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A description of propagation of a relativistically intense short laser pulse into an isotropic plasma
is presented. A kinetic equation for the spectral function of the electromagnetic (EM) waves is
derived for an arbitrary amplitude pump wave, where the fully relativistic case is considered. The
resulting kinetic equation of the spectral function is used along with the set of equations of the
plasma to derive a general dispersion relation, and the importance of relativistic effects is pointed
out. In the case of a superstrong short laser pulse novel Langmuir waves, with phase velocities larger
than the speed of light, and waves of ion-sound type, which are damped only on ions, are found. In
addition, for the case when the plasma density along with the mass of the electrons satisfies the
“frozen-in” condition, stationary nonlinear new type of ion-sound waves are investigated. The
mechanism of the emission of these waves is also discussed.
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L. INTRODUCTION

The development of ultra-intense short pulse lasers allows exploration of fundamentally new
parameter regimes for nonlinear laser-plasma interaction. In fact, a number of experiments
have been carried out in which plasmas are irradiated by laser beams with intensities up to
10W/cm?. At such intensities the electron quiver velocity rapidly approaches the speed of
light, and a host of new phenomena have been predicted [1-9]. Numerous works [9-33] have been
devoted to the investigation of relativistically intense EM wave propagation into an isotropic
plasma, for the radiation pressure being larger than the plasma pressure. The above treatments
where restricted to the case of monochromatic EM waves. However the bandwith of an initially
narrow spectrum may eventually broaden, either as a result of several kinds of instability
processes, or as the result of other nonlinear wave-wave interaction processes. In order to
study the interaction of spectrally broad relativistically intense EM waves with a plasma, it
was necessary to derive a general equation for the EM spectral intensity. Such an investigation
was done in Refs. [34,35]. This new picture of high-frequency EM processes in a plasma opens
the way to the formulation of conceptually new problems in plasma electrodynamics.

In the present paper, we consider certain problems involving the interaction of relativistically
intense nonmonochromatic radiation bunches with an isotropic plasma. The paper 1s organized
as follows. First in Sec.Il, starting from Maxwell’s equations for the EM field in a relativistic
plasma, we derive a general equation for the EM spectral intensity [34,35]. Then in Sec.III
we derive the plasma wave dispersion relation in the presence of the relativistic ponderomotive
force and discuss a new type of longitudinal plasma waves induced by a strong short pulse
laser. In the same section it is shown, that the ratio of the plasma density to the mass of the
electrons is conserved, or there is a ”frozen-in” condition in the case of stationary waves. The
stationary nonlinear ion-sound waves are discussed in Sec. IV, and the velocity of the waves
and the maximum potential of the field are defined. The mechanism of the emission of a new

type of ion-sound waves is given in Sec.V. Finally, a brief summary of our resulsts is given in
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the last section.

2. DERIVATION OF THE KINETIC EQUATION FOR THE PHOTON GAS
We start from Maxwell equations [34] for a circularly polarized EM wave,

Pp n
AP—WZ;P, (1)

where the following dimensionless quantities have been introduced:

p Wpe
p—»m,tawpet,r—)kpr, k, = 2,
o

" Hn' v=(1+p)".

o]

wye 1s the electron plasma frequency, associated in the usual way with the mean plasma density
No, and m, is the electron rest mass.

We shall consider Eq.(1) at two distinct points and instants of time. Following the procedure
described in Ref.[34], we can derive an equation for the correlation function < p(ry, t1)p(ry, t3) >=

[I(ry,ty,rs,t2), where < ... > denotes ensemble averaging:

o* 9
(Vf - V%)H(rl,rz,tl,tz) — (W - W)H(I'l, ry,t1,t2) = (pr — p2)II(ry, 10,81, 85) (2)
i 2
where p = n(r,t)/v(r,1).
Introducing new variables,
1 1
R=§(r1+r2), r=ry —ro, t:§(t1+t2), T‘—‘tl—tg, (3)
Eq.(2) yields
(VRV: - > )H(er)—l( — p)I(R, 1, t,7) 4
RVr 9toT y Ly by '_2)01 P2 y0,45,T) ()

where p1—pzzpl(R+—;,t+%)—pz(R—%,t—%>.

