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A systematic analysis of nuclear structure and neutron interaction data for 2C was carried out in
the framework of the soft-rotator model. The model was firstly applied to analyze the low-lying collec-
tive level strucure of the ?C nucleus, which turned out to be very successful. The intrinsic wave
function obtained in such an analysis was then used to construct the coupling potentials in the coupled-
channels formalism to calculate the neutron total and scattering cross sections. The quadrupole de-
formation parameter obtained in the present analysis was 0.164, which was much smaller in the
absolute sense than the value used in the symmetric-rotator, vibrator model employed frequently in
the past, i.e., =0.6. When averaged over the g -vibration function, however, the present result yields
an effective quadrupole strength of about the same scale as the previous studies due to softness of the
12l wave function with respect to 3, degree of freedom. The soft-rotator model was found to be very
successful in reproducing both the structure and neutron scatiering data consistently for the first

time in this mass region.
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1. Introduction

The '2C nucleus has attracted a good deal of attentions from both the fundamental physics and
applications points of view. On the fundamental side, the collective nature of 123 has heen offering a
very good tests for nuclear structure and reaction theories. The 12C nucleus shows both rotational and
vibrational characters in the low-lying level scheme, although such a structure is not as prominent as
the case for heavier nuclei.

The excited states of 12C have been discussed by wide variety of models in previous works such as the
shell-model[1], a-cluster model[2] and by the resonating group method[3]. On the other hand, neutron
scattering data have been studied mostly by the symmetric-rotator, vibrator model in the past {see for
example the work by Meigooni et al.[4] and Olsson et al.[5]). The absolute value of the quadrupole
deformation parameter found in the analysis of scattering data was as large as 0.6, which is beyond
the values that have been found recently in the physics of ”super” deformed nucleus. It is therefore
a matter of big interest whether or not the frequently employed model is applicable in such a very
deformed region. Anyway, until now, no consistent attempt has been given, to the authors’ knowledge,
to describe the low-lying collective level structure and neutron scattering data in a unified framework.

From the applications point of view, the neutron scattering from carbon is very important to assess the
neutron-induced absorbed dose in tissue because carbon is one of the four main elements of human tissue.
Furthermore, the neutron-carbon interaction is crucially important to evaluate correctly respoonces of
many kinds of neutron detectors since carbon is very often the major constituent of such devices.

The purpose of this work is to give a consistent description of the collective nuclear structure and
neutron scattering properties of 2C in the framework of the soft-rotator model. This model was
developed as aﬁ extention of the Davydov-Chaban model[8] which takes account of the J-vibration in
non-axial soft rotational nuclei. Here, the word "soft” denotes, for example, a possibility of stretching
during the rotation. The present version of the soft-rotator model includes the non-axial quadrupoe,
octupole and hexadecapole deformations, and the Fa-, 83- and - vibrations[9, 10, 11, 12, 13]. This
model has been extensively applied for similar analyses in heavier mass region. However, this theory
has never before been employed for the analysis of the mass region as light as carbon.

We have performed an analysis of nuclear level scheme of ¥2C in terms of the soft-rotator model,
which determined the intrinsic carbon wave function. Nextly, this wave function was used to construct
the coupling potentials in the coupled-channels formalism in an analysis of neutron scattering data
in the energy region of 20 to 40 MeV. We have selected this energy region partly because there is a
prominent resonance structure below this energy region which makes the concept of the optical model
rather ambiguous, and partly because there is not much neutron scattering data which covers a wide
angular region above this energy range.

Details of the soft-rotator model analysis is explained in the following sections. Then, some discussions

on the results are given, which is followed by the conclusion.
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2. Analysis of the collective nuclear structure of 12¢

We assume that excited states observed in even-even non-spherical nuclei can be described as a
combination of rotation, S-quadrupole and octupole vibrations, and v-quadrupole vibration. Instant

nuclear shapes that correspond to such excitations can be presented [14, 15] in a body fixed system as

R(af! {P’) 1+ Zﬂz\pyz\,u

Au

- R {1 15 [cosmo(e’, )+ iy (a8 ) + Yaa(0 qo'))]

, 1 't root
+ s [cosnYan @) + s s (a0, 61) + %520 ))]
+baYao(® @) + D bau (Yau(8',9") + 1/4"#(8’:‘1\9'))} . (1)
n=2,4

To simplify the calculations, we assume that internal octupole variables satisfy additional conditions
bsr1 = bxz = 0, bz = b3, (2)

which are admissible in case for first excited states[16].

The Hamiltonian H of the soft-rotator model consists of the kinetic energy terms for the rotation of the
non-axial nuclei with quadrupole, octupole and hexadecapole deformations, the 32-, v-quadrupole and
octupole vibrations, and the vibrational potentials ignoring a coupling between the 3 vibration modes.
Considering nuclei that are rigid with respect to ocutupole transverse vibrations, the Hamiltonian can

be written in the form[9]

N X B2 . 12
H = o5 {Tﬁs ﬁlz }+ 51t op Taa+ﬂ2°V(7)+V(ﬁ2)+V(ﬂ3) 3)
where
poon L@ (g0
Tﬂ‘;g - gaﬁQ (6‘2 aﬂQ) s (4&)
o 1 0 3}
L= T sin3ydy ( in 376 ) _ (4b)
: 1 8
Tgy, = - 7 95, (ﬁ3 a5 ) (4c)

The symbol T denotes the operator of deformed nuclear rotational energy expressed in terms of the

angular momentum operator /; and principal moments of inertia,

3 9 3
Eoy ot
=27 (5)
2 (3
B R NI i
Here .]iw stands for the principal moments of inertia in the direction of i-th axis in the body-fixed system
due to quadrupole, octupole and hexadecapole deformations depending on A=2, 3 and 4, respectively.

