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In a neutral beam injection (NBI) system for next generation tokamaks such as
International Thermonuclear Experimental Reactor (ITER), insulation gas around a beam
source will be irradiated with neutrons and gamma rays from the reactor. It is necessary to
evaluate the influence of the radiation on the insulation gas for the engineering design of
the ITER-NBI system. In the present paper, the influence of the Co gamma rays on air,
SF,, C,F,, CO,, and mixing gas of air and SF was studied. lonization current and voltage-
holing characteristics of the gases were measured for an absorbed dose rate of 0.45 Gy/s
using parallel disk electrodes whose diameter is 130 mm. Saturation current proved to
increase linearly with a gap length between the electrodes, gas pressure, an absorbed dose
rate, and molecular weight of the gases. Voltage-holding capability was degraded by about
10 %; the degree of the degradation did not depend on the absorbed dose rate. Dissociative
products of SF, by the irradiation were also analyzed with a quadrupole mass spectrometer.
News peaks that did not exist before irradiation appeared at the m/e of 48, 64, 67, 83, 86,
102, and 105 after irradiation. The amount of the dissociative products turned out to be

saturated at a higher absorbed dose.

Keywords: ITER, NBI, Radiation Induced Conductivity, Gas Insulation, Insulation Gas,
Gamma Rays, Ionization Current, Breakdown, SF, Dissociative Product
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1. Introduction

In nuclear fusion research, neutral beam injection (NBI) has been the most

successful scheme to heat magnetically confined plasmas.’®

It is also a promising
candidate to drive plasma current as well as to heat a plasma in next generation tokamaks
such as International Thermonuclear Experimental Reactor (ITER). Figure 1.1 shows a plan
view of the ITER-NBI system, which is designed to deliver 50 MW of 1 MeV D° beams
into the plasma with three injector modules.” Figure 1.2 shows an isometric view of the
three injector modules. Figure 1.3 shows cross sectional view of one injector module. Each
module is equipped with a beam source, which generates 1 MeV D" beams of 40 A for a
duration longer than 1000 sec.”®

The D" beams of 1 MeV are produced using an electrostatic accelerator whose
electrical potential is 1 MV. Thus, the beam source has to be insulated electrically from a
beam-source vessel that is at ground potential. In the engineering design of the ITER-NBI
system, insulation gas is utilized for 1-MV insulation between the beam source and the
beam-source vessel. The insulation gas is irradiated with radiation such as neutrons, X-rays,
and gamma rays from the reactor. Subsequently, the insulation gas will be ionized and
dissociated. Ionization current flowing through the insulation gas will result in loss of
electric power and increase of gas temperature. Dissociation of the gas might cause voltage-
holding degradation. Furthermore, dissociative products from the gas might be harmful to
human body.

E. Hodgson has studied ionization current of Helium, N,, air, CO,, and SF, at
atmospheric pressure with an experimental setup of about 3 cc using electron beams. © On
the basis of his experimental results, he extrapolated ionization current at the ITER-NBI
conditions. According to his extrapolation, ionization current would be so high that a large
amount of acceleration power of several MW would dissipate inside the vessel. However, it
is not clear that his extrapolation is applicable to the ITER-NBI system, since there is much
difference between his experimental condition and the ITER-NBI condition in volume and
gas pressure. In the ITER-NBI system, gas volume is about 30 m’, and gas pressure is
several bar. For this reason, it has become a very important issue to obtain database on
ionization current of insulation gas for the engineering design of the ITER-NBI system.

As for dissociation of insulation gas, H. Yoshida et al. have measured dissociative
products of SF, using the Co gamma rays.”’ They demonstrated that poisonous gas of
S,F,, dose not be produced by the gamma rays. However, experimental results they
obtained were influenced by impurities on the surface of gas ampules, so that relationship

between absorbed dose and quantity of dissociative products has not been clear.
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To clarify the influence of radiation more quantitatively, we performed an
irradiation experiment using the “Co gamma rays. With parallel disk electrodes of 130 mm
in diameter, we studied ionization current and voltage-holding characteristics of air, CO,,
C,F,, SF,, SF, mixed with air, while changing gap length between the electrodes, gas
pressure, and dose rate. Further, we studied dissociation of SF, with a quadrupole mass
spectrometer measuring mass spectra up to m/e = 200. To reduce the influence of impurities,
we degreased and baked gas containers before gas introduction. In the present paper, after a
description of experimental apparatus, experimental results on ionization current, voltage-
holding characteristics, and dissociation of SF are described in order. Then an experimental

formula is presented to estimate saturation current of insulation gases.

