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A new numerical method to achieve a rigorous numerical calculation of each
phase using a simple explicit method with volume-junction model is proposed.
For this purpose, difference equations for numerical use are carefully derived
so as to preserve the physical meaning of the basic equations. Specifically,
momentum equations for the flow in the volume are newly derived to keep
strict conservation of energy within the volume. To prove the validity of the
numerical method and of previously proposed basic equations, including the
original phase change equations, which were rigorously derived, some numeri-
cal calculations were made for each phase independently to examine the
correctness of calculated results.

The numerical calculation is advanced by simple integration of an explicitly
obtained solution of difference equations without any special treatment. Cal-
culated results of density and specific internal energy of each phase for
saturated two-phase blowdown behavior are consistent for two different solu-
tion scheme as described below. Further, no accumulation of error in mass or
energy was found. These results prove the consistency among basic equations,
including phase change equations, and the correctness of numerical calculation
method. The two different solution schemes used were:1) solutions of pressure
and void fraction in saturated condition were obtained by using mass conser-
vation equation of each phase simultaneously, and 2) fluid properties were

calculated directly from mass and energy conservation equation of each phase.
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1. Introduction

In the previous report’"”, equation of phase change in the decreasing pressure of two-
phase flow were rigorously derived using the first law of thermodynamics with
consideration that evaporation from saturated liquid and condensation from saturated
vapor takes place independently in each phase. What the equation of the first law of
thermodynamics written for an open system generally expresses is described in the
APPENDIX II.1. It is shown that the equation of the first law of thermodynamics for
the open system can be considered to be one type of an energy equation concerning
the state change in the flow and is derived by using the conservation equation of mass
and total energy, and a momentum balance equation. So, if three out of the four
equations above are given, the other can be derived. Basic equations were presented
based upon these phase change equations. The conservation equations of mass and
momentum of each phase, and the total energy conservation equation of the two-phase
mixture are first derived. Using these basic equations and the phase change equations,
the frictional heat terms for the two-phase flow are derived which are the terms
contributing to the entropy increase in the relational expression of thermodynamic
state change. The energy conservation equation of each phase was derived by
combining phase change equations, conservation equations of mass and momentum of
each phase, and aiming at consistency with phase change equations in the saturated
condition. ,

The energy equations used for analyzing 2-phase flow in current systems codes
such as TRAC or RELAPS, are utilized by eliminating the kinetic energy terms from
the total energy equations. However, the energy dissipation terms due to friction in the
flow are missing in these energy equations. Moreover the phase change correlations in
the codes cannot describe the essential phenomena of all types of phase change

(cf. APPENDIX I1.2).

As for the theoretical equation of phase change, E.D. Hughes etc.”’ has proposed the
flashing model which presents the equation of the net phase change rate in a two-phase
flow mixture. This equation is basically the same as the one proposed by the authors in
the previous report’? as far as the net phase change rate in an isentropic process is
concemed. In the previous paper, phase change is considered to take place in each
phase independently with the consideration of entropy increase due to friction and

external heat in the two-phase flow. In the paper presented by E.D. Hughes etc.

_1i
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exchanging of heat ¢3%, and ¢/, in each phase, is recognized™ in the flashing model.
But, it is not related to the phase change which should occur in each phase.
Exchanging of heat in each phase is also not considered independently in the energy
equation of each phase®. Only the net heat exchange which is carried by the net phase
change in the two-phase flow mixture is considered in the energy equation of each
phase. Therefore, some unreasonable results should have been obtained for the
thermal-hydraulic behavior of each phase in the saturated condition by using these
basic equations of each phase.

Actually, fractions F,, F, taking part in flashing are used for controlling the heat
exchange in each phase”. These fractions control only the net phase change rate and
do not control the heat exchange rate in each phase since g, and ¢/} are not
considered in each phase. So, these fractions would not be effective for controlling the
state change of each phase.

The general problems in the numerical method with the volume-junction model are
outlined as follows. As for the problem of the number of unknowns and the number of
equations in the analysis of the saturated condition of two-phase flow, a system of
partial differential equations differs from a system of difference equations for a
volume-junction model.

In the partial differential equations :

Unknowns : u,up, Poa,wy,wy, Total 6
Equations : 2-Mass conservation,2-Momentum balance,2-Energy
conservation. Total 6

For the energy equations, either of total energy conservation equation or the equation
of the first law of thermodynamics of each phase is available. These equations are
consistent with each other among the mass conservation and momentum balance
equations. Actually, phase change terms w,, and w,, are expressed by the equation of
the first law of thermodynamics of each phase, respectively.

In the volume-junction model :

Unknowns : - for Junction flow : W, ,,W,,, M, My

- for the fluid in Volume : P, a, M, M., W oot Wosot - Total 10

iz__
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Equations ; - for Junction flow : 2-Momentum balance, 2-First law of
thermodynamics.
- for the fluid in Volume : 2-Mass conservation, 2-Total energy

conservation, 2-First law of thermodynamics. Total 10
The basic equations for the numerical use with volume-junction model should be
carefully derived so as to conserve the physical meaning of the original basic
equations. Equations of mass conservation and the first law of thermodynamics are
easily obtained to satisfy this requirement. For the energy equation, the accounting of
incoming and out going energy within the volume must be derived first to meet the
physical law. The elimination of kinetic energy terms may be made after that, if
necessary, by using the equations of mass conservation and momentum balance, which
are formed for the flow in the volume (cf. APPENDIX I1.3). The momentum balance
equations for the flow in the volume can be obtained by using the equations of mass,
total energy and the first law of thermodynamics, because three out of four equations
momentum balance equation obtained above, the equations of phase change expressed
by the first law of thermodynamics and the conservation equations of total energy
become consistent with each other. It means that the kinetic energy in the volume is
are given as described before. By defining the flow rate in the volume with the
determined by conservation of total energy.

It is also important for correct evaluation of the junction flow rate to determune the
flow rate in the volume rigorously, since the momentum change from the flow in
volume to the flow at the junction significantly affects the evaluation of junction flow
rate in the momentum balance equation.

In order to derive the momentum balance equations for the volume such that they
conform to the physical laws of dynamics, the total energy conservation of each phase
must be expressed considering phase change and state change in the junction flow.
The rate of energy flow into the volume is the same whether the phase change in the
junction flow is considered or not. But the influence to the velocity change of each
phase in the volume varies because the momentum balance equation in the volume 18
derived incorrectly if the phase change in the junction flow is not considered (cf.
APPENDIX. I1.3). Finally, it is very important that the physical meaning of basic
equations expressed in the partial differential form, should be strictly preserved when
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they are converted into difference equations for numerical use with the volume-

junction model.
The outline of how the unknowns are solved in the analysis of saturated two-phase

flow 1s explained as follows.

4-First law of ﬂ/{l\ennodynamics ..... Mg, My My M,
j
\7 l .
2-Mass conseryation . . . .. Pa \p,,pie, ,e,,T)M
2-Jun. Mom. palance - . - - . (Wg,W,)J
N
2-Vol. Mom. balance . - . . . (WgW,) I

The phase change rate in junction flow Mz, M;c and m volume Mg, M, are

obtained by the first law of thermodynamics expressed for each phase. Pressure P and

void fraction « in the volume are obtained by solving the mass conservation equation

of each phase simultaneously. The Junction flow rate is obtamed by using the
momentum balance equation for the junction flow along with the momentum change
from volume to junction, and with the pressure difference between volumes. The
volume flow rate is determined by using the momentum balance equation. The
updated values are used in the equations designated by arrows.

Saturated states of pressure P such as ( o,, 0, €,, €, T)s, are given by using the
steam table. On the other hand, the density and the specific internal energy of each

phase in the volume can be determined through another way as follows.

Mass conservation of each phase ande - . . - . P, b,
Total energy conservation of each phase and M, M; ... e,
Vol. Mom. Balance . . . .. (AWg, APK) :
Mass conservation - - . - . - AM_, AM, |
First law of thermodynamics . . . . . - AM o AM ., AM o, AM,

The mass of each phase M,, M, in volume is determined by integrating AM,, AM,,
respectively, obtained from the mass conservation equation of each phase. Therefore,

density of each phase p,, 0, is determined by using void fraction .

M4*
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Similarly, the internal energy of each phase E,, E; in the volume is determined by
integrating A E, A E;, respectively obtained from the total energy conservation
equation of each phase. In the calculations of AE, and AE,, using the total energy
conservanon equatlons the calculations of (AW, AW)),,, (AM, AM,)) and (AMZE,
AMZC,AMIE, /_‘\MIC) are made by using equations of momentum balance, mass
conservation and of the first law of thermodynamics respectively, and the results are
substituted into the total energy conservation equations.

Numerical calculation is advanced by using the thermodynamic states obtained
from mass and energy conservation equations of each phase.

Thus, if the ﬂlennddynamic states obtained in the two different ways mentioned
above coincide with each other, and if the summation of the total energy dealt with in
a whole calculation model is conserved at any time during the calculation, the
correctness of the calculation with the proposed numerical method will be proved. It
means that the basic equations derived for numerical use in the volume-junction model
are consistent with each other, and that the changes of thermodynamics state and the
flow rates in the volume, and phase change rates in junction flow and in the volume
are correctly evaluated in conformity to physical laws. From the results above, 1t will
be further suggested that the equation of the first law of thermodynamics will give a
more accurate solution than the equation of total energy conservation for the
evaluation of AE in the volume because the former estimates the heat itself
contributing to the state change whereas the latter estimates through the small
difference between large values of an incoming energy and an outgoing energy in the
volume.

