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New version of a Mapping code for the up-down asymmetric configuration is developed
Combination of Mapping with OFMC, a Hybrid code, provides an effective toel for
reliable and fast calculations of high energy ion ripple losses in a tokamak including
both total loss fraction and lost power distribution over the first wall. Results of the
analysis by this Hybrid code on the NBI ion ripple losses in JT-60U are in a good
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1. Introduction

Ripple losses of fusion a particles and associated heat load on the tokamak
first wall and in-vessel components are considered to be one of the major limitations
on fusion reactor design. The evaluation of ripple losses of the suprathermal ions is
a traditional problem in a tokamak study and has a long history. The physics of
ripple effects on the fast ion confinement in main is well understood. It made
possible to employ simplified numerical algorithms for fast estimation of total loss
fraction based on kinetic [1,2,3] or mapping [4,5] approach. However distribution of
the heat load over a tokamak first wall can not be obtained with this codes.
Traditionally last problem was studied by means of the time consuming Orbit
Following Monte-Carlo (OFMC) codes [6] or with combination of the mapping and
OFMC [2].

Nowadays the single null equilibrium configuration is considered to be the
most favorable for future tokamak fusion reactors. Due to the top-bottom asymmetry
of this configuration, ripple amplitudes in up and down reflection points of a banana
orbit are different. It leads to the additional transport mechanism [7,8] primarily
considered in association with ripple assistant heating/fueling of a tokamak plasma
by perpendicularly injected neutral beam [7,9]. In a vertically asymmetric
configuration banana particles with reflection points within ripple well region undergo
net radial drift [7,8]. The origin of this drift is that the local magnetic field maxima
shield banana trajectories from some region of reflection phase. In result, the ripple
induced radial displacement of a banana tip, which is averaged over the reflection
phase, ditfers from zero [10]. Then if up and down banana reflection points have
different ripple amplitude the difference in mean values of vertical displacement at
these points defines the velocity of the net banana drift. The direction of this drift is
always opposite to direction of the [VB xB] ion drift.

The transport processes for particles with reflection points inside the ripple
well region were examined in [8]. It was found that in the high collisionality regime
the diffusion of toroidaly trapped particles, associated with vertical asymmetry is
compensated by the additional diffusive flux of the locally trapped particles and
resulting diffusive transport turns out to be exactly the same as in the vertically
symmetric case. At low collisions, e.g. for high energy ions, when the ion drift is
codirected with gradient of the ripple amplitude, particles with reflection points in the
ripple well region are trapped into local wells and escape to the first wall. If the ion
drift is reversed, the trapping probability decreases, while the net outward drift expels
banana particles out of the plasma. It means that the ripple well region can be
considered as an instant loss cone for both ion drift directions. Therefore, if the top-
bottom asymmetry affects the ripple induced transport in the local well region only,
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one should expect no difference in the total loss fraction when the toroidal field
direction is reversed. However in the recent OFMC calculations of the o particle
ripple losses in ITER, essential difference in the power loss fractions between for up
and down ion-drift directions was found [11]. The origin of this difference should be
examined. In the present work, we didn't treat this problem but deveioped a new
code to solve this prob_lem.

A new Mapping code to study ripple losses of the suprathermal ions in a
tokamak with up-down asymmetric equilibrium has been developed. A Hybrid code
has also been developed, which is the combination of the Mapping with OFMC
calculations. The Mapping is applied outside the ripple well région, and the OFMC is
inside and in the vicinity of the ripple well region. This code provides reasonable
data on the total loss fraction as well as on the distribution of the lost power over the
first wall at least 10 times faster than a pure OFMC code. In section 2 brief
description of the OFMC part of the Hybrid code is presented. Section 3 is devoted
to the Mapping formulation, it's features and applicability region. In section 4
combination of the Mapping and OFMC parts into the Hybrid code is presented.
Results of the benchmark calculation of the ripple losses of NBI ions in JT-60 are
given in section 5. Derivation of the Monte-Carlo collisional operators for the OFMC
and the Mapping is outlined in Appendix.