2. Experimental apparatus

2.1 Apparatus for measuring ionization current and voltage-holding
characteristics

Insulation gases were irradiated with the “Co gamma rays in an irradiation facility
at JAERI-Tokai. The facility has two kinds of gamma-ray sources. Radioactivity of the
sources is 4.1 X 10" Bq, and 0.22 X 10" Bg, respectively. The sources are 134 mm in outer
diameter and 405 mm in height. Relations between absorbed dose rate and distance from
the sources are shown in Fig. 2.1. The absorbed dose rate was defined as that for air: the
absorbed dose rate in Gy/s was calculated by multiplying exposure in C/kg/s by the average
energy needed to produce a pair of electron and positive ion (W-value) of air in eV, which
is 33.8 eV for the Co gamma rays.

Figure 2.2 shows experimental apparatus for measuring ionization current and
breakdown voltage. The apparatus is composed of a test chamber, electrical cables, and a
power supply. The test chamber consists of a circular pyrex-glass, upper and lower flanges,
a bourdon-tube pressure gauge, a linear motion introducer, a gas supply line, and parallel
disk electrodes made of stainless steel. The pyrex-glass has an internal diameter of 161 mm,
an external diameter of 180 mm, and a height of 204 mm. The volume of the test chamber
is about 4 litter. The bourdon-tube pressure gauge shows the pressure of test gas filled in
the chamber. The linear motion introducer enables us to change the gap length between the
parallel disk electrodes at the range of 0 mm to 20 mm. After the test chamber is evacuated,
test gas is introduced through the gas line. The disk electrodes are 130 mm in diameter and
5 mm in thickness. The cathode electrode is insulated by a 8-mm thick teflon disk. Further,
an electrical cable connected to the cathode electrode is insulated with a ceramic break to

distinguish ionization current generated between the electrodes from that generated at other



JAERI-Research 99-071

space. Capacity of the power supply is DC 100 kV, 3 mA.

The gamma rays ionize test gas by interactions of the photoelectric effect, the
compton effect, and the pair production of electron and positron, as shown in Fig. 2.3.
Produced charged particles are attracted toward the electrodes by an electric field.

Ionization current is measured as voltage drop in a resister of 10 k ohm.

2.2 Apparatus for measuring dissociation of SF, gas

Figure 2.4 illustrates experimental apparatus for analyzing dissociative products
from SF, gas. The apparatus consists of gas lines, a vacuum tank, vacuum pumps, a
quadrupole mass spectrometer, and a pen recorder. The quadrupole mass spectrometer is
capable of measuring mass spectra up to m/e = 200. Figure 2.5 shows a gas container
whose volume is about 0.03 liter. The container made of stainless steel has been degreased.
Thickness of the container is 1.5 mm,; the attenuation of the gamma rays penetrating the
container wall is negligible. The gas line is equipped with a needle valve regulating gas
diffusion from the gas container to the vacuum tank. The vacuum tank is evacuated with an
oil-sealed vacuum pump and a turbo-molecular pump.

Two gas containers were baked at over 150 °C for over 10 min during evacuation.
After they were cooled down to room temperature, SFy gas was introduced into them. Then,
one gas container was detached and then irradiated with the gamma rays. The other gas
container was not irradiated for reference. The irradiated gas container was installed again
to measure positive ion mass spectra. The volume of the gas flowing into the vacuum tank
was regulated with the needle valve to keep the pressure of the tank at 7.0 X 10°® Torr during
mass analysis.