For achieving rigorous analysis conforming to the physical law even in the
volume-junction model as mentioned above, we propose a new numerical method
using a simple explicit solution method. In order to prove the validity of the proposed
numerical method, including the newly derived difference equations, some numerical

calculations are made considering two independent, but saturated phases. The

correctness of the results are examined and discussed.
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2. Derivation of basic equations for numerical solution with the volume-
jljnction model
In order to make rigorous analyses of the characteristic behavior in the unsteady

flows, the basic equations expressed by the partial differential equations should be first
transformed to particular total differential equations. However, concerning the
unsteady two-phase flow with phase change, this method 1s not fully developed for
practical use. In the reactor safety analysis codes for the thermal hydraulic behaviors
in the reactor cooling system, volume-junction method 1s widely used; where the flow
path 1s divided into several volumes with finite length and the thermodynamics states
are determined in the volume by making estimations of the quantities of mass and
energy.

Flow rate is determined at the junction between volumes by using equation of
motion considering the changes of pressure and momentum in the flow from volume
to volume.

In the expression of partial differential equations, a velocity 1s dealt with as a same
value in the momentum balance equation and in the total energy conservation equation.
However, in the volume-junction model, the velocity defined for the junction flow by
the momentum balance equation 1s different from the one defined in the volume by
total energy conservation equation. The velocity in the volume should be determined
individually by the momentum balance equation derived for the volume. Conservation
equations of mass and total energy are first given for the volume. Accordingly, using
these conservation equations and the equations of the first law of thermodynamics
concerning the state change in the volume, momentum balance equation to determine
the velocity in the volume can be derived. This idea is the same as used in the
derivation of basic equations in the previous report where the total energy
conservation equation of each phase is derived by using the conservation equations of
mass and momentum, and the equations of the first law of thermodynamics for the
open system.

In the case of the volume-junction model, the total energy conservation equation of
each phase is first given for the volume. So, the momentum balance equation can be
derived in the same way in conformity to physical laws for the flow in the volume.

This means that the velocity in the volume 1s determined so as to satisfy the strict

" conservation of total energy.
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Numerical calculations in this report are focused on verifying the consistency of
basic equations system including phase change equations and the correctness of
numerical method with the volume-junction model for the saturated condition of two-
phase flow which is assumed to occur in decreasing pressure.

We consider a horizontal constant area flow path with no external heat for
simplicity and as a volume-junction model, Volume (I, K, L) and Junction (J-1, J, J*+1)

are defined as shown 1n Fig. 1.

> I K L ’
J-1 J J+1
Fig.1 Control volume for volume-junction model
21 M nd ener rvation ion

Mass conservation of each phase in the Volume K is expressed as follows by
reference to Eqgs, (R1) and (R2) in APPENDIX L.

The junction flow rate is given as the departing flow from the volume of upstream.
Phase change rate w consists of evaporation and condensation terms presenting
positive and negative values, respectively in the expression of partial differential
equations.

However, in the volume-junction model, these terms are expressed in positive forms
for both evaporation and condensation in the expression of partial difference equations
as presented in the section 2.3. Further, phase change should be considered for fluids
in the volume by the time dependent term‘MtK and in the junction flow by the space

dependent one M; ;,, separately.

AM . .

A:'K = Wg,J-l - Wg,J + (M:.K + MZ,J-]) (D
AM . ]

A;'K = W;,J—[ - WI,J - (Mf,K + MZ,J—I) (2)

Energy conservation equations are similarly expressed as follows so as to preserve
the physical meaning of differential equations by reference to Eqs.(R5) and (R6) 1n
APPENDIX 1 in which each term show a clear physical meaning of the energy

conservation in the volume.
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Energy carried by phase change flow in Junction J-1 is integrated along the state

change from Vol. I to Vol. K.

A u’ u’ u’ . u . u?
E{Mg[eg +72J}K - Wg.J-l[hg +7gl - Wg.J(hg +“§jK + Mw,x[hgf +?1JK —M:c,x[ha W'“Hzi)!{

2

K . . u"" x . . u Aot . ”
+ [y My + Mo, [TI] | B MM - M, [?g] _{PVE] (7, - Ady,), | (3)
1 ! £

2 2 2 2 2

Z_{Mz( {+H;J} :H/;’.J—l[htTulj _WI,J[’LH"'%J +ngx(hgs+u_zJ +M:c,x(hm+u?gj
X i K K K

2
u u Ao
- i hgs AMZE MZEJ 1( I} +J his AMZC +MZC,J4[ gj (PV”—] +(Wr AC]EI) (4)
! K
Where, (PVg 'Aggg)#l = AQEg,J—l B (FVI -Agg, )J_l = A0,

These terms are presented in Eq.(15).

2.2 . Momentum equations for Junction flow
Spatial momentum change is evaluated from volume to junction. Thermal hydraulic

states at junction are defined as follows: the void fraction is used by the one in the

upstream volume and the pressure and densities are used by the ones m the

downstream volume. The reason is as follows. For evaluating momentum change in a

junction flow, the momentum at downstream should be evaluated by using the

thermodynamic states of downstream volume basically. However, as for the void

fraction, the junction flow rate is strongly controlled by the value of flmd source.
Then, on reference to Eqs.(R3) and (R4) in APPENDIX I

A APZ::J B (Wg .ug)K - {(Wg"" * MZE"’ _MZCJ).ugJ +(M£E - M:C)x 'ug.K}

+ MZE.J Uy MZC,J Uyt M:E,K U T M:c.x Uk
—(aF,, + AFgI)J +4,,(P ~P)
= (Wg '”S)K _(Ws 'MS)J ey '(”2 _HI)J - My '(ug wuf)irc

~(aF, +AF,) +4,, (P - P) (5)
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Similarly, for the liquid phase, we get

AW . .
8 A;J ) (Wl -uI)K _(pVI .ul)"’ +MZC~’ '(uz —ui); + Mrc.x -(ug _“;)x
~ (AR, + AF, )+ 4,,(B - P,) ”

(1) Phase change rate in the junction flow
Phase change rate which arises from each phase in a pressure decreasing flow
along flow path is expressed in a form of partial differential equation as follows by
reference to Eqs.(21) and (2) of reference [1].

Evaporation rate from liquid phase :

1] [{ dn 1)oP &
[Wgz]z =W, — [w_fj I R ) (7)
T dp/., p| 92 IZ
Condensation rate from gas phase :
1| [(an 1|op &g
bl (5% ®)
L p Sat pl
Where
A = dqgr + dgﬂ )
dgTPg = dqg'g + dqu

Frictional heat which arises in each phase 1s
a’qﬂ = a’qm +dqy +dqﬁ,d } (10)
aq, = dqp, + A9 5 + A9 5o
To apply these equations for the volume-junction model, we have to consider one
more type of frictional heat which is peculiar to this model. That is the mixing
frictional heat which arises in the volume because the velocity in the upstream volume
is different from the one in the downstream volume. Consequently all frictional heat
terms in the volume-junction model are expressed as follows :
Agy = Ag g + AGy +AG gy + Ag,, } (1)
Aq, = Aqu, +Aqs, +dg,., +AG,,
For the flow from Vol. I to Vol. K, each term of right hand side of Eq.(11) 1s
expressed as follows by referring to Eqs. (55)~(57) of referénce [11.
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W, -Aqp =, - OFy, } (12)
W, 8qp, =u, - AFy,

W, -Ag, =u-AF, +AQ,, } (13)
W, Aqg, =u, - AF, + 80,

=

. 1 2
'A‘]ﬁ;d =AM, "Z“(Hg,f _ul,K)
L . (14)
Wy 0g ey = DM '5(“1,1 - ug,K)
Where AQy, and AQ’g, in Eq.(13) is expressed as follows referring Eq. (58) of

reference [1].

0 =88, (oo, ) 05
AQ.‘EI = _AQ:?g

Further, Aq,,, and Aqy, are mixing frictional heat which arise due to the mixing of

upper fluids in the Vol. K. So, similar to Eq.(14), these terms are expressed as follows.

Ag,, :%(um, — 1y, )2
(16)

1 2
Aq,. = E(ug'k - ug",)
We apply Egs. (7) and (8) to the flow from Vol. I to Vol. K, dividing the difference
pressure (P;- Pg) into n equal parts. Then, in a small part of arbitrary number 1, the

phase change rate in each phase is expressed as follows.

()

e AP

¥- &Még = F{WI {(A]’II - “;—] - Aqﬂ;{ }:' (7A)
! J-1

(i)
r- AM;CE = lin{(Ahg - ;EJ - AqugH (8A)
8 1

Terms, Aqrp, and Aqre are substituted by Egs. (11)~(16), after making definition
of thermal hydraulic states as follows. For the calculation of frictional heat Aqg, and A
qs, the states are used by the ones defined at Junction J-1, and flow rates W, and
W,,., are assumed to be constant from Vol. [ to Vol. K. Frictional heat caused by phase
change Aggc is given by Eqs. (14) using the phase change rate at i-th AP considering
the change of velocity from Vol. I to Vol. K. Further, for the calculation of mixing

frictional heat in Vol. K, we consider that flow rate of each phase coming into Vol. K
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1s (W, - MZE) 5.1 for iquid phase and (W, - MZC) 1 for gas phase.
Then, the frictional heat contributes to phase change rate at i-th AP is expressed as

follows.

