. The length §; was chosen such that the arc formed by $; subtended
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Figure 3.4: Definition of temperature transition region (TTR)

an angle of /4 with respect to the axis of the pipe, 7 is defined in figure 3.2. To prescribe
temperature variation on the TTR consider this region to be defined by two boundary elements
only, with local element numbering system as shown in figure 3.4. For a linear temperature
variation across the TTR one must prescribe temperature T3 on nodes 1, 2, 3 and prescribe
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temperature T; on nodes 5, 6, 7. On the remaining nodes 4 and 8 assign temperature (T; +1%)/2.

For the convergence analysis five meshes were designed for the quarter symmetry the
problem possess. These meshes will be designated as Meshl, Mesh2, Mesh3, Mesh4 and Mesh3;
are shown in figure 3.5, figure 3.6, figure 3.7, figure 3.8 and figure 3.9, respectively. The meshes
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Figure 3.5 Meshl

have been designed such that a large concentration of elements exist at the location of the hot
spot and in its immediate vicinity. All the meshes are composed of eight noded isoparametric
surface elements. The total number of elements for Meshl, Mesh2, Mesh3, Mesh4 and Mesh5
are 130, 178, 186, 208 and 408, respectively. The corresponding degrees of freedom (DOF) is
1176, 1608, 1680, 1878 and 3678, respectively. Mesh2 is obtained from Meshl by dividing it
once through the hot spot in the z—direction and by dividing the thickness of the pipe into three
layers of elements; Meshl contains two layers of elements. The only difference between Meshl
and Mesh3 is that for Mesh3 the thickness of the pipe is divided into four layers of elements.
Meshd is very similar to Mesh2, the only change here is that Mesh4 has an extra layer of elements
in the thickness direction. Mesh5 can be obtained from Mesh4 by dividing the hot spot twice in
the z—direction and three times in the f§—direction. Additional subdivisions are also introduced
in Mesh5 to decrease the overall size of adjacent element to element ratios, see figure 3.9.

Over each nodal point of the mesh, boundary conditions in terms of known quantities such
as temperature, heat flux, displacements and tractions were prescribed according to figure 3.3.
The unknown nodal temperature, heat flux, displacements and tractions were calculated using
the BEM code described in § 2.2.3. In this convergence analysis the physical interpretation of
the displacement solutions obtained will not be discussed. A full explanation of the solution
behaviour will be presented in § 4.1, where more realistic dimensions of the hot leg together
with more accurate boundary conditions are chosen in the analysis.

In terms of cylindrical polar coordinates (r,8,z), where 7% = z? + 42 and # is measured
in the z—y plane relative to the z-axis, the radial and tangential displacements U, and U
respectively are shown plotted in figure 3.10, figure 3.11, figure 3.12 and figure 3.13. For the
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Figure 3.6: Mesh2

Figure 3.7: Mesh3
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benefit of the reader, 8 is plotted both in radians and in degrees in these figures. In figure 3.10,
and figure 3.11 the U, variation within the range 0 < § < 7 is plotted along the inner surface of
the pipe at elevations of z = 1.0m and z = Om. The U; variation in figure 3.12 and figure 3.13
is presented in the same range and for the same 2 elevations.

The U, and Ug variations at elevations of z = 1.0m and z = 0.0m show that the presence
of the hot spot plays a central role in determining the structural response of the pipe. Solutions
obtained using Meshl and Mesh3 deviate considerably from those given by the other meshes.
This can be attributed to the refinement of the mesh which is stricted only across the thickness
of the pipe. Generally, these two meshes contain relatively large adjacent element to element
ratios. The maximum difference between the solutions (both ¥ and Up) obtained for Meshl
and Mesh3 over the entire range of 8 and for both z elevations is 5%. Mesh refinement restricted
across the thickness of the pipe only, produces solutions with similar trends. These solutions
deviate considerably from the other solutions suggesting that increasing degrees of freedom in
this manner cannot guarantee convergence.

Comparision of the solutions obtained for Mesh3 and Mesh4 show that the introduction in
Meshd4 of the single subdivision through the hot spot in the z—direction decreases {see figure 3.10)
U, by 26% at # = 0°. A similar decrease in U is shown in figure 3.11 at the same § location.
Generally, this subdivision has a profound effect on the global variation of the displacement
components. For Mesh2, this subdivision generates a consistent pattern of results that follow
the same trend as the results obtained using Mesh4 and Mesh3.

The U, solutions (see figure 3.10 and figure 3.11) for Mesh2 and Meshd are in good
agreement for § < 55°. Within this 8 range the two meshes are very similar and the addition of
another layer of elements (as in Mesh4) across the thickness direction does not change the ratio
of adjacent elements in this region considerably. For § > 55° the two solutions in figure 3.10
and figure 3.11 show a maximum difference of 8%. For Uy (see figure 3.12 and figure 3.13) these
two meshes produce similar solution patterns as for Uy, thus in the vicinity of the hot spot the
solutions tend to be similar.

The final solutior obtained for Mesh5 (largest degrees of freedom used) follows the same
trend as Mesh4. For § < 20° the maximum difference in all the solutions for Mesh4 and Meshkb
is 7%. In the case of z = 0.0m both U, and Us are in good agreement over the entire range of 8
considered for both meshes.

In general this study shows that increase in the number of elements (i.e., degrees of
freedom) in the model gives rise to solutions that will eventually converge. The distribution
of the degrees of freedom in a particular mesh determines the behaviour of the solution and
its convergence characteristics. Localised increase in the degrees of freedom (e.g., vicinity of
the hot spot) gives rise to localised convergence of the solution in that region. Overall solution
convergence requires overall mesh refinement. In this case the refined mesh must be able to
model the boundary conditions correctly everywhere, whenever the boundary conditions change
rapidly the mesh density must also be increased in that region. The criteria for convergence is
not clear due to the complex interaction between the different distribution of elements and their

sizes.

3.3 TTR Modelling

In the analysis presented so far the dimensions of the TTR have been fixed. Further, only
a linear temperature variation has been prescribed over this region. The question of the solution
dependence if any, on the dimensions of the TTR and the variation of different temperature
boundary conditions must also be addressed. As regards this, attention is concentrated on
Mesh5 (figure 3.9) and solutions obtained for different sizes of the TTR. Finally, solutions are
presented for the case when a step change in temperature is prescribed across the TTR in Mesh4.
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Figure 3.13: Ug: Inner surface, z = 0.0m.
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3.3.1 Size Dependence

To determine the solution dependence on the size of the TTR, the ratio §1/5, as defined
in figure 3.4 for Mesh5 was varied. This variation was attained by changing the arc length 5,
(defined by the angle v/4 in figure 3.4) while maintaining § constant. Ratios of 51/ chosen
for the analysis were 0.5, 0.25 and 0.125. For each ratio a linear temperature variation was
prescribed across the TTR. In changing the arc length §p, the mesh distzibution adjacent to
the TTR, defined by the region 0.55< z <0.9, § <45° and 0.35< r < 0.61 must be slightly
modified. The mesh distribution on the remaining part of the pipe and hot spot surface was not
altered. For all the different S,/ ratios employed in the analysis, the distribution of elements

and degrees of freedom outside the TTR were essentially the same as for Mesh5.
The radial and tangential displacements U and Uy as obtained for different 51/ ratios is

plotted in figure 3.14 and figure 3.15. These displacement solutions are along the inner surface,
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Figure 3.14: TTR size variation: U, and Uy at z = 1.0m along inner surface.

at z =1.0m and z =0.0m within the range 0.0° < # <180°. The results show that for 51/8
ratios of 0.5 and 0.25, all the solutions presented in figure 3.14 and figure 3.15, for both U, and
Us, have a maximum difference of 8% over the entire range of # considered. This maximum
difference occurs for U, at 8 = 0°, see figure 3.14. For 4 > 0° the maximum difference in the
two solutions is 4%. For §1/§ ratios of 0.5 and 0.25 the displacement solutions at z = 0m are
in good agreement, see figure 3.15. The maximum difference between these solutions over the
entire range of 8 is 2%.

