JT-60における先進的技術開発の進展

2005年9月

核融合装置試験部・炉心プラズマ研究部

日本原子力研究所
Japan Atomic Energy Research Institute
本レポートは，日本原子力研究所が不定期に公刊している研究報告書です。
入手の際合わせは，日本原子力研究所研究情報部研究情報課（〒319-1195 茨城県那珂郡東海村）にて，お申し付けください。なお，このほかに財団法人原子力弘済会資料センター（〒319-1195 茨城県那珂郡東海村日本原子力研究所内）で複写による実費請求をおこなっております。

This report is issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan.

© Japan Atomic Energy Research Institute, 2005
編集兼発行　日本原子力研究所
JT-60における先進的技術開発の進展

日本原子力研究所那珂研究所
核融合装置試験部・炉心プラズマ研究部

(2005年8月3日受理)

本レビューは、臨界プラズマ試験装置JT-60の装置完成から今日に至るまで過去20年間に亘る技術開発について、その内容をコンパクトに総括した報告書である。JT-60は、我が国の第2段階融合研究開発基本計画の中核装置として、1978年から製作が始まり、1985年4月8日にファーストプラズマを着火させ実験が開始された。その後、1989-91年の大電流化改造を経て、1996年には等価エネルギー増倍率が1を超えるプラズマを得ることに成功し最大の装置ミッションである臨界プラズマ条件を達成した。その後も定常高ベータ化研究開発等の実験を進め、世界的な核融合研究を先導する大型トカマク装置として研究成績を創出し続けている。これまでのプラズマ性能の進展は、装置の各種技術開発と実験放電技術の改良等が協調して進めて実施した結果であると言える。JT-60完成後20年を経過し、第3段階核融合研究開発基本計画の中核装置である実験炉ITERの建設サイトが決定されたこの時期に、これまでの先進的技術開発を総括し、今後のさらなる発展の礎とすることを意図して本報告書が執筆された。これまで行われた技術開発は多数であり、それらは各項目毎に単行の報告書を構成出来る分量である。本レビューに当たっては、比較的大きな項目に整理統合してキーワードと要点を中心にコンパクト化を図った。同時に、開発の各担当者が原則として執筆を行うことで技術開発の本質を適確に記述した結果、JT-60の技術開発ハンドブックとも言うべき高い水準のレビュー報告となっている。
Progress in JT-60 Innovative Technologies

Department of Fusion Facilities and Department of Fusion Plasma Research

Naka Fusion Research Establishment
Japan Atomic Energy Research Institute
Naka-shi, Ibaraki-ken

(Received August 3, 2005)

This review report provides the synthetic archives of innovative technologies in 20-year facility developments for the large tokamak experimental device JT-60, first founded as the major magnetic fusion device in the Second Basic Program for Fusion Research and Development of Japan. Manufacture of JT-60 was started in 1978, and the first plasma was achieved on April 8, 1985. In 1989-1991, the vacuum vessel and poloidal field coils were entirely reconfigured to improve the plasma performance. The major original mission of the JT-60 project, a breakeven condition for a D-T equivalent plasma, was finally attained in 1996. After this, JT-60, as a leading device for magnetic fusion research in the world, continues to challenge many experimental issues, which has been achieved by collaboration of innovative facility developments and experimental improvements. In addition, at this time to start the ITER construction phase in 2005, this review is expected to contribute the construction and operation activities for the next generation tokamak by providing the basic ideas in facility developments. We classified a tremendous number of development items into the selected sections for this review. Since the authors have been in charge of each development activity of their own, the contents are full of essential stories, points, and keywords in spite of its compact handbook size. We believe this review could provide highly sophisticated, informative ideas matured in JT-60 technological developments.

Keywords:
目次

1. JT-60 の開発史レビューや

<table>
<thead>
<tr>
<th>項目</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-60 の進展と機器の改良</td>
<td>9</td>
</tr>
<tr>
<td>開発人々の努力と向上</td>
<td>9</td>
</tr>
<tr>
<td>電流脈動性能の向上</td>
<td>11</td>
</tr>
<tr>
<td>安定性の向上と高発熱の進展</td>
<td>13</td>
</tr>
<tr>
<td>高エネルギー粒子研究の進展</td>
<td>14</td>
</tr>
<tr>
<td>ディスラプション回避・緩和研究の進展</td>
<td>14</td>
</tr>
<tr>
<td>熱・粒子制御研究の進展</td>
<td>15</td>
</tr>
<tr>
<td>プラズマ対向壁材料研究の進展</td>
<td>16</td>
</tr>
<tr>
<td>総合性能向上と定常維持の進展</td>
<td>17</td>
</tr>
</tbody>
</table>

2. 全系制御設備

<table>
<thead>
<tr>
<th>項目</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>全系制御設備の概要</td>
<td>20</td>
</tr>
<tr>
<td>プラズマ制御システムの開発・改良</td>
<td>20</td>
</tr>
<tr>
<td>プラズマの高精度形状制御システムの改良と改良</td>
<td>25</td>
</tr>
<tr>
<td>プラズマの断面形状制御システムの開発</td>
<td>29</td>
</tr>
<tr>
<td>プラズマの粒子供給・加熱制御システムの改良と改良</td>
<td>33</td>
</tr>
<tr>
<td>電磁気計算用機器開発とプラズマモニタシステムの改良と改良</td>
<td>36</td>
</tr>
<tr>
<td>放電制御システムの開発・改良</td>
<td>38</td>
</tr>
<tr>
<td>高次システムの開発・改良</td>
<td>40</td>
</tr>
<tr>
<td>実験データベース管理システムの開発・改良</td>
<td>42</td>
</tr>
<tr>
<td>マシンコミュニケーションシステムの開発・改良</td>
<td>45</td>
</tr>
<tr>
<td>運転制御計算機システムの開発・改良</td>
<td>47</td>
</tr>
<tr>
<td>保護インターロックシステムの開発・改良</td>
<td>49</td>
</tr>
</tbody>
</table>

3. 電源設備

<table>
<thead>
<tr>
<th>項目</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源設備の概要</td>
<td>53</td>
</tr>
<tr>
<td>大電流化改造への電源設備対応</td>
<td>53</td>
</tr>
<tr>
<td>プラズマ形状高角度化改造</td>
<td>55</td>
</tr>
<tr>
<td>ITER-CS モデルコイルのパルス電流試験にかかわる電源の改造</td>
<td>57</td>
</tr>
<tr>
<td>トリオイド磁場コイル電源・制御システムの VME 化</td>
<td>59</td>
</tr>
<tr>
<td>プロトカール磁場コイル電源・制御システムの VME 化</td>
<td>61</td>
</tr>
<tr>
<td>高パルス化改造</td>
<td>63</td>
</tr>
<tr>
<td>T-MG を用いた加熱装置への給電</td>
<td>65</td>
</tr>
<tr>
<td>電動発電機（MG）のオーバーホール（精密点検）</td>
<td>67</td>
</tr>
<tr>
<td>連続大電流遮断器の開発</td>
<td>69</td>
</tr>
<tr>
<td>電源システムにおける機器開発</td>
<td>72</td>
</tr>
<tr>
<td>特別高圧用コンデンサの更新</td>
<td>74</td>
</tr>
<tr>
<td>T 電源駆動用変圧器（132T-S）の分解修理</td>
<td>76</td>
</tr>
<tr>
<td>二次冷却塔内の充填材・汽水分離器の一部更新</td>
<td>78</td>
</tr>
<tr>
<td>交流無停電電源用蓄電池の経年劣化</td>
<td>80</td>
</tr>
<tr>
<td>電源システムの電動発電機</td>
<td>82</td>
</tr>
<tr>
<td>電源システムからの熱源</td>
<td>84</td>
</tr>
</tbody>
</table>

4. 本体設備

<table>
<thead>
<tr>
<th>項目</th>
<th>页数</th>
</tr>
</thead>
<tbody>
<tr>
<td>本体設備の概要</td>
<td>92</td>
</tr>
<tr>
<td>下倒ダイバータへの改造</td>
<td>92</td>
</tr>
<tr>
<td>大電流化改造に関わる本体改造</td>
<td>122</td>
</tr>
<tr>
<td>W型排気ダイバータへの改造</td>
<td>124</td>
</tr>
<tr>
<td>第一壁・ダイバータイプの開発・改良</td>
<td>140</td>
</tr>
<tr>
<td>第一壁表面処理技術の開発・改良</td>
<td>145</td>
</tr>
<tr>
<td>ベレット入射技術の開発・改良</td>
<td>148</td>
</tr>
<tr>
<td>ガス注入技術の開発・改良</td>
<td>154</td>
</tr>
<tr>
<td>真空排気技術の開発・改良</td>
<td>159</td>
</tr>
<tr>
<td>本体制御設備の開発・改良</td>
<td>174</td>
</tr>
<tr>
<td>高エネルギー粒子研究の進展</td>
<td>176</td>
</tr>
<tr>
<td>プラズマ対向壁材料研究の進展</td>
<td>183</td>
</tr>
<tr>
<td>セクション</td>
<td>タイトル</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>5.11</td>
<td>その他関連機器の開発・改良</td>
</tr>
<tr>
<td>5.12</td>
<td>トロイダル磁場コイル冷却水の浸出し</td>
</tr>
<tr>
<td>5.13</td>
<td>真空リーケ</td>
</tr>
<tr>
<td>5.14</td>
<td>真空管理</td>
</tr>
<tr>
<td>5.15</td>
<td>絶縁管理</td>
</tr>
<tr>
<td>5.16</td>
<td>重水素化後の放射線管理</td>
</tr>
<tr>
<td>6.9</td>
<td>高周波加熱装置</td>
</tr>
<tr>
<td>6.1</td>
<td>高周波加熱装置の概要</td>
</tr>
<tr>
<td>6.2</td>
<td>低域混成波帯（LI）加熱装置の開発、導入</td>
</tr>
<tr>
<td>6.3</td>
<td>LH 加熱装置の改良</td>
</tr>
<tr>
<td>6.4</td>
<td>イオンサイクロトロン波帯（IC）加熱装置の開発、導入</td>
</tr>
<tr>
<td>6.5</td>
<td>IC 加熱装置の改造</td>
</tr>
<tr>
<td>6.6</td>
<td>高周波加熱装置制御設備の改造</td>
</tr>
<tr>
<td>6.7</td>
<td>フィードバック系異常診断装置の開発</td>
</tr>
<tr>
<td>6.8</td>
<td>コンディショニングの高効率化</td>
</tr>
<tr>
<td>6.9</td>
<td>電子サイクロトロン波帯（EC）加熱装置の開発、導入</td>
</tr>
<tr>
<td>6.10</td>
<td>EC 加熱装置の改良</td>
</tr>
<tr>
<td>6.11</td>
<td>運転とトラブル</td>
</tr>
<tr>
<td>7.1</td>
<td>中性粒子加熱装置</td>
</tr>
<tr>
<td>7.2</td>
<td>正イオンNBI装置（P-NBI）の概要</td>
</tr>
<tr>
<td>7.3</td>
<td>正イオン源の開発・改良</td>
</tr>
<tr>
<td>7.4</td>
<td>正イオンNBI装置（P-NBI）の開発・改良</td>
</tr>
<tr>
<td>7.5</td>
<td>正イオン源の開発・改良</td>
</tr>
<tr>
<td>7.6</td>
<td>正イオン源の開発・改良</td>
</tr>
<tr>
<td>7.7</td>
<td>高パワーハイと重水素及びヘリウム注入</td>
</tr>
<tr>
<td>7.8</td>
<td>再電離損失対策</td>
</tr>
<tr>
<td>7.9</td>
<td>正イオンNBI装置のパルス化改造</td>
</tr>
<tr>
<td>7.10</td>
<td>運転中の保護機能の開発・改良</td>
</tr>
<tr>
<td>7.11</td>
<td>正イオンNBI装置のトラブルとその対策</td>
</tr>
<tr>
<td>7.12</td>
<td>負イオンNBI装置（N-NBI）の概要</td>
</tr>
<tr>
<td>7.13</td>
<td>負イオン源の開発・改良</td>
</tr>
<tr>
<td>7.14</td>
<td>負イオンNBI装置（N-NBI）の開発・改良</td>
</tr>
<tr>
<td>7.15</td>
<td>負イオン源の開発・改良</td>
</tr>
<tr>
<td>7.16</td>
<td>負イオンビームの集束性の改善</td>
</tr>
<tr>
<td>7.17</td>
<td>負イオンNBI装置のパルス化改造</td>
</tr>
<tr>
<td>7.18</td>
<td>負イオンNBI装置のパルス化改造</td>
</tr>
<tr>
<td>8.1</td>
<td>プラズマ計測装置の概要</td>
</tr>
<tr>
<td>8.2</td>
<td>ルピーレーザトムソノ散乱測定装置とYAGレーザトムソノ散乱測定装置の開発・改良</td>
</tr>
<tr>
<td>8.3</td>
<td>遠赤外レーザ干渉測定装置及び炭素ガスレーザ干涉の開発・改良</td>
</tr>
<tr>
<td>8.4</td>
<td>電子サイクロトロン放射測定装置の開発・改良</td>
</tr>
<tr>
<td>8.5</td>
<td>荷電交換分光測定装置の開発・改良</td>
</tr>
<tr>
<td>8.6</td>
<td>中性子計測の開発・改良</td>
</tr>
<tr>
<td>8.7</td>
<td>連続電流分布測定装置（モーションシュタール効果分光計測装置）の開発・改良</td>
</tr>
<tr>
<td>8.8</td>
<td>分光器の開発・改良</td>
</tr>
<tr>
<td>8.9</td>
<td>ポルメータ計測の開発・改良</td>
</tr>
<tr>
<td>8.10</td>
<td>静電ブローブの開発・改良</td>
</tr>
<tr>
<td>8.11</td>
<td>反射計の開発・改良</td>
</tr>
<tr>
<td>8.12</td>
<td>計測共通設備の開発・改良</td>
</tr>
</tbody>
</table>

IV
9. データ処理設備
 9.1 データ処理設備の概要
 9.2 CAMAC インターフェース計算機の改造
 9.3 データ処理設備実時間処理計算機の改造
 9.4 大容量データ収集システムの更新
 9.5 磁気流体衛生計器システム（FAME）の開発及び改造
 9.6 テレビ会議システム・ビデオストリミングシステムの開発
 324
 324
 326
 328
 330
 332
 336

10. 建家関連の重水素対策
 10.1 重水素対策の概要
 10.2 JT-60 実験棟の遮蔽補強
 10.3 排気・排水対策
 10.4 放射性廃棄物の保管対策
 338
 338
 339
 341
 342

11. まとめ
 謝辞
 344
 344

付録 ハイライト写真（本体設備を中心として）
 345
Contents

1. Review on the History of Technological Developments in JT-60 ... 1

2. Progress of Plasma Performance and Technology in JT-60 ... 9
 2.1 Improved Confinement Performance ... 9
 2.2 Improved Current Drive Performance .. 11
 2.3 Improved Stability and Progress in High Beta Plasma Development ... 13
 2.4 Progress in High Energy Particle Research ... 14
 2.5 Progress in Disruption Avoidance and Mitigation ... 14
 2.6 Progress in Heat and Particle Control ... 15
 2.7 Progress in Plasma Facing Material Research .. 16
 2.8 Improved Integrated Performance and Progress in Steady State Operation .. 17

3. Supervisory Control System .. 20
 3.1 Outline of the Supervisory Control System ... 20
 3.2 Developments of the Plasma Real-time Control Systems ... 25
 3.3 Developments of the Plasma Equilibrium Control System ... 29
 3.4 Developments of the Plasma Shape Real-time Visualization System .. 33
 3.5 Developments of the Particle Supply and Heating Control System ... 36
 3.6 Developments of the Integrator for Magnetic Measurements and the Neutron Monitor 38
 3.7 Developments of the Discharge Sequence Control System ... 40
 3.8 Developments of the Timing Signal Control System .. 42
 3.9 Developments of the Database Management System for Experimental Results 45
 3.10 Developments of the Human Interface System ... 47
 3.11 Developments of the Plant Monitoring System ... 49
 3.12 Developments of the Interlock System for Failure Events Protection .. 51

4. Magnet Power Supplies and Utilities ... 53
 4.1 Outline of the Power Supply Systems .. 53
 4.2 Modification for Upgrading from JT-60 to JT-60U ... 55
 4.3 Modification for High Triangularity Operation .. 57
 4.4 Pulse Operation Test for ITER-CS Model Coil .. 59
 4.5 VME-based Renewal of the Control System for the TF Coil Power Supply .. 61
 4.6 VME-based Renewal of the Control System for the PF Coil Power Supply .. 63
 4.7 Modification of the Power Supply Systems for Pulse Prolongation ... 65
 4.8 Power Feeding to the Additional Heating Devices from the MG of TF Coil Power Supply 67
 4.9 Overhaul of the Motor-generator Sets ... 69
 4.10 Development of a Continuous Large Current Interrupter ... 74
 4.11 Technological Developments for the Power Supply Systems ... 76
 4.12 Renewal of Capacitors in Use of Extra-high Voltage ... 78
 4.13 Inspection of the Transformer by Opening a Tank in the TF Coil Power Supply 80
 4.14 Partial Renewal of the Evaporator and Steam Separator in the Secondary Cooling Tower 82
 4.15 Renewal of the Aged Battery for AC UPS ... 84
 4.16 Motor-generator Sets of the Power Supply Systems ... 86
 4.17 Operation Experiences on the Power Supply Systems .. 88

5. Tokamak Machine ... 92
 5.1 Outline of the Tokamak Machine .. 92
 5.2 Addition of Lower X-point Divertor Coil to Poloidal Magnetic Field Coils .. 122
 5.3 Tokamak Machine Modifications toward JT-60 Upgrade ... 124
 5.4 Modification to W-shaped Divertor .. 140
 5.5 Development and Improvement in the First Wall and Divertor Tiles ... 145
 5.6 Development of Wall Conditioning Techniques .. 154
 5.7 Development and Improvement in Pellet Injector .. 159
 5.8 Development and Improvement in the Gas Injector .. 174
 5.9 Development and Improvement in the Vacuum Pumping Systems ... 176
 5.10 Development and Improvement in the Tokamak Machine Control systems ... 183
5.11 Development and Improvement in Other Devices on Tokamak Machine 186
5.12 Water Leakage from Cooling Channels in Toroidal Field Coil 194
5.13 Detection of Air Leakage ... 202
5.14 Vacuum Control ... 206
5.15 Electrical Insulation Control .. 209
5.16 Radiation Control in Deuterium Discharges ... 215

6. Radio Frequency (RF) Heating System .. 224
6.1 Outline of the RF Heating System ... 224
6.2 Development and Introduction of the Lower Hybrid (LH) Heating System 227
6.3 Improvement of the LH Heating System ... 230
6.4 Development and Introduction of the Ion Cyclotron (IC) Heating System 233
6.5 Improvement of the IC Heating System ... 236
6.6 Development of the RF Control System .. 238
6.7 Development of the Trouble Shooting System for Feedback Controlled Loops 240
6.8 Improved Conditioning with the Upgraded Injection Control System 242
6.9 Development and Introduction of the Electron Cyclotron (EC) Heating System ... 244
6.10 Improvement of the EC Heating System ... 246
6.11 Operation and Machine Troubles ... 248

7. Neutral Beam Injection Heating System .. 250
7.1 Outline of the Positive-ion Based NBI (P-NBI) System ... 250
7.2 Development and Modification of Ion Sources on P-NBI ... 253
7.3 Development and Modification of Beamline on P-NBI .. 255
7.4 Development and Modification of Power Supply System on P-NBI 257
7.5 Development and Modification of Cryogenic System on P-NBI 259
7.6 Development and Modification of Control System on P-NBI 261
7.7 High Power Injection and Operation with Deuterium and He Beam on P-NBI 263
7.8 Reduction of Re-ionization Loss on NBI ... 266
7.9 Modification for Long Pulse Operation on P-NBI .. 268
7.10 Development and Modification of Protection System on P-NBI 271
7.11 Troubles and Countermeasures on P-NBI .. 273
7.12 Outline of the Negative-ion Based NBI (N-NBI) System 275
7.13 Development and Modification of Ion Sources on N-NBI 279
7.14 Development and Modification of Beamline on N-NBI ... 281
7.15 Development and Modification of Power Supply System on N-NBI 283
7.16 Improvement of Beam Deflection on N-NBI ... 285
7.17 Modification for Long Pulse Operation on N-NBI .. 287
7.18 Troubles and Countermeasures on N-NBI .. 290

8. Plasma Diagnostic Systems ... 292
8.1 Outline of the Plasma Diagnostic Systems .. 292
8.2 Development and Improvement of the Ruby and YAG Laser Thomson Scattering Systems 294
8.3 Development and Improvement of the FIR Laser Interferometer and the CO$_2$ Laser Interferometer / Polarimeter Systems ... 298
8.4 Development and Improvement of the Electron Cyclotron Emission Diagnostic Systems ... 302
8.5 Development and Improvement of the Charge Exchange Recombination Spectroscopy Systems ... 304
8.6 Development and Improvement of the Neutron Measurement Systems 306
8.7 Development and Improvement of the Motional Stark Effect Diagnostic Systems 309
8.8 Development and Improvement of the Spectroscopy Systems 311
8.9 Development and Improvement of the Bolometer Systems 314
8.10 Development and Improvement of the Langmuir Probe Systems 316
8.11 Development and Improvement of the Reflectometer Systems 320
8.12 Development and Improvement of the Diagnostic Support Systems 322
9. Data Processing System
 9.1 Outline of the JT-60 Data Processing System 324
 9.2 Improvement of CAMAC Interface Computers 326
 9.3 Progress in the Real Time Processor of Data Processing System 328
 9.4 Upgrade of the Mass Data Acquisition System 330
 9.5 Development and Improvement of Fast Analyzer for Magnetohydrodynamics Equilibrium (FAME) 332
 9.6 Developments of the Video Conference System and the Video Streaming System 336

10. Improvement in Buildings of JT-60 Facilities toward Deuterium Experiments 338
 10.1 Outline of the Improvement of Buildings 338
 10.2 Reinforcement of Nuclear Shielding in JT-60 Experimental Building 339
 10.3 Gaseous and Liquid Radioactive Waste Control 341
 10.4 Storage and Control of Radioactive Waste 342

11. Concluding Remarks 344

Acknowledgments 344

Appendix: Photo Highlights in JT-60 Tokamak Machine and Other Facilities 345
| 著者リスト |
| JT-60技術評価検討会委員長 |
| 清水　正美*1 |
| 核融合装置試験部 |
| 柴山　正明　細金　延幸　山本　巧 |
| がんプラズマ研究部 |
| 二宮　博正　菊池　満 |
| JT-60第1試験室 |
| 荒原　研一　松川　誠　清宮　宗孝　米川　出　大森　俊造　柴田　孝俊 |
| 川俣　陽一　寺門　恒久　戸塚　俊之　赤坂　博美　大森　栄和　末岡　通治 |
| 瀬野　潤　島田　勝弘　古川　弘*5　髙野　正二*6　山下　陸樹*7　細山　博己*8 |
| 目黒　和彦*7　寺門　祐之*7 |
| JT-60第2試験室 |
| 宮　直之　本田　正男　新井　貴　平嶋　一　市毛　尚志　柳生　純一 |
| 三代　康彦　神永　敦嗣　篠島　唯之　正木　圭　木津　要　工藤　祐介 |
| 西山　友和　林　孝夫　鈴木　優*10　松沢　行洋*9　芳賀　三郎*9　八木沢　博*11 |
| 上原　聡明*5　井坂　正義*1　山本　正弘*1　石本　祐樹*2 |
| RF装置試験室 |
| 藤井　常幸　関　正美　森山　伸一　谷　孝志　横倉　賢治　長谷川　浩一 |
| 下野　貴　澱谷　正之　鈴木　貞明　篠崎　信一　寺門　正之　平内　慎一 |
| 菊池　一夫*14　五十嵐　浩*49　石井　和宏*5　高橋　正己*13　佐藤　文明*9　安納　勝人*1 |
| NBI装置試験室 |
| 池田　佳隆　大賀　徳道　河合　神人　秋野　昇　松沢　稔　海老沢　昇 |
| 岡野　文範　本田　敦　小森　信夫　薄井　勝富　藤原　和彦　梅田　尚孝 |
| 大島　克己*9　菊池　勝美*5　竹之内　忠*12　細井　豊*5　能登　勝也*9　山崎　新幸*11 |

| 結核プラズマ計画室 |
| 三浦　幸俊　藤田　隆明　及川　晃　波多江　仰紀 |
| 結核プラズマ解析室 |
| 小関　隆久　清野　公広　大島　貴幸　坂田　信也　佐藤　稔　鈴木　昌栄*3 |
| 射場　克幸*4 |

| 結核プラズマ実験計測開発室 |
| 緒田　裕　久保　博孝　小出　芳彦　朝倉　伸幸　井手　俊介　木島　滋*15 |
| 近藤　貴　川島　寿人　河野　直則　竹永　秀信　束島　智*16　篠原　孝司*15 |
| 原本　光　砂押　秀則　北村　繁　柏　好敏　千葉　真一　篠山　明彦 |
| 坂本　宜知　都築　和泰　鈴木　隆博　仲野　友英　大山　直幸　武智　学 |
| 神谷　健作　浦野　健　佐久間　猛*5　濱野　隆*5　石仙　茂晴*9　井上　昭*5 |
| 坂田　直明*9　宮本　篤*9　永谷　進*1　石川　正男*2 |

1：嘱託　2：博士研究員　4：(財)高度情報科学技術研究機構
5：原子力エンジニアリング(株)からの業務協力員　6：(株)トータル・サポート・システムからの業務協力員
7：(株)横浜テックからの業務協力員　8：日本エクスクリーン(株)からの業務協力員
9：日本アドバンストテクノロジー(株)からの業務協力員　10：(株)三菱重工業からの業務協力員
11：(株)日立製作所からの業務協力員　12：(株)巴商会からの業務協力員
13：住友電機工業(株)からの業務協力員　14：現所属・大規模陽子加速器施設開発センター
15：現所属・核核プラズマ共同研究室　16：現所属・企画室
下線：JT-60技術評価検討会メンバー
This is a blank page.
1. JT-60の開発史レビュー

臨界プラズマ試験装置（JT-60）は世界三大トカマークの一つとしてこれまで長年に亘り多くの成果を出しつつきた。これによりプラズマ物理に新しい発見や理解を切り拓くとともに、国際熱核融合実験炉（ITER）の設計データを提供するなど世界の核融合研究開発の進展に大きな貢献をしてきた。

JT-60は原子力委員会が定めた第二段階核融合研究開発基本計画において臨界プラズマ条件の達成を目指した核融合心プラズマ技術の研究開発のための装置と位置付けられた。JT-60は前例のない大型装置であり、従来技術の外挿では解決し得ない多くの技術的課題を克服するために高耐応力コイルなどの試作開発を各社に発注し、実機製作のための見通しを得た。また、大型装置を構成する各設備間にまたがる技術的な統一整合を図るために当時の最先端技術レベルでの共通基準書を作成し、実機設計製作に対応した。1978年本体設備の発注を始めにその後電源設備や計測装置などを各社に発注し、それぞれの単体試験や複数設備のブロック組合せ試験などにより各段階で確実な性能確認を経て全設備を統合しての総合機能試験により所定の性能を確認し1984年度末に完成した。そして間もなく4月8日のファーストプラズマ着火に成功し、直ちにOH実験を開始した。1982年に発注した加熱装置（中性粒子及び高周波）は1985年度末に完成し、翌年度からの加熱実験に供された。これらJT-60装置の他に当時としては日本最高電圧275kVの変電設備や関連建屋も着々と整備された。それら当初の JT-60研究開発計画を表1に示す。また、JT-60運転開始当初の主要性能を表2に示す。図1に現在の JT-60の装置機器及び関連施設等の概要を示す。

<table>
<thead>
<tr>
<th>表1 運転開始までの JT-60 研究開発の進展</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-60装置</td>
</tr>
<tr>
<td>本体</td>
</tr>
<tr>
<td>電源・制御</td>
</tr>
<tr>
<td>JT-60施設</td>
</tr>
<tr>
<td>電源施設</td>
</tr>
<tr>
<td>電源施設</td>
</tr>
<tr>
<td>275kV変電設備</td>
</tr>
<tr>
<td>中央変電所</td>
</tr>
<tr>
<td>加熱装置</td>
</tr>
<tr>
<td>中性粒子入射</td>
</tr>
<tr>
<td>加熱(NBI)</td>
</tr>
<tr>
<td>高周波加熱 (RF)</td>
</tr>
<tr>
<td>加熱用電気施設</td>
</tr>
<tr>
<td>計測施設</td>
</tr>
<tr>
<td>サイト施設</td>
</tr>
<tr>
<td>主要イベント</td>
</tr>
</tbody>
</table>

JT-60の特徴

大型電気機械設備
（高電圧、高電流、高熱負荷を発生）
高真空度を維持する真空排気設備
燃料供給設備
放射線発生（DD中性子）装置等

図1 世界最大規模のJT-60の装置機器・施設

1987年9-10月の水素ガスを用いた実験において得られた性能は重水素換算により、原季度会が定めた目標領域に到達した。これまでの実験は固定リミタ及び横ダイバータを用いた実験であったが、プラズマ性能の一層の高性能化を図るため、1987年度末に真空容器下部にコイルを追加するなどの改造や機器の追加を行い新たに下側ダイバータ配位の実験ができるように改造し、加えてベレット入射装置（空気付き方式）を開発するとともに1988年10月には高効率電流駆動ランチャーを導入した。これらによりプラズマ中心密度向上による閉じ込め改善や高い電流駆動効率を実現した。さらに20MWの強力な中性粒子入射加熱を用いて全プラズマ電流の約80%の自発電流を発生させ定常炉概念創出に貢献した。

原子力委員会が1987年6月に改定した原子力開発利用長期計画において、臨界プラズマ条件目標領域達成以降のJT-60の研究開発計画として、「JT-60の改良などによるトカマク装置の高性能化」を進めることが計画された。そこで、プラズマ領域を2倍に増強する大型装置（JT-60U）として、JT-60の現有の設備を最大限に活用しつつ、真空容器およびポロイダル磁場コイルを改良し、プラズマ電流を約2倍に増強する大電流化を図り、JT-60の装置性能を大幅に向上させることとした。さらにプラズマ燃料として従来の水素に加えて重水素を導入することにより、プラズマ性能向上を図りつつ核融合炉心プラズマの特性を調べ、核融合研究開発の次期計画に向けて必要なデータを蓄積することとした。表2にJT-60Uの主要性能を示す。重水素運転時に発生する中性子対策として建家の壁・床・天井の遮蔽強化等を実施した。また、実験棟第1階と地下の扉の出入口管理およびプラズマ電流・中性子発生量に関するインターロックを設けるなど安全対策に万全を期した。計測機器は、各種インターロック、帰還制御、物理評価等に必要なデータを取得すべく、中央制御及び中性子遮蔽等の対策を実施しつつ、研究開発の進展に応じて改良を進めた。これらの整備を1991年7月に完了し、重水素実験を開始した。この改定に関しては、1991年から3年間に亘り、科学技術庁による施設検査が中性子発生量を3段階に分けた出力上昇試験により実施された。その後5年毎の定期検査が1996年と2001年に実施された。

原季度会は1992年にJT-60やJFT-2M等の成果を踏まえ、核融合実験炉の開発を目標に据えた第三段階核融合研究開発基盤計画を策定した。一方、国際核融合実験炉は3年間に亘る概念設計活動の成果を踏まえ、次段階の工学設計活動の協定が国際1992年7月に40国で調印された。これらを背景にJT-60では閉じ込め改善と定常化研究をさらに発展させるべく実験研究や各種の整備を推進した。

表2 JT-60主要性能

<table>
<thead>
<tr>
<th>項目</th>
<th>JT-60</th>
<th>JT-60U</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラズマ電流</td>
<td>2.7MA</td>
<td>6MA</td>
</tr>
<tr>
<td>プラズマ主半径</td>
<td>3m</td>
<td>3.4m</td>
</tr>
<tr>
<td>プラズマ副半径</td>
<td>0.95m</td>
<td>1.17/1.4m</td>
</tr>
<tr>
<td>プラズマ体積</td>
<td>60m³</td>
<td>100m³</td>
</tr>
<tr>
<td>トロイダル磁場</td>
<td>4.5T</td>
<td>4.2T</td>
</tr>
</tbody>
</table>
その結果、核融合、イオン温度や非誘導電流駆動の世界最高記録を樹立・更新するなど多くの成果を上げた。

1994-1995年度にプラズマ電流駆動を目的として負イオン源中性粒子入射装置を開発整備した。この種の加熱装置を大型トカマク装置と取り付けるのでは世界初であり、かつ世界最高の500keVの入射エネルギーを有し、ITERの加熱装置につながる技術範囲である。これらの改修を含めた装置性能向上やプラズマ閉じ込め技術の開発などにより1996年度には世界最高の核融合積1.77億度・秒・兆個/立方センチメートルを達成し、このときのイオン温度5.2億度を記録した。この温度は人間が作り出した最高温度としてギネスブックにも掲載されている。また、DT燃料に換装しての核プラズマ条件を達成し、このときの等価エネルギー増倍率（加熱入力とDT燃料に置き換ええたときの核融合反応出力との比）Qは1.05であった。これは核融合開発研究における大きなマイルストーンの達成である。

将来の定常核融合炉では、高い閉じ込め性能とデイバータによる熱・粒子制御を両立させる必要がある。この研究を推進するため1995-1996年度にそれまでの開発デイバータからW型の開放デイバータに改造した。また、プラズマ不純物制御の手法としてボロンを真空容器内にその場コーティングする技術を導入した。これらとプラズマ閉じ込め技術のさらなる改良により1998年度にはQ=1.25の世界最高値を達成した。1998年度末から電子サイクロトロン波高周波加熱装置の導入を開始し、これにより電子温度の高温化を図りプラズマ電流発生効率を大幅に高めることに成功した。また、プラズマ中の磁力線の流れに加えて検出システムの開発とその電磁波をミラー操作により正確に狙いを定めて入射するシステムとを組み合わせてその乱れを自動的に制御することに成功した。上記の加熱・電流駆動システム及び粒子制御システム（ガス供給系、ベレット入射装置、デイバータ排気）は、プラズマ制御のアクチュエータとして、炉心プラズマの総合的な性能を向上する上で本質的な役割を果たしてきた。

JT-60のプラズマ性能は、同じトロイダル磁場、プラズマ電流、加熱パワーであっても、当初に比べて10倍以上の上昇を得るに至ったが、その本質はプラズマ融量の空間分布の最適化であり、これら世界で最も多彩なプラズマ制御機器を駆使した結果得られたものである。

2003年から定格仕様の範囲内で、制御系の改造などにより放電時間の長時間化を図り、従来の15秒放電・10秒加熱から65秒放電・30秒加熱まで実現した。この機能を用いた実験により、将来のトカマク開発に対する技術的見通し、ITERの高圧力プラズマによる先進運転の健全性実証とそれによるITERの先進運転実現見通しおよび将来の長時間放電における重要課題である壁の粒子吸収についての新たな知見を得るなど大きな成果を挙げた。

長期にわたる全体系制御機器のマンテナンスシステム、プラズマ可視化システム等の開発完成による大型トカマク実験運転制御技術の開発、一塩素材料開発・壁調整技術を含むプラズマ壁相互作用の研究の成果およびプラズマ性能に対応したプラズマ計測装置の開発整備等もJT-60のプラズマの成果はもちろん安全運転等に多大な貢献をした。

これまでの放電回数の年度展開と設備等の整備とプラズマ成果の主なものを図2に示す。
次に運転関係について述べる。前例のない大型核融合実験装置の運転においても多くの工夫や試行錯誤を必要とした。1985年4月8日にフェーズⅡブズマの着火に成功した後、5-6月と翌年2-3月の4ヶ月間でOIB実験を行った。初めての実験運転であり起動停止操作・前後の点検にかなりの時間を割いて安全を第一に慎重に進めめた。また、放電洗浄運転を5月中旬に1週間間夜連続で、5-6月には毎日2.5時間をかけ実施した。実験運転は火曜日から金曜日の8:00～21:15に2交替の運転班で実施した。なお、7-12月に計測装置、中性粒子加速装置（NBI）および高周波加速装置（RF）の投付工事を行った。

1986年度は前年度の経験を踏まえて運転体制を整備し、その結果基本パターンとなった2直体制（8:00の起動から22:30の停止までを1交代で）をほぼ確立した。また、年度中頃からNBIおよびRF加速装置も加えた体制となった。起動停止に要する手順や時間および実験運転チームとその負荷の後ろの経験をふまえつつ現在までに大幅な合理化を図ってきた。また、制御設備マンマシンシステムの改革・改善、監視システムの整備などを積極的に進め、その結果効率も上がり、少ない人数でより多くの実験運転時間を確保できるようになった。

しかしながら、最近は予算削減が著しく、運転保守委員の人員確保も困難になってきたため、2003年からは自営体制を基本とし、8:00～18:30を2交代で昼食・夕食の休憩時間帯を設けず実験運転を継続するという体制に切り替え、4週間/1サイクルとした。この工夫により従来の2直体制時に比べ2割程度の多くの実験時間がとれるようになった。

図3 JCT-60実験運転体制時組織

JT-60実験運転体制の図表を図3に示す。これにはいずれも種々の合理化を経た比較的最近の状況を示す。これまでの年度ごとの確認運転サイクル数を図3に示す。サイクル数の変動は予想によるものであるが、1989-1990年度の減少は大気化改変工事によるものである。

実験運転を計画的に全然で効率よくしながらトラブルなどを含めた実績を解析・評価しつつ、その結果をフィードバックしながら推進するための運転管理方法（図5）を開発した。JT-60の実験運転は核融合プラズマ研究部と核融合装置試験部が担当する。両部長が主導する調整会議において基本計画を、実験テーマ班リーダーによるテーマ班会議においてテーマ毎の実験計画を、両部門の代表からなる実験部会および運転部会においてサイクルごとの実験計画および運転計画をそれぞれ審議決定し、実行の承認を経て実験運転を実行に

図4 JT-60の運転形態
表3 JT-60の運転サイクル数

<table>
<thead>
<tr>
<th>年度</th>
<th>85</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイクル数</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

移す。実験運転は実験運転責任者（理事長指名）が総指揮をとる実験運転チームにより、予期せぬトラブル対応などを含めて遂行される。なお、各設備の担当者の下には、調整による運転保守委員会が配置されている。実験運転の結果は運転会、実験会およびテーマ班会議にフィードバックされ、次の計画に反映される。チェックレビュー（CAR）委員会では新領域の実験運転のための新規装置の導入や改善を行う場合の設計・採付に対して、また、トラブル対策等には必要に応じて安全を審議し、JT-60の性能向上や安全運転に反映する。

これらの管理方式に加えて、JT-60の運転保守等を両部のみならず関連部署および関連施設等との取り合い調整や安全管理等に関して、各種の要領書を当初から作成し、経験を踏まえながら、改定を加えて、有効活用している。それらは関連法令や研究所の規程類に準拠しているがそれらの関係を図6に示す。これらの方式が通常時にはより異常時等にも極めて有効に活用して、JT-60の健全かつ効率的な実験運転および数々の成果に結びついたといえる。図7にJT-60の運転開始から現在までの装置稼働率（トラブル対応時間の含めた実験に使える時間）の実験を行った時間との比率（図）を示す。図から分かるように、運転開始からの3年と大電流化工事の直後を除いて80%前後の高い稼働率を達成している。

実験運転の進捗についても大小様々なトラブルも発生した。運転開始当初数年間の代表的な
のは真空リーチと電気絶縁異常である。本体室における真空シール箇所数および絶縁箇所数はそれぞれ1000箇所以上のもの。これらのトラブルの場合、大型で複雑な装置での発生場所同定や対策に多くの時間を要する場合がしばしば発生し、その結果として実験時間を少なくすることとなった。この対策として装置に近接した位置にヘリウム吹き付けノズルや絶縁監視センサーを取り付けなどの遠隔リーチ試験装置を開発し、現場での作業による検出作業でなく遠隔で異常場所の同定を行うための技術を開発した。これにより大幅な時間短縮と作業の軽減を実現し、実験効率の向上に寄与した。

トロイヤル磁場コイル (TFC) の水漏れも大きなトラブルであった。1988年に出された No.5 コイルの場合はわずかな箇所の沁み出しを検出し、漏れ箇所同定のために通電により誘荷を掛けながらの試験で約 3ヶ月要した。漏れ箇所は水冷却管のコイル導体への入り口部であることが判明し修復した。1992年の No.9 コイル、1995年の No.14 コイルの場合は導体中の最も応力の厳しい箇所、すなわちトカマク中心に近い部分の冷却管（導体にワッシャーで覆われている端部断面の角管）にクラックが発生したためのリーチであることが判明した。対策としては、導体が86ターンのパルケー構造であることからこの冷却管には水を流れず、無冷却としたターンに隣接する両側のターンからの間接冷却とした。これにより定格発電時にはショット間隔の延長を余儀なくされた。しかしながら本トラブルに関連していくつかの技術開発が成果として得られた。径厚4mmで直径の曲がりを有する長尺角管の内部を映像で検査できる観察装置、その冷却管内のクラック貫通部を正確に測定できるリーチ箇所同定装置を、また、健全運転のためのTFC短絡監視装置、TFC温度監視装置を開発した。TFCは運転開始当初から使用している主要設備であるため、その健全性維持は重要課題であるが、これらの装置はその後の保守や実験運転に極めて有効に機能している。また、1998年に出された電源設備の特別高圧電力用コンデンサーの焼きが見られたがこれは経年劣化によるものであった。このため類似のコンデンサーは全て更新し健全性を回復した。以上のようないくつかのトラブル対応の経験の中で装置保守技術など貴重なノウハウを取得することができた。また、時に多くの人的資源も育成されたことは何にもかかわらず良い財産となっている。

JT-60は運転開始後、2004年で20年が経過する。これまでプラズマ性能向上に対応した装置の新設や改造を行う一方、設備の高経年化や破損化も対応してきたが、予算の制約もあり必ずしも必要十分とは言えない。JT-60の当初の設計寿命が10年であったため、今後の実験計画を考慮した改造や保守・点検も今後の重要課題である。また、技術の継承を考慮すると後継者の補充・育成もまた重要な課題である。

上述したように20年の実験運転の中で、トラブルを経験しながらも全体としては極めて順調に実験運転を遂行し、世界に向けて多くの成果を発信し続けてきたことができる。これはJT-60当初の設計・製作段階からその後の運転・保守や新規開発・改造などを通して、その時には担当者の未経験の分野に対する旺盛な研究精神、高い士気と技術そして責任感が、また JT-60 プロジェクト参加者全員の硬いチームワークが両者と維持されてきた有価であると考える。

本報告では20年間に亘る実際の経験に基づいて、設備ごとの技術的な総括と評価、さらには将来への提示、また、主なトラブルとそこから得られた教訓などを簡潔にまとめた。改造項目と概略スケジュールを表3に示す。

JT-60の関係者はもちろ、今後核融合装置に関わる方々にとっても貴重な情報になると信じるものである。
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-40構想</td>
<td></td>
</tr>
<tr>
<td>全系制御開発</td>
<td></td>
</tr>
<tr>
<td>ブラスト制御の開発・改良</td>
<td></td>
</tr>
<tr>
<td>放電制御の開発・改良</td>
<td></td>
</tr>
<tr>
<td>インタフェースシステムの開発・改良</td>
<td></td>
</tr>
<tr>
<td>鉄鋼データベースの開発・改良</td>
<td></td>
</tr>
<tr>
<td>マンフロンの開発・改良</td>
<td></td>
</tr>
<tr>
<td>運転制御の開発・改良</td>
<td></td>
</tr>
<tr>
<td>保護インターコンロックの開発・改良</td>
<td></td>
</tr>
<tr>
<td>重油設備</td>
<td></td>
</tr>
<tr>
<td>大電流用に適する電極開発</td>
<td></td>
</tr>
<tr>
<td>両極圧変化設備</td>
<td></td>
</tr>
<tr>
<td>異伝導用電線</td>
<td></td>
</tr>
<tr>
<td>T電極制御系の開発</td>
<td></td>
</tr>
<tr>
<td>P電極制御系の開発</td>
<td></td>
</tr>
<tr>
<td>長パルス化開発</td>
<td></td>
</tr>
<tr>
<td>T電極からの加熱電流</td>
<td></td>
</tr>
<tr>
<td>MGオーバーヘッド</td>
<td></td>
</tr>
<tr>
<td>ヤード送電設備</td>
<td></td>
</tr>
<tr>
<td>大電流用送電装置</td>
<td></td>
</tr>
<tr>
<td>特別高周波コンデンサの開発</td>
<td></td>
</tr>
<tr>
<td>T電極移動用オーバーヘッドの開発</td>
<td></td>
</tr>
<tr>
<td>交流電流電源装置の開発</td>
<td></td>
</tr>
<tr>
<td>本体設備</td>
<td></td>
</tr>
<tr>
<td>下部ディバイターケース</td>
<td></td>
</tr>
<tr>
<td>大電流用送電装置</td>
<td></td>
</tr>
<tr>
<td>中間焼結ディバイターケースへの開発</td>
<td></td>
</tr>
<tr>
<td>第二段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一、二段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
<tr>
<td>第一段ディバイターティップ開発・改良</td>
<td></td>
</tr>
</tbody>
</table>
表3 改造項目及び概略スケジュール 2/2

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-60装置</td>
<td></td>
</tr>
<tr>
<td>プラズマ対策装置</td>
<td></td>
</tr>
<tr>
<td>ルビービーム送信装置</td>
<td></td>
</tr>
<tr>
<td>電子サイクロン装置</td>
<td></td>
</tr>
<tr>
<td>溶接分光装置</td>
<td></td>
</tr>
<tr>
<td>遠赤外線分光装置</td>
<td></td>
</tr>
<tr>
<td>電気接続装置</td>
<td></td>
</tr>
<tr>
<td>分光器</td>
<td></td>
</tr>
<tr>
<td>分光器計器</td>
<td></td>
</tr>
<tr>
<td>データ処理装置</td>
<td></td>
</tr>
<tr>
<td>FAMEの開発、改修</td>
<td></td>
</tr>
<tr>
<td>システム装置</td>
<td></td>
</tr>
</tbody>
</table>

- 8 -
2. JT-60の進展と機器の改良

JT-60は1985年の運転開始以来、大電流化改造、三規格化、負イオン活用中性子比との導入、高性能プラズマ対向機器（W型ダイバータ）の導入、電子サイクロトロン加熱装置の導入、長パルス化等の機器改良、及びこれらによるプラズマ制御手法の改良を行い、原子力委員会策定の第二段階および第三段階計画に基づいて心臓プラズマ研究開発を推進してきた。この間、臨界プラズマ条件を達成するとともに、ITER物理実験を実施し、ITER計画に大きく貢献した。さらに、これらと並行して、高温プラズマの高性能化と定常化に関する研究開発を推進し、高性能安定運転を向かう先進トカ马克研究の分野を切り拓いた。以下、JT-60のプラズマ研究開発を幾つかの領域に分け、各々の領域での研究開発の進展と機器の開発、改良との関連を概観する。（性能の進展は図1、主な成果と機器改良との関連を表1に示す。）

図1 JT-60の性能の進展

2.1 閉じ込め性能の上昇

JT-60計画における第一の挑戦は高いプラズマ閉じ込め性能の実現であった。世界的3大トカマー装管の一つとして1985年に完成したJT-60は、高磁場（4.5T）、高電流（2.7MA）、大体積（60m³）のプラズマに強力な中性粒子ビーム（NB）を加熱（20MW）を行う装置であり、前世代の装置の大幅なスケールアップを実現した。また、3大トカマーとして唯一のダイバータを備えており、優れた粒子制御性を実証した。しかしながら、当時明らかにつつあったトカマーの閉じ込め特性（Lモード）は加熱パワーの上昇とともにエネルギー閉じ込め時間が劣化することを示しており、閉じ込め性能の一層の向上のためには、より高いプラズマ電流が必要であった。当初の第一壁はチタンカーバイド（TiC）被覆のモリブデン及びインコネル625であったが、加熱パワーでの不純物バーストの問題があった。また、プラズマ電流の2.7MAでは必要な閉じ込め性能にとどまらず、このため、第一壁を全面炭素化して変更し、リミター配列でプラズマ電流3.2MAを可能とした。これにより、原子力委員会が定めた臨界プラズマ条件の目標領域を達成（1987年）することができた。

しかしながら、動作ガスが軽水素であったことやダイバータ位置が極端に遅延（外X点配位）にあったこと等から、IIモード（プラズマ周辺部に転送障壁が形成される高閉じ込めモード）化が難しいという問題があった。特に、その時並行して実施していたJFT-2MやダブルレットIII等の研究結果から、良質のIIモードを得るにはダイバータ位置をプラズマ下部（下X点配位）とすることが有効であることが明らかとなって来た。これを受け、JT-60は1988年から下X点配位を可能とすべく、真空容器下部にポロイダルコイルを増設するとともにコイル系の経済変更（5.2参照）を行った。これにより、IIモード化には一定の改善が見られるようになった。しかし、Lモードに対する閉じ込め時間の改善度は20%程度に留まり、目標とする2倍の改善度には届かなかった。軽水素が動作ガスの場合、IIモードを得るために必要な加熱パワーのしきい値は重水素の約2倍であること、また、そのような大パワーレフのダイバータでの粒子リサイクルが上昇し、IIモード化を妨げることが問題であった。
一方、プラズマ中心部での閉じ込め改善に関しては、既に今日に繋がる新たな発表がなされた。1988年、プラズマを高密度化するために開発を進めている空気軸方式の3連発ベレット入射装置の実験が開始され、ベレット入射及びNB加熱のタイミングを工夫することでベレットをプラズマ中央に侵入させることができた。これにより、密度分布における内部輸送問題が強化されることを発見（1989年）するとともに、閉じ込めの向上に成功し、当時のJT-60として最高度の中心密度と核融合積（14億倍・秒・兆ガル/セク）を得た。一方、JT-60の特長である大パワーの垂直入射NBを利用し、小体積プラズマに強力な中心イオン加速を行うことで高ppモードを発見（1989年）した（ppはポリゴナルベータ値）。これにより、マイクは中心で強く発熱し、Lモードに比べて2倍の高い密度を発生させることを可能にした。このため、Lモードにおける高密度を発生させることが可能となった。Lモードに関しては、低密度流体の波長を変化させることにより、核融合の必要密度を満たすことが可能である。

以上の発表を基に、JT-60は大規模化改造を実施し、1991年から実験を開始した。真空中断器を大幅に改造することで、従来の500mのプラズマ体積と60mAのプラズマ電流を可能にするとともに、動作ガスを重水素としたことが、DD核融合反応による中性子の発生を伴うことを意味しており、機器の安定性に必要な運転の必要性を注がなかった。その後の飛躍的な性能向上や1TER機の運用が開始され、14系統内の2系をプラズマ電流方向の接続入射、2系をプラズマ電流反方向の接続入射に変更し、同時に全プラズマ電流が20MAに達するまで増設（1996年に20MAに達した）。これにより、3方向NB入射、イオンサイクロトロン共鳴加熱、低密度流体加熱電流運動など多様な新技術が組み合わされ、プラズマ制御という観点から、大きな自由度を手にすることとなった。一方、課題として残ったのは、「リップル損失」である。大体積プラズマでは、プラズマの赤外面近傍でトロイダルコイルに近く、そのためトロイダル磁場のリップルが大きくなり、垂直NB加熱電流の約40%程度がリップル損失により失われてしまうことであった（リップル損失機構の解明1992年）。

このため、高性能運転の開発は、主にリップル損失の少ない所内空冷装置（体積50-70m³）で実施した。まず大きな成果を得たのは高ppモードに於いてであった。高空間分解能の荷電分離光束計測からイオノ密度分布に内部輸送障壁を発見（1992年）したのである。このリップル発見機を導入改善研究に関する得られた結果が、現在に至っている。この高ppモードの開発では、当初はプラズマ電流1MA以下で研究を開始し、次第に電流値を高めたことで性能を上昇させて行った。その後で、周辺密度を高めることでLモードを重視することに成功し、内部輸送問題を解決する手掛かりを持つプラズマ（高ppモード）を初めて実現した。この結果、Lモードの3-6倍に達する閉じ込め改良度（1993年）、現在世界最高の核融合三重積177億倍・秒・兆ガル/セク（1996年）を達成した。この結果、中心イオン密度の更新を続け、現世界最高のイオノ密度5.2億倍を達成（1996年）するに至った。この高ppモードの研究開発で得られた最大の成果は、「プラズマ内加熱の空間分布を制御し最適化することができる」という理念を得たことであった。そこでは、JT-60の多彩なNB加熱系とプラズマ位置制御の組み合わせによるプラズマ圧力分布の制御が本質的な役割を果たした。また、現在では、磁気創が弱い場合に内部輸送障壁が形成されることがあるが解明され、その際の磁場分布制御が不可欠な要素となっている。さらに、放電初期に中心部を急速に加熱することが内部輸送問題の形成に有利であることが分かった。そのためには、第一壁での粒子サイクルを低減して周辺密度を低減する必要があるが、イオン電気放射に加えてヘリウムグロー放出電気を導入したことが極めて有用であった。

続く飛躍の改善は、負磁気シーケンスモードで得られた。原研では、世界に先駆けて電磁流体力学的に安定な負磁気シーケンスモードを概念的に提案していた（1992年）。JET装置の実験から、負磁気シーケンスモードの閉じ込め改善が示唆されていた（1991年）。この機会、世界的なトカマク研究では、高精度のプラズマ電流分布の測定法が開発され、国際的なプラズマ電流測定の開発が行われ、JT-60では1992年から本測定を導入した。この測定手法により、世界的に負磁気シーケンスの研究が本格化したと言える。JT-60では、1995年より負磁気シーケンス実験を開始し、電子温度にも内部輸送問題が形成されることを発見した。負磁気シーケンスを持つ電流分布の形成には、NB加熱を行いながらプラズマ電流を上昇させる必要があり、放電初期の電流シナリオの自由度を拡大するための電流シナリオ改良を行うことが向上の上に値したものである。その結果、1996年に世界で初めて負磁気シーケンス運転により臨界プラズマ条件を達成し、1998年には世界最高の等価核融合エネルギー増分率1.25を記録した。このような負磁気シーケンス運転では、プラズマの安定性を確保するために、プラズマ圧力（ベータ）の精密な制御が不可欠である。このため、JT-60では中性子発生率や蓄積エネルギーの実時間還金制御を開始し、これを電気密度の還金制御と組み合わせることで、本成果を得ることができた。また、磁気シーケンスと反転している負磁気シーケンスにおいて、中心部に電流が流れない領域を安定に長時間存続すること（電気密度）を世界で初めて見出しました（2000年）。

この間、Lモードの研究も着実に進展した。重水素放電により良好なLモードが得られるようになり、プラズマ電流4MA前の広範囲のデータベースを作成し、ITERの物理パッケージに貢献した。特に、ヘリウムグロー放出電流に加えて、ポロン化処理を導入し、酸素不純物や粒子サイクルを低減に成功したことは、Lモードの閉じ込め向上に大きく寄与した。しかしながら、JT-60のLモードにおける閉
じ込め改善度は、米国の DIII-D 装置等と比べて未だ低く、改善の余地があることが分かってきた。JET II モードの閉じ込めを支えるのは周辺輸送障壁であるが、その部分の圧力限界は ELM（プラズマ周辺部に局在化する熱粒子の周期的な放出現象）で決まっている。その圧力限界が低かったのである。この ELM で決まる圧力限界を改善するため、ポロイダルコイルの結線と電流を改良し、三角角度配を可能とした。その結果、周辺圧力限界の増強に成功した。また、これにより、一層高い密度で高い閉じ込め性能が得られるようになった。この ELM のある II モードは、不絶断の達成の雰囲気の無い状態で良好な閉じ込め性能を定常的に維持することができるため、ITER の標準運転モードになっている。大きな課題は ELM に瞬発出される熱流束が大きく、ダイヤパックの損傷に繋がることである。

JT-60 では、上記の三角角度配において、良好な閉じ込めを維持したまま、低振幅高周波数の ELM を実現できることを発見し、その発生環境を初めて三角角度と安全係数の関数として与えた (1999)。その後、三角角度配が可能なプラズマ電流領域の拡大や維持時間の伸長を行い、周辺圧力限界の一層の上昇や低振幅 ELM の運転領域の拡大に成功した。

以上述べた内部輸送装置及び周辺輸送装置の形成・発展の物理及び制御に関しても、数多くの成果を得た。JT-2M における物理計測及び原研の理論研究（NIGHT 計画）の進展の果たした役割も大きい。その中で、イオンと電子における輸送障壁の形成条件に差異があることが分かった。核融合炉の加熱は、α 粒子による自己加熱が主体であるが、その熱源パワーは、まず電子に伝わる。一方、JT-60 の従来の加熱は加速電圧 80-90keV の NB 加熱が主体であり、JT-60 の温度領域では、入力パワーは主にイオンに伝わる。このため、開発して来た高閉じ込め運転が電子加熱の下でも有効に機能するかが ITER に向けた大きな研究課題となった。1998 年より開始した低電圧 (350〜420keV) の負イオン源 NB は、電子加熱が主体となるため、このような研究に大きく貢献した。また、1998 年から開始した電子サイクロン加熱も同様の意義を持っている。特に、電子サイクロン加熱は、2001 年に世界最高の入射パワー 80MW を達成し、これを負磁気ジアフグ放電に用いることで世界最高の電子密度 3 億倍を達成した。このような研究により、JT-60 で開発してきた高閉じ込め運転が、電子加熱の下でも有効に機能することができた。一方、内部・周辺輸送装置位置での輸送の制御（輸送障壁の強さの制御）には、プラズマ回転分布の制御が有効であることか分かった。現在、高性能の負磁気ジアフグ放電を達成し、これを利用して運転上、回転分布の制御は重要な要素となっている。回転分布制御は NB 入射による運動量注人で行われ、このような実験的研究は、3 方向（プラズマ電流方向接線、逆方向接線、垂直）の異なる運動量注入を行う正イオン源 NB 及び運動量注人の小さな負イオン源 NB の 4 系統の NB 入射システムを持つ JT-60 が世界を大きくリードしている。

2.2 電流電動性能の向上

閉じ込め向上と平行して実施して来た JT-60 の第二の挑戦は、トカマクの定常化に必須の非誘導電流駆動の高性能化である。通常、プラズマ電流は、ポロイダル磁場コイルをstras の 1 次巻線、プラズマを 2 次巻線として電磁誘導で流す。しかし、一層のプラズマ電流を維持するためには、ポロイダル磁場コイルで流れる電流を増加させ続けなければならず、定常運転はできない。このため、トラン スの原理を用いた「非誘導電流駆動」技術は不可欠である。非誘導電流駆動には、外部駆動方式と、プラズマが自発的に電流を流す性質（自発電流）を利用する方式がある。外部駆動方式には、電流等を入射して電子を一方向に加速する高周波方式と、プラズマ電流と同じ向きに中性粒子ビームを導入する方式がある。しかし、外部駆動方式だけでは電流を増やすことができ、核融合炉の電気出力に匹敵する循環電流が必要であり、炉の設計は困難である。そこで「自発電流」の割合を高めて外部駆動分のパワーを低減するのである。自発電流は、プラズマの圧力勾配が駆動するため、原理的にプラズマ中心には流れない。そのため自発電流の割合を増やすと、プラズマ電流全体の空間分布は平坦化し、不均マグニチュードを増やす。従って、前節で述べた内部輸送装置及び周辺輸送装置を併せて高閉じ込めモード（高pp モードと負磁気ジアフグモード）は、自発電流が増えるプラズマが自然に帰着する配位である。この優れた整合性が、JT-60 の推進してきた両モードによる先進トカマク運転の本質的点である。JT-60 の実験が開始された当時、トカマクでは定常運転が困難であると考えられていた。これを覆し、トカマクの定常運転を単解のレベルにまで高めたことが JT-60 の極めて大きな成果である。

JT-60 における電流駆動の研究は、低域混成波電流駆動から始まった。この低域混成波を用いた電流駆動は、JT-2 の世界初の実験を受け継ぎ、JT-60 の当初からの主要な研究課題の一つであった。その結果、磁化波の入射装置の作成から、磁化波が電流駆動、磁化波がイオン加熱を目的とするものであった。周波数は、目的を有する条件で 1.7-2.23GHz を選択した。ただしご、イオン加熱を行うためには 10^17m^-3 クラスの電子密度が必要であったが、 JT-60 の電流電動に関しては、一層大きな成果を得た。特に、1988 年の下 X 点改変時に、電流駆動用ランチャーを 24 列のマルチレーション方式（4 群）とした結果、極めてシャープな入射波スパイラルが得られ、高レベルな効率で利用された。
とのカップリングを縦方向に一致させることができ難しく、整った波を入射することが困難であった。JT-60の電流駆動効率が、他装置を大きく凌駕した理由の一つである。また、当時は、大パワーの低域混成波入射を行うと多重の高速電子ビームが一束に局所的に衝突するためで脈衝状のラスプト現象を招き、放電の維持が困難になるのではないかと危惧されていた。実際、JT-60でもリミターリ配位ではしばしば脈衝状が観測された。しかし、ダイバータ配位に入射を行うと、ブラズマ内に高速電流が漏れ出たとしても大きな問題とはならないことが分かり、大パワーの低域混成波入射がMA級（1IMA、1989年）の電流駆動効果をとることを実証したのである。この時期、現世界最高の低域混成波入射パワースイッチ（短時間では1MA）を達成する（1988）、さらに特筆すべき成果は、入射波の位置精度を変えることで電流分布制御を初めて実証したことである。このとき、電流分布の変化に応じてエネルギー閉じ込め時間が変化することを見い出し、その後の電流分布による閉じ込め制御研究の発端となった。したがって、ブラズマの物理に関しても、高速イオンとの相互作用、電流領域の評価、高速電子の散乱等で数多くの成果を挙げた。大電流化改造時には、残る2系統も12分割のマルチチャンスとし、3系統から成る電流駆動システムにより、世界最高のブラズマ電流3.6MAの非誘導電流駆動及び最高の電流駆動効率3.5×10^3A/W/mを達成した（1993）。さらに、電流駆動効率の経験則を導いた。他に電流駆動方式にルートを設けた高速電流駆動効率と優れた電流分布制御性は、高磁気セクタ配位の長時間維持（1986）、同高エネルギー維持（2000）を可能とした。2004年には、モーショナルシミュレーション光学計測との組み合わせにより、電流分布の実時間帰還制御システムの開発を開始し、基本性能を確認した。

中性粒子ビームを用いた電流駆動は、自発電流割合の高い高ベータブラズマで威力を発揮してきた。研究の進捗の観点から、まず大電流化改造後の1989年に、高βプラズマにおいて自発電流の存在を検証するとともに自発電流割合80%を実現した。さらに、この成果に基づき、物理的な運転範囲と概ね整合性のある定常トカマクのSST（定常トカマクの概念を世界で初めて構築した1990）。これが、現在に至る世界のトカマク研究の方向付けをしたと言える。この概念を実証するためには、高い割合の自発電流割合と、ブラズマ駆動電流を組み合わせて完全非誘導電流駆動を実現する必要があった。そこで、大電流化改造時に導入した接続NBを高βップドモードで適用する最適化を進め、1994年に自発電流70%およびビーム駆動電流30%の完全非誘導電流駆動（ブラズマ電流1MA）を世界で初めて実現した。続いて、1999年には自発電流80%およびビーム駆動電流20%の完全非誘導電流駆動を負荷機能IIモードで実証した。これらの成果により、定常トカマクの循環電力を十分高いレベルとする見込みを得た。一方、このような研究開発を同時に行い、JT-60は、世界で初めて負イオン源を用いた高エネルギー-NBの開発と高性能プラズマへの適用を進めた。これは、ITERのR&Dとして、世界でJT-60のみが行えることのできる極めて重要な研究開発である。年毎に加速電圧、入射パワー、入射時間を見上げ、伸長し、加熱パワーセット（電磁波）（2000）、10秒入射（2001）、25秒入射（2004）を実現した。この間、世界に先駆けて高エネルギー-ビームの電流駆動研究を行い、駆動効率の電子温度依存性の実証など、ビーム駆動電流の研究分野に先駆的な研究を行った。同時に、世界最高のビーム電流駆動効率1.55×10^3A/W/mと電流駆動電流1MAを達成（2000年）、核融合核領域への外挿性を確かなものとした。さらに、この負イオン源NBCの電流駆動を上記の高自発電流ブラズマに用いることで、完全非誘導電流駆動の運転可能性のプラズマ電流1MA（2000年）、1.5MA（2001年）に拡張した。これにより、完全非誘導電流駆動状態で世界最高の核融合核35億度・秒・物質/μm²を達成した（2001年）。また、高エネルギービームのプラズマ中の電離過程として重要なマルチチップ過程を実験的に実証した。

低域混成波と中性粒子ビームに続き、JT-60が挑んだのは電子サイクロトロン共鳴を用いた非誘導電流駆動研究開発である。この手法は、電流駆動効率は若干劣るものの、ブラズマ中で埋まった場所に局所的で暗い電流駆動を行うことができるという特徴を有している。また、他の高周波方式のようにブラズマ表面をランチャーナ包接させる必要がないかもしれません有利点である。JT-60の電子サイクロトロン共鳴加熱・電流駆動装置では、1999年に稼動を開始し、2002年には世界最大の入射パワー3MAを達成した。反射ミラーによる高次光路の実時間制御が可能なシステムである。電流駆動0.74MA（世界最高）及び駆動効率（0.42×10^3A/W/m）を達成（2003年）。また、ITERと同程度（2keV）までの電子温度を上越えて、EC電流分布図をトロピカル電場を考慮した非線形Fokker-Planck計算と矛盾しないこと、補足粒子効果が大きいプラズマ側部(r/a=0.5-0.6)で空間的に局在化した電流駆動が可能であることを等も明らかにした。

電流駆動や加速効率に、電子サイクロトロン共鳴は、ブラズマ着火に効果的な制御装置であり、周回電圧の低い超伝導装置を用いえた着火の研究開発において重要な役割を果たしている。その延長として、2002年、中心ソレノイドコイルを用いないブラズマ立上げを実証した。このとき、着火を続けて低域混成波電流駆動でブラズマ電流を立ち上げ、それに高エネルギー加熱を加えることで、自発電流とelectric駆動電流を利用してブラズマ電流密度を増大させ、高い閉じ込め性能及び大きな自発電流割合(80%)を高能効率電流ブラズマを生成した。これにより、中心ソレノイドコイルを用いないブラズマ立上げ手法が核融合研究への適用性を明らかにした。以上の研究開発により、自発電流と外部非誘導電流駆動を用いた定常化研究の物理基盤と制御アクチュエータの技術基盤が整った。これに基づいて、JT-60は後述の長パルス－高ベータ定常化研究開
2.3 安定性の向上と高ベータ化の進展

プラズマの電磁流体力学的な安定性（MHD安定性）はプラズマの運転限界を決定する最大の要因であり、JT-60でも、その稼働開始から今日に至るまで中心的な研究課題である。特に、2.1で述べたエネルギー閉じ込め改善度の高いプラズマにおいては、性能の限界を決めるのは、もはやエネルギー閉じ込め時間ではなく安定性である。この理由から、大電流化改善後のJT-60では、様々な工夫により高圧力プラズマの安定性の向上を目指して研究開発を行ってきた。その中で、最も大きな役割を果たしたのは、「世界で最も多彩な加熱・電流分布制御システム」と「プラズマの位置・形状制御」との組み合わせである。これは、MHD安定性を決定する最大の要因が電流分布、圧力分布、及びプラズマ形状であることからである。

高圧力化における初めの課題は、高pβモードでプラズマ圧力が上昇した時に発生する「へテロ崩壊」現象の回避であった。イオン温度分布測定と磁気計測、及び理論計算の結果から、内部輸送障壁での圧力勾配が急激になる場合に、この圧力勾配が駆動源となって理想的なパルスロンモードと呼ばれる不安定性が発生することを知り、JT-60の特長である垂直入射NBによる強力な中央加熱は、内部輸送障壁の形成には有利であるが、一度内部輸送障壁が形成されると、中心加熱によって圧力勾配が急速に増加することが分かったのである。この研究に基づき、ガス導入によってプラズマ周辺部での密度を上昇させ、Mモードを発生させることで「内部輸送障壁＋周辺輸送障壁」を実現し、周辺圧力を上昇させるとともに内部輸送障壁位置での圧力勾配を安定限界内としつつ、プラズマ全体としての圧力限界を約50%上昇させることに成功した（1992）。加えて、内部輸送障壁が形成された後、プラズマの位置の調整によってNB入射軸とプラズマ中心をずらすことで加熱分布を若干平単化し、局所的な圧力分布の程度の成長を抑制する技術を使った。これらの手法により、1986年に高pβモードで世界最高の核融合三重層を達成した。

一方、電流分布に関しては、強い正磁気シアが安定化に有効であることが理論的に予測されていた。これを実現するために、プラズマ電流を速く減少させて過渡的に中心尖端化したプラズマ電流分布（強い磁気シア）を形成し、これに大パワーのNB加熱を行うことで、JT-60での最高の規格化ベータ値4.8（1993）、トヨタルベータ値7.7%（1996）を達成した。この実験は、ベータ限界に対する電流分布の効果を定量的に示す意味で重要なものであった。ただし、この手法は過渡的に安定性を向上させるものであり、また、大きな自発電流割合（低磁気シア-負磁気シア）の整合が難しい。このため、低磁気シアであればともかくベータ限界を高める工夫が必要となった。

これを実現したのが、高三重層である。ポロイドアルファ子の構造を変更することでプラズマ断面形状の三次元を高める運転を可能とした。この結果、ELMの発生を決定する周辺圧力の限界を約2倍、全圧力として50%上昇させることに成功した（1996）。以上の結果により、「圧力分布に関しては、プラズマ周辺部と中心部の両者における安定性を確保するために、過度の平単化や中心尖端化を避け中程度の中心ピーク度とすることが良い。また、プラズマ断面の非円形化、特に三角度の上昇が有効である。」という形状・分布制御の指針を明確にしたのがこのである。これは、以下に述べる負磁気シアプラズマの安定化においても基本的な指針である。

高圧力化における次の課題は、負眼界リモードに対するものであった。凹状の電流分布を持つ負磁気シア配位にMHD安定な解が存在することを理論的には有していたものの、それを実現する路には多くの困難があった。到達前のプラズマが安定であっても、そこにはある安定的な経路が狭いことが第一の問題であり、多くの試行錯誤を繰り返した。時間的に変化して行くプラズマ電流分布に応じた加熱パワーの制御が求められたが、これを解決したのがNB加熱パワーによる「複合的」蓄積エネルギー実時間推進制御であった。これは、垂直及び偏角方向のNBをグループ分けし、垂直NBの変調による蓄積エネルギー実時間推進制御と、接線入射NBによるベース加熱と回転・電流分布制御を組み合わせるものであり、この結果、再現性良く臨界プラズマ条件を満たす負磁気シア放電が得られるようになった。単純な蓄積エネルギー推進制御と、全プラズマ圧力（ベータ値）の推進制御であるが、これだけでは内部輸送障壁位置に生じる圧力勾配の局制御まで行うことはできない。研究を重ねた結果、この局所圧力勾配はプラズマの回転分布によって制御できること、それが接線入射NBによる運動量の注入によって実現できることを突き止め、これを応用したのである。多彩なNB加熱系を持つJT-60の特長が発揮された一例である。

核融合の際や臨界条件の達成をやく、JT-60が次に挑んだのは高ベータプラズマの定常化に向けた研究開発であった。そこで新たに課題となったのは「新古典テリアリングモード」と呼ばれる不安定性である。これは、高ベータのプラズマで、低ベータでは成長しない「磁気島」と呼ばれる構造が成長し、閉じ込め性能を大きく劣化させる不安定性である。原因は、磁気島の中で自発電流が失われることにある。高温の炉心プラズマ中ではプラズマ電流の分布が変化する時間は遅く（JT-60で数秒〜10秒程度）、電流分布（自発電流）の変化に伴って発生するこの不安定性は、高ベータプラズマを長時間維持して初めて現れた現象であった。現在、ITERの標準運転で規格化ベータ値を2程度としている。
理由はこの不安定性の発生を回避するためであるが、この値では ITER の定常運転（規格化ベータ値～3）や核融合炉（規格化ベータ値=3.5〜5）への展望は開けない。この課題を解決すべく、JT-60 は 2 種類の方法で安定化制御の研究を続けてきた。第一は、磁気島の発生で局所的に失われた自発電流を外部から補う方法である。現在、各所の装置で、電子サイクロトロン電流駆動を用いた局所的な電流駆動による安定性向上が図られているが、特に JT-60 では、磁気島の位置を同定し、その位置にビンポイントの電流駆動を行う実時間安定化制御に初めて成功した（2002）。これは、ECE 計測による磁気 島位置の同定と、可動塩基を用いた電子サイクロトロン電流駆動位置の制御を組み合わせたものであり、2004 年には規格化ベータ値=3 の安定化に成功している。第二の手法は、磁気島が発生する空間での圧力分布を抑制するものである。これにより、規格化ベータ値=3 1秒（2000）から 6 秒（2004）維持することに成功した。また、電流分布が変化する時間に比べて十分長時間に亘って、ITER の標準運転の設定値を超える規格化ベータ値の維持に成功した（規格化ベータ値=2.3 を 22 秒間維持）（2004）。この第二の手法は、第一の手法を行うためのベースラインの底上げという役割を持つものである。

このような研究の結果、現在では ITER の定常運転に必要な「規格化ベータ値=3」（自由境界限界）の定常維持が展望できるようになる。しかし、経済的な核融合炉を目指す場合、さらに高い規格化 ベータ値=3.5〜5 の定常維持が必要である。この実現には、プラズマを導入導電体による安定性向上が必要である。JT-60 は、2005 年に第一壁タイプの一部を強磁性体に変更し、これによってトロイダル磁場リップルを低減することで真空容器に近接する大電流プラズマでの大パワー加熱を可能とする。この改良により、自由境界限界を超える高ベータ値の達成を目指す予定である。

2.4 高エネルギー粒子研究の進展

高エネルギー粒子挙動の研究は、ITER の燃焼プラズマにおいて自己加熱の源となるアルファ粒子の挙動を予測し、また、制御手法を開発するという観点から JT-60 の大きな研究課題の一つとなっている。JT-60 では、まず正イオン源 NB 加熱とイオンサイクロトロン波加熱を用いて研究を行い、負イオン源 NB の導入以降は、これを中心に研究を進展させた。その結果、1990 年代半ばまでに、高エネルギーピー粒子の減衰は古典的に一義化し、拡散係数は新古典拡散係数の良好な関数を示すことが明らかにした。熱化粒子が異常輸送を起こすものに対して高エネルギー粒子の輸送がそれを示さないのは、プラズマ中の乱流の特性長に比べて高エネルギー粒子の軌道が大きく、軌道による平均化が起こるためと考えられる。そこで、以下のような磁場振動による閉じ込め効果に対して、良好なアルファ ピー粒子の閉じ込めが期待できる。

その第一がリップル損失である。トロイダルコイルの数が有限であることに起因する磁場の波打ち（リップル）は、ITER や核融合炉ではアルファ粒子損失を招き、加熱効率を低下させるばかりでなく、第一壁への定常的熱負荷となる。JT-60 では、1992 年に、赤外線テレビを用いた第一壁への熱流測定と軌道減速モニタリングローレンジ（OMC）の計算によって、初めてリップル損失の定量的な解明に成功し、ITER の設計に大きな貢献を果たした。また、JFT-2M では、真空容器内の強磁性体（低放射性フープリング）を用いたリップル磁場の補償によって、高エネルギー粒子の損失を抑えることも確認された。これらの結果を受け、1995 年に JT-60 への強磁性体第一壁の設置に至った。

第二番目はアルファ損失ガドレーニと呼ばれる不安定性の研究である。これは、高エネルギーイオンの圧力が駆動源となる不安定性であり、高エネルギーイオンの速度がアアルファ波の波相速度になる時に、共鳴的な粒子の波相互作用によって発生する可能性がある。その磁場振動の大ささには高エネルギー粒子（アルファ粒子や Interface ピーム粒子）の輸送及び損失をもたらすため、ITER 向けた重要な研究課題である。JT-60 では、イオンサイクロトロン共鳴加熱や負イオン源 NB を用い、非円形（NAE;1997）及び負磁気シーエュ（RASE;1996 年に発表、2002 年に同定）アアルファ損失モードを世界で初めて発現した。プラズマ回転による安定化や負磁気シーエュの内部輸送壁の存在の下でアアルファ損失モードが安定化することができる。さらに、2004 年には、中性子発生率空間分布計測により、アアルファ損失モードの発生によって高エネルギー粒子の再分配が発生することも明らかにした。特に、世界で唯一 JT-60 が有する高エネルギー負イオン源 NB を用いることと、高エネルギー粒子損失の重要なITER のアルファ粒子挙動を模倣する領域での実験が可能となったことで、研究が大きく進展した。

2.5 ディスラプション回避・緩和研究の進展

プラズマの密度や圧力が限界を越えると、プラズマが急速に消滅する「ディスラプション」と発生する。このディスラプションの抑制や緩和は、核融合において最も重要な課題の一つである。JT-60 の実験が開始される以前は、「トカマクのプラズマは突然消滅してしまう場合がある。」と言われ、大きな不確定要素と考えられていた。その後、世界の研究の進展により、ITER の標準運転程度の領域であれば、ディスラプションはほぼ完全に回避できるまでに研究が進展した。この研究の中で、JT-60
の果たした貢献は極めて大きい。

ディスラプションが発生すると、まずプラズマからの熱の放出（熱消滅）が起き、続いてプラズマの熱流の消滅（電流消滅）が発生する。熱消滅ではダイバータ板への大きな熱流が問題となる。電流消滅では、プラズマ電流が持っていた電磁エネルギーの急激な開放によって真空容器内構造物にハロー電流が誘起され、これとトロイダル磁場との相互作用による電磁力が問題となる。電流消滅時には、多くの場合プラズマの垂直移動現象が発生し、プラズマが壁に押し付けてプラズマと真空容器内を介して大きな電流を流す（ハロー電流）。一方、垂直移動が小さい場合には、磁束を保存するために誘起された高電流によって、高エネルギーサー（数十MeV）の放射電子が発生する場合があり、これが一時的に接触する局所的な高熱荷を与える。これらの理由から、ディスラプションの回避と、仮に発生した場合でもダメージを緩和することが重要である。

JT-60では、まず、ディスラプションの発生条件の理解に取り組み、1990年代半ばまでに、数種類ある発生原因を解明・系統化し、これに基づいて安定な運転領域を定量化するとともに限界を拡張してきた。その回避の基本は、適切な運転シナリオでの電流分布の過度の急激な変化を避けること、密度及び放射率の適度の上昇を避けること、及びペータ限界に対して裕度を保つことである。また、仮にディスラプションが発生した場合でも機器の健全性を確保することも重要である。このため、ハロー電流の量と分布に関するデータベースを世界的なトカマークと共同で作成し、ITERに設計指針を与えた。

一方、故障等の不測の事態でディスラプションを回避できない場合を想定して、緩和手法の開発も平時で進め、その有効のアドバイズで世界の研究をリードしてきた。熱消滅の緩和では、ネオンのベレットをプラズマに注入することで、ダイバータ板に流入する熱を放射し拡散し、熱荷負の集中を大きく低下できるように実験で初めて実証した（1994）。ハロー電流の緩和は、垂直移動現象の抑制が焦点であるが、これが電流消滅時に真空容器外に誘起される渦電流とプラズマ電流が及ぼす合力のバランスで決まることが解明するとともに、力が上下対称となる位置（中立平衡点）にプラズマの中心を設定すれば垂直流現象を考慮することを明らかにした（1996）。追加電子については、外部エラーミー磁場の増大（1996）や熱消滅後に不純物ベレットの注入（2000-2004）によって抑制できることを実証した。以上の緩和手法は、一歩進めて、ペータの緊急停止技術としても重要な技術である。

以上の研究開発により、ディスラプションの回避・緩和研究は大きな進展を見せた。ただし、現状では、規格化ベテル値を3以上、放射率を90%以上高めて行くと安定な運転領域は狭くなり、限界が加わった場合にディスラプションが発生する可能性が出てくる。今後、このような領域で、運転裕度を定量化し、有効な回避手法を確立する必要がある。放射により起因する場合は、現象の発展が遅いので予兆現象を観測してから回避操作が可能である。一方、エラーミー側では、現象の進展が早いため、運転裕度を実時間で評価・予測し、回避操作をする必要がある。このため、JT-60では、ニューラルネットワークを用いた実時間制御手法の開発を行っている。

2.6 熱・粒子制御研究の進展

いかに高性能の心構えプラズマが生成できたとしても、第一壁に流入する熱流が過大で材料の健全性が保たなければ核融合炉は成立しない。また、適切な燃料を照射しそ、燃焼生成物であるヘリウム粒子の排気や第一壁からの不純物発生の抑制を行うことができなければ、燃焼度を確保することはできない。このような課題を解消するための熱・粒子制御は、JT-60実験の初期から重要な研究項目であった。特に、その有効にダイバータ構造は、JT-1aで原型が世界で初めて実証し、その後世界的に、装置の標準化と蓄積されたものであるが、JT-60の第一壁においてのダイバータ配位が可能であったのは、JT-60のみであった。このように、JT-60のダイバータは世界初のダイバータとして、高効率の熱・粒子制御を図っていた。
きな進歩であった（この 203MJ は当時の NB 加熱容量で決まっていた）。このような良好な結果を受け、1999 年には強磁場ヒットポイント近傍からの排気も行えるよう改造を行い、排気量は 13m³/s から 16m³/s に増大し、排気効果が上がり、高角度配位では強磁場ヒットポイントがダイバータ排気口から遠くなり排気効果が上がらなかったが、強磁場ヒットポイントからの排気が可能となったため、高密度領域で優れた H モード閉じ込め性能が得られた高角度配位での排気が実現が可能となった。

ダイバータ系に流入する熱を減少し、許容範囲内に維持するためには、不純物による放射を利用することが大切である。そのためネオン・アルゴン等の希ガスをダイバータ領域に導入して放射を増大し、熱を第一壁全体に分散させることが有効である。ただし、プラズマへの混入は図るのので、スクレイプオフ領域に向かう粒子の流れを作り、不純物粒子をダイバータ領域に押しつける必要がある。JT-60 では、上記の高角度配位でのダイバータ排気等の不純物ガス出力実験により最適化を進め、プラズマの良好な閉じ込め状態を維持したまま、放射パワーを熱入力パワーカーを高めて高熱中にまで高めることに成功した。

この間、原子核分解反応の過程に次のようなスパッタリング及び化学スパッタリングの定常面積と壁温依存性の取得、不純物粒子のプラズマ中三次元での輸送特性と排気効果の同定、スクリューポンプ層での逆流現象の発見等の成果を挙げ、ITER や将来装置に向けたダイバータ性能予測やモデリングに貢献して来た。これららの研究には、多彩な粒子制御機器の能力を果たすことが求められた。4 注入系から星のガス供給系、重水素ガス等の動作ガスに加えて不純物ガス等を主プラズマ領域とダイバータ領域から様々な組み合わせて供給することが可能とし、還元等合成ガス供給系を構成している。また、ダイバタ領域での高空間分解能計測、世界初の 3 カ所から共動電流プローブ等の計測機器により、装置内の行うこととしない研究も可能となった。JT-60 は、ベーシングにより第一壁温度を 300 度に保つことができる優れた装置である。これは、本来の目的である大気圧等の壁状態の回復に有効であるばかりでなく、高密度から 30 度までの壁温範囲で壁温を変化させることで化学スパッタリングや粒子吸収に関する壁温依存性の研究に大きく貢献した。

第一壁状態の調整技術も大きな進歩を遂げた。ディーゼル等放電洗浄に加え、ヘリウム / グロー放電洗浄は良好な壁状態の維持に有効であり、高性能化や再現性確保に不可欠な役割を果たしてきた。また、グロー放電は NB 注入ポート内部の洗浄の効果も高く、電離損失の低下に必要な時間を大幅に短縮し、実験の効率を高めた。さらに、1992 年から導入したボロミー・コールディングは、酸素不純物量の大幅な減少に極めて有効である。特に、重水素化ボロンとヘリウムグローの組み合わせによるコーティング技術の開発（2000）により、コーティング実施後の壁状態に必要な放射量が大幅に減少した。

このような新しい粒子制御研究の進展を受け、2004 年には 30 秒の H モード放電を用いた第一壁の粒子吸収量の定量化、粒子呼吸状態での H モード実験の安定、実験運転でのダイバータ排気効果の定量化学の成果を得た。また、ダイバータトラフィックとして世界最高の積算加熱入力 350MJ を達成し、熱・粒子制御の観点から新たな領域を開拓しつつある。

2.7 プラズマ対向壁材料研究の進展

第一壁状態を整える研究は、ITER の設計の進展と並行して、プラズマ対向壁材料の研究として進化して行った。2001 年度より、JT-60 施設における障害防止法上の使用核種としてトリチウムを追加申請し、重水素実験に使用した炭素系第一壁表面の分析研究を開始した。また、これに合わせて第一種管理区域内に新たに表面分析室を設置した。特に DT 実験を行う将来の核融合炉において、炉内トリチウムの低減は将来炉の安全設計上大きな課題である。本研究は JT-60 の重水素実験において生成されるトリチウムを含めた水素同位体ガスのプラズマ中での挙動とプラズマ対向壁での滞留機構を解明することを目的としている。

先ず W 型ダイバータ及び第一壁タイル内に残留したトリチウムをイメージングプレート（IP）法及び燃焼法により測定した。その結果、ドーム部で最もトリチウム濃度が高く、速度の低いダイバータ部では低い値を示した。一方、解析的手法を用いて DD 反応で生成される高エネルギートリチオンの軌道損失を OFMC コードで計算した結果、DD 核反応で生成された 1MeV トリチオンの約 30% が、リアルプוםと軌道損失により高いエネルギーを保持、プラズマ配位で決まる特定位置のプラズマ対向壁に照射される。この対向壁に印加されるトリチオン粒子の粒子数は、IP 法及び燃焼法によるトリチウムシミュレーション結果と良く一致した。また、核反応およびその摂氏分布を解明した結果、トリチウムは 2 µm の深い場所に取り込まれていることが明らかになり、高エネルギートリチオンの放射が果たされた。また、表面温度の堆積層の厚さを、走査電子顕微鏡による断面観察により測定した結果では、内側ダイバータでは最大 200 µm の堆積層が観測される一方、外側ダイバータでは損耗が支配的であり、EIT 等トカマク装置での一般的な特徴とよく一致した。すなわち、トリチウム分布は走査電子顕微鏡で観察された損耗層に堆積位置とは一致せず、プラズマ壁面配位に依存するリアルプッド損失等で決まることが明らかになった。以上のことから将来の核融合炉において DD 核反応で生成した高速トリチオンはプラズマ対向壁の特定の深い場所に長期間堆積して内部インベントリを形成することが明らかになり、また、その結果堆積したトリチウムの低減を図るためには従来の放電洗浄方式に代わる新たな除去方法
2.8 総合性能向上と定常波の進展

ITER計画を実施する段階に達した現在、JT-60計画は要素性能進展の時代を過ぎ、ITERの定常運転及び核融合炉の早期実現を目指す総合性能の向上と定常維持、そのための制御手法の開発に挑戦するフェーズに入っている。核融合炉では、高い閉じ込め度で核融合出力の発電を発揮し、第一壁への熱流を許容する壁面側に保つと高、高い出力密度でコンパクトな炉心を実現するとともに、小さな循環電流で定常的にプラズマを維持することが求められる。この総合性能を7つの指標で表すと、A) 閉じ込め改善度が高い (核融合出力の上昇)、B) 規格化ペタ値が高い (核融合出力の上昇)、C) 発電流割合が大きく (循環電圧の遅延、D) 非径電流電流割合が大きい (定常維持)、E) 準Instant方程式が大きい (核融合出力の上昇)、F) 準Instant方程式が低い (核融合出力の確保)、G) 燃焼プラズマを非径電流電流割合で平均すると、このクラスプラズマがラズマ全体の領域でこれらの変数を実現することができる。この結果、2.2.2まで述べたように、高閉じ込め・高自発流電流割合の完全非径電流電流プラズマの追求を基軸に、高瞬間モードと低磁気シールドモードを、上記A) ～D) について定常トカマク炉 (STTR) を総合的に実証する成果を得た。ITERの定常運転シナリオは、これらの成果を踏まえて設定されたものである。このような「定常炉を目指した総合性能の追求」は、JT-60が世界的に先駆けて推進してきた研究方針である。一方、先進トカマクマックスの確立を目指す世界の研究の潮流を形成したのである。

ただし、現在までの研究では、A) ～D) の性能と、E) ～G) の性能を高いレベルで同時に達成するまでに至っていない。その課題は、密度を上昇させると閉じ込め性能が次第に劣化すること、高閉じ込め状態での核融合出力の蓄積の容易さを知ること2点である。これらを解決すべく、ベッテット入射やダイバータ搭載を用いた最適化を進めていっているところである。規格化ポテンシャルをさらに向上 (8) しつつ、他の性能を確保していくことが大きなポイントである。

この研究で明らかになったように、求められる総合性能を満たすにはプラズマの特性（電流、圧力、回転、密度等）の空間分布の制御が不可欠である。ここでは、燃料制御という将来に向けた大切な役割をも加える。ここに重要かつすること、これらの数年間に従来的な関係を持つことである。電流分布は数値を左右し、特微的な圧力分布を自己形成する。同時に、電流分布は、圧力分布が決定した自発流電流の分布に大きく影響される。また、燃料プラズマでは、圧力分布に応じて発生するデルタ粒子放射の分布は、圧力分布自体の決定要因となる。核融合炉で、自己加熱波が全電流の約90％を占めるため、加熱分布の大部分はプラズマが自ら決定する。また、自発電流流割合が70～80％を占めるため、電流分布もプラズマが自ら決める割合が大きい。このような自律性が強い核融合炉のプラズマを、全電流の100％程度の外部加熱パワーと20～30％の外部加熱電流で制御することになる。燃料プラズマの確保やダイバータ熱荷の軽減に必要な燃料や不純物積集の制御は、主プラズマからダイバータ領域に至る全体的な制御として捉える必要がある。各分布が変化する時定数は異なる。核融合炉の領域では、温度、密度、圧力、回転等は数秒から10秒程度、電流は100秒程度の時定数であり、JT-60では前者が数秒、後者が数秒～10秒程度である。粒子状態の決定要素である第一壁の粒子分布は時間に長い。このように異なる時定数で発展する各分布をセットとして制御する必要がある。このような研究的決定においては、電流分布が変化する時定数以上の長い維持時間が必要である。その状態で、どのような計画及びアクチュエータを用いて、如何なるロックインで制御するのか。

この研究が、JT-60が挑む今後の課題である。

JT-60は、この新たな研究領域を開拓すべく2003年には放電の長パルス化（放電時間を15秒から65秒に、主加熱電流時を10秒から30秒に伸長）を実施した。2004年には、電流分布が変化する時定数 (τ) に比べて十分長いめ良好な放電を維持した。Hモード放電の30秒間維持、規格化ベタ値2.3の22秒間維持 (15μs)、負磁気シーアモードや高pHモードでの高自発流電流割合・完全非径電流電流の5～7秒間 (＞2μs) 維持等をみた。また、上記の粒子状態と密度も実現した。このようなパルスを用いた各種遮蔽制御も着実に進展している。さらに、2005年からはリップル磁場低減による安定化実験を開始する。JT-60は、これまで培ってきた先進プラズマ運転に軽水し、世界でも最も多様なプラズマ制御機器・機能を長パルス放電に適用する一方、高ベータ定常化に向けた研究開発を進めて行く。
<table>
<thead>
<tr>
<th>年度</th>
<th>制御等</th>
<th>閉じ込め・安定性向上</th>
<th>定常化・熱 Charging</th>
<th>電流駆動</th>
<th>結合性能＆定常維持</th>
<th>エポック</th>
<th>重要な機器の貢献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>JT-60実験開始</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>全設備</td>
</tr>
<tr>
<td>1986</td>
<td>高強パワーカーボウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NBI20kW</td>
</tr>
<tr>
<td>1986</td>
<td>高強パワーカーボウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>目標領域達成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>全設備</td>
</tr>
<tr>
<td>1988</td>
<td>高強パワーカーボウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>IHCD : 1.1MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>最大輸入源試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>高強パワーカーボウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>核融合器合計72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>核融合器合計125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>ベレット中心補給</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>受電変換器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>受電変換器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>受電変換器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>受電変換器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>受電変換器</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年度</td>
<td>条件等</td>
<td>閉じ込め&安定性向上</td>
<td>定常：熱粒子制御</td>
<td>電流駆動</td>
<td>総合性能&定常維持</td>
<td>エポック</td>
<td>重要な機器の貢献</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>2001</td>
<td>NTM制御実証</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC可動権</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MHE計測</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>反射計</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高βPH:1.8MAfull-CD&核融合核30</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NNB、分布制御</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NNB回転分極制御</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NNB長時間入射</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS無し運転実験</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>結線、ECH、LHCD</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高閉じ込めの高密度化</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ベレット</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECH</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高放電高密度IIモード</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arパブ</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>長パルス化</td>
</tr>
<tr>
<td>2004</td>
<td>NTM実時間追尾制御</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECミラー、ECH、制御</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>熱粒子定常制御の新規域開拓</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>長パルス化</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>完全電流駆動8秒</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>長パルス化</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>負シグマfull-CD長時間化7.4秒</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>長パルス化</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高放電高密度IIモード</td>
</tr>
</tbody>
</table>