(H/r 'AQTPI)(!') = {u,(AFm + A-F;g) +AQy, +W, -Aqm.,} v%—(Aqm, -AMZE -C, - AMZC)E::

J-1 J=1

(17)

(W ‘Aqug)i:jl = {ug(AFWE + AFRI)+ AQ:’?E +W; ‘Aqms},r_l .—rI;_(Aqmg ) AMZC - Cz AMZE)S:

g
(18)
Where

G = 'él"(”gJ - uz.x)z (19)

1 2
C, = E(u,_, - uglx)
Substituting Egs. {17),(18) into Egs. (7A),(8A), phase change rate in a junction flow

along flow path can be solved simultaneously. We get

o1
AV =—(y,y; +6)1) 29
5
o 1
AM) = y—(y1y4 +C),) )
5
Where
(0 ’ !
M= (WSH') B {HE(AFWg +A'F;i-')+AQE‘f 7 -Aq"’g}-f—l n
[ . 1
¥ = _(I’V:Hz)( + {ul(AFW? + AEZ) + A0y + W Ag }J-I ;
Y3 = re _Aqmg
yo =1 +4q, )

Ys = Y3y T C 0,

(i)
;{F)::{AJE._féf]
Pq

HY = (Ah, - E}
P

Consequently we get
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MZE,J—l = ZAM;E)

i=l

ZAMEQ

ZCJI

Phase change rate in the volume

Phase change rate which arises from each phase in the volume caused by

pressure decreasing with time is expressed in a form of partial differential

equation as follows by reference to Eqgs. (19) and (20) of reference [1}.

[ ]_,_p, [ﬂ] _ 1|92 g
dp/,, p| ot ot

[WJ :wagpgA [dhg] 1| 8P O,
e r dp p, | Ot ot

Sat

(24)

(25)

In Eqs.(24) and (25), external heat terms contributing to phase change are contained

which are not contained in reference [1]. This is because, in the volume-junction

model, the phase change with respect to time and space should be evaluated m the

volume and i the junction, respectively. Therefore, the time dependent frictional heat

term due to phase change occurred in each phase in the volume is given as follows.

We apply Eqs (24) and (25) to the phase change rate in Vol. K. Then we get

;oA 5‘];.-;:1 [Wzg] r';" (ug - ur)2

2
(Zlg '“14'1)

agpgA 2Pg = [wgf]

I\JN| —

M(Epgf_aﬁﬁxq_}
) Arr A ),

M, A
M@K:(CPEAEH—E qrpgj
Al ro At J,

(26)

(24A)

(25A)

27)
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At
Ag (28)
TP; N
M, Ng =C My,
1 2 '
C, = E(ug ~) (29)

Substituting Eqs (24A) and (25A) into Eqs (28) and (29), phase change rate in Vol. K

can be solved simultaneously. Consequently, we get

. ¥, AP .
M, =<L1— 0
&K y, At (3 )
. Vg AP
M, =-22 31
T G
Where
C el
re=1+(3)
C, ;
y, = EP, +—r -CP, (32)

Ys :Q'EPK_CPK

¥

2.4 Derivation of Momentum Eguations for the flow in the volume

Momentum equations in the volume are derived by using the conservation equations

of mass and energy, and phase change equations (based on the first law of

thermodynamics). 7
First, we change the left hand side of energy equation of gas phase (3) as follows.

A Y| A, A, A AW, (1) aM,
_H{Mg(eg—}-—z——j}x—{hg 4 M, ~VE(QSP)+(AZ-113) a2

At

Next, substituting Eqs.(27) and (28) into Eq.(25A) and after rearranging, we get

Ah . AP ]
(1,2) (v e

(34)

K

Now, substituting Eq.(34) and mass conservation equation (1) into Eq.(33) and after

rearranging, we get



JAERI—Research 87—079

2 2
%{M‘-’[eg +7£J} ) [hg _”?sj {Wg-“ ~Wes +(Mlﬁ" _M’c)k' +(MZE B MZ")J-l}
p K (35)

Aa AW .
£+ AZ u,—2+C M,
At At

el
Ly

+[r-MtC—PV

X

For the left hand side of energy equation of liquid phase (4), similarly to the gas

phase, we get

At 2

L2 2
A{M{ef +%J} :[hi _ﬁ} {Wu-l _Wz,.r - (AJzE ‘Mzc)x —(MZE _MZC)JJL}
x K

Aag

—(r-ME—PV - aw,

At

~AZ -u, +C.M . J (36)

K

Subsequently, substituting Eq.(33) into the left hand side of Eq.(3), and after
rearranging we get

AW :
[AZ e AZ‘SJ =W, (hg.I ~hyx )+ Wi %(u;,x "'”;.f)"Wg,J Ut (M{:E "y ’“r)zc
K

n . & . .
_(Mrc 'u;'),( +Z(hg 'AMZE) —h,x Mg g +%(ui} +u;.K)'MZE,J-1

i=] J -1

n . - 1 2 . ' ~
ﬁZ(hz 'AMZC) +hg,.’( Mo **2"(”;.1 "“uz.x)'MZC,J—i +AQEg.j~l (37)

i=1 J-1
Though we can calculate the flow change in Vol. K using Eq.(37), this equation can
be changed to the simpler one which expresses clearer physical meaning as a
momentum equation.

The first term of the right hand side of Eq.(37) is expressed as follows.
Dividing Eq.(8A) by W[)_ and after rearranging, we get

. {3
i AP AM
AR, = (AqTPg t—+r TZC} (8B)
Py & 7

The term Aglp, . is gotten from Eq.(18), dividing by W) . Substituting this term

into Eq.(8B) and integrating from i=1 to n (this means the integral from P; to Px of b, ;.
1), we get the equation of (h, x~h, ). After multiplying by W, ;,, we get
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. W, 1
Wg.J'l (hgvK - hg.f ) = {ug (AFWz + AFgl)'i—AQEg +Wg ) Aq,,,g }J«I - Z W
nooa e ia
(MM ) (Anty ) ~(ap)
+ Cz ) Wg,J—I Z[ WZE J - Wg.J—l ’ Aqmg Z [TZC] + Wg,J-—l Z (—*J
i=l z J-1 i=l g = 1=l pg J-1
(1 '
r-AM .
g J-1 Z( = ] (J 8)
3 J-

Substituting Eq.(38) into the first term of right hand side of Eq.(37) and after dividing

by u,x, we get the momentum equation for the gas flow in the volume K.

AW B 7 | |
(AZ. gj {1 (1 )( Uy Uy g ) +u,, }Wg‘,_l ~W,, u,, +(MLE '“z)g —(Mrc '“s)x

At 2 u,

2 uhg,K' uS K

+{lw(”‘1,f Uk )2 +MZE,J_1 ‘u;J} {1 WZCJ i 3)( Ues “Hgk )2 "i'ﬁ&(Zr:,J'1 -ug’j}

i . i . " . ) .
+{Z (hg 'AMZE).(;: _hg.K 'MZE,J—I}L—{Z (hz 'AMZC) _hg,K 'Mzc,J-l

i=] ug.K i=] Sl
. (i}
o[ AM 1 Uy,

W, S e _B(AF,, +AF,) &

“ lé( WS }J—}II&K | " o ek

i} '

1-B Wei & AP

( ) AQy, - _"“J (39)
U,y Ugp 2, i

Similarly, for the liquid phase, we get the momentum equation for the liquid flow in

the volume K.

(AZ AW} {l (1—34)(1‘['] —uu\,)z +lt,‘,}W;'J-1 —W;,.r Ui "(st 'u:)x “'T(MIC Uy )K
At 2 oupy

M,., ~B , f,e,,—B , .
+{%“(‘“EE:H—S)(“3,J _uz.x)‘ + Mg, ‘”g,;}_{%m(u:,f _ur,x)- +M g s '”u}

‘HLK uu{

; . I_ _ n O, .
+ Z(hz 'AMZC )_(,ri[ ‘”’hz,x 'Mzc,J-l}L“{Z(hg 'A'MZE) "hl,x 'MZE.JMI

=1 LK i=1 J-l
- O] (i)
[ AM 1 1-B W, AP
- pI/I,J—] Z [r = ] ’ B (AF + AEg )J 1 1 = ( ) AOEI j-t - = Z[_MJ
= Wo J,.| i« Uk Uy g Ui =\ P Jg
(40)

Where,
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(1)
w21
, 34:"{'1_12[W)
i

noa -

. (3
0 AM

) B = WI.J—IZ[szJ [ (41)
I
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3. Numerical solution

Using the basic equations for numerical model as described in chapter 2, solution of
two-phase flow variables is obtained as follows. Numerical calculation of two-phase
flow behavior is advanced by simple integration of explicitly derived solution using
the Eulerian method without any special treatment of obtained variables for attaining
consistencies between them.
3.1 1on of pr 1

The mass of each phase in a volume V is expressed as follows.

M,=a,pV (a=g1) (42)
The total differential form of Eq. (42) is

aM, = (e Ap, +p, A,V (43)

Where o, =a, +Aaq, (a=g1)
Equation (43) is a completely conserved equation of mass.
In this report, numerical calculations are made aiming at the venfication of the

validity of the numerical method only for the saturated two-phase flow conditions.

Therefore, the density of each phase is expressed as p =1(P).

Then,
Ap, =R, -AP
pg s } (44)
Ap, = Ry - AP
Where,
.
1§ dP
sat (45)
R.= (ﬁf&)
35 dP

xai

Solution of pressure and void fraction can be gotten only by using the mass
conservation equation of each phase in this case. Now we consider for the volume K.