The solutions obtained for 5,/ ratios of 0.5 and 0.25 deviate considerable from the
solution obtained when §3/85 = 0.125. This deviation is most likely due to the fact that as the
ratio 51/ decreases the elements across the TTR become extremely thin. Thus, a too small
value of S;/S can lead to solutions that become unstable. An optimum value for 5;/5 for all
problems would be difficult to establish. In the present analysis all the solutions obtained for
0.25 < §1/8 < 0.5 are within 8% of each other.
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3.3.2 Step Change in Temperature

In the temperature transition region (TTR) the prescribed temperature boundary condi-
tion can have any variation. So far the analysis has only concentrated on a linear variation of
temperature over this region since this is the easiest to prescribe. Theoretically, any variation
can be prescribed but from a BEM numerical point of view this is not strictly correct. Any
prescribed variation that can be simulated by the interpolation functions employed in the BEM
is a valid temperature boundary condition. In the BEM code quadratic interpolation functions
are used, thus the variation of prescribed temperature allowed must be such that it can be
represented by a quadratic function defined over the three nodes along the side of the element.
Invalid solutions can be obtained if a temperature is prescribed over the TTR which cannot be
represented by a quadratic function.

Inorder to get a clear understanding of this, consider the situation when a step change in
temperature across the TTR is introduced into the modelling. This step change in temperature
can be attained by prescribing temperature 7}, over nodes 1, 2 and 3 in figure 3.4. Over the
remaining nodes of the element prescribe temperature T;. Clearly, this jump in temperature at
nodes 1, 2 and 3 cannot be modelled using quadratic interpolation functions along the sides of
the element defined by nodes 5, 4, 3 and 7, 8, 1 (see figure 3.4).

Two solutions were obtained using Mesh4. The first solution was obtained by prescribing
a lirear temperature variation across the TTR. The second solution was obtained by prescribing
a step change in temperature across the TTR. For both solutions only the temperature variation
across the TTR was changed, the remaining boundary conditions were kept the same. Results
in terms of the hot leg deformation for the linear and step temperature variation are shown
in figure 3.16 and figure 3.17. The results are only presented for the cross—section of the pipe
at an elevation of z =1.0m, where z is defined in figure 3.8. In figure 3.16 and figure 3.17
the original undeformed (i.e., continuous line) mesh and deformed (i.e., dashed line) are shown
simmultaneously. The deformed meshes have been magnified by 15 times. This analysis clearly
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reveals that the solution obtained (see figure 3.17) using a step temperature variation across the
TTR is unreasonable. The large radial deformation obtained at # = 180°, and the smallest radial
expansion occuring at # = 90° cannot be accounted for. This deformation behaviour can ounly be
attributed to the fact that the quadratic interpolation functions are incapable of representing a
step variation in the temperature boundary conditions across the TTR. Increasing the degrees of
freedom in the mesh without altering the size of the TTR, did not change the general behaviour
of the solutions. '

. In contrast, for the linear temperature variation across the TTR the deformation obtained
(see figure 3.16) is more in line with that expected from intuitive arguments. At large distances
from the location of the hot spot it is reasonable to expect the solution to be unaffected by the
presence of the hot spot. On approaching the hot spot region one would expect the solution to be
increasingly influenced by the presence of .the hot spot. This behaviour is shown in figure 3.16.
In the range 112.5° < 8 <180° the pipe experiences a uniform radial expansion. Within the
range # < 112.5° the deformation becomes influenced by the presence of the hot spot.

3.4 Conclusions

To verify the suitability of BEM to this class of problems, mesh convergence studies were
performed on a pipe geometry containing a single hot spot. This analysis showed that solution
convergence can be realised provided sufficiently large number of elements are employed and
correct modelling of the temperature transition region (T'TR) adjacent to the hot spot on the
inner surface is done. The only viable temperature field across the TTR is that which can be
represented by the interpolation functions employed in the BEM code. Further, the dimensions
of the TTR are important, if it is too thin numerical instability may occur giving incorrect

solutions.
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Chapter 4

Numerical Solutions

The analysis conducted in Chapter 3 is based on an approximate geometry of the straight
section of the hot léeg. Further, the temperature boundary conditions employed are not very
accurate since this data was not available at the time this study was conducted. This chapter
comprises of two sections, the first concentrates on the straight section of the hot leg and the
latter on the bend section. Exact geometrical dimensions of the hot leg are employed together
with more realistic severe accident thermal boundary conditions in the analysis. For the straight
section analysis solutions in terms of the displacements, strains and stresses are presected. In
the bend analysis, both constant temperature and adiabatic boundary conditions (i.e., zero heat
flux) on the outer surface are considered. Here only the displacements and stresses are presented.

4.1 Hot Spot in Straight Section of Hot Leg

The geometry of the straight section of hot leg as depicted in figure 3.2 was chosen
with inner radius r; and outer radius r, equal to 0.3683m and 0.4318m, respectively. The hot
spot geometry is defined such that L, = 0.2m and 7 is chosen so that the hot spot forms a
square patch. All other dimensjons were the same as those employed in § 3.2. The inner wall,
outer wall and hot spot temperatures were prescribed as 926°C, 150°C and 1500°C respectively.
An internal pressure of 0.554MPa was also prescribed in the hot leg, the outer surface was
traction free. These severe accident temperature and pressure values were calculated using the
THALES-2 computer code [8]. The temperature transition region (TTR) was defined such that
51/8 = 0.5, see figure 3.4. A linear temperature variation was prescribed over this region. All
the remaining boundary conditions were identical to those presented in § 3.2.

In this analysis only 1/4 of the problem is modelled. The mesh used is shown in figure 4.1
and contained 408 elements with 3678 degrees of freedom. The concentration of elements in the
vicinity of the hot spot can be seen more clearly in the mesh with the hidden lines removed.
The mesh for the analysis is designed bearing in mind that as the distance increases from the
hot spot the solution should become less sensitive to the presence of the hot spot.

The radial and tangential displacement variation {(i.e., U, and Ug) at elevations of z =
1.0m and z = 0.0m on the inner surface of the hot leg (i.e., r = 7;) are shown in figure 4.2. Also
shown in figure 4.2 are the solutions obtained at the same locations for an auxiliary problem, in
which a hot leg without a hot spot is analysed. In this problem, details of which can be found
in § A.1, the geometrical dimensions are identical to those of the hot leg containing a hot spot.
Without the presence of the hot spot the problem possesses another plane of symmetry. Thus, in
the auxiliary problem only 1/8 of the model needs to be discretised and solved with appropriate
boundary conditions on the planes of symmetry. A convergence analysis conducted on the
auxiliary problem {see § A.1) show that converged solutions can be obtained with a relative
coarse mesh containing 77 elements with 654 degrees of freedom. The solution convergence was
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Mesh with hidden lines removed.
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compared with an analytical solution as obtained in § A.1. This auxiliary problem represents
the hot leg response prior to the fission product deposition. Therefore, the auxiliary problem
allows the hot leg response to be compared before and after the fission product deposition.

Without the presence of the hot spot the inner surface undergoes a uniform radial ex-
pansion of 0.00446m, see figure 4.2. The tangential displacements for this situation is zero as
expected. When the hot spot is present in the analysis the inner surface no longer experiences
a uniform radial expansion. Further, tangential displacements are also generated. At z = 1.0m
the minimum and maximum variation in U, (see figure 4.2) occurs at § = 0° and 6 =~ 40°,
respectively. For # > 160° the U, variation is approaching a constant value. The difference
- between the U, solution {at z = 1.0m) obtained when the hot spot is present and not present
in the analysis at # = 0°, 8 = 40° and 8 = 180° is 16%, -17% and 6%, respectively. For the
tangential displacement U at # = 1.0m the maximum difference in the two solutions is 0.08%
and occurs at § ~ 20°. Further, Us is positive in the range 0° < # < 52° and negative in the
range 52° < 6 < 180°.

At z = 0.0m the U, variation over the entire range of 4 shows less deviation from the
solution obtained using no hot spot. The maximum difference in the two solutions is 6%. The
U, variation is symmetrical about 8 = 90°. Witk regard to the tangential displacement at
this location, the maximum difference in the two solutions is only 0.02%. This solution is also
symmetrical about 8 = 90°.

In the hot spot analysis a constraint was imposed at the point {(G,7,0) such that this
point could not move in the z-direction. This constraint is necessary to ensure that no rotation
and translation of the hot leg takes place. This explains why the tangential displacement is
zero at 8 = 90° and z = 0.0m in figure 4.2. The results also show that while at z = 0.0m the
tangential displacement is zero, at z = 1.0m it has a value of -0.0002m. Thus, the y-z plane
passing through the points (0, r;,0) and (0, r;, 1.0} does not remain vertical indicating movement
of the hot leg material towards the hot spot with increasing z elevation.