Performing a Fourier transformation of II(R, r,t,7) on the variables (r,7) we can introduce

the power spectral function P(R, ¢ k,w):

P(R,t, k,w) = /dr/dTH(R,t,r,T)expz'(kr— wt) . (5)
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We can also write

(R, 1) =< p*(R, ) >= | (2””‘) LP®R,1kw) (6)

Taking the double Fourier transformation of Eq.(4) and expanding (p, — p2) in Taylor series,

we obtain after integration the following equation for the spectral function

1)1 1 82I+1p oH+1p 1821+1p o¥ip
2l + 1)! 2R+ JkA+T 9 A+t 6w2’+1)

(w—(?—+k-VR)PRtk lfj (7)

ot

3. LINEAR LONGITUDINAL PLASMA WAVES. FROZEN-IN CONDITION
We now investigate the propagation of small perturbations in such a plasma. To this end,

we linearize Eq.(7) with respect to the perturbations, which are represented as
p = po + bpexpi(qr — Nt), P(R,t,k,w)=P.(k,w)+ éPexpi(qr — Q1) . (8)

The result is

ad 1 1 0 \20+1
k — P =6 Q—
(ke — )P pz;o (20 + 1)t 2241 (aV+ 8w) Pollow) ®)
or after summation we obtain the following relation
(qk-Qw)apzap{P+(k+3w+9)—P-(k~3w—9)}. (10)
(o] 2’ 2 o 2 b 2
Then from Eq.(6) we have for the perturbation of II,
dk dw P -P;
OIl = / — [ = =2
(2r)3J 27 gk —Qw P (11)
and for ép we can write
on 1
=— - —6II.
% Yo 273 (12)

;From Eqs.(11) and (12) follows the relation between éII and én

{1+_1_/ dk [dwP} — }6H_6n/‘ dk [dwP? -P7 13
293 (27)3 27 qk — Qw (2m)3 ) 27 gk - Qw (13)
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In the absence of the density perturbation én we get from Eq.(13) the dispersion relation due

to relativistic selfmodulation

1+

l/dk dwPf —P;

2v3J) 23 ) 2r gk — Qw 0. (14)

Equation (14), as well as the case with én # 0, has been studied in Ref.[9] for monochromatic
waves.

We now write the relativistic expression for the ponderomotive force
F=-Vy=-V(1+I(R,1)"/*. (15)

After linearization with respect to the perturbation we have

F = _2}7 Vélezpi(qr — Q) , (16)
or using Eq.(13) we obtain
1 [ dk/(27)* [ (dw/2m)(PT — P7)/(ak — Qw)

T T 2421+ (1/293) [ dk/ (27 ) [(dw/27)(PF — P;)/(qk — Qw) | Vénezpi(qr — Qt) . (17)

Some interesting relativistic features follow from the expression of the ponderomotive force
(17). First, in the case when the dominator goes to zero F increases, or én — 0. Second, when

the integral in the dominator becomes much greater than unity, we have
F = —v,Vénezpi(qr — Qt) . (18)

This expression of the ponderomotive force coincides formally with the gasdynamic force, only
instead of the temperature we have myvy,c®> in Eq.(18), and it exists only for the relativistic
motion of the electrons in a superstrong short pulse laser.

Now, if we write kinetic equations for electrons and ions with the ponderomotive force (15)
and linearize them, taking into account the relation (13), we obtain the general dispersion

relation. The result is

1 / dk dwP? —P;
(2r)3J) 2r gk — Qw

22 -
Ve 1 dk dwPt -P;
6(1 + 27v3J (2m)*J 27 gk — Qw) + (1 +beq)de. / 0, (19)

2 3
wi, 253
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where

_ _4ne? 1 (q0fea/0P)
e =1+ ¢, +beg;, bey= 7 / Q- qv dp

Equation (19) has several kinds of complex solutions for 2, resulting in a different type of
instability. But here we focus our attention on the case of the propagation of a stationary
longitudinal wave in a plasma due to a strong laser pulse. Such a possibility exists, if

1/ dk [dwP} -P;

— [ — >1 20
273

(27)3 ) 27 gk — Qw

and from Eq.(19), then we have

2,2
q*c
1+8e)(1+b6e,.——)+de.=0. 21
(14 8e) (14 8ee ) + 6 (21)
The dispersion relation (21) describes the propagation of a stationary longitudinal wave in the
presence of relativistically intense EM waves.