2. OFMC
In the Orbit Following part of a Hybrid code, the standard set of drift motion
gquations is solved:

PLo V2{1+X2)
2 VB2

-g-{=Vx3+ [B xVB] , (1)
where % =V, /V is a cosine of pitch angle, P g = PLo(Vg, B) is a Larmor radius at initial
velocity V. [ E x B ] drift for suprathermal ions is considered much smaller than
gradient and curvature ones and is excluded from calculations at present. As it was
shown in [12, 13] electrical drift doesn't affect total ripple loss fraction of NBI jons in
JT-60U but causes the shift in the peak position of heat wall load due to losses of the
ripple trapped particles and also leads to a small (within 10%) redistribution of ripple
losses between banana and locally trapped channels. For fusion alphas one can
expect such effects only for fully slowed-down particles. The term proportional to [B
x rot B | is also omitted due to the standard tokamak condition of low beta value.
The axisymmetric field is represented in the form:

1, 1
B -gep+ glV¥xeq] . (2)
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Here and henceforth the following normalized quantities are used: R, Z are
normalized by Rax (a major radius of the magnetic axis), velocity by the initial value
Vo, magnetic field components by the vacuum toroidal field at the magnetic axis
Bpo(Rax), poloidal flux ¥ is normalized by 2n Rax® Bpo(Rax). The para- or dia-
magnetism in B is neglected at present because of its little effect on the ripple loss.

To take into account the ripple we add a single harmonic perturbation
. 1 :
Bp'PPlé = = 8(R, Z) cosNQ , (3)

1o the toroidal field component only, because of it's dominant effect [14]. Here N is
the number of the toroidal field coil sections. Note that resulting non divergence free
field can be used for particle orbit analysis in drift motion approach in contrast to full
equation where non divergent field leads to distortion ot magnetic moment. In this
case all components of perturbation field should be taken into account.

In the axisymmetric case, equation (1) preserves the toroidal moementum,
which can be written in the form

B
¥p= Po RVX 5 + ¥(R,2) . (@)

Without collisional scattering the ratio of magnetic moment to particle energy
remains constant during slowing down. This nondimensional magnetic moment,

-2
poo1-X (5)

V=EE =B

altogether with the toroidal mementum in form (4) have a clear geometric sense (v =

Rrefiection } @nd can be employed for mapping construction.

in the Orbt Following part, equation (1) is solved using fourth order Runge-
Kutta algorithm with automatic time step control based on conservation of invariant v
(5). Additional restriction on the time step value originates from the necessity to
provide "sufficient” number of steps at every spatial period of the perturbation. For
the ripple loss problem the latest restriction is dominant. Two-dimensional cubic
splines are used for poloidal flux and ripple amplitude to provide smooth interpolation
of the magnetic field together with necessary derivatives. Changes in pitch and
energy values due to collisions are generated by a Monte-Carlo technique (see
Appendix) at every time step. Cylindrical (R, ¢, Z) spatial coordinates are used for
easy incorporation of a tokamak constructive elements of arbitrary geometry into
calculations.
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3. Mapping
3.1 Formulation of mapping

Since the dominant deviation of ¥y from axisymmetric value is accumulated
in the vicinity of the turning point, the drift motion equations can be reduced to a map
with time step At=1p/2. It is important to choose appropriate grid variables for the
map. We use a coordinate system (p, A, ¢); p is the radial grid coordinate on a
magnetic surface and ¢ is the toroidal angle. Instead of the poloidal angle for up-
down asymmetric equilibria it is convenient to introduce a new variable,

i V - Vmax (p)
h= Slgn(lpBR) Vmin (P) - Ymax (p) ' ®)

The value of A ranges from -1 to 1 and always positive above mid plane (Br =0
surface). Then successive up and down reflection points in axisymmetric field
correspond to (p, £A) points in the mapping variables. Figure 1(a) shows the
mapping coordinate for a JT-60U configuration. The applicable region for the
mapping in this configuration is limited as shown in the figure, which will be
described in sub-section 3.2.