The variation of U, and Uy as a function of » and # on the inner surface (7 = r;) is shown
in figure 4.3 and figure 4.4. The grid showing the variation of Uy and Uy in these surface plots
does not represent the boundary element mesh discretisation used on the inner surface. This
grid is generated using a plotting program. Large radial and tangential deformations dominate
in the vicinity of the hot spot. These deformations result from the presence of the applied axial
constraint and the thermal boundary conditions. The solutions at z = 1.0m and z = 0.0m for all
9 in figure 4.3 and figure 4.4 are identical to those presented in figure 4.2. Generally, for U, and
Uy the deformation is more severe at z = 1.0m than at z = 0.0m. This behaviour shows that as
the distance increases from the hot spot the solution becomes less sensitive to the presence of
the hot spot.

In the analysis, applicability of the plane strain condition needs to be clarified. If plane
strain condition prevails, one is justified in assuming that the axial dispiacement U, is zero
everywhere in the section of hot leg under consideration. The imposed axial constraints at
clevations of z = 0.0m and z = 1.0m ensure that U, is zero at these two positions. At the
location of the hot spot, close to the axial constraint at z = 1.0m, U, will also be established due
to local expansion of the material in the z—direction, obviously this local axial deformation will
decrease to zero at z = 1.0m. Far from the hot spot location the prescribed thermal boundary
conditions are independent of z, thus U; will be zero. This variation of U, at r = r; can be seen
in the surface and contour plots presented in figure 4.5 and figure 4.6, respectively. The surface
plot shows that the axial displacement is zero everywhere except in the hot spot region. Thus,
outside the hot spot region it is reasonable to assume that the plane strain condition applies
since the prescribed loads (mechanical and thermal) are independent of z. At z = 0.875m and
§ < 7° (see figure 4.6), U, peaks to a value of -0.00052m. This peak value is the same order of
magnitude as the tangential displacement Uy (see figure 4.2 and figure 4.4) and thus cannot be
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Figure 4.5: U, variation on inner surface
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ignored. All U, variations at the hot spot location are negative showing that the direction of the
material expansion is in the sense of the negative z-axis. This expansion arises as a consequence
of the axial constraint at z = 1.0m and the thermal boundary conditions. A further consequence

“of this non zero U, variation is that the strain £,, will not be zero in the vicinity of the hot spot.
Thus, only a three-dimensional analysis can adequately explain the behaviour of the hot leg at
the site of the hot spot. Assumptions of plane strain or plane stress are not applicable in this
region.

A global view of the undeformed (i.e., solid line) and deformed (i.e., dotted line) hot leg
is presented in figure 4.7. The undeformed mesh corresponds to that shown in figure 4.1. Two
views are presented in figure 4.7, the first view shows the complete mesh used in the modelling
before and after the analysis. In the latter view the mesh distribution on the outer surface (i.e.,
7 = 1,) and on the z—y plane at z = 0.0m is removed. The deformation is magnified by 80%.
This clearly shows the dominating effects of the hot spot on the hot leg. Generally, there is
an outward radial expansion of the hot leg everywhere as expected. Further, the higher inner
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Figure 4.7: Hot leg deformation

prescribed temperature (T; 3> T,) produces a larger expansion on the inner surface relative to the
outer surface. This non uniform, across the thickness expansion can be realised by comparing the
elemment distributions across the thickness between the undeformed and deformed meshes. In the
deformed mesh the width of the elements become larger as one moves across the thickness from
the outer to the inner surface indicating that the inner and outer surfaces respond differently.
This variation across the thickness would not be apparent if shell elements were employed since
these elements generate an average value of the fleld quantities across the thickness.

In order to explain the deformation observed it is necessary to consider the situation
when expansion of the hot leg in the axial direction at z = 1.0m is not constrained. In such a
case one would expect the axial deformation U, to have 2 maximum variation at # = 0° due to
the presence of the hot spot. This axial deformation would gradually decrease to a minimum
value at # = 180°. Also, since the temperature variation is such that T3 > T; > T, one would
also expect U/, at 7 = r; to be higher than U, at r = r,. This effect would be most predominate
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in the hot spot location spot.

In the analysis conducted an axial constraint (U, = 0) is prescribed at z = 1.0m which
prevents the free expansion described above. Thus, the free end expansion must be redistributed
in the unconstrained directions (1.e., radially and tangentially) so that the axial expansion is zero
at z = 1.0. Hence, large radial and tangential deformmations would be expected in the vicinity of
the hot spot relative to regions far from it. The swelling of the inner surface at the location of
the hot spot and the associated bending obtained in its vicinity are a direct consequence of the
axial constraint.

In another study the internal pressure was removed and the analysis repeated. This
showed that the contribution the internal pressure makes to the hot leg deformation is negligible
(less than 1%). Thus, thermal boundary conditions in conjunction with the constraints are the
controlling factors in this problem. )

To get a better understanding of the hot leg response the strains and stresses must also
be considered. Only the surface variation of these quantities will be presented. Concentrating
on the strains first, which are plotted on the inner and outer surfaces in figures 4.8-4.13 and
figures 4.14-4.19, respectively, as functions of § and z. Generally, the pattern of the strains on
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Figure 4.9: £g¢ on inner surface

the inner surface is that the radial strains €., and the tangential strains £gs have the largest
magnitudes, with &, > €g¢ everywhere on the inner surface. Both these strains are tensile.
Outside the hot spot region ., has a constant value of 0.0253. At the hot spot location &,
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increases to a value of 0.041. This constitutes to approximately 62% increase in £,, due to the
presence of the hot spot. The egy variation (see figure 4.9) along the elevation z = 1.0m has a
value of 0.016 at # = 0°. The variation attains a maximum of 0.019 at § = 15°. There is then a
sharp fall to 0.0073, after which it increases to a steady value of 0.0119. This variation occurs

Erz
- 1E-004 7. VE-D34 T, JE- 04

Figure 4.12: ¢,, on inner surface

due to the inward bending of the hot leg in the vicinity of the hot spot. The peak ¢¢¢ variation
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in figure 4.9 occurs at the same location as the peak tangential displacement Us in figure 4.4 as
expected.

The axial strain £,, is essentially zero, see figure 4.10, except in the vicinity of the hot
spot where it exhibits tensile and compressive properties. This variation can be obtained from
consideration of the gradient of axial displacement U, in figure 4.5. In the hot spot region e,
varies between +0.004 (i.e.. an order of magnitude lower than &, and egg). Far from the hot
spot region conditions of plane strain are applicable.

The shear strains €,4, &y, and £g, are shown in figure 4.11, figure 4.12 and figure 4.13,
respectively. These variations can be deduced through consideration of the relationship (in

€ o,
XA PIE NS [ AT-SAY T AE-E L NC-wED dw-ex

-

Figure 4.13: cg4, on inner surface -}

cylindrical polar coordinates) connecting the derivatives of Uy, Up and U, with respect to the
spatial coordinates. The strain ¢,4 is virtually unaffected by the presence of the hot spot. The
€., and £g, variations are zero except near the hot spot. This is as expected since U, is non zero
in the vicinity of the hot spot. The peak value of &,, is an order of magnitude lower than that
of E@z-

Considering the strains on the outer surface, &, is zero everywhere except in the vicin-
ity of the hot spot location where it is compressive, having a maximum value of -0.0021, see
figure 4.14. Both eg¢ variations on the inner and outer surface are of the same order of mag-

Err

Figure 4.14: ., on outer surface

nitude. The peak £gs variation on the outer surface occurs at the point & = 0° and z = 1.0m,
see figure 4.15. Axial strain ¢, {see figure 4.10) becomes tensile (peak value of 0.0026) in the
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vicinity of the hot spot. For 8 > 90° all the outer surface experiences zero axial strain. As
expected £,, change in the z—direction is more severe than in the #—direction. The peak value
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Figure 4.15: g49 on outer surface ST

on the inner surface (see figure 4.10) is approximately twice as large as the value on the outer
surface (see figure 4.16) suggesting that there is a greater axial deformation on the inner surface
than the outer. This variation is in agreement with that expected from the thermal boundary
conditions imposed in the Jocation of the hot spot. The shear strain €,4 on the inner and outer
surfaces are shown in figure 4.11 and figure 4.17, respectively, regions of maxima and minima are

2.65-003

1. G- 0T

-8, F-p94  {.A5-Bd

Figure 4.16: ¢, on outer surface

interchanged. Shear strain ¢,, is zero everywhere on the outer surface as shown in figure 4.18.
The strain cg, (see figure 4.19) is an order of magnitude lower than values on the inner surface
and has a peak variation that occurs at the same 6 location and z elevation. At large values of
@ and z, both the inner and outer surface variations of g4, are zero.