The symboi I; denotes the projection of the angular-momentum operator on the i-th axis of the body-

fixed coordinate, fz0 denotes the quadrupole equilibrium deformation parameter at the ground state

_2_
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(G.S.), and B, the mass parameter for multipolarity of A. The eigenfunctions ¥ of operator (3) are

defined in the space of six dynamical variables: 0 < 32 < 00, —o¢ < 5 < 00, L M 0t <
2, 0 < 8, < 7 and 0 < 3 < 2w, with the volume element dr = 8553 sin 37[dﬁ2d,83d'yd91 sin 8adfodfy-
Here 8% = 3_ .83, is the measure of nucleus deformation with multipolarity A.

For nuclei of shape determined by Eq. (1), J,-(A) are given by

JB = 4By sin®ly — (2/3)i] (6a)
-]1(3) = 4B3f} (1 cos® i + \/ﬁsin% + 1) . {6b)
1
Jé?’) = 4B3/2 ( cos®n — gsm% + 1) (6c)
JP = 4Byfisinn, (64)
5 3
J1(4) = 4B4 ('Z-b + 4b42 + bi4 + 5\/]?66401)42 + ﬁb42b44) ] (66)
5
IV = 4B, (§b§0 + 4b2y + by — %\/ﬁbmm - ﬁb4zb44) (61)
I = 4B, (263, + 8bL,), (6g)
with by, that can be presented [17]
b = Bi(v/T/12cosds + /5/12sindy cos4) (7a)
bia = B4/ 1/25ind,sin vy, (7b)
by = PB4/1/2 (\/5/12c0554 - \/7/12sin64c03fy4) ) (7c)

with 7, §; and 4 -parameters determining non-axiality of ocutupole and hexadegcapole deformations.

For the sake of convenience let’s rewrite 7.

where jz-{)‘) = Ji()‘)/‘lBAB,%: Gx2

(8) around the minima of the potential energy of quadrupole and octupole vibrations, i.e., Bag, Yo and

I2
+ a 231

(4}’

- 4B2'62 Z j2) '+ g Ji

2 =t Ji

Bao:
. Iz
T p—
" 43253 Zl (2} + 0323{ ; + a42j,-(4) Bo=Ag0
ﬁs—g:oso
L9 13
)+ tl32], + Q42); A2=P20
Az =030
d 12 9 [53 FBx  fa—Pao
@320 -
Bazz | 1% +aq 2353 4 425" | | 222820 + 830 Bao
5;:1;'20

(8)

= (Bx/Ba2)(Br/B2)?. To solve the Schrdinger equation we expand Eq.
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a f?

k3

i

2d420 [mﬁ;&g] F 3, (9)
20

Ba=p20
T=T0
B83=A30

where axge = {Ba/B2){(Br0/820)? and £ at B3p denotes that we bear in mind that even-even octupole
deformed nuclei must have two minima =830 of the potential energy that correspond to two symmetric
octupole shapes. These nuclei are characterized by the double degeneration of levels, which is washed
out as a result of tunneling transition through the barrier separating those nuclear shapes with opposite
values of octupole deformation [18, 19].

In the zero-order approximation the operator of nuclear rotation energy is identical to that T, of a
nucleus having quadrupole deformation, provided that the principal moments of inertia are redefined
reflecting account of octupole and hexadecapole deformation. Let us change variable 83 = fe and
assume that in the new variables, the potential energy of octupole vibrations assumes the form

2 2
Vifs) + 82253 - 23323520 (¥ 60)2. 1o

Owing to centrifugal forces caused by nuclear rotation, equilibrium octupole deformations are trans-

formed due to the 83 = B¢ in direct proportion with the increase of Ba. It is shown in [20] that, along
with the choice of potential in the form of Eq. (10), this enables us to reproduce various patterns of
level-energy intervals observed experimentally for positive and negative parity bands of even-even nuclei.

Let us solve the Schridinger equation in the zero-order approximation for the expansion of the

rotational-energy operator T,. Assuming that ¥ = (3, ? "3/ 2) /+/sin 3yu, we arrive at

KO R Pu K Pu W li 1 .
2B; 82 2B3f% 02 2B 0y 2Baf3i 4 = 3(2) +a 23( )+ 1142.11-(4) 52=Fao
3;;;30
2 4 2 22
A h 91+sin 37]
v 2y By - 9 = Eu. 11
(432) + 4ﬂ2 (6 F EO) + % (’7) 2B2}9§ 4 Sin2 37 u u ( )

The quadrupole and octupole variables in (11) are now separated, and the function u can be factorized.