Let us now consider some special cases. First, in the case when only electrons participate

in the oscillation, i.e. 8e; = 0, for Q 3> que, where vi,e = (Te/mo)"/2, we obtain from Eq.(21)
O =l + 4% . (22)

This is a novel Langmuir wave due to strong relativistic effects. The physical interpretation for
Eq. (22) is that the strong ponderomotive force not only leads to the separation of charge and
creation of the longitudinal self-consistent field, but also generates the dispersion term ¢*c?,
which is due to the strong coupling of EM waves with the electrons.

Next in the case, when én; # 0, two frequency ranges can be considered for ). One is
kv € Q@ € kvyre, and the other is kvie € @ € wpe. For both cases we obtain from Eq.(21)

a new type of ion-sound solution

o=

OO12 8
m'y)/( qc qc (23)

mi /(L @E[E) T (L @ [wl )1
It is clear that now the characteristic length of the inhomogeneity is comparable to ¢/w,., but

not to the electron Debye length as we have for the ion-sound wave without a laser pulse. As
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follows from Eq.(23) the Maximum value of the frequency is w,;. We specifically note here
that ¢, = ¢(mo7¥,/m;)"/? now depends not only on the mass of the particles, but also on the
intensity of the laser pulse (7, = (1 + I1,)/2). Therefore, it is possible to observe these waves
in an experiment by changing the intensity of the laser pulse and the sort of gas.

We now try to understand physically existence of the solutions (22) and (23). First note
that, for the stationary case when the laser pulse propagates with a constant velocity v = kc?/w
(P(R,t,k,w) = P(k,w, R — vt)), the result (18) for the ponderomotive force can be obtained
without the linearization of equation (7). In this case , the left-hand side of Eq.(7) becomes

zero and one of the solutions of equation (7) is

_n(R,?)
S )

= constant . (24)

Equation (24) can be expressed as n/m.(7y) = constant, which shows that the plasma
density and the mass of the electrons satisfy the ”frozen-in” condition. This means that there
is a localization of the energy of the laser pulse in the region of high density. In other words, the
behaviour of the plasma-photon gas system is similar to a one component fluid. The solution
identical with Eq.(24) was found in Ref.[27], considering the strong EM wave propagation in
an electron-positron plasma. In the case when expression (24) is valid, we obtain the simple

expression for the ponderomotive force from Eq.(15) for arbitrary variation of the density

F = —mo’yocZV—n— . (25)

To
One can simply show that if the "frozen-in” condition is fulfield, the hydrodynamic equa-
tions, the equation of motion, and the equation of continuity for electrons, become linear and
for an arbitrary variation of the electron density we have the following linear equation

0* n — N,
(ﬁ + wze - czA) o 0 (26)

This equation shows that for plane waves one can obtain the same dispersion relation as Eq.(22).
It is important to emphasize that Eq.(1) with condition (24) becomes a linear equation and

EM wave momentum with arbitrary power will always spread out in a plasma.
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4. STATIONARY PERIODIC AND SOLITARY WAVES

In this section, we consider the propagation of stationary nonlinear ion-sound waves, when
the phase velocity of the new type of ion-sound waves is large compared with the electron
thermal velocity and the plasma density along with the mass of the electrons satisfies the
"frozen-in” condition (24). To describe the one-dimensional motion of the electrons and ions

of such waves we employ hydrodynamic equations with a self consistent field:

apc__ a¢ 2 (9n

o =0 ™ Tham, 0
(o b ud Y=o, (28)
2 B,
e e

Here u;, n; are the ion velocity and density, respectively. ¢ is the electrostatic potential, which

is coupled with the electron and ion densities through the Poisson equation

82
a—j; = 4dre(n — n;) . (31)

Equations (27)-(31) are a closed set of equations describing the propagation of one-dimensional
stationary waves. In this case all quantities depend on coordinates and time as = — vt, where
v is constant. ;From Egs. (27)-(30) it is easy to obtain the following expressions for electron

and ion densities

e¢
— -1
o m°7°c2 ) (32)
n; 2ed \-1/2
o= (1- m,-vz) (33)
Substituting these expressions for the densities into the Poisson equation, we get
82¢ ed 2ed \-1/2
ok 47ren°(1 + — — (1 — m,-vz) ) . (34)
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Now we first consider the case when e¢ <« m;v?/2, i.e., stationary waves with weak non-
linearity. In this case, the last term in Eq.(34) can be expanded in a power series, and we

obtain

— -1

2
Cs

0z? 2

32¢ wz,- (v2 ) 3w§,~ 6¢2 (35)