Generally, all the strain components on the inner surface are higher than those on the
outer surface. This behaviour is reasonable since the inner surface, which is at higher tempera-
ture than the outer surface, would experience higher deformations than the outer surface. The
swelling observed in figure 4.7 is a direct consequence of these higher strain variations on the
inner surface. Further, the strain components do not exhibit rapid changes ir the vicinity of
the hot spot on the outer surface since the outer surface temperature is uniform relative to the
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inner surface temperature,
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Figure 4.18: £, on outer surface

The large strain values obtained are a direct consequence of the steady state thermoelastic
model employed in the analysis. In the real situation plasticity effects will also be present and
these will redistribute the strains such that these are never greater than the yield strajn. At
large temperatures effects of plasticity cannot be ignored.

Stresses on the inner and outer surfaces are shown in figures 4.20-4.25 and figures 4.26-
4.31, respectively. Near geometrical discontinuities such as edges and corners, BEM stresses are
not accurately defined since the normal to the surface is not unique. By employing discontinuous
elements (see, Brebbia et. al., [6]) at such locations the solutions can be improved. Direct stresses
o,y (see figure 4.20), ogp (see figure 4.21) and o, (see figure 4.22) on the inner surface are all
compressive. The oy, has the smallest magnitude of the direct stresses as expected. Further,
fluctuations in o,, near the edges of the geometry is apparent. The tangential stress oy and axial
stress o,, remote from the hot spot location have constant values of -1743MPa and -3356MPa,
respectively. In the hot spot region these peak to -3254MPa and -5049MPa, respectively. Thus,
the hot spot elevates the tangential and axial stresses by factors of 1.9 and 1.5, respectively.
The axial stress (¢:) has the largest magnitude, which arises due to the axial constraint at
elevations of z equal to 0.0m and 1.0m. In comparison to g and o, the shear stresses o,y
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Figure 4.21: o4 on inner surface
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Figure 4.22: o, on inner surface

Figure 4.24: o, on inner surface
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(see figure 4.23), oy, (see figure 4.24) and oy, (see figure 4.25) are extremely small and can thus
be neglected. The largest shear stress with a peak magnitude of 651MPa occurs for oy, in the
vicinity of the hot spot. Far from the hot spot all the shear stresses are essentially zero.

The direct stresses ¢, and ogg are both tensile on the outer surface, see figure 4.26
and figure 4.27; oy, is negligible.” The presence of the hot spot increases ggg by a factor of
approximately 1.2 relative to its value remote from the location of the hot spot. Axial stress o;
for & > 90° is tensile with an average value of 33MPa. For § < 90° 0., becomes compressive, at
§ = 0° and zero z elevation the compressive value is -8MPa. In the vicinity of the hot spot the

2T 424 BIF &GT

O oz (MPa)

"-29 ad

Figure 4.25: gy, on inner surface

axial stress becomes tensile and attains a maximum value of 600MPa. As on the inner surface
the shear stresses o,p and o, are insignificant in comparision with the direct stresses ogg and
0., see figure 4.29 and figure 4.30. The shear stress o4, in figure 4.31 also becomes tensile (peak
value of 100MPa) in the region of the hot spot on the outer surface. Outside this region it is

zero.
From a structural integrity point of view, presence of large stress elevations in the vicinity

of the hot spot could be detrimental. Generally, the highly elevated stresses on the inner and
outer surface are in a state of compression and tension, respectively. The tensile stresses are
extremely important since they can act as sites of crack initiation and subsequent propagation.
Further, if a crack like defect is already present prior to the formation of the hot spot then it is
possible that once a hot spot is formed the elevated tensile stresses could lead to its propagation.
Once a crack propagates through the thickness the leak worthiness of the hot leg comes into

question.
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4.2 Hot Spot at Bend Section of Hot leg

Fission product aerosal deposition is more likely to take place at locations where the fluid
flow direction is altered. Such an alteration occurs at the bend section of a hot leg and it is at
this location that deposition could occur due to inertial impact. At the deposition site decay
heat will give rise to thermal stresses that could threaten the structural integrity of the hot leg.
Hence, it is important that the structural response of the bend section is understood.

In the modelling it is assumed that the hot leg has a 90° bend section. In practice the
actual bend section forms a 60° angle, subsequently the 90° bend chosen for the analysis repre-
sents an extreme case. Further, fission product aerosal deposition models under development at
JAERI are at present limited to a 90° bend geometry.

In practise the hot leg is supported by the the reactor pressure vessel and the steam
generator. During normal operating conditions initial strains and stresses at the supports prior
to the severe accident will be present. No attempt is made to model these initial strains and
stresses since this data was not available at the time the analysis was conducted. In the analysis
that follows it is assumed that at the steam generator-hot leg connection, no axial deformation
of the hot leg occurs, only radial expansion is allowed. With reference to the schematic diagram
of the cross-section through a 90° bend shown in figure 4.32, this axial constraint implies that

z

T, T
r;
777777777
| Straight section. |
[ 0.5m |

Figure 4.32: Bend geometry definition

U, is zero at z = 0.0m and expansion can only occur in the z—y plane.

Any attempts to analyse the complete hot leg (i.e., straight section of length 0.39762m
and bend section) as shown in figure 3.1 using a three—dimensional model would require ex-
tremely large degrees of freedom and would be computationally expensive. Complete modelling

i38_
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of the straight section is not necessary since at large distances from the hot spot location the
structural response will become independent of the presence of the hot spot. This behaviour has
been established for a hot spot situated in the straight section of the hot leg in § 4.1. Thus to
reduce the model size a 90° bend with a straight section of 0.5m length is considered as depicted
in figure 4.32. The inner 7; and outer r, radii are identical to those used in § 4.1. The 90° bend
kas a radius of 0.8001m. '

In the simplified model, the constraints need to be established at the end of the straight
section of 0.5m length, since the same constraints occuring at the pressure vessel-hot leg con-
nection cannot be employed here. Referring to figure 4.32 an axial constraint at z = —0.5m
is applied which prevents the hot leg deformation in the z—direction but allows free expansion
in the y—z plare. This constraint is reasonable since axial deformations far from the hot spot
location will be negligible as shown in § 4.1. Further, since the problem has a symmetry plane
at y = 0, with appropriate boundary conditions only half the problem needs to be solved.

In the analysis the hot spot, which is formed as result of fission product aerosal deposition
is defired as a square surface patch of dimensions as shown in figure 4.32. It is symmetrically
located at #; = 45° and only half the hot spot is shown in figure 4.32. The temperature transition
region (TTR) is defined such that §1/§ = 0.5 (see figure 3.4) and has a linear temperature
prescribed across it as in § 4.1. Hot spot temperature T, and inner wall temperature T; were
prescribed the same values as those used in § 4.1.

Two separate analyses are conducted on the bend section defined above. In the first
analysis, the outer wall temperature T, is prescribed the same value as that used in §4.1. In
this case there is heat flow through the hot leg thickness due to the difference in temperature
hetween the inner and outer walls. For the second analysis adiabatic boundary conditions are
prescribed on the outer wall surface. The latter case is analogous to having an insulator on the
outer surface that prevents heat loss from the hot leg to the surrounding environment.

For both analyses the same boundary element mesh was employed. This mesh, for the
half symmetry the problem possesses is shown in figure 4.33 and consists of 408 elements with
3678 degrees of freedom. Nodal mesh points are defined relative to the cartesian coordintaes
(z,y,2). The mesh distribution at the hot spot region is difficult to see due to the curvature
of the bend. An internal pressure of 0.554MPa is also prescribed in the hot leg, outer surface
is traction free. The two separate analyses can be done quite easily by changing the prescribed
thermal boundary conditions on the mesh nodes defined over the outer hot leg surface.