Rewrite the mass conservation equation of each phase (1) and (2) as follows :

AM, , = {W W+ (M~ M), + (M= M) }m (1A)

2,

AM{,K = {Wu-l - H/;,J - (MZE . A}fzc)J_l _(Mzs - M:c)K }At (2A)

After substituting Eqs.(30) and (31) into the terms MIE, I\-/LC of Egs.(1A) and (2A),
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upon eliminating by using Egs.(43), (44) and (45), we have simultaneous equations for

AP, A « as follows.

AP+ p b, = RHSCG (46)
,VloAP“PzAag = e At (47)
Where,
. Yoty 1
Yo = agRW B _?);6—8 ?
R 2ty 1
Vo= R+ y, V r (48)
RHSCG =W, , - W,, + (MZE ~ My )H

RHSCL = W, , - W,, -(My - M,)

S

The solution of simultaneous equations (46) and (47) are as follows

RHSCL - RHSCG -
AP = P Pi s (49)
i
Ag = RHSCG - y., + RHSCL- y, At (50)
i
Where
Yu =(ym,og+y9,0;)V (51)

Then, we get a new time step value P(n+1), a (n+1) by the Eulerian method, using
the old time step value P(n), « (n) and the small difference AP, A o as follows.
P(n+1)= P(n)+AP (52)
a(n+1)=a(n}+ Aa (53)
Further, the phase change rates which occur in the junction flow and in the volume
are respectively evaluated by using Eqs.(20), (21) and (23) and Eqs.(30) and (31). We
can get the saturated value of densities ( o, 0,) and specific internal energies (g, €),
with the pressure from the steam table.
3.2 luation of flow
The flow rates in the junction and in the volume are respectively evaluated by
Eqs.(5) and (6) and Eqs.(39) and (40).
For the evaluation of velocities in the junction, thermal hydraulic states are defined as
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stated in chapter 2.2.

Wall friction force is determined by the equation of conventional from as follows:

L
AFWa = fWa a d_%uaz (a = g’ l) (54)

ha

Interphase friction force is determined by the equation of an empirical from as

follows :
AF,, :fg!'Agi‘V'pc(ug—ua)' (35)

The details of these frictional terms are omitted since the quantitative evaluation
method of these terms has little to do with the aim of this report.

The density of each phase ( o,, 0,) is determined by using Eq.(42).

Further, the specific internal energy of each phase is evaluated by using energy
equations as follows

First, the internal energy in the volume K is defined as

E, =(M,e,), (a=g1) (56)
Second, the change of the kinetic energy in the volume K is expressed as

A u? AWK 1, AM ¥
M, %] =(az- e =g 57
[ ]K (8Z-u, ) === 5 er =, (a=g.1) (57)

A0 2

Substituting Eqs.(56) and (57) into energy Eqgs.(3) and (4), we can get AE,(a=g, 1).
In this procedure, the terms AM, are evaluated by Eqs.(1A) and (2A), and the enthalpy
of each phase is determined by using pressure and the specific internal energy which 1s
obtained from the energy equations as described in this section.

Mass M, and internal energy E, in the volume are determined by simple integration
of AM, and AE, respectively, same as in the pressure or veid fraction.

Consequently densities o,, 2,and specific internal energies €, €, are determined by
Eq.(42) and Eq.(56), respectively.

Thus, examination can be made to see if o, 0,are consistent with oy, 0 and if e,,
g, are consistent with €, €.
33 \' 1Qn m r

Although the consistency of basic equations including the phase change equations

would be verified by the results obtained in the previous calculations, if the
temperature change evaluated by a total differential equation which is expressed as a

function of the mass and the internal energy of each phase agrees with the saturated
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value of pressure, the validity of the numernical method would be confirmed further.

So, if we suppose 7, :f(Mg,MI,Eg,E;) (@a=g1)

Total differential equation of temperature is
o7, o7, oT, a7,

AT = MM, + AM, + AE +—=AFE, (58)
M, M, GE,  ° JE,
If we take T,=f(P.e,) (a=g]),
then,
I, _[57}) i a7, _(ém P
oM, \e/, éM, = M, \oP) oum,
a7, _(&Y}] P aT, “[&QJ P
oE, \oP) oE, ' GE \dP) GE
L (59)
T, _[az;} 8P +[5PJ e
oM, \dP) |oM, \de,) M,
T, H{ﬁ;} oP _(aP} 1
oE, \&P) |ZE, \é&e,) M,
g : )
By using of Eqgs. (42) and (56), we get
P _ P, Hz[ée}
oM, VD! p\ce),
SP -1,05(,5;9)
—_— = e a=gl—b=1,
E, VD p,\ée,), (a-¢ g) , (60)
op ép
D.—_agpf( ﬁffl +a,pg(5—P’)e[
p. = f(P.e,) J

From the general expressions of thermodynamics we get
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-5
GP), Pp-pce
(@\ _ P8
oe ) - PB-pc

. Px-If

Thus, using the Eqs(58)~(61) and the terms of AM,, AE, obtained in the previous

section we can estimate the AT,
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4. Numerical calculation results

Some examples of numerical calculation results which verify the validity of the
method proposed in this study are shown as follows.

Calculations are made for the blowdown process of high pressure two-phase fluids
which occurs in a horizontal pipe with one end is fully opened to atmosphere.

Initial conditions for the calculation of blowdown of saturated steam-water two-
phase flow are set as : pressure is 2.6 MPa and the cases of void fraction are 0.95 and
0.3. Fraction n of interphase frictional heat distributed to gas phase in Eq.(15) is
assumed to be 1.0 1n all cases.

Test pipe dimension 15 about 73mm diameter and about 4. 1m length and the pipe is
divided into eight sections of equal control volume for the numerical calculation by
the volume-junction method.

Control volume of number 8 has the open end to atmosphere and number 1 has a
closed end.

The calculated results for initial void fraction @,=0.95 are shown in Fig.2~Fig.12
and for a;=0.3 are in Fig.13~Fig.23, respectively. In these figures, the number in the
parenthesis shows the number of the control volume.

The discharge flow rate at the open plane is evaluated as an mertia flow 1n these
cases.

As for the discharge flow rate considering the occurrence of two-phase critical flow,
we will study in the later report dealing c':ﬂSO the cases of lower initial void fraction
where thermodynamically non-equilibrium states take place caused by oscillatory
pressure change in the early phase of blowdown. Calculated behaviors of two-phase
flow in the case of @;=0.95 are shown in Fig.2 for pressure, in Fig.3 for void fraction
and Fig.4~Fig.7 for velocities.

These results indicate that two-phase flow is developing from the open end to
upstream induced by blowdown showing reasonable values on the whole. Pressure in
the test pipe decreased to almost atmospheric pressure after 0.1 seconds after the
mitiation of blowdown. The main purpose of this report is focused on the verification
that the calculated results have no inconsistency between variables and no
accumulation of calculation errors 1n the advancement of calculation.

First, the changes of densities are shown in Fig.8~Fig.9. Densities are obtained in

two different ways using different variables obtained in the numerical calculation.
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One is defined from the mass and void fraction which are obtained by using mass
conservation equation and the solution of simultaneous equations concerning pressure
and void fraction as described in the chapter 3. Another is defined as a saturated
density of pressure. The former is o,, 0, and the latter is 04, 0y respectively. These
two kinds of densities agree very exactly with each other for both gas and liquid as
shown in Fig.8~Fig.9.

Next, the changes of specific internal energies are shown in Fig.10~Fig.11. One
specific internal energy of each phase ¢,, ¢ is respectively defined by using mass and
energy conservation equations and the solution of void fraction obtained as described
in the chapter 3. Another specific internal energy of each phase e, €, is defined as the
saturated one of pressure. These two kinds of specific intemal energies agree very
exactly with each other for those of gas and liquid as shown in Fig. 10~Fig.11.

The verification to be achieved in this report would be completed through the above
mentioned examination. However the further examination can be made for the
temperature of each phase to make certain of the consistency between the variables.
Three kinds of temperature are compared: one is defined as a saturated one, T, of
pressure, the second and the third one are evaluated as the integrated effects of mass
and energy change of each phase by using Eq. (58) for the each phase.

These three kinds of temperatures agree very exactly with one another as shown in

Fig.12.
For the case of @;=0.3, same comparisons as in the case of @=0.95 are made for the

verification of calculated results. Two-phase flow behaviors are shown in Fig.13 for
pressure, in Fig.14 for void fraction and Fig.15~Fig.18 for velocities. These results
show the similar behavior as in the case of 2,=0.95, however it takes about 0.39
seconds for pressure in the test pipe to decrease to atmospheric pressure after nitiation
of blowdown. The comparisons for densities are shown in Fig.15~Fig.20, for specific
internal energies are in Fig.21~Fig22 and for temperatures are i Fig.23. These
comparisons show that no inconsistency between variables existed, in the numerical
calculations for saturated two-phase blowdown behaviors.

Conservation of mass and energy in the calculation of flow behavior from volume
to volume is checked as follows.

The mass and the energy in the test pipe are reduced by the progress of blowdown,

but the total ones including the integrated values of discharged ones should be
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conserved at any time. The change of total mass of each phase is shown in Fig.24 for
the case ofay=0.3. The half of total mass(TOTM)of gas and liquid is shown in the
same figure. The fraction of change of TOTM is about 1.5 X107, The change of total
energy of each phase is shown in Fig. 25 in the same manner as Fig.24. The fraction of

change of the half of total energy (TOTE) is about 4 X 10"*, These results show that no

accumulation of error in mass or energy was found. It is considered that the energy

transportation caused by the phase change in the flow from volume to volume 1s also

correctly evaluated in the calculation of thermodynamical state change.