AE: アルファベントリモード、BN: 規格化ベータ値、BS: 高電力、CD: 電流騒動、CS: センターソレノイドコイル
Div: ダイバータ、full-CD: 完全非誘導電流騒動、NTM: 新規心理アリングモード、核融合核の単位は10^17m²s⁻¹kev⁻¹
3. 全系制御設備

3.1 全系制御設備の概要 — JT-60 統括制御設備 —

目的（背景）
全系制御設備の役割は、JT-60 を実験装置として機能させることで、そのために運転全体を集中監視すること、放射を準備し実行すること、プラズマを実時間で制御すること、プラント全体の保護と安全な運転を確保すること、結果データの保存管理である。これららの役割を実行するために、運転制御機能、放射制御機能、プラズマ制御機能、マンシュコンビューターコンピュータ、ドライブル発生機能、保護インターコンピュータ、実験データベース管理機能等が設けられている [1][2][3]。
これらの機能は、JT-60 を構成する各設備制御システムにおいても全系制御設備と同様にそれぞれのプラントの運転制御機能、放射制御機能、プラズマコンビューターコンピュータ、ドライブル発生・受信機能、保護インターコンピュータ、実験データベース管理機能等が設けられ、全系制御設備との間で機能分担すると共に、必要に応じて設備単離での試験運転が可能である。

設計内容
全系制御設備は階層構成を採る JT-60 制御系の最上位制御設備として、制御用ミシンコンピュータ、プラントとの信号入出力を行う CAMAC 規格のインターコンピュータシステム、各種ツールのトリガー信号を生成するパルス発生器、オペレータ実験運転用の操作台、プラント全体に係る保護を実現するリレー盤を構成であった。
1985 年、JT-60 完成当時は、制御用ミシンコンピュータと CAMAC モジュールの組み合わせによるシステム構成は、データ収集速度やプラズマ制御性能の面において特に問題はなかった。一方、マンシュコンビューターコンピュータと合わせて実験データの保存管理については、実験運転を実験し、使い勝手や機能面での改善、機能向上の必要性が明かとなった。この制御用ミシンコンピュータは、製作メーカー固有のアッセイプログラムで動作し、制御ソフトウェアの変更、改造についてはソフトウェア作成を担当するメーカーへの依頼が必要であった。CAMAC システムは厳密に規格化されたモジュールのため制御系の設計や組み換えがハード的に容易であり、規格で定義された CAMAC コマンドを組合せてプログラムを作成する。このようなシステムの拡張性に着目して JT-60 制御系の標準インターコンピュータシステムを採用した。

JT-60 完成後、プラズマ制御のための、プラズマ制御系を中心にいくつかの制御系の改造が行われ、その都度、上記の理由から全系制御設備の製作メーカーに発注された。然しながら、これらの改造に係わる費用と時間は、実験効率と全体のスケジュールの点から必ずしも満足のいくものではなかった。この 1980 年代後半は、UNIX OS、ワークステーションやイーサネットの登場やソフトウェアの出現により、コンピュータを取り巻く環境は急速に変わりつつあった。このような状況下で実施された大規模化改造において、全系制御設備、その当時の最新の計算機技術を最大限に活用して、プラント制御系とマンシュコンビュータシステムの機能向上を図ることを目的として、大幅な改造を実施した。この改造においてはプラズマ磁場平衡制御系の 2 台の制御用ミシンコンピュータを VME-bus 規格 (IEEE) に準拠する市販の高性能ボードコンピュータに置き換え、ソフトウェアを汎用的な C 言語で記述することにより特定メーカーへの依存をなくすこととした。一方、マンシュコンビューターコンピュータシステムについては、UNIX ワークステーションとイーサネットによる通信を将来のオープン化という視点から選択した。また同時に、放射条件作成の自動化を積極的に推し進め、省力化と実験効率の飛躍的向上を図ることとした。これらの改造は、従来の制御用ミシンコンピュータと CAMAC モジュールというシステム構成で実施していた各種制御機能を VME モジュール（場合によってはワークステーションを含めて）に置き換え実行するという JT-60 における基本のシステム構成を構築する出発点となった。

その後、全系制御設備においては、プラズマ制御系の一連の機能向上を目指した追加、改造を制御用ミシンコンピュータと CAMAC モジュールから VME モジュールに更新することと併せて実施した。現在すべての全系制御設備の制御用ミシンコンピュータは VME モジュールに更新して、稼動している。一方、CAMAC モジュールについては、全系タイニングシステムをはじめとして各設備制御系において現在も、かなり使用されている。然しながら、これら CAMAC モジュールは一部の汎用品を除いてそのほとんどが製造中止となっており、今後の市販品の拡充が困難である。また高価格であり、性能面では明らかに VME モジュールやその他の市販モジュールに比べて格段に低価格である。然しながら、現在稼動中の制御システムの一括更新は、予算的に難しい状況にある。そこで、部分的に更新する方法を考える。まず、全系と交信する各設備のコミュニケーション部分をイーサネットによる通信機能に変更する VME モジュールに更新することを第一段階とし、現在までに全体制御設備を除いて更新を完了した。

VME-bus 規格 (IEEE) に準拠する市販の高性能ボードコンピュータが比較的安価に入手可能となったこと、ソフトウェアの開発が可能となり、新
たな制御システムの構築や制御アルゴリズムの追加および改造などが容易となった。これらの作業は、原研職員が中心となって前で製作し、人間確保が難しい場合に、ソフトハウスに外注するという方式を採ってきた。その後、実験の結果に基づき早急に制御アルゴリズムを改造したり、装置の安全を確保するために必要な制御インターロックを組み込む等の措置を、新たな予算措置を講じることなく（改造量に応じて予算措置が必要となる場合もある）短時間で実現し、実験効率の向上に寄与してきた。それらの主なものは、実時間プラズマ可視化システムの構築、プラズマ電流分布制御システムの追加、NB1 加熱装置を用いた各種制御アルゴリズムの追加等である。これら各システムの詳細な改造については以下の章で述べる。図 1 に全系制御機器の全体構成を示す。表 1 に、これまで全系制御機器において実施してきた主な改造履歴を示す。

図 1 全系制御機器の全体構成

考察
現時点で、これまでの経験を踏まえて、新たに JT-60 制御系を設計するとした場合、どのような選択があるかということを考えてみる。

制御系の構成としては分散型と集中型の 2 つの形態が考えられるが、いずれか一方に偏った制御系の構成を考え難しい。大規模なプラントである JT-60 の場合、極端な集中型のシステム構成を探った場合、個別の設備調整試験等に対応しなければならず効率が悪いこと、中枢機能の故障により全システムの機能停止が考えられる。一方、全て分散型で制御系を構成した場合、機能の重複が避けられないこと、プラズマ放電実験においては、機能面から完全な分散が出来ないことははげされる。従って、現在の JT-60 制御系に見られる適度な分散、集中制御系の構成が望ましい。勿論、詳細な機能の分担と集中については、見直しの必要があると考えている。

運転の監視については、運転管理方法と密接に関連するが、現場での無人化を積極的に目指す設計とすることが運転コスト、省力化の観点から必要である。現在の設計は、現場制御系がそれらの設備の中央制御系と同等かそれ以上の機能を有している。中央と現場の制御機能の見直しも、運転体制や製作コストの観点から合理的に機能分担を図るべきである。

使用する制御機器や適用すべき基準などは、少なからず望ましい。一方で、要求に合った性能を満たす市販の標準機器を採用することも重要である。従って、用途別に分類し、絞り込んだ上で、複数の候補を選定することがあっても良いと考えるが、し、選定の基準はオープン性、標準化というスケールで判断するべきである。

設備機器の保護、安全の確保の観点から保護インターロックシステムをハードウェイア化した設計は、計算機によるソフトインターロック機能を有する霞当なものであった。ハードウェイア化の実現手段としてリレーを採用したが現時点では PLC なども有力な手段と考えられる。

JT-60 のような実験装置は、システムの追加、更新、改造が常に発生する。制御系は、それに短期間で柔軟に対応することが求められている。この要求を満たすために発展性のある制御系を目指すことが必要である。CAMAC 規格の採用はそうしたシステムの拡張性を意図したものであったが、システムの
中核となるマイクロコンピュータを複数の受注メーカーに特別注文で発注したことや、搭載したモジュールのソフトウェア言語やOSについては特に取り決めがなく、統一を図ることが出来なかった点が、製造の段階で要因であった。CAMACモジュールが高価であったことも、選択に関してマイナス要因であった。更に、これよりCAMACモジュールを統合して制御系を構成する際の重要な役割を受け持つ制御用ミニコンピュータについてはもそのソフトウェアに関して同様な問題点が存在していた。それらの問題点の多くはソフトウェアのオープン化により解消されるつつある。以上のことから、低コストと標準化は、今後の制御システム設計においても重要であると考えられる。

参考文献、表彰
[4] 近藤育樹他、1987年、電気学会、電気学会論文賞受賞、大型トカマク装置 JT-60 全系制御設備の開発

<table>
<thead>
<tr>
<th>年度</th>
<th>主要項目</th>
<th>改造理由</th>
<th>改造仕様</th>
<th>結果（評価）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>実験DB管理システムの構築</td>
<td>全系の計算機で実験結果データを復元し、データ解析を行うための作業効率を高める</td>
<td>JT-60実験結果を大型視覚化計算機へ専用の通信装置で転送し、その端末を利用して実験データの再現、解析が可能である</td>
<td>大型汎用計算機の持つ特徴、豊富な端末、大容量データ蓄積能力、データ解析用支援ツールの提供を図り、実験データ解析能力の大幅な向上が図れた。</td>
</tr>
<tr>
<td>1986</td>
<td>D-stop導入</td>
<td>プラズマディスラプション等の不安定な状態におけるDコイルの過電流を防ぐと共にランナウエイ電流によるX線発生を抑制する。</td>
<td>プラズマ電流制御目標値と現状値の比を放電条件で設定し、次第に設定値を下回った場合は、プラズマ電流を一定の速度で減少させる制御（D-stop）を組み込む。</td>
<td>不安定なプラズマ放電による異常なDコイル電流の増加が抑制され、過電流の発生や予期せぬX線の発生が抑えられた。</td>
</tr>
<tr>
<td>1987</td>
<td>下側ダイバーターレ改造</td>
<td>プラズマ制御装置の演算精度を高めマトリックスダイバーターレック方式による多変数制御装置の可能性を研究自らの手で持続的に開発することが可能なシステムの構築を目指す。</td>
<td>2台の制御装置をパイプライイン処理化し、実行速度の向上を図ると共に、高速アレーブロケッセを前処理装置に付加し、全体の処理速度の向上を図る。</td>
<td>初期の目的は達成し、制御機能の維持はできた。</td>
</tr>
<tr>
<td>1989-1991</td>
<td>大電流化改造</td>
<td>15秒放電、大電流化への改造を主目的とし、同時にJT-60の性能を進化可能制御系を原研自らの手で持続的に開発することができる可能なシステムの構築を目指す。</td>
<td>放電用ミニコンコンからワークステーション、VME-busネットワーク、標準化をキーワードとしてオープンなシステム構築をベースとした全系制御システムを構築した。プラズマ位置、形状制御周期は1msecから0.25msec/0.5msecとした。</td>
<td>1991.10, Ip=5MA達成、全系制御設備はワークステーションとイーサネットを基本に、放電条件作成の自動化、VME-busモジュールを用いたプラズマ制御系、プラズマ制御ロジックのモジュール化などを進め、核融合装置における新たな制御システムの基盤を築いた。</td>
</tr>
<tr>
<td>1992</td>
<td>新アルゴリズム番号13の追加</td>
<td>プラズマ電流の制御におけるアナログディジタル信号変換、観察による制御性能の劣化要因を解消することを目的として追加する。</td>
<td>プラズマ電流やプラズマ位置の目標値ブレープと実測値との差、即ちフィードバック量を、従来のコイル電流値からコイル電圧値として出力することにした。</td>
<td>制御精度は向上し（Rp<5mm, Zp<2mm, Xp<6mm）位置・形状の不規則な変動の解消、プラズマ表面周辺電圧変動の減少による周辺プラズマの拡散抑制を実現した。</td>
</tr>
</tbody>
</table>

表1 全系制御設備の主な改造歴一覧
<table>
<thead>
<tr>
<th>年度</th>
<th>項目名</th>
<th>内容描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>プラズマ可視化システムの導入</td>
<td>プラズマの正確な位置・形状制御の状態を実時間でモニターできる装置を作る。</td>
</tr>
<tr>
<td>1993-1997</td>
<td>高三角度配位への改造</td>
<td>Vコイル絞線を変更し、高非円形絞線と高三角度絞線の選択を可能とし、それぞれの選択肢に対応して三角角度用のコイル(VT)と、Hコイル、F型で絞線の許容変形領域を区別して制御する。</td>
</tr>
<tr>
<td>1997</td>
<td>新ネットワークシステム構築</td>
<td>DB用の汎用計算機をワークステーションに変更することに対応して、これまでのデータをネットワーク上で利便可能にする系システムに再構築する。</td>
</tr>
<tr>
<td>1997</td>
<td>W型ダイバータ改造</td>
<td>ダイバータ改造に伴うNB13ユニットの流動専用化に対応して3ユニットの高速シャッターを個別にアクセス可能とする。</td>
</tr>
<tr>
<td>1998</td>
<td>実時間計算機(1BR)の高速化</td>
<td>高精度化への対応を図ると同時に、プラズマ実時間制御システムの拡張に対する余裕を確保する。</td>
</tr>
<tr>
<td>1999</td>
<td>高精度長時間積分器の稼働</td>
<td>磁場計測に使用している積分器のドリフト調整または使用する測定のディジタルレコーダーの使用を可能化する。計測の精度を向上させる。</td>
</tr>
<tr>
<td>2000</td>
<td>CCS制御供用開始</td>
<td>プラズマ位置、形状を解析する方法でしか実時間で同定、その結果を実時間で可視化する。更に、これらの過程で算出される位置、形状に関するプラズマパラメータをプラズマ平衡制御フィードバックに利用し、位置、形状制御の精度を向上させる。</td>
</tr>
</tbody>
</table>

- 使用しているワークステーションのハードウェア性能による処理速度の低下は見られが、ネットワーク上のワークステーションからこれまでと同様の機能を実現することが可能である。運用管理、システムのコスト面では従来と比較して大幅な向上が図れた。

- DB基本構築はそのままに、UNIX-OSのディレクトリ構築を利用し、運用管理にはX-Windowsを利用し開発コストを抑え、標準化を意識すると共に将来の拡張性も視野に入れた設計とした。

- DB構築はすでに個々にUNIX-OSのディレクトリ構築を利用し、運用管理にはX-Windowsを利用し開発コストを抑え、標準化を意識すると共に将来の拡張性も視野に入れた設計とした。

- 高度先進プラズマ制御アルゴリズム導入に向けた基盤を確保した。 (項目25の各種制御機能の実現が可能となった)
<table>
<thead>
<tr>
<th>年度</th>
<th>プロジェクト/システムの変更内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>プラズマフィードバック制御システムの高速化</td>
</tr>
<tr>
<td>2001</td>
<td>放電制御計算機システムの更新</td>
</tr>
<tr>
<td>2002</td>
<td>運転制御計算機システムの更新</td>
</tr>
<tr>
<td>2002-2003</td>
<td>長パルス化改造</td>
</tr>
<tr>
<td>2004</td>
<td>電流分布制御システムの導入</td>
</tr>
</tbody>
</table>

2001年 プラズマフィードバック制御計算機の高速化
システム構成の簡略化と処理時間の余裕を確保し、機能拡張の裕度を確保する。

2001年 放電制御計算機システムの更新
全系制御計算機の高齢化対応としてシステムの更新を図ると、と共に、標準化を志向し、将来の機能上の要求に応えられるシステム構造を持ちつつ、原研が自前で開発することが可能なものとする。更新にあたっては、JT-60実験に一切支障を来さない開発手法を取り、設備側の改造を要しない設計とする。

2002年 運転制御計算機システムの更新
放電制御計算機システムの更新にほぼ同じ

2002-2003年 長パルス化改造
JT-60の放電時間を60秒、加熱時間を30秒とする長パルス化改造に伴って、全系の各機能、マシンシーン、データ量の増加、プラズマ制御ロジックの変更、インターロックの見直し等を行い、長パルス運転を可能とする。

2004年 電流分布制御システムの導入
プラズマ制御系に分布制御機能を追加し、プラズマ電流分布、安全係数分布制御等を行う。

高性能ボードコンピュータ(Dec Alpha)の導入と3台のCPUで処理していた内容を1台のCPUで処理するよう改造した。

ワークステーションとVME-Busモジュールと。
これまで全系で開発してきたモデルを採用し、プロトタイプを製作し、可能な限り実機の環境を模擬し、試験を十分に行って、このプロトタイプを新しくい機として、現システムと入れ替けるという手法を用いて、JT-60実験に支障を与えることなくスムーズなシステム更新が実現した。

放電時間の伸張に伴うデータ量の増加に対する格納エリアの確保、放電条件の変更や加熱制御アルゴリズムの見直し、データベースの増加に対する対応、結果データ表示時間の拡大などの対応をする。長パルス化に伴う運転監視機能の新設等を図った。

PCIモジュールを用いた専用の分配制御システムをプラズマ制御系に追加し、リフレクティブメモリを用いて、プラズマ制御系の各システムと交信を図る。放電条件作成は専用のワークステーションを設け、独立して作成、転送できるようにした。

プラズマ位置、形状制御の将来のアルゴリズムの追加に対する余裕を確保した。
3.2 プラズマ制御システムの開発・改良

進化するプラズマ制御システムの構築

目的（背景）

JT-60 プラズマ制御系は、電磁気計測装置からの入力信号を磁場、磁束、電流といった物理量に変換した後、プラズマ位置形状、電流分布などの平衡指標を計算し制御するプラズマ平衡制御計算機システム。この平衡計算結果の断面形状を実時間で映像化する実時間可視化システム、プラズマ密度や加熱制御などを行うデラサクラ粒子供給・加熱制御計算機システムから構成される。

このプラズマ制御系は JT-60 を特徴付けるシステムであり、プラズマ実験の進展と共に絶えず改良、改造を行い、これまで多くのプラズマ性能向上に貢献していった。ファーストプラズマの着火した 1985 年当時、このプラズマ制御システムは CAMAC 規格に準拠したモジュールと 3 台の制御用ミニコンピュータ（HIDIC-80E、日立製作所製）から構成されていた。この完成直後からいくつかの改良が行われたが、実験上の要望を満たす為の限定的な規模に留まっていた。折しも計算機の技術的進歩は著しく、高性能のハードウェアが比較的容易に入手可能になってきた。1989 年から約 2 年にわたって実施された大電流化改造において、制御用ミニコンピュータから、現在のシステム構成の原型となった VME-bus システムに改造し、柔軟性に富んだシステムとなった。その後、実時間がプラズマ断面位置形状可視化システムの開発により位置形状を実時間でモニタできるようになった。さらに入手可能になったばかりの大容量コンパッタ付き高速演算プロセッサを PCI-bus 上で 6 台並列動作することで、位置形状を含む平衡指標を実時間で高精度算出するシステムを、平衡制御計算機（IB）システムから分離、構築した。

さらにプラズマ平衡制御計算機システム（IB）、粒子供給・加熱制御計算機システム（IBR）も同一の高速計算機により再構成することで、柔軟性を一層向上させた。その後、平衡制御系と加熱装置制御系を組み合わせて用いたフィードバック制御の実施で、プラズマ不安定性を抑制する実証に成功し、プラズマ電流分布制御システムの追加など、プラズマ制御の高度化を目的とした種々の機能向上が継続している。また、CAMAC 規格モジュールで構成されたプラズマ電磁気計測用システムを VME-bus システムへ更新した。このように、プラズマ実験上の様々な要求に対して迅速で柔軟に対応できる進化可能なプラズマ制御システムを構築し、新しいプラズマ実験の領域を切り拓く研究に供している。

放電条件設定上の重要なポイントは、大電流化改造時に考案した“制御アルゴリズムのプレプロセス”である。これは各種制御アルゴリズムを元の番号を付してプログラム登録しておくこれをプラズマ放電中の任意の時期に番号の中から選んで使用するという考え方である。こうにより、プラズマ制御実験を柔軟に行うことが可能となり、実験の自由度を広げることに繋がった。この条件設定方法は、プラズマ平衡制御系で保ず、最近では NB 加熱制御に適用し、更にガス注入装置の制御への応用を検討している。図 1 に現在の JT-60 実時間プラズマ制御システムの全体構成を、図 2 にプラズマ制御ブロックの一例を示す。各設備とも制御系の中核部分は全て VME-bus 化したが、信号入出力部分には一部 CAMAC システムを残している。

図 1 JT-60 実時間プラズマ制御システム全体構成
図2 JT-60プラズマ制御ブロック図

設計内容

プラズマ制御系は、当初の制御用ミニコンピュータと CAMAC モジュールによるシステム構成から、数値系の劣化を考慮し、制御器を用いて、より高速で制御系の高
いシステムとなっている。このプラズマ制御系はいくつかのシステムから構成されるため、サブ
システム毎に、その設計内容概要をまとめ、詳細は次章以降に議論のこととする。
(1)プラズマ平衡制御計算機システム (IIb)

プラズマ平衡制御計算機システムは、2台の制御用ミニコンピュータと CAMAC システムを用いて5種
類のポロイダル磁場コイル電源を制御し、プラズマ位置・形状を制御するシステムである。JT-60 完成
当初は、1台のミニコンピュータが予備として、1台で信号の入力、変換、制御アルゴリズム演算およ
び指令値 (電圧 / 電流) の出力処理までの制御演算周期を 1 ms で行っていた。1986年「高速プラズマ
制御実験装置」の導入に伴い、制御アルゴリズムの改良に伴う処理の増加後も制御演算周期をこれ
までに維持するため、電磁気計測装置器信号の磁場信号変換処理とプラズマ位置形状の計算
処理を行う専用の「高速演算装置」を新設し、2台の制御用ミニコンピュータを伴うバイプラ
イン処理を行い演算処理の高速化を図った。引き続き行われた「増幅器配置改良」では、プラズマ断面
形状の配置がそれまでの外側バイパータ配位から下側バイパータ配位に変わったことによる、電磁気
計測装置器信号の入力処理および制御アルゴリズムの性能改良を行った。その後実施した「JT-60 大電流化
改造」では、2台のミニコンピュータと高速演算前処理装置およびタイミングシス템を除く CAMAC
システムを VME-bus 準拠のボードコンピュータシステムに置き換え、制御周期をそれまでの 1 ms から
0.25 ms および 0.5 ms と高速化すると共に、ソフトウェアも UNIX-05 搭載のワークステーションで開
発することでオープン化し、各種の改造要求に対して、原研が迅速に対応できるように改造し
た。その後、高速演算プロセッサボードをより高性能の機種に随時更新し、新たなプラズマ制御上の要求
に応えられる状況を維持しないこと。

(2)プラズマ断面形状変更装置システム

プラズマ断面形状の再構築は、当初計算機の性能が不十分であったために、まずはプラズマ実時間
可視化システムとして開発を検討した。プラズマ実時間可視化システムは、プラズマ外線磁気を
磁場信号とポロイダル磁場電流信号を用いて実時間で求める。その後はグラフィックプロセッサ
により実時間で動画可視化するシステムである。第1号システムでは、この磁気信号計算を行
う演算プロセッサは、VME-bus 準拠のボードコンピュータ MVME181 (20MHz, DRAM 8MB, Motorola 社製)
を使用した。磁気信号を 80ms、画面表示に 20 ms を要した。その後、理論的に電流の磁場の解析解
に基礎を置く磁気フィードバックである CWS-条件面法 (CCS) を開発した。これにより精度にそれまで
の方法に比べ向上するとともに、磁場信号に係る係数をあらかじめ 2次元空間の関数として算出し
メモリ上に展開しておくことで演算処理の高速化が図れるという特徴を有している。折しも、より
高速で大容量メモリーを有するプロセッサの出現で、コピー条件面法（CCS）を実時間で実行することにかかったハードウェア的にも可能となった。このような状況から、高速演算プロセッサ（Alpha21164, 350MHz, DRAM 128MB, DEC社製）を搭載したVMEモジュール（alphaVME5/350）に更新し、演算処理の高速化を図り、実時間可視化処理時間を4.7msまで高速化できた。さらに、高速演算プロセッサ（Alpha21164, 500MHz, DRAM 512MB, DEC社製）を搭載したPCIボードコンピュータ6台でシステムを構成し更なる高速化を実現し、ブラズマの位置、形態などのパラメータは1msの周期でブラズマ位置形状を0.25msで計算し、ブラズマ制御計算機システムへ転送してブラズマ位置形状フィードバック制御に使用する。このCCS法を用いた磁場計算プログラムは、ブラズマ制御に必要なパラメータの算出はもとより、電流電流分布など他の先端的なブラズマ制御の導入においても重要な物理量の計測の基として、益々その重要性が認識されてきている。

(3) 粒子供給・加熱制御計算機システム（1bfr）

1bfrは、1台の制御用コンピュータを用いてブラズマ放電中のシナリオ管理（ブラズマ制御ブース管理）を行った。このシステムにおいては、1bfrの制御は1986年、ブラズマ電流を一定値に固定することで、制御機能（O-stop 制御）の追加である。この機能はディスラプション発生時にブラズマ電流のフィードバック制御を続け続けることにより、ブラズマ電流の再立ち上がりを行いその際、高エネルギーX線が発生するためこれを防止するためである。1989年、1bfr計算機をミシソからVMEMOジュールに配置し、その結果、演算処理の高速化された新しいブラズマ制御機能の追加が可能となった。1999年、ECH（HE-B系改良装置）加熱装置新設の際、実時間制御時のデータ通信にリフレクティブメモリ（Ech）通信を採用し、その後、計測RTP、NB1、ガス注入、RF設備装置と順次リフレクティブメモリ通信を用いるブラズマ制御系の高速ネットワークを整備し、現在に至っている。これにより、タイミング信号およびNB1への指令値を除き、ブラズマ制御に関する実時間情報の伝送は全てリフレクティブメモリを介した通信となっている。これらの改良により、ブラズマ制御に関する実験側からの要求、特に、制御アルゴリズムの変更・改造などの作業が容易とななり、要求から短期間でソフトウェアの改造・追加が可能となり、高性能ブラズマ実験の遂行に大きく寄与している。

注）リフレクティブメモリ、データを共有できるボードタイプのメモリーで、光ファイバーケーブルを介して高速に互いにデータ転送を行い自動的に全メモリーの内容を同一にする機能を持っている。下記の(5)参照。

(4) ブラズマ電流密度分布制御計算機システム

先進的なブラズマ電流密度分布制御計算機システムの導入の検討を2003年初頭から開始し2004年1月の実験から稼働した。このブラズマ電流分布制御システムは、計測装置の一つであるMSE（Motional Stark Effect）計測装置からMSE信号を実時間で人り、安全係数等を算出する。この結果を用いて電流分布制御アルゴリズムによりLRHFに対する指令値（出力パワー、位相）に変換し、これを1bfrへリフレクティブメモリを介して送信することでLRHFを制御する。本制御システムの制御アクチュエータは、LRHFまたはECHを想定して制御アルゴリズムを製作し、LRHFおよびEchがRF設備として1bfrと取引している制御設備のため、この取引をそのまま維持することを念頭においてシステムを設計した。電流分布制御システムは、制御アルゴリズム等の変更や拡張性を考慮し、独立したシステムを構築する事とした。電流分布制御システムが実時間で計算したLRHFまたはEchへの指令値を、リフレクティブメモリを介して1bfrが取り込みRF設備へ指令値を出力することにした。また、計測機システィムを構築するハードウェアは、ブラズマ放電形状実時間再構築システムの予備品（PCIモジュール）を使用した。この選択は、既存の全系制御設備に対する影響を最小に留め、かつ新しい制御系を追加することで制御系の拡張性を図るというモジュール化の試みのケースとなった。2004年1月に、安全係数が最小値となるブラズマ半径上での位置計測信号から算出し、その位置にLRHF設計を実時間で合わせて、加速するという実験を行い、電流分布の実時間制御を試みた。現在、制御アルゴリズムの改良を加え、次の実験を目指している。

(5) 高速ネットワーク通信システム

ブラズマ制御系におけるデータ通信速度は、制御周期を決める重要な要素であると共に、制御系を構成するそれぞれのシステムが機能を分担しているため、その信頼性が特に重要である。JT-60完成当初は、制御用コンピュータの製作メーカー独自の通信システム、光データフライシーウエイというミニコンピュータ間通信方式を採用していた。1989年～1991年までに実施したJT-60大電流化改造では、II bのVME-busシステム化により実時間制御中は、ポロイドアル電源との間は従来通りCAMACプラシイハワイト通信、非実時間制御中はイーサネット通信となり、データフライシーウエイ通信は取りやめとした。その後、1bfrをVME-busシステムに更新し、実時間制御に係わる他設備も順次、VME化し、実時間でのデータ通信は、リフレクティブメモリを用いた通信となり、現在に至っている。リフレクティブメモリを用いた通信(6.2MB/sec)の最大の利点は、OS（オペレーティングシステム）を介することなくメモリの指定したエリアをデータを転送だけでなく、同時に通信が行える点である。

(6) 電磁気計測用積分器及びブラズマモニターシステム

電磁気信号計測用のV/F変換器は、高精度のブラズマ制御の実施に不可欠であり1998年、高精度低
ドリフトの積分器を開発し、1999年1月のJT-60 実験運転より全電磁気信号計測に使用している。この時、一際磁場負号、反磁性ループ信号の計測を残し、電磁気検出器の信号処理は全てII bで行うこととした。Y/F変換器の開発に関しては、更なる長時間、高精度を目指してITERへの適用も視野に入れられた開発を続けている。

プラズマモニタシステムは、当初、プラズマ制御において重要な役割を持つ電磁気計測検出器の信号計測、中性子信号、硬X線信号の計測を行っていた。これらのデータ収集やモニターハンドは、マイクロコンピュータ搭載のCAMACモジュールで実施していた。現在、電磁気計測検出器の信号計測のうちプラズマ制御に係わる電磁気計測検出器の信号処理は、プラズマ平衡制御計算機システム（II b）が行っている。2001年3月、プラズマモニタシステムは放電制御計算機システムの更新と同時に、タイミングシミュレーションを残し、CAMACシステムからVME-busシステムに更新し、現在に至っている。

プラズマモニタシステムはまた放射線モニター用機器として、中性子および硬X線信号の監視を行い、中性子発生率の制御インターロック処理も実施している。さらに、プラズマモニタシステムで計測した中性子データは電波後、実験運転時の中性子発生量として積算処理及び管理されている。

結果
I b, II b をはじめとするプラズマ制御系のVME化、高速ネットワーク化等のハードウェア更新により、高経年化対応を図ると共に、制御アルゴリズムを記述するソフトウェア言語をハードウェア特有のアセンブラ言語か汎用的なC言語に変わり、かなりの部分が原研自らの手で開発可能となった。特にI b のVME化に伴い、NBlをアクチュエータとした制御アルゴリズムの追加、例としてプラズマ蓄積エネルギーが上昇しても、中性子発生量が増加する等の組み込みにより、プラズマの総合性能の向上に貢献した。またプラズマ実時間可視化システムにおいては、最外郭磁気力同調手法にCCS法を採用し、従来の平衡計算と比較してその精度を飛躍的に高めるとともに、計算方法を工夫して高速化を図り、可視化システムで算出したプラズマパラメータをリアルタイムフォーマットをもとに送信し、平衡制御に使用することで、従来よりも精度の高いプラズマ位置-形状制御を行うことを可能とした。これらの開発作業は殆ど原研自らで実施することで、実験者の要求から数週間で実現すると共に、プログラムでの不具合等の対応も迅速に行えることから実験効率の向上に役立っている。

考察、波及効果
II bで採用したワークステーションとVME-busシステムの組み合わせによる構成は、その後の新しいJT-60制御系を構成する標準のシステム構成として、全系のシステム構成をはじめ各設備制御系の更新においても広く採用された。更に、リフレクティブメモリを用いた高速ネットワーク通信のプラズマ制御系を構成する全ての設備を接続するネットワークとして使用されている。こうしたハードウェア環境の整備を図ることにより、プラズマ実験上のさまざまな要請に対して、迅速に対応できるよう、自前で経験を積み重ねてきた。その結果、I b を中心とした先進プラズマ制御アルゴリズムの導入、NTM制御、電流分布制御システムの追加および長時間放電への改良などを実施し、JT-60における高性能プラズマの実証に貢献することができた。これらの実績は、高性能プラズマ実験結果に留まらず、核融合実験装置における制御アルゴリズム開発手法、コスト低減、開発効率の向上などの面から次世代の装置設計に応用できるものとされることを示唆する。今後の進化するプラズマ制御システムの姿を予測しつつ、継続して最適なシステム開発の方法、構成を考えていく必要がある。

将来に向けて
プラズマ制御系は核融合実験装置特有の制御系として、高速、多くの制御アルゴリズムの適用、複合する制御の同時使用等の特徴を有している。またプラズマ実験の進展に伴い、絶えずシステムや制御アルゴリズムの変更、追加が行われ、柔軟に対応できる拡張性を備えなければならず、これらの特徴を踏まえ、常に変化に追従できる進化型の制御系を必要とする。従って、これまでの経験と実績を基にすることは歴然であるが、あまり形に捉われない自由な発想の制御系を構築するという考えで、将来に対応することも必要である。

表彰、特許
[1] 栗原昭一、1995年、科学技术庁長官、注目発明賞、プラズマ断面位置形状同定法
[2] 川保隆一、2001年、電気学会、優秀発表賞、「トカマクプラズマ電磁気計測のための超高速動作域・超低ドリフト長時間積分器開発」
[3] 栗原昭一、特開平05-341067、登録26538712、プラズマ断面位置形状同定方法（1997）
3.3 プラズマ平衡制御計算機システムの改良と改造

目的（背景）

プラズマ平衡制御計算機（Ⅱb）システムは、電磁気計測検出器からの入力信号を磁場、電流、流といった物理量に変換後、プラズマ位置形状を演算し5種類のボロイダル磁場コイル電源に指令値（電圧/電流）を出力することで、プラズマ位置形状を高速に制御する計算機システムである。この計算機システムは、J-7-60 大電流化改造後のプラズマ断面形状の高非円形化に伴い垂直方向不安定性回避のために、制御演算周期をそれまでの全被制御量共通の1.0 ms（無駄時間2.0 ms）から、垂直位置制御周期0.25 ms（無駄時間0.25 ms）及びその他の制御周期0.5 ms（無駄時間0.5 ms）に高速化した。さらに、実験上要求されるプログラム開発はUNIX-05 搭載のワークステーションによりオープン化され、使用言語もそれまでのミクロコンピュータ固有のアセンブラ言語からコンバイラー言語であるC言語となり、各種の改造要求に対して、それまでに現実内で独自に且つ迅速に対応出来ることになった。

その後、電子技術の進歩とともに演算プロセッサーは高速化（動作周波数の増大）と大容量化が図られ、それら高速演算プロセッサー搭載の汎用ボードコンピュータが市場に供給された。プラズマ制御の高度化に向けた改良、改造、新機能追加のため常に最高速度のボードコンピュータへと更新し柔軟性を一層向上させた。このように、プラズマ電実験上の様々な要求に対して迅速且つ柔軟に対応できる進化可能なプラズマ平衡制御計算機システムを構築し、新しいプラズマ実験の領域を切り拓く研究に貢献している。図1に現在のプラズマ平衡制御計算機（Ⅱb）システムの格納盤（整流器棟電源制御室）の扉を開けた状態の写真を示す。

設計内容

プラズマ平衡制御計算機システムは、当初の制御用ミニコンピュータ（HIDIC-80E）とCAMACモジュールによるシステム構成から、実験の進展に伴い数度にわたる改良や改造および新機能追加などを経て、現在は汎用ボード規格であるVME-bus 準拠のボードコンピュータにより構成している。そのため、より高速で拡張性の高いシステムとなり、実験上要求される様々な改良・改造や新機能追加を行い続けている。本システムの初期から現在までの改良・増改等およびシステム更新の履歴をまとめてここに到る。

主な改良・改造および機能追加

プラズマ平衡制御計算機システムは、J-7-60 完成当初、それぞれ896KBのメモリボートを持つ2台のミニコンピュータとCAMACモジュールの構成で、ミニコンピュータは1台を予備として、1台（Ⅱb）で信号入力と工学値変換、制御アルゴリズム演算および指令値（電圧/電流）の出力処理まで、制御演算周期1.0 msで行っていた。プログラムは、ミクロコンピュータ固有のアセンブラ言語で記述し、プログラムの入力端末には紙カードを使用していた。紙カードはカード対孔型でプログラム1行あたり1枚という条件であったため、プログラムの改良・改造作業の効率は現在に比べると格段に低かった。

1986年11月から実施された「高速プラズマ制御実験装置」導入に伴い、プラズマの位置形状の代表点を計算する方法が、それまでの円形断面を持つ方法からより精度が高い統計処理係数法に改良された。この統計処理係数法は、様々なプラズマ平衡を計算機内で作成し、そのデータを多数用いてセンター信号から位置形状値を計算する式の係数を計算し求めており、その式を用いて実時間で位置形状値を計算する方法である。この検出アルゴリズムの変更に伴う処理の増加後も制御演算周期をそれまでと同一に維持するため、電磁気計測検出器信号の磁場信号変換処理とプラズマ位置形状値の計算処理を行う「高速演算前処理装置」を新設し、2台の制御用ミニコンピュータ（Ⅱb, Ⅱb）を新たに3段パイプライン処理を行い演算処理の高速化を図った。図2にこの時の構成を示す。パイプラインシステムの考え方は、制御周期は維持しながら、入力から出力までの無駄時間が制御周期以上になるという処理性であるが、演算量が多く無駄時間が増加しても制御周期を短く維持することと制御特性の劣化の危険を緩和することから、現在でも応用に役立つと重要なわべきである[1]。

この高速演算前処理装置はマルチバス規格基盤で、演算処理の中核となるボードコンピュータZiP3216（AMD29116, 10MHz, 1MB）2台と、電磁気計測信号入力を有するアップダウンカウンターボードおよびボロイダル磁場コイル電流・電圧信号、トライオイダル磁場コイル電流入力するADCボード、演算したプラズマ位置形状値を上位のCAMACシステム（トラジェントレコーダ）へ出力するDACボード、2.0MBのDRAMボードで構成していた。プログラムは、高速演算前処理装置のホスト計算機
（MC68000, 8MHz, マーキュリー社製）の端末よりC言語を模倣したZIP/C言語で記述しボードコンピュータZIP3216にダウンロードしていた。2台のミニコンピュータのうちⅡbAは、位置形状制御目標値や高速演算前処理装置で演算した位置形状値をCAMACシステム経由で入力し、グローバルメモリ（128KB）を介してⅡbBへ転送していた。一方のⅡbBは、ⅡbAからの入力データを元にポロイド磁場コイル電源への指令値（電圧／電流）を求め出力しプランズマ位置形状を制御していた。引き続き1987年10月から行われた「下側ダイバータ配位改良」では、プランズマ断面形状の配位がそれまでの外側ダイバータ配位から下側ダイバータ配位に変わったことによる変更に加え、電磁気計測検出器信号の入力処理でのトロイダル磁場コイルからの交流電磁磁束、位置形状諸量の精度向上のための計算項数の増加、および制御アルゴリズムの付加改造を行った[1]。

この3段パイプライン処理によるシステムでは、高速演算前処理装置およびCAMACシステム（ダイミングシステムを除く）を全てVME-bus規格準拠のボードコンピュータシステムに置き換え、制御周期をそれまでの1.0 msから0.25および0.5 msと高速化した。プログラム開発に関してもUNIX-OS搭載のワークステーション上でC言語による製作が必要となった。その後、各種の改良改善に対して、元が自ら迅速に対応出来るようになった。VME-busシステムの構成は、4台のボードコンピュータとパルスカウンターボード、ADCボード等のI/Oボードで構成しており、そのうち3台のボードコンピュータ（MVME181:20MHz, DRAM 8MB, Motorola社製）をマルチプロセッサシステムとして並列動作させるプランズマ位置形状の諸計算及び実時間制御演算を行った[2]。

この時的位置形状計算法は、平衡状態を多数実施データベース化したものを統計処理して、電磁気計測信号に関する関数式の係数を予め導出しておき、実時間中は式に従って計算機内部で多項式を計算するという方法であった。精度向上計算の項数の増加を要し、各種の改善・改善や新規能の追加も処理量の増加となり、それらは計算機性能の上昇で対応するという流れがその後も続いてくることとなった。1992年12月にはプランズマ垂直位置を0.25ミリ秒周期で制御しているCPUを、MVME187（25MHz, DRAM 8MB, Motorola社製）に高速化し処理期間の短縮を図った[1]。

また制御モデルの構築に対しては用いたシミュレーションにより、それまで観測されてきた不可解な位置制御の変動や、制御ロジックに原因があることが明らかになっていったことから、それを改善する新たな制御アルゴリズムを新規追加した。1996年6月のプランズマ実験から運用され、位置の変動幅を緩和させ、同一ゲイン使用時にも定常偏差の減少が図られ、直ちにその有効性が確認された。またそれまで常時大きく乗っていたプランズマ周ループ電圧の振動が、以前の制御ロジックに起因するVコイル電圧変動であったことも判明し、新規方法に変更したことで1/10に激減するという効果も得られた[3],[4],[5]。

1993年5月には、トカマク装置に於けるプランズマ電流立ち上げ過程の研究を効率良く進める目的で、プランズマ放電を時間を2分隔し1バルス目の放電が完全消滅後、2バルス目を着火させる「1パルス完全消滅後の再立ち上げ制御機能を追加した。

1994年3月には、後述するプランズマ断面形状実時間可視化システムとの実時間制御中のデータ通信にリフレクティブメモリ（VMI55576, VMIC社製、大容量共有メモリー）ネットワークを採用し、現在の分布データを初期とする大容量データの実時間制御通信の基礎を築いた[6],[7]。

1980年代後半から、世界の中型、大型トカマク装置における実験において、プランズマ断面形状が
エネルギー閉じ込め性能の決定因子の一つであることが明らかになってきたことを受けて、1994 年 12 月からプラズマ断面形状を D 型（外に突き出た三角形）に制御する「髙角度配位」改造を実施した。この「髙角度配位」は、ポロイダル磁場コイルの中の垂直磁場コイルの一部を、三角形磁場用の VT コイルとして独立させ、他の垂直磁場コイルと独立の電源に接続するので、水平位置と垂直位置を個別に制御できることとなった。その後、髙角度配位での閉じ込め性能向上のためにプラズマ電流を増大させることとなり、VT コイルに接続する電源を 1995 年 11 月と 1996 年 12 月の 2 回変更し電源容量を増加し、コイル応力制限からプラズマ電流とコイル電流間の実時間インターロック機能を追加した [8]。

実時間機能を少し離れるが、放電前の段階で放電条件や結果データに係わる通信について少し触れ、VME-bus に組み込まれた計算機と上位の計算機（HIHIC-940，日立製作所製）との通信において、初期設計時からの CAMAC シリアルハイウェイ通信方式を採用したために、バスサイクル速度の違い（VME が 20 MHz，CAMAC が1 MHz）による通信上のトラブルが発生した。このため 1995 年 12 月に TCP/IP 通信に変更し信頼性を向上させた。1997 年 4 月には、ダイバーター改造においてハロー電流測定のために電磁気信号の新しい入力の電磁気信号の新しい入力を改良し、さらに同月 5 日に、プラズマ位置，X 点位置，プラズマ角度を 0.5asm 周期で制御している CPU2 が VMME181 端 VMME187（25MHz，DRAM 8MB，Motorola 社製）へ高速化し処理時間の短縮を図った。1998 年 3 月、CPU2 において高非対称配位での高 QDT 実験で高 QDT X 点位置制御が要求され、X 点位置検出用近似式に F コイル電流を含んだより精度を改善した式の組込みを行った。

2000 年 9 月から 2001 年 3 月に実施した高速演算プロセッサーの更新では、それまでの VMME187（25MHz，DRAM 8MB，Motorola 社製）を alphaVMES/480（480MHz，DRAM 128MB，DEC 社製）に変更し、高速化し、台数がそれまでの 3 台から 1 台に余剰機能が実現できるようになった。その後の改良・機能の性能を高めるため本年度の更新では、さらに、ポロイダル磁場コイル電源との実時間の指令値通信方式を、CAMAC プラントハイウェイ通信からリフレクティブモーリ通信に変更した。

この時を境に、それまでの位置制御計算機が制御めぐりやコイル電流を用いた近似計算式を用いた方針から、プラズマ全体の形状を再構築した後必要な諸量を計算する、という方式に変更した。この形状再構築法は、JT-60 で導入し開発した真空磁場の解析解析の基礎をおく「コーナー条件面（CCS）法」と呼ばれる方法である。実験上の平衡制御の対象としても、瞬く移行時間で、従来の近似計算式方程式から新しい CCS 法に基づく方程式へ切り替えていた [9]，[10]。2003 年の放電時間延長の対応では、放電時間をそれまでの 15s から 65s に、また 0.25s と 1.0ms だった放電結果データの収集周期を全て 0.25s としたため結果データ容量が約 9MB から約 56MB に増加した。このため、放電結果データ編集処理時間および上位計算機への放電結果データ伝送時間（ネットワーク通信時間）が JT-60 で放電シーケンスに影響を与えるかどうかを懸念した。放電結果データ編集処理時間は CPU を高速化することで放電時間延長対応前と同等とした。放電結果データ伝送時間は、約 30s だったものが約 90s 程度と 3 倍となったが、JT-60 放電シーケンスに影響を与える程ではなかった。

このように、様々な平衡制御の要求に応えと共に、最新の研究知見や計算機技術といった革新的技術を革新するためにプラズマ実験に応用して来た。その中では従来の方式に新しい方式を常に共存させることで、新規技術開発に対するリスク回避策を確保しながら、新たな方式の導入に果敢に挑戦するという開発の一貫して採り続けたことが、JT-60 の実験成果の創出における装置基盤形成に貢献したと考えられる。現在も新たな如何なるプラズマ制御上の要求に応えられる状況を維持し続けている。

結果

プラズマ平衡制御計算機システムを応用パネル規格である VME-bus 準拠のボードコンピュータとプログラム開発用のワークステーション（STN，UNIX-OS）へ更新したことにより、制御アルゴリズムを記述するソフトウェア言語も二進コンピュータ固有のアセンブリ言語から汎用的な C 言語に変えた。このため、かなりの部分が原研自らの手で開発可能となり実験運転効率の向上に貢献している。また、汎用パネル規格のボードコンピュータで採用した事により、常に最新のボードコンピュータでシステム構成することが可能となった。

結論

プラズマ平衡制御計算機システムのシステム更新で採用したワークステーションと VME-bus システムの組み合わせによる構成は、その後の新しい JT-60 制御系を構成する標準のシステム構成として、全系内のシステムをはじめ各設備制御系の更新においても広く採用される。更に、リフレクティブモーリを用いた実時間制御時の高速データ通信もプラズマ実時間制御系を構成する全ての設備を接続するネットワークとして使用されている。JT-60 高性能プラズマ実験における様々な要求に対しては、迅速に対応できるよう、可能な限り前で製作できるよう経験を積み重ねてきた。これらの実績は、核融合実験装置における制御アルゴリズム開発手法、コスト低減、開発効率の向上などの面から次世
代の装置設計の基盤となるものである。今後も、進化するプラズマ制御システムの姿を予測しつつ、
継続して最適なシステム開発の方法、構成を考えていく必要がある。

感想

プラズマ平衡制御計算機システムは核融合実験装置特有の制御系として、高速、多くの制御アルゴ
リズムの適用、複合する制御の同時使用等の特徴を有している。またプラズマ実験の進展に伴い、絶
えずシステムや制御アルゴリズムの変更、追加が行われ、柔軟に対応できる拡張性を備えていなけれ
ばならない。これらの特徴を踏まえて、常に変化に追従できる進化型の制御系でなければならない。
従って、これまでの経験と実績を基にすることは勿論であるが、あまり形に捉われない自由な発想の
制御系を構築するという考えで、将来に対応するということも重要であろう。

参考文献

[4] 吉田洋一, 他, 「JT-60 プラズマ位置形状フィードバック制御系におけるアナログデジタル変換
誤差の制御性能への影響とその対策」, JAERI-Tech 95-053 (1995)
[7] 川合昭一, 他, 「JT-60 プラズマ実時間制御のためのリフレクティブメモリを用いた高速データ
通信」, 国立天文台・電気通信大学技術研究会(1996年9月), 技術研究会報告(1342-8756)
pp.7-10 (1997年3月, 国立天文台・電気通信大学技術研究会実行委員会)。
3.4 プラズマ断面形状実時間再構築システムの開発

目的（背景）

プラズマの最外殻磁気面のボロイダル断面形状（格円度、三角形度）は、エネルギー閉じ込め性能を決定する重要な因子の一つであり、プラズマ表面と第一壁やRFアンテナとの距離は、粒子の出入口、加熱・電流駆動効率と密接に関連する。真空容器内に設置された第一壁やパッフル板等のプラズマ対向機器の保全には、プラズマ断面形状の詳細情報が必要である。一方プラズマ断面形状の実時間同定は、計算時間の制約から当初困難とされていたが、実時間制御応用への中间段階として、実時間同定アルゴリズムの工夫により最高速度演算プロセッサに用いることで実時時間動画として可視化することを志向した（毎秒50 コマ程度）。この後、計算速度の進歩を待って速やかに実時間制御への応用（毎秒1000～2000 コマ）に移行するという段階開発を考えた。

プラズマ断面形状実時間再構築・可視化システムには、プラズマ平衡制御計算機（以下「IIb」と称す）が収集した電磁気計測検出器信号とボロイダル磁場コイル電流信号を用いてプラズマ断面形状を再構築し、その結果をグラフィックスプロセッサにより実時間で可視化処理するものである。これを繰り返すことで、動画として実験者に映像を提供する。このシステムは、IIbと実時間でデータを受けるリアルタイムメモリ（RM）モジュール、高速でプラズマ最外殻磁気面座標計算と同定計算処理する高速演算プロセッサ、実時間で動画とし描画処理を実行するグラフィックスプロセッサで構成されている。

設計内容

プラズマ位置形状の検出法は、JT-60 完成当初、円形断面プラズマ電流分布に重みをかけた重心の水準、垂直位置について計算する方法が採用されたが、プラズマを大きく真空容器内に作る上では磁気軸近辺にある重心位置は必ずしも適切でなかった。すぐにシャフュノフに与えた円環電流が作る真空空間の近似を用いた幾何学中心の水平、垂直位置の計算式に変更した。また、計算実行解釈コードを用いてオフラインに色々な平衡データを作成して電磁気センサーセル、ポリ電流集計装置形態計の関係を考慮したもの、予め構築しておいた位相関係式の推定係数表を用いた統計的処理により導出する方法（統計処理法）である。この方法は、水平位置、垂直位置に加えて、外側ダイトナー部のセパラトリックスの位置の実時間計算にこの方法で求められた式を組み込んだ。これは、2000年以降後述の「コーネー条件面(CCS)法」が実装を始めめるまで実時間演算法として使用された。一方、1980年代半ばから大型計算機では、結果データから数値のフィルタリング処理によりプラズマ電流を近似して真空空間を求めるに至り、さらに形態を再構築する方法「フィルタリング電流近似法」が、通称FBI(Free Boundary Identification)コードとして運用されてきた。

1980年代半ば以降、形状がプラズマのエネルギー閉じ込め性能に大きく影響を及ぼすことが判ってきたこと、1989年の電磁流化伝播の本流形プラズマ制御に向けてプラズマ位置形状検出の高度化要求（代表点だけでなく全体像を検出、精度向上等）、計算機の性能が飛躍的に向上してきたことの3点を踏まえて、まず上記「フィルタリング電流近似法」を用いた実時間可視化装置の提案を1991年に行い、1992年度に本格的な開発作業を開始した。1993年7月下旬から初期のシステムが実験を始め、JT-60プラズマ実験においてプラズマ最外殻磁気面の実時間断面可視化が実現した。これにより、プラズマ断面形状の時間の変化がただそこに把握でき実験データの解析/評価に一つのツールを提供した。しかしながら、プラズマの実時間制御に使用する形の精度は「フィルタリング電流近似法」の高速化版では不十分であることが当初から判っており、また「フィルタリング電流近似法」のオフライン版より、理論的に優位を持った高精度再構築法の開発を装置開発と共に順次進行してきた。

1992年に、円環トライダル電流の真空空の厳密解析処理をセンサー設置間隔曲線上での境界積分方程式の解として与える「境界積分方程式法」により、センサーが無限個与えれば厳密に形状が再構築出来ることを明らかにした。1997年に、この厳密構成を有限個のセンサーに適用して、最小自乗法（近似解）としてプラズマ形状を再構築する「コーネー条件面(CCS)法」の開発に至った[1],[2],[3],[4],[5],[6],[7],[8]。

1999年から「コーネー条件面(CCS)法」の実時間制御への組み込み開発を開始した。大容量メモリを搭載した高速計算機 alpha PCI（Alpha21164,500MHz,512MB,DEC社製）を用いて、テーブル参照法、6台の計算機による並列処理により、平衡状態計算機によるフィードバック制御のための実時間プラズマ位置形状再構築を実施し、そのデータを実時間可視化システムに転送し映像化している[8],[9]。現在のプラズマ断面形状実時間再構築システムの外観写真とシステム構成図を図1及び図2に示す。

主な改良・改造および機能追加

1993年7月、世界で初めてJT-60のプラズマ実験でプラズマ最外殻磁気面の実時間断面可視化が実現した。このシステムはVME-bus規格準拠のモジュールを組み合わせて構成した。高速でプラズマ最外殻磁気面座標計算と同定計算処理する高速演算プロセッサはVME181（200MHz,386MB,Motorola社製）を、実時間で動画とし描画処理を実行するグラフィックスプロセッサにはV81281（TMS34010,Matrox...
ソフツを、またIIbとの実時間データ通信には、16ビットパラレルDMAインタフェイスボードDVM-11WF（3MB/秒、16ビット、ディジタルシステム、伝送距離～15m）を使用した。このシステムでは、最外殻磁気面の同定計算処理に約80ms、描画処理に約10msで、1回あたりの処理時間に約90ms要していたが、プラズマ断面形状の時間的な変化や動きが確認できた。

当初、プラズマ断面実時間可視化システムは、Ilbとの実時間データ通信が必要なため電源制御室に設置していた。しかし、1994年1月、プログラムのデバッグや保守の容易さを考慮し計算機室へ移設した。そのため、Ilbとの実時間データ通信を今までの電気信号ではなく光信号とし、実時間データ通信モジュールとしてRM (VMI5576, 256Kメモリ, 6MB/s, VMCIC製)を採用した。このデータ通信方式は、現在の実時間制御におけるデータ通信の基礎となった。

その後、1996年3月には描画用のグラフィックスプロセッサを最新のグラフィックス用プロセッサ搭載のボードUDC6000 (TMS34020, Unisvision社製)へ更新し、プラズマ断面形状の実時間可視化と同時にプラズマ電流、水平位置、垂直位置のパラメータも波形表示させた。1回あたりの可視化処理時間は約100msで、データ入力、同定・最外殻磁気面座標計算に約80ms、描画処理に約20msであった。毎秒10画面の実時間可視化であったが、特に適和感の無い動画として認識できプラズマの映像情報が実時間で実験運転に提供された。しかし、プラズマ実時間制御に応用するには数ms程度で1回の位置形状同定計算を実行させなければならないし、さらに動作周波数の高いプロセッサの導入や複数のプロセッサを並列動作させ処理の高速化が図ることが必要であった。

1995年度には実時間制御への適用を目指し、並列動作方式に設計されたDSP (Digital Signal Processor, TMS320C40, テキサスインスツールメンズ社製)搭載のVME-bus準拠のボードコンピュータによるプラズマ断面実時間可視化システムの開発を開始した。このシステムはVME-bus標準基準とし、それまで1台のプロセッサで実在していた処理を8台のDSPに分派した。プラズマ最外殻磁気面座標計算と同定計算処理は大容量のテーブルが必要になるので、32MBのメモリ (DRAM)搭載の4台のDSPが分担した。他の4台のDSPはデータ出力や描画のためのVME-busアクセス等を分担した。DSPは専用のプロセッサ間通信ボードを持っているため、8台のDSPを接続した立方格子のノードに配置し結合させた。このDSPを用いた並列処理システムは1997年6月から実稼働を開始した。磁気面の同定計算時間は約47msで観測中の3msを大きく上回った。これは、プログラムをDSPのパワープライン処理を有効に働かせるような工夫や、コンパイル後のアクセスマップでのプログラムに手を加えDSP内部のレジスタ計算桁を退避させるような工夫が必要であることが判った。そのため、プログラムの最適化とそのデバッグにはかなりの時間を費やすことが必要となった。

1998年度、実時間プラズマ制御に使用するために、高速演算プロセッサ (Dec-alpha (Alpha21164, 350MHz, DEC社製)搭載のVME-bus準拠ボードコンピュータ(Alphawares製)より同定計算処理の高速化を図るとともに、最外殻磁気面の同定アルゴリズムとして、これからはフィラメント法を用いていたが、新たにコーニー条件面法 (CCS)を開発し高速演算プロセッサに組込んだ。本同定手法は、ポリトリデル面の2次元空間に対して、コーニー条件面用の演算係数テーブルを予めオフボードのメモリ上に展開しておき、実時間でそのテーブルを参照する手法で、高速で高精度の計算処理が実現できるアルゴリズムである。2000年1月、実時間可視化システムを稼動させ、磁気面の同定計算時間は約4.7msで実時間プラズマ制御に使用可能に至って高速化した。しかし、プロセッサのメモリ容量の関係からコーニー条件面用演算係数テーブルは100MB程度に制限されていたため放電の最初から最後までの時間帯をカバー出来るものではなかったので、プラズマ断面形状の可視化のみを行っていた。
2000 年 4 月、本格的な実時間プラズマ制御への適用のため、プラズマ最外殻磁気面形状計算とプラズマ断面実時間可視化部分の計算機システムを分割したシステム構成とした。最外殻磁気面座標・同定計算部分には、新たに大容量メモリ搭載の高速演算プロセッサ alpha-PCI（Alpha21164, 500MHz, 512MB, DEC 社製）搭載の PCI-bus 準拠のフイードバックコントローラを使用し、6 台並列動作させるこ
とで処理の高速化を図った。磁気面の同定計算時間は 1.0 ms 以内とプラズマ実時間制御での使用には問題ないほど高速化が図れた。6 台のプロセッサは、それぞれの PCI-bus 上に配置された RM で計算値の授受を行う。プラズマ断面実時間可視化部分は、今までの高速演算プロセッサ alphaVME6/350（Alpha21164, 350MHz, 128MB, DEC 社製）搭載の VME-bus 準拠ボードコンピュータで構築する事にした。2000 年 9 月中旬、システムが完成しプラズマ実時間可視化を開始し、10月下旬から CCS 法で同定計算したプラズマ位置形状を 1.0ms 周期（プラズマ垂直位置は 0.25ms）で平衡制御計算機へ送信し、位
置形状のフィードバック制御への使用を開始し、プラズマ断面実時間可視化と同時に開始し現在に至
っている。

この CCS 法を用いた磁場計算プログラムは、プラズマ平衡制御に必要なパラメータの算出はもとより、プラズマ電流分布など他の先進的なプラズマ制御の導入においても重要な物理量の計算の基とし
て、益々その重要性が認識されてきている[7], [10], [11]。

結果
プラズマ断面形状実時間再構築システムの開発により、プラズマの断面形状を実時間で動
画として提供でき、プラズマ表面と第一壁や RF アンテナとの距離を監視することが可能となった。更
に、実時間同定アルゴリズムの工夫、数度に亘るシステムの更新を経て、現在では最新の高速演算プ
ロセッサ搭載のボードコンピュータを複数台並列処理させることで、プラズマ位置形状のフィードバ
ック制御へ応用し、既に必要不可欠なシステムとなっている。

結論
プラズマ断面形状実時間再構築システムは、プラズマの断面形状を実時間で動画映像として実験者
に提供するとともに、プラズマ位置形状のフィードバック制御に必要なシステムとなった。しかし、現
在使用中であるプラズマ断面形状を描画するグラフィックスプロセッサボードのメーカー供給停止
など、新たな描画ボードの選択や計算機システム構成を含めた将来のプラズマ断面形状実時間再構築
システムの開発を考えていく必要がある。

感想
プラズマ断面形状実時間再構築システムは、プラズマの断面形状を実時間で動画映像として実験者
に提供するとともに、プラズマ位置形状のフィードバック制御を行う計算機システムである。実時間
でプラズマ表面と第一壁や RF アンテナとの距離を捉えることが可能である事から、次世代の装置設計
では、装置保護用のシステムとしても応用できるものと考えられる。

参考文献、表彰、特許
[1] K.Kurihara, et.al.,"Improvement of the Tokamak Plasma Shape Identification with a Legendre-Fourier
[3] K.Kurihara, et.al.,"Tokamak plasma shape identification on basis of boundary integral equations and
real-time shape visualization system", Proceedings of 17th Symposium on Fusion Technology, pp.559-563
(1993).
(1997)
[5] 栗原研一,他、「JT-60 プラズマ位置形状実時間可視化システム」,プラズマ核融合学会誌,75,
(2000)
[8] 安達慶典,他、「JT-60 プラズマ断面形状実時間可視化システムの高速化開発」,高エネルギー加
3.5 プラズマ粒子供給・加熱実時間制御計算機システムの改良と改造

目的（背景）
プラズマ粒子供給・加熱実時間制御計算機システム（以下「1br」と称す）は、プラズマ発電装置形制御に比べてゆっくりと現象が推移するプラズマ粒子密度や温度などについて、計測データを計測装置の実時間処理システム（RTSP）から入力し、ガス注入、NBI 加熱およびRF 加熱を制御対象とする粒子供給・加熱制御の計算機システムである。この計算機システムは、三線プラズマが着火した1985年当時、1台の制御用ミニコンピュータ（HIDIC80E、自立製造所製）と CAMAC システムを用いて構成され、制御周期10msで各種フィードバック制御を行うなど、プラズマ実験の進展と共に絶えず改良や改善を行い、これまで多くのプラズマ性能向上に貢献してきた。現在では最新の VME-bus 規格のモジュールで構成され、実験上の要求に柔軟なシステムとなっている。

設計内容
プラズマ粒子供給・加熱実時間制御計算機システムは、当初の制御用ミニコンピュータと CAMAC モジュールによるシステム構成で、実験の進行に伴う改良や改造および新機能追加などを実施してきた。さらなるプラズマ実験の機能を追加するため、利用可能である VME-bus 準拠のボードコンピュータによる構成に更新した。1989 年の JT-60 大電流化改造の際、様々な新放電制御機能が追加され、1997 年度、プラズマ平衡制御計算機（以下Ⅱb と称す）と同様、VME-bus 規格準拠のボードコンピュータ（alphaVME4/280（280MHz、DRAM 64MB、DEC 社製））とプログラム開発用のワークステーションを組み合わせた計算機システムに更新した。1998 年 3 月より新計算機システムで JT-60 プラズマ実験装置が開始された。1999 年 1 月 EC 装置、同年 5 月、計測 RTP 設備とのデータ通信方式を CAMAC のデュアルポートメモリ（DPM）モジュール（国際電気社製）方式からリフレクティブメモリ（以下「RM」）と称す）方式に変更した。その後、NBI 加熱装置、RF 加熱装置、ガス注入設備も順次 RM 通信に変更した。これにより、タイミング信号および NBI への指令値を除く全て、プラズマ断面実時間再構築／観察化システムを含むプラズマ制御に関する実時間のデータ伝送は全て RM を介した通信となった。

計算機システム更新により高速化され、様々な放電制御機能が追加された。これらのプログラム開発は、当初のアセンブリ言語からコンパイラ言語である C 言語になり、各種の改造要求に対して、原研が自ら迅速に対応するようになった。

このように、今後のプラズマ実験上の様々な要求に対して迅速かつ柔軟に対応できる進化可能なプラズマ粒子供給・加熱制御計算機システムとなっている。図 1 に現在のプラズマ粒子供給・加熱実時間制御計算機システム（1 br）の写真、図 2 に構成図を示す。

図 1 プラズマ粒子供給・加熱実時間制御計算機システム
ハードウェアはそれまで計算機機 3 台がこの図の VME ラック 1 台と小型になった。

主な改良・改造および機能追加
1 br は、JT-60 完成当初 768kB のメモリボードを持つ 1 台のミニコンピュータ HIDIC80E と CAMAC モジュールで構成していた。1 br は、計測 RTP 設備よりプラズマ粒子密度や温度などの計測データを入力し、それらを目標値に近づけるようにフィードバック制御を行いガス注入設備、NBI 加熱設備や RF 加熱設備を制御する計算機システムでこれら一連の動作を 10ms 周期で行っている。ディスラショ ン発生でプラズマ電流が急激に減少すると、フィードバック制御によりプラズマを再立ち上げようとする。その際に逃走電子が発生して、X 線が発生する。これを防止する目的で、1986 年に、プラズマ
マ電流が目標値に対してある割合で下回った場合、プラズマ電流を一定割合の頻度で減少させる制御機能（D-stop制御）を導入した[1]。大電流化改造前、プラズマ平衡制御パラメータ目標値は全て1 BR が作成し DPMD モジュールを介して実時間でIBに送信していた。従って、D-stop制御はIBに組み込む必要があった。これをより、ディスラプション発生でも安全にプラズマ電流を立ち下げる消減させることが可能となった。また、同月5月には新たな機能としてq_{eff}一定制御機能を追加した。これは、プラズマ追加熱実験の際βp（ペータ値）が上昇するとq_{eff}（実効安全係数）が有理数となり、ディスラプションを引き起こす恐れがあった。これを防止するためq_{eff}を一定に保つようにプラズマ電流にフィードフォワード制御をかけるものである。JT-60大電流化改造時、プラズマ平衡制御パラメータ目標値設定を1 BR からIBへ移行しのに伴い、D-stop制御機能もIBへ移行した。

「JT-60大電流化改造後」の数年間は、本システムに係わる大きな改革・改良は無かった。1995 年1月に、NBI 加熱装置を使用した中性子発生率フィードバック制御機能、同年5月には、ガス注入装置によるダイバータ部放射損失フィードバック制御機能の新規追加を実施した。

1997年度には、プラズマ制御の高度化を目指した研究のため、①ガス注入装置によるFIR電子密度及びCO2電子密度フィードバック制御機能、②ガス注入装置によるダイバータ電子密度フィードバック制御機能、③ガス注入装置による中性粒子圧力フィードバック制御機能を新たに追加し、実時間制御機能の向上を図った。また、1997年1月から実施したVME-bus規格に基づく高速ボードコンピュータ(alphaVME4/280(280MHz, DRAM 64MB, DEC社製))とワークステーションを組み合わせた計算機システムの更新が、1998年8月に終了し、新しい計算機システムでJT-60プラズマ実験運転を実施した。その後、プラズマ状態を制御するための新たな機能として、ガス注入装置による①放射損失比率フィードバック制御機能、②中性子圧力比フィードバック制御機能、③プラズマ放射損失フィードバック制御機能や、NBI 加熱装置による①蓄積エネルギーフィードバック制御機能、②中心電子温度／電子温度勾配フィードバック制御機能を追加した。これにより、プラズマ性能向上に貢献した[3],[4],[5]。

結論

プラズマ粒子供給・加熱実時間制御計算機システムは、1998年VME-bus規格の高速演算プロセッサ搭載のボードコンピュータとプログラム開発用のワークステーション(SUN, UNIX-OS)へ更新した。これにより、制御アルゴリズムを記述するソフトウェア言語もAセンプラリー言語から汎用的なC言語に変わり、実験上の進展にともない様々な改良や改造を原研自らの手で開発を実施でき実験運転効率の向上に貢献している。また、汎用バス規格のボードコンピュータを採用した事により、常に最新のボードコンピュータでシステム構成することが可能となった。

参考文献

3.6 電磁気計測用積分器開発とプラズマモニタシステムの改良と改造

目的（背景）

プラズマモニタシステムは、電磁気検出器からの信号を積分処理する電磁気計測検出器信号処理用機器と硬 X 線や中性子をモニタするための放射線モニタ用機器、これらの信号を収集する機器等から構成され、放射源の制御インターロックおよび電磁気計測検出器の信号のモニタを行う。放射線モニタ用機器では、硬 X 線信号の監視や中性子発生率の制御インターロック処理を行っている。さらに、プラズマモニタシステムで計測した中性子データは放電後、放電制御計算機で積算処理し、実験運転時の中性子発生量の管理を行っている。現在は、CAMAC システムから VME-bus システムとプログラム開発用のワークステーションを組み合わせたシステムに更新している。

設計内容

JT-60 では、1985 年のファーストプラズマ開発から電磁気計測検出器（磁気プローブ、ロゴスキーイコイル、ワウンターコイル）の信号処理は、検出器からの電圧信号を電圧-周波数変換器（V/F 変換器）で入力電圧に比例した周波数のパルス列信号に変換し、このパルス信号を昇降計数器（アップダウンカウンタ）で積算する方式で行っている。電磁気信号処理のための V/F 変換器（約 80 台）は実験棟全室 CAMAC 端子に設置されており、積分処理を行うアップダウンカウンタは積算器電源制御室内に設置されておりプラズマ平衡制御計算機システムに組み込まれている。高精度プラズマ制御のためには、プラズマ平衡制御基となる位置形質を精度良く計測する必要がある。そのためには、V/F 変換器を常温閉鎖状態に保持し精度良い電磁気計測が求められる。V/F 変換器の保守として、年 1 回程度、全数の調整作業を実施し健全性を保持している。初期の V/F 変換器は単に動作確認や入力信号レンジの切り替えを V/F 変換器内部のプロントシート上に配置された複数のリレーを組み合わせて行っていた。「JT-60 大電流化改造」後の高プラズマ電流実験では、ディスラッシュ時の過大電圧によると思われるリレー内部の接点不良などの故障が多く発生した。そのため 1998 年度、新たに長時間高精度低ドリフトの V/F 変換器を開発（図 1 に示す）し、1999 年 1 月から JT-60 の電磁気信号計測に使用している。この時、一週間電圧信号、反発性ゲート信号の計測を残し、電磁気検出器の信号処理は全て、IIb で行うこととした[1], [2], [3], [5]。

実験の進展に伴い、ディスラッシュ発生時のダイバータ板に流入する電流を計測するダイバータロゴスキーイコイルの新規追加、ダイバータ板改修に伴う電磁気プローブの入れ替えやバックブロックに流れる電流計測のダイバータロゴスキーイコイルの新規追加などの改修も対応してきた。

V/F 変換方式の積分器開発に関しては、ディスラッシュ発生時の過大電圧による積分結果の飽和現象対策として、異なる計測レンジの積分器を並列動作させる新たな方式の積分器を開発した[4], [5], [6], [7], [8]。

主な改良・改造および機能追加

プラズマモニタシステムは、電磁気計測信号処理用の V/F 変換器、V/F 変換器の動作モードを制御するリレー回路部、硬 X 線や中性子をモニタする放射線モニタ用機器で構成されている。この計算機システムは、ファーストプラズマが佐賀 1985 年初開からマイクロコンピュータ搭載の CAMAC システムで構成してきた。2001 年 3 月、放電計測計算機システムの更新と同時に、マイクロコンピュータ搭載の CAMAC システムからタイニングシステムを残し、VME-bus システムに更新し、現在に至っている。図 2 に CPU モジュール、電機変換モジュール等を挿入した現在のプラズマモニタシステムの写真を示す。

電磁気計測信号処理では「JT-60 大電流化改造」以降 V/F 変換器の故障頻度が多くなり、その故障原因のほとんどは V/F 変換器内部に組み込まれた、積分動作モードや入力信号レンジ切り替え用のリレーの動作不良であった。この故障による原因は、ディスラッシュ発生時の過大電圧でリレーに流れる電流が流れず発生する接点不良（電極）であった。

そのため 1996 年度からの試作開発を経て、故障頻度を著しく減らすことに加え、将来の長期放電でもドリフトを抑えようと高精度積分器を目指し、1998 年度新たに長時間高精度低ドリフトの V/F 変換器を開発した。この V/F 変換器は、動作モードや入力信号レンジ切り替えに今までのリレーに代わりプログラムブロック型増幅器を使用した。これにより、V/F 変換器の定期的な調整は必要であるが、故障は皆無に近いことになった。
無くなった。また、積分動作前に実施するキャリブレーション（積分ドリフト補正）機能については、それまで t=-2 秒から t=0 秒までの 2 秒間リレーにより V/F 変換器の入力回路を短絡させ、回路内部のキャリブレーションを行っていた。試作開発の過程で積分ドリフトを抑えるには、動作モード時以外は常に電気振動測計検出器を接続した状態で V/F 変換器をキャリブレーションすることが最良であることが判り、FPGA（Field Programmable Gate Array）を使用してこのロジックを実現した。

電気振動測計検出器については、実験の進展による新たな電気振動検出器追加や検出器不良（主に断線や絶縁不良）による検出器の入れ替えと配線変更および、これに伴うデータ収集プログラムの改訂を実施してきた。1985 年度、蓄積エネルギーを求めるのに必要となる反磁性ループ信号計測用のログマーカを自作し JT-60 本体装置のトヨダイル磁場コイルフィーダー部に取り付けた。信号計測には阻抗変形増幅器を使用し計測信号波形はオシロスコープでモニタしていた。従って、この時点での反磁性ループ信号はデータベース化されていなかった。その後、JT-60 大電流改変で、新たに磁束計測用のウンターンコイル、反磁性計測用の反磁性ループコイルが設置され、同時に反磁性ループ信号計測用のアナログ積分器を開発した。積分結果は、プラズマモニタ II b の AD 変換器に取込んでいる。これにより反磁性ループ信号は、放電結果データとしてデータベース化されることになった。

1992年度、高非円形断面で閉ループとなる V コイルの誘導電流を測定するため、V コイルロゴスキー コイルを新規に追加した。また、ディスラプション時、ダイバータ板に流れる電流測定のため、ダイバータロゴスキー コイルを付タンク新たに取り込んだ。1992年度後半には、計測精度の向上のため磁束ループ信号計測方法を、これまでの各磁束ループ単独の信号計測法を基本磁束ループ（赤道面）からの差動信号測定に改変した。その後、1997年度にはダイバータ板改変に伴う、バッフル板上ブローブの新規取込み、およびバッフル板に流れるハンロー電流計測用ダイバータロゴスキー コイルの新規取り込み、実験に必要な新たな電磁気センサーの追加や入れ替えを実施してきた。

1998年度、新たに長時間高精度低ドリフトの V/F 変換器を開発し、1999年1月から JT-60 の全電磁気信号計測に使用している。この時、一周電圧信号、反磁性ループ信号の計測を残し、電気変換器の信号処理は全て II b で行うこととした。但し、一周電圧および反磁性ループ信号計測については、II b でも異なる AD 変換器でデータ収集を行っている。

長期パス化後の長時間放電での反磁性ループ信号計測は、アナログ積分器のドリフト対策のため、2004年度から長時間高精度低ドリフトの V/F 変換器に変更し II b でデータ収集する改変を実施した。さらに、2005年度には、プラズマ着火前の 2 秒前からデータ収集するための改変を実施する。このように、限られた台数の電気变换用 V/F 変換器で、プラズマ実験上要求される新たな電気変換器に対応できる電気変換システムを構築し、新しいプラズマ実験研究に貢献している。

結果

JT-60 の電磁気計測においては、V/F 変換器は必須の機器でありその開発は重要である。初期の V/F 変換器は、積分動作モードや入力信号レンジの切り替えも V/F 変換器内部のプリント基板上に配置されている複数のリレーを組み合わせて行っていた。そのため、ディスラプション時の過大電圧によりリレー内部の接点不良などの故障が多く発生。そのため、動作モードや入力信号レンジ切り替えも以前までのリレーを代わりにプログラムマクロツールを使用した低ドリフトの新しい V/F 変換器を開発した。これにより V/F 変換器の故障はほとんどなくなった。現在は、ディスラプション発生時過大電圧による積分結果の飽和現象対策として、異なる計測レンジの積分器を並列動作させる新たな方式の積分器を開発した。また、更なる長時間積分、および高精度化を目指して定常高ベータ装置、ITER への適用も視野に入れた開発を継続している [7]。

参考文献、表

[8] 川保陽一, 2001年, 電気学会, 優秀論文発表賞,「トカマクプラズマ電磁気計測のための超広動作用域・超低ドリフト長時間積分器開発」
3.7 放電制御計算機システムの開発・改良
—計算機システムの更新、放射シーケンス所要時間の短縮—

目的（背景）
2 台の制御用ミニコンピュータから構成される全系放電制御計算機システムは、JT-60 の放電運転を管理し、放射シーケンスの実行とそれに伴う各設備制御系との CAMAC を介した情報通信および放射結果データの収録を行ってきた。1989 年から 1991 年に実施された大電流化改造を契機に、ネットワーク型分散計算機システムの構築による制御系の標準化計画を進め、その一環として装置した放射制御計算機システム改訂にあたっては、先にמןプラズマ制御系の更新・機能改造と同時に設計方針を踏まえて、コスト削減と調達の容易さという観点からハードウェア・ソフトウェア共に、これまでの歴史において開発された知見、実績を最大限に活用し、改定を最小限に抑え互換性を高めつつ、標準化によるオーケン化をベースに目指すシステム開発・構築を図ることとした。放射制御系計算機システムの更新においては、稼働中の全系計算機システムを停止することのないよう、ブロットタイプシステムを構築し、実験運転と並行して開発を進め、実験運転スケジュールに何ら影響を与えることなく 3 年間を費やしてシステムの更新を図ることができた（1999～2001 年）。更に、引き続き行われた放射時間延長に伴う各種機能の追加、改訂（2003 年）においても、更新後のシステムの拡張性、柔軟性を発揮し、殆ど原形の手による改造を短期間で実施し、初期の目的を十分に果たしている。

設計内容
放射制御計算機システムの更新においては、JT-60 実験に支障を来たさないよう UNIX ウォークステーションと VME-bus モジュールから構成される新放電制御計算機システムを既存のシステムと独立に開発することとした。放射制御に関する共通機能内、各設備との情報交換、放射状況サーバー、全系内設備との通信はワークステーションが行い、VME-bus システムは放射シーケンスの実行、タイミング信号の入出力、補助グラフィックディスプレイ表示等を放射状況の計算機出力および中心コンソールからの入力信号処理を行うよう機能を分担した。情報交換については、各設備からの放射結果データ収集を、従来は放電制御計算機を介して一時格納ファイルに収録した後、データベース計算機へ転送していたが、一時格納ファイルの編集を省いて放射制御計算機から直接データベース計算機へ転送することとなり、データ収集・転送にかかる時間の短縮を図った。従来の放射制御計算機システムは、まだ従来の CAMAC を用いたデリバリー通信を必要とする設備制御系が一部存在するため、継続して使用することとした。放射制御計算機システム更新後、JT-60 放電時間の延長が計画され、それに伴い、放射シーケンスの改造、放射結果データ容量の増加および開発の MC の省エネ運転などの改造を行った。
結果

図1に示すようにワークステーションおよびVME-busシステムにより構築された放電制御計算機システムにより、従来通りの機能を発揮すると共に、放電結果データ収集・転送処理が改善され、放電シーケンスを要時間の短縮や、実験効率の向上に繋げることができた。また放電時間の延伸に伴う改修においては、放電結果データ量の増加や放電シーケンス上からの各サイドバーの設定変更および加熱MGの電気運転シーケンスへの変更等を原稿前日で短期間に実施し、今後も様々な改良・改修に柔軟に対応できることを証証した。また、CAMACモジュールで構成しているタイミングシステムとの交信において、条件設定や操作からのタイミング信号を入力とする部分を、VME-busシステムへ組み込んだデジタル入出力モジュール等により実現した。補助グラフィック盤上に放電シーケンス進行状況および放電条件に関する情報の表示をするために、従来のプロセス信号入出力装置の代わりにVME-busシステムのデジタル入出力モジュールを介して市販の小型パソコンによるデータの通信を行うことにした。

考察・波及効果

放電制御計算機システム更新の狙いは、ネットワーク型分散制御システムの構築と、それに使用するハード/ソフトウェアシステムに対する標準化計画の一環として実行したものである。従来の放電制御計算機は、約20年前の制御用ミニコンピュータを使用しており、計算機自体の高齢化も含め、標準ネットワークであるイーサネットに対応できない点が問題であった。また、各設備制御系のデータ通信に使用しているCAMACモジュールが多く、メンテナンスの難易、修理が極めて困難な状況にあり、CAMACに比べて、格段に安価で高性能かつネットワーク対応型のモジュールの出現（VME-bus, PCI-bus等）が、改造の大きな動機となった。ワークステーション、VME-busという組み合わせは、これまで全系プラズマ制御系で実施されてきた方式であり、原稿内の知識と実績の蓄積があり、コストおよび標準化の面からも妥当な選択であったと言える。各設備制御系の改造においても、これをモデルとして標準化に向けて、逐次計画の実施が図られており、将来の標準化されたJT-60制御系の実現に向けた整備計画の中心の一つとなるものである。

将来に向けて

放電制御計算機システムは、運転制御系およびプラズマ制御系と共にJT-60制御系の重要な制御システムのひとつである。JT-60制御系の標準化計画を遂行する上で基本となるシステムであり、この更新により設備制御系の更新、標準化が可能となった。全系にとっては高齢化対策と共に将来の更なるパルス化への対応を視野に入れたシステム構築を図ることができた。残された問題としては、ネットワーク対応が遅れているCAMACを用いた設備制御系を可能な限り早急に整備し、将来に向かって様々な機能拡張が図れるよう柔軟なシステムの構築を進むことができるよう計画を進めることとした。

参考文献

3.8 タイミングシステムの開発・改良
—ソフトウェアロジックとネットワークによる究極のタイミングシステムに向けて—

目的（背景）
全系タイミングシステムは、JT-60 の放電シーケンスの実行にあたり、基準となるクロック信号（1msec/10msec）を作り出し、放電に必要な装置機器の ON/OFF 指令、そのアンサーパック信号の入力および複数の機器動作の同期を取ること、放電結果データ収集を行うための同期信号などの役割を担っている。またプラスマ制御上、不安定性が生じ放電を中止する場合の停止信号にも用いている。このタイミングシステムは CAMAC モジュールで構成され、その殆どのモジュールがタイミングシステム用に特別に製作されたものである。従って、予備品も新たな調達は不可abdであり、修理も出来ない状況にある。一方、新たな設備、計測器の設置によりタイミング信号の分配およびプラスマ制御アルゴリズムの変更・追加に伴うタイミング信号の出力論理の変更・追加が発生するが、殆ど追加の余裕がない。更にタイミング信号の取り合い、信号出力モジュールからの配線端子で取り合う方式となっており、タイミングモジュールを収納する CAMAC クレートは配線が複雑に入り混じっているなどの問題があった。（図 1 参照）

図 1 現在のタイミングシステム構成

以上のような状況から、タイミングシステムをハードウェア全体のシステム構成から、ソフトウェアによる信号出力論理への変更、信号取り合いを高速ネットワーク（リフレクティブメモリ）を用いて簡素化を図り同時に高効率化に対応するシステムに切り替えることとした［1］［2］。これらの更新化計画は、現在進行中であり、全系タイミングシステムを手始めに順次、各設備タイミングシステムについて実施することとしている。図 2 に新タイミングシステムのシステム構成（想定システム）を示す。

図 2 新タイミングシステム構成（想定システム）
設計内容
既存のタイミングシステムは、タイミングシステム専用に製作された CAMAC モジュールから構成される。主なモジュールは、タイミングクロックを発生する CPQ モジュール、タイマーおよびイベント分割込み信号を基にタイミング信号を発生させる TMB モジュール、このタイミング信号を分散する FOM モジュールおよび信号伝送を行う TGT/74R モジュール等である。タイミング信号出力 1 チャネル毎に TMB、FOM、TGT の 3 本のチャネルが必要である。これらの TMB-FOM-TGT 間は信号線の接続が必要である。当然、タイミング信号の追加にあたっては、これらハードウェアのチャネル追加が必要である。

新しいタイミングシステムの設計にあたっては、従来、タイミングモジュールで論理演算を行い、タイミング信号を作り、設備に出力していた部分を DSP（デジタル信号処理装置）モジュールに組み込んだソフトウェアで論理演算を行い、リフレクティブメモリーによる信号伝送ネットワークを介して各設備に送信することとした。新しいタイミングシステムの主要な性能のひとつである信号伝送時間は、従来のシステムの平均的な値である 30〜40μsec を目標として設定することとした。[1]このように設計方法は従来と異なり、ソフトウェアによるタイミング信号の作成部分については MATLAB という市販ソフトウェアを利用することで容易に論理回路を編集することができ、汎用性を持たせることとした。これらの実証のためにプロトタイプシステムを製作し(2002 年)，若干の改良を加えて実現可能な性能を有することを確認した[2]。
2004 年度をスタートとして、新タイミングシステムへの更新を開始した。

現在までに、全系タイミングシステムにおける更新としては、放電時間値を伴い、当初の 5 秒放電から 15 秒放電(1989 年〜1991 年)、15 秒放電から 65 秒放電への対応があった(2003 年)。現在のタイミングシステムに使用されているモジュールでは、65 秒以上の放電時間の延長は困難である。現在では、65 秒までしか設定できない TMB モジュールを 2 台、カスケード接続して 65 秒放電(タイミングシス템では放電 1 分間から稼働する為 65 秒放電では、通常 125 秒動作している)に対応している。

新しいタイミングシステムにおいては、放電時間はソフトウェアで対応することとなり、実質的には制約がない。

結果
全系タイミングシステムは、これまで大きな改造もなく、幸いにもベレット装置、N-NBI 装置の追加および放電時間の延伸に伴う各タイマー値の変更などに対応してきている。然しながら、CAMAC モジュールの高齢化、予畑モジュールの入手不可などの状況から現在のタイミングシステムの維持は困難な状態となっている。新しいタイミングシステムは、タイミング信号作成をハードウェアモジュールからソフトウェアに変更し、信号伝送方式をこれまではブラズマ制御系において高速ネットワーク通信に使用してきたリフレクティブメモリーに置き換えるという考え方のもとにシステム設計を開始した。この考え方に従ってまず、プロトタイリングシステムを製作し、実現の可能性、性能評価を行った。その結果、タイミング信号作成の論理演算処理部分の処理時間に改善の必要性があることがわかり、クロックおよびポーリング処理の高速化を図ることで、全体の高速化を実現できる目的を立した。この結果、全系タイミングシステム、電源設備タイミングシステムを更新することとし、2004 年度後半から整備計画をスタートさせる。この計画の実施にあたっては、実験に支障を来たさないように、従来のタイミングシステムと新タイミングシステムを並行して稼動させることとしている。実際的には全てのタイミングシステムを更新し、旧システムは完全に撤去されることとなる。

考察、波及効果
新しいタイミングシステムの狙いは、タイミング信号作成のソフトウェア化、信号伝送ラインは光ファイバーケーブル 1 本、タイミング信号作成・変更・追加のソフト化濃厚である。このシステムは VME-bus システムであり、PCI-bus システムであれ、柔軟にシステムを構築することが可能であり、またタイミング信号作成の論理演算をソフトウェアとして市販の MATLAB を使用していることから、同様の高速のタイミング信号を必要とする装置にも簡単に適用することが可能である。性能を決める論理演算部分に FPGA（Field Programmable Gate Array）で、そこでプログラム可能なゲート集合体で、より高速で動作可能などを利用することにより、一層の高速化も期待できる。当然、ITER が開始する次世代の実験装置への適用も始め変更を加えることなく可能である。

将来に向けて
全系装置制御システムの中で唯一 CAMAC モジュールが現在も使用されているシステムである。しかもその CAMAC モジュールは全て特注品であり、武蔵工が中止され、新たに手配することがないため、早く更新の必要がある中核のシステムである。一方、ケーブル配線の簡素化、ソフトウェア化等によって、波及効果の大きなシステムと言える。高速通信、FPGA など今後の制御システムの高速化を考え
た時、技術的にも興味のある要素が多く含まれているシステムであり、新システムへの更新を通じて新しい技術習得の上でも、積極的に整備を進めていくべきと考えられる。

参考文献
3.9 実験データベース管理システムの開発・改良
—高速作成、集中管理保持、効率的データ配信の3要求を達成—

目的（その目標設定の背景）
JT-60の実験で得られた貴重な実験データを多くの利用者が随時、参照できるよう汎用計算機のディスク上にJT-60実験データベースを構築し、データ解析上の様々な要求に応えられるような環境を整備することが実験データベース管理システムを構築する目的である。全系制御設備の詳細設計段階（1975〜1976年頃）において、実験データベースを積極的につくるという考えは、報告書からは明確に読み取れない。データ処理計器が計測装置からのデータを高速処理し保存するというデータベースとしての性格を有することが謳われている。実験データベース構築以前（1985年〜1986年）は、磁気テープに保存されたデータ（JT-60の初期実験時、磁気テープ1本で約8ショット分のデータを保存）を全系の計算機上に復元し、生データを参照するという方法しかなかった。この方法では、復元に時間がかかることがある（1ショットのデータ復元に平均して約10分程度）、全系という実験で使用する設備をデータ解析という目的のために使用しなければならないこと、利用者の使用目的に合ったデータの加工が殆ど不可能である（利用者が必要とするデータ解析ソフトウェアを全系計算機システムに載せる事は不可能であった）などの制約があり、利用の面からは好ましい形ではなかった。そこで、実験データベースを専用の汎用計算機上に構築することで、データ解析をいつでも、実験上の制約を受けることなく利用できる環境の実現が望まれた。

設計内容
実験データ解析を主目的とする大型汎用計算機、フロントエンド計算機（以下FEPと略す）を実験データベース構築専用計算機とし、全系計算機と結合して実験データベースを生成することから実験データベース管理システムの構築がスタートした（1986年）。実験で得られたデータは、ショット番号で識別される全試験なデータセットから構成され、これをオンラインで全系制御計算機からFEPに転送し、生データのままも一時的に保存し共に、FEP側で利用しやすいデータ形式に変換、 Stingに生成する実験データベースで生成されたデータ解析ソフトウェアを全系計算機システムに載せる事は不可能であったなどの制約があり、利用の面からは好ましい形ではなかった。そこで、実験データベースを専用の汎用計算機上に構築することで、データ解析をいつでも、実験上の制約を受けるることなく利用できる環境の実現が望まれた。

結果
実験データベースシステムの完成、運用開始により、全系制御設備にとっては、実験データの保存、復元の機能が実験データベースシステムへ移行し、これらの作業にかかる人手が不要になった（実験終了後約5日でデータベースが生成され、すぐに参照可能である）という利点、利用者側にとっては、いつでも自由に解析したい放電番号の実験データを端末で利用できる環境が整ったという利点があげられる。これまで、データ復元に利用できる全系のCRT画面は、5台の内から実験に支障を来たさない範囲に制限されていたが、TSS端末では、数十分が制御室および各倉庫に用意されており、コンタスで、ほぼ制約のない状態となった（1986年）。
1997年に実施したデータベースシステムの中核計算機であるFEPからワークステーションへの変換に伴う実験データベースソフトウェアのオペレーティングシステム変更（UNIX化）、これまでの蓄積データの機種変更に伴うデータ変換等を行った。この改造により、データベースシステムの分散処理が可能となり、ワークステーションの利用と相まって、利用者の使い勝手が飛躍的に向上した。実験データベースシステムの完成により、実験データベースの生成、保存、復元および利用は、劇的に変化した。データベース本来の目的である共有データとして、実験データ解析に必要不可欠なものとして、JT-60のかけがえの無い財産となっている。現在は、全系と実験データベース計算機それぞれの機種が代わり、それに伴いデータ転送手段も変更されたが、基本的な手順、データベース構造は変わらずに現在まで順調に稼働している。完成時はFEPのTSS端末を利用しデータ解析を行っていが、現在はWSを用いてネットワーク上から簡単に利用できる環境となっている。当然、データベース稼働時から現在までに蓄積されたデータ量は現在も増している。データ取得速度（約2分以内でデータベースの容積が可能）、蓄積容量（現在は磁気ディスク上に30,000ショットのデータを確保可能なシステムとなっている）、使いやすさ等は格段に改善されている。先端研究所内においては、自分の
計算機からネットワークを介して、簡単にデータベースにアクセス可能であり、また所外からも一定の制約条件の元で利用可能な環境となっている（図1参照）。

<table>
<thead>
<tr>
<th>一般ユーザの利用形態</th>
<th>計算機システム</th>
<th>データの保存</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS専用端末</td>
<td>FEP（大型汎用計算機）</td>
<td>1shotあたりの容量：5MByte</td>
</tr>
<tr>
<td>放電条件、放電結果データ参照、解析</td>
<td>CLS（カセットライブラリ装置）</td>
<td>Dlink容量管理を行い、古いデータはMTに返送し削除。CLSに存在しないShotを依頼して運営管理者がMT復元を行う。</td>
</tr>
<tr>
<td>解析サーバ（LINUXワークステーション）</td>
<td>MT</td>
<td>1shotあたりの容量：DMSLオペレーション後：10MByte</td>
</tr>
<tr>
<td>データベースサーバ（UNIXワークステーション）</td>
<td></td>
<td>データ消失防止を目的にDAT、DVD等にデータ保存</td>
</tr>
</tbody>
</table>