3. Experimental result
3.1 Applied voltage dependence

Ionization currents of air, SF,, C,F,, CO,, and mixing gas of air and SF, were
measured for an absorbed dose rate of 0.45 Gy/s. Figure 3.1 shows ionization currents of
the gases against applied voltage between the electrodes. Gas pressure was 600 mb.
Ionization current of SF, was highest and that of air was lowest, while breakdown voltage
of SF, was highest and that of air was lowest. Thus, SF; is the worst gas from the viewpoint
of suppressing ionization current, although SF; is the best gas from the viewpoint of
suppressing breakdown.

Characteristics of the ionization current are similar to those at conventional
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ionization chambers. The curve of ionization current is composed of three parts, region I to
region III. Region I is recombination region. Applied voltage, namely, electric field is low,
so that both positive ions and electrons move at the low speed. Since charged particles at
the low speed are easy to recombine, they are difficult to reach electrodes; ionization
current is low. By increasing applied voltage, the speed of charged particles increase; the
ratio of recombination decreases. Thus, ionization current increases with applied voltage.
Region II is saturation or plateau region. The ionization current is saturated. In this region,
the number of charged particles collected by the electrodes is almost equal to the number of
ions produced by radiation. Region III is secondary ionization region. With higher voltage,
the speed of electrons becomes so high that they cause secondary ionization, followed by
electron avalanche and then breakdown.

Breakdown voltage and ionization current of SF, mixed with air are shown in Fig.
3.2. Vertical axis on the left is breakdown voltage, and that on the right is " I oy ". For
convenience, the new term of I ;o was defined as the ionization current at a half voltage of
breakdown voltage; it is regarded as saturation current. The figure indicates that a small
quantity of SF, raised breakdown voltage significantly, while I oy was proportional to
volume rate of SF gas. For example, 5%-SF; mixture improved breakdown voltage by
32 %, while I , increased just by 21 %; a little SF; mixed with air proved to have lower
ionization current and higher voltage-holding capability. This experimental result suggests
that mixing gas will be effective from the viewpoint of suppressing ionization current with
keeping voltage-holding capability.

Figure 3.3 shows I oy versus molecular weight. Circle shows I oy at the gap length
of 16.1 mm. Triangle shows I oy at the gap length of 8.1 mm. Molecular weight of mixing
gases was defined as average molecular weight that is the sum of molecular weight
multiplied by ratio of partial pressure. The figure shows that I ,,y was proportional to
molecular weight.

Table 3.1 is a summary of average relative dielectric strength of the gases. It is

Table 3.1 Averaged relative dielectric strength: each dielectric strength was normalized

by that of SF,
Gas Species Relative Dielectric Strength

SF, 1
C,F, 0.81
Air(80%) + SF, (20%) 0.75
Air(90) + SF, (10%) 0.69
Air(95%) + SF, (5%) 0.63
CO, 0.51
Air 0.49
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normalized by the dielectric strength of SF, gas.

3.2 Gap length dependence

Figure 3.4 shows I |,y as a function of the gap length between the electrodes. I oy
increased linearly with the gap length. Linear relationship between I oy and the gap length
indicates that there will be linear relationship between I 4y and the volume of gas.

When we extrapolate using the linear curve, I o is not zero at the gap length of 0
mm. We think that it may be attributed to the influence of a space between the electrodes
and the pyrex glass; charged particles generated in the space can be collected by the
electrodes. Further, it could be due to electrons emitted from the electrode surface by
photoelectric effect.

Breakdown voltage of the gases is plotted as a function of the gap length in Fig.
3.5. Breakdown voltage increased with the gap length to the 0.73.

3.3 Pressure dependence of SF, gas

Ionization current of SFy gas was measured at different gas pressure. Figure 3.6
shows the ionization current of SF, against applied voltage. Gas pressures were 0.59 (600
mb), 0.1, 0.15 and 0.2 MPa. At a pressure of 0.59 MPa (600 mb), the gap Ilength was not
4.0 mm but 4.1 mm. Figure 3.7 shows the pressure dependence of I ,,y. As is shown in the
figure, I oy increased linearly with gas pressure.