D

@

(4)

Conclusions
A new numerical method is proposed that will achieve a rigorous numerical

calculation of each phase using a simple explicit method with a volume-junction
model.

Difference equations for use in a volume-junction numerical model are carefully
derived from the partial differential equations proposed in a previous report so as
to preserve the physical meaning of the original equations. For this purpose,
momentum equations for the flow rate in the volume are derived and used with the

momentum equations for junction flow.

Numerical calculations are made for the depressurization of a saturated two-phase
mixture. The calculation is advanced by simple integration of an explicitly derived

solution which uses the Eulerian method without any special treatment of obtained

variables.
Through the examination of the calculated results, it was concluded that no

inconsistency between variables existed, and calculational error did not

accumulate.
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conserved at any time. The change of total mass of each phase is shown m Fig.24 for
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correctly evaluated in the calculation of thermodynamical state change.

(1

2

(4)
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A new numerical method is proposed that will achieve a rigorous numerical

calculation of each phase using a simple explicit method with a volume-junction
model.

Difference equations for use in a volume-junction numerical model are carefully
derived from the partial differential equations proposed in a previous report so as
to preserve the physical meaning of the original equations. For this purpose,
momentum equations for the flow rate in the volume are derived and used with the

momentum equations for junction flow,

Numerical calculations are made for the depressurization of a saturated two-phase
mixture. The calculation is advanced by simple integration of an explicitly derived

solution which uses the Eulerian method without any special treatment of obtained

variables.
Through the examination of the calculated results, it was concluded that no

inconsistency between variables existed, and calculational error did not

accumulate.
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[NONENCLATURE]
Flow area
Isobaric specific heat capacity
Isochoric specific heat capacity
Hydraulic diameter
Internal energy
Specific intemnal energy

Frictional force acting on the fluid in a volume
Fraction of vapor phase at saturation (used in the reference (4))

Fraction of liquid phase at saturation (used in the reference (4))

Specific enthalpy
Length of Volume

Mass
Time dependent total phase change rate ina Vol.K.

(Mz,x = M:‘E,K _MrC,K)

Space dependent total phase change rate in the flow of Junction J-1.

(MZ,J—I - MZE,J—I = M)

Evaporation rate due to pressure decreasing in a volume
Condensation rate due to pressure decreasing in a volume
Evaporation rate due to pressure decreasing in a junction flow

Condensation rate due to pressure decreasing in a junction flow

Pressure
Heat transfer rate to gas and liquid phase, respectively in a unit

volume of two-phase flow, due to phase change.

(used in TRAC and RELAP5codes.)
Energy exchange of vapor phase due to flashing (used in the

reference (4))
Energy exchange of liquid phase due to flashing (used in the

reference (4))
External heat added to a unit mass of gas in a volume

External heat added to a unit mass of liquid in a volume

Terms which define distribution of interphase frictional heat to
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gas or liquid phase

Agq, : Frictiona! heat added to a unit mass of gas phase in a junction flow

Ag, ; Frictional heat added to a unit mass of liquid phase in a junction
flow

Ag : Of Aqy,, interphase frictional heat

Ag gy : Of Agy, interphase frictional heat

AGpe - Of Agy,, frictional heat caused by phase change due to different
velocities between phases

M : Of Agy, frictional heat caused by phase change due to different
velocities between phases

Ag,. ; Mixing frictional heat in a gas phase caused by incoming fluid
flow to a volume

Aq,, ; Mixing frictional heat in a liquid phase caused by incoming fluid
flow to a volume

AGr, : Heat added to a unit mass of a gas phase

Ay ; Heat added to a unit mass of a liquid phase

r : Latent heat

T : Temperature

t : Time

TOTML Total mass of liquid including discharged one

TOTMG Total mass of gas including discharged one

TOTM (TOTML+TOTMG)/2

TOTEL Total internal energy of liquid including discharged one

TOTEG : Total internal energy of gas including discharged one

TOTE (TOTEL+TOTEG)/2

u : Velocity
Specific volume

14 : Volume

4 N Mass flow rate

w : Phase change rate in a unit length of flow

a : Void fraction

yij : Coefficient of thermal expansion

I : Total phase change rate in a unit volume of two-phase flow.
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(used in TRAC and RELAPS codes)
Density

Isothermal compressibility
Fraction of interphase frictional heat distributed to gas phase

Continuous phase

Gas phase

Liquid phase

Summation of gas and liquid phase
Saturated state of gas

Saturated state of liquid

Saturated

Time

Spatial

Effect of wall to gas

Effect of wall to hiquid

Gas phase affected by liquid phase
Liquid phase affected by gas phase
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[APPENDIX I] Basic equations for horizontal flow in partial differential form

Basic equations for horizontal flow are expressed on reference to the previous report™)

as follows.
Mass conservation :

é
E(p3A3)+}%(’ogAgu3) Wy —W, = 0

(R1)

g 7
E(p,/l,)+§(,01A_,z.rf)-5—wgr +w, =0 (R2)
Momentum conservation ;

g g OFy,  OF, aP
—é)?(pgAgug)+a—Z(pgAgug -ug)—u,wg, —uw, + 523 +—§?+Ag rr ¥ (R3)

V7 d aF éF P
}t—(plAﬂ[{) +§—Z‘(p1AI i, 'Hl) +u,wgl +ugw,g +~a_ZW?+—Eéi+ AI E’Zﬁ =0 (R4)

Energy conservation (saturated two-phase flow) :

} i u’ & u? 04
. = P A, e, +?3 +E; p A u, hg+—-2‘5— +P 6:
2 2 a 0 a ! (RS)
u; u 9e 9g,
:wgt[hg +7’J+w,g[hz +?SJ+W3{ azg +FZ-3-}
2 Ale +Ei +i Au h+—li +P%
Py B4 € 5 a7 24U A 5 a7
) (R6)
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[APPENDIX II]

1. Physical meaning of the first law of thermodynamics.
The entropy change is expressed by the relationship between thermodynamics
state

change as follows.

1ds = dh — vdP Al
or 1ds = de + Pdv (A1
Equation (A1) is the total differential form of entropy s.
Where S = f(hP)
_ (A2)
or S=f (e, v)
( é’s} 1 [ é’sj v
and —! ==, |=| =-=
ohj, T op). T
(A3)
(0”5] 1 [asj P
or —| ==, |=] ==
ge) T ov) T

These equations are originally based on the equations of the first law of

thermodynamics and the definition of entropy for the reversible process of closed

system, as follows.

dg = dh— vdP
(A4)

dg = de + Pdv
and dg = Tds (AS5)

Where, thermodynamics theory defines the entropy increase of working fluid
receiving the heat dq from a heat source of temperature T in Eq.(A5).

However, the entropy increase in Eq.(Al) is valid for any change regardless of
reversible or irreversible process because entropy s is determined if independent
variables h and P or e and v are given in Eq.(A2). Moreover, temperature T is defined
as that of working fluid. Consequently, Eqs.(A4) and (A5) can be used not only for the
external heat dq in reversible process but also for all the heat dq contributive to the
entropy increase in an irreversible process such that frichonal heat takes place 1n a
flow.

Therefore, we can generally express the equation of the first law of thermodynamics
and the equation of the definition of entropy increase for any of reversible or

irreversible process by considering all the heat dq’ contributive to the state change of

working fluid with temperature T as follows.
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dq = dh - vdP A
dq'= de + Pdv (A6)
dg = Tds (A7)

We investigate with the case of state change in a fluid flow.
We study for the case of one dimentional steady flow of single phase in a horizontal

pipe for simplicity as shown in the figure below.

P, - Py
dp
/ dQ,(external heat rate)
oAU ——> —>
&\3 dF{wall friction force)
1 2
Where
dP=P,- P,

dF, : Wall friction force acting on the fluid between section 1 and 2.
dq, : external heat added to the unit mass of fluid while passing through from

section 1 to section 2.
dQ,= pAu-dg, External heatrate in the small test section.

Basic equations are :

Mass. o d{pAu) =0 (A10)
Momentum : d(pudu + dP)+dF, =0 (All)
Energy® d{ pAu (h + %}} = dQ, (A12)

From Eq.{A10) and Eq.(A12), we get
d(mi‘;—J = dg, (Als)

Equations (A13) and (A11) are respectively changed as follows

dh +udu =dg,
1 dr,
udy = - —| dP + ——
yo, A

Combining these two equations, we get
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dF
dh—‘—i"i—dq +—L (Al4)
p -

Equation (A14) expresses the relation between thermodynamic state change, occurred
in the flow from section 1 to section 2, and the heat conmbutive to the state change.
Combining the Eq.(A14) with Eq.(A1), we get Eq.(A15) which expresses that the heat
contributive to the entropy increase of fluid 1s equal to the heat contributive to the state

change and consists of external heat dq, and frictional heat dF;/pA.

Cﬂ I
ng = dqa 4+ —

or (pAu) Tds = dQ, +udF,

We can consider Eq.(A14) as the first law of thermodynamics concerning the state
change in the flow. The equation of the first law of thermodynamics was derived using
the basic equations for the flow (A10), (A1l) and (A12). Accordingly, if three out of
four equations above are given, the other can be denved.