Asin § 4.1 results in terms of displacements, strajns and stresses will be presented as
variations over the inner and outer hot leg surfaces. In the analysis that follows, the surface
variation of displacements, strains and stresses will be restricted to the 90° bend section since
the surfaces can be uniquely defined in terms of a radius  and two angles #; and §; as shown in
figure 4.34. The BEM code generates solutions in terms of cartesian coordinates (z,y,2). Using
this coordinate system, analysis of the results becomes difficult. A more suitable choice of a
reference system would be cylindrical polar coordinates (r, 82, z') as defined in figure 4.34. This
system also allows direct comparsion of the results with those obtained in § 4.1. Consequently
all solutions are transformed from the (z,y, ) to the 'y, zJ) coordinate system centered along
the hot leg axis, see figure 4.34. This constitutes a rotation of the original coordinate system
(z,v,#) about the y~axis, consequently the y-axis and y —axis are identical. Sclutions in the
cylindrical polar coordinates (r, f2,2') can be obtained from the cartesian coordinate system
(y',z',2). The angle 8, is measured relative to the v axis and has positive direction from
y' to z. In the cylindrical polar coordinate system z' is directed along the hot leg axis and
¢z is directed towards the origin of the original coordinate system (z,y,2}. Any cross—section
through the bend section is defined by the v —2' plane. Further the inclination of the y'—z plane
is defined in terms of the angle 8;. Thus, any point on the inner or outer surface can be defined
in terms of {r, 8y, 62}, where 0° < 8; < 90° and —90° < 62 < 90°. The transformations needed to
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derive the displacements, strains and stresses in the cylindrical polar coordinates (r, &, z') from
the original cartesian coordinate system {z,y, z} can be found in § B.1 and § B.2. Solutions for
the case when constant temperature boundary conditions are prescribed on the outer surface are
presented in § 4.2.1, while solutions obtained when adiabatic boundary conditions are prescribed
on the outer surface are presented in § 4.2.2.

4.2.1 Constant temperature boundary conditions on outer surface

The hot leg deformation obtained when the outer wall temperature is prescribed the same
value as that used in § 4.1 is shown in figure 4.35. The original undeformed mesh is shown drawn

Complete mesh Mesh with outer surface removed,

- Deformed mesh.
Undeformed mesh.

Figure 4.35: Bend deformation: temperature prescribed on outer surface

with a continuous line, while the deformed mesh which has beer magnified by a factor of 80% is
shown drawn with a dotted line. Swelling of the inner surface of the bend section at the Jocation
of the hot spot can be seen in the deformed mesh with the cuter surface removed. This localised
behaviour exhibits the same characteristics as those obtained in § 4.1 for the straight section
analysis. In this analysis and that presented in § 4.1, identical thermal bourdary conditions
exist in the vicinity of the hot spot, thus, the deformation in this region must be similar for the
two cases as obtained.

The global deformation of the bend section is as expected. At z =0.0m and z = —0.9m
(see figure 4.35)}, imposed axial constraints allow deformations to take place in the z-y and y-2
planes, respectively. Iot leg movement at z = 0.0m occurs in the = direction due to reaction
forces generated by the axial constraint at z = —0.5m. Conversely, reaction forces generated by
the axial constraint at z = 0.0 produces movement of the hot Jeg in the negative z direction.

Inner and outer surface deformations measured relative to the cylindrical polar coordi-
nates (r,8;,z’) defined in figure 4.34 can be obtained by employing the transformations given
in § B.1. It must be borne in mind that this coordinate system is not fixed but moves along the
bend axis as the angle 6, varies, see figure 4.34. With respect to this system the inner surface
variations of the radial U,, tangential Us, and axial U_. deformations are plotted in figure 4.36,
figure 4.37 and figure 4.38, respectively. The surface is defined in terms of the angles #; and
63, where f; = £90° defines the half symmetry plane of the probiem and the hot spot occurs
at 6, = 45° and f, = —90°, In the hot spot location a decrease in the radial deformation U,
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Figure 4.36: Inner surface variation of Ur

can be seen in figure 4.36. This corresponds to the swelling observed on the inner surface in
figure 4.35 2t the same location. Maximum radial deformation occurs along the edge §; = —90°
as expected from intuitive arguments. Along the edge f; = 90° U is negative. This occurs due
to movement of the hot leg axis. Hot leg deformation no longer takes place relative to its axis
as in the straight section analysis presented in § 4.1

The tangential deformation Us, presented in figure 4.37 is zero along edges 8, = £90°
as expected. This zero value occurs because on the symmetry plane of the problem Uy = 0 was
prescribed. Within the range -90° < 82 < 90° all the Us, variation is negative since the hot leg
axis moves during thermal expansion of the hot leg bend section. This axial movement takes
place due to the bend geometry and the imposed constraints. Even if the hot spot was not
present axial movement would still take place.

As in the straight section analysis § 4.1, a local increase in Us, takes place adjacent to
the hot spot location, see fizure 4.37. This localised variation can be attributed to thermal
expansion resulting from the presence of the hot spot. The maximum variation of U, occurs at
§, = 0° and is order of magnitude lower than the maximum variation of Uy in figure 4.36.

Axial deformation U_» presented in figure 4.38 1s zero at 8, = 90°. This zero value arises
duc to the prescribed zero axial constraint at z = 0.0m. The prescribed axial constraint at
z = —0.5m generates the observed maximum U, variation at #; = 0° {or z = 0.0m). Generally
7_s-is positive within the entire #; and 63 range and decreases to zero as #, increases. This
positive variation arises when the cartesian component of the displacement vectors [’, (positive
quantity) and U, (negative quantity) are substituted into equation B.4 of § B.1. The influence
of the hot spot on the axial deformation can be seen in figure 4.38.

Across the thickness, expansion is also evident. The element width increases on moving
from the outer to the inner surface. Thus, as in § 4.1 the inner surface undergoes greater
deformation than the outer surface since T; > T, as expected.

Stresses in the cylindrical polar coordinate system defined in figure 4.34 were also obtained
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using the transformations presented in § B.2. The inner and outer surface variation of these
stresses are shown in figures 4.36-4.44 and figures 4.45-4.50, respectively. Generally large stress
variations are obtained as in the analysis conducted in § 4.1. These result from the large thermal
gradient that exists across the hot leg wall thickness and from the assumptions inherent in the
linear elastic model.

The radial oy, tangential 04,4, and axial o,/ + stresses are shown in figure 4.39, figure 4.40
and figure 4.41 respectively. Along the edges of the inner surface stress fluctuations become
extremely large because the normal vector required in the determination of the stresses from
the tractions is not uniquely defined at these locations. These fluctuations can be reduced by
increasing the mesh density in this location. Relative to the stresses 0g,e, and o the variation
of ., is negligible and all the direct stresses are compressive on the inner surface. Remote from
the hot spot location the average 04,4, variation has a value of -1829MPa. At the hot spot
location (#; = 45°,62 = 0°) 04,6, peaks to .3644MPa. Therefore, the hot spot increases gg,g, by
a factor of 2, which is the same order of magnitude as the straight section analysis (see § 4.1).
For the axial stress ¢__s the average variation remote from the hot spot is -1320MPa. This
peaks at the hot spot location to a value of -3497MPa, which copstitutes an increase by a factor
of 2.6, The axial compressive stress variation for the bend section is a lot higher than that
obtained for the straight section analysis (see § 4.1).

Shear stresses 0y¢,, 0., and g, .+ are shown ic figure 4.42, figure 4.43 and figure 4.44
respectively. These variations are very smal]l compared with the tangential and axial stresses.
Shear stress o, has the smallest magnitude and is only slightly affected by the hot spot. The
shear stress o s Is unaffected by the hot spot and is essentially zero for —30° < 8; < 30°, see
figure 4.43. Along the edge §; = —90° it is compressive for §; < 45° and tensile for 61 > 45°.
The tensile and compressive regions change sign along the edge 8, = 50°, see figure 4.43. For
the shear stress o, o, compressive and tensile stresses are produced adjacent to the hot spot.
The peak tensile stress is the same order of magpitude as that obtained in the straight seciion
analysis, see § 4.1

The direct stresses orr, 0g,9, and o on the outer surface are shown in figure 4.43,
figure 4.46 and figure 4.47, respectively. Once again as expected, the o, variation is negligible
relative to the other two direct stresses. On the outer surface all the direct stresses are tensile
as in the straight section analysis presented in § 4.1. The average value of gy,4, Temote from the
hot spot location is 2189MPa, see figure 4.46. In the vicinity of the hot spot this vaiue increases
to 2781MPa (i.e., an increase by a factor of 1.3). For the axial stress o, the average remote
value is 1654MPa, which in the hot spot Tegion increases to a maximum value of 2431MPa. This
constitutes to an increase by a factor of 1.5.

