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Linear resistive stability results obtained from the toroidal magnetohydrody-
namic codes FAR developed at the Oak Ridge National Laboratory in United
States of America and AEOLUS developed at the Japan Atomic Energy Re-
search Institute are compared for carefully constructed benchmark profiles and
parameters. These are unstable to a tearing mode with toroidal mode number
n=1. The eigenvalues and eigenfunctions calculated with both codes are in
close agreement and show that the effect of compressibility is weak for these
modes. The effect of finite plasma beta is considered, and the eigenvalues
calculated by the FAR and AEOLUS codes also show good agreement. It is
shown that the finite beta has a stabilizing effect on the toroidal tearing
mode, but that the compressibility also has little effect on finite beta tearing
modes.
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1. Introduction

The effect of compressibility on the stability of tokamak plasmas
to magnetohydrodynamic (MHD) modes has generally been studied
more in the context of ideal perturbations than of resistive ones. This
is in part due to the small number of available tools to study such
problems but more so engendered by the inherent difficulty in
solving the full set of MHD equations in full toroidal geometry which
includes the full effects of compressibility, both analytically and
numerically [1-5].

Here, we investigate the inclusion of compressibility in the full set
of MHD equations in the FAR and AEOLUS codes developed
respectively at Oak Ridge National Laboratory. This study serves the
purpose of providing an independent external benchmark for both
models and their respective numerical implementations. It also
serves the additional purpose of providing a study of the effect of
compressibility on resistive tearing modes for a carefully controlled
set of profiles and parameters. While the results reported here are
limited to the effect of compressibility on the linear stability
properties, these comparisons are clearly intended to include
nonlinear stability as well.

The remainder of this report is organized as follows. The FAR
and AEOLUS models are described in Sec. 2. The equilibria used for
the comparisons are found in Sec. 3, while the results as to their
stability to resistive MHD perturbations are described in Sec. 4.
Finally, Sec. 5 serves as a summary and conclusion.

2. Models

The FAR code used in the present studies solves the full set of
linear and nonlinear magnetohydrodynamic (MHD) equations,
including parallel and perpendicular compressibility, in full toroidal
geometry. Details on the formulation and numerics can be found in
Refs. 1-2. FAR solves the full set of MHD equations in terms of
potentials instead of primitive variables. The advantage of this
formulation are the resulting second order derivatives which lead to
more robust numerical properties than the first order derivatives
presentin a primitive variable formulation would. FAR calculates the
linear and nonlinear stability of fixed boundary equilibria to ideal and
resistive MHD modes. It does so in a straight field line coordinate
system and uses finite differences in radius and sine/cosine Fourier
mode expansions in poloidal and toroidal angles. In FAR, the linear
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terms are treated implicitly in the time domain, which gives rise to the
inversion of block tridiagonal matrices, while the nonlinear terms are
treated explicitly in time and result in mode convolutions which are
handled analytically instead of using fast Fourier transforms. Several
limits have naturally been built into the FAR formulation. These
range from incompressibility (V- V=0 and ratio of specific heats I'=)
to finite compressibility or I'# 0.

The AEOLUS codes used in the present studies include both a
toroidally incompressible ( or pressure convection version), named
AEOLUS-IT, and a fully compressible one, named AEOLUS-FT.
Details of the toroidally incompressible version can be found in Ref.
3. The representation is almost the same as in FAR. In fact, as stated
in Ref. 1, the formulation adopted in FAR was based on the AEOLUS
one. AEOLUS-IT uses potentials throughout while AEOLUS-FT uses
potentials instead of magnetic fields but time evolution equations for
the velocities in place of evolution equations for the poloidal 6 and
toroidal ¢ components of vorticity and W =(V-V). In AEOLUS, as in
FAR, the linear terms are treated implicitly, while the nonlinear terms
are treated explicitly in the time domain. The convolutions arising
from the nonlinear terms are also handled analytically.

3. Equilibria

The equilibria which are used as input to FAR are calculated by
the two-dimensional, fixed boundary, and axisymmetric Grad-
Shafranov solver RSTEQ which is described in Ref. 5. The equilibria
which are used as input to AEOLUS have been either analytical or
generated with the two-dimensional, free boundary, and
axisymmetric MHD equilibrium code MEUDAS/SELENE which is
described in Ref. 4.

The equilibrium considered for the comparisons of interest here
is a circular one with inverse aspect ratio of 0.1 and with the following
pressure P(r) and safety factor q(r) profiles: '

P(r) =(1-(r/a)??,
q(r) =1.38 (1+(r/0.6)%)™.

This means that the q profile ranges from 1.38 at the plasma
center to 3.85 at the plasma minor radius a. The value of poloidal
beta is chosen to be B =1, unless otherwise noted. The equilibrium
flux contours obtained with RSTEQ and MEUDAS/SELENE are
plotted in Fig. 1. These plots confirm that the two calculated equilibria
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are in very close agreement given that the Shafranov shifts and
shapes are the same. The Shafranov shift dependence on poloidal
beta values for equilibria used in FAR and AEOLUS codes are shown
in Fig. 2. Although the shift for the FAR code is a little larger at high B,
than that of AEOLUS, they are in good agreement. In addition, Fig. 3
shows that the P and q profile obtained from RSTEQ are in excellent
agreement with their analytical input. The agreement is also good
between the RSTEQ profiles and the spline-interpolated P and q
profiles used in FAR.

4. Linear Stability Results

The linear resistive stability calculations performed using FAR
and AEOLUS-FT are carried out for toroidal mode number n=1 and 3
poloidal harmonics, namely m=1, m=2 ,and m=3. Up to 5 equilibrium
n=0 modes have been included with m ranging from O to 4.