We have used the first law of thermodynamics as a general expression of a

thermodynamics state change in the derivation of basic equations of two-phase flow in

the previous paper‘”.

2. A few problems of energy conservation equations of two-phase flow.

Discussions are made for the energy equations widely used in the thermo-hydraulic
analysis code for nuclear safety. We consider one dimensional horizontal flow with no
external heat for simplicity. Taking the energy equations used in TRAC® code which
is similar to RELAP® code, the basic equations are as follows.

Mass conservation :

2 (ap), +5—i(apzz)g T (AL6)

;Z—(ap) +;§(apu) T (A17)
Momentum balance :

(ap), [&‘g +u, %} = gi;-g- I (u, - ul)-%(ajgz +§§—f} (A18)

(ap), [%4— Y, ‘:;) - -a, %-1“ (1, - ) - [%Fzﬂ+%j (A19)



JAERI—Research 97—079
Energy conservation for gas phase :

3 . g &(au)
E(ape)g +5(apue)g = —P%—P#%-qis +T-h, (A20)

Energy conservation for gas and liquid mixture :
7 a 7
= (ape)g” + =7 (r:xpue)g‘?J =-P 7 (au)gH (A21)

We cannot read directly the physical meaning of these equations since the kinetic
energy terms are eliminated from the original total energy conservation form.
Therefore, we try to derive the same from of energy equations from the total energy

conservation equation of two phase flow mixture which is obviously understandable of

the physical meaning as presented in Eq.(A22).

Z u? g u
—sapie+— + h+— =0 A22
ar { p( 2 }}gﬂ' 072 {apu[ 2 }}3%! . ( )

This equation is formed only accounting income and outgo of total energy in a control
volume and has no concern with the matter of occurrence inside the control volume®.

Now, we take the case I" >0 which means evaporation occurs 1n the two-phase flow

mixture as a net phase change.

Changing Eq.(A22) and upon rearranging it, we get

é & fu  Ju u | a | '
E(a’oe)gH +§—Z—(apuh)g+, +{apu(;+u—5—§}}g“ +‘:7{E (CZP)HI"E(O(,OM)HSH =0

(A22)
Substituting Eqs.(A16)~(A19) for Eq.(A22) and if rearranged using h=e+P/¢, we get

& 7 7
w(ape)gﬂ +—(apue)g+l = _Pﬁ(au)gﬂ'

St gz
u, — 4 _5Fi +u_g§FWg +£§Fm +(ug_u[)_l" (A224)
A oz A 8Z A JdZ 2
U
9r

Comparing Eq.(A22A) with Eq.(A21,) we find the frictional heat term g In
Eq.(A22A) is missing in Eq.(A21).

Although the value of gr may be small compared with the internal energy of fluid,
the effect of frictional heat may not be negligible when pressure change is evaluated

by the change of internal energy of fluid, because it is very sensitive for the saturated
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vapor. This is the first problem involved in the evaluation of pressure change.
Phase change rate I' is obtained as follows.
Substituting e=h-p/p for the left hand side of Eq.(A22A) and after rearranging, we get
[ ah} P
+ apll - -
I 7z o

2+

. b7 a ch
Left hand side of Eq.(A22A)= h{ — e “
eft hand side of Eq.( ) { {é’t(ap)Jré’ZijL(ap é’rj

g+

P 17
- (a u)g+l E_g B Pﬁ (au)g#

Substituting Eqs.(A16), (A17) for the first term of right hand side of the above and

after rearranging, we get

-1 Jh 1 20P ch 1 3P
r= ) [ an _1oh) . A23
hh {( P)( P ar} (apu)( 57 > 52] qp}w (A23)

Equation (A23) represents the phase change rate in an unsteady two-phase flow of

saturated condition with decreasing pressure expressed by the first law of
thermodynamics of vapor and liquid mixture.
We can understand from Eq.(A23) that phase change occurs in each phase

independently exchanging latent heat. Therefore, we can express as follows

r=r,+1I,
e =Yy T4m
So, we can get the equation of phase change rate in the each phase :

—1 oh, 1 6P ch, 1 JF

r,=— —t =1+ e A24

2= {(aﬂ),( PN 0,)[} (a,ou)i{ﬁz p é’Z] qn}m (A24)
-1 ch, 1 5P ch, 1 9P

r,=— ¢ — I +{apu e A25

LR {(ap)s( o p, azj ( p)g{az 2, az} qu} (A25)

We can divide the term gz in Eq.(A22A) into gas and liquid phase, as follows

Uy é’ng 1 Rt u, —u; JF,
- == +§(ug u,) T, +7 y 7’“2
oy oF,, 1 2 u, -1 &Fr
T =Ty Gp e U] Tt (on =g

The terms I, and I, are the evaporation rate from saturated liquid and condensation

rate from saturated vapor, respectively, these equations arc the same as the ones in the

chapter 3 of reference [1].
Equations (A24) and (A25) are expressed by the first law of thermodynamics in the
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flow concerning the state change with time and space. The contributive heat (g, q;) to
the state change in each phase in Eq.(A24) and in Eq.(A25) 1s given as follows,

respectively, as we have seen in Eq.(Al4).

dq &

(“")f[?? n z;%} =T+ 4n (A24)
aq aq

(ap), (3; tu ";Z“l =10y, + 45 (A25A)

Further, the energy equation of each phase is derived as follows.
Substituting €, =h,-p/p, for the liquid phase of left hand side of Eq.(A22A) and after

rearranging, we get
Left hand side of Eq.(A22A)

= g(ape)g + %(apue)g + 8, {—j? (ap)+ wﬁ%(apu)}

]1'
g a
P - Zap) - (aup
e Genlt] - Ller) - o) -
2
From Eq.(A17), we get I =-nl
Using Eq.(A24), we get I, ==, +¢ if +(au), ﬁ}Z) + Gy

Substituting these equations for the left hand side of Eq.(A22A), we get the energy

equation of gas phase, as follows.

8 da, O
> —(ape) + = (apue) e 0’31 - P = (au), + g (A26)

If we change the internal energy of the second term of left hand side to enthalpy, we

get

7 a P ,
= (ape)g t— (apuh)g = £+ (au)g =7 + G, (A26)

Similarly, substituting e,=h,-p/o, for the gas phase of Eq.(A22A) and using Eq.(A16)
and Eq.(A25), we can get the energy equation of liquid phase.

74 7 Ja &
E(ape)l + 5(0{;9&{6)[ =—hl, ~hT,+P 5; —~ P%(au)l + Gy (A27)

or,
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Vi 8 _ da AP ,
= (ape), + = (apuh), = ~hT; ~h Ty +P—F+ (au), =7 Tin (A27)

Equations (A26) and (A27) are derived considering the phase change occurs in each

phase independently ; evaporation from saturated liquid phase and condensation from

saturated vapor phase.
But, the phase change equation used in the TRAC code is as follows.

I = ;}f’%@ (A28)
2 !

This equation evaluate only the net phase change rate in the mixture even though the

interfacial heat transfer to gas phase and to liquid phase are independently considered

as follows.
7,-1,
qig = hig ’ Ai VO[ (Azg)
T -7 .
oy = hii : Ai ‘VT]! (AJO)

Here terms A, and h; are an interfacial area and heat transfer coefficients, respectively,
and T, is the saturation temperature. '

The energy equation of gas phase is derived as follows if we follow this idea of
phase change model. In this idea, the contributive heat to state change of liquid phase
is qutqe. So, the term I, in Eq.(A22B) is expressed as follows, by the first law of

thermodynamics.
oh  Oh 1z o P aP
I, = {(ap)[ré}»-%ugj}r = {(ap)(;?+u§—g)}[ + a,(;;i—ul 51
o 7 aqy
Where (a,o)j(gf— + ué’—gl =q, +qn (A31)

The term I, in Eq.(A22B) is given from Eq.(A28) as ;
I =hT =g, +g, +hT
Substituting I, and 1, for Eq.(A22B) and combining with Eq.(A22A), after rearranging

we get the energy equation of gas phase.

7 d 7 o 2
?i-t-(ape)g + ﬁ(apue)g = —P-é)?(au)g - PE +h,T+q, + 4, (A31)

Comparing Eq.(A31) with Eq.(A20) which is given in the basic equations of TRAC
code, the frictional heat term g, in Eq.(A31) is missing in Eq.(A20).

—45—
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Similarly, the energy equation of liquid phase on the basis of phase change model
expressed by Eqs.(A28)~(A30) is obtained as follows.

74 7 74 oo
E(ape)f t— (apue), = —Pa‘(a’u)l + PE ~hT +q,+q, (A32)
Where, contributive heat to the state change of gas phase is as follows.
g9 oq ,
(ap)g(; + HEL =g, + G, (A32)

Comparing Eq.(A31) and Eq.(A32), we can get the energy equation of two-phase
mixture flow as Eq.(A22A)
Comparing the contributive heat terms to the state change between two phase

change models; that is between Eq.(A24A) and Eq.(A31) , and between Eq.{A25A)
and Eq.(A32), we can know the following relations between [, and q;,, and between "

o and gy, respectively.

r,=-——=:
¥ h,-h
(A34)
- QII
r,=—=t
£ oh, -k

Accordingly, we can see the following form in Eq.(A28).
I'= I"g, + I"Ig

In the Calculation of phase change rate caused by the pressure decrease of saturated
two-phase flow using Eqs.(A28)~(A30), temperatures T,, T, vary around T, keeping
T,< T,< T, and making heat transfer to gas phase q;,>0 and to liquid phase g; <0
resulting like [, <0 and [, >0.