Far from the ripple well region, where o+ =Bg/8N By >1, the expression for

a radial kick takes a simple form:

Ap = g% sign(Beg) A¥p sin ( N + sign(BRBq,)g ) (7)

where
32

A¥p = PLg RV3,/ nTNB, /By m . (8}

All variables in the last expression are given in above mentioned nondimensional
units. Multiplier a+372 / (1 + 0+3/2 ) is included to avoid unphysical divergence in the
kick amplitude at the ripple well boundary [15]. Sign terms in the first formula
provide right dependence of the radial kick on ripple phase for both up and down
reflection points and for arbitrary direction of toroidal field (gradient drift) and plasma
current Ip.

We employ for calculations an implicit mapping scheme, similar to that of [4];

Pnst = Pn+ VAPO (Prst, Anst. Pn)
(9)
Pnit = Pn + VAp(PO (Pn+1s Anet) £A19 Pyt An+1) + 8@ (Pnst1, Anst) -
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The time steps n, n+1, ... correspond to the turning points as illustrated in Fig. 2. [n
the last formula A1Q is a phase increment due to the motion along magnetic field
line. The toroidal displacement of the reflection point owing to banana precession
Ap@ is a linear function of the particie velocity. Then Ap®o and radial displacement
amplitude APg can be precalculated at initial velocity Vo . The area preserving term
3¢ for proposed scheme with Ap defined by (7) takes the form

8¢ = % %éf cos (N@ + sign(BrBo) 7 ) - (10)
Because of A=A {p, v), the derivative d/dp = (9/dp) A=const +{(9A/9p)-(d/OA )p=const-
The radial displacement is evaluated on a surface v =const.

In the Mapping code, phase increments Ap® and A{® as well as necessary
bounce averaged coefficients for collisions are given at the mapping grid points
beforehand by the Orbit Following calculation . For the radial kick amplitude we take
analytical formula (8). Two-dimensional cubic spline interpolation is used for all
above mentioned values. The implicit equation for p is solved by Newton method.
Setting of Pn as initial point and smooth spline function for AP provide fast
convergence of iterations. Collisional corrections to (P, v, V) variables are generated
by Monte-Carlo methods (see Appendix) after every bounce period.

3.2 Mapping features and validity region

The mapping applicability region is quite obviously limited by the prompt orbit-
loss boundary, which in most cases can be replaced by p = const = 1 surface, and
the ripple well boundary o~ = 1 because the particle trapping into the local wells isn't
accounted in the mapping. Also one should exclude from the mapping calcuiation
the neighborhood of the inside midplane (Br =0 surface for R >Rax) because the
bounce period for barely trapped particles with banana tip in this region become very

long. An example of the mapping applicability region for a JT-60U configuration is
shown in Fig. 1(a), where the curves of a« =1 and a» =5 are drawn.

In the vicinity of the ripple well region with moderate o~ values of 52 o+ 21,

the simple sine dependence of the radial kick on the ripple phase (eq. (7)) is
violated. Moreover for-a typical tokamak condition in the vicinity of the rippie well
boundary, the ripple amplitude & and therefore the radial displacement amplitude are
relatively high. For fusion alphas in this area, AZy is of order several centimeters
and the ripple amplitude 8, owing to steepness of it's profile, varies significantly on
the vertical kick length. It leads to a difference in vertical excursion amplitude when
direction of the toroidal field and consequently the ion drift is reversed.

45_
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Figure 3 shows the displacement of the toroidal momentum ¥y, versus toroidal
phase evaluated by the Orbit Following calculation. We caiculated the displacement
of fusion alpha particles with birth energy at different values of o« and for up and
down directed ion drift. An ITER EDA equilibrium and ripple data [16] were used in
these calculations. To evaluate excursion value, alpha particle orbits were followed
backward in time in the axisymmetric field from reflection point y =0 with the same
poloidal position (R, Z) and successive values of toroidal phase N@ up to the
intersection of the midplane {actually up to the first point after the intersection where
cos(N®)=0). Then ripple was "switched on" and orbits were calculated forward in
time till the next intersection. Figure 4 illustrates the method to evaluate the radial
displacement, (¥p - ¥ ho)/A¥p, near the reflection point. The displacement value is
defined as difference between averaged values of ¥p (straight segments in Fig. 4)
after and before a reflection point.