Thus we have

U = lbi(ﬁzg'h@)‘ﬂfsg (E)) (12)
where
GE (€)= 2 [y (1) Xng, (7)) (13)
nag \/5 a3 ngg\le 1
TE = eFe. (14)
Here, X, (7 *) are oscillator functions that satisfy the equation
h: 92 h*
Bt {eF €0)? Xng, ('rf) = hwn+ 1/2))(nﬁs (‘rf), (15)

" 2B, Be?
where the frequency is given by w, = h/(Bau?), ng, = 0,1,2,--- and ¢n,, is the normalization constant.

The superscript + on the eigenfunctions specifies their symmetry under the transformation €y — —¢g.

..__4_
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Nuclear states of positive parity are described by symmetric combinations of the oscillator functions,
while states of negative parity are represented by antisymmetric combinations.

The function ¥* (82, v, ©) satisfies the equation

R ORUE B Pyr A1 2 12 o
282 66% 2B, 372 2324 2)+0, 2_? +a42j£4) By=8g90
E;;ggo
B2 91+sin’3
V() + BVel) — s IR L g -] u* = o, (16)
2By 4 sin® 3y

where Efﬁa = hw(ng, + 1/2) F b, is the energy of octupole longitudinal surface vibrations, and 24y, is
the energy splitting of a doubly degenerate level due to the tunneling effect.

The only difference between equation (16) and the analogous equation (considered in detail in [9]) for
vibrational and rotational state of positive parity in non-axial deformed even-even nuclei is due to the
necessity of taking into account the dependence of the eigenfunctions of the rotation operator 7, on the

parity of the states under consideration. If K is even (as in our case), these functions have the form

25,,(0) = Y |[IMK, +) A, (17)
K>0
where
UMK, +) = ((2I +1)/(167%(1 + xo)))*/? [Dhx(®) £ (-1) D3k (0)], (18)

the symbol D{,. ;(©) being the rotation function. In even-even nuclei, rotational bands formed by
positive parity levels are described by the wave functions |[TM K, +) of a rigid rotator, which transform
according to the irreducible representation A of the Dy group. Bands formed by negative-parity levels
with even K are described by the functions |[TM K, —} that realize the irreducible representation By of
the same group {20].

Using the results from [9], we can obtain the eigenvalues of the nuclear Hamiltonian predicting the
energies of rotational-vibrational states (with allowance for the quadrupole and octupole deformability

of an even-even nucleus in the zero-order approximation of 7, expansion) in the form

1/2
+
Elrn.fn,gan,gz = fuwo {(VITn’Y"ﬂsnﬁz + 1/2) x (4 3/ I-rn.,nga)
1 ﬂgzo 2 + + +
’ 5-}3—1;: S o Wny V0 ) R EE g, o
- 2
1 4 2
t— e [‘“2""(”"1 —vo,) + €1, +emy, ~ “33;3] , (19)
2 Irnyngg Hag 3
where efﬂs = %’}E#ﬁ , and ij ng, 18 & TOOt Of the equation
PE 1) P 2 Fred —e (20)
IT"T".@S - IT"’*"ES ﬂ'ﬁm ”1 (V-n_.r VO-,) + EIT + enﬁS 6053 1
]

where fuwg, ,ugzlo, i, and g are the model parameters to be adjusted to reproduce experimentally-
known band structures. The fuw, parameter denotes an overall scale factor of the level energies, fig,,

i, and g, are related with the elasticity constants of 82—, v— and octupole vibrations, respectively,

_5_
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and 7o is the equilibrium point of the y—vibration. Other quantities in the above equation are to be

determined in the following way.

The quantity ef,:r is the eigenvalues of the asymmetric-rotator Hamiltonian[21, 22) with principal

moments of inertia redefined by equation (), which is written by
T"@}*:MT = Elj':r(I)IiMT‘ (21)

The quantity »,., is determined by a system of the following two equations corresponding to the boundary

conditions for y-vibrations, and n. is the number of the solution as v, is growing.

Vy —ﬁ (En—'ro)] =20

3
g , (22)
7
o |—— {7 1} - =0
o, | =3 (504 1) 70)]
where v,,,_(y) denotes a solution of an oscillator equation
d? 1y
Bl VR TR =0 23
|:dy2+y-y+2 4:|’Un-r(y) ( )
being a linear combination of two standard non-linear solutions
Vi, ) = Cny [Du, () + 00, Vi, @) (24)

with D, -well known Weber function (see [23]). V;tfnqnasnag is determined be boundary conditions

(22), but in this case, one of the boundaries is at infinity, and this reduces the possible solution of

equation (23)
vw(y) = eDu(y); {25)

+ . . .
so that vy, .. o, 18 determined by equation

+
_\/iph-n.,ngs (4_ i3 )} -0 (26)

D :

¥r
fn7ﬂ33n62

520

Irnyngg

At last we can write the nuclear wave function

2 —3/2
e = (CF C"%MZUMK +) A7
Trniyng;ngy . Itnyng;ng, \/ﬁ \/S_I_m = ’ IK
V2 +
x D, x B 1
frmndan ey [’820“}#771711;3371,32 ( 217“’7'%3)
V2 -
XUn., [—(7—70) [Xmay (TF) % Xy (7)) (27)
Hyg
with
Bring, = Boo P g, (28)

which denotes the equilibrium deformation of the stretched rotating nucleus for state Irn,n,, and