These situations of heat exchange and phase change are similar to those given by
phase change equations (A24) and (A25).

But, in the case of non-equilibrium state between gas and liquid phase ; that is super
heated gas and subcooled liquid, physical matter becomes different.

In this case, direct condensation of vapor to liquid phase takes place due to
temperature difference and all energy of condensing vapor moves into liquid
simultaneously. The physical condition of the phase change above is completely
different from the case of the saturated two-phase mixture with decreasing pressure.
Therefore, only one type of phase change model expressed by Eqs.(A28)~(A30) is not

able to deal with correctly other type of phase change phenomena such as
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condensation due to temperature difference between vapor and liquid.

Further, the most important difference is in the physical meaning between these
equations. Equations (A24) and (A25) are theoretically derived by the first law of
thermodynamics concerning state change in a flow. On the contrary, Eqgs.(A28)~
(A30) are empirically established. In the theoretical equation, phase change rate 18
therefore expressed as a function of pressure change, and in the empirical equation,
phase change rate is expressed as a function of two kinds of temperature difference ;
T,-T, and T,-T, (mormally T,< T, and T, > T, in decreasing pressure), where
temperature of each phase is unknown variable. The different physical meaning
between the theoretical and the empirical equation yields the difference not only in the
number of unknowns but also in the numerical stability. In the case of theoretical
equation, phase change rate is directly calculated with pressure change. But in the case
of empirical equation, it has to be calculated by the iterative method with temperature

change or implicit method to avoid numerical instability.
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3. Problems in the derivation of difference equations for numerical calculation in
the volume-junction model.

In the numerical calculation with the volume-junction model (Fig.1), flow change
is determined at the junction by evaluating the pressure difference between volumes
and momentum change from volume to junction, and the thermodynamic state change
1s determined in the volume by evaluating income and outgo of mass and energy. The
thermodynamic state in the volume is assumed to be uniform. However both of the
state change from volume to volume and the flow change from junction to junction are
not small because the length of volume is not small. Moreover, the flow rate in the
volume 1s also different not only from the junction of volume inlet but also from that
of volume outlet.

The energy equation of two-phase mixture (A22A) obtained from the total energy
Eq.(A22) by eliminating the term of kinetic energy cannot be directly converted into
the difference equation. Because the elimination of the velocity term 1s made
considering that velocity in partial differential terms by t and by Z are the same in the
partial differential equations system. But, these velocities are different in the partial
difference equations system for the volume-junction model. Thermodynamic state
terms are also in the same situation in deriving the energy equation of each phase
(A26), (A27) or (A31), (A32) which are changed considering that thermodynamic
state in partial differential terms by t and by Z are the same.

Before going to the elimination of kinetic energy term from the total energy
conservation equation of each phase with the volume-junction model, we check the
physical meaning of momentum equations (39) and (40) which are derived in the
chapter 2.4.

The momentum equation for the flow in the volume of each phase is derived using
the conservation equations of total energy and mass, and the first law of
thermodynamics for each phase.

However, the physical meaning of the equation as a momentum equation 1s difficult
to be understood because each term comes from energy convection term of the energy
conservation equation in which phase change terms in the junction flow are contained.
Thereupon, if we consider the case of a small pressure difference in the junction flow
and the flow quality 0<<x<<I, the phase change rate can be assumed to be very small

compared to the flow rate in the junction flow.
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So, the terms, in Eq.(41) of this paper become
B =1, B,=l, By=My, .,
By= MZE,J-U 5, = Mzu—n By = Mch~1
Then, the momentum Eq.(39) of gas phase in the Vol. K becomes

AW | |
[AZ &tgj :Wg,.f—l Uy _Wg,_,r .HS-K +(‘A‘/‘{zE .uI)K _Wrc .ug)K
r.4

i

My, uy Mo,y —(Ang +AF21)JA' .

e, 4,)

Yt (p, -p) (39)

Hg'K-

(g,.]-l

ug.i{

Eq.(39)A is the same form as the momentum Eq.(5) in the junction flow showing the
clear physical meaning.

Elimination of kinetic emergy term of total energy conservation equation in the
difference equation with the volume-junction model is made as follows. The total
energy conservation equation of gas phase in Vol. K is presented in Eq.(3). In Eq.(3)
the differential term of kinetic energy in Vol. K is changed to Eq.(57) and the first
term of Eq.(57), the differential of flow rate in Vol. K is substituted by Eq.(39). Then,

we get the internal energy change rate in Vol. K as follows.

A )
E(Nfgeg )K = Ws,J-l 'th "Wg,J 'hg‘x +M1E,K 'hg,x _MrC,K 'h:.x

_(PVA J *hyx Mg _hg.K M
K

. ) 0
n AM n AP "
+ WZJ_IZI(r_WEQJ +WZJ_IZE{———J +E,, (A35)

£ -1 & s

Where
Epe =W, B - B %(ugj )+ Mg %(ug - u,)i
+ B, %(ug.K - u:.:)z + B (Ang + AF;I)J_l Ut B, - AQ;?g

Equation (A35) could become nearly the same difference equation by using Eq.(3 %)
as the one directly converted from Eq.(A26)". But it is not the same.
Further, we change the left hand side of Eq.(A35) as follows.

A(M,e,)= M Ae, +h M, ~ Py, - AM,
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Substituting mass conservation Eq.(1) of gas phase for the second term of this
equation, AMz A aV/v,) for the third term and the enthalpy change equation (38) in
the flow from Vol. I to Vol. K for the night hand side of Eq.(A35), we can get

Ae . 1 2 . Av -
(b, 280 - te), Loy 21,20 (436)

K K

If we convert the internal energy term into the enthalpy term in the left hand side,

we get

Ah . 1 T AP
M QJ =\r-Mg) +=(u, —u) Mg, —f—(M v —J (A37)
[ gAY P ( )K 2( £ )K B & Ay .

Equation (A37) is identical with Eq.(34) which is obtained by changing Eq.(25A).
Equation (A37) is expressed by the first law of thermodynamics concerning the
relation between the contributed heat and the thermodynamic state change in Vol. K.
The partial differential equation (25A) of the first law of thermodynamics does not
contain any parttal differentials with respect to Z, and hence Eq.(A37) should be
identical with Eq.(34).

However, Eq.(A35) represents some different terms from the difference equation
obtained by directly converting the differential Eq.(A26) to difference equation. These
terms are the seventh, eighth and the first term of E,,,. The seventh and eighth terms m
Eq.(A35) correspond to the second term of right hand side of Eq.(A26). These two
terms appear because phase change in the junction flow is considered. The first term
of E,.. appears because energy dissipation occurs in the volume due to mixing with the
fluid of the upper volume, which is peculiar to the difference equation with the
volume-junction model.

Thereupon, if we consider the case that P;-Py is small and the junction flow quality
0 << x << 1, we have following approximations in Eq.(41) of this paper.
B =1 B,=1, By=My,, Bi=Myg,,, B=My, ,, B=M;,.,
Further, in the nght hand side of Eq.(35)

the eighth term = (hg - h;)K Mo s

W
senmhiem [ 22| (5 B)=(at),, (5 )
Ps /-1 )
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Accordingly, Eq.(A35) becomes as follow in this case.
A : : :
E(Mgeg)g = W:s:.,f—1 'hg.f _Wg,J 'hg,x +Mr§,K 'hg,K - MrC,K 'hr.x +MZE,J-—I 'hg_K
- Aa
~ My, b~ [PV E) (o), (P =B) ot Ep (A35)A

K

Equation (A35)A is almost equal to the equation which is obtained by directly
changing the difference Eq.(A26) to the difference equation except the dissipation
term (the first term of E,,,) which arises due to mixing with the fluid of upper Volume.
Attention must be paid that Eq.(A35)A is obtained by using momentum balance
Eq.(A39) for the volume flow and by considering the case that PPy is small.

Here, we study about another way of thinking for the numerical method with the
volume-junction model. In that way, phase change is considered only in the volume
and is not considered in the junction flow. That is, the thermodynamic state does not
change in the junction flow and the flow from the upstream volume mixes in the
downstream volume keeping the state of the upstream volume. This method is used in
the codes of TRAC and RELAP etc. The equations of phase change, momentum
balance and energy conservation in the volume in which kinefic energy term is
eliminated are derived as follows by using this method.

We consider for the gas phase in Vol. K. As for the contributing heat Qg to the
thermodynamic state change in the volume, all heat which were considered in the
junction flow so far has to be included. Accordingly, referring to the chapter 3 in this
paper, we get

0

=g K

= Wg.»’—l(hg,f - hg‘K)—l- W, (ugj - “g'K)Z + M, %(ug - uz)i (A38)

+(AFws +AF;,) Ut

g
Phase change rate arisen from the gas phase in Vol. K becomes as follows from

Egs.(25A) and (27).

Mzcxt Mg (ﬂzﬁ_} _i _A_P_%_ (A39)
’ r dP p, | AL r .

We can get mass and energy conservation equations as follows excluding the phase

change term in the junction flow from Eqs.(1) and (3).
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AM, o
Mass | =5 =W, -V, (Mg - M) (A40)
14
A u u’ u’
Energy ) E{ME [eg + ?3)} = Wg,.f—l (hg + 7&’) - PV.gJ {h&;’ - —;—J
X 1 K
. u2 . u2 Aa .
+ Mg [hg +—25j - M,C,K[h, +-2iJ _(PVE-J + A0, ;. (A41)
K K 14

Momentum balance equation in Vol. K is derived as follows by using these equations

above. Change the left hand side of Eq.(A41) as follows.