One can see from Fig. 3(a) that for a« > 3 analytic formula (7) (dotted curve) is
in a reasonable agreement with numerical results (solid curve). When the banana
tip approaches the ripple well boundary (o« ~ 1), the difference in the maximum
displacement amplitude for up (co-directed with V§) and down (counter-directed with
V§) ion drift is growing along with essential deviation from sine dependence [Fig.
3(b) and (c)). When the ripple value is uniform, this difference vanished and
resulting dependence was found to be very similar to analytical one [10]. In a usual
tokamak device, there exists the gradient of ripple amplitude V3, which also affects
ripple trapping process. For the case of o= =1 and upward drift {co-directed with V4),
the break of the solid curve in the left of Fig. 3(c) represents the particle trapping into

the local well. For reversed drift direction, the trapping into local wells doesn't take
place even at lower o« <0.5 value. Therefore, taken into account above mentioned

effects, one should shift mapping validity boundary to some moderate value of ax=
2+4 from ox=1.

It is important to note that variation of the ripple amplitude and background
plasma parameters on a suprathermal ion orbit also limits validity of the mapping
application. Especially it relates to analysis of the ripple losses of the charged fusion
products in discharges with low field and/or plasma current. In such case the
trapped particle orbit has rather a potato than a banana shape and difference in the
ripple amplitude at inner and outer part of an orbit can reach 1+ 3 order of magnitude
and the effect of ripple can't be reduced to local kicks near reflection points. By
another words we should apply the present Mapping for simulation of a particle orbit
with moderate banana width Ap << a, where a is a plasma minor radius.

The ripple perturbation of a tokamak magnetic field results in the formation of
drift islands. Spatial location of the islands is determined by the resonance condition

_.6_
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Ap@=2rk/N, where k is an integer. The width of the resonance can be estimated as
Ajgl = \/AZb /(aqu)/azb) . Therefore suprathermal ion dynamics in a rippled field is

very sensitive to the details of the spatial profiles of toroidal precession frequency as
well as ripple amplitude. Poincare maps for successive banana tip position
calculated by (a) the Orbit Following code and {b) the Mapping code are shown in
Fig. 5. Increment in the toroidal phase due to banana precession is scaled as Ap@
« Vg2, where q is the safety factor. Then to get more illustrative figure we used for
these calculation an ITER equilibrium with twice as lower current {(q{0.95) = 6) and 5
times artificially increased ripple amplitude. All particle orbits were started from
banana tips with the same R=7.5m , ¢ =0 but different vertical position Z. Ripple
wells at these graphs are located above Z=5.35m. Figure 5(c) shows 2n Ap@/N
versus Z. One can see that positions of the drift islands in Orbit Following and
Mapping calculations are similar and coincide with resonance values of the
precession frequency (Fig. 5(c)).

It looks very attractive and intuitively valuable to employ an explicit scheme
instead of the implicit one (eq. (9)) and therefore to avoid time consuming iterations.
The main difficulty for explicit mapping is to deal with distortion of the area
preserving. In previous works [4,5] the necessity of including of the area preserving
term 8¢ in expression for phase increment was examined. In calculations of ripple
losses of fast ions as well as in location of the boundary of the ergodic region for
many cases, no difference was found in using mapping with or without area
preserving correction especially when collisions were accounted. However, in
previous cases, the ripple losses of fast ions were studied for tokamaks with high
ripple and relatively low plasma current, and considerable part of plasma column
was covered by the stochastic region. Total ripple losses of suprathermal ions in
such conditions are defined mostly by the width of ergodic region and the effect of
area preserving was hardly seen. In the present day tokamak projects with high
plasma current and as low as possible ripple amplitude, the stochastic boundary is
almost coincide with the ripple well boundary [16]. In such conditions area
preserving features of a mapping can drastically affect calculation results.