2 + + _F
1 1 3 [E; {vm, — Voﬂ,) tEr +Eny, 5053] 50
+4 ! + P:t ? ( )
Hﬁ?”"v"aa H 3.0 Itnymg,
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with pg,, o being the nucleus softness for this state. The correction AE A Jmagney 1O the energy of

rotational-vibrational states due to linear terms of expansion (9) can be easily calculated by perturbation
theory. If we consider ng, = 0 ( as states with ng, > 1 lie above the experimentally resolved) this
correction is given by

2 72
+ . Ha BE. 2 I
AEITnTnﬁa {(=0ng, huvg 22 ((PIMT(B)‘ § 6&32 [ (2) + a3 )] |¢1M1~(6)>

J '+ as 23(

Az =830
¥=70
A3=Ps0

2 2
g0/ P e fte erfc{en/pe) | ,+ 2 + 2
x + - J 1 - J 1
{[1 /vt (EU\E o) T Txemand] Timrmsine V) 1333323253( V)
3

Irn.,usangz

82,1, (8)) X TErgyns, (W= D] 1 (30)

72
_=s & -
154 PFuer( )' Z Fam [ T 1 25 i .(4)]

¥ + a42.?{ B?rifgg Itnytpgang,
Bz=~F30
where
" V2
P U0 = [ 10Dz [#i—— (v —pﬁws)}
Hetat ";3 ﬁ;; 1T A3 B #Iﬂ'nvnﬂa
2
Dy |7 i'\/_—”( ~ Pt ) dy
I'r n"fnﬁanﬂz “I""’n;”;gs a3
-1/2
oo
2 V2 =
X / Dvi T E (y PIT‘nTnﬁ-a) dy
0 iTnymgangy JU’ITn,,.nﬂa
-1/2
V2
/ D2 ‘ TE PI’T ning dy’ ) (31)
I'r’n -n" "52 #I‘T'”ir"'ﬁs B3

The formulae explained above were applied for a description of the low-lying collective levels of 2C
to get the nuclear Hamiltonian parameters. The experimental level scheme was taken from [26] and is
shown in Fig. 1. Rotational bands in the case of 12() gre not very prominent. Nevertheless we could fix
two lower levels of ground state rotational band, 0% (0.0 MeV) and 27 (4.44 MeV), and 3% (20.56 MeV)
to be the level of K ~ 2 band. This allowed us to obtain the values for uwo, Ugs0 Y0 which showed
that 2+, K = 2 can be assigned to the experimentally measured level with energy 17.6 MeV, the spin
of which is not measured. The calculated energy is 17.55 MeV. The experimentally measured 0t (7.65
MeV) level in our scheme appears to be a band head K = 0, ng, = 1, with predicted energy of 7.72
MeV. The 41 ground state rotational band level is suggested to be at 13.7 MeV, while the experimental
energy is 14.08 MeV. A level with spin 2+, K =0 and ng, = 1 is predicted by our model with energy
11.94 MeV; we think it can be attributed to one of the experimentally measured levels with energies
16.11 and 15.4 MeV, having no spin assignment, as we see no other assignment possibility. One can see
that our model permits the description of all the experimentally measured levels of positive parity up
to 20 MeV, except those 1+, which are not considered (are not of collective nature). We also included
3~ (9.64 MeV) in our consideration. The calculated energy is adjusted by varying the parity energy
splitting parameter d,,, . Comparison of calculated and experimental level scheme is presented in Fig.

1. The resulting nuclear Hamiltonian parameters are shown in Table 1.

_7_
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3. Analysis of neutron interaction data

The soft-rotator wave functions determined in the analysis of low-lying level structure as described
in the previous section can be utilized as a base for building a coupling scheme for a coupled-channels
calculation to describe the nucleon-nucleus interaction for *2C. As usualy, non-spherical optical potential

is taken in a standard form

. d A\, 1d L
V{r) = -Vrfr(r)—1 4WDGD6§fD(T) + WVfV(T)J + (L:C“) SO;E;fao(’")aLa (32)
with the form factors
fi = [L+exp(r—R:)/a:) ', i=RV,D,s0, (33)

whose radii are given by the expression (1). The symbols ¢ = R,V, D and so denote the real volume,
imaginary volume, imaginary surface and real spin-orbit potential, respectively. Each of the potential is
expanded in a Taylor series considering Az, to be a small parameter following the recipes of Tamura[24]
for vibrational nuclei, and taking account of the nuclear shape determined by Eq. {1}. More spesifically,
writing Eq. (1) as R = Ry + 6R where R = Ry} Bx.Ya,, the potential can be expanded in a
straight-forward manner as

SR!
o

S oV
3R

t=1

V(R) = V(R) + (34)