図1 初期データベースシステムと現在のデータベースシステムの概要

将来に向けて
実験データベースシステムの将来を考える時、いくつかの課題がある。それらは、装置特有のデータベースの構造とそれに由来する特有のデータハンドリングツールが必要であること、ネットワークを通じて多くの利用者が存在するということ、これは外国を含めてより遠隔地での利用が考えられるということからデータベースの保護ということ、それにデータベースが巨大になり、増加し続けるということであろうかと思われる。利用ツール、データベースの保護、データベースの容量増大に対する対処法は既にいろいろと存在するが、データの利用面から見ると、世界標準的な方法が望ましいこととは言うまでもない。この視点に立つ技術の選択が重要であると考えられる。もうひとつの重要なポイントは、データベース作成の連続処理（実時間処理）である。これは放電の長時間化に伴い、従来からの一定時間データ収集をした後で、データを転送し、パッチ的にデータベースを生成する方法は、もはや不可能となることである。こうした面での検討が今後の課題である。

参考文献、表彰
[1] 栗原一他、JAERI-M 87-097、「JT-60 全系実験データベース構築」基本構想とシステム設計」,1987年。
[2] 伊藤康浩他、JAERI-M 87-098、「JT-60 全系実験データベース構築」機能マニュアル」

付録
[5] 戸塚俊之、佐藤稔、1998年、文部科学大臣、創意工夫功労者賞、ネットワーク対応JT-60大容量実験データベース管理システムの考察
3.10 マンマシンコミュニケーションシステムの開発・改良——マルチウィンドー、ネットワーク化への展開——

目的（背景）

制御用ミコンコンピュータを中核とした全系制御設備のマンマシンコミュニケーションシステムは、マンマシン用計算機、中央コンソール、総合コンソール、補助グラフィック盤などのハードウェアと、これらのハードウェア機器の動作に必要な運転情報を提供するソフトウェアから構成されていた。JT-60のプラズマの高性能化を目指す大流れ化改造（1989年～1991年）に伴って、当時最新の計算機技術を導入し、拡張性のあるネットワーク型の分散システムを構築し、複雑な放電条件作成の自動化、熟練化したマンマシン機能の刷新などを目的として、全系制御設備の増機能を拡張を目的とした改造に着手した。これらの改造においては、ユーザーフレンドリーなシステムを構築することを目的として、コスト削減と調達の容易さという点からハードウェア・ソフトウェア等、システムの独自性を高めることが求められた。同時に、将来の更なる機能増や新技術導入にあたっても、改造量を最小限に抑えると共に、一部の機能を独立化して一般に利用できるという意味での互換性を高めると共に、標準化によるオープン性をベースに自社システム開発・構築が可能なシステムの実現を図った。[1]

設計内容

大流れ化改造（1989年～1991年）に伴うマンマシンコンピュータに支援されたCRT表示システムの操作性の悪さ、機能変更・拡張性が殆どないという状況を、ワークステーションとイーサネットによる分散型ネットワーク通信システムの導入により解決を図った。当時、イーサネットをプラント制御で使用した実績がなく（JT-60の運転モード移行操作、放電シーケンス開始/停止操作の実行などイーサネット通信の信頼性・応答性が運転制御に直接係わることもある）、受注メーカーからの性能保証を得ることはできなかった。また、同時に行った放電条件設定の自動化は、それまでのJT-60実験装置で得られた経験を基に原研が、自動設定する項目間の関連付けや、合理性の判断をロジック化するなど、従来の作業をより効率的に分担し、コスト削減と技術力を蓄積を図った。この改造においては従来の中央コンソール（12台のCRT）、総合コンソール（2台のCRT）は撤去し、ワークステーション1台で、同等の機能を実現した。しかしながら、実験運転監視、放電条件作成および実験進行の面から考えても、同様の機能を持つワークステーションを複数（16台）配置し、多くの人が情報を共有できる環境が必要であり、図1に示すような配置となった。この新しいマンマシンシステムの実現により、プラズマ実験系の改造に合わせた放電条件の追加、変更などを原研の手により実施し、実験の進展に貢献してきた。その後、2003年度に行われた放電時間の伸張においては、それに伴う放電条件の変更や表示画面の変更など、一連のマンマシン機能の改造を実施した。

結果

ワークステーションとイーサネットを用いたネットワークシステムの構築により、これまで12台の中央コンソールに分散していたマンマシンシステムの各機能を1台のワークステーションで実現することが可能となり、運転員の労働時間に役立った。また同機を用いたワークステーションを複数（16台からスタート）配置することにより、これまで中央コンソールでしか得られなかった情報を、それぞれのワークステーションで共有することが可能となった。また、これまで配置されていた中央コンソールを撤去し、ワークステーションに置き換えることにより、スペースの有効利用を図ることができた。さらに、放電条件の作成については、条件を作成する手間だけに留まらず、その条件と密接に関連した項目との整合性、相互の従属関係から定まる設定内容の自動設定など、放電条件作成作業の効率化と質の大幅な向上、放電条件作成のペーパレス化、承認作業のソフト化と装置運転状態との統合検査実施による安全性の向上などを図った。その後、プラズマ実験の進展や放電時間の長時間化に伴い、放電条件の追加・変更・削除、各設備との運転データの取り合い変更、データ表示画面の変更等を殆ど、原研自らの手で比較的短時間で実施することが可能となった。

考察、波及効果

マンマシンシステム改造の最大の効果は、ネットワークシステムの構築と、それに使用するハード/ソフトシステムに対して標準化を図ったことである。ワークステーション化改造の動機は、寿命が来たCRT表示装置の交換費用が高価であったことから単なる代替品との交換でなく、新しい機能を付加し、将来的に進化可能な設備として整備するという考え方に換えたことに起因がある。その選択は、その後のJT-60実験の進展を考えた時に、数々の新しいプラズマ制御方式の組み込みやそれに伴うマンマシンシステムの変更がスムーズに進行された事に対し、正しかったと言える。特に重要な点は標準化を図ることにより、メーカー依存性から早く時期に脱却することが出来、オープン化されたソフトウェアを利用して自前のソフトウェア製作部分を拡大することで、低価格で、短期間に実施可能となり、実験の進展に大きく貢献できたと考えている。このイーサネットを
利用したネットワーク化は、現在では最も広く普及した標準ネットワークとなっており、各設備制御系との通信手段にも取り入れられ、高経年化したシステムの更新にあたって、標準的なシステム構成の基本形として寄与している。

将来に向けて

マンマシンシステムは、ユーザーフレンドリーな形でシステムと信頼できるようにという基本的な要求を実現できるよう、絶えず改良している。従って、高経年化は一度ではなく、装置の寿命の間、数度となく訪れる。このように考えると、このマンマシンシステムの改良、あるいは機能変更においては、それまでに蓄積された経験や知識を、次に受け継いで、成長可能なシステムであることが望まれる。また、大規模システムの改良においては、その全部ではなく、各部分を少しずつ改良するという手法が現実的には実施されている。このような状況から、システムの土台となる部分、JT-60の例で言えば、ネットワークと組み込み型のボードコンピュータによる制御系の構成が、幅広いシステムに耐えられるものであることが重要である。従って、まず、全ての制御系がこの標準的なシステム構成に則ったものでなければならず、現在、その整備計画を進め、さらに実行に移している段階である。この整備計画の完了を、高経年化対応の第2段階および更なる将来に向かって様々な機能拡張が図れるよう柔軟なシステム構築へ進む出発点として位置付けたい。

参考文献、表彰
2. 米川出、文部科学大臣、創意工夫労務者賞、制御設備マンマシンインターフェースの改良、1992年。
3.11 運転制御計算機システムの開発・改良
—計算機システムの更新、運転支援機能の充実—

目的（背景）
2台の制御用ミニコンピュータから構成される全系運転制御計算機システムは、JT-60 全体の運転管理に必要な運転状態監視、警報監視、運転モード管理、装置運転制御管理などの機能、CAMAC を介した各設備制御系との情報通信および中央コンソール、総括コンソール、補助グラフィック盤などのハードウェア機器の動作に必要な運転情報を提供するソフトウェア機能を分担していた。1989 年から 1991 年に実施された大電流化改造を契機に、ネットワーク型分散システムの構築による制御系の標準化および CAMAC 機器群の通用化による交換部品調達の困難さとコストパフォーマンスの低下等の観点から全系制御設備の更新計画を順次進めてきた。その一環として運転制御計算機システムの更新を計画した。更新にあたっては、先行した放電制御計算機システムの更新・機能改善と同一設計方針を踏襲した。その結果、実験運転期間を含めて 1 年と言う短期間でシステムの更新を図ることができた（2002 年）。更に、引き続き行われた放電時間延長に伴う各種の高度な運転監視・支援機能の追加、改造（2003 年）においても、更新後のシステムの拡張性、柔軟性を発揮し、殆ど原研の手による改造を短期間で実行でき、所期の目的を十分に果たしている。

設計内容
運転制御計算機システムの更新においては、既に更新を終えた放電制御計算機システムの場合と同様に、JT-60 実験に支障を来たさないよう UNIXワークステーションと VME-bus モジュール（従来の保護インターロック CAMAC 機能と、補助グラフィック盤への運転制御管理ワークステーションからの出力する信号の受信を行う）から構成される新運転制御計算機システムを既存のシステムと独立に開発することとした（図 1 参照）。運転制御に関する諸機能、即ち、運転モード管理（モード移行、モード維持）、機器運転許可/禁止管理、警報監視、選択データモニタの為の各設備運転データの NFS マウント機能などの各機能でワークステーションに組み込んだ。補助グラフィック盤へ表示する情報のうち、運転制御計算機から出力する運転データ表示は、保護インターロック CAMAC を改造した保護インターロック VME-bus システム内に出力モジュールを準備し、対応することとした。従って、機能面での変更は殆どなく、従来の機能をそのままワークステーションと保護インターロック VME システムで代行することとした。

運転制御計算機システム更新後、JT-60 放電時間の延伸が計画され、それに伴い、トロイダルコイル、ポロイダルコイルフィードバックの温度上昇、電源設備機器の温度上昇による放電間隔の厳重な管理が必要となり、運転員の支援機能として放電周期モニタ機能を追加した（図 2 参照）[1]。以下に、運転制御計算機システムに関する主な改造履歴を列挙する。
- 大電流化改造に伴う中央コンソール、総括コンソールの撤去（1989年〜1991年）
- 運転制御計算機システムの更新（2002年）
- 放電時間の延伸（2003年）
結果

1台のワークステーション上に構築された運転制御機能により、従来と同様にJT-60の運転管理および警報監視を行うことが可能となった。運転制御系を持つ各設備制御系とのデータ交信をイーサネットを通じて行うことが可能となったが、まだCAMACを用いた設備制御系が残っており、そのため当分の間は新運転制御系と旧運転制御システムが共存することとなる。各設備の運転データをNFSマウントするため、運転データの追加、削除等による全系制の変更は不要となり、作業量の合理化が図られた。前述の運転監視機能・支援機能の強化により、外部制約条件の自動監視、コイルおよび電源設備機器の制熱負荷監視などの安全を確保するため、放電運転シーケンス開始とのインターロックを取るなどして、効率的な実験運転の遂行に寄与している。

考察、波及効果

運転制御計算機システム更新の狙いは、ネットワーク型分散制御システム構築と、それに使用するハード/ソフトシステムに対する標準化計画の一環として実行したものである。従来の運転制御計算機は、約20年前の制御用ミニコンピュータを使用しており、計算機自身の高齢化はもとより、ネットワークに対応できない点が問題であった。また、各設備制御系とのデータ交信に使用しているCAMACモジュールが多くの特注品を抱えており、予備モジュールの確保、修理が殆ど不可能な状況にあること、CAMACに比べ、格段に安価で高性能かつネットワーク対応型のモジュールの出現(VME-bus,PCI-bus等)が、改造の大きな動機となった。ワークステーション、VME-busという組み合わせは、これまで全系他の設備、放電制御系やプラズマ制御系で実施されてきたものであり、原研内の知識と実績の蓄積があり、コストおよび標準化の面からの妥当な選択であったと言える。各設備制御系の改修においても、これらをモデルとして標準化に向け、逐次計画の実施が図られている。

将来に向けて

運転制御計算機システムは、JT-60プラント全体の運転監視を行うもので、そのために必要な各設備の運転データの収集、監視を行う。現在は比較的データ加工の程度が少なく、生データを直接運転監視に使用している。将来、プラントとしてより安全に、効率的にという要求が高まるにつれて、種々の運転監視機能、支援機能が必要となり、それらの機能が放電運転機能と密接に係わって、より限界に近い実験をより安全に且つ、効率的に実施することが可能となる。その前段階としては、全ての制御系がこの標準的なシステム構成に則ったものでなければならない。現在、その整備計画を定め、少しずつ実行に移している段階である。この整備計画の完了を、高齢化対応の第2段階および更なる将来に向かって様々な機能拡張が図れるよう柔軟なシステム構築へ進む出発点として位置付けたい。

参考文献

[1] 高野正二他、「効率的実際運転に向けたJT-60放電周期管理機能の開発」、高エネルギー研究機構（2004年2月）、技術研究会報告書CD：3-005
3.12 保護インターロックシステムの開発・改良
プアントの保護と安全の確保

目的（背景）
全系保護インターロックシステムは、JT-60 全体のプラント機器の保護と装置・人の安全を守ることを目的としており、リレーを用いたハードワイヤードシステムから構成されている。保護動作を自動させるため、全装置からの 100 ポットの状態信号が、必要な保護動作内容に基づいて 5 段階の保護レベルにより分類され、入力される。保護インターロックシステムは、これらの入力信号に対し、5 段階に分類された保護レベル（表 1 に示す）に応じて必要な保護動作（緊急停止指令等を含む）を出力する設計となっている。これらの入力信号は、同時に保護インターロック CAMAC システムにも入力され、運転員への警報表示や非標準事態管理に使用されている。また、保護インターロックシステムの特徴としては、保護出力動作のバイパス回路を設けないフェアールセーフ設計となっている。この保護インターロックシステムとは別に、制御部の役割分担として実験目的に応じた制御インターロック機能をソフトウェアとして構築している。保護インターロックは、制御インターロックよりも巨大運転領域において、最終的な保護装置として位置付け、明確な機能を持たせている。

保護インターロックシステムは、上記のような性質上、各種の JT-60 改造においても基本的に変更する部分は、あまり生じなかった。然しながら、改修神経延長においては、保護動作レベル４として動作していた“ハードワイヤード処理による次回放電中止”の処理を廃止し、従来の 5 段階処理から 4 段階処理に変更した（2003 年）。また、これに先立ち、保護インターロック CAMAC システムも、2002 年度の運転実験計算機システムの更新において VME-bus システムへ改造し現在に至っている[1]。図 1 に JT-60 保護インターロックシステムの概要を示す。

表 1 保護動作レベル区分と主な処理内容

<table>
<thead>
<tr>
<th>保護動作レベル</th>
<th>主な処理内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>保護レベル 1</td>
<td>直ちに関連施設を停止させ、放電シーケンスを停止させる。</td>
</tr>
<tr>
<td>保護レベル 2</td>
<td>直ちに関連施設を停止させる必要があるが、ブザーを制御は維持させる。</td>
</tr>
<tr>
<td>保護レベル 3</td>
<td>約 2 秒程度ハードインターロックを遅延させ、放電シーケンスを停止させる。</td>
</tr>
<tr>
<td>保護レベル 4</td>
<td>約 15 秒程度ハードインターロックを遅延させ、その後関連施設を停止させる。</td>
</tr>
<tr>
<td>保護レベル 5</td>
<td>関連施設を停止させる必要はないが、次回放電中止とする。</td>
</tr>
</tbody>
</table>

図 1 JT-60 保護インターロックシステムの概要

設計内容
保護インターロックシステムは、全てハードワイヤードシステムにより構成され、高い信頼性を確保している。基本的にインターロックのバイパス機能を設けず、リレー回路はフェアールセーフの原則に従って、常時励磁された状態で正常状態を維持している。従って、停電検出リレーを設け、停電時に
備えた設計となっている。これまでに実施した改造は、2002年のCAMACモジュールからVMEモジュールへの更新と、2003年、放射時間延長により、保護動作レベル4を削除し、これまでレベル4に位置付けられていた入力項目を、保護動作レベル3または、レベル5に変更した。これは、放射時間が延びることにより、発生した非標準事態項目が、現在進行中の放射に対して、途中で中止する必要があるかどうかということを、熱負荷などを中心に再検討し、それぞれ保護レベルの見直しをした。

結果
保護インターロックCAMACシステムは、高機能化対策のひとつとして更新し、VME化を実施した。保護動作レベル4の廃止は、放射時間延長への対応として、見直しを行い、現在、特に問題なく長時間放射実験に使用されている。

考察・波及効果
保護インターロックシステムは、その性格上、装置の使用定格が変更にならない限り、特に改造をするということは考えにくい。従って、これまで殆ど改造をすることなく正常にその機能を発揮してきただことは、当初、想定した通りにJT-60装置が運転されているということを意味する。一方、実験運転は、プラズマ性能の向上を目指し、装置の定格運転範囲内で、可能な限り最大の運転領域を目指した実験が行われ、その都度、制御インターロックを設け、安全な運転を実施してきた。このような制御インターロックと保護インターロックによる装置の保護および安全確保の考え方は、これまでのJT-60における実験運転の実績を踏まえて、実証されてきたと言える。今後、次世代の装置における保、安全を考える時に、JT-60で蓄積されてきた保護の考え方が、標準的なモデルとなり得るものと期待される。一方で、実験の要求に合致した更なる制御インターロックの改良と、リレーに替わるロバストなハードワイヤードシステムの開発が必要であることは言うまでもない。

将来に向けて
より一層柔軟な制御インターロックシステムの構築と、ロバストな保護インターロックシステムの融合が将来重要となるだろう。そのためにJT-60を有効に利用することを積極的に進めるべきである。

参考文献
[1] 高野正二、他、「保護インターロックVME-busシステムの開発」、核融合科学研究所(2002年)、技術研究会報告書pp.443-446。
4. 電源設備

4.1 電源設備の概要

目的
JT-60 電源は、プラズマ電流の励起と制御、およびプラズマ断面の位置・形状制御を行う設備である。これでは、JT-60 電源全体について完成から現在までの技術的な変更を解説し、その評価を行う。なお、機器単体や制御方式などの個別の課題については別にまとめてあるので、詳しくはそれぞれ参照された。

設計
トカマク装置では、トロイヤル磁場（TF）コイルとポロイヤル磁場（PF）コイル間の相互誘導はないので、電源は機能的に独立に設計できる。また、必要とするエネルギーは、常伝導コイルでは通常 TF コイルの方が PF コイルよりも桁違いに大きく（JT-60 では TF～8GJ、PF<1GJ）、TF コイル電源（TPPS）と PF コイル電源（PPPS）を別系統とするのが合理的である。同様に、コイル電流の時定数（JT-60 では TF が 22s、PF ではおおむね 1 秒以下）および要求される応答速度の違い（TF では秒単位、PF では数 10ms）から、TPPS の交流一直流変換にダイオード整流器を、PPPS にサイリスタ変換器を採用するのが合理的である。個別の課題として、TPPS においては、受電容量の観点から必要電力をすべて直接受電で賄えない[1]のためプライホイール付き電動発電機（T-MG）を導入した。またPPPS では極めて短時間ではあるもののプラズマ着火時の高電圧を確保する必要があり、空気変換器コイル電源（F 電源）に抵抗と直流電流制御器からなる高電圧発生回路を、垂直磁場コイル電源（V 電源）の一部にダイオード整流器を導入した。その様子を、図 1 にまとめ示す。

加熱用発電機（H-MG）の仕様については、NB および RF 加熱装置の仕様が最終的に確定する前に必発注が必要であったことから、別稿で述べているように、必ずしも負荷特性に最適化された設計とは言えない。しかし、放出エネルギーを最大化した T-MG と、過渡的な発電機出力の最大化を図った P-MG の、恒常中間的な仕様となっており、汎用性が高く使いやすい MG に仕上がっている。なお、MG は、いずれも中央変電所の変動荷重系に接続されており、研究所全体としての無効電力、高調波電流などは一括して制御・管理されている。

さて、一般に PF コイル間の相互誘導は大きく、誘導電圧を無視して直流電流システムの設計はできない。当初の JT-60 装置では、プラズマ着火のために約 300V の回路電圧を発生させ、円形プラズマとは言え 0.2 秒で 2.7MA のプラズマ電流を増大させることが求められていたので、相当な高電圧（F 電源では 25kV）をコイルに印加する必要があった。そのため、JT-60 を設計製作した当時でなくとも、コイル間の相互誘導を可能な限り低減させ、プラズマ電流やプラズマ断面の位置・形状制御を改善したいと考えたのが当然である。つまり、単機能ポロイヤル磁場コイルを使用したのは、妥当な選択である。このように、PF 電源に要求される性能を、定数式のプラズマ電流・形状などによって決定されるので、本体装置の改造、運転形態の変更に適した対応をした。その主なものについて述べる。
(a) 電源プラズマ条件の早期達成に向けた改造

建設当初の JT-60 は、図 2(a) に示すようにアウトボード側に X 点を有するダイバータ配位であった。

図 2 JT-60 プラズマの形状
(a) 完成当初の外側ダイバータ配位
(b) 下側ダイバータ改造後
(c) 大電流化改造後
しかし、この配位では原子力委員会が定めた目標領域にプラズマ性能が到達する見込みが少なかったので、プラズマ電流の増大（リミタ配位で2.7MAから3.2MAへ、ダイバータ配位で2.1MAから2.7MAへ）を計画した。このため、プラズマ表面と第一壁とのクリアランスを制御するためのQコイル電流が25KAでは不足することが明らかとなり、新たにプラズマ境界層制御電流（PSEX：1KV-10KA）を製作し、Q電流と並列接続して運転することとした。これによりQコイル電流は最大35KAまでの通電が可能となった。さらにプラズマ電流の増大のために、PS-EXをF電源にも切り換え接続できるようにし、Fコイル電流は最大110KA程度まで通電可能となった。また、大電流でダイバータ配位を形成すると、P-MGの出力が不足することが明らかとなり、M電源を比較的余裕のあるH-MGからも給電可能のように交流系の改変を行った。

その後、プラズマの下側でX点を形成した方がプラズマ閉じ込め性能が改善されることが明らかとなり、図2(b)に示すように新たなコイルを真空容器の下に設置して、下ダイバータ配位（プラズマ電流は最大2.2MAで）での実験を可能とした。この時、直流電源の改変は特に必要ではなかった。

(b) 大電流化改修

大電流化改修は、文字通りプラズマ電流の増大（設計5MA、実績5MA）を実現するため、PFコイルと真空容器の全面的な更新を行ったものである（図3(c)参照）。本改修では、PFコイルの定格を既存の電源定格と可能な限り合致するように設計したため、本体装置の改修量と比べると、電源設備のそれは著しく少ない。直流電源として増大したのは、改修後のコイル用電源として使用するQ電源のPSQ3.4のみである。他の直流電源は、設計余裕の範囲で対応した。むしろ、F電源の高圧電発生回路の撤去と、V電源ダイオード整流器の切り離しなど、主回路に関しては合理化の方が多かったと言える。

(c) 高角度化改修

高角度化改修は、大電流化改修後にVコイルの4つのユニットの接続変更を行い、当初の計画には無かった高い角度のプラズマを生成可能としたものである。従って、改修の範囲はPPPSだけであった。別項にて詳述したように、電流の改修は段階的に行われ、それに対応してプラズマ電流は増大した。最終的には3MA程度まで可能となったが、現在の主たる制約条件はコイルの強度でておる電流の通電容量ではない。

(d) 長パルス化改修

JT-60のプラズマ電流駆動時間は、装置完成時には5秒であったが、加熱実験開始時には10秒に延長されている。さらに、大電流改修では15秒にまで延長されたが、その制限条件はP-MGの出力電圧を定格の18kVと設定していたからである。従って、プラズマ電流駆動時間のさらなる延長のためには、P-MGの電圧を下げて運転する必要があるが、これは通常時の最大コイル印加電圧の下限のみならず、プラズマ着火のためのプレーキダウン電圧の低下も意味していた。しかし、RF装置の損耗により、十分に低い電圧条件下で安定なプラズマ立ち上げ可能となることが、JT-60を含む多くのトカマク装置で実証され、P-MGの電圧を11KVに低減しても安定な放電ができる目的にいたしたことが可能となった。

PPPSでは、サイリスタ交換器の同期回路、保護回路、および制御ソフトウェアなどの改修を行った。TPPSは、制御系がCAMACからVMEに更新されたことで対応が容易であった。

結果

JT-60が世界のトカマク装置による核融合研究の中核であり続けることができたのは、単に装置が巨大なだけではなく、装置の改修による継続的な性能の向上があったからで、そのための主要な役割を果たすことができた。十分な余裕を見込んだ当初の設計が奏功した点は、見逃せない。

結論

技術開発が日進月歩で進展する一方、既存の設備は確実に日々老朽化・陳腐化する。設備に対する適切な投資を継続してきたことが今日の高性能を達成させ維持していることを、忘れてはならない。

感想

JT-60の電源が、これほどまでに高い信頼性を有し、かつ長期にわたって安価で運転できるとは、単体試験、単体試験、組み合わせ試験、運転保守、その後の改修までを経験した者には、正直信じがたいほどである。

参考文献、表彰

[2] 1986年度、鳴尾隆一他、電気学会、電気学会振興奨進歩賞、臨界プラズマ試験装置（JT-60）電源の開発
[3] 1987年度、高橋春次他、関東電気協会、優秀賞、核融合大電力電源設備の信頼性確保と重電機器の計算機制御技術の確立
[4] 1993年度、高橋春次、日本電気協会、津沢賞、永年にわたる電気保安一般についての著しい功績
[5] 2003年度、大森俊造、日本電気協会、津沢賞、電気の保安への貢献

— 54 —
4.2 大電流化改造への電源設備対応

目的
JT-60 本体装置の大電流化改造は、公式には電源設備の電動発電機のオーバーホール期間を利用して、高効能化を図るものである。従って、電源設備では、オーバーホールと本体装置の大電流化改造への対応を同時に進行を行った。ここでは、後者の「大電流化改造への電源設備対応」に焦点を当て、その内容を概説する。

設計
JT-60 の大電流化とは、簡単に言えば「プラズマ電流を約 2 倍の 6MA に増大させるとともに、燃料を通電水域から重電水域に転換し、蓄積エネルギーを改造前の約 4 倍の 10MJ 以上に改善する」ことである。図 1 は改造後のプラズマ断面を、表 1 に主要パラメータを示す。新旧を比較すると、プラズマ性能ほとんど PF コイルの定格が増大していないのに気づく。これは、基本的には電源の改造が最小化されるようにむしろコイル定格を設定したこと、垂直配置コイルの巻き戻し線を省略したこと、などがその要因である。重要な技術的課題は、以下の通りである。①ボロイダル系の蓄積エネルギーが増大するが、P-MG の放出エネルギー 1.3GJ は十分。②プラズマ電流の立ち上げ速度が変わらないようすると、大電流プラズマの現象には長時間の運転が必要になるが、MG やサイリスタ変換器の効率時間はどこまで延長できるか。③コイル電流が 92kA から 120kA に増大するが、高電圧発生回路は対応できるか。④耐久性問題は通常 30ka であるが、ディスラプション時には最大 90kA の誘導電流が予想される。構造強度や許容可能な頻度の面で無理がない。⑤D コイルにおいてもディスラプション時の誘導電流が問題である。D コイルでは、他のコイルのようにパッケージ効果を期待する必要がないので、設計数を増大させさせるための外部アクチュエータを挿入することで対応した。容易に実現できる方法があるか。これらの課題に対して、次のような対策を実施した。
①改造前の最大プラズマ電流の放電データから、(a) P-MG が放出したエネルギー、(b) 電流やサイリスタ電流等で消費したエネルギーを評価して、電源のエネルギー変換効率を求めた。そして、そのエネルギー変換効率を基に改造後の運転をシミュレーションし、必要なエネルギーを評価した。その結果、余裕は少ないが最大プラズマ電流の放出電流が可能なことを確認した。②サイリスタ変換器の長パルス化の効果を安定させるには、スリップ回路の抵抗と不均一するバランス抵抗の発熱である。このうち前者のスリップ抵抗については、運転中に面して表面のひび割れなど劣化がすでに認められていったため、より熱伝導力の大きいものにすでに更新していたので、変形はなかった。後者のパルス抵抗は発熱が断熱的に決まるため、たとえ発電側に伸ばしても条件の緩和は少ない。しかし、変換器とコイルの等価矩形波通電時間はほぼ同じため、実際の問題は少ないと判断した。むしろ、決定的な要因は発電機の基磁化の熱容量で、まずは完全な運転範囲であることが 25 秒の励磁時間を設定した。これはその時点では将来のさらなる延長も視野に入れたものであったが、実際は制御システムが 15 秒のプラズマ電流断電時間をベースに製作されたため、変更するの難しいに仕上がった。次に、十分な仕事の説明が生んだ誤解が、システムのフレキシビリティを落としとした例である。③結局のところ、必要性の乏しい高電圧発生回路は電源システムから切り離した。これに伴い、不要となった投入器、保護用ダイオード、トリガーキャップなどの機器を主回路から切り離して、システムの単純化と保守の合理化を図った。図 2 はコイル電源の新旧コイルの基準図である。ディスラプション時の誘導による II コイル通電流を考慮して、Q 電源を改造および増設した。

図 1 大電流化改造後のボロイダル断面の比較
(a) 大電流化改造前 (b) 大電流化改造後

表 1 大電流化改造後の JT-60 の主要パラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>改造前</th>
<th>改造後</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラズマ断面</td>
<td>円形外 X 点</td>
<td>縦長下 X 点</td>
</tr>
<tr>
<td>プラズマ電流</td>
<td>LIm:2.7 MA</td>
<td>LIm:6.5 MA</td>
</tr>
<tr>
<td></td>
<td>Div:2.1 MA</td>
<td>Div:6.0 MA</td>
</tr>
<tr>
<td>供給電源</td>
<td>-25 Wb</td>
<td>-62 Wb</td>
</tr>
<tr>
<td>磁気エネルギー</td>
<td>-23 MJ</td>
<td>-78 MJ</td>
</tr>
<tr>
<td>放電持続時間</td>
<td>5 秒</td>
<td>15 秒</td>
</tr>
<tr>
<td>F コイル</td>
<td>±292 kA</td>
<td>±1200 kA</td>
</tr>
<tr>
<td>V コイル</td>
<td>±53 kA</td>
<td>±60 kA</td>
</tr>
<tr>
<td>H コイル</td>
<td>±20 kA</td>
<td>±30(90) kA</td>
</tr>
<tr>
<td>Q コイル</td>
<td>±25 kA</td>
<td>無し</td>
</tr>
<tr>
<td>M コイル</td>
<td>±120 kA</td>
<td>±110 kA</td>
</tr>
</tbody>
</table>
ものである。既存のPSQ1, 2は並列接続に変更して過渡通過電流に耐えるようにした。また、新設のPSQ3, 4は定常的には30kAの通電しかできないが、過渡時には90kAの電磁力を耐えるように新たに設計製作したものである。これにより、電源の低インピーダンス化と応答性の確保を両立させた。⑤ダイバータコイル用電源（M電源）では、高速な応答性は要求されないので、模擬負荷コイルを直流接続から並列接続に変更してインダクタンス1mH、通電容量110kA-7sのリアクトルとし、直列に挿入した。

結果
主回路の改造は、ほぼ計画通りに遂行ことができ、期待通りの性能が得られた。上記以外では、PS-EXも必要に応じてバックコイル電源の補助として使用可能にしたが、制御設備では、Hコイル用DDC計算機を最短250μs周期で、他コイル用計算機は500μs周期でフィードバック演算可能とした。これにより、高非弾性モード時のプラズマの垂直位置安定度を確保するとともに、電圧制御と電流制御を任意に変更可能とすることで、リアルタイム制御の自由度を最大化することができた。また、従来のCAMACシステムからVME計算機に更新したことで、ソフトウェアの保守性を飛躍的に改善した。

波及効果
トカマーク装置の低電圧化、すなわちプラズマ電流の励起や立ち上げに関わる波ロイダル磁場コイル電源の小容量化は、プラズマ制御技術の進展によるものであり、また周辺設備の合理化を図るという時代の要請もある。大電流化改造では、92kA-25kVの高電圧発生回路を切り替えし、すでにDIII-D装置でも変換器のみで運転しており、今後は低電圧でも電圧制御能力の高い電源の方が重宝されるであろう。

結論
JT-60本体の大電流化に対応した改造を、予定通り完了し、その後の高性能プラズマの実現に大きく寄与した。

感想
JT-60は、元来がフラットトップ期間5秒で設計した装置である。これを、プラズマ電流立ち上げ速度の緩和のために、装置完成直後に10秒まで延長し、さらに大電流化で15秒にまで伸ばした。これは、発電機出力電圧を定格の18kVに維持しつつ実現できる限界に近いものである。すなわち、当初のプラズマ電流駆動時間の3倍の運転を行ってきたことになる。これを可能にした根源的な要因は何であろうか？誤解を恐れずに言えば、当初設計には十分な余裕が含まれていたということもできるし、逆に実験装置としての適度なマージョンが柔軟な対応を可能にしたとも言える。核融合研究を進める上で、コスト面から電源の確保に苦労している国内外の装置が多い中、これまでにJT-60の電源が性能的に実験上の大きな制約条件となったことが無いのは、まさに特筆ものである。

参考文献
4.3 プラズマ形状高角度化改造

目的
JT-60 装置の垂直磁場コイル（V コイル）は、大電流化改造の際に大きく 4 つにグループにまとめ、それぞれから電流フィーダを外部に引き出した（図 1 参照）。V コイルフィーダと電源の接続は、P5 セクションに設置された結線切換盤で変更可能とし、当初は（a）標準結線、（b）非円形結線、（c）ハイブリッド結線 I、（d）ハイブリッド結線 II の 4 通りを想定していた（図 2 参照）。しかし、米国の D III-D 装置で三角度の高いプラズマの閉じ込め性能が改善されることが判明し、JT-60 においても三角角度配位の運転が可能か GA 社の T. Taylor 氏を中心に検討した。その結果、V コイル全体を、V1,7 (VR コイルと呼ぶ）と、V2-6 (VT コイルと呼ぶ）の 2 つのグループに分け、個別の電源を用意すれば、高い三角度が得られることが判明した。ここでは、いかにして三角角度プラズマを得るための技術的課題を克服したかについて、簡単に述べる。

設計
JT-60 では通常の運転は、変流器コイル（D コイル）、垂直磁場コイル（V コイル）、水平磁場コイル（H コイル）、ダイバータコイル（D コイル）の 4 つで行う。このため、ディスラプション抑止コイル（DCW コイル）用の PSH 電源（±22kA）を三角角度運転に使用することができる。ハイブリッド結線に対応するため、幸いにも V コイル結線切換盤まで、H 電源フィーダを延長してあったので、まず H 電源を VT コイルに接続した。しかし、ここでは VT コイルに流せる最大電流が、コイルの強度や発熱ではなく電源で制限され、プラズマ電流も 1 MA 以下となる。そこで、直流電源の接続を表 1 に示すように段階を追って変更し、プラズマ電流を順次増大させた。現在では、V コイルの強度でプラズマ電流は制限されている。

一方、三角角度配位プラズマのフラットトップ時間が、コイルや電源の通電時間ではなく、DC フィーダの最高到達温度で決まっている。特に問題なのが、通産特許事項となっている、地下ダクトの同軸フィーダである（図 3 参照）。最終的には、安全のための余裕を確保しつつ、ほぼ限界性能までの運転を可能とした。

<table>
<thead>
<tr>
<th>表 1 高角度配位に対する電源設備の対応の変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>三角角度</td>
</tr>
<tr>
<td>変流器コイル（D コイル）</td>
</tr>
<tr>
<td>垂直磁場コイル（V コイル）</td>
</tr>
<tr>
<td>水平磁場コイル（H コイル）</td>
</tr>
<tr>
<td>ダイバータコイル（D コイル）</td>
</tr>
</tbody>
</table>

PSH +100/8.7kA | PSV +100/8.7kA | PSV +100/8.7kA |
| PSV +110kA | PSV +110kA | PSV +110kA |
| PSV +110kA | PSV +110kA | PSV +110kA |

不使用 | 不使用 | 不使用 |
次に問題となったのが、Hコイル電源（PSH）の変
換器過電流である。これは、プラズマのMHD的な
不安定性が原因となって、過大な高周波成分が電流
指令値に重複し、Hコイル電流そのものは通常の
運転範囲にあるにもかかわらず、循環電流の増大
を招いたものである。図
4(a)に、その様子を示す。
そこで簡単かつ効果的な対策として、変換器指令
値にレートリミタを導入
した。これは、板状特
性に対しては何の悪影響
を与えることなく、過大
な高周波成分に対しての
応答速度を制限する。
これにより、プラズマの
垂直位置安定性確保と変
換器の不安定性抑制を両立させることができた。図
4(b)に、安定化された放電の一例を示す。

結果
高三角度配位は、プラズマ性能の改善（特にELM
の制御など）に大きな寄与した。また、W型ダイバ
ータの導入以後は、パッフル板とのギャップ制御が
容易な高三角度配位での実験が、より多く選択され
た。

波及効果
ブラジスマのように、必ずしも受動的な回路モデル
では完全に記述できない負荷に対しては、適応制御
などの採用も検討する必要のあることが判明した。

結論
結果的にはQ電源の余裕が広がって、新たな電源
を準備することなく、本体装置の性能を最大限引き
出すことができた（表1のPhase Ⅲ）。その過程で
常に出た重要な課題であったのは、サイリスタ変換器や
変圧器でなく、直流電流フィーダの温度上昇であっ
た。特に、整流器発生が実験機関の同軸上でこの本体フ
ィーダ（裸母線）が過熱の特異事項であったことから、その手続きに時間を要した。なお、規制緩和
の進んだ現在では、技術的に特殊な設計でも電気主任技術者の裁量と責任で実施できるようになって
いる。

感想
高三角度配位は、大電流化改造時には全く想定していなかった。しかし、段階的な対応をするこ
とで、当面のプラズマ実験上の要求を満たしつつ、システムを改造していったのは良い経験であった。
すなわち、その効果がはっきりしない段階では、あまり大きなコストをかけることなく、まず出来る
範囲の予備実験を行うのが正しい選択であるという、至極当たり前のことを再確認した。

参考文献
4.4 ITER-CS モデルコイルのパルス電流試験にかわる電源の改造

目的
ITER-CS モデルコイル（表 1 および図 1 参照）の開発は、ITER-EDTA における工学 R&D の最も重要な項目の一つであった。CS モデルコイルの開発そのものは、ITER 国際共同中央チーム (JCT) が主導して、4 種の参加国内チームとの契約に基づいて実施された。わが国は、コイル製作において重要な役割を担うだけでなく、CS モデルコイル開発における性能試験、すなわち通電試験を担当することとなった。特にパルス通電試験は、そのハイライトというべきもので、開発の目標とするコイル性能を最終的に確認する極めて重要な試験であった。製作した ITER-CS モデルコイルは実物の 6 分の 1 に過ぎないが、パルス通電試験を行うには、数 kV 数 10 kA 定格の大規模な直流電源システムが必要である。パルス通電試験を原研で実施した理由は、言葉換えると原研が選ばれた最大の理由は、JT-60 電源を利用できるという利点があるためである。しかし、そのためにには電路の新設と制御保護回路の変更、および制御方法の改造が必要であった。

設計
a. P 電源制御系の改造
制御系の改造で最も大きな影響があったのは、放電時間の延長である。すなわち、JT-60 電源は当初プラズマ放電時間 5 秒を基本に設計されているため、ITER-CS モデルコイルが想定している運転パターン（図 2 参照）を行うには、発電機の励磁時間および 22 秒の拡大が不可避であったからである。コイルのインダクタンスと励磁速度の関係から、発電機出力電圧と定格の 18 kV から 11 kV に下げることで、発電機等の発電制限から、最長 70 秒の運転を可能とした。これは、40 kA 相当のコイル電流の両極性運転に対応するために、P 電源を使用した。また、片極性通電ではあるが、高速励磁のためには P 電源を用いることとした。

b. P 電源バイパススイッチの設置
バイパススイッチの設置は、特に直流電流遮断器の不具合中に JT-60 電源を保護するため、36 kA 連続通電可能なバイパススイッチ（図 3 参照）を設置した。これは、ITER-CS モデルコイルへの通電で、永久短絡モードが形成されるようなトラブルに対処するためである。
c. P電源超電導電気用接地抵抗器の設置

ITER-CSモデルコイルの等価的な時定数は、JT-60の常伝導コイルに比べて格段に長いため、事故時の地絡電流が継続することによる過度な温度上昇が懸念された（図4参照）。これを避けるため、専用の接地抵抗器を準備した。

結果
a. 11kV運転時の同期電圧検出用トランスを設置して、サイリスタ位相制御装置（PHO）の同期電圧不足を解決した。
b. 結果的には、バイパススイッチ・新設の接地抵抗器が必要となるような事態は発生しなかったので、改善は安全の担保に終わった。
c. 停止処理が開始され、変換器が送電モードになるときに、コイル電流が長時間に渡って減衰しない現象が発生した。このため、コイル電流を完全にゼロにできるよう、停止シーケンスを改善した（図5参照）。

波及効果
2003年度に、最長65秒のプラズマ電流実測時間が得られた長パルス化を実施したが、ITERモデルコイルへの通電を、その技術ベースとして活かすことができた。

結論
V電源を用いた場合の高速励磁・消磁時のコイル電流波形および発電機回転数の変化を図6に示す。ブレプロ形の電流波形が得られ、ITER計画に大きな貢献ができた。なお、超伝導コイルを使用したシステムでこのような大きな電気エネルギーの貯蔵・回生が行われたのは世界初である。

感想
超伝導コイルの場合には、特に試験電圧を低くするために中性点接地が望ましい。しかし、一般に中間クラックをスイッチへ引き出すのは困難なため、抵抗器の擬似中性点接地している。超伝導コイルは、導体絶縁抵抗が高いので、接地電流でなく、コイルの電位で地絡検出をする方向に改善するのが良いであろう。

参考文献
4.5 トロイヤル磁場コイル電源・制御システムの VME 化

目的
マイコンコンピュータ付補助クレートコントローラ（ACM）を用いた CAMMAC 制御システムが老朽化し、代替モジュールの手配や、ソフトのメンテナンスが困難になったため、信頼性の改善を目的に制御系全般を更新した。また、計算機能の著しい進展を背景に、新たな制御・保護機能を導入した。

設計
システム構成の大枠としての「運転管理系」、「放電管理系」および「発電機（T-MG）の励磁制御系（AVR系）」は、変更することなくこれを維持した。なぜなら、部分的かつ順次的に各サブシステムを既存の CAMMAC システムやマイコン制御から、VME 規格のボード制御計算機へ移行させる必要があったためである。T 電源としての基本的な機能、すなわち T コイル通電電流の制御性能については、より多様な実験上の要求に答えるため、トロイヤル磁場 (BI) のブレプロ制御を導入した。これにより、これまで 50 通りのフラットトップ電流値とフラットトップ時間だけが設定可能なパラメータであったのに比べ、飛躍的な自由度の向上が図られた。図 1 に、更新した T 電源の制御システムを示す。VME モジュールは、リアルタイム OS である VxWorks を用いたプログラムにより制御される。また、ホスト用およびシステム開発用の WS は、VME と TCP-IP プロトコルによる通信を行っており、マンピマン機能を有している。基本的には、すべての機能を整流器箱に集中させているが、運転状態の監視・条件設定などは、従来システムと同様に中央制御室からのリモートでも可能とした。

図 1 VME 化された T 電源制御系のシステム全体構成

AVR 系を用いた T コイル電流のリアルタイム制御には、今回新たにコイルの異常検出機能を追加した。図 2 にそのブロック図を示すが、簡単に言えば、T コイルの電圧と電流の関係が、回路定数で決まる予想の範囲内かどうかを判定の材料にしている。かつて、コイル電流信号の伝送系が故障してゼロ出力となり、フィードバック制御により発電機過電圧（コイル過電圧）が発生した事象があった。本機能は、コイル外の補助装置を含めた異常検出に役立つものである。また、システムの状態量、具体的には発電機界磁電流、発電機出力電圧、コイル電流、コイル電流が、いかなる運転状態においても最大定格を超えないように、ソフトウェアによるリミット機能を導入した。
結果
図3は、コイル電流信号が一時的に喪失した場合のリミタ機能の挙動を示したもので、コイル電圧が定格内に抑圧されつつ制御が続行されている（この場合、異常検出ロジックはマスクされている）。

図2 コイル異常検出アルゴリズム

また、図4は、トロイヤル磁場
BトブレプロによるTコイル電流制御の一例である。ブラズマ放電中の磁場制御が可能なことを示している。これにより、実験の自由度が飛躍的に改善される。

波及効果
システムの更新を計画した当初には、実現可能性が低いと思われていたJT-60の長パルス化（60秒放電）を可能としたのも、T電源回路系が柔軟で対応が容易であったことが奏効した。

感想
VMEシステムはすでに最先端の規格ではないが、その分担された信頼性の高いシステムと言えるかもしれない。現在の印象としては、（a）依然としてC言語を用いているが、ドキュメント性が低く、プログラムの管理が容易とは言えないこと、（b）OSのライセンス料が安価ではないこと、の2つにやや不満が残る。ちなみにT電源システムの制御システムであれば、実際にはほとんどをプロセスコントローラに置き換えられることがあるのではないかと考えられる。要は上位計算機との通信をいかに行うかであり、これからのシステムには一層のコストダウン、単純化があがる。

参考文献
[1]大森栄和、平成10年度技術研究会、報告集、p.361.（1999）
4.6 ボロイダル磁場コイル電源・制御システムの VME 化

目的

ACM を用いた CAMAC 制御システムが老朽化し、代替モジュールの手配や、ソフトのメンテナンスが困難になった。このため、信頼性の改善を目的に CAMAC のマイコン部分を撤去し、VME 規格のボード計算機とワークステーションの組み合わせからなる、新しい制御システムに更新した[1]。

設計

 ACM : Auxiliary Controller with Microcomputer
 Toshiba HNE2109D (Intel 8086 5MHz)

 ACD : Auxiliary Controller with Serial
 Highways D Port
 Kinetic system NA104

 CCA2 : Type A2 Crate Controller
 Standard Eng. CC A2G

 CCL2 : Type L2 Crate Controller
 Kinetic system 3992-Z1B

 SD : Serial Driver
 Kinetic system 3992-Z1B

 BUFF : Buffer Memory
 Toshiba HNE262

 UPA : U-Port Adapter for Dual Serial
 Highway
 Kinetic system 3993

 ROM : Read Only Memory
 Toshiba HNE270

 UPAO : U-Port Adapter for
 Optical Serial Highway
 Toshiba HNE919

 S H : Bit Serial Highway
 (5MHz)

 図 1 更新前の CAMAC を用いた分散型制御システムの概要

 Ethernet

 [Central Control Room] [Power Supply Control Room]

 Host Workstation : Toshiba AS4080
 Operator's Consoles : Toshiba AS4080
 CPU : Motorola MMVE147SA2
 (MC68030 32MHz)
 VSD : VMEbus-based CAMAC Serial Driver
 Kinetic system K52140-Z1A
 RAS : RAS board
 Hitachi Zosen HIMV-910

 図 2 更新後の VME のボード計算機（コントローラ）とワークステーションを用いた制御システムの概要

 図 1 に、更新前の制御システムの概要を示す。全系制御装置（ZENKEI）と、中央制御室において 2
本のシリアルハイウェイ (SD) で、それぞれが独立した放電制御系（Discharge Sequential Control
System）と運転監視系（Plant Support and Monitoring System）に結ばれている。しかし、実際の P 電
源のほとんどの機器は、整流器棟や発電機棟に設置されているため、光ケーブル（UPA0）により現場
とのデータ通信を行っている。中央制御室で、全系を上位計算機として運転する本来のモード以外に、
設備単独の試験を可能とするため、P 電源内製で運転条件を設定し、放電シーケンスを実行することが
可能である。一方、リアルタイム制御系 (DDC 計算機システム) は、これとは別に全系のフィードバッ
ク制御計算機 II b と電源制御室で、より高速なブランチハイウェイで結ばれているが、これについては
文献を参照されたい[2]。

図2は、更新後のシステム構成である。CAMACクレート内のACMモジュールは、すべて撤去されてい
る。VMEのボード計算機（CPU）から、CAMACクレートに収納されたインタフェースとの通信には、
VMEラック内のCAMACシリアルディバイス（VSD）を介して行われる。すなわち、VSDが本システムの信号
伝達の要である。モトローラ社製のCPU（WVM1417）を用いて、ワークステーションからCAMACクレート
内のI/Oのデータ収録にかかわる時間を測定した値を表に示す。この高速性が、分散処理から集中
処理への単純化を可能としている。なお、P電源の1/0点数のまとめを表2に示す。

表2 P電源の制御システムの出力点数

<table>
<thead>
<tr>
<th>Transfer mode</th>
<th>Bit serial (5 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single command</td>
<td>250・s / Word + 20・s</td>
</tr>
<tr>
<td>Block transfer</td>
<td>46・s / Word</td>
</tr>
<tr>
<td>LAM demand</td>
<td>350・s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodically Even Sampled Data</th>
<th>Even Event Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>36</td>
</tr>
<tr>
<td>Digital Input</td>
<td>1043</td>
</tr>
<tr>
<td>Analog Output</td>
<td>0</td>
</tr>
<tr>
<td>Digital Output</td>
<td>0</td>
</tr>
<tr>
<td>Event Data</td>
<td>249</td>
</tr>
</tbody>
</table>

結果
既存のCAMAC入出力インタフェースをそのまま活用して、CAMACのマイコン部分のみを更新した。
技術的には、制御アルゴリズムの開発のため、低コストでの制御システムの更新を可能
とし、すべてのデータを一定周期で収録すること、分散処理でないため不要なデータの更新がない
こと、1CPUの集中処理のためイベントオリエント対応が容易であること、などが特徴として挙げられ
る。

波及効果
JT-60のサブシステムが、順次VME化されてゆく、よりインタリジェント化に向かう最初のケースとな
った。

結論
DDC制御システムでは制御アルゴリズムの調整が容易となり、プラスマ実験上の多様な要求に迅速に
対応することができた。また、P電源のVME化により、超電導磁石研究室の荷物搬送に貢献すること
ができ、VME化からすでに10年以上が経過し、当初のワークステーションなども既に順次
更新されている。最近では、PCIコンバータPCIバス規格など、VMEよりも新しい規格が市場でのシ
ェアを拡大し、ソフト開発環境も大幅な進展が見られている。あらためて指摘するまでもなく、計算
機は日進月歩する機器であり、逆に言えば現実のシステムは急速に陳腐化してゆく。今後とも、ハー
ド・ソフト両面にわたるメーカの保守体制などを勘案しつつ、適当な時期に制御システムを更新してゆ
く必要がある。

感想
P電源制御システムのVME化は、保守性の面で難のあるCAMACシステムから、ユーザインタフェー
スの充実したUNIXベースの制御系に脱皮する最初の一歩であった。P電源では、F,V電源を用いた超
電導磁石研究室の超伝導コイルへの送電（パルス通電試験）を行う必要があり、制御システムの早期
更新が実現した。また、この経験をベースとして、制御制御システムのVME化をスムーズに実施で
きた。一方、加熱用高性能電源（H-MG）や操作用高性能電源などでは、依然としてCAMACシステムを継続
使用している。残念ながら、これらの更新計画は予算面から手付かずの状況である。制御システムに
はソフト開発のために相当の時間が不可欠であり、一度故障が発生したら深刻な事態となる点を踏ま
え、着実な計画の実行が強く望まれるところである。

参考文献、表彰
[2] 青柳哲雄他。電気論D 115 巻 1 号、pp.13-20。平成7年
[3] 1996年度、高橋美、寺門恒久、文部科学大臣、創意工夫功労者賞、JT-60 プラスマ制御用電源
制御応答高化化のための改良

- 64 -
4.7 長パルス化改造

目的

高ベータ定常運転の研究のために、プラズマ電流の65秒の放電を可能とする改造を行う。

設計

JT-60装置のプラズマ電流の変動はスケッチ状態によって不安定な電流分布を発生するが方向の単純化を図るために、プラズマ細流電流時間は10秒に延長した。さらに、大電流改造では15秒にまで延長した。しかし、長パルス化改造は一気に65秒の放電を実現しようとするもので、従来と同じように単に機器の設計余裕を見直して対応できるレベルではなかった。

幸いにも、JT-60装置は超電導磁石研究の超伝導コイルのパルス通電試験のため、70秒の運転を可能としていた。詳細は省略するが、ポイントはP-MG（出力電圧を定格の18kV）から11kVに低減することである。これにより、主にサマスタ変換器のスナップ抵抗の発熱を抑制することが可能となった。反面、サモリスタ変換器の出力電圧は約60%に制限されるため、プラズマ着火時のコイル印加電圧に制限がある。結果的には、これはこれまでの低電圧パルス化に比べ、実験の成果を克服した。

図1は、P電源における長パルス化への主回路の対応を示したものである。すなわち、ダイバータコイル用のM電源を、加熱MG（H-MG）から元来のP電源用MG（P-MG）に接続を戻した。これは、H-MGに接続した状態では、M電源のサモリスタ変換器（PSM）に11kVで給電できなかったからである。なお、H-MGはこれまでの15秒放電と同様に18kVで運転しなくては、NBIやRF加熱の方向に対応できない。例えば、RFではシャイラトロンの発振ができない。

長パルス運転時の安全の担保は極めて重要である。そこで、次に示すような対策を講じた。①P-MGの回転数が設定した回転数（420rpm）よりも低下した場合、ソフトランニングに移行する。H-MGは106.5rpm以下で運転停止へ移行する。②P-MGの電流巻き線の過度な温度上昇を抑制するため、等価矩形波換算時間による保護インターロックを設ける。発電機出力母線については、サーモメータで保護した。③P、V電源については、変換器のパルス抵抗の発熱が重要である。このため、DDC制御計算機の中で、変換器電流の等価矩形波換算時間のリアルタイムで求め、これによってソフトインターロックで安全を確保する。④ショット間隔が最も厳しいのはM電源である。50kA-4.8秒の場合は20分周期、50kA-7.2秒の場合は30分周期となる。全系制御装置を放電シーケンスの開始を制限する機能を設ける。

結論

開尾より、プラズマ電流の65秒の放電を行うことが可能になった。図2は、プラズマ電流が約700kAの場合のプラズマ電流とコイル電流、および等価矩形波換算時間の増加を表したものである。ここで、T電流は52.1kA、F電流は120kA、V電流は60kA、Q電流は50kA、M電流は110kAで等価矩形波換算時間は求めている。T電流の等価矩形波換算時間を約22secで、定格の38secに対して十分余裕がある。また、P電流も、いずれもが6秒以下であり、コイル・電源ともに問題ないことがわかる。ただし、電源についてはスナップ回路の抵抗のように電圧の2乗平均（v²t）で決まる要素があることを忘れていはない。

波及効果

システムの更新を計画した当初には、実現可能性が低いと思われていたJT-60の長パルス化（60秒放電）を可能としたのも、T電源制御系が柔軟で対応が容易であったことが奏効した。

結論

JT-60の長パルス運転は、超電導磁石研究室への送電が可能となった段階で、すでに実現性は高かっ

た。なぜなら、残るH、Q、M電源のみを長パルス化対応すれば良かったからである。つまり、必ずしもT電源のVME化改造を待つ必要はなかった。むしろ、長パルス化の鍵となったのは、電源設備ではなく、
全系制御設備や加熱装置、および計測機器などであろう。これまで順調に運転を続けることができているが、正直なところ 65 秒放電は極力避けた方が安全である。なぜなら、機器の最高到達温度は熱時定数の効果を考慮する必要があり、運転周期と等価矩形波電流時間では正確には示まらない。例えば、サイリスタ素子のジャンクション温度は 17 ではなく 17 で評価した方がより正確と考えられるが、設計値に対しては厳しい方向となる。また、放電が正常終了する場合だけではなく、場合によっては故障に伴うサイリスタ変換器のバイパスペア運転（減流モード）による発熱も考慮しなくてはならない。さらに、長期間にわたる健全性を担保するには、熱疲労の効果も考慮する必要があるからである。感想
近年、高ベータプラズマの定常運転の実現が、トカマク型核融合研究の最重要課題となっている。このような状況下では、常伝導コイルの装置といえども可能な限りの長時間運転が望まれるのは当然である。JT-60 の設計では、「主機できることを制御が制限しない」という方針がある程度維持されたものであり、何つかの重要な項目で課題を残した点は否めない。すなわち、P-MG の出力電圧を可変（出来ればブレゲ制御）にしておかなかったことである。P-MG では電気洗浄のために 2kV の連続電圧が可能である。従って、定格の 18kV から 2kV まで連続的に発電機出力電圧を可変とすることができる。ただ、建設当時の技術レベルに鑑みれば、多くの未解決の課題がある中で、そこまで風呂敷を広げるのが適当であったか否かは疑問である。ここでは、JET 装置では完成直後から 2 分程度の長パルス運転が可能であったことを指摘するに留める。参考文献

図 2 65 秒の長パルス放電の例。トロイダル磁場コイル電流の等価矩形波完全時間は約 22 秒であり、定格の 38 秒に対して十分余裕がある。また PF コイルにおいても、十分余裕のあることが確かめられた。
4.8 T-MGを用いた加熱装置への給電

目的

2004年2月に発生した加熱用電動発電機（H-MG）の短絡事故により、NBナイロンおよびRF加熱装置は交流電源を失った。このため、ジュールプラズマ実験を継続するか、あるいは直ちに実験運転を中止し、未完成の分をH-MGの早期復旧に振り向きべきかの議論がなされた。結論としては、コイルは系統電力系の通電可能な範囲の電場強度（約2.5T）で満足することとして、トヨモデル磁場コイル電流源用の電動発電機（T-MG）を加熱装置への給電に振り向けることとした。本件は、これに関わる技術の総括である。

設計

(1) 発電機定格の違いの克服：表1にT-MGとH-MGの主要定格を示す。表より明らかに、T-MGはH-MGに比べて出力エネルギーが1.5倍、発電機出力が約2分の1である。従って、電力の有効利用率は余裕があるが、負荷変動に対する電圧変動が大きくならない。特に負荷変動時の過電圧はRF装置にとって電荷を十分に取り扱うことができるので、T-MGをH-MGに比して向けてよい。表1 T-MGから加熱装置への給電

<table>
<thead>
<tr>
<th>項目</th>
<th>H-MG</th>
<th>T-MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>発電機出力</td>
<td>400MVA</td>
<td>215MVA</td>
</tr>
<tr>
<td>放出エネルギー</td>
<td>2.65GJ</td>
<td>4.0GJ</td>
</tr>
<tr>
<td>陽げ方式</td>
<td>定電圧</td>
<td>原則Vf恒一定</td>
</tr>
<tr>
<td>車動方式</td>
<td>IM</td>
<td>サイリスタ駆動</td>
</tr>
</tbody>
</table>

図1 T-MGから加熱装置への送電

(2) 送電の新設：H-MGの出力には、当時なかったトカマク装置向けに89G2という遮断器が用意されていた。また、H-MGの列盤には初めにも使用されたイ・2面（52H12と52S1H）が予想。そこでこれを図1に示すように、必要なCTや保護リレーなどを整備してケーブルで接続することにした。1台の遮断器から2台の遮断器に接続しているのは、遮断容量や、盤内配線のための空間が機器製作メカナーによって異なっていたためである。保護抵抗については、すべての遮断器が短絡電流を遮断できる能力を有しており、どこで事故が発生したとしてもケーブルの短絡電流を超えないように設定した。

(3) 駆動方式の違いの克服：H-MGでは、発電機の駆動に専用の誘導電動機を使用しているため、回転数による出力電圧は一定である。一方、T-MGではサイリスタ駆動装置を用いているため、励磁制御は基盤的にはV/f一定制御であり、回転数によって出力電圧が変動する。すなわち、発電機の回転数と出力電圧の関係が両平行である。また、サイリスタ駆動装置はインバータ運転をしているため、加熱装置への連絡によって発電機出力電圧が大きく変動し、一方で isa 車軸電流が発生した場合には直ちに直流電流を切られ、システムを停止する。このリスクを完全に除去するため、T-MGの駆動とコンピュータ連絡を含む加熱装置への送電を時間を無差別に分離した。具体的には、それまで別個であったコンピュータ連絡をP-NB1およびN-NB1ともに50秒に統一し、その間に加速する方式を採用した。また、T-MGを最高回転数まで加速して、待機回転数に減速するまでの時間内にコンピュータおよび実験装置を行うという、シーケンス的な単純なもう一つの方式を準備した。

(4) ダイオード整流器によるコイル電流制御：系統系のみのダイオード整流器を用いた投入し開放制御で、コイル電流は基本的には投入するバウンドで決めまり、4通りのフラットトップ電流パターンしか得られない。一方、実際上は高周波加熱装置の共鳴位置を制御するため、可能な限り連続的に制御することが望まれている。このため、ダイオード整流器用トランスのタップ位置をショット間際に切り換え、直流出力電圧を制御することにした。トランスのタップは、並列接続した整流器間のアンバランスを防ぎ、商用系の電圧変動を補償するための目的であるが、思わぬところでの役立った。

結果

図2は、52G2接続後にサイリスタ駆動装置でT-MGを再加速した場合の発電機出力電圧波形の一例である。図より明らかにように、電圧電流ともに高調波の振動成分が重畳しているのがわかる。これは、NBナイロンRF装置などでサージ吸収用のコンデンサを交流母線とアース間に設置しているために発生しているものを、T-MG側での運転では観測されなかった現象である。すなわち、負荷電流の変動が大きい場合、言い換えると高調波成分に対して振動的な振舞いをすることがわかる。結果的には、発電機出力15kVを低減させていたことが考えられて、加熱装置で最大負荷を取った場合にも過渡過電圧が問題となることとなった。
図3に、新設したケーブルをケーブル縦線により固定にラダートレイに固定している様子を示す。これは、T-MGが短絡して最大電磁力が発生した場合でも、破壊的な被害を防止するように措置したものである。

図4に、系統系ダイオード整流器のみによる通電の一例を示す。パンクを適切なタイミングで切り離すことにより、良好なフラットトップ期間が得られていることがわかる。いずれにせよ、JT-60の歴史の中で初めてH-MGを用いないプラズマ加熱実験が可能となり、計画の遅れを最小化することができた。

波及効果
交流ケーブルの固定方法については一応の基準があるものの、調べた範囲では、布設した業者によってかなり遅いのあることが明らかとなった。研究所としては、かつてのJT-60共通基準のような形で、技術レベルの均一化を図る必要がある。

長期間切換操作をしていない変圧器のタップ操作について調べた。その結果、経年劣化により接触面の面圧低下や接触電気抵抗の増大が懸念されることが判った。また、JT-60に使用している変圧器ではタップ切換器の銅材にズレを生じているが、それ以前のトランスでは硫化鋼の発生により事故に至った例もあるそうで、注意が必要である。

結論
T-MGに近い加熱装置への加熱電は、元々トカマク国内重点化装置の設計の中で提案していた。従って、今回の改造は決して実験的なアイデアではない。むしろ、加熱装置のコンディショニングの仕方、発電機の電気的挙動の違いなど、注意すべき事項が早期に明らかになったことにより、設計をより確かなものとする。この結果、現JT-60ではポロイダル電源用P-MGのみが必要不可欠な発電機となり、T-MGあるいはH-MGのいずれかを欠いた状態でも、条件付きながら実験運転を継続できることとなった。

感想
約4ヶ月の短期間に、ケーブルの新設、および制御・保護系の改造を完遂した。これだけの改造作業を順調に推進するにもかかわらず、ほぼ予定通りのコストと期間で実現できたのは、関係者の絶大な協力があったからである。
4.9 電動発電機（MG）のオーバーホール（細密点検）

目的
JT-60には、トロイダル電源用の電動発電機（T-MG）、ポロイダル電源用の電動発電機（P-MG）、および加熱用電動発電機（H-MG）の、計3台のMGが設置されている。MGは、日常点検や定期点検だけでなく、5年を基準とする周期で内部点検（分解点検）を実施することが、機器の性能維持と安全性の確保を目的として定められた電気工作物保管規則に規定されている。本稿は、この内部点検に相当するオーバーホール（細密点検）を通じて得られた技術的な経験および知見をまとめたものである。

設計
表1に、JT-60完成以後のオーバーホールの実施時期をまとめて示す。ここで、オーバーホールとはMGの分解を伴う点検であり、細密点検とは分解しない（回転子など主要部品の取り外しを行わない）点検である。表より明らかのように、オーバーホールは大電流化改造時に全MGについて実施した後は、H-MGが2004年度に一度短絡事故に伴う分解点検するまで、全く行っていない。また、おおむね5年を基準周期として細密点検を実施すべきところ、予算の関係から、2000年までのT-MG、P-MGの細密点検が大幅に遅れる結果となっている。さらに、同じ細密点検とは言え、実際の点検内容は都度異なっている。つまり、大幅に点検項目を増やした場合もある。例えば、2004年度のH-MGの細密点検では、駆動用電動機に関してはオーバーホールと同様の作業を実施しているし、2004年度のT-MGの細密点検は、従来の定期点検を充実させた程度である。

<table>
<thead>
<tr>
<th>材質</th>
<th>T/P/H-MGのオーバーホール（細密点検）実施時期、○：オーバーホール、○：細密点検</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MG</td>
<td>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04</td>
</tr>
<tr>
<td>P-MG</td>
<td>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04</td>
</tr>
<tr>
<td>H-MG</td>
<td>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04</td>
</tr>
</tbody>
</table>

注
（1）04年度のH-MGのオーバーホールは、短絡事故に伴う修復のための分解点検である。
（2）05年度前半にP-MGの細密点検を実施予定。

図1 JT-60の3台の電動発電機（MG）の累積運転時間

図1に、3台のMGの累積運転時間を示す。T-MGとP-MGは、ほとんどがJT-60実験に応じて運転されるため、ほぼ同じ運転時間となっている。一方、H-MGは加熱装置のコンディショニングのための運転があるため、累積運転時間はT-MGやP-MGに対して20%ほど長くなっている。大電流化改造が終了した1990年から10年間ほど、徐々に運転が継続されていることがわかる。2001年度以後は、運転サ
イクル数の減少に伴い、MGの年間運転時間はそれまでの約3分の1である。しかし、点検項目を3分の1にして良いわけではない。すなわち、設備の稼働率と保守にかかわる費用は比例せず、一定の義務的経費が必要である。これが、大規模システムの維持に関する根幹的な課題である。

結果
図2-4に、オーバーホールで発見された主な不具合箇所をまとめて示す。ここでは、各項目に対する対策については詳しく触れたい。しかし、JT-60装置全体の運転工事に影響するような重大な欠陥が発見されることはなく、ほとんどはで見られたもの、あるいは点検期間の範囲に対処可能なものであつたことを踏まえておく。

装置寿命に直接影響する項目として挙げられるのは、電気絶縁の経年劣化である。これまで、余寿命診断を適宜行ってきているが、顕著な変化の悪化は観測されていない。これは、装置設置環境の良好さと、装置完成から約20年を経てもおき累積運転時間が3年未満であることが要因と考えられる。油配管の内部腐食はほとんど考えられぬが、二次冷却水導管では赤銅・水垢の発生が認められる。フランジ部などからの漏油・漏水は発見が容易であるが、肉厚減少による配管の強度不足は外部からは確認が難しい。オーバーホールでの重要な確認事項の一つだろう。

波及効果
大型のMGは、欧州のJET装置や米国のTFTRなど、外国の大型トカ马克装置でも使用している。しかし、JT-60のMGはそれらに比べて回転数が高く、エネルギー密度が大きくコンパクトな設計となっている。これは、我が国の産業界が優れた技術を有している証である。JT-60で安定した運転を継続することで、都市市街地中に設置可能な高速応答のエネルギー蓄電装置として、近い将来に再び注目される日がくるであろう。

結論
JT-60の3台のMGは、いずれも機器設計および運転形態が特殊である。このため、一般の商用運転する発電機と比べると、保守に対して一層の注意深さが必要となる。一方、負荷はすべてバランス負荷であり、また実際には最大定格で運転することはほとんど無いため、電気機器としての負荷は限定的である。これは、これまでの点検で予想外の深刻な故障がほとんど発見されなかったことや、機器の内部状態が良好であったことから明らかである。従って、年間運転時間の減少が顕著な近年の動向に鑑み、今後は段階的にオーバーホール（細密点検）の周開しを延伸しても良いものと思われる。

感想
那珂研究所電気工物保護規則第31条の別表からは、「電動発電機（特別高圧）は機能点検又は内部点検を5年を基準周期として実施しなくてはならない」と解することができる。ここで、「機能点検」とは、測定、試験を行うために必要な検査を主とした点検であり、「内部点検とは、内部にあたり構造上の検査を主とした点検である」と定義されている。従って、必ずしもオーバーホールに相当する分解を伴う内部点検を5年を基準周期として行うことを課しているわけではなく、機能点検でも良いことになる。他方、規定をより具体的に表すものとして那珂研究所電気工物保護規則が定められている。これにより、電動発電機（特別高圧）は5年を基準周期として各部の細密点検を実施する」と解せる。すなわち、機能点検のみでは不十分であり、内部点検が絶対的に必要となる。これは、規定と規則の間に若干の不整合があることを示している。規定は電気事業法に基づいて経済産業大臣に届出が必要であるが、規則は事業者（すなわち原研）が自主的なガイドラインとして定めるものであり、一定範囲の裁量が認められている。規則の方は規定より厳しいのは安全サイドであるが、予想措置等の関係から、実務との間には若干の不整合があるのが現実である。単年度予算が国の機関の基本であることは承知しているが、平準化のための積み立て方式の採用など、制度面での充実・整備を図らなくては、安全の確保がますます難しくなることも疑いないようがない。

参考文献、表彰
[1] 那珂研究所、「電気工物保護規則」、平成6年9月
[2] 那珂研究所、「電気工物保護規則」、平成11年2月
[3] 1995年度、宮地兼吾、文部科学大臣、創意工夫功労者賞、JT-60電源MGの軸振動制御金具の改良
図 2 トロイダル電源用電動発電機(T-MG)の不具合発生箇所、対策実施箇所など(オーバーホール・細部点検時以外の対策を含む) 内は年代
図3 ボロイダル電源用電動発電機(P-MG)の不具合発生箇所、対策実施箇所など（オーバーボール、細密点検時以外の対策も含む）（）内は年代
図4 加熱用電動発電機(H-MG)の不具合発生箇所、対策実施箇所など
(オーバーホール・細密点検時以外の対策も含む) () 内は年代
4.10 連続大電流遮断器の開発

目的
トカマーク装置のような大型の誘導性荷負の保護方式には、2つある。すなわち、短絡方式：さらなるエネルギーを放出のために遮断し、それまで蓄積していたエネルギーを遮断時の熱容量で処理する（図1(b)）。開断方式：荷電電流（コイル電流）を遮断し、遮断電圧を印加することで蓄積エネルギーを外部へ回収する、の2つである。JT-60のような超伝導コイルでは短絡方式が一般的であるが、大型の超伝導コイルを用いるITERなどでは、開断方式を採用しないとコイルが損傷する危険性がある。開断方式の内で特徴的な並列型を図1(c)に、同様に直列型を図1(d)に示す。基本的には、電流、コイル、および遮断器をいかに接続するかの違いしかなく、システムの信頼性は大きく異なる。もし、連続通電可能な直流通電遮断器DCCBが利用可能であれば、回路が単純でAC運転時のロスが少ない直列型が有利である。以上の観点から、次期装置に向けてJT-60で実績のある真空遮断器(VCB)の大電流化を行った。以下は、その概要である。

設計
a. 水冷方式 VCB[1]
開発の第1段階として、水冷方式の VCB 開発を試みた。通常、アークを安定化させるための磁気界発生用コイル部は電極近傍にあり、しかも構造が複雑である。このため、そのまでは冷却チャンネルを設置するのが困難である。そこで、図2のモダル器の断面図に示すように、コイル構造を真空領域から外部に引き出し、電極位置を動かせる設計とした。また、可動電極側のロッドを2重管構造とし、内部に冷却水を通水した。本モデル器は、各部の温度測定や観察を容易にするために製作したので、各部の温度上昇を測定し、熱解析結果と比較した。図3は、冷却水流量をパラメタに、通電電流と温度上昇の結果をまとめたものである。技術的には最高温度上昇110度程度は許容可能と考えられるが、保守的にIEC規格の75度を採用した場合でも、15kA程度の通電が可能であることがわかる。しかし、製作メーカーの品質保証部から、これまで可動部に冷媒を流した電気機器を出荷した経験は無いことなどから、その信頼性に対する疑念が浮上した。このため、結論としては水冷方式の VCB 開発を断念して、強制空冷式の VCB 開発に転換した。

b. 空冷方式 VCB[2]
図4に開発した強制空冷式 VCB のパルプの断面図を示す。現在利用可能な最大口径パルプの内部に、できるだけ大きな電極を収納する設計となっている。スライドコンタクタは大電流の導入部であるだけでなく、電極での発熱をフィンに伝達する役割も担うので、可能な限りその配置枚数を増やしている。図5上部は、電極部の構造を従来式と比較して実験的に行なったものである。ロッドの断面積を2.8倍に増大させ、発熱の抑制と除熱の効率化を図っている。同様に、コイル構造部についても放射状電流路を合理化しつつ、アーク制御に必要な磁場性能を確保する設計としている。また、電流導入部近傍には固定および可動電極とも冷却フィンを設置して、ファン
による冷却を促進した。なお、駆動部の重量が増大したため、一般的な蓄熱装置では十分な駆動力が得られないので、圧縮空気による駆動とした。また圧力タンクの容量は、安全のために停電時でも数回の投入・開放ができるようにした。

結果
図5の下部に、36kA通電（12kA/バルブ）時の最高温度上昇波形を示す。図より明らかのように、熱時定数は数時間のオーダであり、しかも60度程度に収まっている。これから、十分な過渡流動効率のあることがわかる。図6は、大電流VCBの外観である。フィークの大きさは、冷却性能の確保のために大型の設計となっている。

なお、ITER-CSモデルコイルのバルス通電試験についても別途報告しているが、ここで開発したVCBをバイパススイッチとして主回路に接続した実験がある。

波及効果
VCBは、ガス遮断器のように有害なSF₆などを使用しないので、環境対策の面でも有利である。このため、VCBの高圧化・大電流化にもとないて、その適用範囲が徐々に広がっている。今後は、10kV-10kA程度の電力応用に対しては、VCFが標準的な電流遮断器になるのではなかと思われる。

結論
水冷方式のVCFについては、可動部に水冷を廃棄させる必要があることから、漏洩というリスクを最終的に払拭できず、残念ながら途中で開発を中止した。しかしながら、導体の除熱を効率的に行えば15kA程度までの大電流化は比較的容易であるという結論を得ることができた。この経験を活かして、除熱性能の改善のみならず、むしろ発熱を大幅に抑制する方向に開発方針を転換して、強制風冷方式のVCFを開発した。その結果、開発開始当初には3kA程度の連続通電しか出来なかったVCFを、従来比4倍の15kAまで大電流化した。電流定格で4倍ということは、単純には処理している発熱が16倍であり、技術的には大きな進歩と言える。残念ながら、現状では実電流の遮断試験は未実施であるが、これまでの経験から数10kAの遮断には問題はないものと判断している。実機への適用前に、性能確認試験、耐久性試験を行えば良いであろう。

感想
直流電流の遮断には種々の方式があり、求められる性能、使用頻度、信頼性などによって最適な遮断器の選択が異なる。VCFには、低損失で高い信頼性を有し高頻度の繰り返し使用が可能であるという長所がある一方で、転流回路が複雑になるという短所がある。ITERのような40-60kA級の直流電流の遮断には依然としてVCFを用いるのが有利であろうが、20kA程度の短時間通電ならば電力用半導体素子の利用も近い将来には想定できる。半導体技術の進歩は緩慢に続いており、今後も最新情報の収集に努める必要があるであろう。

参考文献
4.11 電源システムにおける機器開発

はじめに

JT-60 電源は、JT-60 のプラズマ電流の励起や維持、およびプラズマ断面位置・形状を制御するための設備である。従って、JT-60 電源の定格は、オリジナルの JT-60 装置（2.1MA-円断面、および外ダイバータ配合）をベースに設計されている。要求される設備規模と性能は当初の技術レベルでは容易に実現できない、つまり汎用品の活用ではにわかに対応できないものが含まれていた。そこで、JT-60 電源のために多数の機器を開発した。ここでは、それらのうちで主たるものについての技術評価を行う。

T 電源のサイリスタ駆動装置と発電機のデジタル AVR 制御装置

現在からは容易に信じられないが、JT-60 設計当時は、高い信頼性が要求されるシステムに対してマイコン制御を採用するのは、いささか鶏足される状況であった。従って、T 電源の発電機励磁制御においてマイコンを採用したのは、他に選択肢がなかったとは言え、ほとんど冒険と言って良い。また、サイリスタ駆動装置も大型の揚水発電においてやっと本格的に採用され始めた時期であり、デジタル AVR 制御装置と連携に関して、全く不安がなかったわけではない。そこで、制御システムの検証に当たっては、仮設のアナログシミュレータを準備し、入念な試験を繰り返すことで、その信頼性を確認した。製作メーカでは、このような JT-60 の経験を、その後の揚水発電システムの開発に多数応用したとのことである。なお、T 電源では現地組み合わせ試験において、制御システムの試験・開発にシミュレータの不可欠である認識が深まり、常設のアナログシミュレータを設置している。また、遮断器などの電源の実作動を伴うが、実際には通電しない T コイルのシミュレータも準備している。

P 電源の直流電流検出器

P 電源のコイル電流検出器に要求された性能は、定格電流の 10%レベルにおいて相対的検出精度（比誤差）が 0.1%、応答速度が数 10 マイクロ秒以下という、大変厳しいものであった。一般に直流大電流を高精度に検出するには、いわゆるジャイント抵抗を用いるのが簡単であるが、主回路の電位変動が信号レベルより格段に大きい場合、フィルターの挿入を余儀なくされ、応答性は劣化する。P コイル電源の場合、92kA-25kV の定格であり、サイリスタ変換器の転流にとどまらず影響も懸念されるため、数 10mV の信号を高速かつ高精度で検出するのは難しいことが予想された。一方、非接触型の直流電流検出器は、通常ホール素子（半導体の一種）を用いて電流が集まる磁場を検出し、間接的に電流値を求めるので、主回路の電位変動の影響を受けない。このため、耐ノイズ性・応答性の面で有利である。しかしホール素子自体の磁場強度と出力電圧には、リニアリティの面で難がある。そこで、一般に高精度の電流検出を行うには、ホール素子の出力がゼロになるように補償コイルに電流を流す。この電流値を検出すことで、リニアリティの問題を解決する。しかしこの場合、フィードバック回路の応答性以上に高速な電流検出は行えない。そこでホール電圧の直接測定で、高精度・高速応答性が得られるように、新たに直流電流検出器（DCCT）の開発を行った。具体的には、バイアス図素系のホール素子を開発した。

図 1 は、整流器棟に設置された DCCT の接続状況である。ケース内に層間の銅心片とホール素子が収納されている。ホール素子は、錠心片の間に等間隔にて全面で 8 番所取り付けられており、それらの出力の絶対値が、中心部を貫通する DC フィーダの電流に比例する。ロギスティコイルと同様に、外部磁場の影響を最小化するために、他のフィーダ線との距離を出来るだけ確保している。重要な DCCT については、電気検定協会で検査した標準 DCCT を用いて校正試験を行い、その精度を維持した。

さて、DCCT の一部のホール素子が故障すると、見かけの電流値が大きく変わるという現象が発生する。しかし、フィードバック系はそれを補償して実際には選電流となる。そこで DCCT の異常をリアルタイムで検出する必要があるが、それには、少なくとも 2 つの以上の信号を比較することが必要である。この目的のために、新たな DCCT を各コイル電流フィーダに設置し、差分判定を行うことで、信頼性の向上を図っている。なお抜本的な対策としては、DCCT 自体に故障検出機能を付加するのが望ましい。すなわち、8 部のホール素子の出力電圧のばらつきをチェックする。あるいは、予備のホール素子を用用するなどの方法が、あらかじめ検討されてしかるべきであった。

図 1 開発した DCCT の接続状況
P電源の高速保護用投入器

JT-60における異常時のコイル保護の基本的な考え方は短絡である。すなわち、コイルに対するエネルギーの注入を可能な限り早期に停止し、コイル自身の熱容量でそれまでに蓄積していた磁気エネルギーを消費させようとするものである。このためには、25kV以上の使用電圧で、100kA級の電流を数ミリ秒（コイルの時定数）程度まで流すことができる投入器が必要となる。また、P電源では当初、誘導エネルギーを用いたプラズマ電流立ち上げを考えていたので、高速な主回路の接続・解放動作を可能とする投入器が必要であった。以上の理由によって、図2に示すような圧縮式の高速保護用投入器を開発した。動作時間は15msと極めて高速である。超伝導コイルへの応用を考えると、単独では通電容量的にやや不満が残るが、断路器によるバックアップを行うと、低コストで信頼性の高いシステムが得られる。

P電源の高電圧発生回路用真空遮断器

P電源では、プラズマ着火のために92kAで25kVの直流電圧が求められた。サイリスタ変換器のみでは、このような大電流・負荷電圧を発生させるのは困難であるが、トカマク装置では、導入にも初期励磁電流の遮断によって所望の高電圧を得ることができると、92kAの直流電流を遮断できる遮断器は、市場には全く存在しない。そこで、交流用真空遮断器（VCB）をベースに、JT-60用に開発を進めた。図3(a)に開発したVCBのパルプを示す。自己電流によって遮断器を磁化させることにより長寿命化された。単独では24kAの電流遮断能力しかなく、2直列4並列とすることで所定の遮断能力を25kV-92kAを実現している。図3(b)に電流分担を等分化するための回路状配列したVBGを示す。

低電圧着火が曲がりなりにも達成された今日、このようなタイプの高電圧発生回路の必要性は薄らいでいる。しかし、一方ではITERなどで広範囲用 STDCALLル用のカウンターパート保護回路の必要性が増している。JT-60の直流電流発生回路は、ニーズよりも30年ほど早く実現された技術と言えている。

F.V電源用サイリスタ—SF3000GX21—

図4に、JT-60のために開発したサイリスタ素子SF3000GX21（4kV×3kA）を示す。現在ではやや近代化の感もあるが、伝統的な電気ゲート式のサイリスタ素子で、最近製造中止となったばかりである。JT-60のためにわざわざ開発したというだけでも驚きだが、普段2200個以上の素子を使いながら、今だに故障が皆無するのは、なんだという品質管理であろう。

サイリスタ素子単独の容量を競うことに意味はない。世界ではこのような使い慣れた素子を用いて、数GWの直流送電が実現されている。今後とも、容量単価と信頼性を重視した設計を行いたいものである。

参考文献
4.12 特別高圧用コンデンサの更新

目的
1998年6月12日にT電源系電力系の高次調波フィルタ用コンデンサが焼損し、実験休止に立ち至った。図1にT電源における焼損コンデンサの設置場所を、また図2に焼損直後の状況を示す。このため、年間実験計画への影響を最小化するため、一速の対策を緊急かつ計画的に実施した。すなわち、焼損原因の究明及び内部対策によるシステムの信頼性改善を行った。

設計
まず、JT-60実験の早期再開のために、T電源系電力系の切り離しを行った。すなわち、トロイダル磁場強度は定格の約半分の2Tとされるが、MC電力系の単独運転に切り替えた。運転再開は、内圧制御員、所内使用施設等運転委員会の審議を経て、十分な安全を確保した上で行った。

本更新、すなわち焼損したコンデンサの更新に当たっては、技術的な原因の究明が不可欠である。そこで、焼損コンデンサを工場に持ち帰り、その分解調査を行った。図3に、単位コンデンサ（通常反物と呼ばれる）の一つを分解して、絶縁破壊の状況を調査した結果である。その結果、アルミ箔の端部に放電痕跡が確認された。これは、過電圧が繰り返し印加されたためで、推測された。そこで、どのような状況でこのような過電圧が印加されるかが問題となったが、この結果、コンデンサの投入・開発時の過電現象による可能性が最も高いとの結論に達した。

T電源系電力系の空力改善コンデンサは、Tコイル電流に対して増大する無効電力量に応じて投入されるので、必ずしもすべてのコンデンサが放電回数に比例した回数使用されているわけではない。しかし、高調波フィルタは、実験放電の度に必ず投入・開放を繰り返す。過電解析の結果では、高次調波フィルタの過渡過電圧倍数1.72は他の高調波フィルタに比べて必ずしも大きではないが、定格電圧に対する絶縁層（ポリプロピレンおよびコンデンサ紙）の耐圧（設計スロット）は、最大で約50kVが判明した。そこで、コンデンサの更新に当たっては、設計スロットを低くし、過電過電圧の繰り返しに対する余裕を高めに設定した。

特別高圧用使用するコンデンサの品質管理は、容易ではない。すなわち、材料欠陥、製造過程での異常混入などの可能性を完全にゼロにするとはできない。そこで、異常発生を早期に検出し、重大な事故に至る前にシステムを停止することが求められる。コンデンサの故障検出に要する方法があるが、ここでは、図4に示すようなオープンデジタル方式を採用した。これは、コンデンサの放電リアクトルの2次巻線を利用して、電圧分担の不均衡を検出するものである。
結果
焼損事故発生から約3ヶ月の短期間でTD電源を本来の状態に復することができ、その後の実験運転に供することであった。

波及効果
コンデンサの絶縁性能が経年劣化とみなされたため、特別高圧回路に接続されるすべての電力用コンデンサを順次更新した。図5に示すコンデンサの更新が完了するまでに約1年を要した。さらに、VCB満ち等に設置しているサージ吸収用の小型容量コンデンサについてはも順次更新を実施した。なお、東海研究所など他の事業所でも類似な見直しが行われたと聞いています。

図4 オープンデルタ方式による故障検出

図5 JT-60電源設備の電力用（力率改善および高調波抑制）コンデンサ

結論
JT-60の特別高圧回路用コンデンサを更新し、また故障検出回路を新たに設置することで、その信頼性を従来よりも増して高めることができた。

感想
コンデンサは汎用製品としてすでに技術的に確立したかの印象があったが、不幸にも発生した焼損事故を契機として、改めて電力用コンデンサの技術動向を調査する機会を得た。JT-60建設当時から10数年が経過していたが、コンデンサの製造技術や保護回路の性能向上が継続的に行われていた事実を知った。技術者たるもの、常に最新の情報を得るべきアンテナを張っている必要があることを痛感した。

参考文献
[1] 大森栄光、古川弘：「高調波フィルタ用コンデンサの焼損とその後の対策」、第16回分子科学研究所技術研究会、平成12年3月3日、岡崎市。
4.13 T電源駆動用変圧器（132T-S）の分解修理

目的
2005年11月に実施したT電源駆動用変圧器（132T-S）の油中ガス分析の結果、多量の可燃性ガスが1T-60電源の完成以後に初めて検出された。このため、事故防止の観点から、原因の究明および分解修理を行った。

設計
駆動用変圧器（132T-S）は1982年12月製造で、容量28MVA、電圧17/11kV、油量10.7m³、RT形無電圧タップ切り替え装置付きである。異常が検出される前後の油中ガス分析結果を表1に示す。

<table>
<thead>
<tr>
<th>採油日</th>
<th>C0</th>
<th>H2</th>
<th>CH4</th>
<th>C2H2</th>
<th>C2H4</th>
<th>C2H6</th>
<th>TG</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>要注意レベル</td>
<td>300</td>
<td>400</td>
<td>100</td>
<td>0.5</td>
<td>10</td>
<td>150</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>2005/09/10</td>
<td>174</td>
<td>13</td>
<td>29</td>
<td>0</td>
<td>4</td>
<td>47</td>
<td>293</td>
<td>674</td>
</tr>
<tr>
<td>2005/01/04</td>
<td>248</td>
<td>600</td>
<td>847.2</td>
<td>5.9</td>
<td>1654.5</td>
<td>284.1</td>
<td>3639.7</td>
<td>691.5</td>
</tr>
</tbody>
</table>

注1）H2：水素、CH4：メタン、C2H2：アセチレン、C2H4：エチレン、C2H6：エタン
TG：通液性ガス総量
2）異常レベル判定[1]：C2H4＞100ppmかつTG＞700ppmとC2H2＞5ppm

ガス分析データを詳細に検討した結果、以下のような定性的な事項が判明した。①要注注意レベルを5種類のガス種および通液性ガス総量を超えたため、異常レベル判定を満たしており、正常ではない。②C2H4とCH4が通液性ガスの約70%を占めており、金属の異常加熱が発生した可能性が高い。③C2H2の発生量から内部放電の可能性は低いと判断される。④C2H4/C2比から、紙絶縁物の過熱異常は無いと考えられる。これらより、「過熱高（700℃超）」と結論づけられた。図1では、タップ切り替え器での接触点過熱による通液性ガス増加の進展プロセスである。

図1 タップ切り替え器での接触点過熱による通液性ガス増加の進展プロセス

機器製作メーカーの過去の事例に照らし合わせた結果、最も可能性の高い原因として、通液性ガスが近い、タップ切り替え器の接触不良が疑われた。これにより、変圧器を分解点検し、予想通りタップ切り替え器の異常加熱が原因であった場合に、タップ切り替え器を撤去して、固定タップとする改造を実施することとした。図2に、類似の構造を持つ変圧器の内部構成を示す。図中DTCという花びら型をしたもので、タップ切換器である。

結果
まず、変圧器のタップ切換器の操作棒上部の蓋のみを開放して、その近傍を点検した。その結果、W相2番タップコンタクト通電部に過熱の痕跡が発見された（図3参照）。その後、変圧器の上部蓋を完全に取り外し、いわゆる吊り出し点検を実施したが、他の部位に放電痕や過熱痕は確認されなかった。まさに、予想通りの結果であったと言って良い。直接の原因は、20年以上に亘って、タップを全く操作しなかったことが大きくて考えられる。また、2004年度に実施したT-WCからの加熱

図2 類似の構造を持つタップ付きトランスの内部構成（DTCが切換器）
装置への給電にともなう負荷パターンの変動が、その要因の一つである可能性は完全に否定できない。

図4に、切換タップを固定接続に変更した様子を示す。パネによる接触圧の低下がないよう、完全なボルト接続となっている。また、絶縁油は新品と交換し、フラッジ類、パッキン等は可能な限り更新した。計器類、配線等もできるだけ取替えた。なお、今後の運転において電圧調整のために深槽タップが必要になることはないと判断している。

波及効果
20年以上、もしくは相当の長期間に亘って切換操作を行っていないうろ付け変圧器が、JT-60ではT電源を中心に相当の台数が設置されている。さらには、中央変電所に同様の状態の変圧器があるものと推測される。クリープ進展の程度は、各機器の運転状態によって異なるものと考えられるが、経年劣化した環境は同じである。従って、可能ならば可及的速やかにタップ切換器の付いた変圧器については分解点検を実施し、出来ればタップの固定化を施すのが望ましい。

結論
法令等に基づくとは言え、油中ガス分析を定期的に真摯に実施し、事故を未然に防いだ点は評価されて良い。JT-60電源で初めての経験であったが、適切に対応することができた。授油の頻度を見直す検討も必要であろう。なお、最近では油中ガス分析を常時行う監視装置も市販されている。

感想
日本電機工業会のガイダンスによると、特別高圧の変圧器の設備更新の推奨期間は、製造後15年程度が経過してからである[②]。15年という年数は、単に「設備の供用期間が経過したら直ちに更新を考えよ」という意味ではない。しかし、一方でいつまでも品質が保証できないことも明らかで、設備機器の経過が増大し始める時期と心得るべきである。JT-60電源設備は、核管理が必要な原子力設備ではない。大電力を取り扱う一般施設である。しかし、原研内で大事故を起こすと、マスコミには必ず報道され、周囲に無用な心配をかける結果となり、その後の速やかな対応が難しくなる。予防保全の重要性を、肝に铭じるべきである。

参考文献
[1]電気協同研究、「油入変圧器の保守管理（その1）」第54巻第5号
[2]日本電機工業会（JEMA）、「油入変圧器の劣化及び更新推奨時期」JEM-TR 220
4.14 二次冷却塔内の充填材・気水分離器の一部更新

背景

JT-60 の二次冷却設備は、JT-60 装置全体の最終的な除熱を行う設備であり、具体的には冷却水の加熱熱を利用して、大気中に熱を放散されている（図 1 参照）。ここで述べる充填材および気水分離器は、二次冷却塔上部から冷却水槽までの冷却水の温度を制御する機器である。つまり、できるだけ大気との熱交換を効率良く行えるように、冷却水の拡散を行い、滞留時間を長く留める目的で設置されている。冷却槽からは、再度各設備に送水するためボンプ機に冷却水が導かれる構造となっている。

本設備が稼動を始めた約 20 年前には、冷却槽に混入する異物の量は少なく、冷却槽出口に設置されているスクリーン（異物除去用の大型フィルタ、図 2 参照）の清掃は 1 日に 2 度で十分であった。しかし、運転年数の増加に伴って、異物の量、必要な清掃の頻度は増大している。2000 年 2 月 21 日は、冷却槽出口のスクリーンが目詰まりを起こし、圧力増大とともに異常によって二次冷却水の送水ポンプが停止するという事態が発生した。この時には、スクリーンの構造を補強したり、スクリーンを引き上げる動電ホイストをより強力なものに交換するなどの緊急の改善策を施した。しかし、本質的には冷却水に混入する異物の量が増大したのが原因であるから、その発生元を特定し、それを除去あるいは抑制する必要がある。このため、スクリーンに付着した異物を検査した。予想以上にその多くは水質管理用の薬剤が化学変化したピリノン酸塩化合物や炭酸であること判明した [1]。しかし、一方では冷却槽内に蓄積している充填材の材質劣化と剥離片（図 3 参照）の量が年々増大していることも確認された。そこで、予想等の状況に鑑み、全体の 3 分の 1 の充填材・気水分離器を 2000 年度末に更新した。ここでは、本更新作業に関する知見について述べる。