To study the effect of the area preserving we prepare two simplified variants
of the mapping in addition to reference one {eq. (9)). We shall call Mapping 2 the
explicit scheme which is the same as eq. (9) except for 8¢ =0 and AP = AP{Pn, An),
and Mapping 3 the explicit mapping where the displacement amplitude is constant
within a grid cell and varies from cell to cell. Therefore Mapping 2 doesn't preserve
phase volume while distortion of area preserving in Mapping 3 takes place when a
banana tip position is moved from cell to cell by a kick.
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Figure 6 shows an area preserving features of the different mapping
schemes. In upper row, Poincare plots for first 200 bounces are shown. Case (a)
corresponds to the reference Mapping (9), (b) to the Mapping 2 and (c) to the
Mapping 3. Lower row represents the same pictures but for 200 bounces followed
by previous 10000. For alpha particles in ITER, 10000 bounces correspond to
approximately 0.05 - 0.1 of the slowing down time 1s. One can see that the
reference Mapping manifested perfect area preserving (Upper ergodic orbits leaves
grid area during first 200 bounces and therefore they are not presented at the lower
picture). Strong downward drift in the non-area-preserving Mapping 2 affects
significantly the calculation results in case of narrow stochastic region and/or low
collisions. Mapping 3 shows very similar behavior as reference one, except for
region with high ripple amplitude where the drift island width is comparable to or
exceeds the grid step size. The lower figure of 6(c) shows that distortion of the area
preserving leads to formation an "empty" zone above Z=5m. This zone could
prevent particles to be lost from inner plasma regions.

All 3 mappings use 2D cubic spline interpolation for the toroidal precession
frequency because of it's primary importance for correspondence of phase portrait in
the Mapping and Orbit Following calculations. Then the gain in CPU time when the
reference Mapping is replaced by simplest one (Mapping 3) is not so significant and
doesn't exceed 3 times. Because the total CPU time in the Hybrid code expenses in
the main deal with calculations with it's Orbit Following part, we employ the reference
scheme (9) in this code to avoid additional restrictions on it's applicability. The
reference Mapping spends 1s of CPU time for 5000 bounces on the IBM power
workstation.

In the present Mapping, collisional operator takes into account not only
scattering along magnetic surface as it was done in the previous works [2,4,5] but
neoclassical diffusion also. Benchmark calculations for collisional spreadi'ng of the
delta function particle source revealed fairly good agreement between OFMC and
Mapping simulations. Figure 7 shows an exampie of the time evolution of the
second moments, Spp =<(R-<R>)2>, Spz=<(R-<R>){(Z-<Z>)> and Szz=<(Z-
<Z>)2>, in (a) OFMC and (b} Mapping calculations. The example corresponds to
alpha particles with energy 3.52MeV in ITER EDA. lInitial pointis Ro = 8m, Zg=4m
with Te = Tj=15keV, ng=2.17x 1014cm-3 . The bounce time of a banana a particle
is 150 =3.84x 10-9s.
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4. Hybrid code

In the Hybrid code any orbit calculation starts with OFMC part. At every
reflection point (if any) applicability of the Mapping is checked and the calculation is
switched to the Mapping whenever it is possible. In the same way orbit following is
switched back to OFMC if the banana tip leaves from the Mapping validity region
(see Fig. 1(a)). For evaluation of new (R, Z) cocrdinates corresponded to last {p, A),
Newton iterations are used. We employ enhancement factor for collisions for
passing particles or exclude them from calculations assuming their perfect
confinement. The Mapping calculation is at least 50 times faster than OFMC. In the
Hybrid code total gain in CPU time depends on the position of the boundary limited
mapping application and usually is of factor 10+30 in comparison with pure OFMC

code.

5. Benchmark calculation of the NBI ion ripple losses in JT-60U

Benchmark calculations of ripple losses of NBI ions in JT60-U were carried
out to verify new Hybrid code. Previous OFMC and experimental data [12] were
used for comparison. Calculation parameters are summarized in Table 1. Ripple
contours are shown in Fig. 1(b). Quasi-perpendicular DO beams with energy Ep=90
keV were injected. The power fraction of the NBI source is P(Ep) : P(En/2) :P(Ep/3) =
0.78:0.15:0.07. The initial position, energy and pitch-angle of a beam ion were
generated by Monte-Carlo method according to experimental conditions. lonization
cross-section due to ion and electron impacts was taken from works [17, 18].