Breakdown voltage of SF; is shown as a function of gas pressure in Fig. 3.8. Open
signs are breakdown voltage without irradiation, and closed signs are that during irradiation.
At both conditions, breakdown voltage increased with gas pressure to the 0.72; significant
irradiation influence on breakdown voltage was not observed.

3.4 Absorbed dose rate dependence of SF, gas

Changing the distance from the gamma-ray source to the electrodes is equivalent
to changing absorbed dose rate. Then, we measured ionization current and voltage-holding
characteristics at different distance conditions. Figure 3.9 shows the linear relationship
between I oy and absorbed dose rate.

Breakdown voltage as a function of absorbed dose rate is shown in Fig. 3.10. As
compared with breakdown voltage without irradiation, the degradation in breakdown
voltage during irradiation was about 10 %. The figure also indicates that there was not clear

relationship between the degradation of breakdown voltage and absorbed dose rate.
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3.5 Dissociation of SF, gas

Figure 3.11 shows an example of mass spectra of SFy gas. Upper side of the figure
is a part of a mass spectrum without irradiation. Lower side is a part of that after irradiation.
As compared with the spectrum without irradiation, there were some different peaks at m/e
of 102 and 105 in the spectrum after irradiation. We think that the peaks would be due to
products generated by dissociation of SF; molecules.

Figure 3.12 shows a mass spectrum from m/e = 0 to 200 without irradiation and
that after irradiation of 4.0 X 10° Gy. There were clear differences at the m/e of 67, 83, 86
and 105. The largest difference was at the m/e of 105. The ratio of the height of the peak at
the m/e of 105 to that at the m/e of 127 (SF;") is plotted as a logarithmic function of
absorbed dose in Fig. 3.13. This figure indicates that the amount of the dissociative product
did not increase linearly but be saturated with absorbed dose.

4. Discussion

4.1 Tonization current characteristics

Before the experiment, we expected lower ionization current for SFy gas, because
it is well known that SF, molecules are prone to attach electrons. However, experimental
results showed that ionization current of SF, was highest. We think that this would be
attributable to the electron-energy dependence of the electron-attachment cross section of a
SF, molecule. Although the electron-attachment cross section at the energy of about 0 eV is
very large, it is small at higher energy region.® The energy of electrons generated by the
interactions with the gamma rays is high, so that the electrons can not be attached to SF;
molecules. Thus, the electrons can migrate in the gas, ionizing gas molecules successively.

On the basis of above experimental results, we derive an experimental formula for
estimating saturation current. Saturation current, I ,,, generated by the ®Co gamma rays is

T [A]l =fg, XMX VX P X D (4-1)

Here, fy, is constant obtained from the present experiment, which was 0.00143.

M : molecular weight.

V : volume of gas (m?).
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P : pressure of gas (atm).

D : absorbed dose rate at the case of air (Gy/s).

It should be noted that electric field between electrodes is assumed to be high enough to
collect all charged particles generated by the gamma rays.

The observation of the linear relationship between saturation current and
molecular weight is of interest. At the energy of the “Co gamma rays, a dominant
interaction is compton scattering. The cross section of compton scattering increases
proportionally with atomic number.”’ Saturation current would, therefore, be proportional

to the molecular weight at same gas pressure, same temperature and same volume.

4.2 Estimation of ionization current at the ITER-NBI system

Using the experimental formula, we estimated ionization current of insulation
gases at the case of the ITER-NBI system. Figure 4.1 shows the cross section of the ITER-
NBI module. The volume of the space between the beam source and the beam-source
vessel is about 30 m®. Table 4.1 shows required gas pressure for each insulation gas around
the beam source at the ITER-NBI system. At the each pressure, dielectric capability of each
gas is as same as that of CO, at 20 atm. According to the neutronics calculation, absorbed
dose rate of air around the beam source will be about 0.1 Gy/s during operation of ITER."”
Then, we assumed an absorbed dose rate of 0.1 Gy/s, estimating total ionization current of
each insulation gas. Table 4.2 is a summary of the ionization current. At the case of SF,
total ionization current was estimated to be 4.6 A. At the case of 5%-SFs and 95%-air
mixing gas, total ionization current was estimated to be 2.1 A. Thus, power of several MW
will be dissipated between the beam source and the beam-source vessel. From the
viewpoint of capacity of electric power supply and cooling system, the ionization currents
would not be acceptable. Other insulating method like vacuum insulation would be

Table 4.1 Required gas pressure for the ITER-NBI system: dielectric capability of each
gas is as same as that of CO, at 20 atm.