設計

基本的に、既存の充填材・気水分離器と同様形状のもので更新した。ただし、内部的支持構造物を、材料手配の関係から、従来の木製（松材）から鋼製溶融包鋼メキシに変更した。これにより機械的強度が改善され、品質の管理、現場における加工、組み立てが容易になった（図 4 参照）。言い換えると、大工仕事から鉄骨組み立て工事に変更した。問題は、二次冷却塔が図面寸法からかなりずれした箇所もあるため、設計に当たっては現地での寸法が不可欠である。あるいは、ある程度の現物合わせを覚悟する必要がある。

図 1 JT-60 二次冷却水系の冷媒フロー概念図
図 2 目詰まりしたスクリーン
図 3 スクリーンに剥離されたごみ
図 4 充填材の支持架台。a) 従来の木製支持架台。腐食などにより著しく強度の低下した箇所がある。b) 今回製作した鋼製の支持架台。強度および組み立てに関する作業性の改善が図られた。
結果
図5に充填材のユニット組立てと最終的な設置状況を示す。更新後におけるフィルターの清掃回数は、実質的にはほとんど改善されていない。これは、部分的な更新では期待できる効果が万全ではないことによる。ただ、従来のように短時間に激的なフィルターの目詰まりが起こるような事態は、ほとんど発生していないので、一定の改善効果はあったものと考えられる。残る4ユニットの充填材・汎水分離器についても、早期の全面的な更新が望ましい。また、冷却塔内の充填材の更新だけでなく、二次冷却水が流れる配管の更新、もしくは内部の清掃作業も異物の低減には必要不可欠と考えられる。

波及効果
海岸立地であれば、原子力発電所のように二次冷却水をクローズにした系も考えられるが、内陸部では限界がある。より大きな除熱性能が必要な次期装置の設計に関して、貴重な経験となった。

結論
ここで二次冷却設備全体について、設計の妥当性について総括する。
・二次冷却塔の位置
　精密機器を設置している発電機棟や歯車楼棟に近くあまり適切でない。より、天候によっては蒸気が直接発電機棟や歯車楼棟の給気に吸込まれる。主要機器の建築からできる限り離して、サイト内の端に設置すべきであった。
・二次冷却塔の形式
　二次冷却水に混入する異物の多くは、周辺の塵塚である。関東ローム層特有の飛散しやすい土塚も無視できない。このような環境では、堤状のタワー型が冷却塔の構造に適していると考えられる。
・スクリーン
　現在のように一に数回の清掃作業が必要になるような状況は、設計時には想定されていなかった。現場要員を合理化できない主たる理由となっていることからも、設計上のミスであることは明らかである。つまり、スクリーンの自動洗浄装置を設置するべきであった。ランニングコストを考えれば、十分に合理的である。

感想
EUの大型トカマークであるJET装置の冷却塔は、比較的JT-60の形式に近い、木製である。しかも、足を踏み入れるのを躊躇するくらい、相当に朽ちている。しかし、なぜかJT-60のように頻繁にスクリーンの清掃はしていない。水質管理の手法について、詳細に比較検討してみると良かかもしれない。

参考文献
[1] 新蓑ハイテック：「冷水槽ストレーナ補足物生成原因調査報告書」、T84-0018-52、平成12年3月
4.15 交流無停電電源用蓄電池の経年劣化

目的
ニューヨークの大停電を例に出すまでもなく、いかに強大な電力系統といえども、不意の停電の可能性はある。そのような場合にも、システムを安全に停止するため、JT-60 には動力用に非常用ディーゼル発電機(ED)が用意されている。一方、瞬時といえば停電の許されない制御電源用には、鉛蓄電池によってバックアップされる無停電電源装置が準備されている。鉛蓄電池は、安価であること、富な使用実績があることなどの長所がある。しかし、保守管理が欠かせないこと、またその使用可能年数が一般には5〜7年程度に限定されるという不利な点がある。JT-60では、全く同じ定格の蓄電池を2セット設置している（図1参照）。1998年には、定期点検等のデータから蓄電池交換の必要性を確認した。そこで、使用実態に即して合理的な保守計画を立案し、JT-60として2回の蓄電池の交換を行った。ここでは、1999年度の2回目の交流系蓄電池交換を中心に述べる。

図1 JT-60における無停電電源の簡略化した電力フロー

設計
3ヶ月点検や定期点検などから、片方の経年劣化が特に進展していると判断し、1998年10月に劣化の著しい3つの蓄電池を工場に搬入して、鉛蓄電池の残存寿命の評価を行った。図2はその結果である。図示したように、一般の蓄電池は通常4年程度が経過すると固有容量（完全充電状態からの放電特性から算出した値）の劣化が現れる。しかし、JT-60の蓄電池は初回の交換から8年余りが経過していたにも拘わらず、それらの容量比の低減はわずかであった（星印が測定データ）。破線は、予測された寿命曲線であり、測定時点からおよそ1年程度の残存寿命しかないことが明らかとなった。

図2 A系蓄電池の容量試験結果による残存寿命予測
交換に当たっては、鉛蓄電池以外のタイプの蓄電池についても検討した。なぜなら、近年はいわゆるメンテナンスフリーの蓄電池が主流となっており、ランニングコストや廃棄時の処理費用を考慮した場合、必ずしも鉛蓄電池が最適とはいえない状況になっているからである。しかし、次のような問題点が明らかになった。

A. 蓄電池を一括して新タイプに交換しない限り、旧タイプの蓄電池に対する保守を継続させるを得ない。このため、ランニングコストを劇的に低下させることはできない。

B. 交流一相扼変圧器などの装置本体の残存寿命もほぼ限界に達している。このため、蓄電池のみの余寿命を大幅に延伸しても、システム全体の整合性を図る観点から、合理的な選択とは言えない。

C. 鉛蓄電池のコストは、他のメンテナンスフリーの蓄電池に比べて格段に安価である。

以上の理由から、結局は従来通りの鉛蓄電池を設置することとした。

結果

1999年の交流系蓄電池の1セットの交換により容量不足の懸念を払拭して、JT-60の安全な運転に寄与した。これは蓄電池自身の安全性向上にもつながるものである（内部抵抗の増大、可燃性ガスの放出量抑制など）。

その後、直流系の蓄電池を3個交換したが、残る1セットの蓄電池については、性能が劣化したために平成14年度に回路から切り離した。従って、現在のバックアップ能力は運転開始当時に比べて半減している。これは、実際の無停電電源の出力が安定に比べて十分余裕があるため、蓄電池の容量が半減しても、十分なバックアップ時間を確保できるからである。問題は、本格的な蓄電池の点検（容量測定など）のためには、運転停止を余儀なくされることである。

考察

社会一般の蓄電池に比べて、JT-60の蓄電池が格段に長寿命であったのは、a. バッテリー室の環境が良かったか、b. 負荷が比較的軽かったためではないかと考えられる。現在では、後者についてはすでに有利な事項ではないが、また、2004年度以降で前回の交換から5年以上が経過している。従って、近いうちに3度目の蓄電池交換、あるいは無停電電源設備全体の更新を考慮する必要があるものと考えられる。

結論

端的に言えば、すでに鉛蓄電池を採用する時代は過ぎた。法令に基づくとはいえ、ランニングコストが甚大なものにいたのは、反省すべき点である。それから、メンテナンスフリーのバッテリーを用いたシステムに交換するべきである。また、現在のシステムのように無停電電源を一箇所に集中して管理するという思想も時代遅れである。負荷に応じた分散電源とするのが、より適切な構成である。その際、停電することなく保守が可能であるように、バイパススイッチを設置すべきである。

感想

鉛蓄電池は、巷間言われているように、まさに「半世紀八賭け」の商品である。一般競争入札の導入により、2回目の蓄電池交換のコストは驚くべきことに1回目の半額以下であった。例えば、原子力向けといっただけで、コストは数10%増大する。また、政府系機関ということで、明確な理由もなく割高になる。確かに多くの人が国民の血税であることを考えるとき、技術的に裏づけのないコストは、支払えない。鉛蓄電池は再利用が可能であるが、そのための処理費用はけっして小額ではない。交換に合わせて、納入業者に処分を依頼するのが低コスト化の要件であろう。
4.16 電源システムの電動発電機

目的
JT-60のような大型トロイダル装置の運転には、大電力が必要である。このため、20数年前のJT-60の建設サイクル選定では、電力事情が最も重要なサイクル選定の条件の一つとして考慮された。当時の研突研究が最終的に選定された大きな理由は、極東第2原子力発電所の275kV送電線に近いからである。しかし、JT-60の運転に必要なパルス電力を電力系統からの直接受電のみで供給することはできない。そこで、従来技術の応用で実現可能なエネルギー貯蔵装置として、電動発電機を3台（内2台はフライホイール付）設置した。

設計
表1は、JT-60の3台の電動発電機の定格をまとめたものであるが、3台とも異なった設計となっており、T-MGは供給エネルギー(4GJ)が一番大きいが、必要な容量(215MVA)は比較的小さい。つまり通電時間は長い。それに対して、P-MGは発電機出力(500MVA)が一番大きいか、放出エネルギー(1.3GJ)は最小である。つまり、短時間定格である。H-MG(400MVA-2.6GJ)は、T-MGとP-MGの丁度中間の定格を有しているが、これは発熱装置の負荷特性が、両者の中間なものだからである。力率に関しても有意義なことが言える。すなわち、それぞれが対象とする負荷に対して最適となるように発電機の仕様を設定している。発電機は、主に整流器負荷に電力を供給するため、一般の発電機に比べて過渡インピーダンスを低く設定している。一方、同期インピーダンスは通常の発電機の2倍程度であり、短絡電流の抑制に対しても考慮している。なお、駆動方式ではT-MGはサイリスタ駆動であるのに対して、P-MG、H-MGは誘導電動機を用いたセルビウス駆動方式である。

表1 JT-60の3台の電動発電機の定格

<table>
<thead>
<tr>
<th>項目</th>
<th>トロイダル電源用</th>
<th>ボロイダル電源用</th>
<th>加熱電源用</th>
</tr>
</thead>
<tbody>
<tr>
<td>発電機出力P(MVA)</td>
<td>215</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>定格電流I(V)</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>定格電圧I(A)</td>
<td>6,896</td>
<td>16,038</td>
<td>12,830</td>
</tr>
<tr>
<td>力率</td>
<td>0.85</td>
<td>0.45-0.375</td>
<td>0.62</td>
</tr>
<tr>
<td>順定格の種別</td>
<td>特殊（励磁は連続）</td>
<td>~22s/10min.</td>
<td>特殊（励磁は連続）</td>
</tr>
<tr>
<td>回転数（rpm）</td>
<td>600-420</td>
<td>582-406.2</td>
<td>582-406.2</td>
</tr>
<tr>
<td>周波数f(Hz)</td>
<td>80-56</td>
<td>77.6-54.2</td>
<td>77.6-54.2</td>
</tr>
<tr>
<td>フライホイール効果DG2(ton·m²)</td>
<td>16,000</td>
<td>5,500</td>
<td>11,600</td>
</tr>
<tr>
<td>フライホイール枚数</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>放出エネルギーE(J)</td>
<td>4.02</td>
<td>1.30</td>
<td>2.65</td>
</tr>
<tr>
<td>駆動方式</td>
<td>サイリスタ駆動</td>
<td>誘導電動機(IM)</td>
<td>誘導電動機(IM)</td>
</tr>
<tr>
<td>最大駆動(MW)</td>
<td>19.0</td>
<td>7.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

結果
JT-60の建設では、原則として、ある程度の大きさとなる設備単位毎に契約を行った。このため、トロイダル磁場コイル電源、ボロイダル磁場コイル電源については交流系と直流系を合わせた一括発注とした。このことが、他設備との取り合い条件と責任の所在を明確化し、スムーズな建設を可能とした。また、3台の発電機には、ほとんどが高速制御する整流器負荷が接続されたが、高調波障害などの異常は全く発生しなかった。

波及効果
大型のフライホイール付き電動発電機は、国内ではJT-60において初めて実用化されたと言って良い
い。特に、数分オーダーの電力変動を平準化する手段としては、コスト・応答性・効率の観点から、依然として最も理想的な電気エネルギー貯蔵装置と言える。首都圏の電力のように、全体としては負荷変動が平均化され、あるいは受電する電力系統そのものが強大な場合には必要が、電力系統が脆弱な地域ではハイホイール付き電動発電機は有効である。沖縄に設置されたROTS[1]は、ハイホイール発電機と交流変速装置を応用したもので、いわばJT-60の電動発電機技術の延長線上にある。今後も、電伝導による磁気浮上技術や、真空技術（もしくは低圧、低損失ガス）などが加われば、さらに発展する可能性があるだろう。

結論
発電機の性能と品質は、1年毎の定期点検と、おおむね5年を周期とする細密点検などを通して安定に維持することが出来た。また、大型の発電機は通常製作に数年を要することを考えれば、本体装置同様にJT-60の大きな財産と言って良い。文献[2]にもあるように、トカマク型核融合装置から近い将来にエネルギー貯蔵装置を撤去できるようになるとは思えない。本発電機は、ユニークな構造と優れたエネルギー密度など、我が国における大型電気工事の歴史の1ページを飾るものである。

感想
1985年の運転開始以来、発電機の負荷が変動されたために、大きな影響があったのは二回である。その内の一回目は、ポロイダル電流のサイリスタ変換器の一部（M電源）を、P-MGからII-MGに接続替えを行った時である。連続励磁が原則のII-MGに短時間定格のM電源を接続するには、励磁突入電流を抑制する必要があるなど、全体システムには機動性の面で問題があることが分かった。二回目は、2004年度にP-MGから加熱装置への送電を行った時である。II-MGではサイリスタ駆動装置を用いているため発電機出力電圧に回転数によって変動するが、加熱装置では電圧のレギュレーションが重要で、このため一定電圧制御に変更せねばならなかった。また、容量の違いにより負荷変動時の電圧上昇が大きくなるが、負荷側での過電圧に対する余裕が無いかかるから、出力電圧を16kVに落とさざるを得なかった。このような、特定の負荷特性に最適化したシステムでは、負荷が変わった場合のフレキシビリティに難があることが、次第に明らかになった。言い換えれば、現在の構成では定格プラズマ電流以下での加熱実験を行うのにさえ、必ず3台の発電機を運転する必要があり、十分に合理的なシステムとは言えない。

発電機の仕様を統一して複数台設置し、必要な数だけの発電機を運転するのが、経済的には最も合理的である。また、どれか1台が故障した場合に、残る発電機の出力内で運転を継続が可能になるメリットも大きい。実証、平成16年度のII-MGのトラブルに対しては、交流系での負荷分散が容易でないため、実験運転を長期にわたって休止せざるを得なかった。つまり、ランニングコストの面からも、システムの冗長性を確保するという意味あいからも、現在の構成は最適ではない。特筆すべきは、加熱装置のコンデンショニングのためのII-MGの運転である。高々数MWの非常に間欠的なガス荷負のために、400MVAの発電機を5MWもの電力消費に伴わながら運転するのは、全く不経済と言わざるを得ない。コンデンショニング専用の交流発電機を用意すべきである。

大容量の発電機を交流出力端で連結する、すなわち同期並列運転するためのキーポイントは、インピーダンスの低く伴う短絡・地絡などの事故電流の増大である。同期並列運転を行うことを前提に、発電機の内部インピーダンスを高めに設計したり、ACリアクトルなどを設置するなどして事故電流の抑制を図ることは可能である。また、複数の交流母線を用意しておき、必要に応じて負荷接続を変更するのも、運転の自由度を確保する上で極めて有効である。

参考文献
4.17 電源システムからの教訓

JT-60 電源システムは、相当の困難な設備である。直流送電など、国内にも一見類似の設備はあるが、パルス運転であること、ミリ秒オーダの制御応答性が要求されること、および 100kA 級の大電流を扱うことなど、技術的には大きく異なっている。ここでは、20 数年にわたる運転、保守管理、および改造作業を通じて得た知見を整理したい。

(1) T 電源のコイル電流制御を発電機励磁制御のみで行うこととした件

T コイル電流制御は、T 電源用電動発電機 (T-MG) の出力電圧を制御することで、ダイオード整流器の出力電圧を間接的に制御することで行っている。これは、T コイルが約 22 秒と言う長い時間定数を有しているから考えられる。T 電源のダイオード整流器は全部で 6 塩があり、このうち 4 塩は商用電源システムから給電されている、出力電圧は固定である（系統電力系）。残る 2 塩のダイオード整流器が T-MG から給電されている (MG 電力系)。従って、T コイルの電圧は grouf バンクのオンオフ制御と、発電機出力制御の複合制御であり、コイル電流の応答速度は発電機の励磁制御性能で決まっている。

システム構成上の大きな課題の 1 つは、ダイオード整流器が負出力を出さないことである。従って、系統電力系のみの運転では、コイル電流を連続的に制御できず、直流系の高々 4 通りのコイル電流値しか取り得ない。したがって、1 つのバンクでもタイリスタ変換器にしておくと、定格の 70% 程度のコイル電流値までは、発電機を用いないで通電できる。実験テーマにおいては、低電圧であるが高パルスの放電も多く、省エネルギーの観点からのメリットは考えられない。また、発電機は時定格出力での運転が可能となるため、発電機の並列運転、並行運転が可能となり、前項のメリットが活かされることになる。

(2) 放電洗浄用の専用電源をほとんど用意しなかった件

JT-60 では、放電洗浄に特化したボロイダル電流コイル電源の PSFC のみである。これは、タイラー電源のための電流特性が、実験放電と何ら変わらないためである。一方、交流制御を 2kV の低電圧にしては、タイリスタ変換器等を連続で運転できないため電圧は 18 分の 2 に低下してしまう。そこで、T コイル電流制御は、専用電源 PSFC を用いた。他のボロイダル電流コイル電源、すなわち垂直電流・水平電流コイル電源（V 電源・H 電源）等に関しては、実験放電時と同じ電源を使用している。ただし、高々 10kA の 10kVA の制御であるため、実験は redding と制御・保護回路を使用している。2kV の交流電源は、ボロイダル電流コイル電源の電力系統系 (18kVA) からトランスで降圧して使用している。ボロイダル電流コイルでは、ダイオード整流器に電圧制御機能がないため、系統電力系の 18kVA に単巻き変圧器を設置して降圧し、直流出力電圧の制御を行っている。このため、出力電圧に応じた磁場が得られないという条件が生じている。しかし、本巻き変圧器はほとんど故障することもなく、高い信頼性を実証した。

ところで、ボロイダル電流コイル電源とトロイダル電流コイル電源とともに、電動発電機 (MG) を用いた放電洗浄も可能な設計となっている。その場合、ボロイダル電流コイル電源は、発電機出力電圧制御により連続的に制御できる。ただし、駆動電力の関係から低速 T コイル電流値に限定され、電力損失が大きい。そのため MG 使用による放電洗浄は、RF 装置による放電洗浄効果の検証を除いては実施した例はなく、通常は実施しない。放電洗浄における磁場などの運転パラメータはほぼ固定されており、現在から見れば、MG 使用による放電洗浄はシステムとして運転開始当初から準備するほどには重要な機能ではなかったと思える。これまでの放電洗浄運転を振り返ると、主たるトラブルは、断路器等の接続切り換えに伴うものであること、T コイルのみに放電用の専用電源 PSFC を用意したのは、大別的に見て正解であった。ただし、前項とも関連するが、T 電源のダイオード整流器や MK 用意したのは、大局的に見て正解であった。
(3) 高電圧発生回路の周辺技術について

現在は使用していないが、JT-60 装置の建設当時に、92kA-25kV 級の直流電流調整器を開発し、実際に用に供した実績は素晴らしい。トウカク装置では、直流電流を通電・遮断する必要があり、交流の場合と異なって電流分担の確保が重要となる。そこで、VCB を放射状に配置して、この問題を克服した。このアイデアは単純だが効果のほどは確かで、ほとんどそのまま来年の D-III D 装置にも採用された。なお、VCB の電流遮断特性の改善のために、可饱和リアクトルを挿入したことは期待されて良好。

VCB は電流ゼロ点でアークが消滅し、絶縁性能が回復する。従って、直流電流の場合には、外部回路で強制的に電流ゼロ点を形成する、いわゆるカウンターパルス回路が必要である。このために、あらかじめコンデンサを充電しておく、電流遮断のタイミングで放電させる回路を製作した。コンデンサ充電には、サイリスタ A C スイッチと昇圧トランスを用いた充電回路を採用した。本回路の制御方式は、その後ほぼそのままの形で NB1 装置の電源システムに応用された。投入スイッチに使用したサイリスタの数は、過渡現象解消の目的として最小化した。また、高電位のゲート制御回路への電源供給には、高周波を用いた絶縁方式を採用した。

建設段階ではあるが、カウンターパルス回路で使用するコンデンサにおいて、内部短絡が発生する。事故検出回路が正常に働いて火災等の事故には至らなかったため、炭酸ガスによる消火設備が動作することもなかった。詳細は後述するが、コンデンサ内部のアルミ箔を絶縁するポリプロピレンに絶縁紙の構成を逆に施し、絶縁油が全体に浸透しやすい構成とした。なお、本カウンターパルス回路を用いた短パルス放電実験であるが、実際にはほとんど使用されることはなかった。しかし、コンデンサを頻繁に充電することで、これが絶縁性能の劣化を促進した可能性は否定できない。

図 2 は、初期励磁電流を転流させる抵抗器である。ステンレス鋼を同軸状にし、電流を折り返すことで低インダクタンス化し、過渡的なサージ電流の抑制を図っている。本抵抗器は水冷式で、空冷式に比べれば除熱性能は高く、かつ、最高温度が低く消費するエネルギー密度も小さい。これにより、コイルのクエンチ保護回路のスタブライン使用頻度が非常に低い場合には、空冷式にして、最高使用温度を高く設定し、コンパクト化する方が利である。

(4) P 電源の各コイル電源の仕様が異なる件

単機能ポロイダル磁場コイルの方式を採用している JT-60 では、ポロイダル磁場コイル（PF コイル）の直流電源（主としてサイリスタ変換器）定格は、それぞれのコイルで大きく異なる。

つまり、空芯変換器コイル電源（P 電源）は 2.5kV-92kA、垂直磁場コイル電源（V 電源）はプラズマ着火時のダイオード整流器を除いて 5kV-53kA、水平磁場コイル電源（H 電源）は 700V-20kA、四極極磁場コイル電源（Q 電源）は 1kV-25kA、磁気アノーマリーコイル電源（M 電源）は 1kV-120kA である。この内、P 電源、V 電源、Q 電源は両極性電源である。このため、同じ定格の単位変換器は、同じコイル電源内を除き存在しない。つまり、各コイルに応じて最適な設計がなされている。このような設計が妥当であったかどうか検証する。

仮に、サイリスタ変換器を標準化したとする。その場合の電圧定格としては、おそらく 2 種類が考えられ、1kV および 2kV が適当である。すなわち、サイリスタ素子の耐圧から 1 直列なら 1kV、2 直列なら 2kV とする。電流定格は、25kA 程度が適当である。これは、そもそもコイル電流定格が最低でも 20kA 以上であること、最大でも 120kA 程度であることから導かれる。P 電源のサイリスタ変換器では素子を 7 並列としているが、あまり多すぎると電流アンバランスの問題も出てくるので、この程度が妥当と考えられる。このように単位変換器の仕様を統一しておけば、いずれかが故障した場合でも、容易にシステムを組み直すことができるので、システム全体の信頼性向上、稼働率の改善が期待できる。

では、実際にどうであったろうか？ 結論としては、JT-60 のサイリスタ変換器は非常に信頼性が高く、重大な故障事件は発生しなかった。つまり、冗長性を持たせる必要は全くなかった。しかし、大電流化改造時に課題となったように、変換器の再構成には大変な困難が伴ってきもう。機器製作メーカーにとって盤内部の構造は異なるとも、外形状、電力ケーブル・直流出力フィード、および制御・保護方式は統一しておくべきであった。これは、本体装置の改造や実験計画の変更などに柔軟に対応する必要からである。

ところで、盤収納タイプ（キューピカク）とオープンフレームの変換器のいずれが保守管理上有利であろうか？半導体電力素子を水冷とするならば、答えは明らかに後者である。今後製作する機器は、建物屋の空調と連携し、建設コスト面からも有利なオープンフレームに移行するべきである。
(5) 電源設備の機器配置について

T電源の力率改善コンデンサは、交流ケーブル長を最小化するという観点から、当然投入器に近い発電機間閉鎖器設置近傍に設置すべきである。しかし、長いケーブルを受容してまで、わざわざ遠い中央変電所の一部を間借りして設置している（図3参照）。非合理的であることに感じる。本件の原因は、極めて単純である。つまり、トランスものアダラグが狭すぎたのである。同様に、極性切り換え器屋外の機器が多く設置されているのでも、集団物価が狭すぎたのが原因である。このようなJT-60電源設備の機器配置スペースは、明らかに不足している。これは、当初の見積もりが甘かったのが原因である。

トランスアダラグについて検証する。トランスアダラグは、天井の電気設備基準それに、玉砂利を敷き詰めている。無理に問題の制約からも、現在ではどのように玉砂利を確保するのは容易ではないので、あまり推奨できない。玉砂利はトンレスの事故時に絶縁油が飛散するのを防止する目的で敷設しているが、これは必須な事情であったろうか？例えば、中央変電所のトランスの周囲は芝生である。また、加熱電源側のトランスのアダラグはアスファルトである。このことからも、玉砂利は必ずしも必要でない気がする。今後は、オイル飛散防止の防油塗料などを高いる、あるいはもっと積極的に最新の消火設備（ポリ、ミストなど）を準備するなどがしたい。

本トランスアダラグには、総数50台ほどほどのトランス・リアクトルなどを設置している。これの有機性的だが、見た目ほどに非効率的ではない。しかし、トランスによる搬入も可能な方が望ましいのは言うまでもない。できるなら、トランスプレートには少なくともト雷斯の進入ルートを確保した。また、電路は可能な限り集中架橋に移して確保し、排水の問題を軽減したい。

(6) 中央制御室からリモートで運転するのを基本とした件

設計当時は24時間運転を想定していたので、システムの起動・停止はせいぜい1週間で1度程度しかありえない。このため、運転手は起動後に全員中央制御室に集合してJT-60の運転を行うという事態を継続する。極端すれば、サブシステムはそこで一斉に切替えられ、設備担当の運転手は不要になったはずである。何らかのシステムトラブルが発生しない限り、各設備担当の出陣はないということである。ところが、運転開始当初は、いろんな設備でトラブルが発生したため、運転手を貼り付けざるを得ない状況が生じた。このため、電源設備では現場の運転手なしには、スムーズな運転が行えない状況が継続している。

JT-60建設当時は計算機の性能も低かった。しかし、現在では計算機とそれに付随する通信機能が飛躍的な進歩を遂げている。従って、全ての操作を中央からのリモート操作を行うこと技術的には不可能ではない。他方、現場で設置された機器はほとんど当時のままである。発電機も、トランスも遮断器も、もちろん変換器も、おそらく今後数10年にわたって大きな形態の変化は起こりえない機器である。このため結局は、異常時には現場において人の目・鼻・耳で機器の状態を確認する以外に、有効な手段はなし。すなわち、現在でもインタロックの復帰を自動化できないのは、そのプロセスを省略できないからである。このように考えると、電源システムの場合、現場運転と全系運転が2つののみで十分だったと考えられる。中央・個別運転というのはほとんどありえない組み合わせである。

ネットワークが発展した今日では、やはり「ルーズカップリング」が好ましい姿である。基本的には、ハードウェアのインタロック数構想にさせるタイミングシステム、さらに各磁極コイル毎のリアルタイムの電圧に対する電流指令値で十分である。ネットワークの延伸が容易な今日、すべての情報を一元管理することはより容易になっているが、反面その必要性は薄れている。

(7) 加熱MCの短絡電流抑制のためNB1で交流リアクトルを導入する結果となった件

加熱用発電機（H-MG）の設計と、NB1およびRF電源の設計を比較すると、十分な整合性が図られたとは言い難い。誤解を恐れずに言えば、設計の基本的な要請段階における見落としがある。これは、両者の設計仕様が固まる時間がずれただけの事故であるが、電気的な挙動に対する理解が不十分であった感は否定しない。すなわち、①加熱用発電機を400MVAの大容量とした。②短絡電流が増大したため、過電流抑
制のために負荷側に交流リアクトルを導入した。③その結果、逆にRF電源では直流出力電圧のレギュレーティョンが難しくなった。④一部の負荷開放時には過電圧が懸念される結果になった。

結果から述べると、NBI用とRF用に、個別のMGセットを設置するべきであった。理由は、MGに求められる性能が大きく異なるからである。また、RFもNBIと同様にACスイッチによる直流出力電圧の制御機能を有する電源にして、MGの内部インピーダンスを高く設定するべきであった。そうすれば、少なくもACリアクトルの設置は不要となり、H-MGに対する要求性能に矛盾がなくなる。

(8) 加熱装置の調整運転（コンディショニング）用に、専用のMGを設置しなかった件

装置に影響するが、加熱装置のコンディショニング運転時にH-MGをこれほど頻繁に運転する必要が生じるとは、当時の設計では想定していなかった。このため、高々数mAの短パルス出力のために、400kVAのH-MGから給電しており、MGの無負荷損失（空損、鉄損、機械損など）を考慮すると、非常に非経済的なシステムとなっている。年間30日間のコンディショニング運転は、およそ1000万円の経費に相当しており、この意味でも、相当な損失であることがわかる。

現在の状況からは、加熱装置のコンディショニング運転専用のMGを設けるか、電力系統から直接受電できるように配置しておくのが、経済的である。前者の場合には、水平軸タイプのMGで十分と考えられるので、機械設備は安価なものに奈何しない。後者は場合、負荷電力バランスによっては、障害電力補償用のアクティブフィルタを設置しなくてはならない可能性はある。いずれにせよ、数年で経済的に見合わると推察される。本件は、無批判に従来の設計、経緯にとらわれることなく、新しいデータが出たらそれを誇張に受け止めて、勇気を持って機を失うことなく決断することの大切さを示唆している好例である。

(9) 装置完成前にプラズマ着火電圧の低電圧化を図った件

JT-60装置より1年早く運転を開始したJET装置で、高速なプラズマ電流の立ち上げは、MHD的に不安定となって難しいことが報告された（もっとも、後年になって負磁気シングルプラズマの形成のために、ややプラズマ電流立ち上げ速度が上がることになる）。これに伴って、JT-60では高電圧発生回路の抵抗値を変更して、より低電圧に立ち上げに対する可能となるように改造を行った。具体的には、すでに製作していた抵抗器の直並列接続の変更を行った。この決断は、見事なまでに早くなかった。JT-60プラズマ放電を実際に行って確かめる前に、その実施を決断したのである。本件は、無批判に従来の設計、経緯にとらわれることなく、新しいデータが出たらそれを誇張に受け止めて、勇気を持って機を失うことなく決断することの大切さを示唆している好例である。

(10) 大電流改造で、高電圧発生回路を省略した件

前項では、プラズマ着火のための高電圧発生回路の手直し、すなわち低電圧化について記述した。しかし、大電流改造以前には、Fコイル電圧のプレーキ電圧は2.5kVで、すでにサイリスタ変換器の出力電圧とほとんど変わらなかったからである。つまり、高電圧発生回路を使用する必要性がすでに失われていた。決定的な要因となったのは、大電流改造後のFコイル初期励磁電流を最大120kAととしたことである。120kAは、F電源単独で短時間なら流すことは可能であるが、長時間は無理な電流値である。そこで、10kAの定格を有するPS-EXを補助に加えて、仕様上そんなに120kA通電可能とした。問題は、高電圧発生回路が92kAの遮断電流しかなかったことである。これまで、大きな初期励磁電流では高電圧発生回路が使用できなくなってしまう。そこで、思い切って高電圧発生回路を撤去することにした。結果的には何も問題も発生しなかったし、システムの簡素化、メインテンスの合理化に寄与した。

(11) 地下ダクトの必要性

本体建屋と電源建屋は、一体化させておいた方が、壁面と屋根の合理化が図られること、配管・フィーダ・ケーブル長が最短にできること、などの理由から、コスト的には明らかに有利である。放射線遮蔽の観点からも、居るならぎりぎり、設備機器をJT-60装置本体に近接させて設置することができないという理由はない。なぜなら、遮蔽壁によって管理区域は限定することが可能だからである。

ただし、地下2階の構造を持ち地下ダクトは、水・電気・信号のやり取りのために、本当に必要だったのか疑問である。外観上、地上に下ろすもののは全部地下という発想は、膨大な土木工事の必要性を考えた時に、合理のとは言えない。現在地下ダクト内に収納されている配管・フィーダ・ケーブル類を、ダクトは準備するとしても地上ルートにした場合に、大きな不都合は生じない。例えば、機器等の地中配線と建屋間の渡りは、当時ながら電気設備基準には合致せず、通産特認設備とした。同一建て屋内なら不要であったことは、その後の改造時に、常に技術的な制約となったのは、どうも物足りなかった。トランジスタや、ドライアイリへの重量物の移動が、地下ダクトの構造強度で制限があるが、これが大規模改造を容易ならしめるとは考えられない。「重量物は下に、重量物は上に、連結距離は短く、かつどこにでも容易にアクセス可能に」が、レイアウトの基本である。改善の余地は十分にある。

- 91 -
5. 本体設備

5.1 本体設備の概要

JT-60 装置の本体設備はプラズマの発生、閉じ込めを行うものであり、真空容器、トロイダル磁場コイル、ポロイダル磁場コイル、枠架、一次冷却設備、真空排気設備、ガス注入設備、予備電離装置、高速可動リミタ、半固定リミタ、その場コーティング装置、表面汚染モニタ装置及び真空容器内部に設置する第一、電磁気計測検出器など多岐に亘る装置・機器から構成される。また、卵型断面の真空容器内には磁気リミタコイルを設置するため複雑な構造となっている。図1に JT-60 本体鳥瞰図を示す。JT-60 は従来の実験装置に比べて規模、性能とも格段に上回るものであり、設計、製作技術においても従来技術の外枠では解決し得ない課題が数多く存在した。そのため真空容器、トロイダル壁面コイル、ポロイダル壁面コイル、高速可動リミタなどの実機大モデルを用いた試作開発（R&D）をメーカーに発注し製作技術を開発した。また、これら R&D の成果などを踏まえた詳細設計を実施し、実機製作へと進めた。実機製作発注後のプラズマ物理の進展などにより、プラズマ電流消滅時間の 50ms から 1ms への変更などいくつかの仕様変更も実施した。

当初の本体設備に関わる主な仕様を表1に示す。

設計においては以上の状況を考慮し設計方針を定めた。その主なものを列記する。
(a) 仕様に規定した性能については、安全かつ安定に運転し実験できる設計とした。
(b) JT-60 本体の機器は安全かつ安定な運転及び実験を確保するために、信頼性と適切な余裕をもった設計を行った。
(c) いかなる場合にも JT-60 本体の機器は安全に停止でき、かつ安全に停止状態を保持できる設計を行った。
(d) JT-60 の詳細設計及び試作開発の成果を十分反映して設計を行った。
(e) JT-60 は制御室での集中運転が可能であること、また起動、停止操作においても電源の投入・遮断、弁の開閉などの現場作業が可能な限り少なくするよう設計した。
(f) JT-60 による実験が確実、容易かつ安全に実施できるように、その構造、配置を留意した。
(g) 設計は十分実験を持った規格、基準に基づいて行った。
(h) 設計にあたり、計算が著しく困難であったり、計算による誤差が不明又は著しく大きい場合などは原則的に実験による確認を行った。
工場製作段階では、発注者の立場で品質管理に積極的に関与した。特に、検査要領などを要領において十分検討するとともに、機器の完成時のみでなく製作途中でも立会い検査を適宜実施し、極力戻りを少なくし品質向上に努めるとともに工場の推進を図った。また、真空の性にも重点を置き、材料選定、ベーキング、表面洗浄などにも細心の注意を払った。メーカーも要請に応えて、経営部門・製作部門・検査部門等それぞれの役割を発揮し、未完領域の性能達成に努力してきた。

また、現地組立段階では昼夜連続の厳しい工程の中で複数の立会い班を構成し厳密に品質管理を実施した。特に、ポロイド磁場コイルの現地接続による接続に代表されるような取替えのきかないものの対応としては全数立会い検査をメーカーの作業継続に対応して24時間体制で行い、工程の短縮も図った。

それらの結果、装置完成時点で構造強度や真空管理などにおいて装置の完成度は非常に高いものとすることができた。それらの成果として装置完成直後の1985年4月8日のファーストプラズマ着火の成功へと結びついたと言えよう。

以下に、本体設備構成機器ごとにJT-60運転開始当初の概要について述べる。

<table>
<thead>
<tr>
<th>表1</th>
<th>JT-60本体に関わる主な設計条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラズマ主半径</td>
<td>3.0(3.2)</td>
</tr>
<tr>
<td>副半径</td>
<td>0.93(0.90)</td>
</tr>
<tr>
<td>電流</td>
<td>2.7(2.1)</td>
</tr>
<tr>
<td>電流減圧時間</td>
<td>1</td>
</tr>
<tr>
<td>起磁力</td>
<td>28.5</td>
</tr>
<tr>
<td>トロイダル磁場</td>
<td>4.5</td>
</tr>
<tr>
<td>加熱入力</td>
<td>NB1加熱</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>RF加熱</td>
<td>15</td>
</tr>
<tr>
<td>ICRF加熱</td>
<td>5</td>
</tr>
<tr>
<td>パルス幅</td>
<td>10</td>
</tr>
<tr>
<td>垂直磁場</td>
<td>0.41(0.32)</td>
</tr>
<tr>
<td>垂直磁場コイル電流</td>
<td>32ターン×57.5</td>
</tr>
<tr>
<td>四重極磁場</td>
<td>0.037</td>
</tr>
<tr>
<td>四重極磁場コイル電流</td>
<td>9ターン×25</td>
</tr>
<tr>
<td>磁気リミタコイル電流</td>
<td>8ターン×120</td>
</tr>
<tr>
<td>最大ポロイドルベータ値</td>
<td>2.5</td>
</tr>
<tr>
<td>最大プラズマ圧力</td>
<td>2×10^{21}(1.3×10^{21}) keV/m^{3}</td>
</tr>
<tr>
<td>最大定格運転</td>
<td>5</td>
</tr>
<tr>
<td>運転電流</td>
<td>50,000</td>
</tr>
<tr>
<td>運転数</td>
<td>10</td>
</tr>
<tr>
<td>耐用年数</td>
<td>10</td>
</tr>
<tr>
<td>真空容器ベーキング温度</td>
<td>500</td>
</tr>
<tr>
<td>真空容器1ターン電気抵抗</td>
<td>1.3</td>
</tr>
<tr>
<td>到達真空圧力</td>
<td>1.3×10^{-7}</td>
</tr>
<tr>
<td>総磁気シール量 (He)</td>
<td>1.3×10^{-5}</td>
</tr>
</tbody>
</table>

注：() 内は磁気リミタ運転の値

参考文献

(1) 真空容器 - 第一壁

概要

JT-60 真空容器は、到達圧力 1.3×10⁻²Pa を満たす超高速真空を実現し、またその内部にプラズマを発生させ、同時に外部から加わる強力な電磁力にも耐える構造が要求される。真空容器には内部真空による真空力、各種のプラズマ挙動に伴う電磁力、自重、高温時の熱膨張による熱応力等が作用する。設計・製作に当たっては、多くの解析的評価や R&D が実施された。その結果 JT-60 当初の真空容器として、非円形断面（卵形）をした真空容器内部側に磁気リミタを持ち、厚肉リングと U 型ベローズからなる複合構造を採用した。

設計

真空容器は、容器本体、ポート、ライナ、固定リミタ、磁気リミタ、電磁気計測検出器、真空容器支持アームで構成され、その他にベーチング用温度測定機を有する（図 2）。容器本体は 8 ケの厚肉リングと U 型ベローズが交互に配されて、ドーナツ形状を形成する。容器本体はこの厚肉リング部で真空容器支持アームを介して、トーラス外周部から片持梁方式で真空容器支持柱に支持される。ベローズは 2 真空容器本体のトロイダル方向圧電抵抗の確保、2 厚肉リングの熱膨張の吸収の役割を果たす。厚肉部を含む低等ベローズ部は、真空力や電磁力による内側への過度な変形を生じる可能性がある。そこで、両サイドの厚肉部からベローズサポートをと呼ばれるビーム要素をオーバーハングさせて変形を防止するように工夫した。

真空容器本体の材料の選択に当たっては、1 機械的強度が高いこと、特に高温強度が高いこと。2 電気抵抗が高いこと。3 透磁率が低いこと。4 放出ガス速度が低いこと。5 溶接性が良好であることの 5 項目の性能を考慮した。材質はインコネル 625、ハステロイ X、SUS304、SUS316L 等 8 種類の候補材料について、その強度、電気抵抗、磁性、加工性等種々の調査選定試験や材料試験を進めた。その結果インコネル 625 とハステロイ X が総合的に優れており、有力候補となることが判明した。1 週抵抗、入出力の流やすさ、及び価格等の観点を考慮して最終的にインコネル 625 を選択した。真空容器は 2 個分割で工場製作された。2 個の真空容器の接合面は、切り欠き部（ポートセクション 1 : p-1 側分解部、p-9 側分解部）となっており、現地組み立て時に p-9 側分解を組み合わせて真空容器の磁気リミタの接合を行い、また p-1 側分解の隙間からトロイダル磁場コイルの挿入が行えるようにした。

(ポート)

ポートは、計測ポート、加熱ポート、真空排気ポート、ガス注入ポート、可動リミタ引き抜きポート等があり、合計 182 ケのポートが厚肉リングに取り付けられた。真空容器外にはトロイダル磁場コイル、ポロイダル磁場コイル等が近接して設置されるため、これらとの干渉を十分考慮して設置された。特にベーキング時には容器本体の熱膨張に伴う変位により、結果的にポート両端に相対変位が生じる。これを回避する方法として、溶接ベローズ、成形ベローズ等の設置により吸収可能とした。
JT-60の第一壁の設計を目的にした、ライナ、アーマー板、固定リミタ、磁気リミタ板、リプルロス保護板、ビームリミタに分類される（図2）。第一壁の種類、使用目的、材質を表1にまとめた。

第一壁の設計は、プラズマとの接触位置についてプラズマからの熱負荷の侵入を防止するライナにはインコネル625を、その他に直壁プラズマに接する部分にはモリブデンを使用した。

ライナは耐熱廃棄物を考慮し、プラズマ粒子が真空容器へ抜けないように設計した。特に磁気リミタのゾンを含む、磁気リミタや磁気リミタ室に設置した冷却用団素ガス配管等をセパラトリックス近傍の熱負荷から防ぐために、こうした部分もライナで覆われるようにした。磁気リミタ室ライナを除くすべての第一壁と内部には不純物対策の観点から、20μm厚さの脱炭処理の施された壁（TiCコーティング）を施した。実験室基準による試験の対応するため、真空容器内部のTiCコーティングを可能とするためのコーティング防具（5.1(12)章参照）が装着された。第一壁の冷却は、磁気リミタ冷却における固定リミタ及び、磁気リミタ板を真空ガスであり、その他の冷却とした。交換は容易にするため、高温真空室での焼き付け防止の塩化ボルトが使用された。第一壁はプラズマによる高熱負荷や磁気力に耐え、また損傷が生じた場合には定期点検時に交換が容易となるような構造にした。

表1 第一壁の種類、使用目的、材質

<table>
<thead>
<tr>
<th>種類</th>
<th>目的</th>
<th>材質</th>
</tr>
</thead>
<tbody>
<tr>
<td>ライナ</td>
<td>厚肉リング、ベローズ、磁気リミタ室、磁気リミタコイルをブライザ熱負荷から保護する</td>
<td>インコネル625</td>
</tr>
<tr>
<td>アーマー板</td>
<td>NBI加熱時の突き抜けビームによる熱負荷からビーム入射対向面を保護する</td>
<td>モリブデン</td>
</tr>
<tr>
<td>固定リミタ</td>
<td>プラズマが直接リミタに接触するのを防ぐ</td>
<td>モリブデン</td>
</tr>
<tr>
<td>磁気リミタ板</td>
<td>セパラトリックス基板により遮られるプラズマを受ける、中性化する</td>
<td>モリブデン</td>
</tr>
<tr>
<td>リプルロス保護板</td>
<td>リプルロス低減ミ Quantity</td>
<td>モリブデン</td>
</tr>
<tr>
<td>ビームリミタ</td>
<td>NBIビームによる熱負荷からNBIビームを保護する</td>
<td>モリブデン</td>
</tr>
</tbody>
</table>

結果
真空容器ではディスラバーションに伴う鋼板の機械的振動が観測され、これに起因するゲートバルブからの真空リーグが発生した。水平パス部先端部に発生する加速度の測定を行ったところ、通常の加速では9Gに対し、ディスラバーション時には最大41Gが印加されることが分かった。これはゲートバルブの耐加速度20Gを大幅に越えることが分かった。この結果はその後のベローズを用いたゲート設計等に反映された。ベローズについては、厚肉端部の縫い部分にてI字形状の一部に傾斜性変形が見られた。当初の設計荷重では1asディスラバーションに相当する許容応力以下であるが、座屈荷重の評価から十分な裕度があり、原因として予想外の磁気力のビンディング等の発生が推定されたため、その下部は強化装置の用意と継続的検討を行った。1975年3月からの下部ダイバータ実験ではプラズマ電流等運転状態で低リスク装置を実現するようになったこともあり、87年11月から大電流化改造に向かえた解体試験では、ベローズの変形に進展は特に認められなかった。以上の結果より、JT-60の完成以降、真空容器は設計の機能を発揮したと言える。

第一壁についてはTiCコーティングしたインコネル、モリブデンを用いた金属第1壁（固定リミタ、ライナ）での実験への影響は85年5-6月にかけてのジフル実験、その後86年3月から87年3月までのNBI加熱実験で確認された。ジフール実験や初期加熱実験では放電調整も問題なく進展したが、一部トーラス内側の特徴の場面でTiCコーティングがぬれ、モリブデン材の溶融が観測された。また、高加熱力での実験では金属第1壁の部分損傷は軽微なもので、COプラズマへの金属混入の度合いは加熱入力の増大に伴って増加する傾向を示した。こうした結果を踏まえ、5.5章で述べるように、87年4-5月の定検間期に金属第1壁の一部の黒鉱化を図ることとした。また、87年10月からの下部ダイバータ改造に伴い、真空容器下部に設置する第1壁についても黒鉱化設計に変更を実施した。そのコーティング装置については、Tiフラッシュが数回試みられたが、TiCコーティングについては実施された後黒鉱化改造に進めた。

参考文献
（2）トロイダル磁場コイル

目的
JT-60装置のトロイダル磁場コイル（TFC）は、プラズマを安定に閉じ込め保持することを目的とし、トロイダル方向の強磁場を発生させるコイルである。

TFCは、試作開発段階から提起された課題に、①電気的、機械的特性の優れた導体材料及び絶縁材料の選定、②詳細なコイル構造解析例は少なく構造計算手法が確立されていないため、電気的、機械的、熱的設計の精度の向上、安全裕度の評価、性能及び信頼性の向上、③使用材料である導体材料及び絶縁材料の機械強度に対する設計基準の確立、等でありTFCを製作するに至るまでこれらを解決することが要求された。TFC製作技術の確立は段階的に進められ、電気的、機械的基準技術の開発から開始し、小型モデルの試作、最終的には、製作性及び性能を総合的に把握するための実機大モデルコイル製作まで行った。

JT-60装置のTFCは内径約4 m、外径約6 m、重量約90 tonの単位コイルを18個トーラス状に等間隔に配置し、プラズマ中心において4.5 Tの磁場を発生させることが可能である。TFCは間隔をもって設置されるためトロイダル方向に磁場の相減を生ずる。相減やコイルの共用誤差などにより生ずる不整磁場はプラズマの閉じ込め性能に悪影響を及ぼさないよう十分小さくするように設計された。

設計
トロイダル磁場コイル（TFC）は単位コイル、スペーサ、渡り線巻戻し線、冷却配管等から構成される。図3 トロイダル磁場コイル全体構造及び主要仕様

導体は、トーラス中心側がテーパ状に切削され、上下半分に分け、電気的高いマグニチ・ビニール鋼製ケースに収容されている。単位コイルとその断面図図4に示す。単位コイルは2個のバンパーキャップにより、各バンパーキャップは導体36ターンからなる。導体は鋼製の冷却管を埋込み半田付けし、制冷却することによりコイルの通電によるジュール発熱を除熱している。導体の供試体として銀添加量が1%以下の無酸素鋼（OFDC）及びタフビッチ鋼（TFC）を用いて、導体的、機械的、電気的等の材料特性に対する銀添加及び冷間加工度の影響を調べた。その結果、使用条件の厳しいトーラス内側には40%加工材の0.2%銀入りの無酸素鋼を、またトーラス外側には20%加工材の無酸素鋼を用いることとした。

TFCの使用高電圧は、コイルの通電時の発熱、冷却を考慮して決定され、対地電圧はDC10kVとACビーグ2kVが同時に印加、1時間にはAC30Vが印加されることとした。TFCの各絶縁構成図5に示す。層間絶縁層は主絶縁と外装絶縁からなる。主絶縁には絶縁性能の優れたポリエチレン塗布を、外装絶縁にはレジン保冷及び主絶縁保冷の観点から、機械的強度の大きいガラス繊維布を用いた。

対地間絶縁も主絶縁と外装絶縁からなる。主絶縁にはガラス繊維にエポキシ樹脂でマイカを裏打ちしたセミキュアテープを用い、外装材には機械的強度の大きいエポキシ含浸ガラス繊維テープを用いた。

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field</td>
<td>4.5 [T]</td>
</tr>
<tr>
<td>Ampere turns</td>
<td>67.5 [MAT]</td>
</tr>
<tr>
<td>Duration of current flat tops</td>
<td>5 [s]</td>
</tr>
<tr>
<td>Operational Interval</td>
<td>10 [min]</td>
</tr>
<tr>
<td>Ripple (plasma region)</td>
<td>less than 0.5 [%]</td>
</tr>
<tr>
<td>Number of coils</td>
<td>18</td>
</tr>
<tr>
<td>Number of coil turns</td>
<td>72 turns per unit coil</td>
</tr>
<tr>
<td>Major radius</td>
<td>3320 [mm]</td>
</tr>
<tr>
<td>Radius of coil bore</td>
<td>1940 [mm]</td>
</tr>
<tr>
<td>Thickness of unit coil</td>
<td>880 [mm]</td>
</tr>
<tr>
<td>Conduct</td>
<td>oxygen free copper containing 0.2% silver</td>
</tr>
<tr>
<td>Maximum electrical power</td>
<td>340 [MW]</td>
</tr>
<tr>
<td>Stored magnetic energy</td>
<td>2.8 [GJ]</td>
</tr>
<tr>
<td>Generated heat per one shot</td>
<td>10 [GJ]</td>
</tr>
</tbody>
</table>

図3 トロイダル磁場コイル全体構造及び主要仕様
絶縁材の耐熱区分は F 種である。運転時の導体内中に高応力が発生した場合、絶縁材は高温になりにくく、ガマ線照射、熱負荷も及ぼす。運転を想定した絶縁材最大温度の評価結果は 120 ℃であり、許容温度 150 ℃を十分に下回ることを確認した。また、絶縁破壊電圧も、ガマ線 2×10^{5} R の照射に対し低下を示さないことが確認された。

TFC には運転時に強力な電磁力を作用する。単位コイルあたりのフープ電磁力の総和は約 150800 M, 向心力は約 57800 M に達し、ポロイダル磁場コイル及びプラズマ電流により生ずるポロイダル磁場との相互作用により発生する転倒力は単位コイル上下半分あたり最大約 240 M になる。当社、標準化された設計コードは存在しなかったため、これらの荷重に対し、応力計算の妥当性、破壊機構及び疲労強度を確認することは、TFC の安全性及び健全性を確保するために必要であった。

1/5 締小コイルを試作の上、機械的負荷により生じる変位及び応力を測定し、有限要素法により計算された結果と比較した。また、実機相当の荷重を加えることによる疲労試験、破壊試験等を実際に実施した。

機械荷重負荷試験の結果、測定値と計算値は良く一致し、応力計算は十分信頼できる結果を得た。

疲労強度は油圧により実機相当荷重を繰返し負荷する試験を実施した。負荷時の応力を測定し疲労損傷の有無を最大 2×10^{5} 回まで監視することにより確認した。この結果、疲労試験中に測定応力値に顕著な差が少なく、疲労損傷は起きていないことが確認された。また、疲労試験後の絶縁試験からも繰返し荷重の影響は認められず、有害な疲労損傷は生じていないことが確認された。

破壊機構は 3 層コイルを用いて確認された。実験は、コイルの内側に油圧により機械的フープ力を加え、コイル各部の応力を測定しつつ荷重を増加し、最終的に破壊されるまで実験した。コイルの破壊は瞬時破断のような破壊的破損は起きず、対地絶縁層の破損が局所的に発生する結果となった。対地絶縁破損時の印加荷重は実機定格の約 3 倍の負荷に相当し、破壊に対し十分な安全裕度を持つことが確認された。

以上の試験の結果、TFC の製作技術がほぼ確立できた。

TFC 支持条件として、コイルに作用する向心力は中心支柱を中心にブロックにより支持し、フープ力は主としてコイル自身によって支持する。転倒力は側板を介してスペースに伝達され、上架台および下架台で支持することとした。コイルは下スペース及び中心ブロックにより支持され、コイル上部には
熱伸びのために隙間を設けている。また、コイル内周側の上部、下部にはコイルの大変位を防止するためのストッパーを設けている。コイルのテーブル側面には絶縁板が挿入されている。中心ブロックは11個のブロックから構成され、トーラス中央水平面近傍のブロックの剛性を相対的に小さくしている。

TFCのプラズマ領域のトロイダル磁場リップルは0.28%であり、仕様の0.5%以下を充分に満足した。渡り線巻きし線による誤差磁場は計算により、1.7×10⁻³Tであることが示された。単位コイル幅付誤差による誤差磁場は6×10⁻³T以下であると予想された。

結果

TFCはJT-60運転を通して、概ね順調に運転された。JT-60の性能向上を図るため、健全性が保たれることを確認した上でトロイダル磁場の運転領域を拡大する検討を行い、1987年以降、最大トロイダル磁場4.8Tでの実験が1989年から大電流化改造まで行われた。この期間、TFCの健全性は保持され、支障なく運転された。

大電流化改造の設計に資するため、運転中のTFC変位測定を1989年まで実施した。その結果、放電中は運転条件と矛盾のない変形を示し、また、ディスラプション時においても変形が大きくなるような異常な過渡現象はなかった。このことから、ディスラプション直後と初期よりもPFC通電電流の変化から計算される転倒力とそれに対応する静的な変形量の関係が保たれており、TFCは健全な機能を果たしていることを確認した。その後、1992年～1995年の運転期においてコイル剛性の高い複数のTFCで冷却水にクラックが発生し、冷却水が外部に漏る事態が発生した（5.12参照）。しかしながら、その原因を的確に究明し、実験運転条件の制約や技術的対策によりこの困難を克服し、その後も順調な運転を継続している。

開発したトロイダル磁場コイルは当時現在する世界最大規模のコイルであり、製作そのものが世界における大型コイル製作技術の画期的な進展を意味するものであった。また、製作に先立ち行った各種試験結果とその解析は、機械工学と電気工学の接点であるコイル工学分野において新たな技術データを提供した。

参考文献
(3) ボロイダル磁場コイル

目的
JT-60 装置のボロイダル磁場コイル（PFC）は、プラズマ電流の発生及び抑制、更にプラズマの位置及び断面形状制御のため、真空容器のトーラスに沿って配置されボロイダル方向の磁場を発生させることが要求される。

JT-60 は磁界プラズマの安定を目的としているため、装置の大型化に伴いコイル数の断面積も大型化する。しかしながら、PFC は運転あるいは制御の対象であるプラズマとの電磁接合度を高めるため、真空容器とトロイダル磁場コイル (TF) の間に設置される必要がある。また、磁気リミタコイル系は真空容器内に設置されたため、真空容器内と熱膨張による変位差の受吸構造を持つ必要があった。

PFC の組立作業の空間は、真空容器の内外を問わず極めて少なく、また、PFC は TFG と接交するため組立作業の接続部を持つ必要があり、特に接続部は電気的、機械的にも、従来の装置では経験のない製作技術が要求された。

設計
PFC に要求される仕様は磁場や磁束変化に関するコイルの性能、通電パターンや通電法、通電回数などの通電条件、使用電圧、温度条件、放射線量などがある。PFC は真空容器内に設置される磁気リミタコイルと真空容器外コイル系に大別される。図 6 に各コイルの配置と主要仕様を示す。

磁気リミタコイル系は主に芯及び副磁気リミタコイル (M コイル) とそれらを収納する保護管やプラズマからの入熱保護のためのライナなどから構成される。図 7 に全体構造を示す。

M コイルは磁気リミタ転廻において、プラズマが直接真空容器内壁と接触しないように、プラズマ中に混入する不純物を抑制することを目的として、8 の字型のセパラトリックス磁気面を形成するために使用される。M コイルは 1 つの主磁気リミタコイルと 2 つの副磁気リミタコイルからなり、合計 16 ターンの巻線から構成される。最大電流は 94.4 kA である。また M コイルは磁気リミタ転廻の他に、高ベータ実験などのために主磁気リミタ単独でも使用される。

M コイル本体は水冷により強制冷却される構造である。コイルの冷却管及び内部冷却管、コイル出線は P-9 セクションに設けた入口部より導入されている。出口出部分はステンレス鋼製のケースに収納し、フープ止めや段落し部にかかる電磁力をに対する強度を補強した。コイルとケースの間にエボキシ樹脂を充填し、真空容器により密度を高めた。コイルに作用するフープ電磁力はコイル自身で持たせているが、垂直方向電磁力は保護管を介して真空容器へ伝達する構造とした。このため、コイルには全周で 36 つステンレス鋼製のコイルサポートを設けており、コイルと枠枠も真空容器に浸漬したエボキシ樹脂を充填した。コイルの外側には外部冷却管を取り付け、ベーピング時等に真空容器からの侵入熱を除去しコイル絶縁材を健全に保つ構造とした。外部冷却管は鋼パイプにスリット入り銅シートをハンデ付けしコイルに密着させている。外部冷却管とコイルサポートの電気的な接触を防ぐため、絶縁テープを行った。

M コイル保護管は真空容器と同様に熱変形を吸収することが可能であるだけでなく、プラズマ着火や悪影響を及ぼさないように十分高い一周電磁抵抗が要求された。このため、中間リングを有する厚肉リングと成形ベローズを交互に溶接し、各厚肉リングは絶縁を介することなく直接真空容器にボルト締結する構造とした。保護管の材料は真空容器と同じにインコネル 625 合金を使用し、ボルトには表面に焼付防止処理を施した SUS660 を使用した。

保護管は真空容器に固定されているため、温度上昇時には真空容器と共にトーラス円周方向及びト
ロイダル方向に熱変形する。コイルは保護管の熱変形に対し追従することは困難であるため、スライド機構及び断熱材により支持する構造とした。スライダーはスライド特性試験を実施した結果、カーボンを分散した鋼合金板を使用する構造とした。断熱材は保護管からコイルへの入熱を軽減するだけでなくコイルに作用する垂直電磁力を保護管へ伝達する役割も果たす。そのため、板バネによりコイルと保護管が断熱材を介して常に密着する構造とした。更に保護管内側はセラミックファイバー断熱材で覆うこととした。コイルの水平方向の変形を防止するため、厚肉部は全周8ヶ所でストッパーを設けた。

Mコイルの保護管は多数のベローズを使用しているが、その板厚は1.8mmと薄く、プラズマからの入熱に対する防護構造が必要である。厚肉リングからインコネル625製のベローズカバーを溶接で取付け、ベローズカバーはベローズがプラズマ側より直視できないように設置した。更に湯流電流軽減のためのスリットを設けたモリブデン製ライナをプラズマに直接接するよう取付けた。モリブデン製ライナはプラズマに対する不純物の影響を軽減するため、チタンカバー（TiC）でコーティングした。ライナは厚肉リングにポルト締結され、中間リング部まで張出した多数の板である。ポルトはSUH660製であり、締結部はポルトがライナ面から突出しないようにライナを曲げ加工している。Mコイル出給電部の厚肉リングは内部の導体構造等を変更することを必要とするため、ライナをポルトで取付けることはできない。口出部の入熱防護はインコネル625の板を厚肉リングのプラズマ側に溶接する構造とした。

真空容器外コイルは空心交流器コイル（Fコイル）、垂直磁場コイル（Vコイル）、水平磁場コイル（Hコイル）及び四重極磁場コイル（Qコイル）とそれぞれを支持するコイル支持体系から構成される。真空容器外コイルはトロイダル磁場コイルの内側にあり、各種計測ポートや加熱ポート等の占有空間を考慮して配置された。

Fコイルはプラズマ中にループ電流を誘起し維持するための磁束変化を発生するコイルであり、上下各々13のコイルブロックからなり、合計60ターンの巻線からなる。その最大電流は±91.7kAであり、約26V•sを発生することができる。プラズマ電流立上時には約250Vのワントン電圧を発生し、27kAのプラズマ電流を0.1sで上昇させることが可能である。

Vコイルはプラズマの平衡を保つための制御コイルであり、上下各々11のコイルブロックからなり、合計64ターンの巻線からなる。最大電流は57.5kAであり、トーラス水平面上のプラズマ主半径3.03mの位置において約3.3kGの垂直磁場を発生することが可能である。

Hコイルはプラズマの垂直方向の安定性の制御やプラズマ電流立上における水平方向不整磁場の打消しなどのために使用され、上下合計6個のコイルブロックからなり、全長で12ターンの巻線からなる。その最大電流は20kAであり、トーラス水平面上のプラズマ主半径3.03mの位置で200Gの水平磁場を発生することができる。

Qコイルはプラズマの断面形状を変化させ、垂直方向の安定性を制御するための四重極磁場を発生するコイルであり、上下合計5個のコイルブロックからなり、合計36ターンの巻線からなる。その最大電流は25kAであり、Vコイルの磁場に重複させることにより、磁力線の曲線の指標に値を0から1の範囲で変化させることが可能である。

真空容器外コイルは多数のコイルブロックから構成され、コイルブロックは複数ターンを積層させケーブルケースで一体化する構造とした。各ターン導体は、平面鋼帯を曲げ加工し、溶接接続によりリング状にした。各ターン間の接続は断熱し構造となっており、フープ電磁力に対する変形防止のため、段落し口の両側にフープ止めを設置した。このフープ止め構造は、凹凸形状をした導体の間にFRPの絶縁キラーを挿入しコイル全体を絶縁している。

コイルタークは導体、冷却管及び絶縁材から構成される。PFCの導体はTFCと同様に0.2%錳入り無酸素鋼の40%冷間加工板を使用し、最大板厚で80mmとなった。

PFCの製作技術は、①基本技術として、コイル接続部、溶接部、溶接技術、絶縁技術の開発、②実機大真空容器外コイルの試作、③実機大真空容器内コイルの試作、を段階的に行うことにより確立された。PFCの構造はTFCと類似するため、少なくとも一部所は現地で真空容器側から接続しなければならず、更に、TFCと真空容器の間、トロイダル方向及び上下方向に絶縁された空間及び真空容器内において現地作業を行うわけにならなかった。また、導体接続部において発電のジュール熱による温度上昇を防ぐため、コイルに加わる電磁力に対し、使用期間中十分に耐える機械的強度
を持つこと、等の条件を満たす必要もあった。
磁気リミタコイル系は実機大の副磁気リミタコイルの 90°セクターを試作した(図 8)。試作コイルの構成は、導体構造、絶縁構造、冷却構造、分解組立てのための接続部、渡り線を含む出口部、コイル容器と導体の相対的な熱膨張差を吸収するためのスライド機構、ベーキング時などにコイル絶縁を保護するための熱紹経及び封じ切りのためのコイル容器等からなる。試作コイルの健全性を、ヘリウムリーク試験、絶縁特性試験、断熱特性試験を実施することにより確認し、実機真空容器内コイルの製作技術を確立した。

真空容器外コイル系は、最も空間が狭く作業性が困難である真空変流器に Cu の内側コイル 2 ターンを実際と同一寸法で製作し、絶縁耐力試験、電気抵抗測定、荷重試験及び異状試験を実施した。製作した試作用 F コイルの機能及び構造の健全性を確認し、実機での真空容器外コイルの製作方法を確立した。

最終的な PFC の接続方法はパルス TIG 溶接により接続し、溶接後形状加工を実施し非破壊検査を経て、冷却管をヘローズ付空冷パイプにハンダ付け、リーク試験及び絶縁検査を経て製作された。

PFC のコイル支持体は合計 18 個あり、各 TFC の直下に設置している。コイル支持体にはコイルの自重や垂直方向電磁力の他に水平方向にも摩擦による荷重が作用する。18 個の支持体により、内側側は設置された支柱を介して下台に受ける、外周側は設置された支脚を介して TFC スペーサにより受ける構造とした。コイル支持体本体と支柱間及び支柱と下台の締結はピン結合とした。各コイル支持体は強度の剛性を向上させるためトラス状に接続したが、トルコイダル方向に万ターンを形成しないように絶縁板を挿入した。また、コイルの曲げ応力低減のため、TFC の幅分の梁を渡した構造とした。コイル支持体は有上径 3200mm 位置で、内側側支持体と外周側支持体の締結部を有するが、ここはフランジを介してボルト締結後に溶接した。コイル支持体材料は高マンガン非磁性鋼を使用した。

コイル支持体には、真空容器耐震ロッド受座(図 9)を全周で 10 カ所設けた。真空容器の熱膨張を熱伸縮方向に合わせて受座の倾斜面で受ける構造とした。耐震ロッドのすべり面はカーボン分散の鈷合金を使用した。コイル支持体と受座間には FRP の絶縁を挿入している。受座は真空容器からの侵入熱を除去するために水冷式とし、冷却管はステンレス鋼を使用、絶縁層を設けて他器機との電気接触がないようにした。

結果
PFC は JT-60 運転において、その構造的な健全性にかかわる本質的な問題を生じることなく、順調に運転された。JT-60 の実験運転と共に、プラズマ性能の向上のためにダイバータ配位ではプラズマ電流を 2.1 MA から 2.7 MA に、リミタ配位では 2.7 MA から 3.5 MA へプラズマ電流を増加させる必要性が生じ、ポロイダル磁場コイルを定格以上で運転するための検討評価を行った。その結果、最大ダイバータ電流 120 kA、通電時間 6.5 s 及び最大四重極磁場コイル電流 35 kA、通電時間 9.0 s までの運転が可能であることわかり、1987 年 6 月から 10 月までの運転ではプラズマ電流 2.7 MA までのダイバータ増力運転、プラズマ電流 3.3 MA でのリミタ運転が行われた。1987 年 11 月からは下ダイバータ配に対応するため、新たなコイルを追加した(5.2 参照)。また、1989 年から実施した大電流化改造では全面的にポロイダルコイルを入れ替えた(5.3.1 参照)。

参考文献
(4) 架台

目的
架台は、JT-60 本体を構成する各要素の自重を支持する他、それに作用する真空力、電磁力、地震力等を支持するための構造物であり、上架台、下架台、中心支柱、真空容器支持柱及び星形トラスに大別される。尚、構造体に誘起される漏電流と磁場による電磁力を抑制する為、架台は全て高マンガン非磁性鋼製であり、構造体は分割構造とし、分割部は電気的に絶縁される。

設計
大型構造物で膨大な電磁力を支持すると共に、種々の機器の設置や運転保守時の作業性などをも考慮した設計とする必要があった。主な設計条件を列記する。
支持する対象機器の仕様を満たすよう架台の変形を抑えること。トロイヤル磁場コイルの単位コイルの一つが端子間で短絡した場合、又はボロイヤル磁場コイルに於いて1箇所の相間短絡が起こった場合の電磁力に耐えること。原則として電気的ループを形成しないようにすること。床及び壁との間、並びに支持する対象機器との間、電気的に絶縁（絶縁耐圧1100VAC[実効値]）すること。架台の構成要素は全て接地すること（この場合、接地線を通じて電気的にループを形成しないようにすること）。架台の材料に関しては、材料は原則として非磁性材（素材で透磁率μ≦1.02）とすること。上架台及び下架台については、トロイヤル方向に絶縁分割構造とする。下架台は、下部に基礎架台を設置することにより床面から下架台下面まで3.5m以上の空間を設けること。下架台の中心部に支柱を設けること。上架台及び下架台の厚さは、可能な限り薄くすること。中心支柱は、原則として中実円柱、リング等から構成すること。リングは、トロイヤル磁場コイルの応力を戻さないために上下方向の位置によりその剛性を変えるものとする。中心支柱の構造は、中実円柱の外側に分割リングを配置する構造とする。中実円柱の外径は、能率を大きくすること。中心支柱とトロイヤル磁場コイル補強板との接触部は、トロイヤル磁場コイル補強板の熱膨張を収束しやすい構造とする。星形トラスの構造に関しては、星形トラスを上架台、及び星形トラスと本体装置間隔間との銃複数、原則としてビンジョイントとすることとした。不整磁場に関する仕様としては、架台に生じる誘導電流によるプラズマ領域での不整磁場は、粗面で100G以下とすること。
これらを基にして設計した架台の基本的な構成を表 3 に示す。架台の支持荷重には、自重、電磁力、真空力などが存在する。その内訳を表 4 に示す。JT-60 本体及び架台の関係を図 10 に示す。

表 3 架台の基本的構成

<table>
<thead>
<tr>
<th>構成要素</th>
<th>構 造</th>
<th>支持荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td>上 架 台</td>
<td>1. トロイヤル方向に8分割し、ポルト結合
2. 突出しアームを4ケ設け、星型トラスとビン結合
3. 結合部は絶縁</td>
<td>1. 自重及びベースペ、可動リミタ、星型トラスの重量
2. 可動リミタ駆動反力
3. トロイヤル磁場コイルの転倒力</td>
</tr>
<tr>
<td>下 架 台</td>
<td>1. トロイヤル方向に8分割し、ポルト結合
2. 建屋基礎との間に円形構造の基礎架台を設ける
3. 基礎架台はトロイヤル方向に4分割し、ポルト結合する
4. 基礎架台中央に中心架台を設ける
5. 下架台と基礎架台、下架台と中心支柱はポルト結合
6. 結合部は絶縁</td>
<td>1. 自重及び真空容器支持柱が支持する重量以外の全重量
2. 可動リミタ駆動反力
3. トロイヤル磁場コイルの転倒力
4. ボロイヤル磁場コイルの電磁力及び熱膨張による水平方向摩擦力</td>
</tr>
<tr>
<td>中 心 支 柱</td>
<td>1. 中心支柱と11ケに分割された中心ブロックで構成
2. 中心支柱上部は中心支柱支え板に、下部は中心受台ポルト結合</td>
<td>1. 上架台支持重量の一部
2. トロイヤル磁場コイルの向心力</td>
</tr>
<tr>
<td>真 空 容 器</td>
<td>1. 真空容器支持柱は各々独立した10ケの柱であり、その下部で支持柱架台及び基礎架台にポルト結合
2. 真空容器支持柱上には連結アーム・スタンフボルト結合され、更にその上に回転軸がボルト結合
3. 回転軸は上架台と真空容器支持柱とを連結するユニバーサルジョイント構造
4. 結合部は絶縁</td>
<td>1. 自重及び真空容器、連結アーム、連結アーム・スタンフの重量
2. 上架台支持重量の一部
3. 真空容器の真空力及び電磁力（向心力、転倒力）</td>
</tr>
<tr>
<td>支 持 柱</td>
<td>星型トラス</td>
<td>1. トロイヤル磁場コイルの転倒力</td>
</tr>
<tr>
<td>1. トラスの数は4組、8本で、上架台と建屋3階キャッピングネットを用いて連結
2. 建屋側基礎に油圧ダンパを設け、衝撃力を吸収
3. トラス中間で絶縁</td>
<td>1. 自重
2. トロイヤル磁場コイルの転倒力</td>
<td></td>
</tr>
</tbody>
</table>

- 102 -
表4 架台の支持荷重

<table>
<thead>
<tr>
<th>自重</th>
<th>項目</th>
<th>荷重（ton）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>上架台</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下架台</td>
<td>388</td>
<td>基礎架台を含まない</td>
<td></td>
</tr>
<tr>
<td>中心支柱</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>真空容器支持柱</td>
<td>758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>星型トラス</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スペーサ</td>
<td>274</td>
<td>上下各架台分</td>
<td></td>
</tr>
<tr>
<td>可動リミタ</td>
<td>20</td>
<td>半固定リミタを含む</td>
<td></td>
</tr>
<tr>
<td>ロイダル磁場コイル</td>
<td>1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポロイダル磁場コイル</td>
<td>250</td>
<td>支持枠を含む</td>
<td></td>
</tr>
<tr>
<td>真空容器</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電磁力</td>
<td>トロイダル磁場コイル向心力</td>
<td>104400</td>
<td>18個の総和</td>
</tr>
<tr>
<td>トロイダル磁場コイル転倒力</td>
<td>140000</td>
<td>18個の総和</td>
<td></td>
</tr>
<tr>
<td>ポロイダル磁場コイル電磁力</td>
<td>103</td>
<td>支持枠18個の総和</td>
<td></td>
</tr>
<tr>
<td>真空容器向心力</td>
<td>800</td>
<td>IIコイル以外は上下でキャンセルされる</td>
<td></td>
</tr>
<tr>
<td>真空容器転倒力</td>
<td>90</td>
<td>360° 全体</td>
<td></td>
</tr>
</tbody>
</table>

| 真空力 | 真空容器 | 300 | 360° 全体 |

その他	可動リミタ駆動反力	30	
	トロイダル磁場コイルの熱膨張による垂直方向摩擦力	756	18個の総和
	ポロイダル磁場コイルの熱膨張による垂直方向摩擦力	1160	支持枠18個の総和

結果
各荷重に対して、十分支持すると共に変位も十分小さく抑える事ができた。初期の目的は十分に達成した。

考察
床上に下架台を立ち上げて、その下にプラズマ計測器などの設置を可能としたことにより、計測器へのアクセスは容易となったが、その分、他機器へのアクセスは高所となり、やや不便になった面がある。星型トラスで建屋に連結することによりトロイダル磁場コイル転倒力などの支持は容易であったが、大きな構造体となった。今後の装置設計では装置自体での白立支持型とすべきである。

図10 架台構造図（断面図）
(5) 一次冷却設備

目的
一次冷却設備は、各種コイル類及び真空容器で発生する熱を安全に除去し、これを熱交換器を介して二次冷却系に伝え、併せて系統内配管器具等の腐食を防止し、冷却水水質の調整を行うもので、循環系、熱交換器、精製系、純水製造装置及び本体一次冷却系制御装置から構成される（図11）。

図11 一次冷却系構図

設計
系統は、JT-60本体の運転方式を考慮して設計した。主なものを以下に示す。
1. コイル類の冷却水循環は、トロイダル磁場コイル装置、ポロイダル磁場コイル装置の各系に共通な循環ポンプを設置することとし、ポンプ故障時等のバックアップを考慮した台数とした。
2. 被冷却機器入口、出口間にバイパス配管を設け、被冷却機器への冷却水の流入なしで系統内の運転が可能なるようにした。
3. 被冷却機器内の冷却水ドレンは、エリアーパージ等の方法により実施できるようにした。
4. 空気抜き用の弁等を考慮するほか、空気抜きが容易なようにした。
5. 熱交換器は、被冷却機器の入口側（給水側）に設置することとした。
6. 被冷却機器への異物の流入を防止する為に、被冷却機器の入口側にはフィルター及びストレーナーを設置した。
7. 一次冷却水の循環維持を図る為、精製装置を設置した。
8. 貯水槽を設置し、系統内冷却水量監視とパルス運転に伴う被冷却機器出口温度変動サージングに対応させた。
9. 一次冷却系統の材質はステンレス鋼とした。

結果
1985年の運転開始後はこれまで特に大きなトラブルもなく順調に運転を継続した。ただし、これまでに運転経験に基づいた小規模の改造を何回か実施してきた。
10. 建設当初はトロイダル磁場コイル系、ポロイダル磁場コイル系、真空容器系には予備ポンプがあったが、使用状況の精製循環系は予備になって、苛酷な時間帯には長期間の運転停止を余儀なくされる状況にあった。そのため、定期点検時には分解点検を実施していたが、緊急時の対応と定期点検の合理化を図るため、1998年に精製循環系への予備回路の増設改造を実施した。
11. また、2004年には配管の改造を実施した。実験運転にあっても、長期間の運転休止時や祝休日などの実験運転休止は真空容器のパッキング（300℃）を継続するが、真空容器周辺機器の冷却のためにコイル循環系ポンプを稼働していた。しかししながら、真空容器周辺機器の冷却のためには、設計値の冷媒流量が十分であることが必要であり、2004年4～6月の定期点検期間に配管の一部を改造して実験系ポンプで稼働させ、運用状態を確認し、一次冷却設備の省エネルギー化を実施した。この改造で稼働するポンプの消費電力が下がったり、一次冷却水の温度変動を抑えることができ、本体二次冷却ポンプの稼働が必要がなくなり、一次冷却水精製系ポンプも常時運転する必要がなくなったことで最大950kWの大幅な電力の低減が可能となった。
（6）真空排気設備

目的及び背景

JT-60 真空排気設備は、JT-60 本体の真空容器内を大気圧から超真空まで真空排気し、不純物の少ない「質」の良い超高真空状態を得るためにその状態を維持する。実験運転では、不純物の少ない純度の高いプラズマを生成するために、プラズマ放電を短時間に変換する大量のガスを放電間排気し、大量のガスを放電間排気する能力が必要とする。真空容器内の圧力を変えるための圧力変換器等の点検を守るための試験には、真空容器内の真空状態を変化させる能力が必要である。また、圧力計及び残留ガス分析装置を使用し、真空容器内の真空状態の変化を監視する。真空排気装置の設計時には、排気能力、高流速高圧力などの核融合環境に対して、放射線の組み合わせに合わせた設備の選定が。

設計（仕様）

JT-60 真空排気設備は、真空排気系、ベーキング系、冷却水系、測定系、圧空系、ガス導入系、液体窒素供給系及び制御系から構成される。図12に真空排気設備の構成を示す。真空排気系は、JT-60 本体の真空容器内を大気圧から超真空（無荷電時の目標到達圧力：1×10⁻²Pa）までの真空排気を可能とし、大気圧から 1.3Pa までは粗引き排気系が、1.3Pa 以下は主排気系により排気する。また、JT-60 の実験運転を長期間に停止する場合は、真空容器内の染色防止のために真空中を保持する保守排気系を持つ。表5に各排気系の排気速度を示す。真空排気系の排気速度は、ストローカー方向に 2 箇所、ボロガッタル断面に 2 箇所の排気ポートを設けた。真空容器の機器は、全組立マシリングがヘリウムガスに対し 1.3×10⁻⁶Pa/m³/s 以下とすると共に真空シールはすべて金屬シールとした。ベーキング系は、放射ガスを放出するもので温度制限がある真空ポンプを除く真空断熱を 250℃以上のベーキングを可能とした。さらに、各室、各室系内でも個別に分断し、各個室独自で自動温度制御ができる。冷却水系は、粗引き排気系及び主排気系に使用している真空ポンプの冷却条件を満たすものとし、冷却水温度は 15～20℃の範囲で温度を制御（精度±2℃）が行い、長期連続運転が可能なものとした。測定系のうちマニホールドに取付けた真空計は、大気圧から 10Pa まで自動でレンジを切り替えられると共にデジタルで 3 桁の表示ができる。その他の測定系は、プラズマ周辺の圧力変化を測定する高速マニホールド、残留ガス分析装置、表面汚染モニタ、標準真空計及び高速マニホールドなどの全圧計及び分圧計が設置され、圧力や残留ガスの種類を表示、記録、必要があれば信号を出力できる。圧空系は、設備の機器を停電時においても必要な期間に圧空空気を供給できる。ガス導入系は、真空容器内を大気圧、計測器などの精密及び点検保守時に所定の圧力に変化させる場合乾燥空気または乾燥空素を導入する。乾燥空素の導入は、大気圧→真空の動作を替えを続けて 3 回以上行う。液体窒素供給系は、外部から各液体窒素トラップに自動で液体窒素を供給できる。真空容器内の補給なしで 2 週間程度の連続運転（JT-60 実験運転）が行えるように液体窒素供給タンクを設けた。制御系は、これらの構成機器の制御を行う。真空排気装置では、部品単品の信頼性が高いが使用面積が多いため、故障発生確率が高くと予測され、平均故障時間（MTBF）が 150 時間程度として設計した。このまでは、JT-60 本体の実験運転に大きな影響を及ぼすため、各ユニットを同様の部品で構成し、相互に交換性を持たせることで汎用性を向上させた。ユニットの構成した場合は、インターフェイスを切換えることで他のユニットを使用し、設備に及ぼす波及効果を最小限に制限した。補助系では、同様の機器を 2 台ずつ使用することで、故障あるいは故障時に最小限の設備維持が可能なようにした。このように、冗長設計及び予防保全の考え方を多く取り入れ
設計した。真空排気設備を構築する上で行った主な開発、確認試験は次の通りである。MGV は、250℃以上のベイニングや多頻度の開閉操作が行われると予測されたため、様々な条件のベイニング及び 1000 回の開閉操作を行った後に真空リーチ試験を行ったが、シート及び溶体からの真空リーチは確認されなかった。真空容器と設備間を絶縁するための径 54cm の大口径セラミック絶縁体は、十分な強度、疲労寿命及び絶縁性能を有していることを確認した。ターボ分子ポンプ（TMP）は、排気速度、ガス負荷及び真空ポンプなどの不純物の逆流について測定を行い、不純物の逆流対策としてガスケードシステムが優秀であることを見認した。

結果

JT-60 真空排気装置は、1984 年の運転開始から 1989 年まで図 12 に示す A から D 系統の 4 系統で運転を行った。1989 年の大電流衝撃改造時に A, B の 2 系統を撤去した。それ以降は、C, D の 2 系統で運転を行い、今日まで JT-60 本体の真空容器内を「質」の良い超高真空に維持することができた。真空容器内作業、プラズマ計測器などの取り付け、交換及び点検保守を行う際には、真空容器内を大気圧または任意の圧力まで乾燥窒素または乾燥空気を導入し圧力変化をさせた。JT-60 本体の真空の「質」の保持監視では、測定系の圧力計及び残留ガス分析装置により実験放電時及び放電間の圧力や残留ガスの測定を行い、真空リーキの有無及び真空容器内の絶縁的な圧力変化の監視を行った。さらに、真空容器のポートに設置されたプラズマ計測器などの第 1 仕切弁 (GV1) の開閉操作時には、圧力の変化や設備からの真空リーチの有無の監視も行った。また、設計時に採用した冗長設計により、構成部品の故障時でも JT-60 の実験運転に大きな影響を与えることはなかった。運転開始から現在までに真空排気設備で行った改造は次の通りである。1986 年に真空容器内の残留ガスを測定する残留ガス分析計を増設。1987 年に真空容器内の圧力監視を強化するためにマニホールド真空計を増設。1988 年から 4 年間は GV1 のメインブランク部から発生した真空リーチ対策としてメインプランクの材質をイッコルに変更する改造を行った。その他には、1989 年に重水素実験対策として A, B 系統の撤去、抽出排気ポンプの水封ポンプを回転ゴムポンプに交換、現場制御盤及び冷却水系を第 1 種管理区に組み上げて第 1 管理区へ移設した。1994 年からは、老朽化対策として制御用のセーラーケーブル更新（詳細は、真空排気装置制御システム更新の項目参照）、翌年は真空ポンプの強化（詳細は、真空排気装置ポンプの強化の項目参照）、1999 年には運転系制御装置の更新や 2001 年にマニホールド真空計の更新を行い、性能のさらなる向上及び構成部品の老朽化対策を行いながら長期間の運転を行ってきた。これにより、JT-60 本体の真空容器内を「質」の良い超高真空に長時間に渡り維持することや各種機能が健全に発揮することが可能になった。

検討、考察

JT-60 真空排気設備は、国内では有数の大型の真空排気設備であり、大型の真空排気装置に対する運転保守の技術や知識を習得できた。本設備は、計画的に老朽化対策や性能向上を行ってきたが、使用機器の中には運転当初から使用しているものが残っており、それらの機器の更新あるいは改造を行うなどの老朽化対策を施す必要がある。

結論

本設備は、JT-60 の実験運転において重要な設備であり、不具合による長期間の停止が許容されない中で JT-60 の運転当初から現在まで、真空容器内を「質」の良い超高真空状態に維持し、必要に応じて圧力を変化させるなど、その時々の状況に合わせて安定に運転を行ってきた。また、測定系の圧力計及び残留ガス分析装置により、真空容器及びプラズマ計測器などの周辺設備からの真空リーチの有無の監視、真空容器内の残留ガスの測定を行い、真空容器内の真空の「質」を把握することができ、JT-60 の実験運転に大きく寄与した。また、このような大型の真空排気設備を運転、保守及び改造を経験したことにより、様々なノウハウを蓄積できた。また、今後の大型の真空排気設備を設計、運転維持する上で非常に有意義なデータを得ることことができた。

未来へのメッセージ

将来の核融合装置でも重要な設備である真空排気設備は、より厳しい中性子照射量または重磁場中で長時間の連続運転が要求されるとともに、そのような環境下での運転保守が必要となる。また、燃料循環サイクルの一部の装置となるので、JT-60 において排気ガス中のガス種及び濃度を測定し、ガスの挙動を把握すると共にそのデータを蓄積、燃料循環設備の設計検討を行う際に有益なデータを提供する必要がある。今後は、設備をより安定に運転維持すると共に真空排気設備の将来像を考えしながら運転あるいは改造を行っていく必要がある。

参考文献

(7) ガス注入装置

目的
ガス注入装置はJT-60本体（真空容器内）に放電用ガスとして水素、重水素、酸素、ヘリウム、ネオン、アルゴン、メタン等を単独もしくは複数のガスを制御して注入するプラズマ燃料ガス供給の装置である。また、本装置は、実験方法の多様化に対応して柔軟性、拡張性を有する必要がある。

設計
本装置は、注入部、供給部、排気部、及び制御装置に大別できる。注入部と供給部を併せて注入系と称している。注入系は水素ガス入射用の注入系I、その他ガス用の注入系II、不純物ガス用の注入系III、IVの4つの注入系からなり、プラズマ点火前の初期ガス注入や不純物ガス注入及び密度制御用ガス注入には圧電素子弁（PEV）及び高速電磁弁（PEV）が取り付けられて用いられる（表6参照）。放電用ガスは、真空容器に均一に供給されるようトロイダル方向（ポートセクションP6、P7、P11、P15、P18）及びポロイダル方向（上、緩、下）に注入弁（高速電磁弁4台、圧電素子弁16台）が配置された。また、1×B型予備電離装置の動作ガス供給用に圧電素子弁が配置された。特に、注入系Iにはより純度の高い水素ガスを供給するために水素純化装置（Pdフィルター）が組み込まれた。

系内は150℃ベーシング及び高真空气体により清浄に維持することが可能なことから指定ガス純度を保持して真空容器内プラズマ放電用ガスを安定に供給できる。各系には安定したガス供給が行えるようリザーバタンクを備え、必要になったガスは、ターボ分子ボンプ、フレオ冷凍スプレッパ、メカノカルーバースタボンプ、油回転ボンプ及びフロアを介して安全に排気ができる（燃焼フラスは廃棄下限以下に希紺）。

放電用ガスの注入は、実験や長バルス放電実験時にプラズマ電流励起開始からプラズマ電流停止時間を時に注入を行い、短バルス放電実験に弱電流放電実験時に放電停止発生に前放電を停止するまでの間に連続的に注入を行うことができる。

表6 注入系の性能

<table>
<thead>
<tr>
<th>注入系</th>
<th>注入弁の種類</th>
<th>注入時間（sec）</th>
<th>注入速度（Pam/s）</th>
<th>1放電の最大注入量（Pam/s）</th>
</tr>
</thead>
<tbody>
<tr>
<td>注入系I</td>
<td>高速電磁弁（H）+圧電素子弁（H）</td>
<td>≤0.005</td>
<td>1.33 x 10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>注入系II</td>
<td>高速電磁弁（H）</td>
<td>連続</td>
<td>1.33 x 10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>注入系III</td>
<td>圧電素子弁（L）+圧電素子弁（L）</td>
<td>≤0.005</td>
<td>1.33</td>
<td>8</td>
</tr>
<tr>
<td>注入系IV</td>
<td>圧電素子弁（L）</td>
<td>連続</td>
<td>1.33 x 10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>注入系V</td>
<td>圧電素子弁（L）</td>
<td>連続</td>
<td>1.33 x 10^{-2}</td>
<td>8</td>
</tr>
<tr>
<td>注入系VI</td>
<td>圧電素子弁（L）</td>
<td>連続</td>
<td>1.33 x 10^{-2}</td>
<td>8</td>
</tr>
</tbody>
</table>

注：大容量、小容量

本装置は、1985年4月から運転が開始され、実験運転の進展及びJT-60の改修、改造により系の変更やガス注入速度の変更及びガス注入ポートの変更による新規圧電素子弁の設置や絶缘撤去が行われた。また、1991年には水素使用に伴う接続の適用に対応してガス供給配管及び排気配管の実験棟貫通部にポリエチレン、コンクリートによる遮蔽対策（ストリーミング）を実施した。

結果
圧電素子弁（PEV）は、背圧2.0MPaにおいて、ガス注入速度～53.3Pam/sの大容量弁（PEV-H）、～5.33Pam/sの小容量弁（PEV-L）、動作時間5ms等の制御性能を確認できた。また、PEV-Lにて連続注入し、真空容器圧力を一定に維持出来ることを確認できた。高速電磁弁は、応答時間5ms以下を確認したが、注入量はトロイダル磁場の影響により約10%程度低下することを確認した（垂直磁場の影響はない）が、圧電素子弁が高速電磁弁の性能を満たす結果を得るために実験運転での使用はなかった。

検討、考察
圧電素子弁は、ガス導入口とバイトグムシートにより真空シール性能を保持し、チタン酸ジルコニウム酸鉱系のバイモルフ型圧電素子を用いている。圧電素子は誘電体であるためヒステリシスを持たため、定期的な調整及び経年劣化するバイトグム等の定期的なメンテナンス及び検査が必要である。高速電磁弁は、ブラシショックと弁座にバートン0リングにより真空シール性能を保持し、バルス電流から生じる電磁力を利用しているが、磁場強度によっては、押えスプリングの調整が必要である。また、ガス注入量を検出する検出器（バータロン真空計）など磁場環境での使用実績がないもののので
念されるものは予備試験などを行い、確実な動作が行えるようにする必要がある。

結論
ガス注入装置は、1985年4月から稼働し、JT-60の下側ダイバータ改造（1988年3月）、大電流化改造（1989年10月）などに対応した改造を行い、高性能化実験や大電流化における複雑な使用条件にも確実に対応した。

感想
ガス注入装置はJT-60に必要不可欠な装置であるものの、注入弁、真空排気ポンプの取り付け構造、配管ルートや絶縁構造など設置の制限を受かった。また、点検、保守及び部品交換等においては、作業性の悪い場所を強かった（図13及び図14参照）。しかし、弁配置、ポンプ類配置、配管構造、磁気遮蔽などの着実な仕様検討及び干渉確認等を行ったことにより、そのガス供給技術やガス排気技術の構築及び知見等を得た。

図13 ガス注入弁取付状態

図14 ガス注入弁と予備電離装置の取付状態

参考文献
[1]川崎光則、ガス注入装置・予備電離装置の性能特性、日本原子力学会 Vol.29 No.11(1987)
（8）予備電離装置

目的
予備電離装置は、プラズマ電流流動起前後に JT-60 真空容器内に注入したプラズマ放電用ガスを弱電離状態にしてプラズマを容易に生成させるための装置であり、電子密度が低いが不純物イオンの少ない電流注入型予備電離装置（EB 型）と、電子密度が高いが不純物イオンの多い J×B 型予備電離装置（J×B 型）の 2 種類がある。本装置は、実験及び長期パルス放電洗浄時のプラズマ電流立ち上げ開始直後からプラズマ電流立ち上がり開始後の一定時間に用いた。また、短パルス放電洗浄及び弱電流放電洗浄時には、放電洗浄開始前から放電洗浄を停止するまでの間連続的に用いている。

方法・設計
EB 型は、陽極とフィラメントの陰極を有し、両電極に高電圧を印加して電子流を作り、この電子流に寄与している電子の一部をプラズマの発生を容易にすることができた装置である。特に、トロイダル磁場との相互作用により生じる電磁流とフィラメント温度を考慮したと及び形状を表 7 に EB 型の仕様を、図 15 に EB 型電極構造を示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>フィラメント（陰極）</td>
<td>トリエチッドタンゲステン（1.69%ThO₂）</td>
</tr>
<tr>
<td>フィラメント径、数</td>
<td>φ1.0mm、4本</td>
</tr>
<tr>
<td>アノード（陽極）</td>
<td>モリブデン（Mo）</td>
</tr>
<tr>
<td>フィラメント電源</td>
<td>出力電流 DC60A、出力電圧 DC30V、定電流制御方式</td>
</tr>
<tr>
<td>エミッション電源</td>
<td>出力電圧 DC2kV、出力電流 DC1A、定電圧制御方式</td>
</tr>
<tr>
<td>取付箇所</td>
<td>2箇所：P6 ボート上</td>
</tr>
</tbody>
</table>