Calculation results are summarized in Table 2. Here for comparison previous
results of OFMC calculations and experiments [12] are also shown. 1t is seen that
new Hybrid code provides a very simitar resuits to pure OFMC calcutations. In Fig. 8
two dimensional distribution of power loss over the first wall is shown, where (a) the
present Hybrid code data is compared with (b) the previous OFMC data and (c)
experimental data [12]. The poloidal position number on the first wall is plotted at a
closed circle in Fig. 1(b). As it was shown in [12], the shift of the hot spot in
calculated and experimental data relates to the [E x B] drift. Energy spectrums of
lost particles are given by Fig. 9. The bottom solid line corresponds to ripple trapped
losses, and dotted one to banana losses. The upper thick line is the sum of both
loss channels. Spectrums and distribution of the heat load obtained with the Hybrid
code agree well with previous OFMC data.
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keV were injected. The power fraction of the NBI source is P(Ep) : P(En/2) :P(Ep/3) =
0.78:0.15:0.07. The initial position, energy and pitch-angle of a beam ion were
generated by Monte-Carlo method according to experimental conditions. lonization
cross-section due to ion and electron impacts was taken from works {17, 18].

Calculation results are summarized in Table 2. Here for comparison previous
results of OFMC calculations and experiments [12] are also shown. 1t is seen that
new Hybrid code provides a very similar results to pure OFMC calculations. in Fig. 8
two dimensional distribution of power loss over the first wall is shown, where (a) the
present Hybrid code data is compared with (b) the previous OFMC data and (c)
experimental data [12]. The poloidal position number on the first wall is plotted at a
closed circle in Fig. 1(b). As it was shown in [12], the shift of the hot spot in
calculated and experimental data relates to the {E x B ] drift. Energy spectrums of
lost particles are given by Fig. 9. The bottom solid line corresponds to ripple trapped
losses, and dotted one to banana losses. The upper thick line is the sum of both
loss channels. Spectrums and distribution of the heat load obtained with the Hybrid
code agree well with previous OFMC data.
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6. Summary

A new Mapping code to study ripple effects on the suprathermal ion
confinement in a tokamak with up-down asymmetric equilibrium has been
developed.

Poincare maps obtained in the Mapping and Orbit Following calculations
indicate that present Mapping scheme gives adequate description of noncoliisional
ion dynamics in a rippled magnetic field.

Bounce averaged collisional operator taking into account neoclassical
diffusion term extends the mapping applicability region. Comparison of the Mapping
results on Coulomb scattering and energy diffusion processes were found to be in a
good agreement with those of the OFMC code for ions in a wide energy range frem
1.5Tj to 4MeV.

A Hybrid code has been developed, which combines the Mapping with OFMC
calculations , and gives 10+30 times faster calculation than a pure OFMC code.

Benchmarking of the new code against previous OFMC and experimental
data for ripple losses of NBI ions in JT-60U showed that the Hybrid code provides
reliable results as for the total power loss fraction as well as for the distribution of the
heat load over the first wall.
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Table 1 Calculation parameters for NBI ion ripple losses in JT-60U

toroidal magnetic field Bi=41T at R=3.22m
plasma current Ip=4.0MA
plasma temperature To (%) = Teo [ (1-Ye) (1 - ¥1.7)0.7 + %o ]
Teg = 2.74 keV
Ye =0.02
Ti (%) =Tio [ (1-%) (1-¥1-3)0-8+ %]
Tip = 4.1 keV
| Y, =0.02
plasma density Ne (¥) = neg [ {(1-Tn) (1 - ¥1-3)0.754 1y ]
neg=5.3x 1019 m-3
Yn = 0.02
effective Z Zetf = 2.5 (uniform)
charge number of impurity Zimp =8 (oxygen)
number of TF coils N =18

