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Neutronic performance of slow neutrons from various moderators and nuclear
heating in the moderator were studied by computer simulations in the proposed
reference target-moderator-reflector system for a 5 MW pulsed spallation neu-
tron source projected in Japan Atomic Energy Research Institute. The perfor-
mance per MW in the beam power was found to be, at least, comparable or
superior to that of other laboratories (SNS, ESS). Our proposed system at
5MW provides 1.5 times higher time integrated slow neutron intensity and
about 80 times higher peak neutron intensity compared with that of existing
intense source, ILL.

Target shape/size effects on slow neutron intensity were also studied. This
result showed that slow neutron intensities do not strongly depend upon the
target shape. This result suggested that more flexible engineer design could be

made.
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1. Introduction

We have reported the results for the bare target neutronics on the target system of 5 MW
spallation Neutron Source proposed by JAERI". As pointed out in the report, optimizing target
material and shape further needs indispensably, calculations on the full target-moderator-reflec-
tor systems. Calculations are essential to maximize the neutronic performance of slow neutrons
from the moderators.

In the present study, we calculated energy spectral intensities of slow neutrons and time
distributions from various moderators and energy deposition in cryogenic moderators, for full
target-moderator-reflector systems.

The main purpose of the present investigation is to obtain the neutronic performance (slow
neutron intensity and pulse shape) of the reference target-moderator-reflector system?. We com-
pare the performance of the present results with those obtained at other laboratories or projects
in order to evaluate and justify our reference system.

It is another important issue for the target engineering to investigate the effect of the target
shape as well as the proton beam footprint on the time-averaged-slow-neutron intensity. At higher
beam power target size becomes large compare to an ideal one due to the maximum acceptable
beam power density and safety reason (triple target vessel, fourfold cryogenic moderator vessel,
etc.). It may lead to a poor neutronic performance. We performed some calculations to investi-

gate such effects and report the results.

2. Model of reference target-moderator-reflector system

A target-moderator configuration is illustrated in Fig. 1. The coupling scheme of the target
and the moderator is a wing geometry type. The configuration of the target-moderator-reflector
system is illustrated in Fig. 2.

Table 1 shows the proton beam, target and reflector parameters. The combinations of the
main parameters of the proton beam, the target and the reflector examined in this study are
summarized in table 2. The proton-current-density profile is assumed to be a rectangular (flat
distribution) with a maximum acceptable density of 48 pA/cm? at beam power of 5 MW. A
rectangular target with a hemispherical shape beam window is adopted to obtain a good neu-
tronic performance. Lateral target dimensions are assumed to be beam height plus 3 cm in verti-
cal direction and beam width plus 4 cm in horizontal direction in the reference system. The
target material is contained by a double stainless steel vessel (SUS316). It is filled with water
between double SUS316 structures.

Two coupled hydrogen (liquid or supercritical at 20 K) moderators with water premoderators
(PM) at ambient temperature (hereafter we call coupled H, moderator) are located above the

target to realize the highest peak intensity together with the highest time-integrated intensity.
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The coupled H, moderator has dimensions of 12 x 12 x 5 cm’. The ortho / para ratio of hydrogen
at 20 K in the reference system is assumed to be 75% / 25% (normal hydrogen). Two hydrogen
moderators share the backside with PM.

One high-resolution thermal neutron moderator (upstream) and one high-resolution epith-
ermal neutron moderator (downstream) are located below the target as shown in Fig. 3%. The
latter consists of light water at ambient temperature. Two high resolution moderators below the
target are decoupled. The dimensions are 10 x 10 x 5 cm® for the thermal moderator and 10 x 10
x 3 c¢m? for the epithermal moderator. Each moderator has open angle of 50° and 10 x 10 ¢m® of
viewed surface for neutron beam extraction. In the calculation a 3 mm-thick B,C decoupler is
used. The neutron cut-off energy is tentatively fixed at 1 eV by changing the number of B,C. The
material of a cryogenic moderator for a high resolution thermal neutron source has not specified
yet in the reference system, and therefore we tentatively put a decoupled liquid-methane (L-
CH,) moderator at the position of the upstream moderator below the target. The main parameters
of the moderators investigated are summarized in Table 3.

We assume that two reflectors of Lead (Pb) and Beryllium (Be) as a reference size (80Y x
160" x 120" cm?). Each reflector has neutron-beam extraction holes from moderators as shown
in Fig. 3.

We performed extensive calculations for various combinations of proton beam-target-re-
flector parameters as shown in Table 2 to compare the neutronic performance with that of the
reference model.