図 15 EB 型電極構造

表 8 J×B 型の仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>放電電極</td>
<td>モリブデン（Mo）製の 1 対（対向電極）</td>
</tr>
<tr>
<td>パルス用電源</td>
<td>出力電圧 10kV、出力電流 80A、出力時間 > 5ms、定電圧充電方式</td>
</tr>
<tr>
<td>連続用電源</td>
<td>出力電圧 DC6kV、出力電流 DC100mA、出力時間連続、定電圧制御</td>
</tr>
<tr>
<td>取付箇所</td>
<td>2箇所、P6 ボート及び P15 ボート</td>
</tr>
</tbody>
</table>

図 16 J×B 型電極構造
JXB 型は、放電ガスはガス注入装置の専用の注入弁からガス導入管を経由して電極（モリブデン）にガスを注入し、そのガスを直ちに電離し、トロイダル磁場とのローレンツ力でプラズマ領域に電離ガスを供給してプラズマの発生を容易にする装置である。特に、電極電流がトロイダル磁場と直角になるように配置し、電極間（2mm）で安定な放電電流が得られるようコンダクタンスを小さくしてガス圧力が高まる構造とした。表 8 に JXB 型の仕様、図 16 に JXB 型電極構造を示す。

結果、成果

EB 型は、真空容器のポロイダル断面に上下対象に取り付けられ、上下連動、又は、単独に運転ができる。図 17 に予備電離電極が挿入された外側状態、図 18 真空容器内に電極が挿入された状態を示す。EB 型電極の写真は図 15 参照。本装置は、定格磁場中において、フィラメントが断線することなく約 280mA のエミッション電流を得た。

JXB 型も真空容器のポロイダル断面に上下に取り付けられて運転される。本装置は、ガス注入速度 2.67Pam³/s、電極間電圧 2kV において、約 20mA の電流グロー放電電流及び、定格磁場中では 1/3 のグロー放電電流と、ガス注入速度 2.66Pam³/s、電極間電圧 7.5kV において、約 50A のパルス放電電流を得た。JXB 型電極の写真は図 16 参照。

検討、考察

EB 型のフィラメントは、端部からの冷却や温度領域を考慮してフィラメント中央を歪曲させた。これにより、熱変形が吸収でき、耐電磁力強度も向上して、断線の生じにくい構造となった。しかし、予備試験の結果から安定の高エミッション電流を得るには焼結処理したトリエッテダングステンをフィラメント材に使用するのが有効であると言える。

JXB 型は、磁場の強度により放電時間が減少する傾向があるため、電極部で安定な放電電流を得るにはガス注入開始と印加電圧の遅延時間の最適化について、さらに構造上から検証する必要がある。

結論

プラズマ点火を容易にするために EB 型及び JXB 型の予備電離装置を設置した。しかし、実際には予備電離装置を使用することなくプラズマの点火ができたため、実機使用はなかったが、予備電離に関する重要な知見を得た。こうした知見は貴重な技術データとなった。

感想

EB 型予備電離装置において、高エミッション電流を得ようとすると、磁場による断線が懸念される。そこで、傍熱形陰極の開発も進め、良好な結果を得た。また、グロー放電の予備電離用に活用できるので、真空容器内電極等への応用も期待できる。

参考文献

[1] 川崎幸三他、ガス注入装置・予備電離装置の性能特性、日本原子力学会 Vol.29 No.11(1987)
（9）電磁気計測検出器

目的

プラズマの位置、形状制御及び真空容器内壁の保護のために真空容器内外に電磁気計測検出器を設置した。電磁気計測検出器は磁気プローブ、ロゴスキーコイル、ワントーンコイル、熱電対等から構成され、各検出器毎に表9に示す目的を持つ。

<table>
<thead>
<tr>
<th>検出器名称</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>磁気プローブ</td>
<td>磁気プローブはポロイダル接線方向の磁束変化を測定するものとポロイダル線方向の磁束を測定するものがある。</td>
</tr>
<tr>
<td>ロゴスキーコイル</td>
<td>プラズマ電流を測定するもの。</td>
</tr>
<tr>
<td>ワントーンコイル</td>
<td>プラズマにかかる周波数を測定するものであり、且つ、プラズマ電流の変化、プラズマ内部インダクタンス、プラズマ抵抗等を求める。</td>
</tr>
<tr>
<td>熱電対</td>
<td>熱流速実験やNBI加熱時の温度モニタ等の使用目的に応じて温度の測定を行い周辺プラズマ実験に役立たせる。</td>
</tr>
</tbody>
</table>

表9 電磁気計測検出器の名称と目的

方法、設計

電磁気計測検出器は電気的にも真空的にも真空容器本体と切り離されており、リード線部分は内部に酸化マグネシウムを充填し、著素ガスを封入して絶縁耐圧を確保する構造となっている。シースはインコネル600製で500℃までの耐熱性を持ち、検出器あたり6.65×10^-14 Pa·m/s（容器内設置のもの）以下のリーク量におさえるよう設計製作された。また、従来の信号検知用のためノイズ対策には十分な注意を払い、熱電対を除いては2重シースケーブルを採用した。各電磁気計測検出器の構造、特徴を表10に示す。また、図19から21に構造を示す。

図19 ポロイダル接線方向磁気プローブ

図20 ポロイダル線方向磁気プローブ

図21 ロゴスキークール

電磁気計測検出器の開発に当たってはコイルの芯線の選択から行ってきた。JT-60で使用される電磁気検出器の芯線は被覆範囲の温度（500℃）に耐えるため、容易に酸化しない芯線を選択し、且つ温度変化による抵抗率が少ない材料を選択する必要があり、候補材料としてセラミックコーティングしたブラチナとコンスタンタンを選択した。また、それらの被覆線の絶縁抵抗の温度依存性を調査した。その結果、図22に示すようにセラミックコーティングされたコンスタンタンの芯線は温度が高くなるにつれ絶縁が劣化しない設計の500℃の値では使用することができることが判明した。しかし、セラミックコーティングされたブラチナの芯線は600℃でも使用できることができ確認されたことから電磁気検出器の芯線材料はブラチナを採用した。
<table>
<thead>
<tr>
<th>計測器名称</th>
<th>構造</th>
<th>取り付け位置と配数</th>
</tr>
</thead>
<tbody>
<tr>
<td>磁気プローブ</td>
<td>ポロイダル接線方向ブローブの基本構造を図19に示す。</td>
<td>ポロイダル接線方向ブローブの基本構造を図20に示す。</td>
</tr>
<tr>
<td>ロゴスキークール</td>
<td>図21に示すように7700mmのコイルがセンサとして機能する。</td>
<td>真空容器厚肉リングの接合リング溝、反分解部接続部にポロイダル断面を1周するように設置される。</td>
</tr>
<tr>
<td>ワンターンコイル</td>
<td>容器内ワンターンコイルは真空容器内にステンレスワイヤーをトロイダル方向に1周し固定したものの。容器外ワンターンコイルはM1ケーブルからなる。</td>
<td>容器内ワンターンコイルはポロイダル断面上下の2箇所、容器外ワンターンコイルは真空容器赤道面のトーラス中心的に1箇所。真空容器外側の上下に2箇所づつ設置される。</td>
</tr>
<tr>
<td>熱電対</td>
<td>熱電対はシース型のものを用いた。</td>
<td>NBI対向面に各5本合計40本設置。またライナやリミタ等に合計24本設置される。</td>
</tr>
</tbody>
</table>

電磁気検出器のコイルは薄い（0.2 mm）のセラミックによってコーティングされたプラチナ線が多層にセラミックポリビンに巻かれた構造となっている。ベーキングやラジオマディションによってその振動は電磁気検出器のコイルにも影響を与えられる。温度変化のサイクル試験（8時間の間に100℃から500℃で150回加熱）や振動試験（976の加速度でコイルに対し垂直及び水平方向に振動）を行い、試験後のコイルの電気的（抵抗及びインダクタンス）、機械的（外装のクラック等）が健全であることを確認した。また、ロゴスキークールのコイルは削り出しのコクサイン線材のコイルと周囲をマグネシア粉で構成した。これらに圧縮引延し加工を施し全長7700 mmのコイルを製作した。後にロゴスキークールはコイルのピッチ間で縫や断面形状の乱れが生じていることが判明したが実装状態を模倣して詳細な計測を行った。外部磁場による測定誤差が1%以下であることを確認した。

図22 芯線の温度依存性

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>R（Ω）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^6</td>
</tr>
<tr>
<td>100</td>
<td>10^7</td>
</tr>
<tr>
<td>200</td>
<td>10^8</td>
</tr>
<tr>
<td>300</td>
<td>10^9</td>
</tr>
<tr>
<td>400</td>
<td>10^10</td>
</tr>
</tbody>
</table>

結果、成果

いずれの電磁気検出器も電気絶縁、形状等の異常は発生せず健全性を保持できた。電磁気計測検出器により、プラズマ電流、位置、内部エネルギー等のさまざまなプラズマパラメータを得ることができた。

参考文献

[1] Development of Magnetic Probe and Rogowski Coil in JT-60
(10) 半固定リミタ

目的
半固定リミタは JT-60 の真空容器に取り付け、プラズマ径の制御、真空容器コイル周りのリミタおよびライン保護のために用いると共にリミタヘッド材を交換することによりリミタ材の研究に用いることを目的とする。

設計
半固定リミタは、リミタヘッド、リミタヘッド冷却機構、リミタヘッド駆動機構、真空シール機構、温度センサ、排気系、ベーキング装置、リミタヘッド冷却用空気源、架台およびこれらのための制御装置から成り、真空容器に設けた SL ポートの中挿入し、電動によりヘッドを駆動できる上下対のリミタである。半固定リミタの JT-60 本体への取付概念図を図 23 に示す。
またリミタヘッドを最も深く挿入した状態、真空容器から引き抜いた状態および SL ポートの先端に設けられたゲートバルブの外側（大気側）に 400 mm 完全に引き抜いた状態の概念図およびリミタ構造図を図 24 に示す。
リミタヘッドは、円形の支持板（材質インコネル 625）の上面および側面に板厚 20 mm のモリブデン板（28 枚）がモリブデンボルトで結合されたもので、駆動軸により真空槽中を軸方向に 3170 mm のストロークで移動する。

図 23 半固定リミタの JT-60 本体への取付概念図
図24 リミタヘッドの位置関係およびリミタ構造図

駆動軸の一端はリミタヘッドに、また他端はスライドブロックおよび真空シール機構ベローズに接続されている。また真空槽内の駆動軸には、絶縁板を介してガイドローラおよび振れ止め金具が取り付けられ駆動軸の軸振れを防止している。駆動の方法は、モーターとチェーンによる。即ちベローズ先端（真空容器側）と後端に、架台に固定されたチェーンスプロケットが置かれ、チェーンにはスライドブロックが固定されている。

リミタヘッド支持板は、プラズマ入熱による過熱防止のため空気冷却を行う。駆動軸内は、2重管となっている。冷却空気は駆動軸後端に設けられた冷却空気入口より内管を流れ、リミタヘッドを冷却した後、駆動軸側を軸後端の出口より流出する。また支持板には熱電対が装着されリード線は空気流路と同様に駆動軸内を軸後端より引き出される。

真空槽先端にはオールメタルシールのゲートバルブが設けられ、真空容器本体の真空を破ることなく、リミタヘッドの保守を行うことが可能となっている。また保守後の真空排気のため、真空排気ポートおよびゲートバルブが設置されている。

可動リミタと半固定リミタの同時使用を防止するためにインタロック機能が設けられた。

結論
半固定リミタはJT-60の真空容器に取り付けられ、プラズマ径の制御、副磁気リミタコイル周りのリミタおよびライン保護のために用いると共にリミタヘッド材を交換することによりリミタ材の研究に使用された。その後、ボンプリミター（5.11（1）参照）に改造され、大電流化改造の時に撤去された。
(11) 可動リミタ

目的
計算機シミュレーションによれば大型トカマクにおけるプラズマ電流の立ち上がりの位相では強い表皮効果が現れると予想され、この表皮効果によってプラズマ中に MHD 不安定性が発生し、その結果プラズマ電流が立ち上がりにくいと云われていた。プラズマ中の表皮効果を低減するための 1 つの方法は電流立ち上がりの位相における徐々なプラズマ半径を大きくすることである。その為に高真空中でリミタ半径を大きくするというわゆる可動リミタが試作開発され、その結果を反映した実機が JT-60 に設置された。

設計
JT-60 設計時的に稼働中であった JFT-2 に取り付けられていた可動リミタは、ストローク 13 cm、最高平均速度 5 m/sec、可動部重量 5 kg を有していた。しかし JT-60 の高速可動リミタはストローク約 1 m、最高平均速度 10 m/sec、可動部重量約 200 kg を有し、単に技術的延長ではなく新しい研究開発が必要であった。また使用材料にはプラズマ中心において不整磁場を 30 G に抑えるために非磁性材（透磁率 μ < 1.02）が用いられた。図 25 に JT-60 に対する可動リミタ組み込み概念図を示す。

・駆動装置：ストローク 850 mm を 10 m/sec の高速で駆動させる装置であり、高制御性、高精度、安全性、再現性が特に要求された。

・真空シール機能：1.3 \times 10^4 Pa の真空を保持しながら約 1m の挙動を行う機構で、He リーク量は 1.3 \times 10^{-7} Pam/s 、250℃ベーキング後常温においてアウトガス量 1.3 \times 10^{-9} Pam/m^2以下。

・高温真空転送：温度約 500℃、圧力 10^{-1}～10^{-3} Pa の水素雰囲気中および 10^{-4} Pa 以下の高真空中で使用され、かつ 1 系統の 1 回の作動による摩擦量は 1 mg 以下、250℃ベーキング後常温においてアウトガス量 6.7 \times 10^{-9} Pam/s 以下。

・リミタヘッド：高加速度において強度的に十分耐える構造で、アウトガス量は 400℃ベーキング後常温において 1.3 \times 10^{-9} Pam/s 以下、さらに最高 1 MJ の入熱を 10 min で基準温度 400℃まで下げる冷却能力を有する。

・附属機器：電気絶縁機構、操作盤、安全装置、加熱装置、架台等から成る。これらの各機器の耐久作動回数は駆動装置については 5 \times 10^4 回以上、真空シール機構、高温真空転送、リミタヘッドなど容易に交換可能な部分については 1 \times 10^4 回以上である。

図 25 JT-60 に対する可動リミタ組み込み図
結果
図26は定格ストローク550mm（600〜910mm）を81msecで通過したときの位置、速度の時間変化を示している。位置と時間の関係はシミュレーションとよく一致しており、低格ストローク内においては10mm以下の誤差で設計どおりの高速動作をしていることが分かる。
またプラズマ電流の立ち上がりと同期して可動リミタを作動させプラズマの振舞を調べた。可動リミタを作動させた放電（以下、可動リミタ放電）と、可動リミタ全開の放電（以下、固定リミタ放電）におけるプラズマの振舞を比較検討した結果、以下の結論を得た。
可動リミタ駆動中におけるプラズマ半径は、可動リミタのリミタ半径の増大に従ってほぼ等しく大きくなる。したがって可動リミタ放電中におけるプラズマ表面の実効的な安全係数q_{eff}は固定リミタ放電より小さい。このため可動リミタ駆動中におけるプラズマの振舞は、固定リミタ放電に比べて不安定となる傾向を示した。なお可動リミタ放電におけるプラズマ電流は固定リミタ放電のそれにはほぼ等しいことが確認された。その後、可動リミタを使用しなくても安定なプラズマ着火・立ち上げが可能であることが確認された。

図26 可動リミタ駆動時的位置と速度の関係

結論
プラズマ電流の立ち上がりの位相における表面効果により発生するMHD不安定性への対策として高速可動リミタが設置されたが、実際には可動リミタ駆動中におけるプラズマの振舞は、q_{eff}の変化が原因となって、固定リミタ放電におけるそれより逆に不安定な傾向になることが確認され、可動リミタは短期間の試験を終えその後はトカマク放電で利用する機会はなく、その後1987年に撤去された。

感想
設計時に様々な問題を見つけ出し対処するための課題であることが明確になった。結果的には従来に終わらなかったのだが、当時は表面効果によるMHD不安定性によって、プラズマがうまく立ち上がらない可能性のあることが先行する大きな課題と判断されていた。

参考文献
[1] 高崎他、日本原子力学会誌 Vol.20 No.4（1978）273。
(12) その場コーティング装置

目的

JT-60 の真空容器、第一壁表面には、1985 年の完成から第一壁の黒鉛化 (5. 5 (1) 章) を図る前の 1987 年 5 月まで、プラズマ中の不純物混入による放射損失を低減する目的で厚さ 20 μm の炭化チタン膜 (TiC) がコーティングされている。この TiC 膜は、プラズマとの相互作用により、プラズマのショット数に比例して損耗する。その場コーティング装置は、損耗した TiC 膜を JT-60 真空容器内で補修すること（これをその場コーティング（in-Situ coating）という）を目的としている。

設計、仕様

1) 基本性能

JT-60 真空容器内の第一壁に TiC 膜をコーティングするためのもので次の性能を有している。

a) 第一壁の損傷状態と損傷箇所の測定を行う。

b) TiC 膜作成のチタン源を真空容器内で移動及び保持でき、かつチタン蒸発を可能とする。

2) 機能

本装置は次の機能を有している。

a) TiC コーティング

b) チタンフラッシュ

c) 内部観察

3) 装置構成

図 27 に構成概要図を示す。本装置は、装置全体、蒸発源アッセンブリ、及び制御装置から構成されている。

装置全体、本装置の中心をなす蒸発源マニューブレータ、マニューブレータに追従し、JT-60 真空容器内面を観察する観察装置、マニューブレータを真空容器本体ポートに接続するための支持架台から構成されている。蒸発源アッセンブリは、TiC 膜の作成に必要なチタン蒸気を電解加熱によって供給するフィラメント、フィラメントホルダーから構成されている。制御装置は、二次元モデルを用いて作業環境及びマニューブレータの幾何学的形状を計算機内に構築し、CRT 上にて学習、シミュレーション、自動運転が行えるようになった。

本装置は JT-60 にポートセクション P-4 (No.1) と P-12 (No.2) の 2 個セット取付けた。

結果、成果

その場コーティング装置のチタン源を使用したチタンフラッシュを 1987 年 3 月 9 日から 19 日にかけて行った。表 11 にチタンフラッシュの実績を示す。シミュレーションによって推定したところでは、平均 5nm 程度のチタンが蒸著されたものの推察される。チタンフラッシュ後の JT-60 真空容器圧力がチタンフラッシュ前より低下していることからチタンによる排気速度の増加が確認できた。得られた排気速度は、市販のゲッタボンプくらしも小さい。これは、高真空領域での蒸着膜による排気作用である。蒸着膜表面が一定のガス吸着量になるまではその能力が期待できるが、一旦、低真空にさらされた場合は短時間でその後の排気能力を失ってしまう。言い換えると、排気作用はガス吸着飽和量に達するまでであり、フラッシュを実施した後、ショット前に壁面のコンディショニング等で真空容器内にガス負荷を加えた場合は、再度フラッシュを実施しない限り、以後のチタン蒸着膜による排気作用は期待できない。

検討

チタンフラッシュの効力を有効に活用するためには蒸着の回数を多く行う必要があり、運転休止期間等で、より対応がきつい装置・システムである必要があり、この点で改良の余地がある。また真空容器内に稼動部分を持つ同種の装置・システムとの共存・共有を考えて装置をコンパクト化し稼動率を上げる工夫が必要である。
表11 チタンフラッシュ実績一覧

<table>
<thead>
<tr>
<th>ポート</th>
<th>第1回</th>
<th>第2回</th>
<th>第3回</th>
<th>第4回</th>
<th>第5回</th>
</tr>
</thead>
<tbody>
<tr>
<td>コーティング時間</td>
<td>5 min</td>
<td>6 min</td>
<td>5 min</td>
<td>5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>推定膜厚(μm)</td>
<td>5</td>
<td>3</td>
<td>14</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

P-4 No.1

<table>
<thead>
<tr>
<th>コーティング範囲</th>
<th>P-4</th>
<th>P-12</th>
</tr>
</thead>
</table>

P-12 No.2

<table>
<thead>
<tr>
<th>コーティング時間</th>
<th>5 min</th>
<th>6 min</th>
<th>5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>推定膜厚(μm)</td>
<td>5</td>
<td>3</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>コーティング範囲</th>
<th>P-4</th>
<th>P-12</th>
</tr>
</thead>
</table>

結論
当初の目的である TIC コーティングは実施しておらず、その性能確認には至らなかった。チタンフラッシュのみではあるが、JT-60 のような大型の装置に対してその場コーティングを実施できたことは、核融合実験装置のコンディショニング手法の確立にとって大きく貢献することができた。

感想、未来へのメッセージ
核融合実験装置の真空容器内表面にコーティングすることは、以後カーボナイザーション、ポロナイザーションと続き、不純物の除去を果たすとともに耐久性を高めることになり、JT-60 ではポロナイザーショングにおいて大きな成果を挙げる結果となった。今後、核融合炉立ち上げにおけるその場コーティングの位置付け、エレジオン等による炉内表面の修復手段としての技術の確立等、開発・研究が進展することが望まれる。

参考文献
(1) 小原健治郎他、「JT-60 用その場コーティング装置原形機の開発試験」、JAERI-M87-143 (1987)
(2) 川崎幸三他、「JT-60 メタングロー放電装置の開発」、JAERI-M87-183 (1987)
(3) 小原健治郎他、「JT-60 その場コーティング装置」、JAERI-M88-117 (1988)
(13) 表面汚染モニタ

目的
表面汚染モニタは、壁・プラズマ相互作用研究のための測定装置の一環として、真空容器内でプラズマ照射し、この第一壁表面を模倣した試料を回収して表面分析器により測定するものである。

設計、仕様
表面汚染モニタは、サンプリング装置と分析装置に大別される。アエロック室にセットされた3枚の試料は1枚ずつ、本体真空容器第一壁位置まで搬送され、プラズマ照射を受けた後、再びアエロック室に保管される。プラズマ照射を受けた試料は、アエロック室と共に分析装置に取付け、大気に曝さることなく、オージェ電子分析計（AES）及び二次イオン質量分析計（SIMS）で表面状態の分析を行うことができる。これによりプラズマとプラズマに直接曝される本体真空容器第一壁との相互作用の時間的変化を観察することができる。また、プラズマを照射する際、試料にバイアス電圧を印加できる構造となっている。

構造
表面汚染モニタのサンプリング装置と分析装置の主な構成及び構造を以下に示す（図28）。

1) 排気系及びガス導入系
ポート部排気系は、ターボ分子ボンプとスパッタイオンボンプを主ポンプとして計測フォアポンプ系に接続される。
分析装置排気系は、磁気浮上型ターボ分子ポンプとスパッタイオンポンプを主ポンプとし、フォアライントラップを介してロータリポンプが設けられている。
ガス導入系は、Arガス純化用として非蒸発ゲッタポンプを備えたArガス導入系とパージ用N2ガス導入系で構成される。

2) プラズマ照射機構
本機構には位置決めガイド、シャック及びパイアス電圧印加用接触子が設けられている。試料は位置決めガイドにより所定の位置にセットされ、パイアス印加用接触子に触れ、印加可能な状態となる。また、試料はシャックを移動させながらプラズマ照射を受ける構造とした。シャックにはスリットと開放窓が設けられており、1枚の試料でプラズマ照射の時間的変化を積算状態を同時にサンプリングできる構造になっている。

3) シャック駆動用直線導入機構
本機構は、プラズマ照射機構に設けられたシャックから張られたワイヤーロープにてシャックを開閉駆動させるものである。溶接ヘローズを介して、ハイルドローマーチックシリンダにより駆動する構造となっており、接触子を介して試料にバイアス電圧を印加できる構造となっている。

4) マニュレータ（1）
本機構は、試料準備室から試料を取出し、試料上下機構へ、また、反対に試料上下機構から試料準備室への搬送及び受け渡しを自動的に行うためのものである。駆動部は、試料の受け渡し及び搬送用の2軸で構成され、それぞれ別のヘローズを介して動く構造である。内側の受け渡し用軸はエアーシリンダにより駆動し、外側の搬送用軸はボールネジ及びモータにより駆動する。

5) マニュレータ（2）
本機構は、アエロック室から試料準備室まで手動により試料を搬送する機能と試料準備室内に於いて自動にて3枚の試料を順次セットする機構より構成されている。両機構とも回転導入端子及びラックピニオンギアを用いており、アエロック室から試料準備室への搬送は手動とし、試料準備室内に順
次試料をセットする機構はモータ騒動とした。
6) 試料上下機構
本機構は、マンピュレータ(1)により受け渡された試料を本体真空容器第一壁位置まで下降及び上昇させる機構である。試料ホルダはチェーンで吊下げ、回転導入端子を介してモータ駆動にて巻き上げ及び巻き下げを行う構造とした。
7) 分析系
分析系は、オージェ電子分析装置と二次イオン質量分析装置にて構成され、両分析計の単独または同時測定が可能である。オージェ電子分析装置及び二次イオン質量分析装置の主な仕様を表12に示す。本装置は、次期計画の装置の取り付けスペースの関係から実機実験の終了を待つずに取り外した。

結果、検討
JT-60において実験すべく待機していたがスケジュールの調整がつかず、実機に取り付けた試料プラズマ照射のデータの取得はできなかった。
尚、予備試験の段階ではあったが真空中の複雑な試料の受け渡しは確実にできた。このことは、従来、真空中に線動部分、操作部を有する装置の設計・製作は非常に難しいとされて来たがJT-60のような大型の装置においても十分可能であることを実証した。

表面分析を行う場合、大気中に晒すことは、データ解析に複雑な要因を作りかねないため、今回の採用したコンテナ型等、真空空気でそのまま分析装置に移動する設計が必要となった。しかし、この移動の一連の作業が煩雑で時間が多く掛ってしまった。運転期間の休止期間の中の限られた時間の中で効率の良い搬送装置の設計製作は必要と思われ、今後の検討課題のひとつとしたい。

感想、未来へのメッセージ
プラズマの物理が理解される程度解明されつつある現在、工学的に材料の選定、プラズマ・壁相互作用の研究の必要性が高まっている。この「表面汚染モニタ」のような表面分析システムのJT-60への適用が実現していたならば、この研究分野ではより一層先駆的な役割を果たしていたものと思う。今後の核融合実験装置においても、この分野の研究が大きく進展するためにもぜひ設計・検討を進めるべきである。

<table>
<thead>
<tr>
<th>表12 オージェ電子分析装置、二次イオン質量分析装置諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>オージェ電子分析装置</td>
</tr>
<tr>
<td>分解能</td>
</tr>
<tr>
<td>CMA 透過率</td>
</tr>
<tr>
<td>電子ビーム径</td>
</tr>
<tr>
<td>電子ビーム</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>走査エネルギー</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>走査速度</td>
</tr>
<tr>
<td>S/N比</td>
</tr>
<tr>
<td>表示・記録</td>
</tr>
<tr>
<td>分析室圧力(Pa)</td>
</tr>
</tbody>
</table>
（14） 中性粒子測定装置

目的
核融合装置におけるプラズマ周辺部の圧力測定は、プラズマ粒子の閉じ込め特性を評価する上で、あるいは、ダイバータを備えた装置では、粒子排気や不純物ガスの除去といったダイバータ効果を評価する上で重要である。そのため、種々の電離真空計がプラズマ周辺部の測定に用いられてきた。しかし、プラズマ周辺部は、プラズマを閉じるための強い磁場やプラズマからの高い雑音レベルにさらされる。このため、市販の真空計（分圧計を含む）を用いて測定する場合には、強い磁場や高い雑音レベルの影響を避けるために、真空容器から遠ざけた位置に設置することが必須となる。一方では、JT-60などの大型装置において要求される圧力測定の時定数は、およそ10msである。このような速い時定数を得るために、真空計を真空容器に近づける必要がある。このため、真空容器の近傍に設置することが可能で、速い時定数でプラズマ周辺部の圧力を測定可能な中性粒子測定装置を独自に開発した。

設計
中性粒子測定装置は、プラズマを閉じるための強い磁場を利用し、ベニングセルの軸とプラズマを閉じるためのトロイダル磁場の向きを一致させ、強磁場がかけられた状態でアノードとカソード間に高電圧を加えることで発生するベニング放電の電流値と放電光から圧力を測定するものである。図29に機器の構成を示す。圧力測定は、メインプラズマ周辺部1箇所及びダイバータ室上部2箇所の計3箇所に真空窓部（ベニング放電開電極）を設置して行った。真空窓部周辺のトロイダル磁場の強度は、それぞれが違う方向（3方向）を測定する3個のホール素子を使用して常時モニタする。規定値以上の磁場強度になった場合に、真空窓部放電部に5kVの高電圧をアノードに印加する方式とした。高電圧を印加することにより発生するベニング放電のカソード電流を電流計で計測し、マイクロコンピュータ（CPU）にデータとして入力した。一方、放電光は、バンドルライトガイド（多芯ファイバーパーミケル）によって本体室から300m離れたシールドルームに導かれる。モノクロメーターあるいは、バンドパスフィルターにより希望する光波長の強度をフォトマルチプライヤーにより計測する。制御及びデータの収集は、本体室及びシールドルームに設置したCPUによって行った。データ収集のサンプリング時間は、2msであり、収集時間は、約1分間である。JT-60のプラズマ電流の立ち上がり信号をトリガーとして取込むことで、圧力信号とJT-60の実験シーンと時刻合わせを行うことができるようにした。

結果
JT-60のプラズマ周辺部の圧力測定を行うために、トロイダル磁場を利用した中性粒子測定装置を設計・製作した。その後、1986年にJT-60の真空容器に設置し、大電流化改造前の1989年までの3年間測定を行った。本装置は、強磁場中で且つ、高い雑音レベルの環境となる真空容器の近傍に設置できることから、ベニング放電の排気作用と比較して配管コングラクタンスが大きくとれるため、圧力測定の時定数が約30msと十分に速い時定数で圧力の変化を測定することができた。また、電流の代わりにベニング放電から発生する光を分光分析することにより、分圧も同様に測定することができた。この測定により、プラズマ粒子の閉じ込め特性や粒子排気・不純物ガスの除去に関する有意義なデータを取得することができ、JT-60の実験運転に大きく寄与した。なお、大電流化改造（1990年）に於いては、プラズマの形状変更及び計測器の配置などの条件により測定は行わなかった。

参考文献
5.2 下側ダイバータへの改造

目的
JT-60ではファーストプラズマから1987年までの実験で、セミクローズドタイプの外側ダイバータによる不純物剥離と高熱入力でのプラズマの閉じ込め性能向上を目指したが、十分なIIモードの生成を得ることができなかった。一方、他のトカマク装置においては上側、又は下側ダイバータ配位実験においてプラズマ加熱時の閉じ込め特性が向上するという結果が得られていた。そのため、新たに下側ダイバータコイルを新設してオープン型ダイバータ配位による下側シングルヌルダイバータ実験ができるように改造した。併せて、既設ポロイダル磁場コイル線結の変更、下側ダイバータコイル設置のために必要なボートの撤去、及び新設、下側ダイバータ板の設置、本体制御系の改造等を1987年11月より1988年3月までの期間に実施した。

方法、設計
真空容器下部の空間を利用して新たに下側ダイバータコイル(Dコイル)を設置(図1)するとともに、水平磁場コイル(IIコイル)四重極磁場コイル(Qコイル)及び副磁気リミタコイル(副Mコイル)を直列結線とした(図2)。また、新たに水平磁場コイル(Sコイル)を追加するとともに、主磁気リミタコイル主Mコイルを垂直磁場コイル(Vコイル)の補助として単独で使用できるように結線を変更した。また、この変更に伴い、Dコイルと空間的に干渉する既設ポロイダル磁場コイル及びマネサポート、絶縁ロッド受座等の改造を行った。下側ダイバータ板には、等方性黒鉄(ETP-10)を使用し、真空容器下部トロイダル方向全周に設置した(5.5.2章参照)。
真空容器下部はトロイダル融磁場コイル等が集中しているため、Dコイルはこうした構造物の周辺にあたる極めて狭い空間をなすを置されなければならないため、このため、先ずコイルの製作に先立ち、実物大のコイルを試作して、現場の作業環境を模擬した状態で溶接、絶縁作業、マネサポート切断作業、並びに工具の開発等のR&Dを実施した。Dコイルは各種ポロイダル磁場コイルの中でも大電流(120kA)であり、電流密度も大きく(約50A/mm²)Dコイルに作用する電磁力も大きくなるため、多くの接続部を持つ本コイルに対する強度上の健全性の確保が必要となった。これについては機械的、電気的性能に関する健全性確認のための各種確認試験を事前に実施した。
R&Dの結果を踏まえ、実際の組み立てにおいては、全周で10分割したブロックで製作し、これらのコイルブロックを同一の搬入口から狭い空間内部に順次送り込み、全体を一旦組み立て、各分割部を溶接する手法を採用した。

結果、成果
下側ダイバータコイルを用いた実験は、高性能化実験(1)として、1988年3月より開始し、1989年10月の大電流化改造まで継続した。この間、2度の短期の運転休止を挟んだが、合計14か月に渡り、下側ダイバータ配位とリミタ配位での実験を行った。下側ダイバータ配位での実験により、IIモードプラズマでは20MWを越える高熱入力プラズマにおいてもダイバータが機能し、十分に粒子と熱の排出が可能であることを実証した。また、1988年7月には下側ダイバータ配位でのIIモードを観測した。一方、IIモードとは異なる閉じ込め改善状態がJT-60の下側X点配位において発見された。これは、20MWの高熱入力実験において、加熱パワーの最大50%をダイバータプラズマによる遠隔放射冷却により遮がすことで、ダイバータ板の熱不可を大幅に低減できる現象である。これを改善ダイバータ閉じ込め(Improved Divertor Confinement、略してIDCモード)と命名した。コイルの運転においては特に技術
的問題はなく、下側ダイバータ板の損耗等による熱負荷損傷は著しくなものであった。1988年6-10月の実験で送走電子によると思われる損耗を受けたダイバータが発生したが、これについては耐衝撃性の高いC/C材に交換した。

検討、考察

大きな電磁力が印加される新たなコイルを、空間の制御条件の下で組み立てるために、特にコイル溶接部及び給電部の強度を確認する荷重試験等を実施した。また、溶接試験を行ったサンプル片に対する材料強度試験を実施した。さらに、コイルにかかる電磁応力評価、コイルの温度解析から、下側ダイバータ配位での定格プラズマ電流2.2MAに設定した。こうした多くの検討手法は同様のコイルに一般的に適用できるので、今後のコイル設計に役立つことが期待できる。また、下側ダイバータ配位で得られた実験結果は、その後の大電流化改造へ進むための多くの基盤データを提供した。

結論

JT-60ではオープン型ダイバータ配位による実験を行うため、真空容器直下にダイバータコイルを新設する改造等を1987年11月より1988年3月までの期間に実施した。この改造により、1988年3月より開始した高性能化実験(1)で、Hモードの生成を観測した。また、Hモードとは異なる改善ダイバータ閉じ込めモード(IDCモード)の生成を確認し、大電流化改造に繋がる基礎データを取得した。

感想

ダイバータコイルの組み立て溶接作業は、真空容器下部ポートあるいはトロイダル磁場コイル等実に狭隘な空間をぬって設置しなければならず、作業者は立ったまま溶接するという、実に困難な作業を強いられたが、事前の検討を着実に進めることで、無事に遂行できた。当初予想しなかった新たなコイルを追加するという技術的困難を克服した経験は、その後の運転方式を見直し等によるコイルの改造や製作に活かせる知見となった。

参考文献

5.3 大電流化改造に関わる本体改造

(1) 大電流化改造真空容器・ポート

概要
JT-60 の臨界プラズマ条件達成以降において、大電流化によるプラズマ閉じ込め性能の向上と高密度高効率電流駆動によるトカマク定常化の開発研究を中心としたトカマク高性能化研究の計画された。この計画の中核は、既存のトロイダル磁場コイル内側にほぼいっぱいの真空容器及びプラズマ生成・維持のためのポロイダル磁場コイルを新たに設置して、6MAクラスのD型断面プラズマの生成が可能となるようにJT-60 を改造（以下「JT-60U」という）するものである。

核融合装置の真空容器には一般的に
①電磁力等の耐荷重②トロイダル方向
一週の電気抵抗値の確保③超真空の
保持④ベーキング加熱、プラズマ入熱に
に対する冷却⑤高製作精度が要求される。
JT-60Uにおいては、さらに、限られた空
間に最大容積のプラズマを生成できる
真空容器を設計製作するという大きな
課題が課された。

表1 JT-60Uの主要仕様

<table>
<thead>
<tr>
<th>主要項目</th>
<th>ダイバータ配位</th>
<th>リミタ配位</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラズマ電流</td>
<td>6MA</td>
<td>6.5MA</td>
</tr>
<tr>
<td>主半径</td>
<td>3.2-3.4m</td>
<td>3.2-3.4m</td>
</tr>
<tr>
<td>副半径（水平）</td>
<td>0.8m-1.1m</td>
<td>0.8m-1.1m</td>
</tr>
<tr>
<td>(n)（垂直）</td>
<td>1.5m</td>
<td>1.5m</td>
</tr>
<tr>
<td>エロングレーション</td>
<td>1.4m-1.6m</td>
<td>1.4m-1.8m</td>
</tr>
<tr>
<td>プラズマ体積</td>
<td>(<100m^3)</td>
<td>(<110m^3)</td>
</tr>
<tr>
<td>トロイダル磁場</td>
<td>4.2T（14.4T・m）</td>
<td></td>
</tr>
<tr>
<td>放電時間</td>
<td>15s</td>
<td></td>
</tr>
<tr>
<td>放電間隔</td>
<td>10-15min</td>
<td></td>
</tr>
<tr>
<td>加熱出力（NBI）</td>
<td>40MW</td>
<td></td>
</tr>
<tr>
<td>(n)（ICRF）</td>
<td>(<5MW)</td>
<td></td>
</tr>
<tr>
<td>(n)（LHCD）</td>
<td>(<10MW)</td>
<td></td>
</tr>
</tbody>
</table>

設計／構造

JT-60Uの真空容器は、大別とすると、真空容器本体、ポート、温度制御システム、第一壁（5.5(3)に
後述）から構成される。真空容器本体は超真空機器であり、その構造は、断面形状が円弧（13 円
弧）を滑らかに接続した円弧断面形状（図1）でその容器壁は2重構造である。このように複雑で製作
性的難しい構造の採用は、対容370m³のプラズマの生成・維持が可能な真空容器を新設するトロイダル磁
場コイルと一緒に、既存のトロイダル磁場コイルの内径 3.9m に収めるための調整設計の結果を踏まえて決定した。

真空容器本体の材質は、トロイダル一周抵抗（〜0.2mΩ）の確保と強度を考慮して
インオネル 625 とし、真空容器の設計荷重条件は、通常運転及びディスラプション時の
電磁力（ディスラプション速度
6MA/10ms（D）、6.5MA/10ms（L））とした。
また、ディスラプションの消減形態は想定されるケースの全てとした。その中でリミタ
における下/上移動消減が一番厳しい荷
重条件と想定された。

真空容器壁の2重壁構造の厚さ（インナ
ースキン3.8mm以下アワースキン外側ま
での厚さ）は 40.7mm であり、インナース
キン（板厚基準値 6.1mm）とアワース
キン（板厚基準値 6.1mm）の間に角管（内
厚基準値 3.0mm）をポロイダル方向に配し
た広い意味のコルゲート構造である（図2）。
その製作精度は、インボード側（2-1m 以
下）ポート中心までの領域において R 方
向、Z 方向＝基準値±5mm、インボード側赤
道面真円度＝平均値±5mm、その他の部分
の真円度＝平均値±5mm である。前述以外
の領域では、R 方向、Z 方向＝基準値±2mm、
真円度＝平均値±8mm である。
なお、仕様に規定する真空容器の断面寸法は、プラズマ実験が300℃での高温運転が主となること、及び既存のトロイダル磁場コイル内径に真空容器等を収めるための空間が無視を考慮すると不足することから300℃における値と定義された。

真空容器を形成する2重壁構造のパネルは、トロイダル方向に20°のセクター16個（各セクターはポロイダル断面において4分割されたものから構成され、これらは、工場において最終的にはC型状の約160°ブロック2個に組み立てられる。）及び組み立て分割部用40°セクター分1式（トロイダル方向40°×ポロイダル断面に4分割のパネル4個を単品として完成させ、現場に搬入した。これからの真空容器のパネルを工場において円環状に仮置きした状態を図3に示す。

真空容器本体の支持構造は、真空容器赤道面上において内側18カ所（支持荷重±35ton）及び外側18カ所（支持荷重±60ton）でポロイダルコイル支持体に支持する構造であり、ベニングによる熱伸びは、その支持構造により主半径方向（従来は大周方向）にフリーで、大周方向の移動は拘束される（図4参照）。

真空リール法については、溶接部、フランジ部及び各部（単品）每の許容ヒリウムリール量は1×10^7Pa・m²/sとした。真空容器全体では1×10^7Pa・m²/sとした。

真空容器の温度制御について、真空容器本体のベニング方法は、コンプレッサとウッターレン間の空気中に加熱された窒素ガス（ループ圧力5kg/cm²、最大流量13,000Nm³/h）を流すことにより行われた。ベニング温度は最大300℃（最低温度から300℃まで任意に設定可能）で、昇温速度は300℃において5℃/hとした。なお、各部にはベニングの補助としてシースヒーターが取り付けられた。ベニング後の真空容器の冷却（降温）は、加熱窒素ガスに換えて、常温の窒素ガスを2重壁の空間に流すことにより行なった。

断熱材は、薄型特殊構造の高性能断熱材（セラミックスファイバー、厚さ5mm）を2枚重ねにして使用した。

図2 真空容器の二重壁構造

図3 真空容器を円環状に仮置きした状態（工場出荷前）（側面部は組み立て分解部である）
内の真空容器の実寸大モデルアップ（20° セクタ）を実機と同様の方法で製作し、真空容器の製作性を確認した。また、加工精度要求を満足させるため熱間曲げ加工を、850℃で「ホットサイジング」成形した状態で高温を保持し、スプリングバック量を低減する加工法を行った。また、真空容器のアウタースキンと内管とのスロット溶接用の孔加工には、3 次元曲面を持つアウタースキンの加工荷重による変形が問題とならないようにアズレシート・ウォータージェット工法（ジェット水流による孔空け加工法）を採用した。

ポートの台座（ポート付け根の厚肉部）、アウタースキンとインナースキンの接合部等、複雑形状の機械加工については、3 次元 CAD で得られる形状データを使用して、NC（数値制御）加工を行った。160° ブロック単品完成状態における主要寸法（真空容器の両端位置、ポートの先端位置等）は被検査体が 3 次元曲面体であるから、トライダル方向、主半径方向、高さ方向（矩形座標の X, Y, Z）の位置測定を行う場合、基準面を引く（あるいは曲面など）と離れ問題があり、3 次元レーザートランスティット 2 台（測定点を X, Y, Z の矩形座標で測定することが出来る）を使用して、正確に測定された。

③リンク試験：リーグの無い真空容器を製作するために、製作段階でパーツの健全性を確認にチェックする必要がある。その対策の一例として、真空容器で形成するパネル同士の工場及び現場における溶接接続部の真空リーグ検査を実施するため、接続部分の接続リンクに真空リーグ検査用の溝を設けた（注：設計段階から検査方法を検討して、検査段階で困難ないように方策した）。また、工場における 160° ブロックの真空容器のリーグ検査は、真空容器内部を真空にした検査の場合、容器に働く外力の保持に非常な困難を伴うことから、二重壁の空間を真空排気し、真空容器の内部にヘリウムガスを充満させて行った。結果として、工場出荷時、現地完成時において真空リーグは無かった。

④ベーリング、冷却：真空容器の空箱ガスによる加熱/冷却性能は仕様を満足した。JT-60 に比較し、軽量で熱容量が小さく、従って、昇温/降温速度が速いので、実験運転において機動性が良くになった。

ボートの基本計画

ポートの基本配置図を図 1 に示す。また、ポートの種類と内訳を表 1 に示す。JT-60 と構造的に最も異なる点は、真空容器の赤道面に 18 個の大口径の水平ポートが設けられたことである。垂直ポートはブラズマ計測用と電磁気検出器のリード線の引き出用に利用された。大型ポートで、負イオン NBI ポートなどのように装置がまだ製作されていないものについては、開閉フランジはリップ維手溶接（複数回切除/溶接可能な構造）された状態で完成した。なお、ポート材質は SUS304 である。

ポートおよびゲートバルブ（上側のみ）のベーリング目標温度は max150℃での、ベーリングはポート外表面に取り付けられたシースヒーターにより行う。ポートの温度制御は、ポート外表面からの自然放熱とヒーターの発熱量が温度目標温度を 150℃においてバランスするようにして行う無制御方式である。ヒーターの発熱量を制限する通電電流は、JT-60L の完成時の性能検査においてポートの種類毎に実際にベーリング試験を行って決定した。また、電流はヒーター通電を off にした自然冷却である。

ゲートバルブについて、上側小口径ポートにおいては、ベーリングを溶接し、その上にメタルシールゲートバルブを取り付ける。下側小口径ポートにおいては、ベーリングを溶接し、その下にインサートシールゲートバルブ（製造品）を取り付ける。インサートシール型ゲートバルブが採用された理由は、JT-60 のゲートバルブがメタルシールであったため、下側ゲートバルブに限って、シート面に黑鉛製第一環の粉末が接し込んで、しばしば真空リーグの問題が発生した経験からの判断による。ベーリングは上架台又は、下架台内に設置し、ポートは、下のポートガイドローラ（ローラを利用させて、ポートの径方向を拘束し、軸方向の熱伸びをフリーようとした構造）で固定される。

ボート種類	数	
U1 (垂直ポート)	6	6
U2 (垂直ポート)	14	15
U3 (垂直ポート)	1	1
IN (INポート)	8	8
NBI (NBIポート)	7	7
V (Vポート)	2	2
RF (RFポート)	1	1
PA (PAポート)	1	1
R (水平ポート)	18 (赤道面)	
開発試験
①支持構造部（図4）の支持ロッド（インコンベル25）との接触部の受け座の材料は、ベーチング温度（受け座は強制冷却するので耐熱仕様は200℃）、繰り返し大荷重に耐え、かつ、傾動可能で、電気絶縁材料である必要がある。このように過酷な条件（従来、工業界で実施のあった傾動条件に比較したpV値（面圧と傾動速度の積）は50倍を越えるに耐える受け座の材料の中選択に当たって、支持ロッド受け座の候補材料6種類について、使用環境と同じ条件下で特性試験を行った。その結果、リン鋼板表面に鋼板粉末を塗布し、その流動特性にPTFE及びFbを含浸させた特殊傾動材（DD金属）を選定し、実機に適用した。
②アラタスミンと角管を接続するスロット溶接部の健全性について、設計評価データを得るため、スロット溶接部に加わる想定される荷重（アラタスミンと角管の引き割れ）をせん断、アラタスミンの引き張り）に対して疲労強度試験を実施し、設計強度が十分確保されていることを確認した。
③真空容器の加熱（ベーチング）および冷却（プラズマ入熱の除去）の機能を満足させるためには、薄板二重構造の内壁に所定の量のガスを均一に流す必要があり、また、ガス循環系側の制約から圧力損失を最小に抑えることが求められる。一方、二重壁内の流路はインボード側内壁およびポートのある場合、複数の分割部と合流部がある複雑な構成となる。そこで、各流路（角管と角管との間）へのガス供給（流速）の均一にするため、各流路を対象に回路網解析によるオリフィス設計（配置と絞り度の最適化）を行った。また、回路解析に使用する流動特性データを取得するために、複数の代表的な分割・合流モデルを作製（図5）でガス流試験を行い、各部の損失係数等の実験特性データを得た。

検討、結果
①所定のプラズマ体積及びプラズマ電流を得ることができまる真空容器を製作することができた。JT-60Uは1990年度末に完成し、1991年度より実験が開始された。以来、真空容器（ポートを含む）は現在至るまで真空中隠れ等について深く、大きなトラブルも無くプラズマ実験に供されている。
②真空容器は、非常に製作が難しい断面形状でありながら製作精度、耐真空等の等の仕様を全て満足して製作出来た。また、ベーチング時の昇温時間及び冷却時の降温時間についても、仕様を満足した（この点はJT-60より機能性が良くなかった）。
③現地における真空容器内の内部冷縮は、フロンに換えてアセトンにより実施した。丁度この場、フロンによる地球空間を覆うオゾン層の破壊が世界的な問題として指摘され始めた時期であった。
④軽量であるため、熱容量が小さく、窒素ガスによる加熱/冷却性能はJT-60に比較し、短時間（昇温/降温速度が速い）で実施することが出来た。

感想、未来へのメッセージ
当時、真空容器の設計は大手メーカー3社によって実施されたが、それぞれ、異なる真空容器の構造が提案された。プラズマの体積を確保するために、トロイダル磁場コイルの内径に目いっぱい（もちろんポロイダル磁場コイルの必要スペースを除いて）の大きさの真空容器を製作する必要があることから、検討の結果、実験値に採用した真空容器の構造は、薄板二重壁（容器壁が薄く、強度的に有利）で、且つ、多円弧断面形状（容器の容積が大きく構造する）の構造である。この構造はこのような利点がある反面、技術的には世界的にも例例がなく、3社の提案のかたで大幅な加工が難しいと言われる構造であった。航空機等の厚板構造の製作技術を受けてメーカーに製作を託すことになったが、13個の円弧をスムーズに繋げた多円弧断面の真空容器の製作は、大容積プラズマの実現のための大げさに言えば賭けでもあったが、成功する--か--と心で唸んだ。チャレンジと確実性の接点をどこに求めるかは、まさに、技術的、工学的センスの問われるところか？

参考文献
(2) トロイダル磁場コイルと架台の補強

目的
JT-60 の大電流化改造計画では真空容器とポロイダル磁場コイルは新製品に更新するものの他の機器・設備は従来品を再利用することとされた。一方、プラズマ電流を従来の約 2 倍にするなどプラズマ性能は大幅に増大されるため、これらの機器にも多少の改造は必要となった。特に、トロイダル磁場コイル (TFC) に対する電磁力が増大し、従来のまでは強度上の問題があり補強が必要となった。

設計
TFC は 5.3(1) の図 1 に示すように大電流化後も改造前と同様に中心支柱及びスペースを介して上下架台により支持される。TFC に関わる JT-60U の主なパラメーターを列挙する。最大プラズマ電流 (Ip) はトロイダル磁場 (Bt) 4.2 T においてダイバータ配位で 6 MA、リミタ配位で 6.5 MA と従来の 2.7 MA、3.2 MA のほぼ倍増となる。プラズマ主半径 (R) は 3.2~3.4 m、副半径 (r) は 0.8~1.1 m（水平方向）、1.4~1.5 m（垂直方向）、プラズマ体積は 80~100 m³ 及び放電時間は 15 秒である。また、TFC の運転条件は初期の JT-60 ではリミタ配位で 1p を通常 2.7 MA 時には RB=13.5 T-m としていたが、2.7 MA から 3.2 MA に増大したときに用いた値 RB=14.4 T-m を設計条件とした。ポロイダル磁場コイル (PFC) とプラズマによって形成されるポロイダル磁場により TFC に大きな軸外力が生成される。初期の TFC においては、コイル上下半分ずつにそれぞれ 450 トンが作用し、50000 回の繰り返しにも耐えるよう設計された。改造後の新 PFC 及び新プラズマ形状により通常運転時のプラズマ立ち上げ時に 640 トン/上半分、-590 トン/下半分の軸外力が作用することとなった。この場合の応力分布を図 7(a) に示す。コイルケース側板のテーパ部に最大で 833 MPa の応力が作用することが分かる。これは高マンガン鋼の許容応力 780 MPa を超える。なお、プラズマディスラジョン（消滅時間 10ms）時の軸外力は上記値を下回る。応力低減のために二つの対策を講じた。一つは隅り合う TFC を 2 個ずつ溶接により結合しコイル自体の剛性を高めたこと、もう一つは上架台のアーム部を補強し剛性を高めることにより上架台の変位を抑えたことである。これら補強の効果を図 6 に示す。なお、アーム部の補強 7 箇所は上下の板を追加溶接することにより補強したが、1 箇所は他の装置との干渉により同じ方法が採られなかったため厚板を側板に溶接することにより補強した。これらの結果、TFC に発生する応力は図 7(b) に示すように最大で 470 MPa まで低減することができた。また、上架台の変位を 3 mm 以下に抑えることができた。しかし、これら補強のもとで最大運転荷重では許容運転回数は 10000 回にとどめることとした。

コイル通電によりコイル温度（特にテーパ部が大きい）は上昇し熱応力が発生するが電磁力による応力と合わせ評価しても特に問題はない。

図 6 トロイダル磁場コイルに関わる補強
結果と考察

以上の補強対策により設計目標は十分達成された。但し、運転回数については一応注意は必要であるがこれまでの運転実績ではほとんどのショットが最大定格を十分下回るものであるため現実的には当分問題とはならないと思われる。

将来に向けて

トロイダル磁場コイルは JT-60 運転開始当初より使用され続けている主要コンポーネントであり、異常が発生しても容易に交換できるものではない。5.12 章で述べるようにこれまで導体冷却管にクラックが生じ、水浸し出しも発生している。これまでも慎重な運転や定期的な観察及び試験が実施されてきたが今後も同様な注意が必要であろう。

参考文献

(3) 電磁気計測検出器

目的
電磁気検出器はプラズマの位置・電流・電圧及び温度等を測定しプラズマ制御に不可欠な制御パラメターを得るために使用される。JT-60 大電流化改造に伴い電磁気検出器の種類及びに取り付け位置が増やされ、これらの電磁気検出器は表 3 に示すように目的別に取り付けられている。

<table>
<thead>
<tr>
<th>名称</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC プローブ</td>
<td>プラズマ制御用の検出器でボロイダル磁場の接線成分を測定するもの。</td>
</tr>
<tr>
<td>N プローブ</td>
<td>プラズマ制御用の検出器でボロイダル磁場の法線成分を測定するもの。</td>
</tr>
<tr>
<td>TM プローブ</td>
<td>プラズマ周辺の接線成分の MHD 振動を測定する検出器。</td>
</tr>
<tr>
<td>ロスキークール</td>
<td>プラズマ電流を測定する検出器。</td>
</tr>
<tr>
<td>ワンターンコイル</td>
<td>トーラス 1 周回圧を測定する。また、フラックス測定によりプラズマ制御に使用される。</td>
</tr>
<tr>
<td>反磁性ループ</td>
<td>プラズマの内部エネルギーの測定に使用される。</td>
</tr>
<tr>
<td>ダイヤベル熱電対</td>
<td>ダイヤベル部の温度分布を測定する熱電対で赤外 TV の照射用に用いられる。</td>
</tr>
<tr>
<td>NBI 熱電対</td>
<td>NBI ビームラインのインターロック制御のため用いる。</td>
</tr>
<tr>
<td>接続 NBI 熱電対</td>
<td>接続 NBI ビームラインのインターロック制御のため用いる。</td>
</tr>
<tr>
<td>リッブルベース熱電対</td>
<td>逃廃粒子によるリミタム温度上昇を測定する。</td>
</tr>
<tr>
<td>制御用熱電対</td>
<td>ベーキング時の真空容器温度を測定する。</td>
</tr>
</tbody>
</table>

方法・設計
JT-60 の大電流化改造により真空容器内には 6 種類の電磁気検出器（TC、N プローブの基本構造は改造前と同様）と 5 種類の熱電対が取り付けられ熱電対は全て一般流用品を使用している。制御用に使用している TC 及び N プローブは JT-60 で従来使用していたものを基本的同一構造のものを取り付けた。新たに加えた TM プローブを含む各タイプの電磁気プローブの電気特性を表 4 に示す。これらのプローブコイルは多層巻きなので図 8 に示すような組み込み方式を採用し、巻き乱れが生じないように非常に注意深く巻き上げられている。

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>TC プローブ</th>
<th>N プローブ</th>
<th>TM プローブ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ソイル直径</td>
<td>mm</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>鎖交面積</td>
<td>m²</td>
<td>0.334</td>
<td>0.659</td>
<td>0.012</td>
</tr>
<tr>
<td>線数</td>
<td>トーン</td>
<td>6220</td>
<td>1088</td>
<td>176</td>
</tr>
<tr>
<td>圏数</td>
<td>層</td>
<td>20</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>インダクタンス</td>
<td>mH</td>
<td>34.6</td>
<td>24.1</td>
<td>0.115</td>
</tr>
<tr>
<td>電気抵抗</td>
<td>Ω</td>
<td>1300</td>
<td>752</td>
<td>41.1</td>
</tr>
</tbody>
</table>

MHD 振動を測定するための磁気プローブは周波数特性を向上させるために図 9 に示すように巻数を少なくなった小さなコイルを採用し、応答特性の低い（〜10kHz）プローブから応答特性の高い（〜250kHz）のプローブを取り付けた。

大電流化改造前のロスキークールは X 線測定で断面形状を確認したところコイルのビッチ間に若干の傾き乱れが生じていた。よって、ロスキークールは断面を巻き付け周囲をマグネシウムで被覆して構造から、コイル線に MI ケーブルを採用し傾きや断面形状を改善した新しいタイプに変更したコイルを取り付けた。また、ワンターンコイルもステンレススライヤーから MI ケーブルに変更した。
これらの検出器の配置は図 10 に示すように大口径ポート開のポロイダル断面の配置を基本とした。ポロイダルコイルの引き出しみフィーダーに近い部分では不整磁場が生じるため、このような場所からはできる限り遠ざけて設置した。また、NBI 対向面は NBI ビームの入射により熱負荷が大きいため制御用プロープの配置を極力避けた。

JT-60 の大電流化改造は、できるかぎり大きなプラズマを生成することを目的としていることから電磁気検出器の取り付けスペースは 20 mm 以内（相差半径方向）に収める構造とした。

図 9 TM プロープ構造図

図 10 電磁気検出器配置図

結果、成果
電磁気検出器は様々な使用環境下を想定し、また、限られた空間設置の中で設計され、据え付けられた。これらの電磁気検出器は高精度の製作精度並びに据え付け精度により所定の性能を発揮し、大電流化改造後の JT-60 でのプラズマ制御並びに実験データの取得に大いに貢献をした。

検討、考察
電磁気検出器はプラズマ実験により破損することもあったが、殆どの破損箇所（コイルと引き出しケーブルの接続箇所）が特定できていることから、実験におけるプラズマ配置・形状と検出器の位置との関連を今後の設計に反映することにより信頼性を向上することができる。
(4) ポロイダル磁場コイル

目的

JT−60 装置の大電流化改造（JT−60U）はプラズマ性能の向上を図るために実施し、ダイバータ配位、リミタ配位のプラズマ電流値をそれぞれ 6 MA、6.5 MA まで上げることを目的とした。そのため真空容器と共に、ポロイダル磁場コイル（PFC）も改修が行われた。

改修前と同様に改修後の PFC もポロイダル磁場コイル（TFC）内側に設置された。改修後の真空容器の体積增大に伴い PFC は空間制限に対する厳しい設置条件を満足する必要があった。更に、プラズマ電流値を約 2 倍にしたため、PFC が越える電磁力も増大した。PFC の構造は、運転に対し健全であることが要求された。

設計

JT−60U の PFC は、JT−60 時に対し約 2 倍のプラズマ電流値を制御するためにターン数を 2 倍に増加した。PFC は JT−60 時と同様に空心変流器コイル（F コイル）、垂直磁場コイル（V コイル）、水平磁場コイル（H コイル）から構成されるが、四重極磁場コイル（Q コイル）及び真空容器内に設置された磁気リミタコイル（M コイル）は撤去された。ただ、ダイバータ配位を生成するために使用されるダイバータコイル（D コイル）、プラズマ中に磁気島を生成するセクターコイル（DCW コイル）が新設された。図 11 に JT−60U の断面図と各 PFC の主要仕様をまとめた。

PFC 導体材料は TFC のインボード側に用いられた 0.2% 銅合金無酸素鋼 40% 加工材を用いた。限られた空間を高有効に利用し各コイルに電磁的、機械的特性を持たせるだけでなく、絶縁層材料であるマイタープの耐熱許容値 155℃ 以下とするため、単体コイル断面積に対する導体断面積の割合の拡大を図り（図 12 上）、更にワイヤーレン周りの集束体として一体型構造を採用することにより、各ターンに作用する磁力電流を小さくする構造とした（図 12 下）。

PFC は 18 個の支持構造物により支えられている。支持構造物は非磁性高マンガン鋼の厚肉材を用いて製作され、TFC と真空容器の間に設置された。PFC 支持構造物に作用する外力は① PFC の自重、② PFC の垂直電磁力及び熱荷重による摩擦力、③真空容器に作用する電磁力、真空容器の自重等である。

PFC 支持構造物は PFC の自重、垂直電磁力を支持し、PFC を大半径方向に拘束せずに熱荷重を PFC に作用させない構造とした。従って、PFC は自己電磁力の大半径成分を自身で支持する構造とした。

PFC 支持構造物に作用する大半径方向の荷重は摩擦力であり、支持構造を設計する上で、この摩擦力の取扱が必要となった。

最終的な設計はこれら電磁力、摩擦力、熱応力を有限要素法（MSC/NASTRAN）により評価した。プラズマ消失時の計算においては、真空容器との反力の算出のため、PFC 支持構造物と真空容器を組合せた静的解析まで実施することにより健全性を確認した。

PFC 工期短縮を図るため、新たに各種の製作機器を製作し、PFC の製作を実施した。製作工場における PFC 導体接続は、局所真空排気を行い電子ビームで溶接後、加工硬化を施することにより電気
的、機械的特性の劣化を低減した。製作工場で接続された導体は、専用に開発された自動絶縁テープ巻器を用いて絶縁処理を施した後に、開発された自動寸法計測器を用いて検査を行った。現地での PFC 導体接続は、TIG 溶接で実施された。

現地組立作業は ボロイダル方向に四個のプロックに分けて実施された。インボード側、ダイバータ側は 340°、20°のトロイダルセクターに分けて工場で製作されたものを現地で設置し、アウトボード側上部、下部は輸送上、下部を 170°を 2 本と 20°に分けて製作し現地で溶接を行った。PFC の 340°、真空容器の 320°迄の現地組立段階にて TFC をトロイダル方向に組み込み、最終的に PFC の 20°の溶接接続、真空容器 40°分の溶接構造することにより真空容器と PFC を合わせた全体を構築した。

結果、成果

PFC のいずれのコイルも実験に支障を与えることなく健全に運転されている。

PFC の運転制限として、①プラズマ消滅時の誘導電流による電源への影響、②運転時振幅力 PFC 各コイル溶接構造部への影響が挙げられた。

プラズマ消滅時の誘導電流に関しては、II コイル、D コイルに大電流が誘起されることが当初懸念された。特に、II コイルの場合、通常運転時の II コイルに要求される電流は 30 kA 未満であるが、電磁的にプラズマの垂直移動と強く連性するため、プラズマが上側、下側に移動消滅した場合、II コイルには約 90 kA の誘導電流が生じると評価された。最終的には、II コイルの電源をサイリスタコンバータに改修した。

PFC は空間的制限により導体断面積を十分に拡大できず、溶接構造部に対する拡張力が運転制限となった。

プラズマ形状などを制御するために使用される V コイルは、四種類の結線変更が可能な構造となっている。大電流化改造後、この結線の簡素化及び高角度配位を得るための V コイル切替えパーソを追加する改造を実施した。

参考文献

(5) 分解・組立

目的
JT-60大電流化改造は、JT-60現有装置設備を最大限に活用しつつ、真空容器及びポロイダル磁場コイルを全面的に作り替えることによって、JT-60のプラズマ性能を飛躍的に向上させる事を目的としている。改造工事は1988年度に改造機器の製作を開始し、1989年度より改造工事に必要な範囲の機器を解体・撤去した。撤去後、直ちに据付組立を開始し、約1年の期間をかけて、工事を完了した。

方法、設計（仕様）
【解体】
JT-60では、逃走電子やプラズマディスラプションの発生に際して高エネルギーチャージ電子が生成され、第一壁と衝突する時に硬X線が発生する。この硬X線は、第一壁等の真空容器構造物中において、γ-\(n\)反応等の核反応を引き起こすのに足りるだけの高エネルギーを有する。その為第一壁と真空容器等の近辺の構造物は放射化するため、こうした構造物の解体に当たっては放射化物として切断解体を行うことをとした。その工事管理や解体物品の処理保管において労働安全衛生法の電離放射線障害防止規則に基づいて行う。解体工事は、大規模な作業となるため、一般的な工事安全についても十分配慮を要する。解体方法では、まず解体撤去範囲を決定し、その範囲の機器を、撤去品、再組立品、保管品に区分けした。撤去品については所内及び外施設に部材毎に処分するための保管場所を設定して撤去した。再組立品、保管品は所内建屋内の指定場所に移動して保管した。解体手順を図13に示す。解体品である真空容器は放射線管理用出入口を設け放射線拡散防止を図った後、内部を解体し、全体をガウジングにより切断した。この作業を項目毎に評価し外部被曝、内部被曝線量ともに問題の無いことを確認した。1988年7月には「那珂研－安全審査委員会」にて解体工事に係わる安全性について報告し承認を受けた。特に工夫したものは、被曝管理について、作業項目毎に確認することであった。そのため、運転実績及び放射線の発生結果を統計処理したものと実測試アルゴリズムを準備し、この解析により詳細な放射化及び汚染の範囲を評価した。また再組立品は復旧手順に合わせた仮設き配置を行い、組立工程がスムーズに遂行出来るようにした。

【組立】
組立においては、真空容器とポロイダル磁場コイル（PFC）の各構成品を分解部、反分解部に分けた3分割で撤入し組立を行った（図14）。組立手順を図15に示す。まず組立室で①外枠ポロイダル磁場コイル、ダイバーターコイル部及び②外枠PFC並びに③真空容器内のPFCの反分解部を組合せた。本体室に①外枠PFCを基材台に設定し、次に③真空容器、②外枠PFCの順で接合させた。トロイダル磁場コイル（TFC）は分解部より組み込み、最後のTFCはPFCと一体で組み込まれた。真空容器は内部より接合した。特に劣化した点は既設装置が残っていたため、基準点から据付位置の寸法出しで作業した。これにより、基準点の移し替えを行うことで作業効率を上げることが出来た。また分解部・反分解部は狭隘部での作業となり、特にコイルの接合においては寸法出し後、固定金具で支持しコイル溶接により熱影響を受ける部位の水冷構造、溶接、非破壊検査、絶縁処理を1ターン毎に実施したため、実際に多くの労力を必要とした。主要機器以外の組立では、真空容器のパッケージを電気ヒータから高温ガスに変換したため、その配管ルートを確保するため、また同じ現地設計で放射線遮蔽のため新設されたポリエチレン板の取付等で多くの作業が必要になった。

検討、考察
【解体】
大物基礎の解体はガウジングで行った。この方式はミスト、残砂が多く放射化物の多い場所では不適と思われる。この方式の解体技術は年々進歩しており、特にワイヤーソーによる切断が進んでいる。米国プリンストンのTFTRは、ダイヤモンドワイヤーソーによって解体されたが内部を軽量コンクリート塗めにし且つ水を使用し、これをダイヤモンド歯のリフレッシュ劑として解体された。近年は更に残砂を低減するためコンクリートを使用せず、水をガスに変えて切断できるワイヤーソー切断技術が原子力解体等で開発されている。また大型のバンドソーも開発されており、これらの利用により今後はさらに工期短縮、被曝低減、放射性廃棄物低減等が期待される。
1. 第1層破体
2. Mコイル切断
3. P1 鏈合リング切断
4. ヘローズ切断
5. ポート切断

2. 分解部切断時

P-1分解部

VV内比管理区域

→ P-1側

1. P-1外PFO切断
2. 鏈合リング切断
3. P-1内PFO切断

3. P-1〜18切断案去

VF+VV

→ P-1側

1. P-18外PFO切断
2. ヘローズ切断
3. P-18内PFO切断
4. P-18ポート切断
(4) PFCとVV分離
(非管理区製作業)

真空室内にPFCのメガネサポートを水平部切除しPFCとVVを分離する

真空室長は縦立室内管理区基部へとり出す。

(5) P-6〜7間切断

1. TFQ-1〜7縦体基
2. ヘローズ切除（#2〜4間）
3. 切断後①Grをとり出す

(6) 縦立室内管理区基

1. ポート付け縦切断
2. VVをセクターへロース切除、セクター分離
3. VV対正板取付
組立手順

① 外下PFCとダイバータコイル結合（外下PFC反分解部接合（組立室））

② 外上PFC反分解部接合（組立室）

③ 内PFCと真空容器仮組（150°、170°）
真空容器反分解部を真空容器内部から接続接続（組立室）
④ 外下PFC（ダイバータ付）
設定
(本体室)

↓

⑤ 真空容器+内PFC設定
内PFCサポートとダイバータコイルチャ接合

↓

⑥ 外周支持受設定
外下PFCサポート
接合
真空容器センター
支持取付（内、外）

外下PFC設定
内PFCサポート
及び外周支持受
と接合
図15 組立手順
5.4 W型排気ダイバータへの改造

(1) W型ダイバータ改造

目的
プラズマ性能の向上と放射冷却ダイバータの実現を両立させることを目的とし，オープンダイバータからW型ダイバータへの改造を行った。これまでのオープンダイバータではプラズマ配向に自由度を持たせ，プラズマ物理の研究に重点を置いてきた。このオープンダイバータの構造は，放射冷却ダイバータの実現には不向きであり，ダイバータ周辺に排気装置を備えていないため，ダイバータ研究には限界があった。そこで，ダイバータ形状をW型に変更し，排気装置を設けることで，放射冷却ダイバータを実現し，ダイバータ性能の向上と，プラズマ性能のさらなる昇進を図った。

方法，設計
W型ダイバータの設計条件は，プラズマ電流3MA，ロティダル磁場4T，ハロー電流はプラズマ電流の26％，ロティダル分布のピーキングファクター2.5，内側ダイバータ板への熱負荷5MW/m² x 10 secまたは10MW/m² x 4 secであり，内側及び外側に配置されたダイバータ板（内側外側それぞれ125ユニット），ダイバータ間に配置されたドーム（125ユニット）及び内側及び外側に配置されたバッフル板（内側外側それぞれ72枚）で構成されている。図1にバッフル板とその構造および真空容器内写真を示す。ダイバータ領域の中性粒子は，内側ダイバータ板とドーム内側タイル間に設けられた排気溝（片側排気）から，ドーム下部，外側ダイバータ板，外側バッフル板下部を通じて排気される。この排気には斜め下のNB13ユニットのクライオポンプを使用している。排気溝以外のトロイダル及びポロイダル方向のギャップは，セラミックを溶射したSUS316薄板接触シークルで，中性粒子の逆流を防ぐ構造とした（図2）。

本改造で接え付ける機器と干渉しない機器類は，既存の取り付け状態を維持し，既存のダイバータ冷却基板は，内側及び外側ダイバータ板を取り付けるための基板として再利用した。W型ダイバータ構造材の材質をそれぞれを設置する位置の材料と同等とするために，バッフル板は真空容器と同様にインコネル625，ダイバータ基板はSUS316とした。

図1 W型ダイバータ構造
図2 シール構造
ラズマ対向壁には、炭素タイルを用い、特に熱荷荷の高いダイバーターゲットには炭素繊維複合材（CFC）タイルを用いた。また、ドーム頂部タイルにも高熱荷荷が予想されるためCFC材を使用した。各タイルは、プラズマ入射方向に対してエッジ部が凸にならないようにテーパーを設け、タイルの段差調整は、常にプラズマ入射角度でエッジ部で凸にならないように0～1.5mmの範囲で取り付けた。

本ダイバータ改正に関する設計は、1995年から実施され、1996年に単品製作を開始した。1997年2月から現地作業を実施し、同年5月に現地据え付け作業が終了した。現地据え付け作業では、真空容器内作業となるため、作業ステージ上に鉛直遮板を敷き、作業者の被ばく量をできるだけ低減させる方法をとりつつ日毎の被ばく管理を行った。

結果、成果
W型ダイバータへの改造により、高性能プラズマを長時間（～9s）維持することに成功した。さらにエネルギー増倍率q_m=1.25を得、ヘリウム排気性能を実証するなどプラズマ性能の改善に寄与したばかりでなく、排気能力を持つダイバータ研究を行える状況となった。また、改造後の真空容器構造物のトラブルも減少し、これまで、修復のための真空容器開放はない。

検討、考察
設計当初、ダイバータ基板をSUS材から削り出しで製作し、ダイバータ冷却基板に設置することで冷却性能を期待していた。このため、ダイバータ基板自体が重量物となり、設置部の強度確保に苦労した。据え付け時には、ダイバータタイル表面の段差調整のために冷却基板とダイバータ基板間にシムを挿入した結果、導熱として冷凍能力を期待するのは難しい状況となった。さらに、ダイバーターゲットタイルやドームタイルなど既存のダイバータ冷却基板を使用したため、かえって構造が複雑になった。特に、ダイバーターゲットタイルは、分析などで頻繁に交換するため、タイル形状が異なる場合には製作上の煩雑さやコストの面でも問題となった。また、ポルトを多用した構造では、頻繁にゆめみを確認しなければならないが、確認が困難な位置にもポルト構造を用いたため、ポルト脱落という事象を招いてしまった。

結論
本改造により、プラズマ性能が向上し、また、タイル破断などの真空容器内のトラブルが減少した。これは、設計段階での物理検討及び構造設計で、これまでの実験結果/経験を反映できたことが大きい。一方、設計上、細かな面でさらに改善する余地があり、将来の核融合装置の設計に役立つ経験を得ることができた。

運動後の設備の維持/改造の面から可能なかぎり統一した部品からなる設計にしたかったが、既存の設備を使用する必要があったために、複雑なものとなってしまった。次期装置においても、真空容器内は冷却配管等がさらに複雑に設置されることが予想される。このため、次期装置の製作・運動コスト、さらには改修のしやすさ等を考えた場合、真空容器やポルト等基本となる構造物の対称性の確保が重要となる。

参考文献
[5] 児玉幸三、正木圭、他、JAERI-Tech 98-049
(2) ドーム外ウイング、ドームトップタイル材料の変更

目的
1997年のダイバーターサイズの約半年後の実験運転の結果、等方性黒鉛を用いたドーム外側ウイングで熱衝撃による割れが生じた。設計当初は、この部位は高熱負荷は想定されていなかったため、材質は耐熱衝撃性の比較的低い等方性黒鉛を使用していたことが原因であった。そこで、高熱負荷に耐えられるCFC材に材質を変更する必要があった。また、ドームトップタイルについて行った熱応力解析結果から、ドーム頂部に直接高熱負荷が入った場合に短時間で破壊に至る可能性のあることが分かったため、ドーム頂部に外側ダイバーターレッグが乗らないように運転制限をかけていた。そのため、CFC材の繊維方向を変更し、高熱負荷に耐えられる構造に変更する必要があった。

方法、設計
図3にタイル材質変更箇所を示す。設計当初、ドーム外側ウイングには10MW/m^2×10秒の熱負荷を想定しており、等方性黒鉛で耐えうる構造としていた。しかし、1997年の定期点検でドーム外側ウイングに熱負荷による割れが生じていることがわかったため、年の定期点検でドーム外側ウイングの一部（上段側）をCFC材に変更した。その後の解析及び実験運転の必要性から、想定される熱負荷がダイバーターレッグ（5MW/m^2×10秒及び10MW/m^2×4秒）とほぼ同程度となったため、ドーム外側ウイング全体をCFC材に変更すべく、タイルの製作を行い、翌1998年の定期点検時に設置した。

図3 タイル材質変更対象箇所

ドームトップについては、設置時の2D材繊維方向（ポロイダル及びトロイダル方向）では非常時想定熱負荷（10MW/m^2×数秒）に耐えられず、破壊する可能性があった。これは、ドームトップタイルの形状が特殊であること、タイプ深さ方向の熱伝導率が低いためにタイプ表面と下で温度差が大きくなり、熱応力が過大となってしまったことに起因する。また、元々ドーム頂部へ任意的にダイバーターレッグを乗せる運転は想定していなかった。このため、運転制限を設けてドーム頂部にはダイバーターレッグが乗らないように慎重に管理していた。そこで、可能な限り運転領域を広げるため、材質は同じであるが、CFC材の繊維方向をポロイダル方向から深さ方向に変更し、タイプ表面と下面との温度差を少なくして熱応力に耐える構造とした。この材質変更後のドーム頂部タイル設置作業は、ドーム外側ウイングの材質変更と同様に1998年の定期点検時に実施した。

その後、積極的にドーム頂部にダイバーターレッグを乗せる運転が必要となり、新たに熱応力解析を実施した。図4に解析条件を示す。計算結果から、最大熱応力はヒットポイントがドームトップ斜内側面上にまで及ぶような厳しい条件ケース4の7-7成分において、最大7.6MPaを示したが、その値は許容応力7.8MPa以下であることがわかった。また、ヒットポイントがドームトップ斜面上に留まるケース1, 3においては、十分に許容応力以下となることを確認した。これらの結果から、タイルの健全性は保たれることが確認した。ただし、許容応力に対しあまり余裕のないドーム頂部斜内側に熱負荷がかかること運転は、極力避けることとした。
結果、成果
材質変更後、高熱負荷によるタイルの破損は発生しておらず、かつ損傷によるタイル交換は行っていない。また、材質変更後のプラズマ配位においてドーム頂部に直接ダイバータレックを乗せる運転を行ったが、タイルの健全性は確認されている。これらのタイル材質変更により、実験運転におけるプラズマ配位の選択肢が増え、さまざまなダイバータ実験が可能となった。

検討、考察
ドーム頂部については、ドーム頂部内側にダイバータレックが乗る様な運転は避けるなどの運転制限が設けられている。これは、材質変更だけでは改善されないドーム頂部タイルの形状が関係しているためである。

論文
W型ダイバータ改造後のプラズマ実験の進展及び想定外の熱負荷により、ドーム頂部及び外側のタイルの材質変更を行った。実験装置である以上、新たな運転／不具合対策は必要であり、このタイル材質変更によりプラズマ対向機器の健全性が保たれたことは、適切な対策を行ったことを示している。

プラズマ実験の進展により、プラズマ配位の変更（想定外の配位）等が生じることは実験装置である以上避けられないことであり、研究を進めて行く上でハードウエアの改造は必須である。ドーム頂部については、材質ばかりでなくその形状も重要であり、将来の核融合装置を設計する上で重要な知見を得ることができた。

参考文献

（3）排気スロットの増設

目的
排気付き W型ダイバータへの改造に当たっては、工事の開始前に内側排気、あるいは両側排気のどちらを採用するかについて議論があった。これの結果、JT-60 の特徴である内側ダイバータ領域での粒子束が大きいという非対称性を活かすため、かつダイバータに独自性を持たせるために最初の 2 年間は内側気体で運転し、その後外側にも排気口を開けて両側排気で運転することとした。内側排気での実験結果において、主プラズマへの中性粒子の逆流抑制、ヘリウム排気の実証、放射失損分布制御の実現、炭素不純物発生の低減等の成果を得たことで、さらなるモプラズマ性能の向上及びダイバータ研究の進展に向けて、1998 年 11 月の定期点検時に外側排気口を設けて、当初の計画通りに両側排気 W型ダイバータに改造した。

方法、設計
図 3 に W型ダイバータ外側のドーム及びダイバータ間のシム構造を示す。図に示すシムを取り外し、新規に製作した外側ドームタイル（ポロイダル長さを 2cm 短くした）を取り付けた。これらの作業は、(2)に示すタイル材質変更と同時に 1998 年 11 月の定期点検時に実施した。ドームと外側ダイバータ間のシム構造は、ドーム部からアルミナ製の板が突き出ており、これを SUS 製の薄板で挟み込む構造と

<table>
<thead>
<tr>
<th>ケース1</th>
<th>表面1に5.7MW/m²</th>
<th>2秒</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース2</td>
<td>表面1に5.7MW/m²</td>
<td>2秒</td>
</tr>
<tr>
<td></td>
<td>表面2に7.4MW/m²</td>
<td></td>
</tr>
<tr>
<td>ケース3</td>
<td>表面1に4.4MW/m²</td>
<td>5秒</td>
</tr>
<tr>
<td>ケース4</td>
<td>表面1に4.4MW/m²</td>
<td>5秒</td>
</tr>
<tr>
<td></td>
<td>表面2に5.7MW/m²</td>
<td></td>
</tr>
</tbody>
</table>

図 4 解析ケース
なっている。外側排気口を設けるに当たって、ドーム側に設置されている、シムのみを取り外すことによって間口部を設けた。また、外側排気口幅を2cmとするため、外側ドームタイルをトロイダル方向に2cm短くした構造とした。さらに、可能な限りハロー電流に対して高い強度を持たせるため、タイル取り付け方向を図6の様にし、ハロー電流とトロイダル磁場によって発生する電磁力方向に対して、断面係数を高くするような構造とした。

本改造後には、ドーム外側タイルにダイバータレッグを乗せる運転も想定した。この場合、外側ダイバータイルに局所的に熱負荷が入る（想定熱負荷：10MW/m²×4sec）。また、ドーム外側タイルは、ダイバータのようにテーブ加工を施していないため、タイル周辺に熱負荷が集中する可能性がある（想定熱負荷：20MW/m²×4sec）。これらの熱応力解析の結果、特に問題となる応力は発生しないことを確認した。

図5 W型ダイバータ両側排気構造
図6 外ドームタイル構造変更

結果、成果

本改造により、ダイバータ排気速度が、内側排気のみから約30%改善された。また、ヘリウム排気効率も改善され、L-II遷移加熱パワーも30%低減されるなどの成果を得た。

結論

本改造は、W型ダイバータ計画当初から予定されていたものであり、改造作業は、構造部品を取り外すのみの必要最小限で行うことができた。また、本改造により、さらなるプラズマ性能の改善に貢献したばかりでなく、ダイバータ研究を行う上で、さまざまなプラズマ配置に対応可能な構造をすることができた。

改造後の運転では不具合は観察されておらず、材料選択及び構造とも適切な設計を行えたと考えられる。ただし、タイルの寸法を統一することによってさらにコスト低減が可能と思われる。

参考文献

5.5 第一壁・ダイバータイルの開発・改良

(1) 金属第一壁の黒鉛化

目的
JT-60では1985年4月の装置完成以降、1987年3月まではTiC被覆した金属第一壁（インコネルライナー、モリブデンリミタ）が使用された。ジュール実験や初期加熱実験では放電調整も問題なく進展したが、一部トーラス内側の特定の場所でTiCの剥離やモリブデン母材の溶融が観測された。また、高加熱入力の実験では金属第一壁の分解損傷は軽減されたものの、コブラプラズマへの金属混入の度合いは加熱入力の増大に伴って増加する傾向を示した。こうした結果を踏まえ、1987年4-5月の定期点検期間にて金属第一壁の一部黒鉛化を図ることとした。

TiC被覆金属第一壁の損傷状況
(固定リミタ、ライナ)
金属第一壁が与える実験への影響は、1985年4月8日のファーストプラズマ以降1985年5-6月、及び1986年2月から1986年7月にかけてのジュール実験、その後開始されたNBI、RF加熱実験を通じて1987年3月までの実験で観察された。真空容器内部に取り付けられた金属第一壁の損傷はTiC被覆金属第一壁の損傷は約1万個になる。運転終了後のベント期や運転期間中の真空容器内部構造点検装置によるin-situ観察において、こうした多くの第一壁損傷の表面状況が観察された。1986年度の実験後の観察結果では、第一壁の損傷が観測され、損傷状況はTiCコーティング層の剥離、局部的な母材の溶融、広範囲の母材の溶融に分けられた。損傷の原因としては第一壁掘り付け精度と、ディスラプションによるイオンエネルギーの局所的集中によるものと考えられた。局部的あるいは広い面積で母材の溶融が見られた箇所はいずれも赤道面に位置する両側リミタおよびその側面に位置する第一壁の損傷が見られた箇所はいずれも赤道面に位置する両側のリミタであり、その原因はディスラプションによる変動電流等の変動エネルギーや電子の衝突と推定された。特に局所的溶融では短時間の熱集中により爆発的に溶融に至った箇所が観察され、周辺のリミタ層の表面には既に形成されたドロップレットが観測された。また、真空容器内面にはこのようなドロップレットや線状の溶融線が多数付着、落下しているのが観察された状況であった。
プラズマ実験への影響では、1987年3月までの実験結果において、高加熱入力実験時の金属不純物の混入による運転領域が制限され、金属第一壁ではプラズマパラメータの向上が図られにくいことが分かってきた。こうした結果を踏まえ、1987年4-5月の定期点検期間にて主要な部分の第一壁について黒鉛化を図ることとした。

(磁気リミタキャン)
トーラス外側に位置する下側磁気リミタのキャンの表面を覆っているライナの一部にも溶融損傷が観察された。損傷の一部は、特定の場所の影響を受けた周辺部に限られていたが、この位置が下側磁気リミタが近接している所である。その原因として外口部の不整磁場（約100ガウス程度）により軽度の損傷が局所的に観察された。局所的な熱集中を避ける有効な手段がなかったため、第一壁の黒鉛化改造に合わせ、磁気リミタキャンライナをすべてTiCモリブデン材から等方性黒鉛へ交換するとともに、当該部及びその周辺の絞り2枚のライナについて耐衝撃性の高い低Z材である炭素繊維強化黒鉛（C/Cコンポジット）材に交換した。

(ダイバータ板)
1986年度の実験で下側磁気リミタ板（ダイバータ板）の電子流側に激しい溶融が見られ、母材が波打っている箇所が観測された。ダイバータ板のギャップ部の側面にプラズマ粒子の直撃が観察されており、これが真空容器周辺で測定した高速電子が局所的に衝突したものと推察された。局所的な熱集中を避ける有効な手段がなかったため、第一壁の黒鉛化改造に合わせ、磁気リミタキャンライナをすべてTiCモリブデン材から等方性黒鉛へ交換するとともに、当該部及びその周辺の絞り2枚のライナについては耐衝撃性の高い低Z材である炭素繊維強化黒鉛（C/Cコンポジット）材に交換した。

第一壁の黒鉛化改造
1987年4-5月の定期点検期間において、上記述べた磁気リミタキャンやダイバータ板も含め、荷電粒子と直接相互作用を行うと思われる第一壁をすべて黒鉛化改造を行った（図1参照）。改造前は固定リミタがプラズマを形成するようになっていたが、改造後は真空容器内側下部を除く内外周の第一壁のプラズマ対向面を平滑化し、可能な限りプラズマとの接触面積を大きく取るようにした。また、プラズマ副半径を930mmから940mmに拡大し、運転の自由度を上げた。

黒鉛材としては原子炉核等方性黒鉛とし、各種スクリーニングや放出ガス実験、耐衝撃性試験の結果により、ETF-10及びHCB-18Sの2種類の材料を選択し、前者を主真空容器、後者をリップルロス保護板とダイバータ板に使用した。両者は350℃×365hrのベーキング後に常温にて1×10^6 Pa・m/s m以下の中性放出ガス特性を得るとともに、耐衝撃特性も130kJ/m と良好な特性を確認した。
図1 第一壁黒鉄化改造後のJT-60真空容器断面構造
（実験が黒鉄第一壁、二点鋼線が従来のTiC被覆金属第一壁等を示す）

<table>
<thead>
<tr>
<th>第一壁の種類</th>
<th>当初第一壁の材質</th>
<th>黒鉄化改造後の材質</th>
<th>下ダイバータ改造</th>
</tr>
</thead>
<tbody>
<tr>
<td>トロイダルリミタ</td>
<td>モリブデン</td>
<td>黒鉄(ETP-10)</td>
<td></td>
</tr>
<tr>
<td>ボロイダルリミタ</td>
<td>モリブデン</td>
<td>黒鉄(ETP-10)</td>
<td></td>
</tr>
<tr>
<td>リップルロス保護板</td>
<td>モリブデン</td>
<td>黒鉄(HCB-185)</td>
<td></td>
</tr>
<tr>
<td>磁気リミタ(ダイバータ)板</td>
<td>モリブデン</td>
<td>黒鉄(HCB-185)</td>
<td></td>
</tr>
<tr>
<td>NBIライナー</td>
<td>モリブデン</td>
<td>黒鉄(ETP-10)</td>
<td></td>
</tr>
<tr>
<td>ライナ(真空容器内、外周部)</td>
<td>インコネル625</td>
<td>黒鉄(ETP-10)</td>
<td></td>
</tr>
<tr>
<td>ライナ(真空容器内上下部)</td>
<td>インコネル625</td>
<td>変更なし</td>
<td>黒鉄(ETP-10)(下部)</td>
</tr>
<tr>
<td>ライナ(ベローズ)</td>
<td>インコネル625</td>
<td>変更なし</td>
<td>黒鉄(ETP-10)</td>
</tr>
<tr>
<td>ライナ(磁気リミタサイクル)</td>
<td>モリブデン</td>
<td>変更なし</td>
<td>変更なし</td>
</tr>
<tr>
<td>ライナ(磁気リミタ室II)</td>
<td>インコネル625</td>
<td>変更なし</td>
<td>変更なし</td>
</tr>
</tbody>
</table>

結果

第一壁黒鉄化後に行われた1987年6-10月期の実験終了後のベンチ層間に第一壁の損傷具合を観察した。主真空容器側では、割れ、欠落、部分欠損、剥離欠損等比較的大きな損傷の見られたタイルは黒鉄化以前と同様に、赤道面内側に位置した場所に発生したが、その数は2ユニットのみであった。その他エロージョンが顕著であり、細かいクラックがあるような比較的小さな損傷箇所は全セクターにおいて見受けられたが、主真空容器側の第一壁はおおむね健全性を維持できており、積極的にプラズマ対向面の平坦化による受熱面積の拡大が所定の熱集中の低減に繋がったと思われた。

一方、リップルロス保護板やダイバータ板では黒鉄化にも係わらず多くの損傷が見受けられた。リップルロス保護板は構造的にも熱的条件が厳しいこともあり、エロージョンによるタイルの割れが多く見られた。また、ダイバータ板は全体の35%に割れ、欠落、部分欠損が生じる結果となった。こうした結果は耐荷熱だけではなく温度、熱変形性HCB-185の特性等、他の原因に関係しているものと思われた。

磁気リミタ領域に採用した6枚のC/Cコンポジット材については特に異常は生じなかった。

黒鉄化による実験は1987年6-10月期の5ヶ月間実施されたが、その後、JT-60は1987年10月から下ダイバータ改造に着手することになり、2年半続いた外側ダイバータ配位での実験を終了した。下ダイバータ改造では、今回の改造で残っていた真空容器下部についてさらに黒鉄化を進めることとなった。
参考文献

(2) 下側ダイバータ改造における第一壁黒鉛化

目的
JT-60では1987年10月より、1988年3月までの期間に、不純物制御と高加熱入力でのプラズマの
閉じ込め性能向上を目指し、外側ダイバータから下側ダイバータへの改造を実施した。この改造では
下側ダイバータコイルの設置に合わせて真空容器下部第一壁においても新たに黒鉛ダイバータ板を追
加設置した。

設計
(ETP-10材への交換)
下側ダイバータ改造では、真空容器内
下部とペローズのライナ（1987年4-5月
に行った第一壁黒鉛化では対象としなか
った部位）をインノール 625 から黒鉛
(ETP-10) へ交換した。ダイバータ板は
トロイダル方向全面に取り付けられた
(図2)。ETP-10材については、製作に
当たる素材の物理特性、機械的特性、非
破壊検査等を行い、所定の品質の確認を
実施した。

(ダイバータ材料のインバウル試験)
下側ダイバータ改造は、真空容器内
下部の大電流化改造（JT-60U計
画）に向けて適切なダイバータ材料の選
択に資するため、1988年3月から1988
年10月までの最初の下側ダイバータ配置
での実験シリーズが終了した後の1988年
11-12月の定期点検期間にて、5種類の高
熱電導率を有するC／Cコンポジット材
(PCC-25，MCl-フェルト II (D)，MFC-1，
CX-2002U)，CC-312) 及び参考用として熱
分解黒鉛(Pyroid)を下側ダイバータ p-i
セクション領域に、積層面がホロイダル
方向と一致するように設置した。

結果
下側ダイバータ配置での実験は、1988
年3月から1989年10月まで、2度に渡る
短期間の運転休止を挟んで、全体で合計
14カ月実施された。この期間に実施した
プラズマ放電数は約5000ショットであり、
その約80％が、NBI 加熱10MW 以上の高熱
入力実験であった。ディスラプションは
25％程度発生している。

ダイバータ板については、多数のタイルに僅かな損耗・再堆積が認められた。亀裂の発生や破損に
至る損傷を受けたダイバータ板及びリミタータイルの数は全体の2-3％であり、損傷の程度としては軽微
なものであった。真空容器外周部においては、真空容器の熱膨張を吸収するためペローズ板にはトロ
イダル方向に約30mmのギャップ部を設けたが、この部分のダイバータイルには、1988年10月までの
実験で全周で2箇所、ディスラプション時の入熱によるとと思われる激しい損耗と破損が認められ
た。そこで、実験後の定期点検期において、損傷部位のタイルをC／Cコンポジット材に交換した。その後
続いた下側ダイバータ配置実験ではC／C材表面に損耗が生じたものの亀裂の発生はなく、C／C材が耐
熱衝撃性能の点で優れていることを確認した。
ダイバータ材料のインパルス試験の結果では、1989年1-4月の下部ダイバータ配位実験を終了した時点で状況を確認した。タイル補修に設置誤差が原因と思われる若干の損耗が生じたが、マクロな割れ等の不具合はなく、すべての種類のタイルについて健全性が確認された（図3）。このタイルの分析結果は、その後JT-60の第一壁材料選択のデータベースを提供した。