2 v mv?
If we neglect the last term in Eq.(35), then there are two possibilities in the linear approxi-
mation. The first is the propagation of the ion-sound waves with the velocity given in Eq.(23),

2

when m;v? < myy.c®. In the second case, when the oposite unequality is valid, we obtain a

type of the Debye potential with the characteristic scale length

C
P Gl )T

(36)

This expression shows that the effect of the Coulomb field of charge extends to a distance of
the order of the ”Debye length” rp, beyond which it essentially vanishes.
Now let us consider the structure of a solitary wave, for this it is necessary that m;v? >

mo7Yoc?, then the solution of equation (35) is

mv?(v?/c? — 1)

= )]~ Dz o) @U

and
n v? v . 1 38
o T C—E(C_Z - )chz(wpi/v)(vz/cﬁ — V3 (z —ot) =

Since we have supposed that e¢ < m;v%/2, from Eq.(37) it is clear that | v?/c? — 1 |« 1. The
relation between the propagation velocity v and the maximum amplitude ¢,,,, of the wave, can

be obtained from Eq.(37),

e¢max

v = cz +
m;

(39)

and now for ¢ we have

¢ - ¢ma1’
R [ (Bmae ) — 00)

(40)



JAERI-Research 99-030

We see that n > n, and n; > n,, since ¢ > 0. A solitary wave in a quasi-equilibrium plasma is
therefore always a compressional wave.

Turning now to the study of the equation (34), we integrate it once to obtain

E*(¢) = (%)2 = 47reno{2¢> + e’ + %mw"’(l _ 2ed )1/2} +A. (41)

Oz Moo C? m;v?

Various periodic waves can be now found depending on the choice of the integration constant
A. In the case when ¢ and 3¢/dz — 0 at | z — vt |— oo, we have A = —8mn,m;v?. This case
corresponds to a solitary wave, and we easily find the equation which determines the potential

¢ as a function of the coordinates and time

d
(Ex(9))
The velocity of propagation of this wave v, as a function of the maximum amplitude of the

Wave @maz, is found from Eq.(41) by writing 0¢/0z = 0 at ¢ = maq, i.e.

demae + Pz | 2mv?{ (1 - 2i"525‘?-)”2 ~1}=o0. (43)

MoYoC? m;v?

Finally, the relation between the wave amplitude and its propagation velocity is

_CPmaz_ ). (44)

2m,7y,c?

v= cs(l +
We note here that equation (43) has a solution only provided ¢,,,, is not too large. ;From
Eq.(43) it follows, that the maximum possible value of the amplitude of the ion-sound wave
can be determined from the relation m;v%/2 = e@,,q., because ions can no longer get across the
potential barrier. Solving this equation together with equation

(44) we obtain epma; = 2movoc® and for the velocity of the stationary ion-sound solitary

wave, v = 2¢;.

5. EMISSION OF A NEW TYPE OF ION-SOUND WAVES BY ACCELERA-
TION OF A SOLITON
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It has been shown in Refs.[15,32] that a soliton moving in an inhomogeneous plasma with
acceleration can, like a particle, emit different kind of waves.

In this section we include in our consideration the plasma inhomogeneity, which leads to
laser pulse acceleration, defining the acceleration by a. In the following we derive the equation

for the perturbation of acceleration, using Eq.(33) of Ref.[34]:

i<v>_—U—cvp——VP LA .

dt 2n., Ny Ny ot (45)

where

- 2/ 27r)3

is the density of the photon gas, Ny is the occupation number in the Kth state,

dk Ny w?
= 2?2 / = P
U=2 | Grpwrn) = <o? >

A

dk kc >)2

’Y

is the pressure of the photon gas, and < v > is the photon mean velocity. The factor 2 comes
in n.,, U, Py and < v > due to the existence of two independent photon polarization states.

Now the expression for p is

p= n + An(r) _1 + Onfr) = po +pl(m - :z:l(t)) )
neYy Yo No7Y

here An(r) is due to an inhomogeneity. In the absence of inhomogeneity, i.e. An(r) = 0,
< v > is a constant.

We now suppose that the first term on the right hand-side of Eq.(45) is large than the last
two terms, as < v >% /c? and < (6v)? > /c*, where < (6v)? > is the average of the square of
the thermal velocity of photons.