Table 2 Comparison of the Hybrid code and OFMC data

| Particle Loss
particle loss fractions (%) Hybrid code OFMC
banana drift losses 18.27 18.69
ripple trapped losses 10.38 9.92
total losses 28.65 . 28.61
- Power Loss
power loss fractions (%) Hybrid code _ OFMC
banana drift losses 15.56 15.9
ripple trapped losses ' 8.73 8.0
total losses 24.29 23.9

Experimental result for the ripple trapped power loss fraction is 8.3 £ 1.4%
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Fig.2 Time steps of the Mapping for turning points of a banana particle
in a tokamak with toroidal field ripple.
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(Wb~ Wpo)/A¥p

(¥p - Who) /AYp
T T T H | T T T T

NO/T NO/T

Fig.3 Dependence of ripple produced radial displacement on the reflection phase
evaluated by the Orbit Following calculation. The displacement of the toroida!
momentum Y. is normalized by AY¥. given by ea. (8). !Initial peints of «
particles in ITER for the Orbit Following calculation were taken at the same
major radius R=9.5 m and for different value of Z: (a) Z=4.0m «a*=3 52,

(b) 7=4.64 m a*=1.34, and (c) Z=4.8 m, «*=1,01. Left figures correspond
to upward (co-directed with V&) jon drift, and right to dowrward (counter-
directed with V8 ) ion drift. The brake of the soiid curve in the left of
(¢) represents the particie trapping into the local well.
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(Vo - Wpo )/ A¥y,

0 0.2 0.4 0.6 0.8 1.0
time

Fig.4 Toroidal momentum Y. versus time along banana orbit. Vertical dotted line
corresponds to the reflection point. Radial displacement value is defined
as difference between averaged values (straight segments) of ¥, after and

before the reflection.
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Fig.9 Energy spectrums of the {ost particles. Bottom solid line corresponds to ripple
trapped losses, dotted one tc banana losses, and upper thick line is the total
loss spectrum.
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Appendix Monte-Carlo collisional operators

Collisional term in the drift kinetic equation can be represented as

df of 0 dgf
o - _{V2 aV[A f+VB(V)8—V]+D()ax(1 xz)—x . (A1)

where the first term related to the slowing down and energy diffusion and second
one to the pitch angle scattering of fast ions by the background plasma species.
Here

m 1 ‘Te keV !3j
= 3/2 204 -1 -~
3mTe (4 2TCm nez e ?‘.e) 0.0 )\,e Me 72 ne/1014

is a slowing down time (second), where m is the fast ion mass, mg the electron mass
and A the Coutomb logarism. In the slowing down and energy diffusion term, both

background electron and ion impacts are taken into account:
V3
A(V) = agi(u) + Va3

T 1 Te V3
B(V) =3¢, vz (& + Tyz)

where u is a ratio of the fast ion velocity to the background ion thermal velocity

_vYo
-—-—VVi-

For pitch angle scattering we keep ion contribution only;

D(V) = %%3 u Gi(u)

For Maxwellian plasma, coefficients depending on relative velocity can be
represented as follows

aj{u) = Ef(u)- ——=uexp(-u?) ,

4

-2
ciw) = + (- Ly e+ S 2Rl

ud

B
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At velocity V. power transfer from fast ions to electrons is equal to that to bulk
plasma ions

V

- 3 Meki g njZ2 ]113[2Te]1/2
¢ = VO a4 ke I Ng m] Mg !
where index j is referred to plasma ion species. The similar coefficient for pitch
angle scattering takes the form

1 3Vn Mel; 113 12Te 1172
Vp = g [ & —&H =¢
b VO 4 m}\.e Zeff.] [me ] 1

where the effective charge number is given as

v nZ?
Zett = n

Usually, when the loss of fusion « particles is studied, the asymptotic values
for scattering coefficients are used. Atu>>1, one canget aj(u)=1, B(V)=0, D(V)=
0.5(Vp/V)3. However for NBI ions with initial energy of order 70-100keV, the
energy and pitch angle diffusion rates are approximately 100 times higher than those
for alphas in spite of the slowing down time can be of the same order of magnitude.
Then in our code we employ most general exprassion for diffusion coefficients.