Gas Species Pressure [atm]

SF, 7.9

C,F, 10.6
Air(80%) + SF, (20%) 11.8
Air(90%) + SF, (10%) 13.2
Air(95%) + SF¢ (5%) 15

Air 21.2

CO, 20
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Table 4.2 Total ionization current inside the beam-source vessel: ionization current was
estimated from the experimental formula. Absorbed dose rate was assumed to be 0.1
Gyl/s.

Gas Species Current [A)
SF, 4.6
C,F, 6.1
Air(80%) + SF, (20%) 2.9
Air(90%) + SF, (10%) 24
Air(95%) + SF, (5%) 2.1
Air 2.6
CO, 3.9

necessary instead of gas insulation.

4.3 Influence of radiation species and their energy on ionization current

In general, cross sections of nuclear reactions are dependent on both radiation
species and their energy. Thus, when using the above experimental formula, we must pay
much attention to radiation species and their energy. It should be noted that the
experimental formula is applicable at the case of the gamma rays whose dominant
interaction is compton scattering.

By generalizing the experimental formula, we propose a formula that is applicable
to all kinds of radiation. We think that saturation current of a gas will generally be
proportional to volume of the gas, pressure of the gas, and absorbed dose rate of the gas,
which is not absorbed dose rate of air. Then, we present a general formula of saturation

current, I, generay Which is applicable to all kinds of radiation.

Isat-general [A] =Fgas X VX P X Dy, (4-2)

Here, Fg, is dependent on gas species, radiation species, and energy spectrum.

V : volume of the gas (m").
P : pressure of the gas (atm).
D,,, : absorbed dose rate of the gas (Gy/s).

Absorbed dose rate of the gas, D, will depend on gas species, radiation species,

and their energy spectrum. Even if same radiation is irradiated, the absorbed dose of a gas
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Table 4.3 Relative intensity and presumed species appearing after irradiation of 4.0X 10°
Gy: the intensity at the m/e of 127 (SF,") was defined as 1000. The absorbed dose of 4.0 X

10° Gy is equivalent to the absorbed dose of over forty-year operation of ITER

m/e Relative Intensity Presumed Species
105 5.2 SOF,+

102 0.8 S,F,+ or SO,F,+
86 1.6 SOF,+

83 1.4 S,F+ or SO,F+
67 2.6 SOF+

64 0.4 SO,+, S,+,

48 1 SO+

127 1000 SF+

will be different from that of other gas. This is why cross section of a gas species is
different from that of other gas species. Furthermore, absorbed dose rate of a gas will
change with energy spectrum of radiation, since cross section of nuclear reaction is
dependent on radiation energy.

Insulation gas utilized at the ITER-NBI system will be subjected by not only
gamma rays whose dominant interaction is compton scattering, but also neutrons and
gamma rays which have broad range of energy spectrum. Thus, to evaluate ionization
current of insulation gases more accurately, irradiation experiments with neutrons and
gamma rays, which is the same energy spectrum at ITER, are desirable. In the irradiation
experiments, small volume, low pressure, and low absorbed dose rate are enough as
experimental conditions, since saturation current increases linearly with volume, pressure,
and absorbed dose rate as demonstrated by the present experiment. If the factor of F, is
evaluated by an experiment, total ionization current at the case of ITER-NBI system will be
estimated using equation 4-2.