Let us consider the case of a weak inhomogeneity along the x direction, using the second

Hamilton equation dz/(t)/dt =< v, >=< kc*/w >, and hereby we denote dz/(t)/dt as z/(t).
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;From Eq.(45) for the coordinate of the center of the pulse (or soliton) z/(t) we obtain

equation of the acceleration

d?zI(t) 1 w2 9

= P ot
dt? 2<w,3>3:tp

(46)

In the following, we shall assume that the density of the inhomogeneous plasma changes
over a distance of the order of the width of the pulse. Then we can limit ourselves in the

expansion

2
—x/(t
pl = pl(x/(t)) + (.7: — xl(t))% I:L'::L'I(t) + (37 ;I( )) ?;xpz/ Ix:z‘/(t) . (47)

Substitution of Eq.(47) into Eq.(46) yields the following equation of the acceleration

dz:l,‘/(t) _ 1 w? (6

=22 _(—p/ .
dt? 2<wi> oz’ )x=xl(t)

(48)
We note here that equation (48) has been derived in Ref.[15] from the set of Maxwell equations
for the nonrelativistic case.

Let us now consider the emission of the new type of ion-sound waves in a weak inhomoge-

neous plasma. To this end, we linearize the set of equations (27)-(30), taking into account the

condition of quasineutrality (én ~ én;), to obtain

(_8_2_ 232)6n_ , 0% v

o2~ “ o

e 4
o 36113270 ( 9)

In equation (49) for én we isolate that part of the density perturbation which is concentrated

within the pulse:

bn __’Y(m — a/(t)) Nn. (50)

ne 1—zP/c?
The quantity Ng characterizes the perturbation of the density by the ion sound outside the
pulse (or soliton, e.g. Eq.(37)).
Now we shall assume that the velocity of the sourse of radiation of the pulse is much less

than the sound velocity, 1.e.,

() < ¢s (51)
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and the change in the velocity of the pulse within the time that the ion sound passes through
a distance of the order of the width of the pulse is small in comparision with the ion-sound

velocity, i.e.
#(t)-d < (52)

where d is the width of the pulse (or soliton).
Taking into account inequalities (51) and (52), and substituting expression (50) into Eq.(49)

we obtain for Ny the following equation

(—g—; - ci%)NR = —-:'i/%'y(:v - :cl(t)) ) (53)

,From this equation we can find the explicit form of the density distribution in the emitted
ion sound. We introduce the natural initial condition: at the initial instant of time, t = 0 , let
the emission be absent, Ng = 0. This means that from the moment ¢t = 0 the pulse (soliton)

begins to move with acceleration. Then we have

1 rt z—zHtt)+cs(t—11) 0
Np =~ / dt1z1(tr) / dz—y(z — 2/(t1)) . (54)
0

s—gi(t—cs(t-tr) 02
The analyses of the integrals in Eq.(54) are given explicitly in Ref.[15].
If we want to analyze the radiation field, it is necessary to indicate the profile of the equi-
librium density. For a linear profile, An(z) = n.z/L, the motion of the center of the pulse

(soliton) is described, according to Eq.(48), by the equation
1
z/(t) = z/(0) + vt — §at , (55)

where

2 .2
wpec” 1

a=——=
2<wi>L’

and L is the characteristic lenght of inhomogeneity.

6. SUMMARY
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We have investigated the propagation of a relativistically intense short laser pulse into an
isotropic plasma. Starting from the fully relativistic equations, we have derived a general kinetic
equation for the photon gas. This is valid for waves with a large spectral width. The relativistic
expression for the ponderomotive force is also derived and some interesting relativistic features
are discussed. The kinetic equation was used to derive the plasma wave dispersion relation
and the propagation of stationary longitudinal waves in the presence of relativistically intense
EM waves is studied. Due to strong relativistic effects a novel Langmuir waves, with phase
velocities larger than the speed of light, and waves of ion-sound type, which are damped only
on ions, are found. In addition, for the case when the plasma density along with the mass of the
electrons satisfies the ”frozen-in” condition, stationary periodic and solitary waves are studied.
The relation between the wave amplitude and its propagation velocity is derived. Finally, the

mechanism of the emission of a new type of ion-sound waves is discussed.
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STATIONARY PERIODIC AND SOLITARY WAVES INDUCED IN AN ISOTROPIC PLASMA BY A STRONG SHORT LASER PULSE