Details of the calculational model of the reference target-moderator-reflector system are

described in Appendix.
3. Calculations
3.1 Calculational details

In order to predict the neutronic performance of each moderator in the reference system,
especially on the spectral intensity and pulse shapes, and to provide basic data for a moderator
engineering such as nuclear heating in moderators, we performed neutronic calculations using a
code system which consists of NMTC/JAERT " and MCNP-4A®. NMTC/JAERI solves the high
energy hadron transport (above 20 MeV) and MCNP-4A does the neutron transport below 20
MeV with cross section libraries, FSXLIB-JEFF, FSXLIB-JFNS and THERXS. The energy bins
used in the present calculations are shown in Fig. 4. The total number of the energy bins was 156
including 82 below 1 eV. For a mercury (Hg) target, cross sections evaluated recently at JAERI
were used®. The total number of protons incident upon the target to produce neutrons was about
3 x 107 in each NMTC/JAERI Monte Carlo simulation. The number of neutrons from the target
in MCNP-4A calculations was determined so that the maximum statistical error of neutron in-

_2_
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tensity per unit energy bin at the Maxwellian peak of thermalized neutrons is less than 1%. Point
detector estimators to obtain the neutron intensity were located at 2 m from the moderator viewed

surface.
3.2 Fitting functions on energy spectral intensity

Figure 5 shows the typical calculated spectral intensities (histogram) of neutrons from the
different moderators at the reference system with a Hg target - Pb reflector combination. The
calculated values of the spectral intensities from moderators were fitted by using a semi-empiri-

cal formula7) described below.

The leakage slow neutron spectrum from a moderator, ¢( E ), can be expressed as,

oy = 2B JED JED g
sch

where @, (E) is 4 T equivalent time-averaged-neutron-spectrum. J(E, r) is neutron spectral
intensity given by Monte Carlo simulation at distance, r, from the moderator surface and S is

viewed surface area for neutron beam extraction from the moderator.

In the case of a coupled H2 moderator, &( £ ) can be expressed as a sum of the thermal
equilibrium spectrum, ¢,( E) (Maxwellian), and epithermal spectrum in the slowing down
region, ¢,,( E ) (1/E spectrum),

OE)=0,(E)+8.,(E)¢,(E) 2,
where the parameter 6, E ) is an appropriate joining function as described later. The spectrum

¢,,( E ) can be expressed as,

MEhfﬁf% 3),

2
where E_ is the characteristic energy of the Maxwellian portion of the spectrum and J is the

energy integrated intensity of Maxwellian part of spectrum. ¢,,( E') is expressed as,

0, E) =p(E) e ) @,

where ¢,,, represents the intensity of slowing down neutron at 1 €V and o is a constant between
0and 0.2. p( E) is given by,
P(E)=1+8e"(1+y+05y") 4,

where y=0 for E<E,
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y=Y(E-E) for E2E,,
d, yand EP are the fitting parameters.
The joining function 6, E ) is given by,
0.(E)=1-¢e"(1+x+0.5x%) 6),
where x=0 for E<E.,,
x=B(E-Ey) for E2E,,
and B and E_ are also the fitting parameters.

In the case of the decoupled L-CH, and water moderator, a neutron spectrum ¢( E ) can

also be expressed as a sum of ¢,( £) (Maxwellian) and ¢,

epi

( E') (1/E spectrum) by using an-
other semi-empirical formula ,
OE)=0,(E)+ACE) G, (FE) 7,

where A( E') is an appropriate joining function. ¢,( £) and ¢,,( E) can be expressed as,

0u(E)=1 ]—5E~ e~ er @),
_ 1{ E
q)epi( E ) _¢IeVF(W) (9) .

The joining function, A( E') , is given by,

MEy=—1__ (10),
1 +expliE")
where a and b are the fitting parameters.

Figure 6 shows an example of the fitted spectral intensities of neutrons, ¢( E ), per unit

proton beam power (MW) with the calculated histograms from three different moderators.
4 Neutronic performance

4.1 Neutronic characteristic of reference target-moderator-reflector system

4.1.1 Time integrated neutron intensity

The spectral intensities obtained by using fitting functions for the reference system (a Hg
target and Pb reflector) are compared in Fig. 7 with those studied in other laboratories (a coupled
H, moderator without PM for the LANSCE Upgrade project® and cold second neutron source
(CSN2) at the Institute Laue Langevin (ILL) in Grenoble®). The main parameters, J, E.and ¢, ,

characterize the spectral intensities form a moderator, as described in section 3.2. Those results

_4_
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for two reflecotors of Pb and Be are summarized in Tables 4-6, compared with results obtained
by other laboratories®*™ '*'2. The observations from the results on the time integrated intensities
from the coupled H, moderators for the reference system are summarized as follows:

(1) The cold neutron intensity is superior to that of ILL, which has the highest cold neu-
tron intensity in the world if feasible to develop neutron source of more than 4 MW by spallation
source as shown in Fig. 7. The spectral intensities at the Maxwellian peak or the time-integrated
cold-neutron-intensity J per MW of the present model are at least comparable or more than those
of LANSCE upgrade project as shown in Table 4.