AM Ah A AW, ot AM
=h, 2+ M, —2-V-~(a,P)+(AZ- £ __& ¢ 41Y
{g At £ At r(ag ) ( u‘*’) At 2 At} (A41)
Change Eq.(A39) as follows.
Ah . )
[Mg —g} =[f-M;c+agV£+Qg} (A39Y
At ), At .

After substituting Eqs.(A40) and (A39) for Eq.(A41), rearrange Eq.(A41) using
Eq.(A41) and Eq.(A38), then we get

AW, , :
AZ - u, v =W, 0y, Uy e =W, ;g +M1EVK(113 -zt,)K
K

(A42)
Mty = (8 + AF), g
Dividing both sides of Eq.(A42) by u,x, we get the momentum balance equation as

follows.

AW, ‘ _
(AZ Argj =W,y =W, e +(MLE 'u‘)x _(M:c 'ug)!c
K

(A42)

g./-
(AF,, +AF,) -
£.K

Eq.(A42) is very simple in comparison with Eq.(A39), because of disappearance of
the term originated from phase change in the junction flow. As the result, Eq.(A42) 1s
similar to Eq.(39)A which is available only for the situation that phase change rate 15
small compared with flow rate in the junction. However, the form of Eq.(A42) looks

strange for a momentum balance equation since the pressure difference term is missing
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which plays an important role for governing the motion of fluid.

However, the terms I\./LE, Mlc in Eq.(A42) include heat exchange terms between
phases which should be originally considered in the junction flow. Those terms are
expressed by ng which is given as a contributing heat to MlC,K by Eq.(A38).
Therefore, we separate the phase change terms M, M, into M, M and M. M,
which are originally considered in the volume and the junction, respectively.

The original phase change terms in Vol. K are expressed as follows by combining

Fgs.(24A), (254), (27), (28) and (29).

(r-M;)K = —M,[gﬂuiJ£+Mfm é(ug mu,)i

. dh :
(r-MrC)K = Mg(jdﬁ—ﬂpi}%—M%’K -%(ug ““’)jc
g

Combining Eq.(A43) and Eq.(A39) for gas, and Eq.(A43) and Eq.(24A) for liquid,

> (A43)

respectively, we get

2

(r-#1,), =(r-M12), + O — M %( u) e
Ad4
tte) = 882), Oy o),
Where, similar to Eq.(A38)
Qr,x =W, (hu - hr,x)+ Wia %(z‘u - “z,x)z + Mzc,x ‘*21“(“2 — Y )i (A45)

+ (AFWI + AF:g)H Uy T AQ;E‘!,J—I

As for the phase change terms in Junction J-1, we consider the case of the very
small pressure decrease in the junction flow to make easy to understand the physical

meaning of expressions. Then, from the Eqs.(7A) and (A8), we can get

(r ) A'd(.ge)‘,_I = _WI,J-1 . (hJ,K - hu) + A, (Px - Bf)+ (Wf ' Aq?pr)J_l

. {A46)
(r ' MEC)J—I - H/g.f—'u '(hg-K N hg.l) h Agug (PK h P:') a ( Wé‘- ' Aq””ii )J—I

Where, the contributive heat to phase change in the junction flow is expressed as

follows, for each phase.
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2

(H/f ) Agrpr)_;_, = {(AFWI + AF}S)'Z‘} + AQ;‘EI +(Wr - Mz?’a)%(uu - uz,;:)
W12 ) |
J-l
(Wg.AqTPg)“ {(AF + AF ) ", +AQ, +(W - M; )2( o -z:g'K)2

+ M, %(uu - ug_x)z}
J-1

After changing the first term of Eq.(A38) and Eq.(A45) by using Eqs.(A46) and
(A47), respectively, substitute Eqs.(A38) and (A45) for Eq.(A44), then we can get the

(A47)

4

following equations.

M = M:?EK + Mg o - (Ai”,)"’ (PK - R’)+£{_E'
T Fin (A48)
(A i ) H
M MCK+N;CJI+Jmu(PK_R)+_£
T i
Where
Hy M;EJ %(fu ,K)2 - Mgc,f-l %(ug.i - iK) (M MO) ”;"(ug _ur)j\,
He =My, l—;—(ug‘J —usx)z -~ My %(um —ug‘K)z + (ME - MIOE)K ;(z:g —u,)i J

(A49)
Substituting Egs.(A48) and (A49) for Eq.(A42) and after rearranging we get

AW : .
[ g} =Wty Witk —(MS; '“f)x *(Mroc U )+MZOEJ ik
K

At
: 1 1 ;
_MZGC,J—I Uk +—_(HE Uk +H, .ug,K)_———(Agug: +Ar”f2)K '(PK —P;)
T T
(), '
—AFWg-i-AFgIJ_l-————— (A50)
U, x

Comparing Eq.(A50) with Eq.(39)A (APP.IL3) which is obtained by assuming
(P - P)) is very small in the momentum Eq.(39) which is derived considering the
phase change in the junction flow, we can find differences as follows. The velocity
multiplied by A%, or M), the sectional area multiplied by (P - P) and appearance of
the terms Hy and Hc in Eq.(AS0) are different between Eq.(A50) and Eq.(39)A. In

these differences, the sectional area will be the most effective to the flow change in the
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volume. Obviously, whereas the sectional area in Eq.(39)A is reasonable as the term
defining the force acting on the fluid, the sectional area in Eq.(50) is strange. The
cause of the unreasonable momentum equation is originated from that the phase
change in the flow from the upstream volume is considered after flowing into the
downstream volume keeping the state of the upstream volume. For obtaining the
correct form of the momentum equation in the volume, it is necessary that the phase
change in the flow from the upstream volume should be considered in the junction
flow where pressure decreases to the pressure of the downstream volume.

Elimination of kinetic energy term from the total energy conservation Eq.(A41) is
made as follows. The kinetic energy term of this equation is expressed by Eq.(57) in
this paper. For the first and second terms of Eq.(57) are substituted by Eq.(A42) and
by Eq.(A40), respectively.

Finally, we can get the internal energy conservation Eq.(A51) for gas phase in

Vol. K.

A X .
E(Mgeg)K =W, hy =Wy byt Mgy Py = Mex Y

(A51)
- [PV —A_CE-J + Ei’a.m'f
At p
Where
1 2
Erpsss =W —Z—(ug,,f - “g.;c) + (AFWg + AFEI)H Ui
(A52)

5

. 1 2 ,
+ Mgy E(ug —uj)x + AQEV_]
Comparing Eq.(A51) with the equation obtained by directly converting the
differential Eq. (A26) to the difference equation, the term of (wiu)g i—; 1S MISSIiNg 1nt

Eq.(A51).
If we change the left hand side of Eq.(A51), we get

A(M,e, )= M,de, +h AM, — Py AM,

Substitute Eq.(A40) for the second term and AM,=A(aV/vy) for the third term of
the right hand side of this equation, respectively, and after rearranging using Eq.(A38),

we get
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Avg

Y Aeg B . . -
AL, (M), +Opu M, P At (839
If we use enthalpy for the left hand side of Eq.(A33), we get
Ah . . AP
[Mg Ezil( =(r81.) +0,, +[Mgvg K;]K | (A54)

Equattons (A53) and (A54) are basically the same form as Egs.(A36) and (A37),
respectively, which are obtained considering state change in the junction flow. But the
calculation method of the thermodynamic state in Vol. K is different between
Eq.(A53) or Eq.{A54) and Eq.(A36) or Eq.(A37), respectively. The former equations
are obtained assuming that the flow from the upstream volume mixes in the
downstream volume keeping the state of the upstream volume. On the other hand, the
latter ones are obtained considering the state change and the phase change in the
junction flow caused by pressure decrease and by the heat added to the fluids
including the frictional heat. Therefore, the flow from the upstream volume mixes in
the downstream volume after the state changed in the junction flow.

Accordingly, if we use the first law of thermodynamics for the evaluation of the
thermodynamical state change i the volume, difference equation is obtained in the
same from for both cases. Simply, the contributive heat to the state change varies and
so does the phase change rate in the volume according as the state change in the
Junction flow is considered or not. However, the problem is if we evaluate the state
change in the volume assuming that the flow the upstream volume mixes in the
downstream volume keeping the state of upstream volume, the momentum balance
equations for the volume flow become unreasonable as shown in Eq.(A42) or i
Eq.(50) from the viewpoint of the physical law of motion.

The flow in the volume should be derived correctly so as to conform to the physical
law because the flow in the junction is evaluated by using the momentum change from
volume to junction.

From the above mentioned, it 1s concluded as follows.

The difference equations for use in the volume-junction numerical model cannot be
directly converted from the partial differential equations which are changed by
substituting other differential equations under the condition of continuous flow change

along the flow
path. For the model in which discrete flow change is assumed, the difference equations
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have to be converted from the partial differential equations which are constituted by
the terms of clear physical meaning for the control volume, so that the physical

meaning of the original equations is preserved.

Further, in order to derive the rigorous momentum balance equations for the volume
flow such that they conform to the physical law, it is necessary to comsider the
thermodynamic state change in the junction flow.

As for the energy equations to determine the thermodynamic state change in the
volume, the equations of the first law of thermodynamics should be the best because

they are simple and able to calculate most precisely even for a small change.