The shear stresses o,4,, 0,,/ and oy, shown in figure 4.48, figure 4.49 and figure 4.50,
respectively, are negligible in comparison with the direct stresses cg,s, and o . Comparisons
of the inner (see figure 4.42) and outer (see figure 4.48) surface variations show that regions of
tensile and compressive stresses are interchanged, although the variations are very small. For
the shear stress o__s regions of tension and compression are also interchanged on the inner and
outer surfaces. The outer surface magnitude of the compressive and tensile stresses is of the
same order, see figure 4.49. Regarding o, s the outer surface variation is much smaller than the
inner surface variation, indicting the decreasing influence of the hot spot through the hot wall
thickness.

For the bend analysis the direct stresses are compressive on the inner surface and tensile
on the outer surface. This variation is in agreement with that obtained for the straight section
analysis of § 4.1. The elevated tensile stresses on the outer surface arising from the presence of
the hot spot on the inner surface could also act as site of crack initiation if fatigue or creep is

present.
The strain variations can be deduced from the stress variations presented by employing



JAERI—Research 54 —007

ici ionshi in (2]
the constitute equations of linear elasticity. These relationships can be found in {2]
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4.2.2 Adiabatic boundary conditions on outer surface

. The analysis presented so far has assumed that a large thermal gradient exists across the
hot leg thickness. In the real situation such thermal gradients cannot exist due to the presence
of insulating material surrounding the hot leg. The aim of this insulation is to increase the
thermal efficiency of the power plant by decreasing the amount of heat loss through the wall
thickness to the surrounding atmosphere.

To model the effects of the insulation, it is assumed that adiabatic bourdary coaditions
(i.e., zero heat flux) exist on the outer surface of the hot leg containing a localised hot spot as
shown in figure 4.32. This is an ideal case since in the real situation the heat flux will be small
but finite.

For the analysis the hot leg and hot spot geometry chosen were identical to those em-
ployed in § 4.2.1. Further, with the exception of the zero heat flux boundary condition, all the
Temaining thermal bourdary conditions and constraints were identical to those used in § 4.2.1.
Furthermore, the mesh used for the analysis is the same as that shown in figure 4.33.

The resulting overall hot leg bend deformation obtained for the adiabatic boundary con-
dition is shown in figure 4.51. The original undeformed mesh is shown drawn with a continuous

Complete mesh. Mesh with outer surface removed.

.- Deformned mesh.
Undcformed mesh.

Figure 4.51: Bend deformation: adiabatic boundary condition on outer surface

line, while the deformed mesh which has been magnified by a factor of 80%, is shown drawn with
a dotted line. All cross—sections far from the hot spot location experiences uniferm expansion
which is controlied by the imposed constraints. This is as expected since the adiabatic boundary
condition reduces the temperature difference between the inner and outer wall surfaces. The uxni-
form expansion can be realised by considering the expansion across the wall thickness; element
width in the thickness direction is the same. This is in constrast to the expansion behaviour
observed in the analysis {i.e., § 4.2.1) in which a constant temperature was prescribed on the
outer wall surface. For uniform expansion to take place it is reasonable to assume that the
temperature difference between the inner and outer wall surfaces must be negligible. To verify
this, the outer surface temperature variation was obtained and is plotted in figure 4.52. Notice
in this figure that remote from the hot spot the surface temperature obtained is approximately
926°C which is in excellent agreement with the prescribed inner surface temperature. Further,
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Figure 4.52: Temperature variation on outer surface

in the vicinity of the Lot spot (i.e., 6 = 45° and 2 = —90°) a peak temperature of 1420°C is
obtained, see figure 4.52. This is lower than the prescribed hot spot temperature (i.e., 1500°C)
because of heat dissipation due to variations of the temperature field in the radial r, tangential
@, and axial z directions (defined in figure 4.34) in the vicinity of the hot spot.

(‘omparison of the bend deformations presented in figure 4.35 and figure 4.51 shows that
the overall deformation is greater in the case when adiabatic boundary conditions are prescribed
on the outer surface. This is due to the fact that the temperature difference between the inner
and outer wall surfaces is much lower in this analysis as compared to that in § 4.2.1. Further,
at the hot spot location in § 4.2.1 a swelling of the inner surface was obtained. No signs of any
swelling on the outer surface were visible. In the present analysis at the vicinity of the hot spot
“bulging” of the inner and outer wall surfaces is obtained, see figure 4.51. This is as expected
and occurs due to the fact that a larger temperature field exists in the hot spot region relative
to regions far from it. Thus, the deformation is more pronounced in the region of the hot spot
when adiabatic boundary conditions are used.

In terms of the cylindrical polar coordinates defined in figure 4.34, inner surface variation
of the radial U,, tangential Up, and axial U_s displacements are shown in figure 4.53, figure 4.54
and figure 4.55, respectively. Comparison of the inner surface deformations obtained in § 4.2.1
(see figures 4.36-4.38) with the present analvsis shows that larger defomations occur when
adiabatic boundary conditions are employed. At the site of the hot spot the radial deformation
attains a maximum value which produces the observed “bulge”, see figure 4.53. The U, variation
becomes negative in the quadrant defined by 63 > 0° due to movement of the bend axis arising
from the imposed constraints and the thermal boundary conditions.

The tangential displacement (Ug, ) is presented in figure 4.54. It has a similar pattern to
the Uy, variation shown in figure 4.37 in § 4.2.1. The largest magnitude of Us, occurs at g, = 0°.
At this location the solution obtained using the adiabatic boundary condition is 1.7 times greater
(lian the corresponding solution obtained using the constant temperature boundary condition.
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Figure 4.55: Inner surface variation of U_s

Adjacent to the hot spot, additional tangential deformation is also setup. The magnitude of this
additional tangential deformation is much lower than that obtained in § 4.2.1. This can be seen
by considering the maximum deformations at the location 8; = 45°, f = 69° in figure 4.37 and
figure 4.54.

The axial deformation shown in figure 4.55 essentially follows the same pattern as that
obtained in § 4.2.1 (see figure 4.38), except that it is approximately 1.7 times larger at the maxi-
mum variation, which is obtained at ¢, = 0°. This larger variation occurs since the temperature
dillerence across the wall thickness is much smaller in comparison to that obtained in § 4.2.1.

In terms of cylindrical polar coordinates (r, 82,1") the radial ¢,,, tangential og,4, and
axial ¢, s stresses on the inner surface are shown in figure 4.56, figure 4.57 and figure 4.58
respectively. As expected o, is negligible in comparison with cg,4, and o, The maximum
variations of 4,6, and o s+ at the spot location are -1483MPa and -1533MPa, respectively. Far
from hot spot these variations are extremely small. This is mainly due to the fact that the
difference between the inner and outer surface temperatures is negligible, thus stresses cannot
be established.

The shear stresses crs,, 0, and 04 o OL the inner surface are plotted in figures 4.59,
figures 4.60 and figure 4.61, respectively. Relative to the direct stresses the shear stresses remote
from the hot spot location are extremely small and can be considered te be zero since the
temperature difference across the wall thickness is negligible. In the vicinity of the hot spot
o5, 15 tensile with a maximum value of 22MPa, and o_+ has tensile and compressive maximum
variations of 64MPa and -80MPa, respectively. The largest shear stress occurs for g v It has
tensile and compressive variations of 541MPa and -548MPa, respectively. Thus, zll the shear
stresses are increased in magnitude in the vicinity of the hot spot.