R=Hg
The coupling potential Vioupre i the matrix element of the second term of this expansion between 2

different soft-rotator model states, and is written in the form

mazr t
Viowpie = 3 38578209 3 QLF v, ). (35)
=1 n=0 Au

«LL'(t)

s -operator reflects the non-axiality of

Here, v(®)(r) are the optical potential derivatives, and the @
the nucleaus and the transformation to the space fixed system. We have ignored a term like 3203034
because usually such a cross term is not significant. The maz in the expanstion was taken to be 4.
The difference between the calculated coupling potential (and thus the coupling strength) in our model
and the rigid rotator approach can be understood as following. Powers of Br and functions of v in
Q;il’r(t) are averaged over wave functions of appropriate initial |¢) and final |f) states to obtain the
coupling. Usually {(i|8%|f)/8: is grater than unity and the enhancement is growing for softer nuclei.
As (i}B%|f) is not equal to {i|37|f)* and more {i|8;1f) values differ for different i and f, models using
8L -constant or effective in coupling schemes calculations do not take into account redistributions of
coupling strength for different channels predicted by our model, and describe the dynamic of interaction
with the simplification described.

We have included in our coupled-channels (CC) analysis the data at 28.2 MeV from JAERI[25], and
other recent neutron scattering data above 20 MeV from Ohio [4], Uppsala [5] and Michigan State
Universities [6]. More detailed information about the data involved in the analysis can be found in
Table 2.

One can see that we did not include available data with neutron interaction energies below 20 MeV.

For such energies, energy loss even for the first 2+ (4.44 MeV) excited level decreases the neutron energy

_8_
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in the outgoing scattering channels to the region with prominent resonance structure in the total cross
section and can influence the results of the analysis. We assumed that the interaction of neutrons with
12(1 proceeds only via direct mechanism for the chosen energy region. Five levels (0%, 2%, 05, 37, 27)
coupling scheme was used in CC calculations, as preliminary numerical results showed that the inclusion
of additional levels influences the results by less than experimental errors of the data involved. The
coupling scheme appearing and used in our calculation is shown on Fig. 2. We must emphasize that
various bands are coupled not only with the ground state band, but also with each other. The significant
feature of this scheme is the natural existence of coupling between the levels of different bands without
additional assumptions. Such a feature is absent in most of the previous analyses[4, 3].
The optical potential parameters were searched for by minimizing the quantity x2, defined by

‘ 2
X2 — 1 ZN: ‘1_ & (doij/dwcalc - do’ij/d‘ﬂfemp 2 + i dgtotcuii - do‘tot“a,‘. (36)
N+M | H K =1 Avi;[dwezp AGtot, pa, '

i=1

where N number of experimental scattering data sets, K; number of angular points in each data set, M
number of energies, for which experimental total cross section data[27] is involved. The evaluated total
cross section was fitted to the experimental value to improve the optical parameter search. The optical
potential parameters allowing the best fit of experimental data are presented in Table 3.

Within the optical parameter search, the parameters of the nuclear Hamiltonian were fixed except for
tiy, which was adjusted to fit the scattering data, since it was impossible to determine this parameter
by analyzing the level scheme, as no levels with n., > 1 are observed in **C.

One can see that total cross-section of 12C in the energy region 15-55 MeV (Fig. 3) and experimental
scattering data (Fig. 4-7) are described reasonably well by our model. We think that angular distribu-
tions of neutrons scattered by 05 (7.65 MeV) and 3~ (9.64 MeV) levels are much better described than
by Meigooni et al.[4] This proves that our nuclear Hamiltorian wave functions for these states are more

reliable than the simpler model employed frequently.

4. Analysis of B(E2) data

The ~-transition probability B(EX) of soft rotator model can also be calculated. For instance B(E2)
calculated in homogeneously charged deformed ellipsoid approximation accounting linear terms of inner

bz, dynamic variables (higher terms can be taken into consideration, see [21]) is

B(E2; Itn,ng,ng, = I'T'ningng,) = 58 Z AT Al x 7
' 167 xxrs0 [(L+k)(1+ Sox)]

X [(nﬂ cosy|n.,) [(I’QK’O[IK) + (=D (12 - KO[IK)JKO] S
+\,‘ 1/2<n7| Sinﬂn;) [(I’2Kr2|IK)§K'KI+2 + (I’QKI - 21]1{)61\’,}'{!_2

'e'nlal n
T8

3 Pz

2
+(—1)I'(I'2—K’2|IK)5K,2-KfH}2 [J — [y}] . 37

One can see that comparing with the rigid model our B(E?2) is enhanced by the factor J % the square of

the already discussed integral over 3; variable guiding the enhancement of coupling strength. Asin case
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in the outgoing scattering channels to the region with prominent resonance structure in the total cross
section and can influence the results of the analysis. We assumed that the interaction of neutrons with
12(7 proceeds only via direct mechanism for the chosen energy region. Five levels (0%, 2%, 05, 37, 27)
coupling scheme was used in CC calculations, as preliminary numerical results showed that the inclusion
of additional levels influences the results by less than experimental errors of the data involved. The
coupling scheme appearing and used in our calculation is shown on Fig. 2. We must emphasize that
various bands are coupled not only with the ground state band, but also with each other. The significant
feature of this scheme is the natural existence of coupling between the levels of different bands without
additional assumptions. Such a feature is absent in most of the previous analyses[4, 5].
The optical potential parameters were searched for by minimizing the quantity x2, defined by

N K 2 M 2
1 1 = {doy;/dweare — G035 f s dosot. ;. — d0tot, e,
2 — - ) c 7 r i i
R = D e DY ( At 9

j=1 i=1

where N number of experimental scattering data sets, K; number of angular points in each data set, M
number of energies, for which experimental total cross section data[27] is involved. The evaluated total
cross section was fitted to the experimental value to improve the optical parameter search. The optical
potential parameters allowing the best fit of experimental data are presented in Table 3.