(2) The slowing-down neutron intensities at 1 eV from the coupled H, moderator above
the target are almost the same as those obtained by other laboratories (LAN SCE Upgrade, SNS
and IPNS Upgrade).

(3) The Be reflector gives a higher cold neutron intensity by about 45 % and lower energy
deposition in the moderator which is shown below than the Pb one. The former, however, pro-
vides a poor pulse structure compared with the latter as shown in section 4.1.2. Thus, selection
of reflector material gives a critical effect not only on neutronic performance but also on the
overall system performance.

(4) The cold neutron intensities from the coupled H, moderator are about a factor of 4
times higher than that from the decoupled L-CH, moderator (as a reference) as summarized in
Tables 4 and 5.

(5) The cold neutron intensities from the two coupled H, moderators are almost the same.
This shows that both moderators take the first seat for neutron intensity ie., it has considerably
good coupling efficiency of target and moderators.

These results justify the presently summarized concept of reference target-moderator-re-

flector system as far as the neutronic performance is concerned.
4.1.2 Time distribution from cold moderator

Time distributions (pulse shapes) of neutrons from the cold moderator at 2.0-2.2 meV are
shown in Fig. 8. Both reflectors (Pb and Be) gives almost the same peak neutron intensity, while
the Pb reflector provides a narrower pulse width than the Be one. The predicted cold neutron
peak intensity is at least 80 times higher than that of ILL. To obtain further higher intensity, we

propose a fully extended PM concept and further optimization study is continued.
4.1.3 Nuclear heating in cryogenic moderator

The nuclear heating in a cryogenic moderator is one of the most important technical issues
in the design study of an intense spallation source. We calculated the energy deposition in the
cryogenic moderators (a coupled H, moderator, L-CH, and a simple H, etc.). The results are

_.5_
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summarized in Table 7 and spatial distributions are compared in Fig. 9. The use of PM in a
coupled H, moderator reduces the energy deposition by about 50 % but energy depositions are
still very high. A Be reflector can provide a higher integrated intensity (J) with a longer tailed
time distribution, described above, and reduce the energy deposition by about 35 % to compared
with the Pb one. However the reduction rate at the hottest region close to the target is rather
small as seen in Fig. 9.

The candidate moderator of high resolution thermal moderator is decoupled poisoned L-
H.. The energy deposition in the moderator is further higher than that of coupled H, one as

shown in Fig. 9.
4.2 Target shape/size dependence

We performed neutronic calculations concerning the effects of target shape and size on the
spectral intensity of slow neutrons. We consider two points; one is changing a target aspect ratio
(b/a, where a and b are the horizontal and the vertical beam sizes, respectively) and the other is
extending a target size to horizontal or vertical direction of the target with a constant proton
beam cross section. The latter case provides the important information for target engineering

rather than neutronic performance.
4.2.1 Dependence of target aspect ratio

Figure 10 shows time-integrated-slow-neutron intensities, J, and ¢, , for various modera-
tors as a function of the target aspect ratio. The target sizes and shapes are automatically defined
from each aspect ratio. The data indicated by closed triangles are for a reduced beam current
density (two third of 48 pA/cm?), which corresponds to a larger beam size, accordingly a larger
target size. The results indicate that the slow neutron intensities, J and ¢, , are insensitive to the
target aspect ratio and a somewhat increase of target size. This fact will provide a larger flexibil-
ity for the target engineering rather than for the neutronic performance.

4.2.2 Dependence of extended target size to horizontal or vertical direction

Figure 11 shows time-integrated-slow-neutron intensity dependence of extended target
size to horizontal direction. The slow neutron intensities are slightly reduced according to ex-
tension of the target to horizontal direction. It was worried that it would reduce the neutronic
performance because a certain-sized flowing duct to horizontal direction of the target in a wing
geometry is needed. This result is “glad tidings* for the target development engineering.

On the other hand, Figure 12 shows it’s intensity dependence of extended target size to
vertical direction. The neutron intensity decreases considerably compared to that of horizontal

__6_
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extension case. This is simply because of increase in the distance between target and moderator
(vertical direction). As the reference, the results of void and reduced proton current density
cases also are shown in Fig. 12. In the void case, the extended vertical region is filled with not
Hg but vacuum. If a target size (distance between moderator and target) inevitably becomes
larger due to acceptable beam power density, safety vessel (target and moderator), etc., this
result shows that it leads a poor neutronic performance.