図3 JT-60Uに向けたダイバータ材料のインパルス試験タイルの挿入位置と実験放電後の様子
（89年1-4月の下部ダイバータ配位実験後、p-1セクション）
(a) PCC-2S, (b) CX-2002U, (c) MPC-1, (d) Pyroid(PyG), (e) MC1-フェルトII

参考文献
[2] 山本正弘、安東俊郎、高津英幸、清水正亜、他、JAERI-M 90-119
（3）大電流化改造における第一壁

概要

JT-60 の大電流化に伴い、JT-60U の真空容器は新規に設計・製作され、それに伴い、第一壁及びダイバータ板についても、全面的に設計製作された。真空容器内部は、多数の黒鉛系材料製の第一壁及びダイバータ板で覆われ、第一壁は、リミタ配位においてはプラズマの最外周形状を定めるように、また、ダイバータ配位においては、ダイバータ板がセパラトリックス磁気面と交差するようにそれぞれ配置される。第一壁及びダイバータ板は、プラズマ熱から真空容器を保護し、熱負荷の値から第一壁は A 領域（比較的熱流束が高い領域）及び B 領域（比較的熱流束が低い領域）に、ダイバータ板はダイバータ領域（B 領域）に分けられる（図 4 参照）。

設計/構造

第一壁のタイプは、図 5 に示す取付構造のようにボルトにより固定板を介して真空容器に取り付けられる。また、第一壁は、真空容器の二重壁間を流れる冷却ガスによって、真空容器壁を介して間接的に冷却される。熱集中を避けるため、隣接するダイバータ同士の段差及びギャップは領域によって異なるが、A 領域の段差は 1mm 以下、ギャップ 0.5～6.8mm（公称値 4mm）とし、B 領域の段差は 3mm 以下、ギャップはポロイダル方向 0.5～6.8mm（公称値 5mm）、トロイダル方向 0.5～40.0mm とした。

ダイバータ板タイプは、固定板を介して冷却基板にボルト・ナットにより 125 例の水冷却流路が設けられた冷却基板上に取り付けられる。また、冷却基板は、空素ガス冷却も可能なシステムになっている（図 6、7 参照）。

冷却基板のタイプ側面は機械加工をして、タイルとの熱接触抵抗を小さくし、冷却効率を上げるようにしている。また、真空容器を高温（約 300℃）にした状態においてもダイバータ運転が可能なように、冷却基板と真空容器の内壁間は熱通過率を小さくし、相対的熱伸びの差を許容する構造とした。ダイバータ板は、タイルの端部の熱集中を極力避けるため、隣接するタイル同士の段差は 1mm 以下とし、ギャップは 1.5mm（公称値）±1.2mm とした。

第一壁及びダイバータ板に対する熱負荷条件は最大加熱入力 40MW 以下（加熱時間 5s）とし、熱流束×入力時間は、ダイバータ板：20MW/m²×5s（100MW/m²），A 領域第一壁：3MW/m²×5s，B 領域第一壁：1.5MW/m²×5s とした。JT-60 下側ダイバータ板の実測に基づく熱流束×入熱時間は、5MW/m²（一般部）×4 秒と比較して、JT-60U における熱負荷条件は非常に厳しいものとなった。なお、ダイバータ板の設計熱流束 20MW/m² は、ポロイダル方向の幅 3cm、トロイダル方向に 2 枚の平行帯域に入射すると、タイル間段差に起因する熱集中率を 2 と仮定した。

運転条件は、運転周期：約 20 分、放電開始前温度：常温～300℃の任意の範囲、運転形態：水冷却
材料の選定

第一壁及びダイバータ板の黒鉄材の選定に当り、核融合装置の第一壁として明らかに適合しないものを除き、国内で入手可能な材料の機械的特性（引き張強さ、曲げ強さ、圧縮強さ）、物理的特性（熱伝導率、比熱、熱膨張係数、ヤング率、電気抵抗、ポアソン比）、放出ガス特性、製造可能最大寸法、製作所要期間などを可能な範囲で考慮し、候補材料を絞った。なお、調査データはメーカーから提供されたものに依った。

ダイバータ板への適合性は①表面温度上昇を低減し、エロージョン量を抑制する点からみて、熱伝導率が比較的大きく、且つ、異方性が小さいものの、②製作可能寸法や納期的制限の点から許容されるものの、③機械的強度と熱的特性のバランスが良く、熱衝撃抵抗性が等方性黒鉄に比較して十分大きいもの、の観点から評価した。above リハバは、従来 JT-60 で使用実績のある ETP-10 を参照材料として比較し、1 個熱帯板実験を行った火種類の候補材についてのインパイル試験結果（5.5.（2）章）も参考にした。

その結果、JT-60U のダイバータ板用 C/C コンポジット材の候補材として MCI フェルトタイプⅡH、PCC-2S、CC-312、CX-2002U を選定し、第一壁用等方性黒鉄材の候補材料として ETP-10、IG-430U、PD-330S を選定した。これらの使用候補材料について、物理的特性試験及び機械的特性試験を実施した。その結果を表 2 に示す。

最終的に、JT-60U のダイバータ板用 C/C コンポジット材として、PCC-2S、MCI フェルトタイプⅡH、CC-312、CX-2002U を使用材料に選定した。各々の材料の特徴を生かし、通常運転時の熱流束の高い領域は、熱伝導率の高い PCC-2S、MCI フェルトタイプⅡH、CX-2002U（一部）を使用する。また、ダイバータ領域でも通常運転時の熱流束の比較的低い領域や、ダイバータ冷却基板の冷却配管を覆う部分など、タイルが破損した場合の装置の損傷が大きいためには、耐熱衝撃性の高い CC-312 を使用することにした。第一壁用材料として等方性黒鉄 ETP-10、PCC-2S、IG-430U を使用材料として選定した。3 種類の材料を選定した理由は、同時に大量の材料を必要とすることから、納期の短縮を図るためである。3 種類の材料の中では、ETP-10 は若干劣る面もあるが、JT-60 で唯一使用実績がある材料であり、使用において特に問題がなかったことから使用することにした。ダイバータ板及び第一壁の黒鉄材料の種類毎の配置を図 8 に示す。
表 2 黒鉄材の材料特性

<table>
<thead>
<tr>
<th>GRADES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY (W/mK)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>91</td>
<td>181</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360</td>
<td>335</td>
<td>310</td>
</tr>
<tr>
<td>COEFFICIENT OF THERMAL EXPANSION (IC/°C)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>4.8</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>YOUNG'S MODULUS (GPa)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>10.2</td>
<td>9.6</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56.0</td>
<td>56.0</td>
<td>56.0</td>
</tr>
<tr>
<td>TENSILE STRENGTH (MPa)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>25.6</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.4</td>
<td>50.4</td>
<td>50.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>BENDING STRENGTH (MPa)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>66.6</td>
<td>66.6</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>COMPRESSION STRENGTH (MPa)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>125.8</td>
<td>85.0</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.0</td>
<td>59.0</td>
<td>59.0</td>
</tr>
<tr>
<td>THERMAL SHOCK RESISTANCE (kcal/cm²K)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>105.4</td>
<td>163.7</td>
<td>141.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.8</td>
<td>34.8</td>
<td>34.8</td>
</tr>
<tr>
<td>DENSITY (g/cm³)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>1.76</td>
<td>1.80</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
</tr>
<tr>
<td>RESISTIVITY (μΩm)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>1241</td>
<td>804</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.6</td>
<td>66.6</td>
<td>66.6</td>
</tr>
<tr>
<td>OUT GASSING RATE (×10⁻⁵ Nm²/m³/s)</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>4.1</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* EQUIVALENT MATERIAL
** DIRECTION (X Y T)

| A: ETF-10 | B: PD-3305 | C: MC-10-450U |
| G: CC-312 |

Isotropic Graphite C/C Composite

感想、未来へのメッセージ

ダイバータイタ及び第一壁タイルの熱負荷条件は、非常に厳しい。そのため、タイルの損傷を防止するためには、熱負荷を減じることが不可欠である。ダイバータイタ及び第一壁タイルは精密に機械加工された冷却水路付き冷却基板に取り付けられることにより、この問題の解決を図った。しかし、第一壁タイルの内壁の曲率を持つ 3 次元真空容器（仕様どおりの精度で製作されているが、1 つ以外には満足する精度ではない。5.3(1)参照）の内壁に取り付けられたので、接続するタイル間のギャップを所定の値以下に収めることができなかった。この問題の解決には、真空容器内部全体について 9000（9375）枚の第 1 壁取付け部の中央の測定を模擬タイル 2 枚を使用して実施し、大変な労力を払った。物作りにとっては、工学・技術、アイデアは非常に大事であるが、時には、泥臭い地道な努力が必要である。

参考文献

[1] 山本正弘、安東俊郎、高津英幸、清水正樹、他 JAERI-M90-119
(4) B₄C 転化 CFC 材の導入

目的
ダイバータ板から発生する炭素不純物の抑制及び真空容器内酸素不純物の低減を目的として炭化ホウ素（B₄C）転化 CFC 材をオープンダイバータ領域に設置した。

方法、設計
JT-60 ダイバータ板に適用する前に、高熱荷重条件下における B₄C 改質層を含む試験体の健全性を確認し、実際に JT-60 のダイバータ部に設置して実機試験を行った。その結果、酸化ポロンとの化学反応で炭素材料の表面から炭素を B₄C 化する方法を採用することとし、この方法で B₄C 改質層作製した CFC 材（B₄C 転化 CFC 材）をダイバータ板に応用することとなった。

1992 年 12 月にはオープンダイバータ 1 列にトロイダル方向全周わたって B₄C 層約 100 μm の B₄C 転化 CFC タイル（B/C ≈ 2.7）を設置した（図 9 参照）。また、1993 年 12 月にはオープンダイバータ 1 列全周に B₄C 層約 300 μm の B₄C 転化 CFC タイル（B/C ≈ 3.8）を設置した（図 9 参照）。1 列に導入した約 300 μm の B₄C タイルは、B₄C 層と基材との熱膨張率の差によりタイルが崩曲してしまったため、タイル下部を削り平坦にして設置した。なお、1997 年の W 型ダイバータ設置時に B₄C タイルは撤去された。

図 9 B₄C タイル設置状況

結果、成果
B₄C 層厚 300 μm のタイルにセパラトリクスを当てると、B₄C 層が溶融してポロンがバースト的にプラズマ中に混入する現象が観測された。これにより、固体ターゲットポロナイゼーション（STB）と言われているリアルタイムでのその場ポロン化処理が引き起こされ、実験放電の回数と共に酸素不純物が減少した（図 10 参照）。さらに、デカポラク用いたその場ポロン化処理とも相まって、酸素不純物が減少する効果が促進された。その結果、中性粒子加熱プラズマにおいても酸素濃度は 1% レベル程度に維持された。

また、STB を伴う放電中にヘリウムビームを入射すると、STB を伴わない放電の場合と比較して、プラズマ中心部及びダイバータ部でのヘリウム濃度がそれぞれ 3 分の 1 に減少した。これは、溶融・蒸発したポロンが壁に蒸発される時に、ヘリウムを同時に巻き込んで瞬時に排気したものと考えられる。

検討、考察
CFC 材に比べて B₄C 層の熱伝導率は約 1 倍低く、特に約 300 μm の B₄C 転化 CFC タイルでは、高熱荷重に耐えられると STB を伴うポロンの溶融が顕著に起こり、表面に凹凸が生じた。このことにより、さら
に B,C 層表面の溶融が促進されてプラズマ中のボロン不純物濃度が上昇したことと、プラズマ配位により制限が生じてしまった。これを解決するためには、B,C 表面層の形成ではなく、CFC 材の高熱伝導性を損ねずにパルク内に B,C を混入させた複合材の開発が望まれる。

結論
酸素不純物の低減を図る上では、この B,C 転化CFC タイルは有効であった。一方、CFC 材に比べて熱伝導率の低い B,C を表面層に形成したため表面の溶融が起こってしまっていた。これは STB が行われると同時にプラズマ中のボロン濃度上昇を伴う結果となった。

グロー放電で行うポロライゼーションと比べ、STB は酸素濃度を下げる比較的簡便な方法である。熱负荷に対する B,C 層の適切な厚さ及び設置場所を考慮した設計を行えば、酸素低減の有効な手段となり得るとと思われる。

参考文献
5.6 第一壁表面処理技術の開発・改良

(1) 水素化デカボランを用いたボロニ化処理設備

目的
トカマク装置においてプラズマ性能を向上させるためには、燃料粒子及び不純物粒子の制御を効果的に行うことが重要である。現在までにトカマク装置の内壁をボロニコーティングすることによって、プラズマ性能を向上させる報告がなされている。これら、他の例はジボラン（B,pH）等を用いているが、JT-60ではそれらとは異なり、デカボラン（B,pH）を大型トカマク装置としては初めて用いたポロナイゼーションを実施した[1]。JT-60におけるポロナイゼーションは、真空容器内に存在する酸素を第一壁表面に固定化し、不純物としてプラズマ中に混入する酸素量を低減させること、さらには、ボロニは原子番号が5の物質であるので、第一壁の低Z化を目的としている。

設計
ボロニコーティングには、ジボランやトリメチルホウ素（B(CH₃)₃）を作動ガスとして用いる方法がある。しかし、ジボランは特殊圧力ガスに該当し、安全対策のために複雑な設備を必要とする。また、トリメチルホウ素の場合、ボロニと酸素の共存する膜が作製されることが知られており、ボロニ単体の膜を作製するには適していない[2]。そこで我々は、常温で固体のため取扱いが容易なデカボランを用いることにした。ポロナイゼーションは、デカボランを100～150℃に加熱・蒸発させ、デカボランガスとして真空容器内に供給し、ヘリウムを支持ガスとするグロー放電（GDC）によりデカボランを分解し、第一壁表面にボロン膜を生成するものである。そのための設備は、真空容器内にデカボランガスを供給するためのデカボランガス供給系と未反応デカボランガス及び反応生成物を安全に系外に排出するためのデカボラン専用排気系からなり、グロー放電装置を含めたもので構成されている。なお、設備の構築にあたっては、1982年2月の検討開始から7月の完成および僅か6ヶ月で完遂させていく。図1に設備の概要を示す。デカボランガス供給系は、原料のデカボランを原料容器[5]に入れた状態でオープン（Oven）に収納し、加熱してデカボランガスを発生させ、マスフローバルブ（MFC）にて流量調整しながらヘリウムと一緒に真空容器にデカボランを供給しており[7]、供給配管はデカボランガスが再凝縮しないように常時加熱している。デカボラン専用排気系には、ポロナイゼーション中の真空容器内の残留ガス分析を行うように四重極質量分析計（RGA）が観察されている。デカボランは常温で安定かつ蒸気は毒性であるため、未反応デカボランガスの排気に関しては、両系統とも除害装置（DLF）を介し、出口にガス検知器（G）を設置する等の安全対策を実施している[6]。ポロナイゼーション時のGDCは、ヘリウムガスを放電圧力まで供給し、電極（Electrode）を陽極、真空容器を陰極として両電極に直流電圧を印加してGDCを起させ、安定電流を得た後にデカボランガスの流量を調整する手法をとっている[3]。

結果
ポロナイゼーションの効果を図2に示す。真空容器大気開放直後の第1回ポロナイゼーションにおいては酸素不純物を1/5、炭素不純物を1/2（OH放電時）に、また、JT-60運転期間中に実施した第2回ポロナイゼーションでは、酸素不純物を1/3（OH放電時）にそれぞれ減少させることができている。特にポロナイゼーションの効果が顕著なのは、真空容器大気開放直後である。従来は大気開放後にベーキング（300℃）とTDC（強電流放電洗浄）、GDC等の壁調整を行なった後、壁調整放電として約250ショットをかけて得られる不純物レベル（不純物密度 n/n₀=1％）に1回のポロナイゼーションで到達している。
考察
1992年7月と10月に実施した2回のポロナイゼーションの経験から装置に二つの課題が挙げられた。一つは、デカボランガスの供給口がP-5の1箇所では、そこを基準点としてP-13方向に離れるところにより、ボロン膜の厚みが減衰することである。実際、ボロン膜厚測定装置を用いた計測の結果、その不均一さは40倍であることが分った。このままの状態ではポロナイゼーションの効果が長時間は望めないため、従来1箇所だったデカボランガス供給口を真空容器内のポロイドガス方向に上下2箇所、トロイダル方向には6箇所の合計12箇所に増設した。その結果、トロイダル方向の不均一さは4倍程度と大幅に改善できた[4]。二つ目は、ポロナイゼーション終了時の原料容器の降温時間に多くの時間を要することである。これもオープンの冷却速度をファジンによる強制冷却で速めることで、従来3時間を要していたものを、同一条件では3時間で終了できるように改造した。これらの改造によってポロナイゼーションの効果が一層望めると共にオペレーションの効率化を図ることが出来る。

結論
JT-60では真空容器内第一壁の調整法として、低Z化及び酸素不純物の低減化のためにデカボランを用いたポロナイゼーションを実施している。JT-60のポロナイゼーションでは、デカボラン100gを用いることで真空容器内壁に平均膜厚200nm、ボロン/ポロン+炭素の比が90%のボロン膜が生成されている[4]。ポロナイゼーションの有効性は高く、これを行うことによって不純物密度と実効電荷数が飛躍的に減少し、高性能プラズマの生成に寄与するばかりではなく、壁調整に費やす実験時間も大幅に短縮することができる。例えば真空容器内気開放直後にポロナイゼーションを行うことで、従来2週間を要する壁調整期間が1日で短縮される。このようにポロナイゼーションは不純物制御に有効であると共に、実験運転の効率化にも大きく寄与した。

感想等
本設備においては、原料の選択から手法の確立、装置の完成迄、要した期間が6ヶ月と極めて短期間で遂行され、その後も数か月の改良を加えることで、より完成度が高いものとなった。しかしながら毒性を有するデカボランを原料に用いるため、その実施にあたっては本体室への入室を制限し、さらに様々な制約を課す等、他設備の作業にも影響を与えている。そのため、実施頻度は年1～2回に制約されている。今後は、この点を考慮した設備の構築が必要である。

参考文献、特許、表彰
[3] 柳生純一他、JT-60第一壁のその場ポロナ化処理、平成5年度核融合化学研究所技術研究会 NIFS-MEMO-14 243-246
[4] 柳生純一, JT-60U装置におけるその場ポロナ化処理膜の評価、JAERI-M 93-249
[5] 平塚他、特開平6-154579、特許第2786757号、原料容器
[6] 平塚他、特開平7-8721、特許第5554390号、デカボランガスの酸化処理法（パブ会議稿の共同）
[7] 平塚他、特開平8-980、特許第3072225号、デカボランガス供給システム
[8] 柳生純一他、1997年度、プラズマ・核融合学会賞、第2回技術進歩賞、核融合実験装置第一壁用その場ポロナ化処理技術の開発

（2）重水素化デカボランを用いたポロナイゼーション

目的
JT-60では、1992年よりポロナイゼーション用材料として、ジボランと同じボラン化合物で、しかも爆発性や自燃性のない軽水素デカボラン（B,12H,）を用いたポロナイゼーションを採用し、これを最適化する装置の設計・製作及び技術開発を行ってきた[1,2]。ポロナイゼーションにおいては、1992年にB,12H,と支持ガスにヘリウムを使ったポロナイゼーション（従来法）を開始し、1995年には支持ガスをヘリウムと重水素からなる混合ガスに変更した（混合ガス法）。ポロナイゼーションは真空容器内に存在する酸素を第一壁表面上に固定化し、不純物としてプラズマ中に混入する酸素量を低減させることが、水素イオンサイクル量の低減、さらには第一壁の低Z材料化を目的としている。しかし、JT-60で行われているPlasma Chemical Vapour Deposition（PCVD）によるポロナイゼーションには改善すべき点が幾つか存在した。それは、従来法では腐食中に含まれる軽水素の低減であり、混合ガス法ではポロナイゼーション初期におけるDC格子放電の安定化である。即ち、B,12H,を使用することでポロイド膜中には軽水素が含まれるため、実験装置においてプラズマ燃料の重水素を希釈してしまうこと。また、この軽水素量を予め減らしておくためにポロナイゼーションの支持ガスに重水素を含む混合ガス
を用いた場合にはメタンが多量に発生し、DCグローフ放電が継続できないことがある。これらの問題を解決するために、軽水素に換えて重水素を使用したデカボランを採用した。

設計
重水素化デカボラン（B₀D₂）を使用し、ヘリウムの支持ガスでポロライザーショーンを行えば、ポロン膜中の軽水素が極端に減少し、さらに、メタンの発生を抑えることができる。例えば、混合ガス法の場合、真空容器内に存在するガスの割合は、真空容器内の構造物等の放出ガスを全く無視すると、ヘリウム=59.3%、重水素=39.6%、ポロン=0.4%、軽水素=0.7%である。これに対して、B₀D₂を用いたポロライザーショーン（重水素化法）では、ヘリウム=98.9%、重水素=0.64%、ポロン=0.46%となり、真空容器内に存在する重水素量は混合ガス法の1/60と極端に少なくなる。その結果、メタンの発生量が抑制され、DCグローフ放電の安定化に伴ってポロライザーショーン所要時間が短縮できる。さらに、実験放電時の水素同位体比においてもデカボランや支持ガスの影響を受けないので、ポロライザーショーン前の壁状態のみ考慮すれば良いことになる。このようなことから、B₀D₂を採用することとし、製作に取りかかった。B₀D₂のJT-60への適用に際しては、既存の設備を使用し、従来と同様に加熱してガス化させることを前提とした。従って、蒸気圧特性や融点等の物性はB₀D₂と同様でなければならなかった。また、ポロン膜中の軽水素低減の観点から、B₀D₂に含まれる軽水素は極力除いて必要があった。そのため、B₀D₂の原料として重水素化法の高いSBを選び、さらに、製造プロセスを徹底的に管理することで、水素不純物の混入を防止した。その結果、性質的にもB₀D₂と同様であり、かつ、軽水素含有量が5%以下のB₀D₂が完成した[3]。このような経緯を経て、JT-60のポロライザーショーンは、2000年より現在まで重水素化法で行われている。

結果
重水素化法の場合は、ポロライザーショーン後のプラズマ調整放電数は図3のように缶10ショット程度でプラズマ実験放電に必要な目標レベルにまで減少し、混合ガス法の1/10で済むことが確認した。これは従来1週間ごとに行っていた一壁表面調整の期間が半日で済む結果をもたらした。さらに、ポロライザーショーンの所要時間においては、図4のように混合ガス法で30時間要していたものが、重水素化法では8時間程度で終了し、約1/4なることを確認した。尚、この理由は、混合ガス法の場合にはポロン膜が十分に成長し、メタンの発生源である第一壁を覆い隠すまでは開始からクロー放電が安定せず、デカボランの流量が確保できなかったことに対し、重水素化法ではメタンの発生が極めて少なくなり、ポロライザーショーン開始直後から最大流量が確保できるためである。B₀D₂の導入により、従来4日（混合ガス法）かけていたポロライザーショーンが1日で済む結果をもたらした[4]。

図3 各法の長期的な水素同位体比の推移
図4 処理時間の短縮

考察
重水素化法の確立により、頻繁なポロライザーショーンが可能となった。そこで、さらなるポロライザーショーンの最適化を遂げるため、実験運転においてポロライザーショーンの長期間の持続性について調べた。70gのB₀D₂（平均膜厚210nm）を使用してポロライザーショーンを行い、その後、定めた電子密度になるように密度フィードバック制御を用いた放電を繰り返し、実効電荷数及び電子密度に対する酸素とポロンの密度割合を評価した。その結果、不純物量において、ポロライザーショーンの前後では、実効電荷数が2.5から2.1に減少し、電子密度に対する酸素密度割合は1.5から0.7に減少した。また、ポロライザーショーン後の電子密度に対するポロン密度割合は1%であり、この状態が100ショット継続することを確認した。リサイクリングにおいても、ポロライザーショーン後には第一壁が低リサイクリング状態となり、設定した密度を得るために必要な燃料（重水素）供給量が約5倍に増加する。
ことが分かった。これはポロン膜による壁排気効果であり、この効果は約半月、100ショット継続した[4]。これらを対照化、現在の1-2ヶ月毎に20gのB_{19}D_{14}を使ったポロナイゼーションが行われ、プラズマ性能の向上に寄与している。

結論
ポロナイゼーションの効率化を図るためには、混合ガス法ではポロン膜中の軽水素の混入を軽減することではできたものの、メタンの発生という別の問題が生じてこれがポロナイゼーションの効率を低下させるため、本質的な解決手段となることを証明した。さらにこの結果に基づいて、重水素法を採用した結果、ポロナイゼーションの時間とプラズマ調整放電の両者の所要時間が大幅に縮小され、2つの課題を一挙に解決することができた。

感想等
重水素化法は最も有効な壁調整法であるが、さらに効率的に実施できるよう、例えば夜間のみのポロナイゼーションの検討やそれに伴う装置の改修、また、実験の目的毎に要求される壁状態を迅速且つ、安全に確保できるよう、新たな実施手法も検討する必要がある。

参考文献
[3] 柳生 純一他、JT-60U に於ける重水素デカボランを用いたポロナイゼーション、JAERI-Tech2001-012

(3) デカボラン処理装置供給系改造

目的
JT-60においては2000年3月の重水素化デカボラン（B_{19}D_{14}）の導入によって、ポロナイゼーションとプラズマ調整放電の両者の所要時間が大幅に縮小できた。この成果は実験時間の確保にも貢献したもの、さらに将来はこれをサイクル点検や夜間ににおいても少量のB_{19}D_{14}を使った短時間でのポロナイゼーションの実施であった。しかしながらこれには幾つかの問題があった。一つに、JT-60のポロナイゼーションでは、万一のデカボランガスの漏洩を考慮し、JT-60本体室（本体室内）を全面に封止し、そのため、ポロナイゼーション期間中は本体室内の作業、例えば他設備の機器の点検や調整等が一切行えない。この制約が結果的に半分以上を削減するスケジュール上げ、サイクル点検や夜間での頻繁なポロナイゼーションの実施は不可能である。そこで設備の改修を検討し、さらに、短時間でポロナイゼーションを完結させるために、運転要領の見直しも併せて行った。その結果、供給系の一部改修によってポロナイゼーション時での気密停止時間を本体室内の全室から一部に縮小し、必要に応じての領域を拡大することが可能となり、ポロナイゼーション期間中でも他設備の作業が実施できる見通しをもたらした。また、運転要領もこれまでの経験から改善の余地があると考え、ポロナイゼーション設備供給系の改修を2000年8月に実施した。

設計
本改修においては、デカボラン原液容器（容器）を収納するオープンの外側をさらにシリンダーキャビネットで囲み、容器からデカボランガスが漏洩しても本体室内への拡散が起こるために多重格納構造とすることで周辺の安全性を確保した。さらに、キャビネット内部にデカボランガスモニターを設置し、万一の漏洩があってもそれを直ちに検知し、シリンダーキャビネット内の緊急ガスをブロアーで吸引、専用除去装置を通じてで排ガスを安全に大気放出できるようにした。改修後の装置概要図を図5に示す。これによってポロナイゼーション期間中でも、ポロナイゼーション設備供給系の周り（P-5）を除いては本体室内に作業員が立ち入れるようになる了[1]。一方、運転要領の見直しについては、[1]他設備への吹き出しガス混入の省略と[2]真空容器ベーキング温度の降下作業の省略の2項目が主であり、前者においては、各設備のゲートバルブの健全性を確認したうえで、グロー放電洗浄を同様に第1仕切り弁の開閉操作だけでも他設備への影響は少ないと判断して省略することにした。また、後者においては、真空容器内に敷設したデカボランガス送り用配管を表面分析装置で分析し、その結果から、配管内での熱分解によるポロナイゼーションの影響がその他の核融合装置と比べて小さく、真空容器のベーキング温度を300℃のまま維持しても直ちに問題となることはないと判断し、省略した。これによって短時間でのポロナイゼーションが可能となり、さらなるポロナイゼーションの効率化が図れた。
理設備改修における安全性及び技術に関する検討会」を運転部会ののもとに開催し、安全面、技術面からの検討を行い、最終的には運転部会、所安全衛生委員会での審議を経て、改造と運転要領の一部変更の妥当性が了承された。

結果
実験運転サイクルを利用してボロナイゼーションを行う場合、従来は1サイクルを全て済ませていた。しかし、B_p、pによるボロナイゼーションが確立したことでボロナイゼーションに関わる所要時間が大幅に短縮された。さらに、ポロン化処理設備供給系の改造と運転要領の見直し等を行うことで、サイクル点检や夜間にいった短時間においてもボロナイゼーションを実施することが可能となった。この結果、運転サイクルを消費せずに運転体制外でのボロナイゼーションが可能となった。この効果は絶大で、改造前には年間1〜2回であったボロナイゼーションの頻度が、改造後には5〜6回に増え、プラズマの状態を見るため適切なタイミングで有効な壁調整が行われている。図6に一例として実験運転サイクルの夜間を想定したボロナイゼーションのタイムスケジュールを示す。このように一晚で10g、およそ30mmのポロン膜を製作することが可能となっている。他にも、改造によってボロナイゼーション期間中の本体室内への作業者のアクセス禁止領域が限定され、安全性を確保しつつもJT-60全体にわたって作業の効率性が図られている。

図5 改造後の装置概要

考察
ボロナイゼーションが頻繁に実施され、当初予想していたよりもデカボロンの使用量は増えている。この影響により、真空容器内でデカボロンガス輸送用配管においては、12箇所のガス吹出し口の所々で目詰まりまたはコンダクタンスの変化が発生している可能性がある。そのため、真空容器内でのボロン膜分布は不均一となり、ボロナイゼーションの効果が低下に反して十分に発揮できない恐れがある。今後も同じ条件で頻繁にボロナイゼーションが行われるなら、デカボロンガス輸送用配管の張り替えを検討する必要がある。

結論
ポロン化処理設備供給系の改造を行うことで、ボロナイゼーション期間中の本体室内の立入禁止制限がP-5 周辺を除いてなくなり、容器の脱着作業時以外は、本体室内作業が可能となった。また、ボロナイゼーションの運転要領を見直すことで、関連設備の処置としてベーキングの降温作業等が合理化できることを示し、ボロナイゼーションの準備作業が短縮且つ、低減化できた。これらによって実験運転に影響しないサイクル点検と夜間を利用したボロナイゼーションが可能となり、スケジュールの自由が大幅に拡大した。

感想等
本改造を経て、JT-60のボロナイゼーションは完成度の高いものになったと考えている。ただし、次期装置においては、超伝導コイルを使用した環境下でのボロナイゼーションが求められるため、高温状態での輸送が不可欠でデカボロンは使用できない恐れがある。今後は重水素ジポロンを第一候補として、真空容器内壁の取付材であるデカセ飲みやタンスペン、フェライト鋼等との適性を他の研究機関と共同で確認しつつ、コーディング方法やシステム設計を進める予定である。

参考文献
[1] 宮田克行他、その場ポロン化処理の改修、平成12年度 東北大学技術研究会 P67-69
5.7 ベレット入射技術の開発・改良

(1) ガス銃方式ベレット入射装置

目的

トカマク装置に於ける燃料粒子注射方式としては、ガス注入口を利用して直接プラズマに注入する方法（ガスパルプ法）と、ガスを冷却し固体状の小片（ベレット）にして入射する方法がある。前者の方法では、ガス注入を増加させてプラズマ周辺部での密度は高くできたが、プラズマ中心部の密度が殆ど昇ることなく、かえって周辺部の密度が増加することによりプラズマが冷却されて不安定になることもあった。一方、後者の方法は、粒子の中心部に容易に燃料を補給でき、また同時にプラズマ密度分布の制御手段としても有効となることが期待された。そこで、JT-60では従来のガスパルプ法に加えて、高圧ガス（加速ガス）によりベレットを加速しプラズマ内部に注入するガス銃方式（ニューマチック方式）を用いたベレット入射装置（図1）を1988年に導入した。設計に当たってはすでに先行して導入し、実験が進められていたJFT-2Mのベレット入射装置をベースに改良を加えて設計された。

![図1 ベレット入射装置設置図](image)

方法

本装置は、ベレット生成・射出系、排気系、測定系、架台、制御設備等で構成される。ベレット入射装置本体の設置場所はP-10の斜め上SLポートを利用した（図1）。燃料ガス供給用のガスボンベ管設備はJT-60実験棟北側の屋外ヤードに設置した。

ベレット生成・射出部を含む生成槽全体の構造を図2に示す。また、生成槽の写真を図3に示す。中心部は、高速射出弁、ベレットキャリア、射出管で構成される。生成・射出の基本動作は以下の通りである。ベレットは液体ヘリウム(LHe)により極低温（約7K）に冷却された4個の独立したベレットキャリアの小孔内で同時に生成される。リザーバータンク内に封じ込まれていた加速ガスは、4つの射出系統毎に設置された高速射出弁の開放操作により圧縮波を形成し、伝搬しながらガス導入管へ瞬時に供給される。ベレットキャリアで生成されたベレットは、加速ガスの圧力で射出管（銃身）を通してプラズマ中に高速で入射される。

本装置の設計に当たって基本仕様は表1の様に定めた。ベレットの射出速度は、理想ガスの伝播速度（加速ガスの種類、加速ガスの圧力、加速ガスの温度、ベレットの質量、ベレットの断面積、射出
ブラズマ燃料には水素または重水素を用い、4つの生成系统に独立したガス圧力の調整をすることにより、大きさや速度の異なるベレットの連続射出が可能なようになる。ベレットの飛行速度の計測は、ベレット飛行軌道上に計測用レーザー発信器と受信機を2セット設置し、ベレットが2箇所のレーザー光を連続して通過する時間を計測する方式とした。また、ベレットの大きさはマイクロ波キャビティにより静電容量の変化から測定できるようにした。これらの計測は4個のベレットそれぞれ独立に求められたようにした点で特徴がある。本装置で扱うガスは10MPaを越えるため、JT-60 装置での運転に当たっては高圧ガス使用法に基づく高圧ガス使用としての適用を受けた。ベレットの冷却設備については、開放式の2,000リットルデュワタンクからの供給方式としたため高圧ガス使用の対象にはならなかった。

結果、成果
設計目標通り、サイズφ2.7mm×2.7mmとφ3.8mm×3.8mmのベレットをそれぞれ2個ずつ生成し、独立に射出することができた。最大ベレット射出速度としては約15.5km/sを得た。また、飛行したベレットサイズと理論上のベレットサイズの比（粒子補給率）というが67〜70%のベレットを安定に生成することができた。本装置はJFT-2Mのベレット射出装置をベースに改良を加えて設計されが、5MPaもの高圧の下で高速射出が動作不良を起こすなどの問題点を生じた。これには高速射出弁に使われているセーターリングを防止用のシール材が弁の動作時に可動部から外れたものであり、シールの固定部構造を変更して対応した。

表1 ベレット射出装置の基本仕様

<table>
<thead>
<tr>
<th>仕様</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベレットの種類</td>
<td>水素ガス、重水素ガス</td>
</tr>
<tr>
<td>ベレットの個数</td>
<td>4個</td>
</tr>
<tr>
<td>ベレットサイズ</td>
<td>φ2.7mm×2.7mm:2個, φ3.8mm×3.8mm:2個</td>
</tr>
<tr>
<td>射出スピード</td>
<td>1.5km/s以上</td>
</tr>
<tr>
<td>加速ガス圧力</td>
<td>5MPa</td>
</tr>
<tr>
<td>鋼身長</td>
<td>80cm</td>
</tr>
</tbody>
</table>

参考文献、表彰
[3] 2000年度、市毛修志、平成12年度、東北大学技術研究会、JT-60ベレット入射装置の液体ヘリウム流量調節弁の改修

（2）ベレット入射装置射出速度の高速化

目的
1988年6月から行ったベレット入射実験結果から、高プラズマ密度に伴うエネルギーカイーズの特性の改善が見られたものの、エネルギー閉じ込め特性の度合いがプラズマへの侵入距離に強く依存し、より高い改善を得るためには安全係数qが1よりも低いプラズマ中心部深くまでベレットが到達する必要があることが分かってきた。低磁場からのベレット入射においては、ベレット射出速度を現状の1.5km/sから1.9 km/sに向上させ、また合わせてベレットサイズを増大することとした。これに対応するため、1988年12月にベレット入射速度の高速化改造を実施した。
方法
高速化を図るため、以下を実施した。ベレットを生成・射出する生成機構内に高速射出弁、リザーバータンク及びガスの配管を新たに製作した。また、生成機構全体も新たに製作した。その他は既設の機器を使用した。高速化装置のベレット射出装置は、1991年1月のJT-60大電流化改造以降は、真空容器の更新にともない、その設備場所を斜め上ポートから水平ポートへ移設した。JT-60大電流化改造後のベレット射出装置図図5に示す。
生成部でベレットサイズを従来のφ2.7mm×2.7mm、φ3.8mm×3.8mm、φ3.0mm×3.0mm、φ4.0mm×4.0mmに増大し、それぞれ2個ずつ独立に射出できるようにした。ベレット飛行速度を上げるため、ガス伝播速度を増加させる事を目的に、高速射出弁の動作時間を従来の1.1msから0.5msに短縮して閉閉動作速度を向上させ、加速ガスを5MPaから10MPaに上昇させた。また、ガスの伝播速度を速めるため加速ガスの温度を80℃から200℃に上昇させた。
従来の射出弁は、プラグナーとシール材が一体構成になっており、通電停止すると射出弁はシールされるが、開時にシール面に衝突するときに、シール面が損傷を受けることがあった。この部分を改良し、プラグナーとシール材の押えパネを個々に設け、衝突力を抑制することでプラグナーの加速力を利用してシール弁体（パルプディスク）が瞬時に引き揚げられるように構造（ラッチ方式）として高速化を図った。また、200℃の高温ガスの使用に耐えられるようにパイタンシール材よりポリイミドに変更した。
新たに開発した高速射出装置の構造図6に示す。高速化の改造における仕様の変更点を表2に示す。図7にベレットサイズφ3.0mm×3.0mmの実際の飛行写真を示す。

表2 高速射出弁仕様の比較

<table>
<thead>
<tr>
<th>従来装置</th>
<th>改良装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>流 体</td>
<td>水素ガス</td>
</tr>
<tr>
<td>壓 力</td>
<td>5MPa</td>
</tr>
<tr>
<td>温 度</td>
<td>常温～80℃</td>
</tr>
<tr>
<td>壓力応答速度</td>
<td>30kgf/cm²/s</td>
</tr>
<tr>
<td>動 作 方 式</td>
<td>電磁弁方式</td>
</tr>
</tbody>
</table>

結果、成果
本装置は1988年12月に実機に組み込まれ、1989年2月から実験に使用され、その後のプラズマ性能向上に大きく貢献した。改造の目標としたベレットサイズφ3.0mm×3.0mm、φ4.0mm×4.0mmに変更した。ベレットを安定に高速射出することができた。実験の結果、最大高速射出速度としては当初予定していた約1.9km/sを越え、約2.3km/sを得た。これは、ガス射出方式としては当時得られていた世界記録をしのぐものとなった。また、飛行したベレットサイズと理論上のベレットサイズの比（粒子補給率）は60～65%の範囲にあり、安定に大量サイズのベレットを生成することができた。
新たに製作した高速射出弁は従来よりさらに高いガス圧力である10MPaで動作するように新規開発し、10,000回の繰り返し動作試験においても正常動作することを確認した上で実機に組み込んだ。初期の試験段階でプラグナーと弁体の駆動面の損傷が発生する現象が見られた。この課題についでは、その後スツーパーリングの設置等の衝突対策を施し、健全性を確保したことでその後は達心方式ベレット射出装置まで安定に動作した。

参考文献、表彰
[2]1990年度、平塚一也、文部科学大臣、創立工夫功労賞、JT-60ベレット射出装置用高速電磁弁の考案

— 162 —
(3) 遠心式ペレット入射装置の導入

目的

JT-60では高温プラズマ及び高密度プラズマの長時間保持を目的とした研究が行われている。高温プラズマにおけるガスパラブによる燃料供給はプラズマ周辺にトラップされるため中心部への燃料供給効率が低い。これを克服するにはプラズマ中心部に高速、かつ、連続的に燃料を供給することが必要である。これを実現する手法として、前述のようにJT-60においては、空気器方式による技術開発の進め、1988年からH₁ペレット射出速度2,300m/sの高速入射が可能なペレット射出装置を開発した。その後、プラズマ研究の進展に伴い、プラズマ実験上ペレット1個当たりの燃料粒子供給量（2.0ppm）、比熱と周波数（10kHz）、より低い速度領域での可変ペレット速度（3000〜1,000m/s）、入射時間（5〜5s）等の新たな要求が生じ、この要求は、遠心加速方式では満たすことが出来なかったため、連続入射可能な遠心加速方式によるペレット入射装置の開発（1996年）を行った。

設計

空気器方式では燃料ガス（低圧ガス）をペレットキャリアに供給し、液化、固化した後、射出位置にキャリアを移動して高速射出弁の開放による加速ガス（高圧ガス）で押出し射出する方式であった（5.7(1)図2参照）。遠心加速方式は、ペレット生成部と加速部から成る。ペレット生成部は燃料ガスを液化器に供給して液化、それを固化器に供給して固化し、ピストンにより押し出し、それをカッターネで円柱状に切削してローターに導き、ペレット加速部は高速回転するローターにより遠心加速して射出する。図8に概要と原理を示す。遠心加速方式は、空気器方式の液体ヘリウム配管、燃料ガス配管及び排気配管を再利用することから、配管取合部、設置スペース等の制限を受ける。このため、燃料ガスを液化する液化器、それを固化する冷却器を分離構造にした。また、ペレットをローターの中心に落とせるようにJ型の配管（Jチューブ）を採用し、真空容器への入射口のサイズ（P10 R12-a）ポチに设置した。表3にペレット入射装置の性能を示す。

表3 ペレット入射装置の目標性能

<table>
<thead>
<tr>
<th>加速方式</th>
<th>空気器方式</th>
<th>遠心加速方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類</td>
<td>H₁、D₃</td>
<td>D₃、H₁</td>
</tr>
<tr>
<td>加速圧力</td>
<td>5MPa、H₁</td>
<td>10MPa、H₁</td>
</tr>
<tr>
<td>ローター回転数</td>
<td>～300Hz</td>
<td></td>
</tr>
<tr>
<td>ペレット寸法</td>
<td>四角形</td>
<td></td>
</tr>
<tr>
<td>装填周期</td>
<td>単発式（4発）</td>
<td></td>
</tr>
<tr>
<td>射出時間</td>
<td>～10s</td>
<td></td>
</tr>
<tr>
<td>ペレット速度</td>
<td>～1.6km/s</td>
<td></td>
</tr>
</tbody>
</table>

結果と考察

燃料ガスを液化器で液化、冷却器で固化した後、ピストンにてペレット燃料を押し出し、カッター動作によるペレットの生成を確認するとともにローターへの装塩を確認した。単体射出試験においては、20発〜10s、発射3sなどの連続射出及び最大射出速度1.0km/sなどを得た。しかし、再現性が悪く、安定性がない結果となっただ。その原因を究明した結果、ペレット生成部とペレット加速部の真空断熱及び加速機構の装置安定性によるものと判断した。そのため、ペレットを四角柱（キュビック）にするとともに、冷却の強化、真空シール機構の強化、アウターローターの安定化、集合管の適正化、飛行管の適正化、アプレーションガスの排気及びモニタの強化の改造が必要との判断に至った。

冷却の強化及び真空シール機構の強化は、各槽の圧力、各部の温度を調査、検討してペレット生成部、加速部にある機器を生成槽と加速槽に再配置して対応した。このような内部の断熱、排気、冷却
ルート、飛行、及びモニタの改造、変更を1998～1999年にかけて実施した（5.7(5)参照）。その結果、目標としたペレットを安定して生成・射出することが確認できた。
一方、プラズマ実験の進展により、プラズマの高密度化の観点から外側ペレット入射だけでなく、トーラスの内側入射の必要性が生じた。そのため、輸送管によるペレット入射の検討及び射出速度の検討などが進められた（参照：5.7(6)ペレット入射ガイド管による上側入射改造、(7)ペレット入射速度の低速化）。

結論
生成槽及び加速槽内の真空度や温度により、ペレット生成上の真空断熱条件が固定しないため、ペレット燃料の生成条件が安定しない。また、ペレットの形状が円柱状では、ペレット自身のアプレーションによりローター上での加速が安定しない。よって、真空度管理、温度管理、状態監視及びアプレーションガスの排気の差によりペレットの生成効率に違いができるなどの事象が判明した。このように初期の遠心式入射装置では十分な性能が得られなかったものの、その後の1998年からの高性能化改造によりその設計性能は十分に達成され、プラズマ実験に貢献した。

感想
プラズマ中心部への連続的な燃料供給には、ペレットの大きさが重要である。小さいペレットを多く、又は、大きいペレットを少なくす、特殊装置の設計は、製作前に十分検討が必要である。
また、高密度プラズマの長時間保持の必要性から低速内側ペレット入射やSCREW EXTRUDERによる連続入射が期待されているが、採用に当たっては、前記同様に予備試験なども含めた検討が必要である。

参考文献
（4）ペレット制御及び計測システム改造

目的
遠心加速方式ペレット入射装置（図9）の完成に伴い、装置の制御方法が変更となり計測データ量も大幅に拡大した。そこで、これらに対応するに全系制御設備とペレット入射装置シーケンサ間の通信（制御・計測）を行っていたペレット入射装置CAMAC制御システムを撤去し、ワークステーション化する改造を実施した。また、生成されたペレットの計測システムについても、モニターするためのシステムを構築した。

方法
制御システムに関しては、ペレット入射装置CAMAC制御システムの基本的な機能を残しながら、遠心加速方式ペレット入射装置化に伴い増減する信号への対応を行った（図10に改造後のシステム系図を示す）。従って、改造前の基本的な機能（ペレット入射装置のシステム図を参照）製作機器の状態表示、アナログ計測データの収集など）は残すこととした。又、ワークステーションに関するトラブル発生時の原因調査を効率化するために、ログデータを保存・分析する機能や画面のハードコピー機能の整備も合わせて行った。

計測システムに関しては、ペレットの初期状態（生成状態）を確認する方法として、加速槽の下部フランジ（ガラス窓）越しの大気側にCCDカメラとランプを設置し、挿入されたペレットをモニターカメラで確認及び記録できるようにした。また、加速槽の切出されたペレットの数や大きさを確認する方法として、汎用の計測用半導体レーザーセンサーを加速槽（真空中）に設置した。更に、飛行したペレットの大きさや数を確認する手段として、μ波測定装置を設置した。

結果、検討
制御システムについては、全系リンクチェーン試験を含むシステム構築後の機能確認試験において、問題なく動作することを確認した。ペレット入射装置制御システムの最も重要な機能である全系制御設備との通信に関しては、問題なく機能することを確認できた。また、改造前の基本的な機能を残すことにとどまって、改造後の機器操作要領の習得が容易にできた。

計測システムについては、現場制御室（計測調整室）に在ながらにしてペレットの出来具合や切断個数等を把握することができ、ペレットの生成状態の調整及び確認に役立つことができた。

図9 ケーラセット入射装置本体
図10 ペレット入射装置 システム系図

検討
制御に関しては問題なく行えたが、計測機能関係はノイズの影響を受けやすいことがあり、より確実にデータを取得する場合には改造が必要である。具体的には、ペレット飛行時の大きさを測定する装置（μ波測定装置）の信号に、大電流を使用している周辺装置からのノイズが入ってきた。ペレットの大きさ計測や数計測に誤差が生ずることがある。計測信号の立ち上がりをトリガーにして計測を開始し信号のMINとMAXの差で大きさを求めている現在の方法には限界があるので、計測信号の積分を行いノイズによって計測した信号が否かを判断する機能やノイズの周波数分析を行ってフィルタ機能を設けるなどの工夫が今後必要と思われる。

参考文献
[1] 2000年度、平塚一、分子科学研究所技術研究会、固体燃料装置装置の開発
（5）遠心式ペレット入射装置の高性能化改造

目的
改造前のペレット入射装置は、ペレットの生成温度が高いために充分な硬さが得られず、ペレットをプラズマに導く集合管（ファンネル）との衝突により容易に破壊される状態にあった。また、ペレット自身が放出するアウトガス（アブレーションガス）の反作用で、ロータ内での加速軌道が大きく乱れて、ペレットが射出までに至らない等の課題があった。このため、1998〜1999年にかけて高性能化へ向けた改造を行った。

方法・設計
実験機設置装置Ⅱへ移し以下の高性能化改造を行った。
(a) 冷却と温度分布制御強化
ペレット生成中に熱伝導の良い無酸素鋼を採用し、冷却効率を向上させるとともに、ヒーターを用いた水素固体生成部分の温度分布制御を容易にし、安定したペレット生成を可能とした。

(b) インナーロータとストップシリンダにガス抜き機構採用
水素固体ペレットのアブレーションガスにより、加速機構であるインナーロータとストップシリンダ内でのペレットの運動が乱される影響を低減するために、図11に示すように、インナーロータ先端部をスリット状にし、ストップシリンダ側面をメッシュ構造とした。これにより、アブレーションガスが外部に取り除かれる効果を期待した。

(c) ファンネルの角度設定
アウターロータから射出されたペレットはファンネルと呼ばれるテーパー状の角管により受け止められ、プラズマに導かれる。管をテーパー状にする理由は、ある広がりを持ってアウターロータから射出されたペレットを受け止めて、プラズマ入射方向へ導くためである。しかし一方、ペレットと管の側面との衝突角度が大きいため、ペレットが破壊される。改造においてはファンネルのテーパー角度を2.7°から1.2°に変更した。

結果・成果
インナーロータとストップシリンダにガス抜き機構を採用したおかげで、アウターロータからのペレットの射出角度の広がりが半径幅にして26.5°から5.4°に狭くなった。これにより、アウターロータから射出されたペレットの大部分がファンネルに射入され、プラズマへのペレットの入射効率が80%を超えることができた。

改造後のペレット入射装置は、600 m/sのペレット速度において改造前の3倍以上の体積を持つペレットを入射可能となった。この結果は、ファンネル角度を1.2°とすることで、ペレットとファンネル内壁との衝突角度が4.7°から3.4°に低減されたことにより、ペレットの破壊が低減されたことに起
検討、考察
現在のペレット注入装置はペレットの生成個数が少ないので、JT-60の定常化研究に大きく寄与することが難しい。生成シリンダーの本数を増やすか、生成方法をスクリュー方式にするなどして、長時間の注入に対応することを検討すべきたい。

結論
JT-60II プラズマ中心へのより効率的な燃料供給のために（重）水素固体ペレット注入装置を改善した。本装置は直線型のロットを回転させ遠心力によってペレットを加速する機構となっており、0.3~1.0 km/s の速度で最大 40 個 (100 Hz) の射出が可能となり、当初目標性能をほぼ達成できた。0.7 km/s 以下の速度でのペレット 1 個あたりの平均的な原子数は 3.6×10^10 個である。
加速中にペレットからのアプローショングスされるガスにより、ペレットの運動が乱されるのを防ぐために加速度部にメッシュ構造を取り入れ、また射出されたペレットを破壊させてプラズマまで導くために適切な角度を持ったファクネル（テーパー管）を開発したことにより、破壊なく高い確率でのペレット射出が可能となった。
プラズマへのペレット注入実験により、プラズマ中心への粒子供給、及び低リサイクルの維持といった燃料供給装置としてのペレットの優位性が確認された。

感想
現在の装置は液体ヘリウムをデュワタンクより液送することで冷却を行っている。液体ヘリウムのコストと 1 週間の運転でデュワタンクを搬出し、液体ヘリウムを充填しなければ試験を行うことができないという問題から調整の期間に回数に大きな制限がある。将来、原研において次期ペレット注入装置を開発する場合には是非、冷凍機を用いたシステムにすべきである。

参考文献
(6) ベレット入射ガイド管による上側入射改造

目的
1996年ASDEX-Uにおいて、高温加熱プラズマでは、高壁側（HFS）からのベレット入射の方が低壁側（LFS）からより高い燃料注入効率が得られることが示唆された。そこで、グリーンワールド限界付近でのプラズマ閉じ込め特性の改善を図ることを目的に、1999年にJT-60においても、従来のLFS入射だけではなく、よりHFS側から入射を可能とする改造を行った。

方法、設計
ベレットを高壁側からJT-60プラズマに射出するために、ベレット入射装置に（1）μ波質量検出器付きガイド管と（2）切り替え器槽を設置し、LFS、HFSの選択を可能とした。図13にHFS入射を可能とするガイド管、真空容器、ベレット入射装置の配置図を示す。本ガイド管による入射を上側入射（HFS(top))と呼ぶ。
ベレット入射装置から射出されたベレットは、入射方向を選択する切り替え器槽に入射される。切り替え器槽には可動式のテーパー管（ファンネルと呼ぶ）が装備されており、ゲートバルブを介してHFS(top)入射へのガイド管方向とLFS入射するための水平方向に切り替え事が可能である。
HFS(top)入射の入射方向は内側ダイバータパッフルプレートとなっている。ガイド管は内径5mm、外径7mm、全長約15mであり、4つのカーブからなる。最初のカーブの曲率半径は真空容器周辺の他の設備との干渉からR600mm以上に大きくすることはできなかった。ガイド管は2重管構造として、外側のチューブ内をポンプで排気することで予期せぬ真空リックにより真空容器内に大気が流れ込むことを防止している。
通過したベレットの数と質量を測定するために、2つのマイクロ波質量検出器を設置した。ひとつはベレット入射装置と切り替え器槽との間に、もうひとつはガイド管の出口、P-9上側ポートのゲートバルブ直前に設置した。

2つのμ波質量検出器によりベレットの速さを測定することも可能とした。

図13 ベレット入射装置、ガイド管、真空容器の配置図
結果、成果

図14はペレットの速さとプラズマの電子数の増加の関係を示す図である。ペレットはオーフルスプラズマに速さ220〜400m/sで入射された。白丸がHFS(top)の場合、白三角がLFSの場合を示している。ペレットがガイド管を通して入射されていることがわかる。ペレットのサイズは220m/s以下においてLFSの70%程度である。また、LFSとHFS(top)の切り替えにも成功した。

図14の実線は、HFS(top)入射による電子数増加の最大値を示す曲线である。LFSと異なり、HFS(top)の場合、速さの増加とともに電子数の減少、つまりペレットのサイズが減少している。μ波の質量検出器でも300m/s以上においてペレットの大きな破壊は観測された。温度が15K以下のペレットを壁に対して垂直に打ち込んだときにペレットが破壊する速さを20m/sである。これより、単純な衝突モデルをもとにすると曲率半径が600mmの曲管を通過できるペレットの速さは200m/sとなり、実験結果と一致することがわかった。

ペレットの入射速さは、プラズマの中心への燃料補給という観点から重要である。そこで、2つのμ波の質量分析器を用いてペレットの速さを軽水素・重水素・ネオンペレットについて測定したところ、ガイド管を通過するペレットの速さはペレット入射装置から射出される速さの70%程度となることがわかった。

またプラズマ実験において、JXBドリフトによりLFSペレットよりもHFS(top)の方がプラズマ中心部まで燃料供給ができることが明らかとなり、Lモードスケーリングからの閉じ込め改善度μ geom=1.94において、従来は60%程度にとどまっていたグリュワルド密度で規格化した密度を70%高める成果を達成した。

検討、考察

現在のガイド管は、他の機器との干渉から、4つのケーブルにより構成されている。特に曲率半径R600mm部とR134mm部はS字形状となっており、2箇所においてペレットは壁に衝突することになる。ペレットの破壊を極力抑えるためにはペレットと壁の衝突は1回に抑えるようにガイド管の形状を工夫すべきである。

結論

JT-60プラズマ中心へのより効率的な燃料供給のために、HFS(top)入射用のガイド管と、入射方向をLFS又はHFS(top)に切り替える切り替え器装置の製作・設置を行った。

最小曲率600mmのガイド管を通じて、JT-60プラズマの高磁場側からペレットの入射が可能となった。そのペレット質量はLFSの70%程度であった。また、ファラネルを備えた切り替え器により、LFS入射を生かした状態でHFS(top)入射を可能とした。以上より、プラズマ実験において、JXBドリフトによるHFS入射の利点が示され当初の目的を達成した。

また、より低速のペレットの方がペレットのサイズが大きくなることが示されたことにより、2000年にペレット入射装置の遮断装対応の改造が行われた。

感想

核融合プラズマの定常化研究を考えたとき、ペレット入射装置は非常に重要なツールである。次期核融合試験装置においては、設計の段階からペレットの入射位置とそれを実現するための装置とガイド管の経路を論議・検討し、より高効率なペレット入射システムにべきと考える。

参考文献

(7) ベレット射出速度の低速化改造

目的

JT-60では、ガイド管を用いてトーラスの内側（高磁場側）からのベレット入射による、プラズマ中心の高密度化及び密度制御を実施している。2000年3月からの実験結果より、高磁場側上部（HFS（top））入射で質量の大きいベレットを入射するには、より低速の方が良いことが明らかとなったが、ベレットの加速駆動部の制限から220m/s以下の射出には対応できない問題があった。そこで、最低入射速度を100m/sまで低減する改造を行った。

方法、設計

ベレット加速用駆動部は、真空排気用ターボ分子ポンプのモーターを流用しており、高速回転を想定したモーターとなっている。ポンプのモーター部にはベアリングが用いられており、ベアリングへの定常的な潤滑油の供給が必要である。潤滑油の供給は、モーター自身の高速回転時の遠心力により、ベアリングに油を循環させる方式となっているため、本改造においては、油吸込み部品を改良して、低速回転から油を循環できるようにした。

従来のモーター部の油綫入部には油だてに差し込まれたテーパーソリュボル構造の油入口塩が回転し、遠心力により油を吸い上げてベアリングに循環供給していた。そこで、低速でも油の吸い上げ可能にするために、回転駆動部内の油だて内に、図15に示すようなねじ溝を掘った固定芯（ねじ溝芯）を挿入し、ねじ溝ポンプを形成する方式とした。これらの部品の組み込み図を図16に示した。この方式では、固定されたねじ溝芯の外周を油入口塩が回転し、その内周との間にせん断力が作用して油が上がることになる。

![図15 油吸込み部品](image1)

![図16 油吸込み部品組込図](image2)
結果、成果

図17に改修前（三角）と改修後（四角）のモーターの回転周波数と油鈍量（油密度）との関係を示した。改修前は100Hz以下で急速に油鈍量が減少し50Hz以下（ベレット速さ220m/s）での運転は行えない状態であった。一方、改修後は25Hz（ベレット速さ100m/s）においても十分な油鈍量が確保され、連続運転が可能となった。

図18はHFS（top）ベレット入射時のベレット速さとプラズマの電子数の増加の関係を示すグラフである。ベレットはオーム加熱プラズマに速さ100〜400m/sで入射された。白丸が220m/s以上の場合、黒丸が改修後の110m/s以下の場合を示している。110m/s以下に低速化することで、ベレットのサイズは220m/sのベレットに比べ10%以上増加した。これは、低磁場側入射（IFS）の80%程度に相当し、低速化による粒子補給の増大という目標を達成した。

検討、考察

低速化という観点では、目的を十分に達成している。ベレット装置全体の改良としてあれば、μ波質検出器などのベレットモニターのための空隙を極力減らすことで、ベレットと壁との衝突回数を減らし、ベレットの大きさのばらつきを減らすことがあげられる。

結論

HFS（top）入射でのベレット入射量の増大を目標に、ベレットを100m/sの速さで射出する運転を可能にする油鈍き込み部品の追加、改良を行った。これにより、低回転速度においても油の循環が可能となり、ベレット入射装置の運転領域が回転速度で25〜264Hz、ベレット速さにして100〜1000m/sという広範囲に拡大できた。

また、ベレットの速さ100m/sでのHFS（top）入射実験においては、4つのカーブを持つガイド管を通過したにもかかわらず、低磁場側から入射されたベレットの80%程度のサイズを持つベレットを入射可能となった。

さらに、この低速化による実験の成功を受け、より高磁場側(HFS(mid))からの入射を可能とする新しいガイド管の製作・設置が2001年より開始された。

感想

ベレットのガイド管内での破壊を速度を下げることにより達成する方法は、低回転周波数で油を循環する技術自体はスマートであるが、ベレット入射システムの全体の発展という観点からは前向きではない。次期装置では、高速の高磁場側入射が実現できるような装置設計をすべきである。

参考文献

(8) ベレット入射ガイド管による内側入射改造

目的
固体燃料によるプラズマ中心密度の上昇はトーラス外側入射より強磁場側の内側入射の方が大きいと考えられている。遠心式固体燃料入射装置を使用している JT-60 での燃料補給効率を高めることを目的としたベレット入射ガイド管による内側入射改造を行った。

方法、設計（仕様）
固体燃料入射用ガイド管は図 19 に示すように P-10 ポート水平位置に設置されている遠心加速方式固体燃料入射装置（ベレット入射装置）から飛行する固体燃料を真空容器水平ポートの切換器操作により 2 ケ所の入射位置方向への選択を行うことができる。1 ケ所は垂直上側ポートから入射する上側入射用ガイド管、もう 1 ケ所が内側入射用ガイド管となる。
内側入射ガイド管は飛行してくる固体燃料を収集するファンネル（漏斗状集合管）と固体燃料をトーラス内側まで導くガイド管から構成される。

図 19 固体燃料内側ガイド管構成図

固体燃料入射装置により生成される固体燃料は重水素ガスを 15K で固化してできた水を切断し 1 辺が 2.1 mm のキュービック状にした燃料となる。生成された燃料は遠心加速ロータにより 100～600m/s で入射される。本設計仕様では上記に示す固体燃料を如何に破壊すにプラズマのトーラス内側に導くことが可能かを念頭において既設設備との整合性を図り設計を行った。
ガイド管曲率は入射速度、管口径、固体燃料の寸法及び固体燃料の温度に依存する。検討する上での固体燃料（2.1 mm 規格と温度 15K）に対し、ガイド管の内径を 5 mm と固定した。理由として輸送管内を通過する固体燃料からはガスが放出する。このガスが輸送管内に残留し固体燃料の入射周期に影響を与えると考えられ、図 20 に示すように固体燃料とガイド管の面積比（固体燃料が残留ガスを押しのけていくことから影響があると考える。）を求め固体燃料の寸法に対して 2 倍以上の径とした。
また、その時の曲率と入射速度の関係を簡易モデルにより検討し、固体燃料が破壊しない条件を評価した。
ファンネルの設計は図21に示すように設置する空間の制約を考慮して、入り口側の口径、ファンネルの長さ及びガイド管の曲率、そしてファンネル内のスロープ角度の兼合いで決定される。ファンネル内のスロープ角度は固体燃料が最終的に破壊する下限速度と固体燃料の飛行速度から衝突角度を算出して決定した。また、ファンネルには真空容器ポートと固定するためのサポート用絶縁フランジを取り付けた。これは真空容器とファンネル及びガイド管を直接固定するとプラズマによる誘導電流が流れる回路ができるためこの誘導電流とトロイダルコイル磁場の交差によりファンネルには電磁力が掛かるため、ファンネルの固定部に誘導電流が流れないように絶縁セラミックを挟みこみ回路を電気絶縁する構造とした。電磁力によるガイド管の健全性は1×Bで評価し、管と真空容器間に流れる電流が880A以下となるようにガイド管のサポート間隔を決め取り付けた。

結果、成果

据え付け後、5.7（6）に示した既設切換器の上下位置を変化させて入射特性を調べ、その結果、図22に示すようにファンネルが設計どおり、ある程度の角度範囲内で有効に機能することを確認した。また、固体燃料内側ガイド管からの入射実験によりプラズマの密度上昇を確認した。また、上側入射では得られなかった個々のペレット入射後のプラズマ中心部での密度の速い減衰は確認されないことが分かり、プラズマ密度制御により有効があることを確認した。

検討、考察

固体燃料内側ガイド管は据え付け箇所の制約条件の中、様々な角度から設計を行った。特に飛行してくれる固体燃料を受けるファンネルとガイド管の曲率には設計を重点的に置き、ガイド管への入射速度、管口径、固体燃料の寸法及び固体燃料の温度が設計する上で本件により重要だということが明らかになった。

感想、次回／未来へのメッセージ

飛行してくる固体燃料は避けためガイド管はできる限り連続的に構造が望ましいと考える。また、ガイド管が途切れる箇所については本件のファンネル構造が有効であると思う。
5.8 ガス注入技術の開発・改良

目的

JT-60のガス注入弁には、圧電素子の圧電効果を応用した圧電素子弁が用いられている。その原理は、圧電素子の歪みにより生じたシール部と弁座の間からガスを導入するものである。JT-60用圧電素子弁の開発は、1981年から進めてきたが、プラズマ実験の進展により、ガス注入速度（流量範囲）が増大したこと、また、バイモルフ型圧電素子の入手が困難となったこと等の理由により、積層型圧電素子や積層圧電アクチュエータを標準としたガス注入弁を開発した。

設計

当所JT-60の圧電素子弁には、TFTRで使用されていたパルススガスフィードバルブが想定されたが、流量範囲等の仕様がJT-60に合致しないことから国産化を図った。国産のバイモルフ型圧電素子を選定し、弁座部に細工を加え、仕様を満足させた。その後、バイモルフ型圧電素子の入手が困難になったことから積層型圧電素子を用いた圧電素子弁の開発、製作を進めた。しかし、この弁は、無負荷状態において作動させると破損等の問題が生じたため、新たに積層圧電アクチュエータの導入を図るとともに、これにベースにして積層圧電アクチュエータ型圧電素子弁（検子タイプ）及び積層圧電アクチュエータ型圧電素子弁（リフトタイプ）を開発、製作した。各圧電素子弁の仕様を表1に、バイモルフ型圧電素子弁構造（初期弁）及び積層圧電アクチュエータ型圧電素子弁構造（新弁）を図1に、各圧電素子弁の仕様を図2に示す。

表1 圧電素子弁の仕様

<table>
<thead>
<tr>
<th>バルブの種類</th>
<th>バイモルフ型圧電素子弁</th>
<th>積層型圧電素子弁</th>
<th>積層圧電アクチュエータ型圧電素子弁</th>
<th>積層圧電アクチュエータ型圧電素子弁</th>
</tr>
</thead>
<tbody>
<tr>
<td>圧電素子の種類</td>
<td>バイモルフ型圧電素子弁</td>
<td>積層型圧電素子弁</td>
<td>積層圧電アクチュエータ型圧電素子弁</td>
<td>積層圧電アクチュエータ型圧電素子弁</td>
</tr>
<tr>
<td>ガスの種類</td>
<td>H₂、D₂、He、Ne等</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流量範囲*</td>
<td>H₂:0.53～5.33</td>
<td>L:0.53～5.33</td>
<td>M:0～26.6</td>
<td>L:0.5～5.8</td>
</tr>
<tr>
<td>供給ガス圧力 (MPa)</td>
<td>0.05～0.4</td>
<td>0.05～0.4</td>
<td>0.05～0.4</td>
<td>0.05～0.4</td>
</tr>
<tr>
<td>シートリート量</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
</tr>
<tr>
<td>箱体リート量</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
<td><1.3×10⁻⁸</td>
</tr>
<tr>
<td>動作速度（msec）</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><10</td>
</tr>
<tr>
<td>動作電圧（DC V）</td>
<td>175</td>
<td>150</td>
<td>175</td>
<td>150</td>
</tr>
</tbody>
</table>

*PEV-H（大容量）、PEV-M（中容量）、PEV-L（小容量）、PEV-LL（微小容量）を意味する。
結果
各圧電素子弁のシートリーク量はヘリウムガスで1×10^{-9} Pa-m/s 以下、動作速度は5ms 以下、注入速度は水素ガスで所定流量範囲の得、仕様を満足する結果が得られた。また、水素以外のガスを用いた場合においても仕様を満足した。

検討、考察
圧電素子弁のバイモルフ型圧電素子の選定については、その歪み（変位）が弁としての仕様を満足するものがないことから受注生産品（特注品）を使用した。その後、受注生産中止の問題が発生し、规格品を利用した注入弁の開発（積層型圧電素子弁、積層圧電アクチュエータ型圧電素子弁）を行った。しかし、当初は、形状、取合能力から十分な流量範囲を得ることが出来なかったが、シール部の機構を換える等の工夫により仕様をほぼ満足する弁（積層圧電アクチュエータバルブ）を開発できた。さらに、圧電素子シール材やノズル形状についてもシール材の前処理、弁座ノズルのコーティング処理などを施し、残留歪の防止や接着防止の工夫を行って実用に供した。ただし、圧電素子やシール材は、経年変化を伴うため、定期的な流量検査が必要である。

結論
圧電素子弁は、JT-60 の磁場環境下において、応答時間、制御精度、注入速度について仕様を満足した。各々の弁は放電注水時の連続ガス注入、実験放電時のバルス及びフィードバック制御によるガス注入に対応し、プラズマ実験に大きく貢献した。また、圧電素子弁の構成部品データや校正試験方法などのデータは重要なデータとなった。

感想
圧電素子は圧電効果を応用したもので、変位、伸縮する素子である。素子はヒステリシスを有するため、その打ち消し方法にはそれぞれの素子に対応した工夫が必要である。圧電素子弁で広範囲の流量を得るには、必要な変位、伸縮値により特注品の素子を用いることになる。特注品は高価なため、コストの低減には規格品の素子の利用、その変位を拡大するために鉄子などを利用して問題解決が可能である。また、用途範囲や性能向上も可能である。

参考文献、表彰、特許
[6] 平塚一他、1990年、科学技術庁長官、注目賞、ハードディッシュ積層型圧電素子弁
[7] 平塚一他、特開平 8-93944、特許第 2996599 号、積層圧電アクチュエータ型圧電素子弁
[8] 平塚一他、1998年、科学技術庁長官、注目賞、積層圧電アクチュエータ型圧電素子弁
[9] 平塚一他、特開 2001-153250、特許第 3564023 号、積層圧電アクチュエータバルブ（住友重機械（株）、フィッシャー・ローズマウントジャパン（株）と共同）
5.9 真空排気技術の開発・改良

(1) ダイバータ室粒子排気装置

目的

大型トカマクにおいては、中性粒子入射加熱時の密度上昇を防止し、プラズマの温度を高めること及びディスラプションを生じることなく安定にプラズマ放電を維持させるために、プラズマ密度を抑制することが必要である。高密度、長パルスのプラズマ放電では、粒子のリサイクル率がほとんどの 1 となるため、壁面の吸着等に依存する粒子排気が重要である。特にダイバータ室の運転では、粒子やイオンの機能はダイバータ室が円周上昇を促す。したがって、ダイバータ室を直接排気する真空排気系を設置することによって、効率よく粒子排気が可能になると考えられる。このような目的で、Zr/Al 非蒸発ゲッターボンプを用いたダイバータ室粒子排気装置を 1985年に JT-60 を設置し、長時間放電時の真空排気性能に関する実験を行い、90年に実施した。

設計・仕様

JT-60 ダイバータ室粒子排気装置の設計では、ダイバータ室の近傍に Zr/Al ゲッターボンプを直接排気することとした。それにともなう、ダイバータ室からプラズマ容器への粒子の逆流を低減するためのバッフル板を取り付けた。また、ダイバータ室からトーラス主排気系へ粒子が流れやすいように、排気促進板を設けることにより、粒子排気量の増加を図った設計とした。

1）Zr/Al ゲッターボンプ系

Zr/Al ゲッターボンプ系は、厚さ 80μm の Zr/Al 合金をコンスタタンクの基板上に接着し、リサイクルに導入したもので、JT-60 ではカートリッジ型を採用した。採用したカートリッジ（C-500型）の内側には活性化／再生化用のヒータが取り付けられている。1個のカートリッジの Zr/Al 合金の重量は約 400g であり、水素に対する排気速度は、カートリッジ温度が 25℃では 1.5m³/s, 400℃では 2.0m³/s となっている。カートリッジを高温状態よりも高い温度で使用する方が排気速度は大きいので、一般には 200～400℃の温度で運転される。

活性化は、ヒータによりカートリッジを 700℃で 30 分間程度保持することで容易に行うことができる。また、水素吸収量が大重量量あたり 1300PAm³/kg となるところでは、排気速度が初期の半分となり 2600PAm³/kg では鉄化が生じる。カートリッジの場合の吸収量は約 1000Pa m³となる。さらに、水素中に酸素などの活性ガスが含まれている場合にも、排気速度は低下することが知られている。不活性ガス、例えば He などに対する排気速度は大きく、吸収した水素は活性化同様の高温処理により放出させ、排気能力を回復することが可能である。酸素などに対しては、再生不能であるが、1％程度の混入率であれば水素の総吸収量が約 100Pa m³まで使用可能である。

上記のような非蒸発 Zr/Al ゲッターボンプを直排気系としたダイバータ室粒子排気装置をダイバータ室に設置した。P-1 と P-9 の下層の比較的大型なポートに合計 4 系統の排気系を設けた。図 1 に P-1 側のダイバータ室粒子排気装置の取り付け構造を示す。各ゲッターボンプ容器には、取り付け空間の制限内で可能な限り多くのボンプを設置することとし、3 個の Zr/Al ゲッターカートリッジを取り付けた。したがって、ゲッターボンプ 1 系統あたりの排気速度は、4.5m³/s (25℃), 6.0m³/s (400℃) となった。ゲッターボンプ容器とダイバータ室の間には、ゲートバルブを設け放電の際の排気が可能にした。
2) 排気促進板
排気促進板は、ダイバータ室からトーラス主排気系への粒子の流れを促進するためのもので各主排気ポートの入口に取り付けた。また、逆にダイバータ室から側ダイバータ室を抜けてプラズマに逆流する粒子を防ぐために主排気ポート以外のポートセクションにバッフル板を設置した。

結果・成果
1) 排気特性
図2にダイバータ室の各ゲッターボンプ1系統（非蒸発ゲッターカートリッジ3台）あたりの粒子排気特性を示す。各系統とも2.7×10⁻⁴Paの圧力において、約1.4m³/sの一定な排気速度を有している。ダイバータ室の排気速度（Seff）は、4系統合計で5.6m³/sであった。

2) ダイバータ放電における排気特性
ダイバータ放電におけるジュール加熱(OH)と中性粒子入射加熱(NBI)時のプラズマ密度依存性の比較では、ダイバータ室圧力(Pdiv)は、主プラズマ密度の2乗に比例して増加する傾向が認められ、同じプラズマ密度に対してのOHとNBIの比較では、NBIの方が2倍高い結果を得た。図3にOH放電及び中性粒子入射時におけるダイバータ室圧力の特性を示す。
排気促進板の効果としては、ダイバータ室の排気量を30％増加することができた。

考察
トカマク型核融合装置の定常運転においてダイバータ排気は不可欠であり、本装置の他に今までに、多くの知見が得られている。特に、1997年に行ったJT-60装置での新型ダイバータ改造では、NBI加熱装置3ユニットのクライオポンプを利用したダイバータ排気系の改造を行い、ヘリウム排気に効果を挙げた。こうしたデータは次期装置の設計検討に反映されている。将来的には、ダイバータ室の排気は不可欠であり、高効率で排気できる設計を必要としている。したがって、装置構造に適合した詳細な工学設計を行う必要がある。
（2）真空排気設備ポンプのドライ化

目的

JT-60真空排気設備は、1985年のJT-60の運転当初から1995年までの約10年間定常的に運転されてきており、構成機器の適格化による故障の発生頻度が高くなった。また、機器の製造中止に伴い修理が困難になってきた。なかでも、主排気系に使用しているオイル循環式ターボ分子ポンプは、この間に欠かすのも不可欠と考えられる高温冷却交換を行っている。ベアリング交換の際には、動翼（ローター）の総体バランス調整を行う必要がある。しかし、バランス調整方法は、ローターの一部を削ることで行ったが以前に行ったベアリング交換により、残された鋼造が少なくなりベアリング交換が困難となっていた。2番目は、放射性廃棄物の問題である。JT-60では、1991年から重水素を使用した実験が開始され、プラズマ放射中に放射性同位素であるトリチウムが生成される。生成されたトリチウムは、真空排気の途中で真空ポンプの潤滑油に一部混入すると、トリチウムの混入した潤滑油は、放射性廃棄物の放射線被害防止と考え合わせて管理・貯蔵する必要がある。特に定期的な交換により、放射性廃棄物が発生する。このような放射性廃棄物が発生し続けると、将来保管届出量（保管能力）まで達し、新たな保管ができない。最終的には真空ポンプの潤滑油の交換を行えないようになる恐れが生じた。このような放射性廃棄物の問題は、トリチウムの実験室内での真空ポンプの機器が放射性使用され、製造メカシでの分解点検が管理するため、このため、構成機器の老朽化対策、放射性廃棄物の発生量の低減化、真空ポンプのメンテナンスフリーオ化及びメンテナンス費の削減を目的に1995年度から1998年度にかけて真空排気設備で使用されているオイル循環式ターボ分子ポンプを潤滑油の使用しないタイプに、油回転ポンプを潤滑油の使用量の少ない真空ポンプに変更する交換を行った。

設計（仕様）

ターボ分子ポンプに、運転中にベアリングとローターの接触が無く、ベアリングが損耗しないため定期的なベアリング交換を必要としないオイル循環式分子ポンプを採用した。採用にあたり、JT-60のような実験環境下で低温に設定された実験が存在するため、あらかじめ JT-60の実験環境下を想定した状態で運転確認を行い進捗していることを確認した。さらに、オイル循環式分子ポンプにオイル使用を使用しており、分子量の大きな水素化合物である水素が真空容器に逆流し、様々な化学反応をおこしプラズマに対して悪影響を与えることが懸念されたため、逆流防止用に液体窒素トラップなどの構成部品が設置されていた。しかし、採用したオイル循環式分子ポンプは、オイル循環式分子ポンプに比べると排気速度が小さいが、潤滑油を使用していないため、以下の設備の不純物の大きな原因となることが懸念されたため、排気速度の維持を図るために液体窒素トラップ及びゲートバルブ（GV2）を追加した構成とした。油回転ポンプには、大容量の排気速度を考慮、タイミングギャップ、ベアリング及びメカシナルシールの潤滑のために少量の潤滑油を使用しているが真空排気の際には潤滑油が多く、他の真空ポンプに比ると比較的メンテナンス時間が長く且つ現在地で分解点検が行える多段ルーツ式ドライポンプ（ドライ真空ポンプ）を採用した。図4に真空ポンプのドライ化後の真空排気設備の系統図（1/2系、C系）を示す。また、真空ポンプのドライ化により、真空ポンプの運転のために必要な軸シール及び機械用の窒素ガスを新たに供給するために、窒素ガスの配管及び排処理変更の改造も併せて実施した。また、冷却能力を補うための冷却水系の性能向上を図った。

結果

ターボ分子ポンプ（12台）及び油回転ポンプ（4台）のドライ化により、構成機器の老朽化対策になった。さらに、油回転ポンプに伴いターボ分子ポンプ（潤滑油使用量：0.22%/台×8台、0.12%/台×4台）、メカシナルブースターポンプ（潤滑油使用量：2.3%/台×2台、1.4%/台×2台）及び油回転ポンプと油循環システムを組み合わせた真空ポンプ（潤滑油使用量：15%/台×2台、10%/台×
2台）の計12台を使用していたため、計59.64％の潤滑油を必要としており、年間に同様の油脂類液体廃棄物が発生していた。しかし、改造後は潤滑油の交換が必要な真空ポンプは、メカニカルプースタポンプ及びドライ真空ポンプ（潤滑油使用量：0.8%/台×2台、1.5%/台×2台）となり、年間の油脂類液体廃棄物の発生量は最大12.0％と改造前の約20％まで削減することができた。図5に油脂類液体廃棄物の年間発生量を示す。また、真空浮上式ターボ分子ポンプは、真空排気設備の停止時でも安全に停止するためにのバックアップ用バッテリーの交換及び故障時を除きメンテナンスフリー化となった。排気速度は、主排気系の2系統で7.2×10^{-3} m^3/s（20℃、壁素）及び改変前の6.8×10^{-3} m^3/s（20℃、窒素）より5.8％増加すると共に構造機器の部品点数の削減によりメンテナンス量の削減及び液体空素の消費量を削減することできた。

検討、考察
2004年度までの運転経験から3つの課題が挙げられる。一つ目は、今後も磁気浮上式ターボ分子ポンプを継続して運転していく必要があるが、JT-60の実験運転の長周期化に伴い高強度化にさらされる時間が長くなるので、その対策について検討する必要がある。二つ目は、磁気浮上式ターボ分子ポンプの電源に使用している電源のバックアップ電源の直流通電系の定期的交換である。现在、直流通電系を1台の電源で2個内蔵したタイプのターボ分子ポンプを使用している。このため、毎年定期的的に16個の直流バッテリーの交換を行っているが、交換後の放電は困難であるのが現状である。この対策としては、停電時でも直流通電を必要としない磁気浮上式ターボ分子ポンプへの交換が必要である。三つ目は、ドライ真空ポンプの潤滑油に使用しているフッ素系合成油であるフォンプリオンの使用を検討する必要がある。フォンプリオンは、不燃性のため一般廃棄物とならないものでも焼却処理は行えず、専用の処理業者処理を依頼する必要がある。しかし、ドライ真空ポンプで使用しているフォンプリオンは、放射性液体廃棄物として取扱う必要があり、廃棄処理業者に依頼することができない。さらに、現状では、ポンプの性能上他の潤滑油の変更が難しく、ポンプの維持管理の問題があまりないため、フォンプリオンの処理方法について検討する必要がある。

結論
本改造では、老朽化したオイル循環式ターボ分子ポンプ及び油回転ポンプをそれぞれに磁気浮上式ターボ分子ポンプ及びドライ真空ポンプに更新することで老朽化対策となり、JT-60の実験運転及び設備の円滑な運転に寄与した。また、磁気浮上式ターボ分子ポンプに更新したことにより、潤滑油の交換及びバリアングル交換などの簡単簡略化の必要も無くなった。さらに、真空ポンプのドライ化を実施することで油脂類液体廃棄物の発生量が約20％削減できたと共に構造機器の部品点数の削減、メンテナンス量及び液体空素の消費量の削減にもとなった。

未来へのメッセージ
この真空排気設備ポンプのドライ化により、油脂類液体廃棄物の発生量を削減することができた。しかし、真空排気系は、潤滑油がないドライな状態となったが、メカニカルプースタポンプ及びドライ真空ポンプには、構造上バリアングルが自動的に脱着するため、潤滑油が必要となるため、潤滑油が使用されている。将来的な装置の真空排気設備を構築する際には、潤滑油が必要しない真空ポンプを開発する必要がある。さらに、将来的に核融合装置で使用するポンプには、磁気浮上式ターボ分子ポンプのようにダイナミックに排気することができるポンプが必要であり、大型で且つ高強度化中でも運転可能な真空ポンプの開発が必要である。

参考文献
(3) 真空排気設備の残留ガス分析装置増設

目的

JT-60 真空排気設備の残留ガス分析装置（分析装置）は、JT-60 本体の真空容器内を「質」の良い超高真空状態に維持するために、残留ガス（質量数）の測定を行い、真空リサイクルの発生の監視や残留ガスの変化を把握するためのものである。本増設前までには、真空排気設備 C 系統のマニホールドに設置されていた。しかし、既設の分析装置が不具合が生じた場合、残留ガスの測定が行えず JT-60 の実験運転に支障をきたすことが懸念された。また、定期間隔で測定を行うマルチピークモードで測定を行っている時は、予め指定した残留ガス種（最大 10 種類）のみの測定となり、その他の残留ガスの測定ができない。このため、JT-60 の実験運転において必要とするその他の残留ガスのデータを提供することができない状況にあった。そこで、1997 年度に分析装置の増設を実施した。

方法、設計（仕様）

分析装置の増設は、新たに真空排気設備 D 系統のマニホールドに分析装置を設置し、既設装置の不具合時や状況に応じて必要な条件で測定が行えるようにした。本装置によるモニターは、真空容器の真空排気時、プラズマ実験、ベイキング及びヘリウムクロス放電洗浄等の第一壁コンディショニング時に常時行われる。図 6 に分析装置の系統図を示す。本装置は、真空容器内の圧力が残留ガス分析計の使用限度圧力（1×10 Pa 以上）を超えるものでも測定が可能のように、ターボ分子ボンプを使用した容器内圧気系を設置すると共に、2 系統のオリフィスを使用した。すなわち、真空排気設備 D 系統マニホールドとの接続ラインとして、直径が 1 mm と 0.3 mm の 2 種類のオリフィスを使用した 2 系統とバイパスラインを圧空バルブにより切換える方式を採用することで残留ガス分析計本体の圧力が使用限度以下に保てるようになった。装置のマニホールドには、質量数が 1 から 200 まで測定ができる残留ガス分析計及び電離真空計が設置されている。これらの評価計は、マニホールドの圧力を測定する他に、残留ガス分析計の保護用のインフラーオン信号としても使用している。真空排気設備のマニホールドから残留ガス分析計までは、テープヒータを使用し 500°C のベイキングができる。差動排気系から排出される排ガスは排気ダクトを介してスタックから屋外に排出できるようにした。残留ガス分析計の操作は、制御盤中央制御室に設置したパソコンから行う。差動排気系の操作は、JT-60 実験棟本体及び中央制御室に設置された差動排気系操作盤から遠隔操作が可能なものにした。本体と中央制御室の間は、耐ノイズ性、電気的絶縁性及び制御操作の観点から光ケーブルを使用し、機器の操作及び測定データの信号送受信が行えるようにした。残留ガス分析計で測定したデータ、真空排気設備のマニホールドに設置されたマニホールド真空計及び本装置のマニホールドに設置された電離真空計の圧力データの収集、表示及び他のパソコンで解析可能なデータ形式への変換が可能なようにした。

その後、2004 年には、真空排気設備 C 系統の分析装置に高分解能残留ガス分析計を設置し、重水素とヘリウムの分離測定を可能とし、さらに残留ガスの挙動をより詳細に把握することができた。

結果

真空排気設備の分析装置は、1984 年の運転開始から 2004 年まで真空リサイクルの発生や各種残留ガスの変化について監視を行ってきた。JT-60 の実験運転にとっては、真空容器内の残留ガスの変化を把握する上で非常に重要な装置であり、この増設を経て分析装置の運転保守に対する知見が蓄積できた。本増設により、新たに 1 系統が加わり、既設装置の不具合時でも測定可能な体制が構築できた。これにより、実験運転に影響を与えることがなかったことは大きな成果である。また、実験運転やヘリウムクロス放電洗浄などの第一壁コンディショニング中の残留ガスの挙動の把握や真空リサイクルへの対応手段を強化することができ、JT-60 の実験運転の進展に大きく寄与した。

検討、考察

既設あるいは増設した分析装置は、計画的に残留ガス分析計の分解点検や較正を行い、測定や運転を行っている。しかし、現在使用している残留ガス分析計の一部は、生産が中止されており、老朽化も進んでいる機器もある。また、使用している残留ガス分析計の機種の中には、測定中に分析計とパーソナルコンピュータ間の通信に不具合が生じ、測定が停止してしまう状況がある。この原因として
は、JT-60の実験運転で発生する中性子に照射されてソフトエラーが発生していると思われる。今後は、こうした老朽化や不具合に対して対策を施していく必要がある。

未来へのメッセージ
将来の核融合装置においても真空容器内を「質」の良い超真空状態に維持する上で、重要な機能となる分析装置は、より厳しい中性子照射や強磁場にさらされる環境下であり、精度高く、不具合を起こすことを容易に安定に測定を行うことが必要となる。また、重水素やトリチウムを燃料ガスとして使用する実験運転を行うことで、例えば炭化水素などの残留ガスに対するクラッキングパターンが複雑になることが予想される。今後は、分析装置をより安定に運転維持すると共に測定や保守などに対するノウハウの習得やさらなる性能の向上について検討を重ねていく必要がある。

(4) 真空排気設備制御システム更新
目的と背景
JT-60真空排気設備の制御システムは、シーケンサ(Programmable Controller:PLC)、CAMAC (Computer Automated Measurement And Control)、リレーなどの電気機器及び各種の計器類から構成し、真空排気設備の各系（真空排気設備の項目参照）や一体型計数器などの他設備と各種データの交換を行いながら機器の運転操作、状態監視、データの収集及び表示を行ってきた。PLCは、主に各構成機器の運転制御、操作及び状態監視を行っている。CAMACは、真空計や真空ポンプなどの構成機器からデータを収集し、そのデータを本体計装に転送すると共に、JT-60実験装置制御室において各機器の運転状態、警報及び運転データの表示を行っている。PLCには、当初、リアインス社製を使用していた。1984年の電気開発から約10年が経過したところから機器寿命が原因である故障が発生するようになった。しかし、PLC本体及び関連部品の生産が終了となり、故障した一部の部品の交換、修理、改造時のPLCの増設やラダープログラムの変更が困難な状況となった。CAMAC及び制御用真空計などの計器類も同様に、老朽化や構成機器の劣化が進行している。計器類の一部は、同一機器に新規に製作を行うものもあるが、受注生産品となり、コスト的に見合わなかった。
アナログ信号は、計測器とデータ収集や表示を行っている機器間の伝送距離が約150mと長く、信号の減衰を防ぐためにアナログ変換器で電圧を電流に変換し伝送している。アナログ変換器は、定期点検時に出力信号の調査作業を行う必要があると共に、較正点数は約50台に上り、時間とコストを要していた。
真空排気設備の各機器は、制御とデータ収集、表示が分離していたため、一元化した運転監視、操作が行われなかった。さらに、1991年からは重水素実験が開始され、これまで各機器の運転操作を行っていたJT-60実験装置制御室（機器制御）が放射線被曝対策の一貫で実験運転中は立入禁止となった。このため、運転操作を行う場合は、JT-60の実験観測を停止しなくてもならず、実験運転に影響を与えるようになった。これらの対策のために、真空排気設備の制御システムの更新を行った。

設計（仕様）
真空排気設備の制御システム更新は、PLC、CAMACや計器などの設備を構築している各機器の老朽化対策、機器の運転操作や状態の監視を、CAMACを使用せずに中央制御室で行えるように掘付け工事時のコスト削減も考慮し設計を行った。本設備は、中央制御室、真空排気系C系、D系、補助系及びとしてはベーシック系の5系統のPLCや大型タッチパネル及びパソコンから構成した。図7に制御システムの構成を示す。
PLCは、機器の遠隔監視及び遅延変更を行う時に容易に拡張できる機関とした。PLCは、既設機の撤去場所及び各系統を構成する機器の位置場所ごと

図7 制御システム構成図
に設置した。機器の操作、各種データや警報などの信号は、PLC に直接取込むことでケーブルの敷設距離を最小限に留めた。本体室間との通信は、電気ノイズ及び建屋間の絶縁を考慮し、光ケーブルを使用した。各系統間のデータ交換は、各系統の PLC をリンクして行うことにより、既設 CAMAC で行っていった機能を PLC に付加し、真空排気設備全体の運転操作、監視、データ収集、表示及び他設備とのデータの通信を行うようにした。
これにより、機器制御室で行っていた構成機器の運転操作や状態監視などが中央制御室の大型のタッチパネル上で行えるようになった。また、汎用のサポートツール及びソフトを使用することで、ラダープログラムのアドレスのモニタ、変更や模擬が容易に行えるように機器を設置し、不具合時の原因調査が容易に行えるようにした（図 8）。
機能としては、機器の運転操作及び状態表示、アラーム及びその詳細を表示及び真空計など機器データを時系列で表示することができる。また、真空中ボンプの運転時間及び第一仕切弁の開閉回数を予め設定しておく、その設定値に達した時にアラームを発報させるメンテナンス機能を付加した。その他に、真空計のインターロック用圧力設定を真空計ごとに任意に設定できると共にベーキングの温度及び時間の設定が行える。Ethernet と LAN 接続を行うことで居室など真空排気設備の運転状態を監視できるようになった。

結果
真空排気設備の制御システムは、1984 年の運転開始から今日まで真空排気設備の運転を支えてきた。この間、1994 年及び 1995 年に PLC の更新を、2000 年には CAMAC で行っていた機能を PLC に付加する改造を併せて運転用真空計などの計器の老朽化対策を行った。PLC の更新により、PLC の老朽化対策及びラダープログラムのモニタ、変更及び模擬などが可能となり、機器の運転操作、状態監視、不具合時の原因調査の迅速化が図られた。また、改造時のラダープログラムの変更及び拡張が容易になった。さらに、CAMAC を使用しないで運転状態の監視を PLC で行えるようにプログラムを変更したことで、機器の運転操作、状態監視及びデータ表示などが中央制御室で行え、JT-60 の実験運転を停止することなく設備の運転が可能になった。また、本システムの構成機器は、現在の中性子照射並びに強磁場にさらされる JT-60 の運転環境下においても問題なく運転できている。

考察
JT-60 真空排気設備は、国内でも有数な大型の真空排気設備であり、大型の真空排気装置の運転保守に対する知見が蓄積できた。設備は計画的に老朽化対策や性能向上を行っているが、使用している機器の中には運転当初から使用している機器もまだ残っており、今後はこうした機器に対する更新あるいは改良などの老朽化対策を施す必要がある。

結論
真空排気設備の制御システムを順次更新したことで、JT-60 本体の真空容器内を「質」の良い超真空形状に維持することや必要に応じて圧力を変化させるなど、その開発上の状況に合わせて真空排気設備を安定的に運用することができ、JT-60 の実験運転及び円滑な運転に大きく寄与した。また、本制御システムの更新により、JT-60 の実験運転を停止することなく真空排気設備の運転操作が可能となると共に機器の運転状態を把握出来たことで設備の健全性維持に貢献した。また、今後の大型真空排気設備を設計、運転維持する上で非常に有意義なデータを得た。