Within the optical parameter search, the parameters of the nuclear Hamiltonian were fixed except for
tiy, which was adjusted to fit the scattering data, since it was impossible to determine this parameter
by analyzing the level scheme, as no levels with n, > 1 are observed in 120,

One can see that total cross-section of 12C in the energy region 15-55 MeV (Fig. 3) and experimental
scattering data (Fig. 4-7) are described reasonably well by our model. We think that angular distribu-
tions of neutrons scattered by 07 (7.65 MeV) and 3~ (9.64 MeV) levels are much better described than
by Meigooni et al.[4] This proves that our nuclear Hamiltonian wave functions for these states are more

reliable than the simpler model employed frequently.

4. Analysis of B(E2) data

The ~-transition probability B(EX) of soft rotator model can also be calculated. For instance B{E2)
calculated in homogeneously charged deformed ellipsoid approximation accounting linear terms of inner

b2, dynamic variables (higher terms can be taken into consideration, see [21]) is

503 Ajk ATk
B(E2; Itnyng,ng, = I'f'nlngng) = —

Y 3 2 33402 167T K]}(ZZD [(1+(50K)(1+60K’)11/2

x [(n.,| cos y[n) [{1’2}{'0;11{) y (-0~ KO[IK)&KO] Sk K

/1] 2y | sinnt ) [(T'2K 2 TK )5 gz + (12K — 21K )dxc k2

2
¥ i 2 .
+{=1)T (12 _K’2|IK)5K,%K=H} [J Iraqngyngy [y]] . (37)
i’ r'n,"[ “.’ea n;32
One can see that comparing with the rigid model our B(E2) is enhanced by the factor J? the square of

the already discussed integral over 32 variable guiding the enhancement of coupling strength. As in case
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of coupling probabilities of y-transition from and to different levels are enhanced differently coupling
with the rigid rotator model.

We compared the B(E2) transition probability with the experimental data. Our model predicts
0.00418 e2b? while the experimental value is 0.0041e?b?(28]. Considering the fact that no parameter

was adjusted to calculate this quantity, the agreement can be marked to be fantstic.

5. Discussion

According to the microscopic 3 cluster model[2, 3], the 07, 2] (4.44MeV) and 4] (14.08MeV) are
classified to form a ground state rotational band with a compact 3a-cluster configurations around an
equilateral triangle. Although the present model does not take account of such o-cluster structure, the
classification into a rotational band is also achieved in our model. The energy of the 4] state is slightly
less than the one expected from the rigid rotor model if the moment of inertia is calculated according
to the energy of the 2] state. The soft-rotator model accounts for such a stretching effect, as shown in
Fig. 1. Firthermore, the a cluster model suggest a strong K-mixing in the 20 and 37 states, which is
in good agreement with the present result because of the large o value.

In previous works{4, 5], the symmetric rotational model was employed to analyze the neutron scatter-
ing data, and 2C was assumed to have a largé oblate deformation (3; = -0.6), which is in good accord
with the microscopic a cluster model[3]. On the other hand, there is no symmetry axis in the present
tri-axial model. Indeed, the non-axiality parameter has a large value {(yp = 0.3210) compared with the
case for actinide, so the axial symmetry is broken to a large extent in '?C. Therefore, the present model
gives a different picture of 12C nucleus compared with the symmetric rotational model, namely, it has
a smaller, prolate, quadrupole deformation as the equilibrium shape of the ground state. We have tried
to find a possibility of getting a negative quadrupole deformation by changing the ~+p parameter. We
could obtain as good a fit as the result obtained by using the parameters explained previously to the
level structure data with a value of 4o = 2.82, which gives a negative quadrupole deformation in our
model through the factor 35 cos(). We could also get a good fit to the elastic and inelastic scattering
to the first excited 2+ state with this 7o value as the one with the previous parameter set. However,
the fit to the other states became drastically worse, an example of such is shown in Fig. 7 as the broken
curves for the 3~ level. In our model, the sign of the quadrupole deformation has a big impact on the
inelastic scattering to, e.g., the octupole state, through the coupling term (3233 which is absent in all of
the previous analyses[4, 5]. Qur model, which includes all of these cross-band coupling terms explicitely,
strongly suggests that the quadrupole deformation must be positive. We understand that the positive
quadrupole deformation is in contracdition to the results of microscopic RGM calculation[3]. On the
other hand, the prolate deformation obtained in our analysis is in good accord with the concept of the
*linear-chain structure” of 3 a particles proposed for the excited states of 12( long age by Morinagal29}.
Possibility of such a shape is also mentioned by Uegaki et al.[2] Our model (and all of the previous

analyses[4, 5]) does not allow 2C nucleus to change from the oblate to prolate deformation as the
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of coupling probabilities of ~-transition from and to different levels are enhanced differently coupling
with the rigid rotator model.