4 4 Dissociation of SF, gas

Table 4.3 shows relative intensity and presumed species appearing after irradiation.
We think that the trend on the figure 3.13 will be similar to the absorbed dose dependence
of the amount of dissociative products of SF,. If absorbed dose rate during operation of
ITER is about 0.1 Gy/s, the absorbed dose of 4.0 X 10° Gy is higher than that for forty-year
operation of ITER. From these results, the ratio of dissociative products by the gamma rays
will be less than about 1.3 %, even though SF; is exposéd for forty years at ITER. k
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5. Summary

The influence of radiation on insulation gases was studied with the ®Co gamma
rays. Using parallel disk electrodes, we investigated ionization currents and voltage-holding
characteristics of air, SF,, C,F,, CO,, and mixing gas of air and SF,. Saturation current
proved to increase linearly with gap length between electrodes, gas pressure, absorbed dose
rate, and molecular weight of gas. An experimental formula estimating saturation current
was obtained on the basis of experimental results. A small quantity of SF, mixed with air
proved to have lower ionization current and higher voltage-holding capability; mixture of
SF, gas will be effective from the viewpoint of suppressing ionization current. Degradation
of voltage-holding capability during irradiation proved to be about 10 %. The degree of the
degradation did not depend on absorbed dose rate. Using the experimental formula,
ionization current at the ITER-NBI system was estimated. The ionization current of all
gases was so high that it would not be acceptable. Instead of gas insulation, other method
like vacuum insulation would be necessary.

We also analyzed dissociative products from SF, by gamma-ray irradiation.
Positive ion mass spectra after irradiation were compared with those without irradiation.
New peaks that did not exist before irradiation appeared at the m/e of 48, 64, 67, 83, 86,
102, and 105. The amount of dissociative products proved to be saturated with absorbed
dose. For an absorbed dose of 4X 10° Gy, corresponding to over forty-year operation of
ITER, the ratio of dissociative products of SF, was estimated to be about 1.3 %. Thus, the

amount of dissociative products from SF, gas by gamma rays will be small.
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Figure 1.2 An isometric view of the three injector modules.
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Figure 3.1 Jonization currents of insulating gases against voltage applied between the
electrodes. Gas pressure was 600 mb(0.59 MPa), and absorbed dose rate was 0.45 Gy/s.
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Figure 3.2 Breakdown voltage and ionization current of SFg mixed with air. New term

of I oy Was defined as the ionization current at a half voltage of breakdown voltage.
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Figure 3.3 I oy as a function of molecular weight. Molecular weight of mixing gases
was defined as average one that is sum of molecular weight multiplied by ratio of partial

pressure.
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Figure 3.4 I o,y as a function of the gap length between the electrodes. Linear
relationship between I ,,y and the gap length indicates that there will be linear

relationship between I oy and the volume of gas.
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Figure 3.5 Breakdown voltage of gases as a function of the gap length. As for all gases,
breakdown voltage increased with the gap length to the 0.73.
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Figure 3.6 Ionization current of SF, as a function of applied voltage. The ionization

current was measured at several gas pressure.
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Figure 3.7 I oy as a function of gas pressure. The I oy increased linearly with gas

pressure.
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Figure 3.8 Breakdown voltage as a function of gas pressure. At both irradiation and

non-irradiation, breakdown voltage increased with gas pressure to the 0.72.
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Figure 3.9 I oy as a function of absorbed dose rate. The I oy increased linearly with
absorbed dose rate.
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Figure 3.10 Breakdown voltage as a function of absorbed dose rate. The breakdown

voltage during irradiation was about 10% lower than that without irradiation.
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Figure 3.11 Mass spectra of SF; gas. Upper side of the figure is a part of a mass
spectrum without irradiation. Lower side is a part of that after irradiation.
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Figure 3.12 Mass spectra from m/e=0 to 200. Upper side of the figure is a mass

spectrum without irradiation. Lower side is that after irradiation of 4.0* 10° Gy.
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Figure 3.13 Ratio of m/e=105 to m/e=127 (SF,"). The height of each peak was
compared. The ratio was saturated with absorbed dose.
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EXPERIMENTAL STUDY ON THE INFLUENCE OF RADIATION ON HIGH-VOLTAGE INSULATION GASES