The outer surface variation of the direct stresses c,., gg,p, and ¢+ are shown in fig-
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ure 4.62, figure 4.63 and figure 4.64 respectively. Remote from the hot spot region both 04,4,
and ¢, s are essentially zero. In the vicinity of the hot spot a sinusoidal decay of 4,6, in both
the #; and 6, directions is obtained. This sinusoidal variation is not symmetrical about #; = 45°
because the bend geometry under investigation, together with prescribed boundary conditions
is not symmetrical about #; = 45°. Consequently, the non-symmetrical variation arises because
the prescribed axial constraint at z = 0.0m is closer to the hot spot than the prescribed axial
constraint at * = —0.5m. The observed sinusoidal variation is possibly due to the decay of outer
surface temperature in the §; and 8, directions as shown in figure 4.52. The maximum tensile
variation of og,g, along the edge #; = —90° is approximately 210MPa, see figure 4.63. For o,
the maximum tensile variation is approximately 300MPa.

The surface shear stresses ovg,, 0, and o, ,+ are shown in figures 4.653, figures 4.66 and
fizure 4.67, respectively. These are all zero at large distances from the hot spot. In the vicinity
of the hot spot 0,4, attains a maximum tensile variation of 20MPa. The variation of o s is
rather complex and varies within +47MPa. For g, (see figure 4.67) the maximum tensile and
compressive values are 3838MPa and -428MPa, respectively.

Asin § 4.2.1 tensile stresses are generated on the outer surface in the vicinity of the hot
spot. These stresses, although much smaller in magnitude, can still increase the possibility of
crack formation since it is known that cracking occurs at sites of high stress elevations.

4.3 Conclusions

For the hot leg, analysis shows that the solution is very semsitive to the type of thermal
boundary conditions prescribed on the inner and outer surfaces. In the analyses (§ 4.1 and
§ 4.2.1) for which the inner surface, outer surface and hot spot severe accident temperatures
were 926°, 150° and 1500°, respectively, non uniform expansion across the hot leg thickness
was obtained. This effect was most predominate on the inner surface, especially at the hot
spot location where surface swelling was obtained. However, even after a magnification of the
deformation by a factor of 80%, no visible swelling (§ 4.2.1)) was observed on the outer surface.
This behaviour is reasonable since maximum deformation would be expected at the site of
maximum temperature (i.e., hot spot location). Further, since the outer wall temperature is
considerably lower than both the inner wall and hot spot temperatures then it is also reasonable
to expect the outer surface to deform less than the inner. The non uniform expansion produced
large stresses and strains, with peak variations in the hot spot region.

When an adiabatic boundary condition (§ 4.2.2) was prescribed on the outer surface (all
other boundary conditions were the same as in the constant temperature case, i.e., § 4.2.1) a
uniform expansion across the hot leg thickness was obtained, which resulted in zero stresses
being produced. This variation is reasonable since the difference in the inrer and outer surface
temperature was negligible, except at the location of the hot spot. At the hot spot location
bulging of the inner and outer surface was obtained due to the maximum temperature variation
through the thickness direction, resulting in the generation of peak stresses. Comparisons be-
tween the outer surface direct stresses for the constant temperature analysis and the adiabatic
boundary condition shows that in the locality of the hot spot much larger stresses can be ex-
pected for the constant temperature case. This behaviour is reasonable since in the former case
the temperature difference across the wall thickness is much larger.

The large strain and stress variations obtained in the analysis conducted are a direct
consequence of the large magnitudes of the severe accident temperatures prescribed and of
the limitations of the steady state thermoelastic model employed. At these exceedingly high
temperatures the yield strains and stresses are not defined. In the real situation plasticity
effects will also be present and these will redistribute the strains and stresses such that these
are never greater than their yield values.
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In all the analysis conducted, at the location of the hot spot on the inner surface large
compressive direct stresses were obtained. On the outer surface at the same location, large
tensile direct stresses were obtained. From a structural integrity point of view, presence of
these large stress elevations in the vicinity of the hot spot could be detrimental. The tensile
stresses are extremely important since they can act as sites of crack initiation and subsequent
propagation. Further, if a crack like defect is already present prior to the formation of the hot
spot then it is possible that once a hot spot is formed the elevated tensile siresses could lead to
its propagation. Once a crack propagates through the thickness, leak worthiness of the hot leg
comes into question.

Clomparisons of the outer surface direct stresses obtained for the constant temperature
analysis (§ 4.2.1) and between the adiabatic boundary condition (§ 4.2.2) shows that in the
vicinity of the hot spot much larger stresses can be expected for the constant temperature case.
This is Teasonable since in the former case (i.e., § 4.2.1) the temperature difference across the
wall thickness is much larger and the resulting non uniform deformation generates large stresses.

Regarding the use of shell elements it is worth mentioning that these elements would
not be suitable when non uniform, through the thickness deformation is is expected in the
analysis (i.e., § 4.1 and § 4.2.1). These elements can be employed when the thermal boundary
conditions are expected to produce uniform expansion across the thickness. Therefore, when
the temperature difference between the inner and outer walls is negligible, as in § 4.2.2, shell
elements can be used. At the hot spot location the difference between the inner and outer wall
temperatures is not negligible, thus, in this region it may be appropriate to use elements that
allow three-dimensional modelling. Further, transition elements must be employed to couple
the shell elements with the elements used in the three—dimensional modelling region.
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Figure 4.56: o, on inner surface
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Figure 4.58: ¢_s s on inner surface
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Chapter 5

Final Conclusions

A three-dimensional steady state thermoelastic analysis has been conducted on a slightly

modified geometry of the hot leg of a pressurized water reactor (PWR) containing localised hot
spots resulting from fission product aerosal deposition occuring during a hypothetical severe ac-
cident. The boundary element method (BEM) was selected as the numerical sclution technique.
The following conclusions can be drawn from the present analysis:

1.

Solution convergence can be realised provided sufficiently large number of elements are
employed and correct modelling of the temperature transition region (TTR) adjacent to
the hot spot on the inner surface is conducted. The only correct temperature field across
the TTR. is that which can be represented by the interpolation functions employed in the
BEM code. Further, incorrect solutions can also be generated if the TTR is too thin.

Non uniform expansion across the hot leg thickness was obtained in the analysis for which
the temperature difference across the thickness was large. This was most predominate on
the inner surface, especially at the hot spot location where surface swelling was obtained.
However, even after a magnification of the deformation by a factor of 80%, in the bend
section analysis, no visible swelling was observed on the outer surface. This behaviour is
reasonable since maximum deformation would be expected at the site of maximum temper-
ature {i.e., hot spot location). Further, since the outer wall temperature is considerably
lower than both the inner wall and hot spot temperatures then it is also reasonable to
expect the outer surface to deform less than the inner.

When an adiabatic boundary condition was prescribed on the outer surface a uniform
expansion across the hot leg thickness was obtained. At the hot spot location bulging of
the inner and outer surface was obtained. This behaviour is reasonable since the adiabatic
boundary conditions gives rise to outer wall temperature which is almost the same as the
inner surface temperature. Conseguently, a maximum temperature variation through the
thickness was obtained in the vicinity of the hot spot which produced the bulging observed.

. In the locality of the hot spot, direct stresses are much larger when a constant temperature

(considerably less than inner surface temperature) is prescribed on the outer surface than
when an adiabatic boundary condition is prescribed.

. The large strain and stress variations obtained are a direct consequence of the large mag-

nitudes of the severe accident temperatures prescribed and of the limitations of the steady
state thermoelastic model employed. At these exceedingly high temperatures the yield
strains and stresses are not defined.

In all the analysis conducted, at the location of the hot spot on the inner surface large
compressive stresses were obtained. On the outer surface at the same location, large
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tensile stresses were obtained. The presence of these large stress elevations in the vicinity
of the hot spot could be detrimental to the integrity of the hot leg. The tensile stresses
are extremely important since they can act as sites of crack initiation and subsequent
propagation. Further, if a crack like defect is already present prior to the formation of the
hot spot then it is possible that once a hot spot is formed the elevated tensile stresses could
lead to its propagation. Once a crack propagates through the thickness, leak worthiness
of the hot leg comes into question.