We compared the B(E2) transition probability with the experimental data. Our model predicts
0.00418 e?b? while the experimental value is 0.0041e®b?(28]. Considering the fact that no parameter

was adjusted to calculate this quantity, the agreement can be marked to be fantstic.

5. Discussion

According to the microscopic 3a cluster model(2, 3], the 07, 2] (4.44MeV) and 47 (14.08MeV) are
classified to form a ground state rotational band with a compact 3a-cluster configurations around an
equilateral triangle. Although the present model does not take account of such o-cluster structure, the
classification into a rotational band is also achieved in our model. The energy of the 4} state is slightly
less than the one expected from the rigid rotor model if the moment of inertia is calculated according
to the energy of the 27 state. The soft-rotator model accounts for such a stretching effect, as shown in
Fig. 1. Firthermore, the a cluster model suggest a strong K-mixing in the 21 and 3T states, which is
in good agreement with the present result because of the large v value.

In previous works{4, 5], the symmetric rotational model was exhployed to analyze the neutron scatter-
ing data, and 2C was assumed to have a largé oblate deformation (f; = -0.6), which is in good accord
with the microscopic @ cluster model[3]. On the other hand, there is no symmetry axis in the present
tri-axial model. Indeed, the non-axiality parameter has a large value (o = 0.3210) compared with the
case for actinide, so the axial symmetry is broken to a large extent in '*C. Therefore, the present model
gives a different picture of 12C nucleus compared with the symmetric rotational model, namely, it has
a smaller, prolate, quadrupole deformation as the equilibrium shape of the ground state. We have tried
to find a possibility of getting a negative quadrupole deformation by changing the ~y parameter. We
could obtain as good a fit as the result obtained by using the parameters explained previously to the
level structure data with a value of 45 = 2.82, which gives a negative quadrupole deformation in our
model through the factor 35 cos{). We could also get a good fit to the elastic and inelastic scattering
to the first excited 2 state with this 7o value as the one with the previous parameter set. However,
the it to the other states became drastically worse, an example of such is shown in Fig. 7 as the broken
curves for the 3~ level. In our model, the sign of the quadrupole deformation has a big impact on the
inelastic scattering to, e.g., the octupole state, through the coupling term (233 which is absent in all of
the previous analyses[4, 5]. Qur model, which includes all of these cross-band coupling terms explicitely,
strongly suggests that the quadrupole deformation must be positive. We understand that the positive
quadrupole deformation is in contracdition to the results of microscopic RGM calculation[3]. On the
other hand, the prolate deformation obtained in our analysis is in good accord with the concept of the
*linear-chain structure” of 3 a particles proposed for the excited states of 12( long ago by Morinagal29].
Possibility of such a shape is also mentioned by Uegaki et al.[2] Our model (and all of the previous

analyses[4, 5]) does not allow 2C nucleus to change from the oblate to prolate deformation as the
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excitation energy changes. Therefore, the prolate deformation we obtained presently may indicate that
12(3 nucleus is represented, when averaged over many states, by a prolate shape inspite of the proposed
compact equilateral triangular shape for the ground state. Furthermore, an analysis of the spin-flip
probability in proton inelastic scttering, which is sensitive to the sign of the quadrupole deformation,
is not necessariry consistent with the oblate deformation (see Fig. 2 of Ref. [30]). Anyway, we must
conclude that a small prolate quadruple deformation is required as the equilibrium shape of the ground
state of 12C in the context of the soft-rotator model to describe the level structure, B(E2) and neutron
interaction data consistently in a unified framwork.

We discuss in detail our calculations of scattering data for 4% (14.08 MeV) level. This level was
included in our scheme, additional coupling associated with this level is shown on Fig. 2 by thin lines.
The result of calculations is in Fig. 8. They are by 25% higher than those calculations of [4] and describe
experimental data very well. Now we are coming to the main point of our discussion - the advantage of
our model.

We can compare the absolute value of 82 = 0.6 [4] with our (0%]82]2%) = 0.57. The results almost
coincide for the 2+ (4.44 MeV) state, but if we compare % and (0"|35|47) that mainly determine
one step excitation of the 4% state, our value is approximately 30% higher and (0F|B2]2F) (2752147
determining two step excitation of the 47 state is ~10 % higher than those given in the rigid rotator
model, that leads to 25% higher prediction of 4T scattering data compared with the rigid rotator model.
Our {0%|32107) value determining one step excitation of the 05 {7.65 MeV) level is 20 % lower than 32
(4] and {0F]82|2+){2%|8:{05) determining two -step excitation strength is 2.5 times lower. Accounting
for this difference result in a fine description of angular distributions of neutrons scattered by the od
level. Thus the present model predicts a redistribution of coupling strength better compared with the
model adopted in Ref. [4]. This allowed us to describe experimental angular distributions for the oF
level without including 27 level, which is not experimentally identified, in the coupling scheme as needed
in calculations without the coupling strength redistribution[4]. It is the result of the stretching of a soft
rotating 12C nucleus incorporated in the present model. Furthremore, we did not need to adopt the
channel-energy dependent coupling potential, which was required in the rigid rotator model in Ref. [4],
to reproduce the 2+ and 4% member of the ground state rotational band.