We derive the Monte-Carlo equivalent of the operator (A1) following to [i ] by
evaluating first and second central moments for velocity and pitch angle. In result
we have the recurrent formulas;

A
Ko = 10 (12D 5) + 5 \/ZD(V)(wxn"')ijl - (A2)
S s
At Vo3 P V3 At
Vast = Vo oz AN 55 (VBW) L+ By \/'ZB(V’T}'LE' (A3)

where At is a time step value, & is a Gaussian random number with zero mean and
unit dispersion. As it was shown in [i], the Gaussian random number can be
replaced by 1 random number with equal probability for pius and minus. Using of
Gaussian random number, however, makes possible to increase time step value,
and it is employed to the present mapping scheme.

To derive the scattering operator for the Mapping, one should average (A1)
over a bounce period; At =1,. We shall assume that the variation of the bulk plasma

[i] A.H.Boozer, G. Kuo-Petravic, Phys. Fluids 24 (1981) 851.
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parameters such as densities and temperatures for ail species can be neglected on

a banana width scale. This assumption is quite appropriate for NBI ions in JT-60U
as well as for fusion «-s in ITER and matches with general limits of present Mapping

scheme. Then the bounce-averaged energy diffusion operator for the Mapping is

exactly the same as eq. (A3).
We transform the pitch angle scattering term in (A1) to axisymmetric COM

variables and after averaging over bounce period we obtain

af 1 2 31
— - — = 1, < Ak —— Ad
at T ac PN T ack - A
e A vt (A5)
Ts ax 9%
< >=1— Tb----dt
Tb 0

where C1=p, Ca=v and tpis a bounce period. Evaluating first and second central
momentums for p and v one can get Monte-Carlo equivalent for (Ad4) ©

Vit =vn+é-t- [é~a~(rb<AW>) +—a—%(zb<AVP>)] +&,V2<AV > At , (AB)
v

s

d 2 At
= =[=( pp = (1, < AVP [_2At  _awp
Pnei=Pnt Ts[ ap b<A >)+a (b<A >)]+Eav <App>< >

2 At w PP . _ vp 2
+§p\/<AW>\/<A S<APP 5 _c AP 2 (A7)

Using the same assumptions as for energy diffusion operator, we can remove all
profile dependent variables out of the integral sign and represent diffusion

coefficients in {A6) and (A7) as follows;

Th<APP> =%M{PL Ve }2J 6t (1-22) (52 )2
S

2RX B
years - B0 oy (G2 j dt (1-22) (——gz2) (A8)

Ts

T 2 (f-42
tb<AW>=£(!)' bdt"'x'—(z—X)
T 0 B
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All coefficients Allin (A8) can be written with multiplier tp. Since At/1p =1, it allows
to exclude time from the Mapping calculation if stationary problem is considered.

Usually neoclassical terms in (A6) and (A7) are omitted due to more than
order of magnitude difference in diffusion rates along and across magnetic surfaces
and only AVY term was taken into account. In most cases such approach doesn't
affect much the total power loss fraction. However the distribution of lost power over
the first wall, especially due to losses of ripple trapped particles, is very sensitive to
the ripple-enhanced collisional outward flux over the ripple well boundary. Therefore
the neoclassical terms should be employed in calculations for evaluation of the heat
load. .

Note that all integrals in (A8) can be represented in the form Ii{V) = g(V)
I{Vg). For coefficients APP and AYY we have g(V) = 1/V according to 1, ~ 1/V. For
the cross term AP, we have g(V) = 1, because a trpped particle changes its sign of x

T F
during a bounce time and IVP(V) = J-O ® dt Fy N:jj—p Poanana T ~ V° (Pbanana ~ V is

the banana width). We checked these scalings numerically and have got fairly good
agreement for all energy range from ~10 keV {beam ions) to ~5MeV (alphas). It
makes it possible to avoid 3D interpolations for scattering coefficients.

Then finally we use in the Mapping calculation operators (A3), (A6} and (A7),
where all coefficients are precalculated at initial energy at the grid points. Two-
dimensional cubic spline interpolations for spatial variables and explicit
dependencies on energy are used for the evaluation of the coefficients at any point
(p, A, V).