Since the analysis conducted has been based on steady state thermoelasticity it is difficult
to draw firm conclusions on the integrity of the hot leg. Consequently, additional analysis must
be conducted that includes the effects of plasticity and the effects of temperature on the material

properties.
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Appendix A

“Analytical & Numerical Solution

A.1 Analytical Solution

Consider a pipe of length L, inner radius r; and outer radius r,. Let the inner surface
be subjected to a uniform pressure F; and uniform temperature T;. The outer surface 1s at
temperature T,. The pipe is characterised by Young’s medulus E, Poisson’s ratio  and thermal
conductivity a. If the ratio L/r, > 1 and if axial displacements are prevented, the problem is
essentially one of plane strain. For this case, Boley and Weiner [2] have shown that the general
solution in cylindrical coordinates is of the form,

a(l+v)
(1-v)r

U(r) = /TTT(r)rd'r+Ar+€ (A1)

for the radial displacement. The term T'(r) represents the temperature variation across the
thickness of the pipe. The stresses can be obtained from the strain-displacement relations and

Hooke’s law as

oF T AE BE
Tpp = _(1 .._ V)T'Z /’", T(T'JTd?" + (1 s I/)(l — 21/) - (1 ¥ V)’n"z’ (AZ)
_ ak r . _ aET(r) AE BE
Tgg = (1_1}),,,.2]1_‘_ T( )TdT (l-#.v) + (1+V)(1_2I/)+(1+L‘)T2 (A3)
and
arg = 0 (A.4)

The constants 4 and B must be determined from the boundary conditions. Thus substituting

o,, = —F, at r = r; and o,, = ( at r = 7, into equation A.2 gives
ol +v)(1 —2v) ]’”v (1+v)(1—2v) Py} A
_ 5
A= e T T e A2)
e (14072 (14 v) Prir?
afl +v)r; e +v) LT
_ : vi'e AB
B (1 —v)(r2 —r?) /r, T(rrdr + E ri-r? (A.6)

Hence the final expressions for the radial displacement becomes

a v T —2)r? 4 12 [T
Ulr) = (1(1_-:)2 {]ﬁ T(ryrdr + - ng _) r3+ - /r‘ T(’")Tdr}

Pir¥(l+v)
E(ri-ri)r

t

(1 - 20y + ). (A7)
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A.2 Numerical Solution

The influence of the hot spot on the structural response of the hot leg should dimirish as
the distance from the hot spot increases. Thus, far from the hot spot the structural response of
the hot leg is governed by the uniform pressure and temperature boundary conditions prescribed.
In this region the structural response must be similar to a pipe {without hot spot) with identical
boundary conditions.

_In order to check this, a straight section of the hot leg (without hot spot) was analysed
subjected to the same temperature and pressure boundary conditions as presented in § 4.1. The
geometrical dimensions considered are identical to those in § 4.1. Without the presence of the
hot spot the problem contains another plane of symmetry. Thus only 1/8 of the original hot
leg needs to be modelled with appropriate boundary conditions on the symmetry planes. Three
meshes were designed, as shown in figure A.l, containing 77, 348 and 424 elements with 654,

3138 and 3822 degrees of freedom, respectively.

Nel=77 Nel=348 Nel=424
DOF=654 DOF=3138 DOF=3822
= . = = )
= s e iy
ez s
' i
e
I'l[""'—i -
|| Jlll”""' i
L e I
//,/ .-ll!”"-'l
s 0 S s
et A ||"""l |}
— we
L |
(- 1 e e i
P | e
4] | e
e
T e i
L L
® % = ' u,/%’/
zéé x L

“

Figure A.1: Mesh refinement for 1/8 modeliing of Hot leg.

To compare the analytical solutions with the numerical solutions it is necessary to es-
tablish a relationship for the temperature variation (Z.e., 7'(r) in § A.1) across the thickness of
the hot leg. This relationship was obtained by plotting the nodal temperature against the radial
distance r, on the z—z plane at z = 1.0m. This plot is shown in figure A.2. A logarithmic curve
was fitted through the data points allowing the temperature varialion to be expressed as

T(r) = —4876.82 x In 7 — 3946.5 (A.8)

across the thickness. By employing T'(r) in equation A.7 the variation of the radial displacement
across the thickness was caiculated. The analytic solution together with the numerical displace-
ment solutions for the three meshes is presented in figure A.3. All the numerical solutions are in
good agreement with the analytic solution. Essentially all the three meshes generate the same
solutions over the range of r considered. The solutions obtained using the coarse mesh (7.¢., 77
elements) and the most refined mesh (i.e., 424 elements) differ by less than 0.06%. The solution
obtained using the intermediate mesh (7.¢., 348 elements) falls in between the coarse and most
refined mesh solutions. This indicates that the solution is converging. The maximum difference
between the analvtical solution (i.e., equation A.7) and the three meshes emploved is 0.3% over
the entire thickness.
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Appendix B

Transformations

With reference to figure 4.34 the transformations required to derive the displacements and
strains (same for stresses) in cylindrical polar coordinates (r,65,7") from the original cartesian
coordinates (z,y, z) are presented below.

B.1 Displacements

In the first rotation about the y-axis the coordinate system {z,y, z) is transformed into
(z',y,2') as shown in figure B.1 diagram A. The y-axis in figure B.1 points into the plane of the
page. For this transformation the positive sense of the angle 8, measured relative to the z—axis is
in the direction shown (f.e., from z to z). In the bend section analysis (see figure 4.34) rotatien
of each plane perpendicular (i.e., y¥'—z plane) to the hot leg axis takes place in the negative
direction as shown in figure B.1 diagram B. Thus, a rotation through an angle §; (see figure B.1

z , z
z Zf
e [
x
¥ - Yy

x N X

18] .

, e
x 1

A B

Figure B.1: Rotation about y axis.

diagram B) measured relative to the -z axis corresponds to a positive rotation through angle f
measured relative to the +z axis. The angle needed for the first transformation is defined in

equation B.1.
=271 -6 (B.1)

As the coordinate system (z', v,z ) rotates about the y—axis the angle 6, varies within the range
0° < 6, <90°.
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The cylindrical polar coordinates (r, 8z, z') centered on the hot leg axis are obtained {from
the cartesian coordinates (v, ,% ), see figure B.2. In figure B.2 the = axis is pointing out of

Ur

y
Uez

6,

-
N
=z’ x’ _
Figure B.2: Definition of cylindrical polar coordinates.

the plane of the page and is directed along the bend axis. The angle 6 is measured relative to
the y' axis and has positive direction from y to z’_, At any y'—2 plane #; is defined such that
—90° < 8, < 90°.

Using the sequence of transformations mentioned above the radial, tangential and axial
deformations defined as Uy, Us, and U_, respectively, in the cylindrical polar coordinate system

(r,62, z') can be expressed as

U, = U.sinfsinéy + Uycosfy + U- cos @ sin 6, (B.2)
Ug, = Ugsinfcosfy— Uy sin 8, + U, cos 8 cos 8, (B.3)
Uy = Ugcost—U,sind. (B.4)

In equations B.2-B.4 compornents of the deformation in the original coordinate system (z,y,2)
are represented by U, Uy and U,.

B.2 Strains

With respect to the rotations defined in § B.1 the strain components in the cylindrical
polar coordinate system (r, 2, z') as functions of the original cartesian coordinates (z,y,2) can
be expressed as

£, = Eggsin’h sin? fy 4 €4y sinf sin 262 + €4 sin 20 sin? Bz + €yy cos® By +

£yz COS O5in 282 1 €22 cos? # sin? 8, (B.5)
£rpy, = 0.5eg sin? @ sin 265 + €4, 5in 8 cos 26, + 0.5¢; sin 26 sin 285 — 0.5g4, sin 205 +

£yz €08 8 cos 287 + 0.5¢; cos® §sin 26, (B.6)
£, = 0.5egsinb;sin 26(cos® 8 — sin? §) + ey cos fcos By — g sin® 28 sin 6, —

£z SiD 6 cos B2 + 0.5¢2; sin 6, sin 26(sin” § — cos® 6) (B.7)
€60, = Czr sin? # cos® 85 — e, 510 0 5in 262 + €z, sin 28 cos® By + 4y sin? 6y —

£yz CO8 85in 267 + €2 cos? 8 cos? 8, (B.8)
Egr’ = 0.5e., cosBg sin 26(cos® 8 — sin? §) — £y cOS §sin 6, — £, sin® 28 cos 8 +

2 5in @ sin 6 + 0.5¢. cos fp sin 26(sin” 6 — cos? §) (B.9)
€y = Exo cos?f — e, 5in 28 + .- sin® 6. (B.10)

The stress componerts can be obtained from the strain components by replacing £ with @ in the
above expressions.