感想
本設備は、JT-60 の実験運転において不具合による長期間停止することができないという状況のなかで安定的に運転ができ、設備の運用保守並びにシステムの更新に関するノウハウを蓄積できた。将来の核融合装置の付属設備の中核をなすと思われる真空排気設備制御システムは、より厳しい中性子照射または強磁場環境下で長期間の安定した運転が要求される。今後は、PLC の適用を前提に、将来の核融合環境下で使用可能な制御システムの構築を検討していく必要がある。

参考文献
5.10 本体制御設備の開発・改良

目的

本体制御設備は、JT-60 の主要な構造物、各設備を健全に運転、維持するとともに、平常運転中において、所定の電気、機器故障などの異常状態に対してもこれらの設備を保護することなく的確に安全停止のために対応・処置が出来るように、各部の状態を監視する。異常時においては、安全を確保する保護動作を確実に行わせる機能を有する。

本設備は、1983 年に設計・製作され、10 年以上稼働した段階で、老朽化、機能低下が問題となった。特に計算機システムにおいて、マンネジン機能（CRT による情報表示）が著しく老朽化したため、その対策のため 1998 年に本体制御設備を、1999 年にガス注射制御設備の改修を実施した。

方法、設計

本体制御設備は、本体制御設備とガス注射制御設備に区分される。本体制御設備構成図は図 1 に示す。本体制御設備は、JT-60 本体のコイル、架台の運転状態を監視しプラズマ運転を制御する本体計装制御盤（本体検出器端子盤、本体保護インターロック盤含む）、ゲートバルブの開閉操作を運転制御するゲートバルブ制御盤、JT-60 本体真空容器の温度を指定温度に保持するためベイクニングヒータを運転し監視制御するベイクニング電源制御盤、一次冷却設備における水循環のためのポンプ及びバルブを運転し監視制御する一次冷却制御盤、ガス循環系設備のブロワ及びバルブを運転し監視制御するガス循環系制御盤、真空排気設備の各真空ポンプ及びバルブを運転し監視制御する真空排気制御盤から成る。

図 1 本体制御設備構成図

本体制御設備の各制御盤における機能は、機器の起動・停止、警報及び保護回路をハードウェアで回路で行う「シーケンス制御」と、計装信号及び詳細な制御の運転状態をマイクロコンピュータで処理する「CAMAC システム」と運転監視上必要とされる計装信号を先伝送し中央制御盤に指示・記録する「多重信号処理回路（STU）」で構成される。

ガス注射制御設備は、プラズマ制御に密接に関与し、水素等の可燃性ガスを使用するので、安全かつ安定した装置運転を実現させるため、排気系真空ポンプの運転、各バルブ等の操作、警報及び保護回路は、プログラマブル・ロジック・コントローラー（PLC）を基幹とするハードウェア回路で構成されている。また、プラズマ実験に直接関与するガス注射のプレプロ制御、実時間制御はマイクロコンピュータで処理する「CAMAC システム」で構成されている。ガス注射装置制御設備構成図を図 2 に示す。

本体制御設備の改修では、本体制御マンネジンに関するハードウェアを更新し、プラントの情報表示の健全性及び旧式な計算機システムの保守性・製作性が困難であることを改善するために、マンネジン部、収集データ編集機能、及び全系制御計算機との通信の機能を CAMAC システムか
プラントマネージャー

図 2 ガス注入装置制御設備構成

- テキストデータ

ラワークステーションと VME-bus システムを用いたネットワークシステムとする改変を行った。プロセスデータ収集については、設備からの膨大な入力点数のため製作コストと製作期間を多く必要とするので、従来の CAMAC によるシリアル通信を残すこととし、既設 CAMAC を使用した計装信号および設備運転状態を収集するようにした。また、全系制御設備の運転制御計算機においても CAMAC によるシリアル通信を用いなければならなかったため、VME と CAMAC 間の接続を一つの VME で同時に 2 系統を制御することとした。全系制御設備に対するデータ通信は、従来通り CAMAC による通信（ACD）で実施することができる。その結果、製作面を設備内に留めることができた。改変前、改変後の本体計装システム構成を図 3 に示す。

ガス注入制御設備の改変では、運転制御系 CAMAC と放電制御系 CAMAC の 2 系統による構成であったものを放電制御系 CAMAC のみを VME-bus システムを用いた制御とし、運転制御系 CAMAC を廃止する合理化を図った。これにより、改変前のクレート 8 台、モジュール 128 台で構成されていたが、改変によりこれが各々 3 台、40 台に大幅に合理化された。全系制御設備からの放電条件（使用される注水系・弁の選択、初期ガスの注入量）の転送は、全系制御設備の放電制御計算機－ワークステーション間のイーサネットによるネットワーク通信とした。リアルタイムにプラズマの状態を基にガス注入量を制御する実時間制御は、リフレクティブメモリによるネットワーク利用で実施している。ガス注入弁の制御は、改変前と同様に 10ms 毎に注入量を電圧値に変換・出力し、ガス注入弁を高速制御することが可能である。

結果、成果

これまでの運転を通じて本体関係の制御設備は正常に機能し、各設備の健全性を保ちながら運転を維持・継続している。

本体関係の制御設備において改変前では、耐荷化のため、運転員に対する情報の正確性、確実性に支障を来す傾向がありましたが、本改変作業によりプラントとしての運転・監視業務を従来通り遂行することができた。また、旧式化のため、保守整備が困難かつプログラムの改訂が実質不可能であった点は、本改変作業により保守性およびプログラムの製作性において大きく改善された。

さらに、処理能力が低い CAMAC による制御では、10ms の速度で注入弁を動作させることができた出力が 4 系統のみであったので、注入弁の個々の特性を合成することにより、16 台のガス注入弁を制御を行ってきた。VME による制御を用いることにより 16 系統の処理が可能となり、拡張性が向上し、個々の注入弁に対し、個々の特性に基づく流量を制御することが可能となった。CAMAC の ACN 間通信機能を VME-CAMAC 間で実現できたことにより、既存の CAMAC 1/0 を利用した VME をメインとする CAMAC と共存したシステムを構築することができた。また、CAMAC 1/0 を利用したことで、改変作業を短期間で完了することができた。
提案

改造によりマンマンにワークステーションを導入したことにより、将来、ネットワークによる全系間通信へ容易に移行することが可能である。

ガス注入制御設備においては、初期ガス注入、密度制御を主に行ってきたが、最近では不純物ガスを用いて「ダイバータ板の冷却」、「高周波加熱装置とプラズマのマッチング」等の多様な実験上の使い方をされてきている。本改造作業により、制御システムとして柔軟な対応を図れる様になったため、実験運転に対する充分な対応が期待できる。

図 3 本体制御改造前改造後のシステム構成
5.11 その他関連機器の開発・改良

（1）ポンプリミタ

目的
JT-60 のような大型トカマク装置における密度制御特性に関する予備実験として小型のポンプリミタを設置し、予備データを取得した。従来の半固定リミタ（P-10 セクション）上側を利用し、駆動装置及び小型ポンプリミタヘッドを取り付けて実験に供した。

設計・仕様
それまで真空容器上側にあった半固定リミタの駆動系を利用し、半固定リミタに変わりポンプリミタヘッドを載せ換えた。さらにリミタヘッド排気口の内側に中性化板を設けイオンを中性粒子に換え、非蒸発 Tr/AI ゲッターポンプにて排気した。
ヘッドに静電プローブを設置して密度測定を可能とし、排気ポートには、ベニング型高速真空計、残留ガス分析計等設置して中性ガス測定を可能なようとした。以下にポンプリミタの主要諸元を示す。また、図 1 に構造概要図を示す。
排気系：非蒸発 Tr/AI ゲッターポンプ
排気速度：0.62m^3/s
駆動系：半固定リミタ系流用
ストローク：3150mm

結果・成果
ポンプリミタ実験は 1986 年 3 月のジュール実験期間に行われ、ポンプリミタ配位におけるプラズマ密度依存性を観測した。実験はヘッドの温度上昇が運転制限となったため、最初、プラズマを内側の固定リミタに接触させてプラズマを生成し、途中でプラズマ位置を外側へ移動させてポンプリミタ配位にて実験を行い、また位置を元に戻すという方法で行った。図 2 に排気量のプラズマ密度依存性を示す。実験データが限られていたため定量的な結論を出すまでは至らなかったが粒子排気量との関係はプラズマの平均電子密度の 1/2 乗であり、平均電子密度に対して線形よりやや強い依存性を示した。今後、高密度領域のデータの蓄積が必要と判断された。1987 年に実験の途中ではあったが駆動軸をベローズガイドとのかじりが懸念されたため取り外し後、保管することとなった。

検討・考察
実験はトラブルもあり予備実験の段階で終了になった。また、実験期間が短く詳細なデータ取得に至らなかったため結論的なことにまで言及できなかったがエッジプラズマの研究分野において参考となるであろう。
（2）真空容器内構造点検装置（ペリスコープ方式及び CCD 方式）

目的
真空容器内構造点検装置はプラズマとの相互作用に晒される第一壁等の損傷、溶融並びに変色を遠隔操作により真空容器内部を高真空状態を維持したまま短時間で観察することを可能とする装置である。

方法、設計
真空容器内構造点検装置は JT-60 初期に導入したペリスコープ方式と JT-60 大電流化改造後に導入した CCD 方式の 2 通りについて開発した。

ペリスコープ方式は 1986 年 12 月に完成し、JT-60 の上架台及び計測架台に設置され、上部垂直ポートより真空中の真空容器の真空を破らずにペリメータ（光学機器ペリスコープとペリスコープを収納する点検装置本体）を真空容器内に挿入し、光学的に内部の像を取り出しものである（図 3）。取り出した像は ITV カメラスチールカメラ及び目視レンズからなる機器によって観察した。ペリスコープは内部レノンを有する光学機器であり、真空容器内部の画像を取り出す機能を持つ。ペリスコープの上端には ITV カメラスチールカメラ目視レンズから成る観察機器及びズーム合焦用モータ、観察機器等の切り替え用モータが取り付けられている。一方、点検装置本体は、ペリスコープを収納すると共に、全体として真空ハウジングを形成している。点検装置本体の下端には、ミラー、ミラー駆動機構及び照明用ハロゲンランプが取り付けられており、真空中にあるミラーを上下方向及び上下に駆動させることで真空容器内部の画像をスキャンすることができる。

図 3 ペリスコープ方式真空容器内構造点検装置

CCD 方式は、真空容器断面に設けられ、水平ポートより CCD カメラ本体を真空容器内に挿入し、電気的に内部の像を取り出すものである（図 4）。取り出した像は遠隔の制御室でモニターによる目視確認及びビデオ機器による記録ができるようにした。カメラには CCD 固体撮像素子の高感度カラーカメラを使用し、非常に暗い環境下で使用するために CCD 電荷蓄積時間延長方式の素子を採用した。
これにより被写体照度が2000ルクスから0.3ルクス（明かり程度）までの撮影が可能となった。CCDカメラの素子は熱に弱いため温度上昇試験の結果や真空容器ベーキングによる幅射熱を考慮した鏡面仕上げのカメラケースに納める構造とした。

図4 CCD方式真空容器内構造点検装置

結果、成果
ベルスコープ方式の点検装置は4台製作され、この4台を使いわけることにより真空容器内のほぼ全域を観察することができる。また、ITVカメラ、超高感度カメラ並びにCCDカメラの特質を活かした使い分けを行うことにより鮮明な画像が得られた。

CCD方式は1台しか製作されなかったが、CCDカメラの苦手とする遠い距離での光量不足を補うため、CCD電荷蓄積時間延長方式の素子を導入して改善したことにより真空容器内の2/3が観察できるようになった。

結論
真空容器内構造点検装置の開発にあたってJT-60で使用される環境条件（強磁場、高温、真空及び中性子の発生）を十分に考慮し設計を行った。その結果、ベルスコープ方式、CCD方式ともに実験期間において第一壁の損傷箇所を早期に見い出し、その有効性を発揮した。

ベルスコープ方式、CCD方式とも画像としては鮮明な像を得ることができたが、高温の使用条件下での観察時間の制限を受ける場合があるため、今後は長時間対応の冷却方式の検討を行う必要がある。

参考文献
[1] 吉行 康他、「JT-60真空容器内構造点検装置の開発」JAERI-M 87-070（1987年5月）
（3）排水設備監視モニタ

目的
1991年の重水素化改造により、JT-60施設から放射性排水が出されるようになったため、これを処理する設備を新たに整えた。当初、この排水のモニタは地階に排水設備室を持つJT-60廃棄物保管棟のDPタンク、排水ビット関係の情報を限定していたが、実際にはJT-60実験棟にも多くの排水ビットが存在するため、1998年度にこれらの排水ビットも含めた放射性排水設備（排水設備）全体の監視モニタを整備した。

方法
排水設備は、JT-60施設で発生した放射性排水を一括管理する設備であり、排水ビット、排水タンク、ポンプ、バルブ、DPタンク等から構成される。本設備において排水ビットからの漏水やポンプの故障等が発生した場合は、警報指示所へ警報が発報される。また、発生箇所及び警報内容については、中央監視所内監視システムに確認する信号系統となっており、一括管理の観点から不都合のため排水設備監視モニタを構築した。

排水設備の排水ビットやポンプの状態及び警報信号は、各々の設置場所から集計する（一次冷却機のビット関係については整流器棟）必要がある。これらの場所は広範囲であるため、廃棄物保管棟の機器とその他の機器に分割してデータ収集することとした。廃棄物保管棟については、DPタンクの水位やバルブ、ポンプの運転状況をマルチプレクサ及びA/D変換器によりデータを収集し光ケーブルを介して中央制御室で監視することとした。その他については、地下ダクトⅠにデータ収集用のサーバーを設けてDIボードでデータ収集しネットワークを介して中央制御室の監視モニタへ情報を送信することとした。図5に排水設備監視モニタ概略系統図を示す。

監視モニタの機能は、設備監視機能としてポンプ、バルブ、排水ビットの異常の有無やDPタンクの水位を系統図により視覚的に表示するもので、DPタンク水位の100日前後の推移をグラフ表示できるようにしたもの。また、メッセージ機能として警報の一覧表示及び警報及び機器状態変化の履歴を表示できるようにしたもの。図6に排水設備監視モニタ画面を示す。

図5 排水設備監視モニタ概略系統図
結果

排水設備の運転状態を中央制御室の監視モニタで正常に監視できることを確認した。これにより、警報発報及びその内容等の早期確認が可能となった。これは、例えば地震発生等の場合に放射性排水の漏水の可能性を確認する一助としても有効となった。また、排水ビットのポンプの運転状態（ON/OFF）が履歴で残るため実際に排水への放射性物質が含まれた場合にこのビットの排水に含まれているかが即座に確認できるようになった。さらに、大量の冷却水を保有する一次冷却水系等の設備で水抜きを実施する場合には、排水ビットやDPタンクに急激に排水しないように監視する必要があるが、排水ビット周辺の状況（ポンプ稼働、警報）とDPタンクの水位を同時に確認できることが可能となった。

さらなる改良に向けて提案

排水設備モニタの情報は、結果に示すように多岐に使用されており、排水の監視やデータ閲覧等で使用する課題も複数ある。また、中央制御室の監視モニタは、収納スペースの問題により運転員が待機するエリアより離れた位置に設置しているため警報が発報しても即座に認識できない状況である。そのため、JT-60エリアにあるPCであればどこの場所でも監視できるように、モニタをWebブラウザ上で表示できるようにしたり、データを共有化して必要なデータをダウンロードできるような改良を実施すれば、更に有効で便利なモニタになると思われる。

結論

JT-60施設で発生した放射性排水を処理する排水設備をJT-60の施設内で監視できるシステムを構築した。これにより、本設備の機能及び放射性排水に関する情報の早期確認や迅速な現場対応ができるようになり、施設の安全確保に対して大きく貢献できた。
（4）試料導入装置の試作

目的
核融合装置において、試料導入装置を用いてダイバータ部に試料を導入し、プラズマに晒すことにより限定した曝露条件。例えば、熱負荷、粒子束、照射時間等による表面状態の変化を把握することは、プラズマ・壁相互作用の重要研究手段である。さらに、試料の材質を変えて行う次世代第一壁補材の試験は、後の核融合装置の材料研究における重要な課題の一つである。材料データ以外にトリチウムインベントリーの把握、ダイバータ材のエロージョン過程等得られる情報は多岐に渡る。通常、プラズマ実験装置における真空容器内（ダイバータ部）は、超高真空、高温、且つ、高磁場の環境下にあり、試料導入装置の置かれる環境は良い条件とは言えない。最重要検討課題は、上記環境下での搬送搬出方法の最適化であり、この課題について、実際、試料導入装置をJT-60へ接続する場合を想定したR&D等による検討を2000年から2001年にかけて行った。駆動装置のR&Dで行った大型プラズマ実験装置の環境を模擬した検討を実施したことで、実機に試料導入装置を必要付ける設計へのデータベースとしての貢献が可能となった。

仕様・設計
1) 試料導入装置
本装置の中で最初の検討は、どのように試料をダイバータ部まで搬送するかであり、JT-60を想定した概念設計上の想定環境及び設計条件は、表1のようになる。

<table>
<thead>
<tr>
<th>項目</th>
<th>設計条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>真空環境</td>
<td>1×10⁻⁵Pa、放出ガス量：1×10⁻⁵Pa·m³/sec·m²以下</td>
</tr>
<tr>
<td>温度環境</td>
<td>ダイバータ部：300℃以上、ポート部：150℃</td>
</tr>
<tr>
<td>磁場環境</td>
<td>最大4T</td>
</tr>
<tr>
<td>装置仕様</td>
<td>アーム外径：60mm、試料寸法：40mm以下</td>
</tr>
<tr>
<td></td>
<td>捧入長：約3600mm、挿入速度：5m/10min程度</td>
</tr>
</tbody>
</table>

図7 図7 JT-60用試料導入装置概念図（上：平面図下：断面図）

図7にJT-60用試料導入装置の概念図を示す。この図では、P-5ポートセクションに配置する計画で検討を進めた。他設備との干渉から水平設置が難しく10度斜に傾けた配置となった。本装置を配置する場合、ストロークが3600mm程度、導入装置本体の長さとしては、6m以上となる。また、使用可能なポート径は、100mm程度であり、これにより試料の大きさが制限された。プラズマ照射される部分が
温度環境としては、300℃以上に耐える機構が必要であり、さらに試料表面は、プラズマでヒートされれば1000℃になる可能性がある。これにより、温度環境及び真空条件により使用可能な材料は限定される。試作部の表面は二酸化モリブデン等をコーティングする工夫を施した。また、プラズマ放電間隔（15〜17分）の間に搬入が可能な移動速度として5m/10分程度とした。試料導入方法には、大きく分けて2通りの方法があり、一つは、試料をアームに固定したままダイバータ板に設置する方法、二つ目は試料のみダイバータ板に設置する着脱方式である。着脱方式は試料の照射位置を固定することが容易であり導入系を軽量化できる利点があるため、今回は装置の小型軽量化を優先して着脱方式を採用した。先端は、ダイバータ板目の通常磁力線の当たるヒットポイントのやや上方に試料を配置する設計とした。試料の大きさが直径40mmあるためヒット部分と再堆積層部分を同時に採取可能のように配慮した。

2）着脱装置
図8に着脱装置の概念図を示す。着脱装置は、真空内で搬送した試料をプラズマにて照射できる位置まで挿入し、サンプルホルダーごと固定する機構であり、照射位置と待機位置の2箇所の固定位置を持っている。固定方法は、後方にある回転導入端子により伝達される回転運動をサンプルホルダー内にあるネジ軸により直線運動を変えカムにより垂直方向の動作に変換してビンをボスに挿入し固定する。ビンとボスの間はテーブルを付けてあらかじめ取り付けガウガの解消を図っており、焼付け防止のため二酸化モリブデンをコーティングしている。一方、試料導入装置側の爪を利用したクリッピング機構は、レバー状の爪（図中央）にチャッキングされ、移動軸が後退すると開放する機構を利用し、サンプルホルダーとの切り離しを行っている。試料は、搬送装置から切り離された時点で、他のダイ

図8 着脱装置概念図
バータと同様に真空容器電位となる。この一連の動作を遠隔自動で行うための位置センサ、移動装置を配置し、通常、プラズマ実験のショット間で完了することが前提となる。
着脱装置は、試料（サンプル表面）を第一壁表面同位置まで挿入して固定し、任意のタイミングにサンプルを着脱可能とし、プラズマ放電中の着脱は行わない。サンプルホルダーの固定位置は、試料がプラズマからの影響を受けないように照射位置と待機位置の2箇所とした。着脱装置外径は80mm以下、サンプルホルダーを含めた長さを200mm以下とした。

結果
着脱装置および、着脱動作と環境模擬による試験検査を行った。まず、着脱装置自身が確実に動作することを確認するために大気の中で手動による動作試験を行いながら調整し、サンプルホルダーの受け渡しが確実に行えることを確認した。次に真空チャンバーに入れてヘリウムリークテストを行い、JT-60真空管理基準値である1.0×10^-7Pa・m³/s以下を満足できる値を得た。構成材料の中に放出ガスが多く出ている材料は無く、放出ガス量も真空管理基準以下であった。また、真空試験中に異常な圧力上昇等は無かった。表2に着脱試験結果を示す。
その後、手動にて行った着脱試験を遠隔自動にて行うことができるように改造し、着脱試験を継続した。この改造で駆動系の3軸（挿入、チャッキング、ホルダー固定）の動作はパルスモータを使用することにより遠隔にて位置決めを可能とした。駆動自体をシーケンシャルに行うこととした。
パルスモータは、真空容器内に収めて信頼性が高いために従来形式に変更し、製品化に経緯をもって製品化した。制御系にはシーケンサを利用し、この改造後の着脱試験を行った。100〜150℃の高温状態にて100回の連続試験を実施し、照らし操作による動作試験を正常に終了した。終了後、真空チャンバーから取り外して細部を確認したが、特に着脱部等の異常は認められなかった。
表2 着脱試験結果

<table>
<thead>
<tr>
<th>試験項目</th>
<th>試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヘリウムリークテスト</td>
<td>1.4×10^{-3} Pa m³/s 以下</td>
</tr>
<tr>
<td>着脱装置の動作試験</td>
<td>大気中着脱動作確認回数：100回</td>
</tr>
<tr>
<td></td>
<td>真空中の着脱動作試験5回毎に確認しながる：20回</td>
</tr>
<tr>
<td>遠隔自動化の着脱試験</td>
<td>自動操作による連続着脱動作試験：100回</td>
</tr>
<tr>
<td>環境模擬試験</td>
<td>ベーキング温度：300℃以上</td>
</tr>
<tr>
<td></td>
<td>高温着脱動作試験も同様に10回毎に着脱動作確認：50回以上</td>
</tr>
<tr>
<td>放出ガス量の測定</td>
<td>3.61×10^{-6} Pa m³/sm³</td>
</tr>
</tbody>
</table>

検討

今回、試料導入装置において、着脱方式を採用し模擬試験装置を試作・試験した結果、試料を着脱するための機構は、満足できる方式を確立できた。実際、合計300回に及ぶ着脱試験あるいは300℃高温状態における部品の耐久性等、実機に使用可能な安全な結果を得ることができた。また、遠隔自動化による試験においてシーケンス制動条件のノウハウを知見できた。今後、次世代の模擬試験装置への取り付けが可能な試料導入装置を確立するまでには、搬送距離（大型化）、試料数（多チャンネル化）等、多くの開発要素を解決しなければならない。ひとつひとつの開発要素を明らかにし、技術を確立して次期試料導入装置として備えたい。

結論

核融合装置において、プラズマ・壁相互作用の研究は材料の種類の変化に対応して継続されるものであり、試料導入装置のよう設定装置は必要不可欠である。今回の試料導入装置の試作において、着脱方式による試料導入は極めて有用性の高い手法であり、この手法にて次期装置の試料導入装置の計画は十分可能である。ただし、検討でも述べたように多チャンネル化等、具体的な用途によりその実現性については今後もより詳細なR&Dが必要である。

感想／次回／未来へのメッセージ

結論にも述べたように着脱方式の試料導入装置の実現は可能であり具体的に計画が進行して行くと思われる。ただ、次期装置の完成は10年先とみても、より多くの技術革新が折り込まれて行くと思うので、次期装置が具体的な設計検討に入った場合、貪欲に今回の成果を取り入れて欲しい。
5.12 トロイダル磁場コイル冷却水の浸出し

漏れ概要
1985 年の JT-60 ファーストプラズマから 7-10 年目に当たる、1992-1995 年の運転期（放電回数～2万ショット時点）において、複数のトロイダル磁場コイル（TFC）からの水浸み出しが観測された。水浸み出しが生じたのは TFC-No.9, No.14 コイル導体部であり、導体部を通る内部冷却管に生じた亀裂の一部から冷却水が外部に漏れ出したものである。浸み出した冷却水量は合計約 3 リットルであった。これに先立ち、1988 年に TFC-No.5 の口金から 1 回の水浸み出しがあったが、不良口金部の交換・修理を行いその後支障なく運転している。本報告では TFC-No.9, No.14 に生じた冷却管内部の亀裂を原因とする事故について述べる（図 1）。

図 1 トロイダル磁場コイルの運転履歴

リーグ箇所同定
TFC は高磁場を発生させるために高耐力の銀入り無酸素鋼冷却管を用いている。気密試験とソープシュラッシャ法により冷却管リーグ箇所を調査した結果、以下の 3 つの冷却管において貫通していたことを確認した（図 2）。また、その後行ったファイバースコープ法による冷却管内観察から、3 つの冷却管において 1 数個のクラックが生じ、管壁を貫通していることを確認した。クラックは全て冷却管の短辺側で観測された。この 3 つ以外の冷却管においてはクラック、貫通箇所ともに観測されなかった。

No.9 コイル：狭小部（高応力部）の冷却管 B-8-1（H4.11）及び B-8-2（H7.12）
No.14 コイル：狭小部（高応力部）の冷却管 A-12-1（H7.7）

リーグ箇所発生の原因
クラック発生の原因を捜するために、JT-60 製作時及び大電流化改造時の検査記録に基づく機械的特性の解析、及び詳細な応力解析を実施した[1]。また、製作時の品質管理の調査と、その検証用として実機と同一仕様の冷却管を製作し、応力試験による影響評価を実施した。
こうした解析・検討から、クラックが発生し進展する機構として以下が推定された。
a. JT-60 実験放電時に TFC 冷却管断面方向にかかる圧縮力が、冷却管の上層部の導体から絶縁層を介して伝達したことにより、冷却管コーナー部に許容応力を上回る応力集中が生じた。その結果局所的に降伏応力以上の部分が生じ、その結果クラックが発生した。
b. 自己電磁動の除荷時に断面周方向に引っ張り応力が発生し、クラックが進展した。
c. 高サイクル疲労により板厚方向にクラックがさらに進展を続け、その結果クラックが外表面に到達した。
すなわち、冷却管コーナー部に発生した長手方向のクラックが繰り返し放電による応力により進展し、厚さ 2 ミリの冷却管を貫通して、冷却水の浸出しに至ったものだと推定された。これはファイバースコープによる観察結果からクラックが冷却管コーナ部短辺側に集中し、かつ長手方向に進展している
ことからも確かめられた。また、実機と同じ製法で製作した冷却管を用いた疲労試験結果から、クラックの発生がマイクロクラックから徐々に拡大すること、また、JT-60のTFCのように冷却管断面の長辺と短辺の比（縦横比）の大きい管の方がマイクロクラックが多く発生することが確認された。これらの結果と合わせることで、上記a-cのプロセスが原因であると推定された。

特定のNo.9,No14コイルの特定冷却管で発生した理由としては以下が推測された。水浸み出しが起こったNo.9,No14コイルは、大電流化改造時に行ったアース絶縁部上での導体内径の測定結果と、TFC製造当初に行った導体層方向の荷重伝達試験結果より、コイル剛性が他のコイルに比べて高かったことが判明した。従って、これらのコイルにおいては導体部の荷重分担が大きく冷却管の長手方向のフープ力が増大したこと、また、問題の冷却管の位置は同一断面形状の冷却管の中でも最大の断面周方向圧縮力を受ける位置にあったことから、他のコイルに比べてクラックが発生しやすい環境にあったことが原因したと推測された。

図2 トロイダル磁場コイルの断面構造及び水浸み出し箇所

対策概要

浸み出しした冷却水は、放射能濃度を測定して、その値が検出下限値以下であることを確認した上で、遮蔽防止法上の処置に従い、JT-60廃棄物保管棟地階の排水設備室に設置したDPタンクに貯留した。リークを起こした3つの冷却管については、コイルの交換や補修は不可能と判断し、水浸み出しチャンネルを無通水処置することとした。また、酸化防止のために窒素ガスを封入する措置を施した。無通水することによる運転への影響評価としては、先ず無通水としたときの熱解析を実施し、絶縁材の最大許容温度155℃以下での運転が可能であること、導体熱応力等は問題とならないことを確認した。また、JT-60部内に設置した「機器健全性検討会」で議論を重ね、JT-60の運転については以下を運転条件とすることを提案した。

①3つの冷却管の無通水化に伴い、4アクサ放電を行う場合は、最狭絶縁材の最大許容温度が155℃以下として層間絶縁性能を確保する。これにより最狭部での通電前温度が53℃以下のとき実施可能とする。実験運転開始は従来の15分より20分へ延長。また最狭部温度モニターを設置する。
②放電流測定の電流値を従来の13kAから11kAに制限し、導体の最大温度が100℃を越えないように運転する。
③4アクサ放電は必要最小限に留め、転倒力は+250トン、-300トン（プラズマ急減時）で運転する。

以上の運転方針については、第176回使用施設等運転委員会（1996年1月29日）での審議を受けたものである。なお、本件についてはその後機器健全性検討会での検討を重ねるとともに、適宜第180回使用施設等運転委員会（1996年11月29日）、第182回使用施設等運転委員会（1997年6月20日）で経過を報告し、実験運転の安全確保についてアドバイスを受けてきた。最終的には運転上の対策として、コイル異常に対する以下の運転監視と保護機能の整備、コイルの健全性確認検査を実施することことでJT-60の健全性を確保することとした。

（運転監視と保護機能）
1) 内部観察手法

健全性確認検査の一つとして、矩形細管構造の TFC 冷却管内を観察するため、挿入するファイバースコープ自身や先端に取り付けるアダプタを開発した（図 3）[2]。

①ファイバースコープの開発

ファイバースコープには、長さ 15m（冷却管の全長の半分）で、且つ曲がりを有する細管中に挿入するための剛性、直角の曲りに対する柔軟性、及び管内での挿入易さなどの特性が必要となる。これを満足する構造として、3800 画素のイメージガイドと 30 本のライトガイドに加えて剛性を高めるための 5 本のファイバー強化プラスチック線を一体化し、さらに管内の滑り易さを与えるために直径 3mm のテフロンチューブで外装する構造とした。また、ファイバースコープの挿入長の精度を確保するために、引き抜き装置を設けた。

②ファイバースコープ先端アダプタの開発

矩形細管断面内の視線方向を固定化するために、細管に合わせた矩形断面を有し、且つ滑り易い専用アダプタをファイバースコープの先端に取り付けた。材質としては、FRP を選定するとともに、矩形細管 4 個所の角部の観察用に、4 個のアダプタを用意し、観察対象の角部に対応したものを選択して取り付けるような構造上の工夫をした。

2) TFC 温度監視システム

矩形細管であるコイル冷却管内部に約 10m まで挿入が可能であり、且つ運転中の高電圧下でも常時使用できる TFC 最狭部温度モニターとして光ファイバーレーダー温度計を採用し、自動的に温度監
視ができるシステムを構築した（別添 1 参照）。

3）TFC 短絡モニタ装置
TFC コイルブロック間の短絡については、従来から装備されていたアンバランス励磁検出装置に加え、新たにロゴスキー・コイルを圧力プローブを併用したモニタにより監視できるようにし、異常時にはコイルへの電流供給を速やかに停止するシステムを構築した（別添 2 参照）。

4）トロイヤダル磁場コイル監視システム
1997 年度に新たに整備した TFC 温度監視システム、TFC 短絡モニタ装置を含め、TFC の水浸み出しに関わる水分検知、圧縮・短絡事象検出、転倒力過大、矩形波換算時時間管理等を総合的に監視するシステムを構築し、TFC の健全性を常時確認しながらその後も順調に運転を継続している（図 4）。

まとめ
JT-60 のトロイヤダル磁場コイルは設計寿命 10 年としたが、2005 年で運転開始から既に 20 年目となる。この間に、コイル冷却管からの水浸み出しが 3 回発生した。本稿に述べたように、実験運転条件の制約や各種の技術的対策を講じたことにより、1995 年 6 月以降、新たな水浸み出しの発生はない。JT-60 ではこのようなトラブルに遭遇したが、使用施設運転係内容の遵守や TFC 健全性に関わる実験の実施等により、その後順調に稼働を続け、核融合三重現の世界記録更新、臨界プラズマ条件の達成、定常化研究における顕著な成果を生み出ってきた。

健全性確認検査については、1995 年よりファイバースコープ観察、気密試験を開始し、1997 年からはコイル単体絶縁試験等を実施してきた。その後新たなクラックの発生が認められなかったことから、2003 年以降は絶縁試験のみ実施している。未クラックの状態に進展があり、無通水冷却管が増大するような場合には、導体用ポリウレタン冷却材の適用 [3] を検討したが、その必要性がなかったのは幸いである。一応安定の状態が継続していると思われるが、設計寿命の 2 倍の期間運転を続けてきている現状を考慮すれば、絶縁材の劣化による断絶短絡等の発生の可能性もあり、今後も引き続き細心の注意を払っていく必要がある。

参考文献
[2] 新井資一, 「JT-60 トロイヤダル磁場コイル冷却管内部観察用ファイバースコープの開発」 JAERI-Tech 97-003（98 年 9 月）
別添１ TFC 温度監視システム

目的
JT-60 のトロイダル磁場コイル (TFC) は、コイル通電によるジュール発熱を積極的に除熱するため、コイル導体に冷却管を埋め込んで通水している。これにより 15～20 分間隔の繰り返し通電に伴う温度上昇を抑抑制し、TFC 内部の電気絶縁層を含む材料の耐熱温度以下での効率的な実験運転を実施することが可能である。しかしながら、一部の冷却管にクラックによる水の浸み出しが確認されて以来、当該冷却管の無通水での実験運転を余儀なくされている。JT-60 の健全な運転を実施していくには、この無通水冷却管の周囲の絶縁層の健全性を確保することが不可欠であり、十分な温度管理が要求される。そこで TFC 内部の温度を局所的に直接計測・監視できる温度監視システムを開発し、TFC の健全性を確認しながら実験運転を行うことにした。

方法、設計
TFC は放射線管理区域内に 18 個あり、各々実験運転毎に 50kA を超える電流が投入され、プラズマ中心で最大 4T の強磁場を発生させるものである。これらは複雑な構造を持つうえ狭い場所に置かれており、その内部温度を直接計測することを、従来試みられていなかった。光ファイバー温度測定器（光ファイバー温度計）を用いたこの技術では、コイル導体に埋め込まれた多数の冷却管のうちの 1 口（断面：4 mm x 20 mm）を利用して、その中に光ファイバー（直径：3 mm）を約 10m 插入する。レーザーダイオードから発した光パルスが挿入ファイバーの温度に依存して後方散乱される現象をレーザーの原理を使って、図 5 の模式図に示すように TFC 内部（外側・通常部から内側・最狭部まで）を連続して各箇所の温度を測る。さらに、実験運転の開始にあたっては TFC の内部温度を事前に確認する必要があるため、光ファイバー温度計の整備の他にも温度監視機能の強化を図るなどの創造工夫を盛り込みながら、TFC 温度監視システムを構築した。

本システムにおいては、TFC 温度監視用ワークステーション（TFC-WS）を介して光ファイバー温度計と全系制御装置の運転制御用計算機（SVP）と接続することで、TFC の内部温度を遠く離れた中央制御室で運転中常時監視できるように、また、TFC-WS に TFC の温度インターロックと冷却所要時間算出機能を持たせることで、TFC 運転の信頼性確保と運転効率の向上を目指した。

結果、成果
光ファイバー温度計を設置した当初、放電シーケンスの開始は、TFC 最狭部温度が実験運転の開始制限温度（例えば 4T 放電にては、40℃）以下で在ることを光ファイバー温度計の指示値を目視で確認した後、実行していた。これを改善するため、TFC-WS を設置し、SVP と接続することにより、放電を
開始して良い温度以下であることを自動的に確認できるよう温度監視機能を付加した。約150ショットに及ぶTFC通電時の温度測定結果から、無通水冷却管を有するTFCの冷却特性の線図を作成し、これに基づいてTFC最狭部の冷却所要時間を予測することとした。付加した機能としては、放電シーケンス開始からTFC通電までの間（約6分間）の最狭部温度の低下を前述した予測の間接式を用いて計算する機能及び放電開始1分前には最狭部温度が放電を開始して良い温度以下であることを自動的に再確認する機能の2つである。図6に温度監視機能の付加後における放電シーケンスの流れを示す。

検討、考察
現在残されている課題としては、光ファイバーの応答遅れとその挿入状態が不明确であることである。応答遅れにおいてはそれを前提とした余裕のある管理で、挿入状態に関しては光ファイバーが冷却管に直接接触しないように光ファイバーの被覆用テフロンチューブの先端を加工するなどの工夫で乗り切っているが、本質的な改良が必要である。例えば既設の光ファイバーの被覆を耐熱性を保ちつつ剛性を高める材質に変更し、且つ空間に浮かす構造とすることで、被覆用テフロンチューブによる断熱作用を受せず、挿入状態も危険する必要がなくなる。
この技術は、細い光ファイバーを新規に挿入することで、複雑な構造物内部や狭いエリアに設置した機器の温度監視が可能となることから、他分野での応用も期待できる。

結論
TFCの温度を確認しながらプラズマ放電実験を行うため、矩形管であるTFC冷却管に約10m挿入でき、且つ、高電圧下で使用できる温度測定器として光ファイバーを温度センサとする光ファイバーテフロンチューブを用いてTFC温度監視システムを完成した。さらに、本システムをSPVのネットワークと接続し、TFC最狭部温度が放電の開始制限温度以下であることを自動的に確認できるよう温度監視機能の強化を行った。その結果、温度条件確認機能が自動的に働くことによりTFC運転の短縮化を高めるとともに、JT-60の運転員が従来行ってきた放電シーケンス毎のTFC温度の目視による確認作業が省略でき、負担の軽減となった。さらに従来の目視確認法と比較した結果、放電間隔が毎回約5分短縮できるなど、運転効率の向上にも大きく寄与している。

感想等
本システムの設計・製作にあたっては、TFCの安全性を保ちながら、それまで課せられていた実験運転の制約を解くものとして期待され、JT-60第2試験室とJT-60第1試験室との両度作業で成し遂げられたものである。しかしながら、TFCにおいては何ら改善された訳ではない。今後もそのことを念頭に置き、TFCの状態監視には常に細心の注意をはらう必要がある。

参考文献、表彰
[1]柳生純一他、JT-60トロイダル磁場コイル温度監視システムの開発、平成9年度 核融合科学研究所 技術研究会 NIFS-MEMO-26 243-246
[2]柳生純一、2000年度、文部科学大臣、創意工夫功労者賞、トロイダル磁場コイル温度監視システムの考案
別添2 TFC短絡事象装置

目的
JT-60のトロイダル磁場コイル（TFC）は、設計年数10年を超えて運転しているため経験材の磨耗等による劣化から短絡事象の発生が心配される。TFCの短絡は装置本体の破損を招く重大な事故に発展する可能性があるが、層間短絡の初期段階において検出できれば軽微な損傷の範囲内で事故を回避できると考えられる。そこでロゴスクリーコイル（RKC）と磁気プローブ（MP）でコイル電流及びコイル近傍の磁束密度を常時計測し、双方の変化から万の短絡事象を監視、検出することにした。

方法、設計
短絡現象による電流及び磁束密度の変化については実機での実験が不可能なため、電磁場解析のシミュレーションを実施した。TFCのJT-60の運転モードに沿った磁場解析によれば、TFC通電の立ち上げ時に短絡ターンの過渡的な短絡電流の変化の割合が健全時に比べて大きく、且つ外部因子の影響が少ないことが確認された。さらに、短絡電流の値は短絡部分の抵抗に依存することも分かった。そこで上記立ち上げ時のコイル電流及びコイル近傍の磁束密度を計測し、これを用いた短絡事象検出システムを構築することとした。RKCは箇所磁束からTFCの電流値を検出するので、その取付け位置や外部因子の影響を受け難いのに対し、磁束密度を計測するMPは、局所的である反面、RKCに比べて感度が良いという特徴を有している。この特徴を活かし、図7に示すように、RKCにおいては既設するTFC同士の電流値を同時に計測し、その挙動により短絡電流の検出をする。MPにおいてはバンケーロイクルRKCとMPの各々の内側、中間、外側の磁束密度を計測し、バンケーロイクルRKCとMPの相対位置での相遠を基に短絡事象を検出することにした。尚、RKCとMPは、TFCに実装可能なものとするために外部からの衝撃に強く、且つJT-60の共通基準に合致するように構造を考慮して開発している。
TFC短絡モニタ装置は、各TFCに取付けたRKCとMPの出力を、本体機器制御室に設置した絶縁アンプとデータロガーを介して収集用ワークステーション（WS）に入力し、処理する。さらにネットワークを介して中央制御室に設置した表示用WSに情報を伝達する。
短絡事象の監視、検出は、RKCとMPの出力をさらに収集用WSの内部で各センサーの個体差、ならびにTFC間（RKC）及びA,Bバケイク間（MP）での個体差を補正する等の処理を行い、その後、各々の判定結果を併用する方法を採用している。

結果、成果
本システム構築後、RKCとMPの測定精度を確認するため、JT-60運転における通常時のRKCとMPの出力差を測定し（図8）、その後、磁場解析における短絡時の出力差と比較した。その結果、RKCにおいては通常電通時の2つのTFC間のS/Nは実測で2％であるのに対し、短絡を想定した場合の通電開始1〜5秒後の出力差は出力の小さいRKCでさえ4〜19％（短絡抵抗1μΩの場合）となることが、また、MPにおいても同一コイルA,Bバケイク間のS/Nが2％であるのに対し、短絡を想定した場合の出力差は7〜37％とすることが確認できた。このことから本システムによって短絡事象の検出が十分に可能であることが立証され、本装置を用いたTFC短絡事象検出が現在も行われている。
検討、考察

TFC の一方の短絡事象に備えるのであれば、本来は全ての TFC に RKC と MP を設置すべきであるが、未だ水しみ出しを起こした TFC を含む半数の設置に限られている。今後、残りの TFC にも RKC と MP を設置することで TFC 全体の健全性が一層確かなものになると考える。しかしながら、本システムの整備によって水しみ出しを起こした TFC の健全性確保に役立つと共に、実験運転の効率維持と運転員の負担軽減に貢献した。

結論

JT-60 運転における通常時の隣接 TFC 間の電流値及びA, B バンケーキ間での磁束密度の出力差は絶対値の±2％以下であるのに対し、短絡を想定した場合には、図 8 に示すようにその出力差は短絡部の抵抗に大きく依存するが、通電開始後 5 秒間では、短絡抵抗 1μΩ の場合には 4％以上となることが解析により予想され、層間短絡の検出が十分可能であることが分った。これに基づいて RKC と MP からなる TFC 短絡モニタ装置を構築し、放電シーケンス毎に短絡検出を行い、異常の有無を確認している。尚、現在のところ RKC と MP を取付けた TFC においては異常が認められていない。

感想等

本装置では、鎮場解析から電磁気検出器の設計・試作、装置構築まで一貫して携わることができ、より知見を広めることができた。次期装置においてもコイルの短絡モニタは有効なツールとなりうるが、RKC と MP のコスト高が問題となるであろう。これを考慮し、すでに㈱東京電力と共同開発で電流センサとしての鉛ガラス光ファイバーの活用を検討しているところである。
5.13 真空リーコ

概要
JT-60は、真空容器を中心にその周りを中性粒子人射加熱装置、高周波加熱装置、プラズマ計測装置、ガス注入装置などの多機能にわたる各種装置が設置された大型の超高真空装置である。JT-60の実験運転においては、高性能なプラズマを実現するために不純物が少ない「質」の良い超高真空状態を得る必要があると共に、その状態を長期間維持する必要がある。不純物には、第一壁や真空容器内壁及び真空容器と同一断面に設置された各種装置の表面から放出される放出ガス量子と、真空リーコにより真空容器の外部から流入するものがある。このうち、真空容器の外部から流入する不純物を最小限に抑えるために、真空リーコ試験の手法を開発し、リーコ箇所の検出と修復に迅速に対応できるようにした。

方法、設計（仕様）
●リーク試験概要
JT-60における真空リーコ試験は、a)真空容器と同一断面に新たに装置を設置した場合、b)定期点検や改造作業の終了後、c)JT-60の実験運転中などにリークの発生がある時、半減期が短く、楽観的な評価が行うことができる場合に成立する。試験の対象箇所は、JT-60本体の広範な空間に分散し、多くの場合は、人間一人が入ると入るような非常に狭い空間にある。このため、試験は、時間で効率的、且つ効果的に実施する必要がある。試験作業は、大別して集約作業と現場作業の2つに分けられる。a)の理由により行う試験の場合は、予め対象箇所を把握するため、各課室に試験対象箇所、フードの有無、ガスケットの種類などの項目について前調査を行い、リストを作成を行う。その後、現場作業として試験機材の準備や対象箇所にピニール袋などでフードを行うなどの試験準備、試験装置の立ち上げ操作、試験及び同定作業の順で実施する。試験の作業フロー図1に示す。試験は、ブロックガス供給系や自動リーコテスト装置（詳細は後述）使用し、対象箇所にブロックガスを吹き付け、リーク箇所を介して真空容器内に流入したガスを検出器で検出している。ブロックガスには、通常ヘリウムガス（He）を使用している。検出器は、JT-60真空排気設備に接続されたD0対策リーコテスト装置（詳細は後述）設置されたへリウムリークディテクタ（He-L/D）や真空排気設備のマニホールドに設置された残ガス分析計（MSD）を使用し、ブロックガスの検出量や検出時間により、リークの有無、大きさや箇所の同定を行っている。ガスの吹き付けは、JT-60本体が設置されているJT-60実験棟本体から離れた中央制御室から遠隔操作で行う場合と真空容器周辺の現場において試験員が直接手動で行う場合があり、試験は、遠隔または現場においてブロックごとにガスの吹き付けを行い、リークが検出された場合は、さらに詳細な箇所の同定作業を行う。リークが検出された場合は、ブロック内で詳細な同定作業を行う。JT-60本体周辺の試験は、通常2〜5人で約1日かけて実施している。なお、JT-60における許容リーク量は、ヘリウムガス（He）により規定し、真空容器に直接設置する場合は1.3×10^{-9} Pam/s以下、第1仕切弁（GVI）を介して設置する時は1.3×10^{-9} Pam/s以下としている。詳細については、真空管理基準の項目参照。

●真空リーコ試験対象箇所総数
JT-60における真空リーコ試験の対象箇所は、JT-60本体真空容器及び真空容器と同一の真空断面気内に設置された以下のものがある。
　・各種装置の溶解部、金属やパイプトップなどをパッキンとして使用した真空フランジ
　・プラズマ計測用のガスケット
　・プラズマの位置制御及び温度検出などに用いられる電磁気検出器及び熱電対などの検出器
　・ゲートバルブのシートなど
　・バッキンには、メタル中空0リング、鋼ガスケット、パイロリング、カリレッッスン及びテフロンバッキンなどを使用している。計測部には、磁力、サファイヤ及びヘリウムなどを使用している。試験対象箇所の数値は、対象箇所の考え方によりも、JT-60全体を詳細に分割して計算すると数千箇所から1万箇所に達すると考えられる。しかし、このような膨大な数の対象箇所を個別に分割し、
試験を実施するには、余りに数が多く、長い時間と多くの労力を要する。このため、実際には真空容器周辺で約 500 箇所、計測器や加熱装置などの周辺機器を約 200 箇所程度に分割した上で試験を行っている。

● 真空リーグ試験装置

JT-60 本体真空容器周辺の真空リーグ試験を行う際には、プローブガス供給系、自動リーグ試験装置及び D₀ リーグ試験装置を使用している。リーク試験装置の構成を図 2 に示す。

プローブガス供給系は、プローブガスボンベ、減圧弁、多数の電磁弁、配管やプローブガス配管から構成されている。電磁弁は、真空容器のサイドポート周辺に 54 個が設置され、その先にマニホールドが取付けてある。マニホールドから、予め試験対象箇所までプローブガス配管を敷設し、遠隔で電磁弁を開閉操作を行う。さらに、ガスの吹き付け及びフード内にガスを導入するためのプローブガスとして供給している。

自動リーグ試験装置は、MSQ とプローブガス供給系を組み合わせて、自動で試験を行うことができる。試験は、中央制御室から遠隔でプローブガス供給系をシーケンシャルに可動させ、MSQ でプローブガス検出装置に試験を行うことができる。電磁弁の操作は、予め開閉順序や開閉時間を設定することができる。検出するプローブガスは、He (W/Mₑ₄) ニオーム (W/Mₑ₂₀) やアルゴン (W/Mₑ₄₀) 等で自由に選択できる。検出レベルもパックグラウンドに応じて自由設定できる。本試験装置で検出される真空リーグ量は、概ね 1×10⁻⁹ Pa m³/s 以上である。また、ガスの吹き付けに本試験装置、検出器として D₀ 対策リーグ試験装置と組み合わせて試験を行うこともできる。

D₀ 対策リーグ試験装置は、JT-60 真空排気設備の第 2 段 pharmacies 及び粗引き排気系（詳細は、JT-60 真空排気設備の項目参照）に接続され、真空チャンバー、クライオポンプ（CP）、ターボ分子ポンプ（TMP）や He-L/D の機器から構成されている。本装置は、1991 年からの実験運転の燃料ガスとしての水素 D₀ の使用が開始され、プローブガスとして使用している He (質量数：4.0026) と D₀ (質量数：4.0282) と極めて質量数が近いため、試験時の検出感度を低下させることになった。このため、検出感度を維持するためにリーク箇所から入った He を含む混合ガスは、He 以外のガス（主に D₀）を CP により吸着排気することで除外し、残った He は TMP を介して He-L/D で検出できる。

● 真空リーグ試験結果

1986 年の JT-60 の実験運転開始から 2004 年までに発生した真空リーグの総発生件数は、204 件である。図 3 に年度ごとの発生件数を示す。JT-60 の実験運転開始当初の 1986 年から 1987 年には発生した主なリークは、実験運転の進展によりプラズマ電流が大きくなる一方で、ディスラプション時の時定数が小さくなり、サイドポートに働く加速度が大きくなり、ポートの振動が大きくなったことが原因である。このため、1987 年後半に行なった下側パイタコイル設置工事時に、真空容器取り付けフランジを取付ける際のボルトの材質を高温強度の高い SUS660 に変更すると共に、皿ばね座金と組み合わせ取り付けるなどのサイドポートに働く振動対策などの真空リーグ対策を実施した。翌年の 1988 年には、27 件のリークが発生した。しかし、その後の 18 件は、JT-60 真空排気設備の主排気系や保守排気系に使用しているゲートバルブ内のフレーム部から発生したものであり、リーク対策の効果で発生件数を大幅に減少させること
ができた。1990年の不良電流防止とフロンが、リードの発生件数は、年間に10件前後となり、そのほとんどが定期点検や改造工事完了後の試験で発見されたものである。

●代表的な真空リード
JT-60の実験運転開始から2004年度までに発生した代表的なリードを下記に記す。
・ティスラプションによるポート振動
1988年6月にP-2斜面に取付けた計測装置の溶接部からリードが検出された。その原因は、プラズマティスラプションにより、計測ポートに大きな加速度が加わり、それによりポートが振動し装置の溶接部に亀裂が入ったものである。これまでの間にポートの振動が原因で検出されたリードは、フロンの部分に多数確認されていたが、溶接部に発生したのはこれが初めてであった。
・ベーパリングによる異常
1987年7月1日から8月にかけて、真空容器及びポートのベーパリングを行っていた際に、RFポートの大口径フランジからリードが検出された。原因は、真空容器及びポートベーパリングの昇温及び降温時に大口径フランジに温度差が生じ、歪みが発生した。
・フィードスルー
P-11の高周波加熱装置（ICRF）のセラミック製フィードスルーに亀裂が生じてリードが検出された。フィードスルーの2次側には、絶縁ガスのSF6が充填されていたが、真空容器の残留ガスとしてSF6の成分である量が19、32、51、70、89などのガスが検出されたことでリードが確認された。このリードにより流入したガスの影響と思われる成分が約1年後に流入、真空容器内の残留ガスとして検出され続けた。
・ダイバータ冷却配管リード
1995年のJT-60実験運転中に、P-3からP-5のダイバータ板を冷却している#2ダイバータ冷却配管（冷却基板冷却管）からダイバータ冷却用の絶縁ガスがリークしているのが検出された。実験運転後の定期点検時に検査を行った結果、ダイバータ冷却基板の冷却基板冷却管の2箇所にリードを生じた貫通孔（φ0.3mmとφ0.5mm）が確認された。リークの原因は、ダイバータ冷却基板を保護するための炭素素の保護板の隙間から粒子が進入したことで冷却基板冷却管を溶融したものと推定された。
・大気放出管第2仕切弁（GV2）のシートリード
1996年8月に JT-60の実験運転中にリークの兆候が生じていたが、真空容器外部から試験を適時に実施したが検出されなかった。このようなリードのシートリードなど、外部からの試験では検出されないリードと判断した。確認を検査した結果、大気放出管のGV2のシートリードがあることが検出された。原因は、真空容器内作業を行う際、真空容器内機械の種類、として大気放出管を使用している。このため、作業時に発生したピーチリー（ピットリー）0リングに付着したものと推定された。

●対策
これまでに発生したリードの原因、プラズマティスラプション等のポートの振動、取付けポートの締付けトルク劣化、メタル中空0リングと鋼ガスケットの双方を使用できるフランジ以外を使用した取付け不良及びベーパリング時の熱の影響による異常などであった。これら原因について対策を講じてきた。
(1)プラズマティスラプションによるポートの振動対策
ポートの振動対策は、次の4点について行った。参考までに、プラズマティスラプションによるポート振動は、大電流流化改造前に水平ポートの先端で測定の結果、最大加速度41.4Gを記録した。
①ポートに取付けられている装置が、既にその目的を達成されている場合や当面の間使用計画のない場合には、真空容器から切り離し、真空容器取合いフランジに閉端板を取付けた。
②水平ポートに取付けられていたゲートバルブ（GV）を撤去し、その代わりに短管やベローズを取り付けた。GVを残す場合には、ポートとGV間のベローズを取り付け、振動を受けないようとした。
③閉端板などを真空容器取合い、GVの接続及びポンプ役のフランジは、パッキンとメタル中空0リングを使用し、材質がSUH650のポルトと内側に座金を組み合わせて取付けた。
④水平ポートに取付けられていたシフター付きゲートバルブは、ゲートバルブの機能を無くして、単にシャッターのみとすると共に、操作を手動として全体重量の軽減を図った。
(2)取付けポートの締付けトルク劣化
締付けトルク劣化は、ベーパリングによるヒートサイクルやポートの振動により、トルクが劣化する現象である。対策は、定期的なトルクチェックを行うようにした。
(3)メタル中空0リングと鋼ガスケットの双方を使用できるフランジ以外を使用した取付け不良
サイドポートの真空容器取合い用フランジを取り付けたときは、メタル中空0リングと鋼ガスケットの双方を使用できるフランジを採用している。このフランジは、JV10033のことがものでエッジ内側の溝深さが1.2mmものである。しかし、溝深さが2.0mmのフランジを使用したことでリークを
検査することがあった。この対策として、1998年に真空管理基準を改定し、適合するフランジには、「JT-60 合」などの刻印を明記することで、誤使用の対策を施した。
その他の、ベーキングによる熱応力により、計測器のガラス窓にひび割れが数例発生したことがある。その対策として、ガラス窓と真空容器の間に短管を取り付け、温度差によるガラス窓の取り付けフランジの熱収縮による変形を防止した。

結果、成果

JT-60本体の真空容器内を「質」の良い超高真空状態に長期に渡り維持するために、定期点検終了後などに上記のような真空リーク試験を実施してきた。その結果、多数のリークを検出した。さらに、検出したリークの原因を調査し、その結果を踏まえて対策を順次施してきたことにより、発生件数を少なくすることができた。また、自動リークテスト装置などの試験に係わる装置を順次更新して開発、設置することで、試験時間の短縮、作業量の軽減、放射線被曝の低減及び検出感度の維持等、試験効率をあげることができた。これらにより、JT-60実験運転の効率化に貢献した。

検討、考察

JT-60が大型で機能にわたる各種装置が複合する超高真空装置でありながら、微小な真空リークをもって真空リーク試験を通して発見し、対策を講じたことにより、リークに対する豊富な知識と技術を蓄積できた。一方では、より微小な真空リークの発見及び安全に短時間でかつ少数数での試験の実施方法について継続的な検討が必要である。

感想

JT-60の実験運転は、その他の真空リーク試験において数々の真空リークの検出及びその対策に携われたことでリークに関係するノウハウを蓄積できた。将来の核融合装置では、放射化などJT-60より厳しい環境下での試験の実施や対策の要求される。今後も、リークの発生防止、試験の効率化、遠隔化、試験時の検出感度の向上のための検討を行っていく必要がある。

参考文献、表彰

[6] 浅永敦嗣、1999年度、科学技術庁長官、創意工夫功労者賞。JT-60用真空リーク試験装置の改良
5.14 真空管理

目的・経緯

JT-60 では、プラズマ性能の向上及び円滑な運転を行うために真空容器を長期に渡って超高真空状態を維持する必要があり、このための基準・要領を制定するとともに、これに準じた装置設計、圧力監視、リーグ試験等を実施し真空管理を行っている。

基準は、本体真空容器及び本体真空容器に取付けられることによりその真空性能が真空容器へ影響を与える（本体真空容器と同じ雰囲気となる）装置（以下「真空取付装置」という）等の真空性能の基準を定めたものであり、真空性能の維持・向上を図ることを目的としている。経緯としては、これからの方針を作成する目的で1979年10月に真空管理作業グループを発足したことにより検討が開始された。まず、プラズマ側（物理）からの真空への要求は、放電中にプラズマに混入する不純物の量とという観点から規定される。当時、実験から得られた結果として考えられている不純物のソースでは、第一壁表面に付着した軽元素（主に酸素）がプラズマと相互作用し、プラズマ中に混入することを想定した。第一壁表面を酸素の一原子層（10^{19}個/㎤）の5％以下に保つなければならないとすると不純物の量は、$N_{imp}=5×10^{17}$個/㎤であり、JT-60の第一壁（プラズマと接する面）の面積を120㎡と考えると全体の許容軽元素不純物個数$N_{imp}=5×10^{19}$個となる。一方、プラズマ中に許容される軽不純物個数はプラズマ電子数の2％程度であるから、$N=0.02×5×10^{19}$個/㎤×60㎡=$6×10^{19}$個となる。壁側とプラズマ側の許容量としては同じ値であるが、プラズマ側からの要求は第一壁表面上の軽原子数を減らすためであるため要求実現のため真空との関連付けを行う。第一壁表面上の原子数を減らす方法として、放射から浄化、表面処理、圧力を下げ不純物の有効排気すること、第一壁の温度を上げること、不純物流入量を抑えること（リーフィ）等の項目が考えられる。

真空管理の面から本体真空排気系の排気速度が既に決まっているためPを下げるためには排気系のガス放出量や壁上の不純物原子数を減らすことが重要である。定量的な要求としては許容リーフィ、許容ガス放出量である。許容される不純物流入量P_{imp}は$N_{imp}/P=8×10^{17}$個/㎠×$6×10^{19}$個/s=$4×10^{10}$Pas/m²とする。プラズマ側からの要求は不純物流入量がこの程度になるよう周辺装置を加えた本体の総合的なリーフィ、ガス放出量を管理基準として規定することとした。

真空管理基準

真空管理基準は、1986年3月から運用が開始された。その後、随時改定を行い、特に、JT-60大電流化改造の際には真空性能に関して幅広い新規基準が導入されて、装置の設計・製作が行われ、現在、実施している真空管理は1993年にJT-60の作業要領見直しの際、実態に則して改定を行った。以下に抜粋を示す。

1) 装置・機器の真空管理基準

a) 仕切弁（ゲートバルブ）の設置

真空取付装置には、原則として本体真空容器と同じ雰囲気になる部分とを仕切ることのできるバルブ（ゲートバルブ）を設置すること。

b) 専用排気装置の設置

真空取付装置は、原則として本体真空容器と同じ雰囲気になる部分は専用の排気装置を有し、独立に排気できる構造とする。

c) 本体真空容器取り合いフランジ

本体真空容器の取り合いフランジは、コンフラットフランジ型鋼ガスケット用、メタル中空0リング用または、これらと同等のフランジとする。

真空取付装置等は、放出ガス量を少なくするために原則としてベーパーホンができる構造であること（常設のベーパーホン装置を望ましいが仮設でも可能とする）。ベーパーホン温度は、150℃以上とする。

d) 許容リーフィ

真空取付装置等の許容リーフィの許容放出量はヘリウムにより規定し、真空取付装置の総リーフィ量は、

$$1.3×10^{10} \text{ Pa} \cdot \text{m}^2/\text{s}$$

以下とする。

e) 放出ガス量

①本体真空容器の放出ガス量は、$1.3×10^{3} \text{ Pa} \cdot \text{m}^2/\text{s} \cdot \text{m}^2$以下とする。

②真空取付装置の放出ガス量は、$1.3×10^6 \text{ Pa} \cdot \text{m}^2/\text{s} \cdot \text{m}^2$以下とする。

f) 電気絶縁・機械的振動吸収

真空取付装置は、プラズマのディスラプションにより取付部に電流が流れる可能性あり電気的に絶縁するためセラミックブレーキ等を挿入すること。特に機械的振動も発生するためベローズ等を設け変位を吸収できる構造とする。

g) 真空中の閉空間（ボケット）の処置

真空容器及び真空容器と同じ真空雰囲気になる部分に使用するボルト等のうち、ボケットのでき
るものについては、ガスが滞留するおそれがあるため、ガス抜き穴（あるいは溝）を加工し、ガス抜きのできる構造とすること。

2) 真空性能に係わる審査
本体真空容器及び真空取付装置等を取付けあるいは改造しようとする場合は、承認申請の段階で部会の真空審査を受けることを義務付けられる。図1に真空審査に係わる基本的なフローを示す。真空性能に係わる改善要求は、真空管理基準と照合して基準に適合していないと判断した場合、当該課室に検討させるものである。「質」の維持を目的としたものである。また、真空性能に係わる改善要求は、運転状況を鑑みて、特に真空管理上好ましくない装置等については、真空性能に係わる部分の改善を要求している。当該課室において技術開発等に力を注ぎ、真空性能の向上に努めることを目的としたものである。

3) 真空リーク試験等
通常、連続にて圧力及び分圧（残留ガス）の状態監視を行っている。また、真空リーク試験はD2対策リークテスト装置を用いて行っている。装置・システムの詳細については、5.13章の「真空リーク」の項を参照されたい。
通常行われているリーク試験対象箇所は、本体真空容器で500箇所弱ある。これに真空容器と同等の雰囲気を含む各種計測器、中性粒子炎射装置、高周波加熱装置に伴う約20箇所のリーク試験対象箇所がある。万が一、リークを発見した場合はリーク箇所同定のため、さらに微量化したリーク試験を行う。リーク試験には、JT-60の実験運転中に真空リークが発生した場合のリーク試験に伴う大きな試験に定める定期点検作業等を行った箇所を対象とする点等の定量を目的としたリーク試験と大別される。前者はディスラプション等で実験運転中に発生した場合、圧力、特に分圧の変化を対象として監視している。JT-60では、これまでのリーク量とM/e=14の関係からM/e=14のレベル監視にて運転時のリークの有無を同定している。また、近年では、プラズマの酸素不純物の量の監視により「リーク」の兆候を監視している。図2にリーク量とM/e=14の関係を示す。運転中の監視レベルとして2段階に区分した対処方法を定めている。レベル1は、リークの拡大を監視しつつプラズマ実験を継続、レベル2は、プラズマ実験を中止しリーク試験の実施と修復を行う。後者は通常、JT-60真空排気設備を利用して行い、D2対策リークテスト装置（ヘリウムリークディテクター）により判定している。許容リーク量は基準に定められた1.3×10^-16 Pa・m^3/s/箇所以下である。真空管理基準内には上記の他に「GV1開閉基準」、「ペーベリング要領」、「フランジ規格」等の本体真空容器の真空関連の規格・基準が定められており、本体真空容器及び真空装置における不純物の低減を図っている。

図1 真空性能検討フロー
結果、考察

真空管理は、JT-60において、設計当初から計画・立業されて真空管理基準を定め、不純物の低減されたプラズマの確立を念頭に運用された結果、真空の「質」の面で言うと残留ガスの殆どが水素系であり、到達圧力10⁻⁹Pa台（常温）を実現し実験運転に大きく貢献できたと考える。また、ヘリウムの最高検知度を1.3×10⁻¹¹Pa·m³/s以下を可能としたリーク検知システムを駆使してリーク箇所の無い装置を図ることができた。一方、コストパフォーマンスを考えた場合、必ずしも既立していない場合が多く、例えば、全金属製ゲートバルブであり、そのもの自体はその当時の技術を駆使して開発し大変優秀な部品であるがコストを評価した場合あまりにも高額すぎる欠点をもつことになり、後述整備時に使用を断念した装置も多く出た。真空ガラス窓、絶縁継ぎ手も同様である。しかし、改善要求により技術開発・革新を行うことでダーボ分子ポンプ、ドライポンプ等のオイルフリー化で見られるように新しい真空技術も大幅に導入することとなった。

結論

JT-60では、プラズマへの不純物混入の低減を図ることを目的に真空管理基準を制定し、組織的に運用することで不純物低減に一応の成果を上げ、プラズマ実験に貢献できた。また、数回の見直しにより多種の項目を新たに追加することになり充実したものとなった。この真空管理基準は大型の真空容器と、さらに多くの真空取付装置を持つ真空の「質」が対象となる装置において大いに参考になると思われる。

感想、次回／未来へのメッセージ

当時、プラズマ側から見た真空の「質」を議論し、真空管理基準の必要性、JT-60における統一的な規格の標準等問題提起したことが今日の高い水準真空性能を持つに至った要因と思われる。次の核融合装置においても何が必要か（コストパフォーマンスも考えた）を議論し、目標を設定して、そこに向けて技術開発・創意工夫をして行くことが必要である。
5.15 絶縁管理

(1) 一点接地確認用絶縁管理

概要
本体室には、狭隘な環境に数多くの機器が複雑に入り組んで配置されている。これらの機器が接触等により電気的閉ループが形成される場合、JT-60の大電流パルスによる電磁誘導によりプラズマの不正磁場や機器の破損などの影響が生じる恐れがある。このため、JT-60設計当初より各機器の一点接地の徹底、設置後の確認、運転時の絶縁管理を実施している。機器設置当初には、絶縁すべき所を間違って接続してしまうミスにより接続前作業段階で遅れて解体する必要が生じる等の事例があった。その後も異常を早期に把握し、原因究明を容易にするため、每日作業を中断し一斉に絶縁確認を実施することにした。運転初期に電気的閉ループを検出したレジに地絡盤監視装置（5153(3)(4)参照）を新設し連続監視下での実験が可能となった。その後も種々の絶縁異常が発生し、その都度絶縁監視・探査装置の機能拡充を図ってきた。その成果として現在では短時間で異常箇所を同定することが可能となった。

代表的事例
本体室内各機器の絶縁箇所は膨大な数となるが、電磁誘導を受ける本体真空容器近傍の設備（最大256ヶ所）には、常時電気的閉ループを監視するモニタが付けられている。異常検出を示す原因の多くは針金や金属片の脱落や変形であるが、代表的な事例として、本体真空容器とNBI間を繋ぐポートの絶縁部において、その配管内部で生じた短絡を検出した例がある。この経緯は以下の通りである。実験中、真空容器の閉ループ検出が動作し周辺で点検したが異常は見られなかった。そこで地絡盤探査装置で探査したところ、NBIポート絶縁フランジ部を通過する絶縁開ループがある事が判明した。絶縁フランジで分断した結果、ビームラインの構成ではハニカム板がビームにより破損し、その破片がセラミック絶縁を破るように転がっていた（図1）。また電磁力による異常検出事例では、真空容器を支えるスライダーの外れし、垂直ポートのサポート外れ、電磁波散乱検出装置の脱落等が有った。このモニタの設置により前述の異常事例のみならず、工事中の作業ミスチェックや実験運転中の機器脱落の発見等、数多くの成果を上げた。

管理結果
絶縁管理は、各モニタ毎に管理値を設けて連続監視を行っている。また本体真空容器、中心支柱については毎日、定時にデスターによる測定を行い監視装置の健全性も含めた確認を行っている。この2項目については座位置制を定め、管理価以下となった場合は、定期点検期間中で有れば全ての作業を中断し、実験中で有れば実験を中断しその原因究明を行っている。その管理価は通常値を基準に下記の様になっている。（通常価）

<table>
<thead>
<tr>
<th>管理項目</th>
<th>実験運転時管理値</th>
<th>定期点検期間時管理値</th>
</tr>
</thead>
<tbody>
<tr>
<td>真空容器</td>
<td>1,500 Ω (2,000 Ω)</td>
<td>1,500 Ω (70 k Ω)</td>
</tr>
<tr>
<td>中心支柱</td>
<td>1,500 Ω (2,000 Ω)</td>
<td>1,500 Ω (2 k Ω)</td>
</tr>
</tbody>
</table>

結果
一点接地確認用絶縁管理では接続・運転・保守時共に多頻度で異常が発生した。この管理の効果化を図るために多くの開発・改良を実施してきたが、その集大成として形ができたと考察する。すなわち作業中の異常、作業後の異常、運転中の異常を感知・報知し、且つ異常箇所が容易に同定できるシステムを構築できた。

図1 配管内絶縁異常発見例
（2）磁場コイル絶縁管理

概要
大電力が供給される各磁場コイルは、絶縁異常により大きな事故に発展する可能性がある。JT-60では各コイルの健全性を確認するために、運転中の起動点検時、停止点検時に各コイルの絶縁抵抗測定を行っている。またトロイヤル磁場コイル（TFC）冷却配管に亀裂が発生した経緯をふまえその影響についても定期的に監視、測定を実施している。

代表的的事例
通常の起動・停止点検時の絶縁異常は、電源側から実験室に至るフィードに使用されている箇条部が温度の影響で絶縁抵抗が低下するもののはほとんどである。この場合極端に管理値を下まわった時には、コイルフィードをコイルから切り離し、異常部がフィードであることを確認した上で運転を行う。
（現在迄は、運転再開が不可能となった絶縁低下はない。トロイヤル磁場コイル冷却配管亀裂発生時の事例では（5.12）トロイヤル磁場コイル冷却水の浸みだし参照）対策後、毎年対象となるトロイヤル磁場コイル（No9,14）を切り離し（図2），コイル単独の絶縁抵抗を測定し健全性を確認している。
その結果、日々測定値を経年履歴を図3に示す。

図2 TFC絶縁抵抗測定のためのコイル分割ブロック

図3 TFC一括絶縁抵抗測定結果

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>不具合</td>
<td>TFC-9</td>
<td>4.10</td>
<td>4.75</td>
<td>7.48</td>
<td>4.95</td>
<td>4.80</td>
<td>4.34</td>
</tr>
<tr>
<td>コイル</td>
<td>TFC-14</td>
<td>1.30</td>
<td>1.76</td>
<td>3.81</td>
<td>1.90</td>
<td>1.46</td>
<td>1.50</td>
</tr>
<tr>
<td>絶縁抵抗</td>
<td>TFC-3-8</td>
<td>0.53</td>
<td>0.54</td>
<td>0.99</td>
<td>0.54</td>
<td>0.52</td>
<td>0.49</td>
</tr>
<tr>
<td>CD</td>
<td>TFC-10-12</td>
<td>1.05</td>
<td>1.06</td>
<td>1.07</td>
<td>1.19</td>
<td>1.19</td>
<td>1.23</td>
</tr>
<tr>
<td>コイル</td>
<td>TFC-15-2</td>
<td>0.54</td>
<td>0.60</td>
<td>1.10</td>
<td>0.60</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>D</td>
<td>TFC-18</td>
<td>0.20</td>
<td>0.18</td>
<td>0.37</td>
<td>0.20</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>冷却水温度 [℃]</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>冷却水温度 [μS/cm]</td>
<td>0.12</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

（）内は測定したブロックのコイル数

管理
運転中の起動点検時、停止点検時に各コイルの絶縁抵抗測定をメガにて実施している。その管理値は通常値を基準に下記のようになっている。（）内は通常値。コイル冷却水電導度を1μS/cm以下で測定。

管理対象 | 実験運転時管理値
| Tコイル = 0.1MΩ (0.15MΩ) | Fコイル = 2.0MΩ (40MΩ)
| Vコイル = 2.0MΩ (30MΩ) | Hコイル = 1.0MΩ (75MΩ)
| Dコイル = 1.0MΩ (35MΩ) | DCWコイル = 2.0MΩ (99MΩ)

結果
各コイルの一括絶縁測定では、箇条部の温度によるばらつきがあるが、大きく変化した場合は図2に示す新水浸けだし等の異常予知に寄与できると考察する。また水浸け出しが発生したコイルではコイル単独で管理し、経年劣化を含む健全性を確認しつつ運転を実施している。
（3）絶縁監視装置更新

目的

JT-60 ではコイル磁場等による電磁誘導の影響を防止するために各設備の 1 点接地を徹底するとともに、設備間の接触又は異物の侵入等により発生した接地の有無を常時監視するために 1986.2 から絶縁地絡監視装置を設置している。しかしながら、本装置は、構成機器の老朽化により交換部品の製造中止等によるメンテナンス性の悪化や計算機（CPU）の性能不足のために機能拡張が困難等の問題が生じたため、構成機器の更新を実施するとともに絶縁地絡監視機能の強化を図ることとした。

方法

絶縁地絡監視装置は、各設備の接地線に 2 個の変流器（CT）を設置し、一方に励磁信号を送り他方でその信号を受信するもので、地絡が生じ電気的に閉ループが形成されるとトランスの原理で接地線に電流が流れ、検出用 CT の信号が増大することを利用し絶縁状態を監視するものである。1998 年に CT を除く構成機器を安価な市販品を用いて更新した。図４に構成図を示す。

励磁信号の送信及び検出信号の受信にはフェーズロックインアンプを採用した。このアンプは、出力した信号と同じ周波数の信号のみを出力するためノイズ等の影響を防ぐことができる。切り替えスイッチ部はリレーによって切替する CT を切り替えるもので、最大 200 点の測定を可能とし、その制御はシーケンサにより実施する。計算機については、OS を MS-DOS から Windows-NT、開発言語を Optimizing から Visual Basic に変更し、ホスト計算機とモニタ計算機間の通信は、ネットワークを採用した。また、検出電圧から抵抗値を求める際の換算式において従来は 1 次式を用いていたことにより抵抗値の精度が十分ではなかったため、以下の換算式に変更した。

図 5 の近似回路から、検出電圧 V と抵抗値 R の関係式は、

\[R = a/V + b \quad [a：結合係数] \] でこれにノイズ b が加わると \[R = a/(V-b) \] となる。

2Ωの時 V2、50Ωの時を V50 とすると、V2 = a/2 + b、V50 = a/50 + b となるから

\[a = (V2-V50) \times 25/12、b = (25 \times V50-V2)/24 \] を①式に代入し抵抗値を求める。

図 4 は絶縁地絡監視装置の構成図（システム更新後）

図 5 は近似回路図

結果

絶縁地絡監視装置の CT を除く構成機器を更新し、正常に絶縁異常を監視できることを確認した。新たな機器により、不具合時の機器の手配が容易となりともにフェーズロックインアンプを採用すること等によりシステムがスリム化したためメンテナンス性が向上した。更に、計算機に於いては、シ
ステム性能が大幅に向上して機能の追加も容易となったため、従来にはなかった CT 設置機器の名称や異常発生中及び異常復帰を含めた履歴の表示等の機能を追加し監視機能の強化を図った (図 6)。また、ネットワーク通信の採用によりモニタの増設が容易となったため地絡の発生頻度が多くなる定期点検時においては組立にモニタ計算機を設置し、作業者が速やかに地絡の有無を確認できるようになった。更に、検出電圧から抵抗値への換算程式を 1 次式から 2 次式へ変更することにより測定値と同等の精度で抵抗値を求めることができるようになった。この値を地絡原因や場所、設備等の推定基準の一つとして用いることにより速やかな絶縁異常箇所の特定が期待できる。

図 6 絶縁監視装置監視画面構成

さらなる改良に向けて提案

プラズマ放電中の真空容器の抵抗値測定は、ディスラプションの発生等により生じる電流の影響を防止するためコイル通電中のトリガ信号を用いてサンプリングを自動停止している。しかし、コイル通電終了後においても抵抗値が低下する現象が発生している。真空容器付近に設置されている CT に生じること、コイル通電後にも影響し、徐々に時間の経過とともに回復することから残留磁気の影響が考えられている。現在、励磁電圧を 2V から 6V へ変更することにより S/N 比を向上させ影響を緩和しているが、詳細な原因を特定する必要がある。

結論

老朽化した絶縁地絡監視装置の構成機器を更新した。システム性能が大幅に向上したため、メンテナンス性の向上が図れ、JT-60 の安全対策を円滑に運転に寄与した。監視機能の追加及び監視場所の増設等が可能となり、また、検出電圧値から抵抗値への換算方法を変更したため異常時の抵抗値を詳細に把握できるようになった。これらにより原因推定の因子も増えたため、絶縁異常箇所の特定が容易となり、異常発生の早期確認が可能となった。

次回へのメッセージ

構成機器を更新することにより、JT-60 設備の地絡を監視する装置として、十分な性能と安定な運転の維持が確保された。さらに、JT-60 の絶縁管理としては、監視機能の機能の問題として、先ず地絡を発生させないことが重要である。特に、定期点検時には、作業員による機器への接触や作業上（設置方法や絶縁機器の選定等）のミスによって生じることの地絡の発生頻度が多い。よって、いかに作業員の絶縁に対する意識を向上させるかが重要である。それを装置側で補完するために、現場にモニタを設置したが、今後の技術的改良としては、さらに真空容器、中心柱支の絶縁状態が一目瞭然で確認できる等の工夫も必要かと思われる。

参考文献

[1] 作部秀和他、JT-60 絶縁地絡監視装置の更新 2000.6 技術研究会報告 No.16 P315～317

- 212 -
(4) 絶縁地絡箇所報知システム

目的、経緯

 JT-60 の真空容器周辺に、大電流バルス負荷である数多くの機器が狭隘環境に複雑に入り組んで配
置されている。これらの機器が接触等により地絡し電気的関ループを形成した場合、JT-60 の漏洩磁場
による電磁誘導によりプラズマへの不正磁場、機器の損傷等の影響が生じる。そのため、各機器の 1
点接地の徹底又は真空容器、中心柱支の絶縁抵抗を定期的に測定し絶縁状態を管理している。また、地
絡が発生した場合には、異常箇所を早期に同定し対応することが重要である。この問題に対応するた
め JT-60 では、地絡箇所探査装置（1986.2 設置）や地絡箇所探査装置を開発した。

 地絡箇所探査器は、電気的関ループ箇所に発信器を取り付け、特定の低周波電流を出力することによ
り開ループ箇所から発生する漏れ磁場をセンサで検出し地絡位置を検知するものである。本センサは、
携帯型であるため利便性が高く、詳細な位置の特定が可能となる特徴がある（図 7 上 携帯型センサ）。
しかししながら、センサを所持しながら JT-60 本体周辺の高所、狭隘かつ広域な環境での探査作業とな
るため、危険を伴う場所での長時間の作業である程度の人員数で行う必要があった。そこで、探査作
業の効率化を図るため、地絡が発生しそういエリアにセンサを固定設置（図 7 下 設置型センサ）し、
概略の位置を迅速に特定できるように絶縁地絡箇所報知システムを整備した。

図 7 地絡箇所探査用のセンサ外観

方法

表 2 に主な構成機器の仕様、図 8 にシステム構成図を示す。制御ユニットは、発振器の機能（低周
波信号の出力）の他に、センサへの電源供給と検知したセンサのポートセクション番号を LED 表示す
る機能を追加したもので、P-1 の真空容器支持柱に設置した。出力信号のケーブルは、中心柱支の接地
素子盤No.1 に配線し、真空容器電位、中心柱支電位にコネクタで接続できるようにした。センサ（図 7
下 設置型センサ）は、ループ電流の漏洩磁場を検知すると LED が点滅するとともに警告音を発する。

<table>
<thead>
<tr>
<th>機器名</th>
<th>制御ユニット</th>
<th>センサ（設置式）</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕 様</td>
<td>(1)出力信号</td>
<td></td>
</tr>
<tr>
<td></td>
<td>①電流：100mA max 、1V max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②周波数：982.5 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③断続時間：1.0 秒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④定電流：約 300 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤定电压：約 W320×H160×D134 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥寸法：約 W320×H160×D134 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦質量：約 6 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧数、量：1台</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)検出信号：982.5 Hz ±1 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)構造：分割型クラップCT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3)内径：φ40mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4)検出信号：LED点滅表示</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5)検出音：ブザー音</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6)電源：DC5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7)寸法：約 W320×H160×D134 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8)質量：約 120g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9)数、量：54個（1個未設置）</td>
<td></td>
</tr>
</tbody>
</table>

また、センサの設置は、真空容器に関わる地絡を主に検出するために全ポートセクションの斜上、水
平、斜下ポート部毎に配置（P-1 水平は、真空容器管理出口口に干渉するため未設置）するとともに、
取り付け位置は絶縁を配慮して、TFC冷却水ゴムホース部とした。また、センサには検出感度に方向性があるため（工場試験によりセンサ傾き60°では検出可能、50°で検出不可であることを確認）、プローブ周辺の環境や機器の設置状況から、地絡が発生した場合、ボールダル方向に近似した閉ループを形成しやすいと想定しセンサの傾き角度を調整した。

図8 システム構成図

結果

擬似に発生させた閉ループに対して、そのループの生じたポルクセクションNoが制御ユニットに正常に報知されることを確認した。また、実際に真空容器の絶縁抵抗値が低下したときも、ほぼ検出できることを確認した。事例として、2001.4.12のJT-60実験運転中に真空容器の絶縁抵抗値が5Ωまで低下した時には、絶縁地絡所報知システムで確認したところP-7〜P-9のセンサが検知した。該当するポルクセクションの接地端子箱にて全ての接地線を切り離したが回復しないことから地絡所報知器で探査したところ、P-8斜上の計測器（ポロメータ）を介して地絡していることが分かった。

さらなる改良に向けて提案

結果の事例で示すように、一つのポルクセクションを絞って報知できない場合もあるが、概略の異常エリアは確認できる結果を得た。しかし、中心支柱については、トロイド磁場コイルや架台等の電位が接続され、同電位が広域に亘っているため、地絡所報知真空容器周辺でない場合は、検出が困難である。また、本システムを設置して1年弱を経過後、センサが検知しているに過ぎず警告音を発しなくなった。ほとんどのセンサで起きていることから放射線等の影響によるものと考えられる。制御ユニット及びセンサのLED表示は正常に出力されるのでシステム的には問題なかった。しかし、ポルクセクションは分かってもどのセンサが検知しているかは、各々のセンサの設置箇所まで移動してLED表示を確認する必要があり、時間を要することがあることから必要に応じて原因を特定し、改良する必要がある。

結論

JT-60の真空容器及び中心支柱電位と周辺機器で生じた地絡所報知する機器の一つとして絶縁地絡所報知システムを整備した。これにより、地絡が発生した場合は、絶縁地絡所報知システムで概略のエリアを特定し、詳細については地絡所報知器で探査することで早期に異常箇所を特定することが可能となった。探査作業の作業人員の労働確保により効率化はもちろんのこと、作業時間短縮により、高所等の危険を伴う場所での作業を軽減したり、JT-60運転中で探査が必要となった場合は、被ばくの低減も図れた。

次回へのメッセージ

真空容器に於ける地絡については、実績からも概略のエリアを検出し報知できることを確認した。ただし、現状のセンサの数と設置位置では広域での中心支柱電位を全て検出は困難である。それを実現するためには、センサの増設、または、限られたセンサの数で、有効に地絡所報知を検出できるように発生場所等をあらかじめ想定して設置位置を選定する必要がある。尚、信号の電流仕様を増大して検出感度を上げることによりセンサの数を減らしこストの低減を図ることも可能である。
5.16 重水素化後の放射線管理

（1）管理区域出入口管理

目的

原子炉研究所の建物並びにその内部の配管に管理区域内に設定されている箇所が有る。管理区域内に入室し、作業を行うには放射線障害防止法に基づく原子炉研究所放射線障害予防規定による立入りの制限があり、ここに定められた様々な規則を守って作業に従事する必要がある。管理区域内における出入口管理は予防規定に従い、実際の施設の状況に合わせて体外、体内被ばくをできるだけ低く抑えることや施設の R1 污染を防止すること等、施設の安全確保を目的として適用されているものである。

方法・設計

JT-60 に於ける管理区域の出入口管理について JT-60 が設置されている本体室（管理区域）、それに隣接している組立室（管理区域）の出入口管理を一例として述べる。

本体室、組立に出入口するには汚染検査室を通ることとなり、この部屋で汚染拡散の防止を図るため管理区域内の作業衣類に着替える。即ち、汚染検査室は一般区域と管理区域の境界になる。JT-60 の給水装置には実験による被ばくを防止するために遮蔽扉にインターロックが施され、管理区域への入室ができないこととなっている。また、管理区域は施錠管理を行い、実験運転体制時、非運転体制時（夜間）、実験運転の合間のサイクル点検及び定期点検時等、各々の状況に合わせ施錠の方法が区分され、管理されている。

図 1 に汚染検査室入室経路を示す。施錠管理されている汚染検査室の自動扉を通じて、管理区域外で着用している作業衣や私服等を脱衣する。この時点でできるだけ不要な物を管理区域内へ持ち込むことを制限する。脅威になったところで管理区域バリアーを超えて管理区域内専用の作業衣類を着用する。この作業衣は作業者が個人に貸与される。また、管理区域内の作業衣を着用する箇所には管理区域内専用の靴も用意されている。

図 1 汚染検査室入室経路
管理区域内の作業を行う作業者は必ず個人線量計を着用して作業を行う。個人線量計は管理区域内での作業に従事する者に与えられ、個人ブローバ測定機と管理用所で重要な測定機である。この線量計の着用を忘れないようにするために管理区域の出入口にはゲートを設けており、非着用者がゲートを通過しようとするとアラームが発報しゲートが閉まる。

ゲートを通過した後、管理区域内専用の防護具を装備して本体室、組立室に進む。なお、管理区域内の作業は備え付けの安全情報コーナー、危険・有害作業情報コーナー及び入室者名札表示盤を活用し安全作業に努めている。

管理区域内への機材搬入と搬出に当たっては作業工具等は予め用意されている管理区域専用工具を使用することに努め、外部から持ち込んだ工具等は必ず污染検査を行い搬出している。また、管理区域内の物品は汚染物、放射性物に区別され搬出手続き及び汚染検査の後、管理される。

管理区域内的排出については汚染検査室に専用の手洗い場を設け、作業者の除染を行う設備が整備されている。また、ハンドフットクロスモニターにより作業者が汚染していないことを確認し排出するシステムとなっている。

これらの出入口管理はJT-60の周辺設備（真空排気設備室、加熱ポンプ室）も管理区域となっているため同様のシステム採用している。

結果、成果
管理区域内への入退室する箇所に汚染検査室という一般区域と管理区域との境界の部屋を設けたことにより、管理区域内外への汚染拡大防止、並びに作業者の防護機能が十分確保された。

管理区域への入退室及び作業には様々な制限が施される。この制限を遵守することにより作業者の安全確保並びに管理区域内作業への意図向上が図られるとともにJT-60の安全運転及び機器の健全性維持に貢献できた。

感想
管理区域内の作業を安全に行うためや被ばく管理を適切に行うためには一定の管理が必要であり、制限も伴う。これを実施するためには、本設備のようなシステムは有効である。また、これらシステムの整備だけでなく、管理区域内作業の教育が重要であると考える。JT-60の大気浄化改造後、システムの整備と作業者の教育が十分行われて来たからこそ安全が確保されたのではないかと思う。

(2) 真空容器出入口管理
目的
JT-60真空容器内作業は、JT-60に関連する作業の中で最も作業者の被ばくや汚染を伴う放射線作業であり、また、閉ざされた空間内での酸欠等を考慮しなければならない。このため、被ばく線量当量の低減、汚染拡大の防止、作業者の防護及び作業促進の恒気の換気等、作業の安全確保を目的とした真空容器の出入口管理を行ってきた。

方法、設計
JT-60は実験計画上から真空容器内の点検並びに作業は前もって設定されており、予定された限られた作業期間内に被ばくの低減と安全確保を行いつつ、最大限の作業を進める必要がある。そこで作業を行う前には予め作業の計画を立てて作業手順の確認を行い、作業に関る期間中の時間増減並びに作業性及び実験運転後の線量から作業で生じた被ばくを検討し、作業手順の見直しによる被ばく低減化を図る。また、真空容器内は閉ざされた空間であるため、作業を円滑に遂行するために必要な作業環境を整えている。

作業環境の整備として真空容器内へ出入口するための設備（以降、真空容器内管理出入口と言う。）
を真空容器の P-1 セクション水平ポートに設けている。また、真空容器内で万が一異常が発生した場合の対処としてトロイダル方向のほぼ反対側の P-11 へ非常口を設けている。

図 3 に真空容器内の換気系を示す。真空容器内の換気は換気速度 3000 m³/h で真空容器内を負圧状態にして、主に真空容器内管理出入口の天井、壁及び非常口に取り付けた高性能フィルター（HEPA フィルター）を介して新鮮な空気を取り入れている。真空容器を循環した空気はほぼトロイダル方向 90°の位置にある専用換気ボート（P-5 斜下、P-14 斜上換気ボート）から高性能フィルターを通過後、実験棟屋上のスタックから排気される。真空容器内を負圧状態に維持することにより真空容器内の換気と汚染された真空容器内空気の外部流出防止を図っている。

真空容器内の環境管理は酸素濃度の管理、有機溶剤の管理や有機溶剤使用時の溶接禁止措置等を行い、真空容器内に同時に立入る人数を空間的制限並びに酸素欠乏危険作業（酸欠作業）の観点から最大入室者数を制限し、作業毎に監視人を配置することにより管理している。

真空容器内作業での放射線管理としては作業を開始する前に真空容器内線量率を代表点の実測に基づいて推定し作業者の被ばく低減を図る。

真空容器内の線量は真空容器内構造物の放射化量に依存する。真空容器の放射化は JT-60 の実験運転に伴う中性子の発生量から真空容器内線量を推定し各々の作業者被ばく量を計画する。真空容器内作業者はこの被ばく計画値（被ばく管理値）の範囲内で作業を管理して行っている。外部被ばくの管理値は個々の作業者に APD（アラームポケットドジメータ）を装着させ、日別の線量当量を集計し管理している。作業者の内部被ばくとしては真空容器内に残留しているトリチウムの吸入及び真空容器内での溶接による溶接ミストの吸入を各々の作業者に対して評価し、実際の作業に当たってはトリチウムを含むガスや溶接ミストによる内部被ばくの可能性を低減するために半面マスクを着用し、作業を行っている。

真空容器内は重水素運転により残留したごく微量のトリチウムを含んだ雰囲気である。（容器内トリチウム濃度については 5.16（4）参照）よって、汚染防止の観点から JT-60 では真空容器の出入りの方法、作業者の専用作業衣着用及び廃棄物の管理を徹底している。図 4 に示すように真空容器の出入りには P-1 の水平ポートに辿り着くまでに 3 箇所のエリア（第 1 バリアー→第 2 バリアー）を設け個々のエリアの線量密度を日毎管理して汚染拡大の防止を図ることとしている。作業者は身体汚染を防護及び真空容器内清浄保持のために図 5 に示すように全身を防護衣で包み、手にはゴム手袋を着用して作業に従事している。真空容器内で使用した工具類は予め養生を施し搬入し、搬出する際には養生材を廃棄物として扱い具類は更に除せん作業を施し汚染の無いことを確認して持ち出すことができるシステムとした。
図4 真空容器内管理出入口

結果、成果
1991年の重水素運転開始からJT-60真空容器内での作業を実施してきた結果、被ばく管理する上で計画値に対し、APDを装着させ被ばくの日々管理を行うことにより、被ばく管理する上での計画値に対する実測値の評価がほぼ確立することができ、これにより実作業の被ばく予測見込が向上した。また、管理出入口の防護機材の整備や作業環境の整備をしたことにより、より高い安全性の確保と汚染の拡大防止の手法を確立することができた。
(3) 真空容器放射化と被ばく低減対応

目的
重水素実験においては、定期点検作業者の被ばく低減対策も実施した。重水素実験（DD実験）では高エネルギー中性子が発生するため、JT-60真空容器とその周辺構造物は中性子照射により放射化する。定期点検では真空容器内部に入って作業する場合があるため、できるだけ作業者の被ばくの低減を図り、その対策を予め検討しておく必要がある。こうした観点から真空容器内作業の直前には、放射化した真空容器の冷却の目的で水素ガス放電実験運転を実施し、適切な運転保守計画の下に被ばくの低減を図ることとした。