A uniform mesh covering the plasma minor radius is used with
400 grid points for FAR, while AEOLUS-FT uses a nonuniform mesh
with a large number of grid points in the radial region ranging from
around =2 to around q=3 to insure greater accuracy and better
convergence. The value of constant resistivity chosen for these
comparisons corresponds to a Lundquist number S defined as S=
1a/1,4 Of 10°, where the poloidal Alfvén time 1, = a/v,,, with v,, the
poloidal Alfvén velocity defined with the edge poloidal magnetic field
By(a).

The dynamical n=1 modes are perturbed ab initio and are
converged in time to their linear toroidal eigenvalue for the growth
rate (this mode is purely growing) and respective eigenfunctions.
The eigenfunctions obtained with the fully compressible FAR for I'=
5/3 are shown in Fig. 4 for the perturbed poloidal stream function ¢,
the poloidal velocity, the poloidal flux y, the poloidal magnetic field,
the electrostatic potential o, and the pressure P, for the poloidal
mode numbers m=1, 2, and 3. These same eigenfunctions are
shown in Fig. 5 but for AEOLUS-FT and again for I'=5/3. Agreement
between AEOLUS and FAR with full compressibility is quite
remarkable as far as details of the eigenfunctions are concerned.
The difference between profiles of the electrostatic potential a in
Figs.4 and 5, is attributed to the definition of o; in Fig. 4, it is
redefined, while in Fig. 5, the definition is a original one. The
corresponding eigenfunctions obtained with FAR but with
incompressibility imposed (see Refs. 1 and 2 for further details) and
with AEOLUS-FT are shown in Figs. 6 and 7, respectively.
Comparison of these three figures indicates that the effect of
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compressibility for these resistive tearing modes ( at the values of
aspect ratio and B, considered) is rather weak and in fact only
noticeable in the details. :

A comparison of the growth rates, normalized to 1, is presented
in Fig. 8 for FAR and AEOLUS-FT with varying values of the
compressibility parameter (ratio of specific heats) I'. The number of
grid points used in AEOLUS-FT was 500, packed around the q=2
and g=3 rational surfaces. The growth rates obtained with AEOLUS-
FT, which are well converged in terms of the number of grid points
used, are slightly higher than those obtained in FAR (which are also
well converged in the number of grid points used, namely 400
uniformly distributed radial grid points). In addition, the growth rate
obtained with FAR exhibits less of a variation with I" than the growth
rate obtained with AEOLUS-FT which tends to decrease slightly with
I'. These minor differences, however, are almost negligible.

In the following, we investigate the finite beta effect on resistive
MHD mode, and also make comparisons between the results
obtained with both the FAR and AEOLUS-FT codes. The growth rate
dependence on B, values is shown in Fig.9, for two values of specific
heat ratio, I'= 5/3 and 1000. The growth rates in the figure are
calculated with the FAR code, and shows a clear stabilizing effect of
the finite plasma beta on toroidal resistive modes. There appears to
be two kinds of stabilizing effects, one is around B,=0 and the other is
mainly in the high B, region. The reduction of the growth rate is very
steep near B,=0, especially in the I'=1000 case, while in the high B,
region, it appears gradually. The reduction around 3,=0 comes from
the compressional wave damping, and it is absent in the case of §,=0
or in the calculation using the toroidal incompressible resistive mED
equations[3] or the reduced set of resistive MHD equations using the
assumption of tokamak ordering, a/R,<<1[6]. The ratio of the growth
rate of compressible case at B,=0 to incompressible case near B,=0
in Fig.9 is about 1.6, which is just consistent with analytical
calculation in the case of large aspect ratio [7-9].

The comparison of the dependence of the growth rate on B, for
two values of T is shown in Fig.10, for I'=5/3 in Fig.10.a and I'=10% in
Fig.10.b. To show the coincidence more clearly around 3,=0, we use
a logarithmic scale for the B, values in the figure. Excelient
agreement can be seen for both cases. A little disagreement in the
high B, region must come mainly from the difference of equilibria. As
mentioned before, the equilibria are obtained numerically in FAR
code, while they are obtained analytically in the AEOLUS code using
an expansion in inverse aspect ratio.
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5. Summary

The linear studies presented in this report show that the fully
compressible versions of the MHD stability codes FAR and AEOLUS
give results that are in close agreement in the case on n=1 resistive
tearing modes. This agreement is particularly remarkable in the
eigenfunctions. Both FAR and AEOLUS show that the effect of
compressibility is rather weak for these resistive tearing modes. The
effect of finite plasma beta has also been considered, and the
eigenvalues calculated with the FAR and AEOLUS codes also show
good agreement. It is shown that finite beta has stabilizing effect on
the toroidal tearing mode, but that compressibility also has little
effect on finite beta tearing modes.

Nonlinear comparisons do however remain to be made between
FAR and AEOLUS, if only to assess the consequences of
compressibility on the nonlinear evolution of such resistive modes.
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flux y, 8 component of the magnetic field, o, and pressure P,
obtained with the full MHD code FAR with I'=5/3.
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Fig. 8. Growth rates normalized to the poloidal Alfvén time 1,,=a/V,(a)
for the n=1 resistive mode with S=tq/1,,=10° at the q=2 rational
surface (r/a=0.7) obtained with the full MHD FAR and
AEOLUS-FT codes and various values of T'.
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Fig. 9. Growth rates dependence on 3, normalized to the poloidal
Alfvén time t,=a/V,(a) for the n=1 resistive mode obtained
with the full MmD FAR code for two values of T'.
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