Tt is also possible to compare the value (0733|137} = 0.404 with the rigid 83= 0.51 from Olsson et al.[3]
We see that they coincide with reasonable accuracy. It is easy to account for the smaller value obtained
in the present work. In the present model, such coupling terms as (073253137} and (0%|B.5s]37) are
included, which are absent in the analysis by Olsson et al.[5] Furtheremore, we did not need to include
the reaction mechanisms such as diffuseness oscillation and potential depth oscillation which were used
by Meigooni et al.[4], to describe the cross sections leading to the vibrational bands.

The total, elastic scattering and inelastic neutron scattering cross sections to various collective bands
in 12C were described in a unified manner in terms of the soft-rotator model, which can describe the
collective level structure very well, without introducing any other reaction mechanisms which require

additional parameters and hence make the discussion rather ambiguous.
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6. Concluding remarks

The soft-rotator model was applied to analyse the collective nuclear level structure of 120, Taking
account of the non-axial quadrupole, octupole and hexadecapole deformations, and quadrupole and
octupole vibrations, the level structure of '*C was reproduced successfully by this model. The intrin-
sic wave function thus obtained was then used to calculate the coupling potentials to be used in the
coupled-channels theory, which yielded also satisfactory results when applied to neutron scattering data.
The "equilibrium” quadrupole deformation was found to be 0.164, which then gives an "effective” de-
formation of 0.57 when averaged by the 3, oscillation function. This fact shows how the 2C is soft
in such a degree-of-freedom, a feature that is not incorporated in the rigid-rotator model frequently
employed. The B{E2) value was also reproduced quite well by the model without any parameter ad-
justment. Therefore, we can conclude that the soft-rotator model gives a unified description of nuclear
structure and neutron scattering data not only for the actinide nuclei (where this theory has been inten-
sively applied} but also for such a light mass region as the 1p shell nuclei. Continuation of such analyses
performed in this work for other nuclei will be of great importance for the understanding the collective
nature of nuclei, and also from the applications point of view.

The sign of the quadrupole deformation was definitely required to be positive in our model which
takes account of all the cross-band coupling terms explicitely; a feauture absent in previous works.
The interpretation of this result may leave a room for a controversy. We think that it is related with
the proposed linear-chain structure of 3 a particles for excited states, or at least a kind of *effective”
shape when averaged over many states. Such a new interpretation may, we hope, lead to a better

understanding of the nature of this and other nuclei in this mass region, where only little is known to

date.
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account of the non-axial quadrupole, octupole and hexadecapole deformations, and quadrupole and
octupole vibrations, the level structure of '2C was reproduced successfully by this model. The intrin-
sic wave function thus obtained was then used to calculate the coupling potentials to be used in the
coupled-channels theory, which vielded also satisfactory results when applied to neutron scattering data.
The "equilibrium” quadrupole deformation was found to be 0.164, which then gives an Peffective” de-
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sively applied) but also for such a light mass region as the 1p shell nuclei. Continuation of such analyses
performed in this work for other nuclei will be of great importance for the understanding the collective
nature of nuclei, and also from the applications point of view.
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Table 1: The nuclear Hamiltonian parameters which are adjusted to reproduce the experimental level

scheme
howp = 4.2825 7
fig, = 27943 i,y = 0.1303 o = 0.3210
ase = 0.2213 44 =0.00021 44 =0.5205
agz = 0.1469 . = 0.9083
n=0.02101 &, =1.7221
Table 2: Experimental scattering data involved in CC optical analysis
Reference Interaction Energy (MeV) Spin, parity, energy of the excited level
ot 0.0y 2t(4.44) 01(7.65) 37(9.64) 4% (14.08)
Olsson et al.[5] 20.9 e o o
22.0 o o o o
Meigooni et al.[4] 20.8 o o o
220 o o o o
24.0 o o 0 o .
26.0 o o o o
Yamanouti et al[25] 28.2 o o o
Niizeki et al.[7] 35.0 .
Winfield et al.[6] 40.3 0

o- data used for potential parameter adjustment

o- data used for comparison only
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Table 3: The optical potential parameters allowing the best fit of experimental data

Vg = 33.11 — 0.436FE

W 7.350 — 0.145F E <23
D =
4.015 + 0.0043(E — 23) E > 23
3.743 - 0.021E E <23
Wy =
3.260 + 0.057(E —23) E > 23
Vio = 6.65
rg = 1.1935 agr = 0.552 + 0.00318F
0.336 + 0.0034F E <23
rp = 1.1321 ap =
0.4142 E>23
ry = 1.1971 av = 0.311 + 0.00255E
T.0 = 1.2001 Gs0 = 0.559
ﬁgn = 0.164 ,53() = ,62060 =0.0433 ,64 =0.116

Strength and incident energy E in MeV; radii and diffusenesses in fm.
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