Figure 13 compares the effect of target size on the neutron intensity, ¢, , from decoupled
water moderators of different target-moderator combination. These results provide an important
information of target-moderator coupling efficiency. The present system (the wing geometry
type) combined with a flatter target and a moderator gives higher neutron intensities, ¢, , com-
pared with the ESS model'¥ (wing and flux trap geometry type) combined with split (cylindri-
cal) target and moderator as shown in Fig. 13. This is mainly due to a larger high luminosity
region by the flatter target and high efficient combination of target-moderator in our model.
Target size effect on a neutron intensity is similar to that of flux trap geometry type rather than
wing type in the ESS model.

5. Conclusions

From the results of present calculations, the followings are concluded:

(1) It is confirmed that the neutronic performance based on the present concept is at least
comparable or superior to those predicted for other intense pulsed spallation neutron source
projects. The time-integrated cold neutron intensity at 5 MW is estimated to be about 1.5 times
higher than that of an existing intense cold source, ILL. Thus it can be said that the proposed
concept of the target-moderator-reflector system is attractive.

(2) Although a Be reflector gives a wider neutron pulse from the coupled H, moderator
than a Pb one, the former gives a higher intensity by about 45 % than the latter and reduces the
energy deposition in the moderator. However, the energy deposition at the hottest region by
both reflectors is high. How to mitigate the energy deposition in cryogenic moderator is also key
issue for target development.

(3) Slow neutron intensities are insensitive to the target shape/size (aspect ratio and ex-
tended target size to horizontal). These results make target engineering more flexible, which
encourage the target development.

We obtained useful information for development of intense spallation source. There are
still many engineering issue to be solved such as the heat removable in cryogenic moderator and

pressure wave in the target, etc., however.
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Table 1 Specification of proton beam, target and reflector

Proton
Energy Profile Current density Beam power
(GeV) (MA/cm’) MW)
1.5 Uniform distribution 48 5
Target
Material Shape
Hg Rectangular
Reflector
Material Size (W x Hx L cm’)
Pb or Be 80 x 160 x 120

Table 2 Combinations of proton beam, target and reflector for the study of target shape/size

effects
Aspect ratio dependence
Proton Target Reflector
Aspect ratio (b/a) Beam size (a x b cm’) Size (W x H cm®) Material

0.688 10 x 6.88 14 x 9.88 Pb or Be
0.172 20 x 3.44 24 x 6.44 Pb or Be

Dependence of horizontal extended

Proton Target Reflector
Beam size (a x b cm’) Size Material
13.35 x 5.16 27.35 x 8.16 Pb
13.35 x 5.16 37.35 x 8.16 Pb

Dependence of vertical extended

Proton Target Reflector
Beam size (a x bcm’) Size Material
13.35 x 5.16 17.35 x 11.16* Pb
13.35 x 5.16 17.35 x 13.32 Pb
13.35 x 10.32%* 17.35 x 13.32 Pb
13.35 x 5.16 17.35 x 18.48 Pb

13.35 x15.48%**

17.35 x 18.48

Pb

- : This color shows reference system.

*Two cases were studied ( Void case and filled with Hg case).

** Reduced current density case : 48 x (1/2) pA/cm?
*** Reduced current density case : 48 x (1/3) pA/cm?
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Table 7 Total energy deposition in moderator for reference system

Moderator Coupling Reflector Volume  Average power density Total energy deposition
(liter) (kW/liter) (kW)
Coupled H2 Coupled Pb 0.72 3.92 2.82
L-CH4 Decoupled  Pb 0.5 11.66 5.83
H20 Decoupled  Pb 0.3 15.77 4.73
L-H2 Decoupled  Pb 0.5 7.98 3.99

e Couplede e Coupled ...... S oy 289 ........................ e
L-CH4 Decoupled  Be 0.5 9.47 4.73
H20 Decoupled  Be 0.3 13.00 3.90
L-H2 Decoupled  Be 0.5 6.48 3.24
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Fig. 1 Layout of target and moderator
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Fig. 2 llustration of reference target-moderator-reflec-

tor assembly
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Fig. 3 Calculational model of target-moderator-reflector system
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Fig. 4 Relation of energy group and energy bin number
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Fig. 5 Histograms of calculated slow-neutron energy spectra
from various moderators
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Fig. 6 Curve fit results of spectral intensities from
various moderators
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Fig. 7 Neutron spectral intensities from the moderator
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Fig. 9 Spatial distributions of heat deposition in cryogenic
moderator as a function of distance from moderator bottom
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Fig. 13 Target shape effect on neutron intensity, 0.\
from decoupled water moderator
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Appendix

Details of the calculational model of the reference target-moderator-reflector

system are shown in Figs Al - A6.
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Fig. A1 Layout and dimensions of target and refiector in calculational model
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Fig. A2 Detail layout and dimensions of L.-H, moderators
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Fig. A4 Detail layout and dimensions of thermal (cryogenic) and
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