方法、評価
JT-60の真空容器周辺の構造物はブラズマ側から見て第一壁双座真空容器トロイダル磁場コイル、支持構造物等の順で構成されている。この構造物を構成している材料は表1に示す通りである。中性子照射条件を1発放電あたりDD(2.4MeV)1×10^9n/s、DD(14MeV)1×10^8n/s、年間最大中性子発生量（3×10^9n/year）とし、1次元n、γ輸送コード（n24群、γ21群）で計算した結果、放射化したJT-60周辺構造物表面の残留γ線量の強度比は図6に示すように実験運転停止後1週間〜1カ月後において最も強いγ線量を与えるのはSUS製第一壁台座とInconel625製真空容器となる。第一壁台座と真空容器に生じる放射性核種を表1に示すようにSUS316に含まれる⁶⁰Coにより生成される⁶⁰Co（半減期5.2年）及びInconel625に含まれる⁶⁰Niによって生成される⁶⁰Co（半減期71日）の2核種のみであることが分かった。

<table>
<thead>
<tr>
<th>JT-60構造物</th>
<th>構造材料</th>
<th>構造物表面の放射線的反応核種</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一壁台座</td>
<td>SUS316</td>
<td>⁶⁰Co(n,γ)⁶⁰Co, ⁶⁰Ni(n,p)⁶⁰Co</td>
</tr>
<tr>
<td>真空容器</td>
<td>Inconel625</td>
<td>⁶⁰Ni(n,p)⁶⁰Co</td>
</tr>
<tr>
<td>TFC導体表面</td>
<td>Cu</td>
<td>⁶⁰Cu(n,γ)⁶⁰Cu</td>
</tr>
<tr>
<td>支持構造材及びTFCケース表面</td>
<td>Mn鋼</td>
<td>⁵⁵Mn(n,γ)⁵⁵Mn</td>
</tr>
</tbody>
</table>

図7は実験運転停止後の真空容器表面のγ線量率の時間変化を示したものである。Case1は1発放電の場合（1×10^9n/s）、Case2は年間実験した場合（3×10^9n/year）の結果を示すが、放電後数日では短半減期核種が減衰するため、2ケースとも100μSv/h以下に低減する。その後Case1は減衰するが、年間放電となった場合は長半減期核種⁶⁰Co、⁶⁰Coが残留するため、1週間〜1カ月後で50〜60μSv/hに留まることが分かった。この結果から、毎週金曜日まで実験放電を実施した場合、翌週の月曜に真空容器周辺での定期点検を行わざるを得ないが、十分低い線量環境での作業が可能となる。また、真空容器内作業など長期に渡るペースで放射線作業を実施する場合には、できるだけ被ばくの低減を図るためには1カ月以上上の真空容器の冷却期間が必要となる。こうした観点に基づき、JT-60では本体室内の定期点検を原則として毎週月曜に実施し、真空容器内定期点検作業については、実験終了後約1ヶ月間は水素ガスを使用した実験を行い、この間に真空容器線量の冷却を行うこととした。また、この水素放電は第一壁表面に吸着したトリチウムのガス出しの目的も兼ねて実施された。
結 果、成 果

DD 実験による中性子発生量は実際には上記の評価で使用した年間最大発生量以下であるため、真空容器の線量率は上記の評価より下回る。図 8 の 1991 年から 2003 年までの真空容器表面線量率の週間毎の推移を寄与の大きい 2 核種 60Co, 65Zn について示したものである。毎年の実験開始、終了に合わせて線量率は上昇、下降を繰り返す。真空容器の表面線量の実測値もほぼこの計算値に一致しており、真空容器内被ばく管理を行う上でこの 2 核種の評価だけで十分予測が可能かことが確かめられた。

ブラズマ性の拡大を狙った実験が多く行われた 1992 年に最も高い線量率が得られている。重水素放電を終了後約 1 ヶ月間の水素放電実験を実施した後に開始されたこの年の定期点検初期の線量率は 50μSv/h となった。DD 実験開始前の中性子発生量が線量率に強く影響することから、被ばくを低減するための手法として、中性子発生量の多い実験を実験期の前半に行うなど、予め中性子発生量に合わせた年間の実験計画を検討を行い、定期点検時の線量率を評価するようにした。こうした被ばく低減の工夫により 1992 年以降の定期点検時の線量率はおおよそ 30-40μSv/h の範囲で行われるようになった。半減期の長い 60Co の積算が関与しないので、こうした被ばく低減のための努力は今後もますます必要である。また、実際の真空容器内作業においては、(1) 作業の合理化、効率化を図る、(2) 一部の作業者に被ばくが集中的ないように、作業者の分散化を図る、等の方策も合わせて実施している。

こうした努力により、JT-60 定期点検時の作業員の個人、集団被ばく線量は、これまで計画線量を十分下回る範囲で行われている。

図 8 DD 実験における真空容器表面線量の推移

結 論

JT-60 の DD 実験による放射化の影響を評価し、放電終了後数日後以降は 60Co, 65Zn が主要核種であることが分かった。本結果から、本体室内の定期点検を原則として毎週月曜日に行うと、また、真空容器内定期点検作業については実験期間最後の約 1 ヶ月間を使って水素実験を行い、真空容器線量の低減を図った上で実施するような運転保守計画を策定した。

検 討

W 型改造の機会を利用して、ダイバータ冷却基盤の SUS316 を低コバルト材に交換するなどの改善をしたが、それ以外は特に放射化の低減のために大きな改造、変更等をすることはなかった。運転計画の調整や被ばく管理により大電流化改造後の材料使用で放射化への対応が可能であるが、今後放電時の長パルス化が計画されていることを考えれば、今後新たな対策が必要な状況が生じるものと思われる。また、JT-60 より中性子発生量が増大する改修計画においては、JT-60 での実験、経験を十分踏まえ、主要機器の構造材には予め低放射化材料を使用するなど、設計段階からの検討が必要である。

参 考 文 献

（4）トリチウム管理と被ばく低減化対応

概要
JT-60 装置の改修後の重水素実験では、トリチウムが発生することとなるのでトリチウム管理法を確立した。即ち、毎年実施する真空容器内の機器の定期保存点検前に、真空容器内に蓄積が予想されるトリチウムを除去するために「ガス出し」として、また、真空容器の放射化的クールダウンを兼ねて水素プラズマ放電間隔を約 4 週間設けた。その後、真空容器内に大気を導入し、常時強制換気することで容器内作業のための被ばくの低減化を図った。

方法、評価
1) トリチウム生成量の変遷
重水素実験を開始した 1991 年 7 月以降、中性子発生量から求められる年度あたりの生成トリチウムの放射能 (Bq) は図 9 のとおりであり、2004 年 10 月までの総生成量は 2.03 \times 10^{11} (Bq)、年平均 1.56 \times 10^{10} (Bq/年) である。1994 年度には高圧力試験を行ったため、年当たり最高の 2.48 \times 10^{10} (Bq) となった。2002 年からは実験サイクルが大幅に減少したため、トリチウム生成量も減少した。

図 9 トリチウム生成量の変遷

2) ガス出し効果の確認
第一壁表面からのトリチウムの放出効果を確認するため、重水素放電後には水素ガスを用いたガス出し実験放電を 4 週間程度行っている。ガス出し実験放電では真空容器からの排出ガスについて電離箱によるトリチウム測定を行うとともに、荷電交換中性子計測法及び重水素原子放射フランクス (H\alpha、D\alpha) による周辺プラズマの重水素強度測定を実施している。2 つのプラズマ計測法は、第一壁表面からの重水素フランクスの変化を見るものであるが、図 10 に示すように重水素フランクスとトリチウムの排出量との間に比例関係があることから、トリチウム排出の評価手段として用いられている。

図 10 排出トリチウム量と重水素フランクスの関係

図 11 水素ガスによるガス出し実験中の第一壁表面からの重水素フランクスの変化

（注）放電と RF 入射実験期間における、プラズマ周辺の重水素フランクス積算値と本体主電流系の電離箱で測定された積算トリチウム排出量の関係。図中の（ ）内の数字は積算放電数。
図11は荷電交換中性粒子計測法により測定されたプラズマ周辺での重水素プラックス強度の測定例を示す。図にはディスラプション放電の影響を調べるため、ディスラプションを起こした次の放電の結果を示した。内寄せ配位のNB1加熱放電（①印）が重水素の排出に効果的で、放電番号20650以降同じ配位では一旦上昇するものの、次第に排出効果がなくなり減少するが、放電番号20700でダイバータ定位置を変更した配位では、また排出効果が回復する。放電番号20750以降のディスラプション放電（②印）でもかなり排出効果があることが分かる。JT-60では、以上のように電離箱によるトリチウム測定と、荷電交換中性粒子計測法及び重水素原子放射強度測定（現在後者のみ）の2つを併用して第一壁表面からのトリチウムの低減を確認している。

3）容器内作業の被ばく低減のためのトリチウム除去

ガス出し運転終了後に真空容器内の定期点検作業を実施する場合には、作業者の被ばく低減化のため、5.16(2)で述べたように、真空容器内はワンスルーペント系のプロアーキル3000m3/hにより常時換気される。この時のトリチウム濃度変化を図12に示す。先ず真空容器内のトリチウム濃度測定をともに大気導入が開始され、トリチウム濃度は上昇を始める。その後出入口となるp-1水平ポートの蓋を開放した段階でさらに上昇する。さらに、ベントシステムで容器内を換気にながら大気を導入（図で6.5h後）すると、トリチウム濃度は急激に減少し、バックグラウンドレベルになり、法令で定める0.8Bq/cm²を充分下回り、真空容器内作業開始の準備が整う。このレベルを確認してから、真空容器内作業を開始することとしている。

図12 ベント時の真空間容器内のトリチウム濃度
（法令による作業環境としてのトリチウムの限度濃度は化学形式で水中の割合0.8Bq/cm²、ガス状の場合10,000Bq/cm³である。なお、バックグラウンドレベルは0.02Bq/cm³）

4）トリチウムの挙動に関する研究と第一壁の管理

第一壁表面に残留したトリチウムを含む水素同位体の分析研究を大学等と共同で実施するため、2000年にトリチウムを放射線障害防止法上の使用核種として申請し許可を得た。これにより、JT-60施設では2001年度以降から第一壁分析を開始した。このため、JT-60廃棄物保管棟1階の調整室を新たに第一壁管理区域として整備し、第一壁表面の分析の場所とした。さらに、2002年にはJT-60廃棄物保管棟地下の排水処理室の一部を区画し、分析室Ⅱとして設計し、分析室を拡大した。また、同時に1階の調整室を分析室1と改名した。1991年に整備したJT-60実験棟本体室内にある実験棟工作室1は、第一壁の炭素原子を台座から切り離したり、加工するための作業室とした。

第一壁分析に係るトリチウムの管理において、トリチウムは障害防止法の申請に従い、炭素原子の枚数管理（RIとしての使用、貯蔵、廃棄、譲渡等）することにし、工作室1で台座から切り離した炭素原子を分析室1又は分析室2に持ち込み、分析後に実験棟第一壁保管室に保管することとした。分析室1及び分析室2で使用可能な枚数の最大枚数は、それぞれ1日当たり100枚及び30枚（分析室1の100枚の内数）とした。当初の請願書の承認に基づき、炭素原子1枚に55kBqのトリチウムが賃用することとして、131のような使用枚数の管理と、図に示すトリチウム以外の第一壁固定用のSUS台座が放射化することによって生じる核種についても合わせて示している。

結果、成果

重水素実験後の約4週間の「ガス出し」は、第一壁表面からのトリチウムの排出と真空容器の放射化の冷却のために必要な期間となっている。ガス出し効果については、トリチウムの排出量と荷電交換反応で測定された重水素プラックス量変化から確認している。

真空容器内作業のためのトリチウム低減化については、換気プローブにより換気し、トリチウム濃度をバックグラウンド状態に維持して作業の安全を確保した上で、真空容器内作業を開始している。真空容器から取り外した第一壁炭素原子のトリチウム管理については、障害防止法の申請内容に従い、炭素原子の使用枚数で管理している。
図13 分析用第一壁及び炭素タイルの作業フロー

結論

JT-60の13年間に及ぶ重水素実験により生成されたトリチウムについては、第一壁タイルの分析や排気中のトリチウムの測定を通して、その挙動について多くの新しい重要な知見を得た。この全重水素実験期間の中性子発生量の積算は1.14×10^{29}個程度であるが、このレベルでは、例えばベント時の真空容器内トリチウム濃度測定値も法令に定める値を満たしており、作業や環境影響への安全確保において特段の対処を必要とするものでないことも把握できた。こうした経験、実績をベースにさらに安全の確保に努めていく必要がある。

トリチウムの挙動に関する研究は大学との共同で進め、貴重な知見が蓄積されている。JT-60は国内の大型核融合試験装置としては唯一の重水素プラズマ実験施設であり、今後さらにこの分野の研究を進めることにより核融合施設におけるトリチウム挙動の把握に有益な基礎データが得られると期待される。

参考文献

<table>
<thead>
<tr>
<th>使用の場所</th>
<th>最大使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-60実験機</td>
<td>8日：5.5MBq</td>
</tr>
<tr>
<td>工作室Ⅰ</td>
<td>100枚</td>
</tr>
<tr>
<td>3月間：330MBq</td>
<td></td>
</tr>
<tr>
<td>年間：640MBq</td>
<td></td>
</tr>
<tr>
<td>JT-60濃縮物保管倉庫</td>
<td>1日：1.65MBq</td>
</tr>
<tr>
<td>分析室II</td>
<td>30枚</td>
</tr>
<tr>
<td>(3日：99MBq</td>
<td></td>
</tr>
<tr>
<td>年間：198MBq</td>
<td></td>
</tr>
</tbody>
</table>
6．高周波加熱装置
6.1 高周波加熱装置の概要

背景と装置の構成
トカマク装置は外部磁場コイルからの磁気誘導により真空容器中のプラズマに電流を流すことで、プラズマの閉じ込め性能を段階的に向上させる。さらに、プラズマに電流を流すことで、プラズマが持つ電気抵抗を通して同時にプラズマを加熱できる（ジュール加熱と呼ばれる）特徴がある。しかしながら、このジュール加熱では、プラズマ温度が高くならぬ従って電気抵抗が小さくなり、加熱効率が低下するため、実際的にはプラズマ温度は数千万度（〜3 keV）までが限界である。そのため、JT-60において実質プラズマ実験に必要な1億度以上の超高温プラズマを得ることの必要性が実証され、高波を利用した高周波（RF）加熱は、中性粒子注入（NBI）加熱と共に有力な実験方法であった。そこで、JT-60では図1に示すように3ユニットの低域加熱波帯（LH）加熱装置と1ユニットのイオンサイクロトロン波帯（IC）加熱装置をカタログに構成されるRF加熱装置の開発、導入が1980年に決定された。

これまで、中型トカマク装置において、LH加熱及びIC加熱の両加熱の研究が精力的に行われ、その有効性が実証されつつあった。そのためRF加熱への期待も大きく、JT-60のRF加熱装置には、4ポートからRFを入射し、プラズマを加熱する標準のパワーパッケージとして10MW、パルス幅は10秒が要求された。この要求性能は、それまでの装置性能（数百MW、1秒程度）と比べて桁違いの値である。JT-60 RF加熱装置の開発では、図1からわかるように、高電圧源設備、高電圧源設備、電力増幅系、伝送系、結合系、真空排気設備、制御設備等の多種多様な設備から構成される、極めて大規模な実験装置の開発を意味した。さらに、桁違いの性能の実現は、RF加熱装置の最重要設備である高電圧増幅系と結合系の開発の成功をもたらし、これらを開発はまず大規模時代を切り開く挑戦的な開発であった。

その後、後述するように大型トカマク装置での電子サイクロトロン加熱実験が順調に進み、3ユニットあるLH加熱装置の1ユニットを電子サイクロトロン波帯（EC）加熱装置へ改造することが199年に決定された。周波数110GHzで加熱パワー3MW、5秒のEC加熱装置の開発、導入を3年間の短期間で行った。

入射パワーの推移と装置の改良
LH加熱装置の主要性能は、周波数が2GHz帯で、加熱パワー7.5MW（ユニット当たり2.5MW）でパルス幅が10秒である。このような電力のLH加熱実験の最大課題の一つは、1ユニット当たり8基使用する2GHz帯の増幅器であるクライストロンの開発であった。JT-60により大電力クラシストロンの目標性能を周波数1.7〜2.24GHzで1MW、10秒で定めたが、このような基準寸法で大電力のクラシストロンの開発は困難を極めた。設計研究から試作開発へと約7年の歳月を費やした。当時、敢えて言えば、周波数が500MHz帯とJT-60用クラシストロンより低い周波数で、開発も先行していた加速器用クラシストロンと開発競争にあたった。共につき透の破損で苦労していたが、いち早くその破損の原因
を解明し、予定通り1985年に開発に成功した。LH 加熱装置全体についても、予定通り1986年8月から総合試験を開始し、1987年3月に完成させた。

図2 JT-60 LH 加熱装置のプラズマへの入射パワーの推移

1987年4月の運転開始から現在に至るまでの、LH 加熱装置のプラズマへの入射パワーの推移を図2に示す。運転開始から約1年で6 MWの入射を成達し、世界をリードするLH 加熱実験の推進に貢献した。1990年のプラズマ閉じ込め性能の向上を志したJT-60 本体の改造「大電流化改造」に合わせて、より高パワーの入射とともに高性能の電流駆動を実現するために、LH 加熱装置のもう一つの最重要機器である結合系の改良を行った（これについてはLH 加熱装置の改良で詳述する）。これにより、入射パワーは7 MWへ増加するとともに、世界最高のプラズマ電流3.6 MAの駆動に成功した。その後、1997年にさらなるプラズマ高性能化研究のためにJT-60 本体がW型ダイバータを導入した。このとき、3ユニットあるうちの1ユニットのプラズマへの入射が困難になり、大型トカマク装置では初めてとなる電子サイクレートン波加熱装置へと改造した。結果、これ以降は2ユニットとなり、入射パワーは4 MW程度である。現在は、装置の高経年化もあり、3 MWの入射パワーの維持に努めている。

IC 加熱装置の主要性能は周波数が110～130 MHzで、加熱パワーが2.5 MW、パルス幅が10秒である。

JT-60 IC 加熱装置は、世界の他のIC 加熱装置に比べ、120 MHz帯と高い周波数を選択したため、大電力增幅器（8基使用）とプラズマに高周波を入射する結合系と呼ぶアンテナの開発に苦心した。出力0.75 MWの大電力増幅器の開発では、当時の最大級の四極管を使用し、電界分布が周方向に一様となるように出力空洞を設計、工夫することでそれを実現した。また、アンテナの開発は、それまでにな い期的な、コンパクトで結線調整のためのプラズマとの位置調整が可能なプラグイン方式の位相制御型ループ型素子アンテナを開発した。IC 加熱装置も計画通り1997年3月に完成し、1月から運転を開始した。図3にIC 加熱装置のプラズマへの入射パワーの推移を示す。

図3 JT-60 IC 加熱装置のプラズマへの入射パワーの推移
入射パワー密度で、約3 MWの入射を達成したが、JT-60のポートの空間的制限が強く、それ以上のパワー入射は困難であった。そのため、JT-60大電流化改造に合わせて、ICアンテナをこれまでの斜めポートから開口面積が2倍程度広い水平ポートに改良した。同時に、位相制御に適した工夫を行い（IC加熱装置の改良に詳細を記述）、加熱性能を向上させた。また、数規制により、四極管の増力を行い、130 MHzで1.7 MWの出力を実現した。この技術を基にJT-60 IC加熱装置の合計出力を6 MWから8 MWに増加し、これらの改良、増力により7 MWの入射を達成した。その後、負磁気シアプラズマへの入射を初め、トロイダル場が若干低くなったため、加熱条件を合わせるために、周波数を112 MHzに変更した。周波数が低くなるとプラズマとの結合度が低下し、入射パワーも低下する。現在は、IC加熱装置の高周波化もあり、5 MW程度のパワー入射の維持に努めている。

EC加熱装置は、強力な電子加熱手段である上に、局所的な加熱・電流駆動が可能であるため、大型トカマク装置への導入が期待されている。しかし、大型トカマクでは周波数が100 GHz帯となり、電力のパワー源がなかった。ところが、100 GHz帯の有力なミリ波発振器であるITER用のジャイロトロンの開発が急速に進展し、その開発を行ってきた核融合工学部の協力を得て、1998年にJT-60 EC加熱装置の開発、導入に着手した。W型ダイバータの導入で結合が困難となったLH加熱装置のBユニットを最大限利用し、110 GHzで入射パワー3 MWのJT-60 EC加熱装置を2000年3月に、僅か3年間で完成させた。

2002年度までには、プラズマへの入射エネルギー10 MJ（2.7 MW、3.6秒）の世界最高値を達成した。2003年度からは、電子の輸送特性を調えるために、入射パワーを変調する技術の開発、JT-60の放電時間伸長に伴う、30秒を目指したパルス幅の伸長技術の開発を開始した。2004年には、図4に示すように入射パルス幅は、EC加熱装置を構成する4系統をシーケンス入射することで入射パワーオ.35MWで約45秒のパルス幅を、3系統を同時入射することで入射パワーオ.6MWで15秒のパルス幅を実現し、入射エネルギーも15 MJを達成した。またパワーバイ調では入射パワーオ.06MWで10～150Hzを実現した。このようなパワーバイ調やパルス幅伸長を可能としているのは、JT-60用ジャイロトロンの特徴である3極電子管のアノード電圧制御である。このアノード電圧制御はカソード入力制御を組み合わせて、各系統が30秒の入射が可能となるように技術開発を継続している。

参考文献
6.2 低域混成波帯（LH）加熱装置の開発、導入

目的（背景）

LH 加熱は、プラズマ温度、密度等のプラズマ条件と入射される RF の波数、屈折率等の RF 特性によりイオンまたは電子の加熱が可能である。特に、電子加熱では結合系の特性を制御してトロイダルの一方向にのみ伝播する RF の入射によりプラズマ中に電流を流すこともできる。LH 波による電流駆動は JFT-2M において初めて実証され、磁気誘導方式以外でトカマク装置の電流駆動が可能であることを示した。磁気誘導方式ではパルス運転とならざるを得ないトカマク装置の定常運転への道を聞くものとして注目を集めた。JT-60 での LH 電流駆動研究は世界を先導する研究と位置づけられた。このような研究を推進する原動力として 3 ユニットからなる合計加熱パワー 7.5 MW の LH 加熱装置の開発を行った。

方法（仕様）

LH 加熱用装置のニユートン当りの主な性能は以下の通りである。周波数は 2 GHz を主とし 1.74 2.23 GHz の範囲内あり、大電力増幅系の出力パワーは 8 基で 8 MW、加熱パワーは 2.5 MW、パルス幅は 10 秒である。ユニットの内訳としては、1 ユニット（LH-A, LH-B）はイオン加熱および電子加熱（電流駆動）の両方を可能とし、2 ユニット（LH-C）は電子加熱（電流駆動）専用とした。LH 装置はいくつかの設備から構成されるが、イオンを加熱するかあるいは電子を加熱するかを決めるのは、結合系と呼ぶ（一般的には放射アンテナに相当する）部分である。これらの設備は基本的に同一である。上記で説明したように、これらの設備で最も開発を必要とするのは大電力増幅系と結合系である。

大電力増幅系の合計出力パワーは 8 MW である。当時の技術では、2 GHz 帯の高周波増幅器はクライストンと呼ばれ、その出力レベルは最大で 100 kW 程度であった。これでは大電力増幅系の構成部品数は相当なものとなるので、信頼性や保守性を考慮して、出力パワーが 1 MW のクライストンを開発することとした。クライストンは 1930 年代に発明された、電子ビームを使用する真空管の一種であるが、このような大出力になると、図 1 に示すように、直径 0.5 m、高さ 3 m、重量 1 トン程度の巨大なものとなる。クライストンでは、電子ビームのパワーが高周波パワーに変換される効率は 50% と比較的高いが、残りの電子ビームのパワーはコレクタ部で熱となって吸収される。そのため、コレクタの冷却には、コレクタ外表面のフィンを工夫するとともに、冷却性能が高い蒸発冷却を採用した。

また、周波数は、クライストンに内蔵される真空封止の空気冷却器の形状、大きさで決まり、通常は固定である。そのため、本仕様における周波数変更は未知の技術領域であり、空気冷却器に大胆にベローズを組み込む工夫を行った。一方、クライストンは出力パワーを消費する負荷からの反射パワーが再びクライストンへ戻らない状態で運転しなければならない。そのため、サキュレータと呼ばれる特殊な高周波回路機器を用いて、出力パワーのみ透過させ、反射パワーは吸収していた。

しかし、大電力でパルス幅 10 秒に耐えるサキュレータの開発は極めて困難であることが判明し、最 20% の反射パワー（定在波比 VSWR 1.5 に相当）に耐えることをクライストンに課した。以上をまとめて、JT-60 用クライストンは（1）出力パワー 1 MW（コレクタ蒸発冷却）で、（2）周波数可変 25%（真空封止型空気冷却器の壁位置可変制御）、（3）高耐反射性能（VSWR 1.5）の性能を有する。

結合系は、プラズマ加熱及び電流駆動性能を決定する極めて重要な設備である。それまでの JFT-2 での結合系に関する研究に基づき、JT-60 では、図 2 に示す 4 段 8 列の多導波管束位相制御型ランナーを採用した。この方式の結合系では、トロイダル方向に 8 列配置された矩形断面の導波管の寸法や導波管を伝搬する RF の位相を制御することで、放射される RF パワーのトロイダル方向の屈折率スペクトルと放射の指向性が制御できる。それらに基づき、イオン加熱が電子加熱、さらにプラズマ加熱及び電流駆動性能が決まる。例えば、隣接する導波管（トロイダル方向の幅 29 mm に設定）で

図 1 JT-60 大電力クライストン
(a) 模式構造図 (b) 外観写真
の RF の位相差が 180 度のときイオン加熱が可能となる。一方 RF の位相差が 90 度の時は、電流駆動（電子加熱）ができる。また電流駆動専用のランチャーでは、導波管の幅を 16 mm とし、位相差 90 度で指向性が良く、円筒形状の導波管がピーク値となる、電流駆動に適した設計になっている。また、ランチャーはプラズマに面し、プラズマからの熱人里、高パワーの RF 放射時の RF 放電による異常な加熱、導波管内の RF のジュール損による発熱など、熱的に厳しい環境にある。これらのため、先端部にはプラズマ Talks 加熱を低減するためにガードリミタを設置した。RF 放電に対して異常反射を検知して RF を高速で遮断することで対処した。さらに、導波管内部については冷却を可能とするために空気ガス流路を設けている。

LH ランチャーには次の二つの懸案がある。
一つは、内射した RF がプラズマにどれだけ結合するかである。結合度（あるいは結合されていない割合の反射率）は、RF の屈折率、プラズマとランチャーとのギャップ、ランナー前面のプラズマ密度に依存する。結合が良い場合（ギャップ 30 mm を想定）でも、RF がランナーに戻ってくる反射率が 20〜40% と予想された。ギャップが広がるとさらに反射率が高くなるので、従来は配置位置が固定されていたランチャーを駆動（最大 50 mm）できる構造にし、反射率を調整、低減できるようにした。もう一つは、RF パワーを内射するときに、導波管壁に吸着したガスが放出され、局所的に導波管内の圧力上昇を伴う RF 放電である。このようなガス放出による放電のために、所定の値まで内射パワーよりも增加させるエージングと呼ばれる慣らし運転に時間が必要することが懸念された。これに対して、先端部から 4〜7 m 離れた導波管部に多数の細孔を設け、またマニホールド構造にして 7000 l/s の大気流量のクライオポンプで排出されたガスを排気が、放電を抑制することにした。さらに、ガス放出率を低減するため、冷却用の窒素ガスを加熱し 400℃ C までのベーピングを可能とした。以上をまとめると、JT-60 LH ランナーは、(1) 位相制御によるイオン加熱または電子加熱（電流駆動）、(2) 窒素ガス循環による冷却、ベーピング、(3) 先端部ガードリミタによるプラズマ熱入力の低減、(4) ランチャー駆動による結合度の調整、(5) 大気流量での RF 内射時導波管内の排気ができると言う特長を持っている。

結果
LH 加熱装置の開発は困難を伴ったが、眼目の大電力クライオストロンでは 1 MW、10 秒を全 24 管で確認した。これにより、開発、開導、計画通りに進めることができ、3 コミュニ合計で 6 MW、5 秒の内射を実現した。LH 加熱装置は電流駆動実験の実動力となり、時流時最高の駆動電流を累 2 MA、電流駆動効率 2.4 x 10^{-4} MA/W で達成し、大型トカマク装置での LH 電流駆動の有効性を実証した。また、LH による電流駆動の物理的解釈を進めさせ、駆動効率の温度依存性を見つけるなどの世界でリードする研究に貢献した。イオン加熱実験はプラズマ密度（〜10^{20} m^{-3}) が高い場合を想定していたが、密度が簡単では電力アセト管に組み合わせることなどによりイオン加熱を実証した。

考察、波及効果
内射パワーよりも、目標を上回る高パワース 8 MW を、0.6 秒の短パルス幅で実現したが、パルス幅とともに減少し、8 秒では 2.2 MW であった。これは、主にランチャー先端部での放電が原因と推測された。今後は、ランチャー先端部（開口部）の面積を拡大し、内射パワー密度を低減することがひとつの方法と考えられる。また、実際にランチャー前先端部には RF 放電による溶融が見られた。これに対しては、放電光を検知して短時間（0.1 秒程度）RF を休止した後、再び内射することで、ランチャーの損傷を抑制しながらの高パワーアセト管が可能と考えている。一方、RF 内射時のガス放出は、懸念したほど大きくなく、今後はランチャー用の真空排気系を縮小簡素化できることをわかった。

大電力クライオストロンを初めてとして、大電力で準定常のマイクロ波管（2 GHz 帯）RF 機器をいくつか開発し、この分野の技術レベルの向上に大いに貢献した。また、加速器分野で利用される RF 機器への技術波及が期待される。一方、最前先端の LH 電流駆動実験を順調に推進できたことは、欧州の大型トカマク装置 JET を筆頭に、世界のいくつかの装置で計画されていた LH 電流駆動実験を大いに押し、鼓舞した。
将来に向けて

JT-60のLH加熱装置は未踏の領域を拓くために熟考され、一部の性能は過剰なところもあったが、蒸発冷却の大電力クライストロンや多導波管束位相制御型ランチャーは将来の核融合炉におけるLH加熱装置の基本形を与えている。炉で要求される定常運転の観点を加えて、これをさらに発展させれば必ずや実現できると考える。

参考文献、表彰
6.3 LH 加熱装置の改良
—高効率電流駆動の達成と駆動電流値の向上のために—

目的および背景
核融合炉の成功へ向け、その定常化運転の開発が必要不可欠である。即ち、プラズマ電流により生成される磁場とトロイダルコイルにより生成される磁場によって高温のプラズマを閉じ込む「トロイダルコイル」方式においては、定常にプラズマ電流を駆動できる運転方式の確立がなければならず存在を必要とする。定常化運転研究では、大電力の高周波を用いる方式がもっとも実績がある。特に JT-60 で

LH 波を用いる電流駆動方式では、アンテナからプラズマへ入射する電磁波に指向性を持たせ、励起される LH 波を一方向に伝導させることにより、プラズマ中の電子を一方向へ共鳴的に加速し、プラズマ電流を生成・駆動している。電流駆動の性能は、「駆動効率」と「駆動できる最大の電流値」とで示され、それぞれ入射する電磁波の指向性と入射電力を高めることで向上できる。

設計内容および開発項目
JT-60 において最初に導入された LH アンテナは、8 ユニットの導波管からなり、給電される電磁波

に相違を与え、アンテナから入射する電磁波に指向性を持たせている。しかこの従来型 LH アン

テナでは、電磁波の指向性が充分ではなくなかった。そこで指向性を改善し高効率で電流駆動するため、

電力分岐型の LH アンテナ（周波数：2 GHz, 入射電力：2 MW 程度）の設計と開発を行った。この電力分

岐型のアイディアは、人力側の矩形断面の導波管（主導波管と呼ぶ）の長辺方向に仕切り板を入れると

ことによって電力をいくつかの部分に分岐する（副導波管と呼ぶ）ものであり、実効的に導波管数を増やすことができる。この電力分岐型アンテナの特徴は、

大電力クリスタルスなどを用い、発生された高周波電力をアンテナまで伝送するための導波管数を削減で

きることや副導波管の性質によってプラズマからの反射波を低減できるということである。

JT-60 において、各波管ユニットを 3 分岐し、3段の移相器を持たせた「電力 3 分岐型 LH アンテ

ナ」を設計した。副導波管間の位相差を 90 度とするのが基本的な考え方であったが、導波管を 3 分岐

して 60 度とするのが特徴である。これによりアンテナから放射されるスペクトルの中心波長が不要な寄

生ピークを減らすことにより、効率の電流駆動が期待された（ここでのスペクトルは周波数スペクトルではなく、ある周波数に対するアンテナから放射されるパワーのスペクトルである）。

次に、駆動電流値を向上させるためには、入射電力を増大させる必要がある。期待する大電力プラズマを安定して入射するためには、LH アンテナ内での高周波放電を防ぐことが重要である。放電を防ぐために LH アンテナを構成する導波管の表面を洗浄するほか高温ベーキングをを行って脱ガスを実施し、カーボンや TiC のコーティングで表面の 2 次電子放電率を下げる努力が必要である。さらにその上に製作された LH アンテナを用いて、大電力の高周波を安定に通すためには、徐々

に電流を高めていくコンディショニング過程も必要である。また、入射可能な LH 波の電力を増加させる

実用的な方法は、LH アンテナの断面積を増やし電流密度を下げるすることである。しかしトロイダル方向

に導波管を数多く並べ、全体の幅を長くすれば、入射するスペクトルをシャープにすることが可能と

なり、電流駆動効率を改善できる。実際には取り付け用のボートなどの制限があり、その範囲内で

高性能を出すような設計が求められた。

大電流化改良後の JT-60 において、大電流駆動用の「大電力入射用電力分岐型 LH アンテナ」を開発

した（図 1）。図 1. 即ち、アンテナ開口面の幅を倍増し、一方伝送系導波管は増やすが大電力増幅管数の

ままとした。改良した点は、導波管の分岐数を 3 から 12 に増やせるような新たな構造を採用したこと
である。機械的外形には、併せての特徴はないと、高周波特性の面からみれば、これは挑戦的な設計
である。つまり、伝送系の主導波管と 12 分岐用と、別のモード以外も電流可能なオーバーサイ
ズステーブルを用いるからでであり、高周波特性の安定性が疑問視されたからである。実験結果に
よると、プラズマと LH アンテナの接合が良好な場合（主導波管での反射率が 25 ％程度以下）、電流駆

動効率の低下は見られず挑戦的設計は成功した。
結果

電力3分岐型 LH アンテナを JT-60 に取り付け性能評価した結果、電流駆動効率が従来型の約1.4倍に向上でき、1993年に世界最高の電流駆動効率（3.5×10¹⁰ m² MA/MW）を達成した。

大電力入射用電力分岐型 LH アンテナを JT-60 へ追加導入したことにより、7 MW 級の大電力高周波を世界に先駆けて入射可能とし、世界最高の高周波による非誘導電流駆動電流（3.6 MA）に成功した。

考察、波及び効果

これらの電力分岐型 LH アンテナに係る一連の開発にあたっては、分岐導波管の断面形状が変形せずその幅を一定に保ち、3 分岐×8 ユニット（24 本の分岐導波管を組立て・製作する方法）の確立が不可欠であった。初期の分岐導波管の製作においては、TIG溶接が採用された。しかし、TIG溶接を施したところ、熱対応が悪く波管の長さを約 1 mm 程度反らす変形が発生し、位相の設計値から 15～20度違う結果になった。変形が発生した導波管の長さは約 50 cm。この解決のため、分岐導波管を0.5 mm以下の高精度で組立て・製作可能な拡散接合を応用した製作技術を開発し、設計通りの指向性を持つ LH アンテナの製作を可能にした。

この拡散接合による製作法は、1000℃程度の高温下で 100 気圧程度の高圧によって数日かけて、導波管の部品同士を一体で接合する技術である。また、大電力入射用電力分岐に用いられている電力を12分岐モジュールは、銀チップ付けによって製作されており、チップ付けの時に温度を一定に保つ工夫がなされている。さらに、12 mm 程度の導波管の高周波特性（電力と位相）を測定するのは、従来の技術では困難であった。そこで、導波管をプローブと組み合わせた高周波特性測定装置を開発し、「ネットワークアナライザ」と呼ばれる高周波回路の特性を計測できる装置を用いて簡便にしかも精度よく測定できるようにしたことも、LH アンテナの開発の重要なキーポイントであった。

大電力入射用電力分岐型アンテナを構成する電力12分岐モジュールは、各モードが伝送できる「オーバーサイズスターパー」を使用しているのが大きな特徴であることはすでに述べた。オーバーサイズスターパー管を採用することで、複雑な構造を不要としたのは重要な成果であった。このおかげで、電力分岐型アンテナの特徴である伝送系導波管本数を削減するということにおいて、格段の進歩をとげ、3 分岐型で必要であった伝送系の導波管本数に比べて 1/4 に削減できた。核融合炉用の LH アンテナとしては、システムの簡素化は重要である。
将来に向けて
トカマク型装置による核融合の研究は大幅に進歩し、今や国際協力でITERの建設段階に入ろうとしている。ITERにおいてはLH波による電流駆動は、プラズマの電流分布を積極的に制御しトカマクプラズマの高性能化などの物理研究も重要となってくるであろう。また、プラズマの着火や高周波による放電洗浄等の利用も考えられ、LH波を含めた大電力の高周波の利用は、トカマク型核融合装置の成功のキーテクノロジーとなることは間違いない、さらなる研究発展が望まれる。

今後のLHアンテナの開発として重要のは、プラズマからの連続的な熱入力に対して耐えるような材料や構造の開発であり、耐熱化のために炭素材を用いるのもひとつのアイディアである。そして、高周波放電による局所的な熱入力に対処するために、高周波放電を検知し大電力の入射を瞬時に停止する機能を持たせることや、損傷したLHアンテナを簡単に交換できる構造にする必要である。このような機能・構造を持ったLHアンテナが、ITERにおいて採用されることになるであろう。

参考文献、表彰
[4] 今井剛, 他、プラズマ・核融合学会 論文賞（1993年）
6.4 イオンサイクロトロン波帯（IC）加熱装置の開発、導入

目的（背景）

イオンサイクロトロン波帯（IC）加熱は、高周波を用いたプラズマ加熱法として早くから注目され、1980年代から実験が行われていた。初期のIC加熱はいわゆる磁性ビーチを利用した。トカマク装置では磁場の強い側の装置中央部にアンテナを設けて短波帯の高周波（速度の速い波）を入射する方式であった。この方法は高密度プラズマでは有効でなくなり、また装置中央側からは主電力の高周波を入射するアンテナの実現は困難であった。その後1970年代から80年代にかけて、磁場の弱い側の装置外側から高周波（速度の遅い波）を入射する2種イオンプラズマの少数イオンを加熱する方式が有効であることが示された。さらに、周波数がイオンサイクロトロン周波数の2倍の速い波もイオン温度が高くなると有効な加熱がでることが実験的にも示された。そこで、JT-60では、LH加熱に加えて、高周波加熱のもう一つの方法として、プラズマ中心部でのイオン加熱を狙ってIC加熱が計画された。さらに、多くの装置で実施あるいは計画された少数イオンIC加熱ではなく、独自性を求める。また、高温高密度プラズマでは特に有効となる、少数イオンの2倍周波IC加熱を採用した。この方式では、少数イオンのうちより高エネルギーのイオンを選択的に加熱する特性があり、将来の燃焼プラズマにおけるα加熱（3.5 MeVヘリウムイオンによる加熱）研究の端緒となる、数MeV級の高エネルギーアイオンの生成も期待できた。従って、開発すべきIC加熱装置の周波数は、水素イオンのサイクロトロン周波数の2倍の100 MHz 帯となる。大電力の高周波を発生する大電力増幅器（合計出力パワーミュ 6 MW）の開発は、他の同程度出力の装置に比べて周波数が高いためより困難である。一方、利点としては、周波数に逆比例してアンテナ（結合法）の大きさが決まるので、アンテナをコンパクトにすることができる。

方法（仕様）

IC加熱装置の主な性能は以下の通りである。周波数は超短波帯の110-130 MHz、大電力増幅器の出力パワーヒ 5 基合計で6 MW、加熱パワーヒ2.5 MW、パルス幅は10秒である。LH加熱装置と同じく、IC加熱装置でも、最も開発を必要とするのは大電力増幅器と結合法（アンテナ）である。

大電力増幅器の1基当りの出力パワーヒ0.75 MW、10秒となるが、当然このような大出力で準定常の高周波源はなかった。LH加熱装置の大電力増幅器と同様に開発の出発点は放電技術であった。当時の放電技術では、100 W程度では出力レベルは100 kW程度であったが、これに使用されていた四極管は、周波数が多少低い短波帯の30 MHz程度では数百 kWの出力能力があった。この既存の四極管を基に3段増幅で0.75 MW出力の大電力増幅器を構築した。四極管はいわゆる真空管であるが、やはりこれだけの出力のものは、図1に示すように、直径が約0.5 mあり、重量も約100kgとなる。真空管はゲラスでなくセラミックが使用され内部を観ることはできない。出力パワーヒ得るために電子ビーム電流を増大し、また、周波数が高くなりRF損失も増加するため、四極管の冷却には約1000 L/minの大流量の冷却水を流すことで対応した。この大電力増幅器の開発でのキーポイントは、出力共振回路と不要発振の抑制である。出力回路には通常3/4波長共振回路を使用するため、その大きさは2m程度と大きく、これに周波数可変機構を組み込むと3mを超える大きさとなる。また、回路内に発生する高周波が偏在しないように、同心円上に立体回路を形成することが要求された。このような条件を理想的に実現することは困難であったが、円筒に仕切りを入れ折り曲がったようにした空洞構造を考案し、コンパクトでほぼ均一な高周波分布の共振回路を完成させた。一方、不要発振には、主発振と寄生発振がある。主発振は良く知られており出力回路から入力回路へのパワーの帰還が原因である。この対策として、スクリーニングリッドのソケット部にパワー帰還を打ち消すと調整し中和回路を構築した。寄生発振は入力回路の構造上強く依存し、装置固有の固定が必要となる。これに対して、発生する寄生発振の周波数に合わせて高周波の吸収体であるフェライトを選定し、15 mm程度に細かく細い効果のあるスクリーニングリッドの狭いリード部に取り付けた。

LH加熱装置と同じく、IC加熱装置の結合法（アンテナ）はプラズマ加熱性能を決定する極めて重要な設備である。ICアンテナは、ループアンテナの内側に高周波大電流を流し、発生する高周波磁場をプラズマと結合させるものである。これにより連続状態が起こり、プラズマ中を伝播し、トロイダル磁場強度でその位置が決定するイオンサイクロトロン共鳴帯でイオンを加熱する。このような磁場結合ではプラズマとアンテナと距離を離すことができず、また、プラズマと結合度を上げるために電流方向にできるだけアンテナ長を長くしたい。そのため、JT-2などの中型トカマクでは、上部ポートから
なアンテナを挿入し、磁場の弱い側のトカマク真空容器内側に沿って半周させて、下部で真空容器に短絡させる方法が主に用いられている。しかし、大型トカマクではプラズマからの熱負荷も大きく、ディスラッション時の電磁力を考えると、このようなアンテナは全く不適切であった。そこで、JT-60では図21に示す、ポートに差し込みプラズマとの距離を調整できるコンビナントな（プログライン方式と呼ぶ）2段2列ループ素子位相制御型アンテナを開発した。これに先立って、プラズマと磁場を強く結合するループ素子効が従来で比べ短くなるので、プラズマとの結合計算コードを開発して結合度の評価を行い、結合抵抗が1〜8Ωと十分成立することを確認した。

このICアンテナは、コンパクトでアンテナプラズマ間距離の調整が可能と言う特長に加えて、以下の特長も実用的な特長がある。第1は位相制御である。それまでのIC加熱及びICアンテナの研究から、放射される高周波のトロイヤル方向の屈折率が加熱性能と結合性能を決めることが明らかになった。また、LHランチャーと同様に、屈折率に対して非対称の放射パターンベクトルにより電流密度の可能性も指摘されていた。これらの研究を可能とするため、放射波の張力は放射パターンベクトルを制御できるトロイヤル方向に2列のループ素子を配置した位相制御型を考案した。第2は開発形と呼ぶファラデーシールドである。ファラデーシールドの役目は不純物発生の原因となるトロイヤル磁場方向の高周波電界がプラズマと結合できないようになり、かつ高周波磁場は結合させることである。具体的な構成としてはトロイヤル方向に不純物を巻きつけてある。従来は重にして、ループ素子がプラズマを見えないようになり、放射の種となるプラズマの侵入を防止していた。しかしながら、大型トカマク装置ではプラズマからの熱負荷が厳しいため冷却可能な構造でなければならないので、2重構造でプラズマを見込む単層構造（開発形）にした。これにより、先端部の構造を格段に簡素化でき、またループ素子がプラズマに近づかれることで結合度も改善できた。第3は大電流単独使用のための冷却ノンビニング用給素ガス循環路の設置である。給素器の短路部を発着点として同軸管の内径に仕切り板を取り、片側から先端部のループ素子及びファラデーシールドの内径を通じ、内径の形を片側へ戻る循環路を構成した。第4は簡素な構造で高電力電圧（設計値100KV）のフィードスルー（電流導入端子）を設置した。フィードスルーにはセラミックを用いているので同軸管線路に2段に設置し、万が一破損しても真空ラインに影響した。

図2 JT-60位置相制御型2段2列ループ素子ICアンテナ

結果
大電力增幅系の開発は計画通りに進み、模擬負荷を用いて計8基で0.75MW、10秒を確認した。入射波は3.2バルス幅は最大2秒であった。結合抵抗は、アンテナ-プラズマ間距離に依存して、トロイヤル方向の周波数差が0度の場合4~8Ω。180度の場合0.8~5Ωとほぼ計算値に一致し、位相制御型2段2列ループ素子アントナの有効性を確認した。加熱実験では、位相差が0度の場合の加熱効率は、中性子加熱の加熱効率であり、180度の場合は、その約1.5倍であった。これにより、多数イオンの2倍調波IC加熱が有効であることを実証した。また、高エネルギーイオンの生成も観測され、これによる錐形状振動の抑制を明らかにする等の研究に貢献した。

考察、波及効果
位相制御によるパワースペクトルの制御は多様な実験を可能とすることを明らかにした。しかし、位相を変化させると、各ループ素子の入力インピーダンスが変化し、整合器でインピーダンスを整
合することが容易ではなかった。特に位相差を90度にした場合は、適度な範囲での整合を実現できなかった。この原因はトロイヤル方向の周波数差によるもので、容易に整合を取るようにこの磁気結合を遮断するためにループ素子間仕切り板を挿入するなどの工夫あるいは整合器においてこの
将来に向けて

JT-60のIC加熱装置は、100 MHz帯と他の装置に比べ周波数が高い点で苦労したが、プラグイン方式の位相制御型多段ループ素子アンテナは画期的な概念をいくつかも包含している。将来の核融合炉における結合法の開発においても、その本質は十分に活かされるものと自負できる。実際、ITERのICアンテナは、このJT-60のアンテナを基本にしていると言える。同軸管やループ素子内部を冷却路として使用することは定常運転での冷却を実現する有力な方式であろう。

参考文献

6.5 IC加熱装置の改造
—高周波加熱アンテナの高性能化開発、大電力高周波増幅器の開発—

目的（背景）
大電流化改造後のJT-60の大体積プラズマに対して効果的な加熱や粒子加速の実験を行うために、IC加熱装置の増力とポテンシャル増加が必要であった。これを実現するため、プラズマに高周波を入射するアンテナの高性能化と大電力高周波増幅器の高出力化の開発および改造に取り組んだ。通常、アンテナはプラズマの距離が小さい場合、電磁気的な結合度が高く効率の良い入射が可能である。しかし距離が大きすぎるとプラズマ粒子がアンテナの先端に衝突し、不純物を発生させてしまう性質を低減させることでなくアンテナ先端部の損傷する場合もある。この問題を解決するため、アンテナ-プラズマの距離が大きいかでも高い結合度が得られるアンテナの開発を目指した。一方、大電力増幅器の高出力化開発にあたっては、米国で試作中の四極真空管（四極管）を用いることにより、大電力増幅器8機の出力を装置設置当初の6MWから10MWに増力することを目的とした。

方法（仕様）
旧型アンテナの性質の研究を基に、高い結合性能が得られるアンテナを開発するため、アンテナから放射される電磁波をプラズマを含めた系で計算して、アンテナの最適化設計を行った。設置するポールを改造前の斜め下の1ポール（0.37×0.52mm）から、より大口径（0.85×0.78mm）の水平2ポールとしたことで設計の自由度は段階的に大きくなった。アンテナの基本的な構造は改造前のと同様な2行2列の多重クォータ構造とし、トロイダル、プロイダルそれぞれの方向に位相差をつけた給電が可能に機能を継続して多様な実験を可能にした。一方で、プラズマ中で励起される波の磁力線方向の屈折率（n_p）スペクトルがパワースペクトル、結合の両面で良好となるように、励起波のn_pスペクトルがn_p=2-3でピークを持つように各部の寸法を決定した。電流導体は1/4波長以内でできるだけ短く（0.64m）して高い結合が得られるようにし、電流導体間には仕切り板を新設して導体間の電磁気的結合を低減し、インピーダンス整合を容易にする工夫を行った。不要電流低減等を目的とした、箇所のパイプで構成されるファラデーシールドは磁力線が効率良く放射されるように、開口率を50％と大きくするとともに、世界に類を見ない管体側面に回り込んだ形状とすらの工夫を行った。改造後のアンテナの外観を図1に示す。

一方、100MW帯での高周波増幅器の最大出力は、四極管のスクリーニンググリッド（SG）電極での高周波損失で制限され、この高周波損失は増幅器出力及び周波数とともに増加するため、100MHz帯での高出力化は極めて困難であるとされていた。実際、四極管Elmac8973を用いた改造前の高周波増幅器単機当たりの出力0.75MWでは、効率劣化（1978年）の最高レベルにあった。本改造では目標値を130MHzで1機当たり1.5MWと高める、大電力増幅器の高出力化を図った。同加熱装置1系統の増幅器に、SG電極材を耐熱性能の高い等性黑鉄材へ変更した試作四極管X2242を用いた試験を行った。試作四極管の能力を最大限に引き出すために、新たに以下のような改造を施した：（a）出力直列内電圧を均等化するため、出力直列内出力の2ポート化、（b）出力の四極管で生じる寄生発振を抑制する法則（クオータ）の材料と形状の最適化、（c）SG電極端面での電界集中の防止対策とキャパシタの耐電圧化。これらの改造後、第1回の試験では出力は1MWに留まった。出力制限の原因を検討していた高周波損失によるSG電極の過熱であったが、この試験で高周波損失は（周波数）の2/3で制限されることを実験的に確認した。さらにSG電極自体の抵抗を下げることで鍵であることに注目し、電極の網目の構造を改良によって抵抗を下げた改良試作管X2274を用いて2回目の試験を行った。この結果、100MHz帯では世界最高値（当時）となる1.7MWを1990年に達成するとともに、従来の四極管に比べて2-4倍の高周波損失（SG電極）に耐える世界最高の性能を実証した。図2に示すように、開発した四極管を用いて大電力増幅器の増力改造を行った。

結果
開発したアンテナを大電流化改造後のJT-60に据付せてプラズマとの結合実験を行うとともに、ア
ラジオ波を構成する金属被覆表面からのガス出し、及び電線放電による転電荷移動を目的としたコンディショニング運転を注意深く実施した。この結果、JT-60の旧型アンテナだけでなく、諸外国の大型核融合実験装置（JETやTFTR）のアンテナをも上回る高い性能を実証した。

一方、開発した四極管を用いた大電力増幅器の増力改造の結果、増幅器8機の総出力を改造前の6MWから10MWとすることができた。

このアンテナ高性能化と高周波増幅器の高性能化を2つの主な開発、改造に加え、アンテナから増幅器に戻る反射電力を自動的に軽減する制御装置の開発など改良の成果も相まって、プラズマへの入射電力の最大値を改造前の4.6MWから7MWに増加させることに成功した。

考察・波及効果

改造により高性能化したIC加熱装置を用いて、最大7MWの加熱実験を行い、高閉じ込みプラズマ（IIモード、負磁気シアモード）に関する研究を進展させる等の貢献をした。また、プラズマ中のイオンを数MeVの高エネルギーまで加速し、この高エネルギーイオンが引き起こすプラズマ振動（TAE振動）の挙動を調べたり、抑制の方法を究明する研究に貢献した。一方、開発を行った四極管X2274は現在4CM2500KUの名称で商品化され、核融合研究用途だけでなく加速器用にも使用されている。

アンテナに関しては、トロイダルリップルに捕獲された高エネルギーアイオンの損失に起因するとみられる、ファラデーシールドの局所的溶融が運転上問題となる場合があった。この問題は、アンテナ前面のトロイダルリップルの低減、またはファラデーシールド形状の改良によって改善できると考えられる。

将来に向けて

アンテナの開発、改造で得られた成果および知見はITERのIC加熱装置の設計に活かされている。また、核融合材料試験用加速器11MFの加速用高周波源に四極管4CM2500KUの使用が検討されている。一方、今後のJT-60の長パルス実験やリップル低減実験における、比較的低トロイダル磁場での運転に対応して効果的な実験を行うためには、周波数を下げる改造（アンテナを含む）が必要である。

参考文献・表彰

[7] 木村晴行，他、プラズマ・核融合学会 論文賞（1997年）
6.6 高周波加熱装置制御設備の改造
—分散処理化による安定性向上と実時間波形整形機能を用いた運転効率向上—

目的（背景）
高周波加熱装置の制御設備は1987年の運転開始から10年以上が経過して、設備の経年劣化等によるトラブルの頻発が問題となっていた。同設備はミニュコンピュータ（NEC製MS-175）とCAMACを中心

に構成されたシステムであり、入射制御、データ収集を始めとした非常に多数の処理がミニュコンピュータ1台に集中し、その処理能力の限界に達しつつあったこともシステムを不安定にする一因であっ

た。これらの問題を解決するために1994年にコンディショニング運転の一部を専用のワークステーションとVMEからなる独自の「真空入射制御装置」の機能として切り離し。これに加えて2000年度にMS-175をCAMACを完全に置き換える分散処理システムの構築を目指した。このシステムは汎用のパソコン（PC）、ファクトリーコンピュータ（FC：工業用途の高性能PC）およびワークステーション（WS）

で構成することにした。また、JT-60での運転経験を活かして、プレプロ波形作成の役割分担について見直しを行い、実験遂行に必要な入射タイミングの設定と高周波加熱装置の状態に依存するパワー波

形の設定を別々に行うことで、実験運転の効率化を狙った。

方法（仕様）
高周波加熱装置において制御設備の制御対象設備はLiH-A、ECH、LiH-C、ICの4ユニット（図1のA

〜D系）であり、その制御機能は大きく次の5項目に分類できる。(1)高速入射制御(2)低速パラメー

ト制御(3)状態監視(4)データ収集(5)インターコードである。旧制御設備ではハードウェアインタ

ーロックを除いてこれらの機能をほぼ1台のミニュコンピュータが処理していた。2000年度の改造では

機能毎に1台〜4台のPCやFCを用いるとともに、信号の種別に適合したインターフェースを使い分け

てシステムを構築した（図1）。

高速入射制御は全系VMEベースのリフレクティブメモリで取り合い、10ms毎に受信するパワーおよ

び位置の実時間命令に対して入射信号変換PCにて波形成形（後述）を行った後、加熱制御側に光伝

送する。低速パラメータ制御では、設定値用PCから各設備に設置したVME3台に 출력ボード内蔵PC

1台に対して、保護装置の設定値やECHのアドリナミター、偏波変換器への命令送出行を行う。状態監視

では各設備に設置した現場制御FC4台にて収集したデータを中央制御PCが集約して、モード管理

や合理性チェックに用いる。モード管理の全系との取り合いはNPSマウントが公共仕様なのでWSを

用いた。入射したパワー実績などのショットデータは光伝送系と多チャンネルのA/D変換モジュール

を用いて専用のPCで収集し、蓄積サーバ（WS）への保存と全系への転送（FC）を行う。

図1 改造により分散処理化を図った高周波加熱装置の制御設備

－238－
これら機能の設定を入手するためのマンマシンインタフェースは、短時間のショット間に真空入射のパラメータ設定、プレプロ作成、データグラフ出力など負荷の多い処理が集中した。改造前の制御システムの弱点のひとつであった。改造後は、プレプロ波形作成の役割分担見直しによる負荷の軽減に加えて、設定専用の PC を複数台設けることで信頼性の向上を図った。

「プレプロ波形作成の役割分担見直し」は、JT-60 での実験遂行の実際に関した改良といえる。15 秒から 65 秒の放電時間内にいくつかの実験テーマが盛り込まれることが多く、加熱装置の入射タイミングは放電全体のパラメータを総合的に把握する「実験主任」が決定し、その変更は頻繁に行われる。一方で高周波加熱の入射パワーやその時点での装置が許す最大パワーであることが多く、これを把握しているのは高周波加熱装置の運転班（RF 運転班）である。またパワーラジオ波形についても、その時の装置の状態（アンテナの耐圧など）に適したものにする必要から「RF 運転班」が把握する事項である。したがって、タイミングと要求最大パワーの情報を領えたプレプロ（単純な場合は矩形波を「実験主任」が作成し、一方で「RF 運転班」がその時のパワーや上限や立ち上げ波形の傾きなどのパラメータの入力を行って、これらの情報を統合して入射指令を生成することにした。統合はショット前に使うのが理想的であるが、全系とのインタフェースに大きな変更が必要となることから、この間ではショット中にリアルタイムで波形成形を行うことにした。この方式には、シャット直前まで行っている真空エージングの結果を「RF 運転班」の設定パラメータに反映できる利点もある。リフレクトメーターで 10ms 毎に受信するパワー指令値は、パワーや立ち上がり等、ジュール数それぞれの上限などの設定値を用いて入射信号変換 FC にてリアルタイム（10ms 以内）で加工された上で機器側に送出される。全系から受信するパワー指令値は、プレプロそのままに各種計測データを用いたフィードバック制御の結果を反映したものである場合も多いが、入射信号変換 FC の動作は共通である。

結果
老朽化し、かつ集中制御の弊害によってトラブルの多かった高周波加熱装置の制御装置は、この改造によって新しい分散処理システムに生まれ変わり、トラブルの頻度およびトラブルシューティングに要する時間が減少了。特に全系との信号伝達をシンプルにしたもの、全系シーケンスを停止させることなく不具合はほとんど発生しなくなった。また、プレプロ波形作成の役割分担見直しによって、スムーズな実験条件の変更が可能になっただけでなく、運用員の負担が軽減され、装置の調整に集中できるようになった。

考察、波及効果
JT-60 建設時には、装置の調整やアンテナ、真空管のエージング（コンディショニング）を行う「エージングモード」とそれらが完了した後に用いる「入射実験モード」を使い分けることが想定されていった。「エージングモード」では、高周波加熱装置の「入射実験モード」は「実験主任」がプレプロを作成する。しかし実際に運用してみると、事実上コンディショニングの完了は無く、「入射実験モード」はほとんど使用されなかった。すなわち目標のパワーより達すれば装置の増力、改造が行われ、新たな目標が設定される。もし達しなければ、問題点を改善するための改良が行われ、改良後にコンディショニングのやり直しが必要になる。本改造で行った「プレプロ波形作成の役割分担見直し」は、「入射実験モード」のスキームに「エージングモード」の柔軟性を加えたものと見ることができる、このような運用実験に合わせたひとつの解決になったと考えられる。
また、本改造では PC を始め汎用の機器を多用し、インターネットベースに Ethernet 等標準のものを用いたため、改造および保守のコストを低く抑えることができている。近年汎用機器の信頼性も向上しており、現在のところ大きなトラブルは発生していない。ただし、短時間、低費用での改造であるが故に、真空入射における位相プレプロ機能など、従来からの機能を一部省略した部分がある。これについては今後充実させていきたい。

将来に向けて
考察で述べたような「改造の繰り返し」と「終わることのないコンディショニング、パワーアップ」は次期装置でも想定される。本改造で採用したような、改造に柔軟に対応できるシンプルな制御系が要求されるのではないだろうか。

参考文献
[1] JT-60 高周波加熱制御システムの改良、篠崎信一他、JAERI-Tech 2003-032
[2] JT-60U 電子サイクロトロン加熱装置用入射制御系システムの構築と改良、平内慎一、篠崎信一、佐藤文美、鈴木虎夫、横倉貢治、森山伸一、池田佳隆、JAERI-Tech 2003-038

− 239 −
6.7 フィードバック系異常診断装置の開発

目的（背景）
JT-60 高周波加熱装置では、運転開始以来 10 年以上が経過し、装置機器の老朽化が原因で機器異常の発生頻度が年々増加していた。このような状況下で効率の良い高周波加熱実験を可能に進めるためには、装置機器の健全性を常時的に確保し、異常が発生した場合には、速やかに不具合部の同定および原因究明が必要となる。そこで発生した不具合をより迅速にかつ効率良く、少人数で解決するため、異常原因調査、復旧および再調整を簡単に可能とする異常診断システムの考案、開発が要求された。

高周波加熱装置における異常の発生状況、原因とその復旧に要する時間等を調査、分析した結果、高周波系（励振増幅系、大電力増幅系、整流系）における異常発生割合が 70 % と高く、特に励振増幅系における不具合の同定をその復旧に多くの時間を費やしていることが判明した。

励振増幅系は、グループアンテナにおける高周波電力およびその位相差を自動的に、所定の値に設定するフィードバック制御機能、更に高周波電力を効率良くアンテナに伝達する整流機能やアンテナの耐電力を効果的に改善するコンディショニング機能を有するために、部品構成が極めて細かかつ複雑であり、多数の精密な電子部品を用いている。そのため、励振増幅系では、電子部品の高水準化による異常発生の増加が懸念されていた。

励振増幅系は 8 系統の高周波電力制御および異なる系列間の位相制御を行っている。従来の不具合調査と見なしては、大電力増幅系を除いたフィードバック制御ループ回路が必要であるため、大電力増幅系の同時運転は不可欠であった。一方、異常発生時に大電力増幅系を運転すると、大電力増幅系の出力端に接続されている大電力伝送系用同軸リ（152 4）8 系統の全てを取り外し、新たに、大電力増幅系制御装置を系列毎に接続し、更に、高電圧電源設備および大容量の水冷却設備を運転する必要があった。これら作業には、長日労と時間を要するため、迅速な異常診断の障害となっていた。

ここでは、これらの作業量と調査時間を短縮して、励振増幅系単体の動作を効率良く異常診断が可能としたフィードバック系異常診断システムの考案と開発、そして異常診断装置として実用化システムを構築した。

設計内容
図 1 に励振増幅系におけるフィードバック系異常診断装置の高周波回路概要図を示す。励振増幅系の電力および位相調整器と低電圧高周波増幅器（10 W）の間に可変減衰器と位相器を、低電圧高周波増幅器と大電力高周波増幅器（1 kW−1 MW）の間に高周波回路制御器 A を、また大電力高周波増幅器制御器にある方向性結合器を電力、位相制御器の間に高周波回路制御器 B を装備することで励振増幅系フィードバック制御ループ回路異常診断機能回路が構成される。異常診断制御回路では、制御スイッシャにより、8 系統で構成する電力、位相ループ回路の切り換えが系列毎動作に動作し、励振増幅系で発生した不具合等を効率良く異常診断できるシステムである。以下の異常診断例を示す。以下のような異常診断例を示す。以下のような異常診断例を示す。

（1）自動電力制御回路
新設した可変減衰器の減衰量を変化させて、出力検波器の信号をモニターすることにより、自動電力制御回路の異常診断が行える。減衰量を変化させても、電力/位相調整回路が機能し、モニター信号の大きさが一定である時が正常動作となる。もし、異常があれば、出力検波器の信号の大が変化することから、自動電力制御回路の健全性診断ができる。

（2）自動位相制御回路
出力検波器に回転振器と位相差を測定する計器（例えばネットワークアナライザー）を接続し、新設した位相器の位相を変化させ、位相差信号をモニターする。位相調整回路が正常に動作していれば、位相差信号は変化しない。このように、位相差信号をモニターすることにより、自動位相制御回路は迅速な健全性診断ができる。

（3）出力検波器
本システムを利用して、出力検波器に高周波増幅器から出力された高周波を簡単に入力することができる。そのときの高周波出力波形をオシロスコープ等で測定すれば、出力検波器の健全性確認が容易に必要に応じて行える。この診断で得られた出力検波器の動作価が、大電力高周波増幅器（1 kW）の最終出力電力を決定する上で最も重要なデータを提供する。

成果
本異常診断装置（1992 年導入〜1996 年完成）が開発されたことにより、JT-60 高周波加熱実験中に発生した高周波回路の異常現象や調査、そしてその復旧が極めて迅速にできることが実証された。その成果の実例として、実験運転中に大電力高周波出力電力に異常振動が観測され、励振増幅系の異常が疑われた。早速、異常診断装置により調査を開始して、自動電力制御回路に不具合があることが確認された。更に詳細調査で、電力、位相調整器電力制御用基板内にある電子回路素子の異常が判明し、その状態の状態の修復により、異常検知から復旧までの所要時間は約 2〜3 時間で実験運転を再開できた。
将来にむけて

これらの装置改良成果は、高周波加熱装置の設計、建設段階から、異常診断試験機能として導入されることが理想であり、ITERを始めとする次世代の実験装置においても設計、建設段階から検討導入することにより、実験運転効率が向上すると考えられる。特に新しい装置の電子回路を含む細部の機器異常等については、建設段階から検討を進めてきたが、これらの不具合を抽出して、改良、性能向上させるには、多くの労力と時間を必要とする。これらの不具合発生を図りつつ設計段階から、異常診断機能を付加することは、将来の装置機器設計において重要な要素になると考えている。また、これらの不具合を予測して装置の設計に反映させるには、多くの経験と技術が必要であることは言うまでもない。現在のJT-60では建設を含め約20年を経過した。JT-60はそれを含む装置分野では、同じような装置上の問題を克服してに従った改良、開発が数多く存在している。特に大型核融合装置のような分野では、これらの小さなアイデアや技術改良が数多く結集して、進展しているのも実例である。しかし、時代が経過するに従い、多くの経験と技術を貰えた技術者、研究者も年と共に去り、アイデアを折り込まれた装置機器もまた消えてゆく。将来にむけて、これらの核融合装置技術を消滅させないために、各方面での技術の継承がなされていかなくてはならないと考えている。

図1 フィードバック系異常診断装置の高周波回路概要図

参考文献、表彰

6.8 コンディショニングの高効率化

目的（背景）
JT-60 高周波加熱装置は 1987 年に運転を開始して以来、強力な電流駆動装置及びプラズマ中心加熱装置として JT-60 における炉心高性能化実験及び ITER 物理 R&D 実験を推進してきた。これらの実験の進展に伴い、各ユニットにおいて大電力（数 MW）での安定な高周波パワーチャンネルから的一層強く求められた。このような装置性能の限界に近い大電力での安定な入射を実現するには、ショット間で真空容器内に高周波パワーチャンネルを入射し、そのパワーチャンネルを徐々に増加させ、またはパルス幅を徐々に伸長して、結合系の耐電界性能を維持、向上させる調整運転（エージングあるいはコンディショニングと呼ばれる）が不可欠であることを、それまでの開発研究及び運転経験から明らかにしてきた。そのため、このエージングをいかに効率良く行うようにするかは、実際の実験においては要請できない重要な課題であった。そこで、ショット間での効率的なエージングを可能とするために、1994 年より真空入射でのエージング専用の制御装置の開発に取り組んだ。

方法（仕様）
JT-60 高周波加熱装置は、直流電力から高周波電力を発生させた大電力增幅系（32 基）、その高周波電力を伝送する伝送系（56 ライン）、最終的にプラズマと高周波電力を入射する結合系（アンテナまたはラジアンナー合計 4 基）、電源設備（高圧電源 16 基等）及び冷却設備から構成される。これらは機器、設備を統括、制御する制御設備がある。すなわち、JT-60 高周波加熱装置は、多様、多様の極めて多数の機器から構成されている。

実際運動では約 20 分の周期で JT-60 真空容器にプラズマ生成が行われる。これにショットと呼ばれる、これに同期して、高周波加熱装置は、高周波パワーチャンネル（パルス幅 1～5 秒）をプラズマへ入射するパルス運動を行っている。実際の進展に伴い、プラズマ性能向上に関する世界をリードする実験を推進するためには、大電力（数 MW）での安定な高周波パワーチャンネルが一層強く求められた。入射パワーチャンネルの上限はアンテナあるいはラジアンナーの耐電界性能で決定されるが、ショット（プラズマ生成）後の残留ガスのアンテナあるいはラジアンナーの表面への吸着、表面の微視的な荒れ等により、その耐電界性能が低下する。このような限界性能に近い大電力での安定なパワーチャンネル入射には、ショット間で短パルス（100 ms 程度以下）で、高周波パワーチャンネルを繰り返し入射するエージング運動を長時間行うことが不可欠であると見出した。

JT-60 高周波加熱装置を構成する多数の機器をミニコンピュータで一括制御する既設制御装置は、実際運動ではショット間にはデータ収集とその処理を行うように設計され、当時のミニコンピュータの性能では、ショット間の大半の時間をそのために費やしていた。そのため、ショット間で真空入射エージングが行える時間は 4 分程度と僅かしかなかった。従って、20 分程度のショット間の時間をできるだけエージングに充当し、エージング運動の高効率化のために、既設制御装置の改造を計画した。しかし、このような効率良くエージングを行うと前後の時間が当初の制御装置の設計思想に反していた。従って、その目的で既設制御装置を改造しようとすると、ソフトウェア及びハードウェア間の対応において多くの変更が生じ、その作業のために長時間の運転休止を必要ととともに、費用も多額と見積もられた。このため、既設制御装置の改造によるショット間エージング運動の効率化は極めて困難な状況にあった。

この難問を解決する方法として、既設制御装置とは全く独立して真空入射エージング専用の制御装置を新設することを夢見て（図 1)。入射パワーチャンネル、高位、パルス幅等の高周波パラメータは、最終的には大電力加熱系の入力部に相当する高周波駆動部で可変制御されている。また高周波パルスの立ち上がりの波形は、電源設備の一部である高圧電源の波形制御に強く依存している。従って、真空入射エージングのために制御する項目は限られており、切り替え器を設けて、既設制御装置からの信号と新設のエージング用制御装置（真空入射制御装置と呼ぶ）からの信号を一括して切り替えることで、作業期間中でも運動を休止しなくても良く、また既設制御装置は従来と同じくショット後にデータ収集、処理を行うことができる。すなわち、新たに導入する真空入射制御装置は、高周波駆動部と高圧電源のみを制御し、既設制御装置が従来通りのデータ収集、処理を行うことができる。
収集・処理を行っている間に、入射パワーを徐々に増加させて、効率的なエージングを行うことができる。

具体的な制御項目としては、これまでの運転データを分析し、高周波加熱部での制御パラメータとして約30の項目から、ショット間のエージング時に必要な、パワー（電力）、パルス幅、位相、反射率等の9項目に絞り込んだ。また、高圧電源では、高圧電源「入」指令、加速電源「入」指令、高圧電源「切」指令を制御することとした。真空入射制御装置は、図1に示すように、高周波加熱制御装置とタイミング制御機能を組み合わせることで構成される。高周波加熱制御装置は、シーケンサー、光インタフェース、入出力モジュール等で構成され、各タイミング制御機能は、高圧電源の立ち上げのタイミング設定が容易に行えるように、リフレクティブメモリ（RM）、プログラマブルロジック回路（PLC）等を使用して、製作した。

結果
新規導入した真空入射制御装置を併用することで、約20分間隔でのショット間でエージングに使用できる時間を、それまでの約4分から約13分へと増加させた。これにより、3～5MWの入射パワーまでに要していたエージングのショット数を約1/2の5～7ショットに減少させることに成功した。実際の運転時間で表すと2～3時間の短縮となり、真空入射制御装置の効果は極めて高いと言える。さらに、制御項目を1/3程度に絞り込んだため、操作等の作業量もそれに応じて減少し、またキーボード等の応答速度も高めたこともあり運転員の操作ミス等もほとんど無くなり、運転環境を大幅に改善した。このようにショット間での効率的なエージングを可能とし、3～5MWの大電力高周波の安定な入射を実現し、高性能プラズマの長時間保持等の炉心高性能化実験の進展に貢献した。

考察、波及効果
コンピュータの性能は日々向上しており、現在の専門コンピュータを使用すれば、JT-60高周波加熱装置を一括制御して、なおショット間のエージングを真空入射制御装置と同程度近く行えるであろう。しかしながら、ある機能に注目してそれ専用の制御を行う分散型の制御は、機能追加、機能変更等に対して改造や変更部分が少なくできる利点があり、先端の実験領域を幅広げするために恒常的に性能向上、機能追加を行っている。JT-60高周波加熱装置のような先進的な大規模実験装置では、分散制御は有力な方式である。真空入射制御装置は、JT-60高周波加熱装置の分散制御の端緒であった。この考えを推し進め、若年に制御設備を全面的に分散制御方式へ変更した。

将来に向けて
次期装置のITER、さらに核融合炉においては、ショット間エージングという概念はなくなるが、現在と同じく高周波加熱装置では最初から高パワーを入射することはできず、エージングが必要不可欠である。従って、エージングに最適化された簡便な制御装置は必須である。また、どのような計測データからどうように入射パワーとパルス幅を増加させて行くかの判断が必要であり、現時点では未だ実現されていない、エージングを自動化が実行する装置の開発は今後の最大関心事の一つである。

参考文献
[2] 須崎信一、清野公政、文部科学大臣賞 第42回創意工夫功労者受賞（2001年4月）
6.9 電子サイクロトロン波帯（EC）加熱装置の開発、導入

目的（背景）
JT60での臨界プラズマ研究は、大電流化改造後の1991年から長年続いた。また、この時期から、内部輸送管の発音や閉じ込め性能が良い負磁気シーケンスプラズマの生成など、磁束の波面に波面が貼らされる電磁流体（MHD）不安定性を抑制することが重要な課題のひとつであった。MHD不安定性のうち、新旧モードの移動（NTM）は、それが発生する極限位置にプラズマ中的電流を駆動することで抑制が可能であり、プラズマ波中での収束傾向が小さく、局所電流駆動が可能な電子サイクロトロン波帯（EC）加熱の導入が1997年に決定された。また、EC加熱は強力な電子加熱の手段として使用でき、不安定性抑制以外の研究分野でも期待された。特に、導入されたW型ダイバータ配置では、加熱効率もLH加熱装置の一つであるLH-B系ランチャープラズマ結合性能が著しく劣化し、大電流発電の発電が困難な状況にあった。そこで、このLH-B系を基にEC加熱装置を開発し、導入することとなった。しかしながら、JT60でのEC加熱の周波数は100 GHz以上、極めて高く、このような波波状の周波数（RF）で入射波が3 MHzのEC装置を実現することは、極めて挑戦的なことと考えられた。その理由は、ミリ波波状の電磁場の発電装置は非常に少なく、ITER用に向けて出力1 MW級のジャイロトロンと呼ばれる発電装置が発電装置本体の開発が進んだ状況であり、導入が必要である。ところが、さらにJT60用EC加熱装置を開発しようとしたときに、日本を代表して研究開発を進めていたITR用ジャイロトロン用1 MW級の発電装置はつくり次第で完成された。この技術を基に、2000年に世界を驚かせる短期間で大電流のJT60用EC加熱装置を完成した。

方法（仕様）
JT60用EC加熱装置の主な仕様は以下の通りである。周波数110 GHz、大電力発電器100 MHzの加熱出力パワーや、4 MW、入射波4 MHz、パルス電流3 MHzである。

JT60用EC加熱装置は、図1に示すように4系統から構成される。各系統は110 GHzで1 MW出力のジャイロトロン、整流器、約60 MHzの伝送系統から構成される。最終的にプラズマにRFをビーム状にして入射するアンテナを2基、1基（アンテナA）は1 1/2系統、もう1基（アンテナB）は第4系統に使用している。このEC加熱装置の実現は、1 MW出力のジャイロトロンの開発に懸命されていた。上記のようにITER用170 GHzジャイロトロンに関する開発成果を基に、電磁学研究部に協力して開発に参入し、110 GHzジャイロトロンの開発に成功した。このジャイロトロンの特長は、出力力は1 MW、500秒の出力出力を実現したことである。それにより、サファイアの熱伝導を利用したため、RF損失が大きく、また熱伝導率が十分でないため、200 kW、2秒程度の出力が可能です。一方、ダイヤモンドのRF損失はこれらと比べ2桁程度小さく、熱伝導率は2桁程度大きいため、上記の値を可能とした。また、冷却は1 MWでの連続出力も可能である。運転保守状での大きな特長は、45°の強力な磁場を発生する超伝導コイルの冷却に4 Kで超伝導能力を持ち特殊な材料を使用した冷凍処理を採用することである。これにより、大規模な液体ヘリウム系を持たないため、超伝導コイルに関する保守は全く簡単である。一方、伝送系統については、低損失のコルゲット
ト導波管、偏波変換機、模擬負荷等については前記の製作は得策でないと判断し、大電力ミリ波伝送技術では高いレベルにあるジェネラルアトミック社の製品を購入した。ガウス分布したジャイロトロン出力パワーを、IEEEモードを伝搬するコルゲート導波管へ効率良く結合させる整合器と JT-60真空容器の近傍に設置して真空分離物となる真空封止窒については、核融合工学部の協力を得て、設計、製作した。
一般に RF 加熱装置では、結合系（アンテナ）は重要で複雑な機器であるが、ミリ波帯の RF は準光学的に取り扱うことができ、他の周波数帯と比べて構成的には簡素である。しかしながら、加熱/電流駆動性能は他の周波数帯と同じくアンテナの性能で決定される。アンテナ A, B は基本的には収束鏡と平面鏡を組み合わせたもので、アンテナAに導入されたRFを収束鏡から平面鏡へ入射し、最終的にプラズマへ入射されるRFピームの波ロイダル方向の入射角度を平面鏡で可変制御する。局所的に加熱/電流駆動するために、プラズマ中心でRFビーム半径が数十mmとなるように収束鏡を設計した。強磁場中の駆動、ディスラプション時の電磁力等を考慮して平面鏡の駆動機構は簡素にし、制御性（2.5度/秒、精度0.2度）を重視した。さらに、アンテナ B はトロイダル方向の入射角度も制御でき、電流駆動だけでなく、電流駆動を伴わない電子加熱も可能とした。
結果
開発したジャイロトロンは、目標の出力パワー1MW、5秒を達成するとともに、さらに1.3MW、1.5秒の世界最高値も記録した。また、プラズマへの入射パワー3MW、3秒（当時の世界最高値）を実現した。NTM制御の実験では、電子サイクロトロン放射実験からNTMが発生している位置を算出し、それをECビームが狙うと言う実時間制御でのNTM抑制を世界で初めて実証した。また、約3億度の超高電子温度プラズマの生成や電子熱輸送特性を調べる実験等の実現に貢献した。
考察、波及効果
パルス幅が3秒程度に留まっている理由は、発振中にジャイロトロンのビーム電流の減少による発振停止と自発的欠点を他の発振器からのノイズによる保護回路の動作や発振停止である。パルス幅伸長でのビーム電流の減少は、ビーム電流のもとである熱電子が放出されるとカルターサが冷却されるためであり、対策としてはヒータ入力制御やアノード電圧制御等があり、現在試行中である。ノイズの侵入に対しては、計測機へのフィルタの挿入、制御盤のノイズ遮蔽の強化、接地系の低インダクタンス化等を行い、ある程度の効果が得られているが、現在も対策を継続している。
短期間で数MW級の大電力EC加熱装置を完成させたことは、他の装置に驚きの衝撃を与えるとともに、大いに勇気づけるものであった。また、先行していたDIII-DのEC加熱装置も増力計画を開始するなど同分野の技術開発を活性化した。系統設計の入射パワーハ ITERでのEC加熱装置の計画とは同じであり、同計画の実現性を確実なものとした。
将来に向けて
JT-60EC加熱装置は、ITERあるいは核融合炉につながら装置及び装置技術を提出した。今後は、数十秒のパルス幅でのジャイロトロンの運転を実現する技術開発が必要と考える。また、その運転データを蓄積して、実運転での発振劣化の改善、冷却の最適化、信頼性の向上を成し遂げて行きたい。
参考文献
6.10 EC 加熱装置の改良

目的（背景）
JT-60 電子サイクロトロン波带（EC）加熱装置は、周波数 110 MHz、発振出力 4 MW のミリ波帯では世界最大規模の高周波加熱装置である。運転開始から 2 年余で、プラズマへの入射パワーや MW（発信出
力 4MW）パルス幅 3 秒の初めの世界最高値を達成する等、JT-60 でのプラズマ高性能化研究に貢献した。
極めて短期間で高パワーアンダーフィルターを実現したこと、同分野の研究者に大いに勇気付けるものであった。
世界をリードする、さらなる実験領域の開拓を目指して、2002 年度から、電子の熱輸送特性を調べる
ために入射パワーや変調するための改良、JT-60 の 65 秒間時間放電化に伴い、パルス幅を 30 秒へ伸長
する開発に着手した。

方法（仕様）
(1) パワー変調技術の開発
高性能プラズマの性能を特徴づける主因の一つは電子の熱輸送特性である。これを調べる有力な方
法として、電子サイクロトロン加熱パワーや矩形またはハート形の変調をかけて、熱パルスの伝播を
調べる方法がある。このため、変調周波数 10〜100 Hz、変調度 80% を目標に、JT-60 EC 加熱装置に
おいてパワーバルス変調技術の開発を推進した。

図 1 JT-60 用ジャイロトロン電源設備の概要

図 1 に、JT-60 用ジャイロトロン電源設備を示す。IGBT (Insulated Gate Bipolar mode Transistor)
スイッチを用いて主電源より 60 kV をジャイロトロンのカソード (K) とコレクタ (C) 間に印加する。こ
れより 10〜60 μs 遅れて、加速電源よりカソードとアノード (A) 間に約 40 kV、カソードとボディ (B)
間に約 85 kV を印加し、カソードより電子ビームを引き出し、約 60 A の円環状のコレクタ (ビーム)
電流を形成し、1 MW の発振出力を得る。ところが、ジャイロトンは K-A 間電圧を少し変化させるだけ
で、その発振出力が激変する特性を持っている。これを利用して、K-A 間電圧を数 kV 変化させること
で、約 80% のパワーバルスに成功した。この K-A 間電圧を可変調制するために、400 段のツェナ回路か
ら構成されるアノード電圧分圧器を開発した。テロード電圧分圧器は高電圧にあたるため、400 段の内、
50 段のツェナ回路を光信号で ON/OFF 制御できるようにした。これにより最大 10 kV までの電圧制御が
可能である。アノードには微かな電流（10 mA 程度以下）しか流れないので、このアノード電圧分圧
器は極めて簡単で安価であり、また大半が固体素子で構成されるため保守も容易であると言う特長が
ある。このようなアノード電圧変調によるパワーバルスは、他のジャイロトロンでは例が少ない、3 極電
子管を採用している JT-60 用ジャイロトロンの特長を活かしたものである。
(2) ジャイロトロンのパルス幅伸長

JT-60 用ジャイロトロンは 110 GHz で、1 MW, 5 秒で設計されている。しかし、当初は図 2 に示すように、空洞共振器以外の下部で発振した不要高周波がカソードを加熱し、ビーム電流の増加により発振が不安定になるなど、パルス幅が 2 秒以下に制限された。そこで、この不要高周波の発振を抑制するためにミリ波帯高周波吸収体を内蔵した。これにより 1 MW で安定な発振を実現した。主電流の容量制限からビーム電流は 30 A（出力 0.5～0.4 MW）での発振条件である、パルス幅を伸長し、パルス幅の伸長にともなって、ビーム電流が減少し、パルス幅を伸長し、パルス幅を伸長した。これを取り消すため、従来のヒータ入力制御に加え、アノード電圧制御を開発している。ヒータ入力制御はカソードの加熱を制御するもので、時間点の制御が遅い（数十秒の時間帯）。アノード電圧制御は電気的に電子ビームに作用するため瞬時に発振条件を制御できる利点があるが、モード変換で不要な高周波を発生させ、それによりモード変換器が加熱される欠点がある。アノード電圧制御には、前述のアノード電圧分压器を利用し、電圧変調波形をブレッドグラムで制御するようとした。これを利用すれば、0.4～1 kV程度のアノード電圧制御でパルス幅を数秒から十数秒へ伸長できることが実証された。

図 2 JT-60 用ジャイロトロン模式図

結果

パワー変調では、図3素子から構成される安価で保守性に優れたアノード電圧分压器を開発し、変調周波数 12～500 Hz で変調度 80% を実現した。これにより高磁気シアブラズマ等の高性能ブラズマの電子熱輸送研究に貢献した。また、パルス幅の伸長では、JT-60 用ジャイロトロンの特長である 3 極電子管の特性を利用して、瞬時に発振条件を制御できるアノード電圧制御を開発した。現在までに、0.4 MW 出力で、パルス幅を 5 秒から 15 秒まで伸長している。従来のヒータ入力制御と組み合わせることで、目標の 30 秒は可能である見通しが得た。

考察、波及効果

パワー変調とパルス幅伸長の両方において、JT-60 用ジャイロトロンの特長である 3 極電子管の特性に基づいたアノード電圧制御を適用した。これは、ビーム電流を調整する電子の分布関数に影響を与え、空洞共振器でのジャイロトロン発振を制御しようとするものである。しかしながら、空洞共振器を通じた後のモード変換器においても発振が可能となるため、パルス幅はモード変換器の過熱の問題が発生する。一方、ヒータ入力制御と組み合わせると、モード変換器での温度上昇を遮断する。従って、モード変換器の冷却の強化を図るとともに、その使用法を考慮する必要がある。

将来に向けて

次期装置である ITER に並ぶ磁融合炉においては、EC 加熱装置は定常的な運転が基本と予想されるが、核融合出力パワーテンゲのために、EC 加熱パワーや一部パルス的に変調することも想定される。また、パルス的な入射でブラズマに発生する不安定象を抑制することも想定される。そのような場合は、モード変換器での発熱を考慮した設計のジャイロトロンを使用すればアノード電圧制御による入射パワーテンゲーが有効な方法として利用できる。

参考文献、表彰

[3] 寺門正之、文部科学大臣賞 第45回創意工夫功労者受賞（2004年4月）
[4] 鳩山明彦、ブラズマ・核融合学会 学術奨励賞（2004年）
6.11 運転とトラブル

(1) 1986 年建設初期から 1990 年 JT－60 大電流化改造前まで

高周波加熱装置は 1986 年 10 月から調整運転を開始し、1987 年 6 月から LH 加熱装置 (LH: 3 ユニット (クライストン 24 本) IC 加熱装置 (IC: 1 ユニット (四極管 8 本)) で構成する全ての高周波加熱装置が本格的に運転が開始された。運転開始初期では、JT－60 プラズマ入射に際して、高周波電力がプラズマに良好に入射するためにエージング運転が繰り返し行われた。エージング運転手法の確立と入射パワーバラッタ制御装置の装置調整を繰り返し日々が続いていた。この時期の最も多く発生したトラブルでは、クライストンの耐電圧劣化による保護動作の多発で、電源装置の保護装置であるイグナイトロや高電圧遮断器に繰り返し負荷が加えられた。特にイグナイターの損傷が発生し交換、修理が余儀なくされた。また、中央運転制御設備のトラブルもあり、制御ソフトウェアのパックアップ起動するものが数多く発生した。この時期に最も装置の性能に影響を与えたトラブルでは、特にクライストンの耐電圧劣化であった。主な原因は、電子節電のカソード (K) 電極から、カソードの構成物質である BaO（含浸型カソードで BaO を含浸剤の BaO + CaO + Al₂O₃ で溶融含浸）が蒸発して周辺のウエネルト、アノード (A) 電極、ボディ (B) 電極等に飛散して耐電圧劣化を引き起こしたことがある。カソード部はイリジウムを表面被覆含浸カソード（含浸剤の組成 BaO + CaO + Al₂O₃ = 4:1:1 にしてイリジウムを表面で被覆）に改良して、順次交換を実施した。その効果がありクライストンに係わるトラブルは減少していった。表 1 にクライストン電子銃改良前と改良後の性能比較表を示す。

<table>
<thead>
<tr>
<th>項</th>
<th>改良前</th>
<th>改良後</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧回復時に要する時間 (130kV-10min 保持)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-K 間</td>
<td>(min) 90 27</td>
<td></td>
</tr>
<tr>
<td>A-B 間</td>
<td>(min) 70 24</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>160 51</td>
<td></td>
</tr>
<tr>
<td>達成割合（％）</td>
<td>10 50</td>
<td></td>
</tr>
<tr>
<td>電流電流（mA） (130kV-10min 保持)</td>
<td>(1台/10台中) 0.25〜2.0 (4台/5台中) 0.1〜0.3</td>
<td></td>
</tr>
<tr>
<td>カソード特性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度</td>
<td>891 836</td>
<td></td>
</tr>
<tr>
<td>pH 畳着量</td>
<td>0.08 0.03</td>
<td></td>
</tr>
<tr>
<td>ヒーター電力</td>
<td>245 220</td>
<td></td>
</tr>
<tr>
<td>RF 出力</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 GHz : 84kV-27.3A, 10s (MW)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2.17GHz : 94kV-31.7A, 10s (MW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 1992 年 JT－60 大電流化改造後から 1998 年 EC 加熱装置建設前まで

1989 年から 1991 年にかけて JT－60 大電流化改造が実施された。高周波加熱装置でも LH および IC アンテナが改造されている。この時期は、結合系、アンテナ設備、伝送設備の高周波計測にトラブル発生が高、LH ではアンテナ内で電力分岐の変換部として新設計のループアンテナが 2 基、IC では新設計の亜同格型 2 行 2 列ループアンテナが 2 基制成した。これらのアンテナの構造詳細は、6.3 LH 加熱装置の改良及び 6.5 IC 加熱装置の改造で述べているのでここでは省略し、運転により生じたトラブルについて記述する。まず、LH アンテナでの大きなトラブルでは、プラズマに近接するアンテナ先端部、磁力線に沿って融解が認められた。電力分岐型ランナーでは、構成上先端部で発熱が生じてもクライストンへの放射熱量は急減しない場合が多く、性能向上には利点であるが、放射熱過大で発生する保護回路が動作しない場合、損傷に至る可能性がある。また、先端部の発熱を光ファイバにより感知して高周波を遮断する保護装置も併用しているが、プラズマ入射時にブラズマ光と放射光との識別もあり、ブラズマからの光により誤動作する場合があるという警告が発生した。また、アンテナエンジンで微小発熱を有する装置の発熱を除去するためエージングを進展させる運転も含まれることから、発熱的な発熱のみを検出したと仮定する場合には実際の課題が生じている。IC アンテナ改良は現在でも重要な研究開発課題である。

IC では、基板増幅系に係わる不具合が増加して、高周波出力の振動や基板増幅系基板内部デーテー交換部のビット欠け等が発生した。これらトラブルの発生状況、原因、発生系統を調査すると 1993 年 2 月から 1994 年 10 月の期間では IC 加熱装置だけで総数 51 件、ブラズマ入射実験中に大きな支障
をきたしたトラブル中では、励振増幅系が非常に重要であることが判明した。これらの経験から、いかに発生したトラブルをより迅速に効率良く、少人数で解決するため、異常診断システムの考案、開発へと発展した。詳細内容は6.7 フィードバック系異常診断装置の開発で記述する。

建設当初から多くのトラブルが発生していた中央運転制御装置であるミクロコンピュータと CAMAC を中心としたシステムは、多くの処理が1 台のミシンコンピュータに集中して、処理能力が限界に達していたため、1994 年と2000 年にかけてワークステーションと YME、パーソナルコンピュータからなる分散処理システムの中央運転制御装置に改良した。詳細内容は6.6 高周波加熱装置制御装置の改

造で記述する。

3) 2000 年 EC 加熱装置運用開始から 2005 年現在まで
1998 年から 2000 年にかけて4 系統の EC 加熱装置 (EC) が建設された。EC は110 GHz の周波数、1 系統あたり1 MW、5 秒の大電力高周波を発生、伝送、プラズマへ入射できる装置として建設された。建
設当初から多くの新しく作成された装置を含む、発振管であるジャイロトロンをはじめ、その電源のスイッチング装置、メンテナンスが簡単な K 冷凝コ、ミラーを使って高周波分布を造出管伝
送に適したモード変換する機器、プラズマ実験に適した偏波を生成する機器、高周波損失の小さな真空室、高周波電力測定機器、ミラー型アンテナ、伝送機器等がある。特に新しく作成された装置は 1MW
以上での実施数は新領域であるため、これまでも 1 MW、1～3 秒を超える発振管が存在していなかった

放電を起こる装置や高周波の回り込みで DC ブレーキの回路と回路部から真空漏れを発生したようなトラブルが観察された。ジェイロトロンについてはまだ多くの改良が必要であり、欠陥幅伸長に伴うジェイロトロンビーム電流の減少による発振停止の改善をはじめ、モード変換器での発振改善、ノイズ
による保護回路の動作による発振停止等がある。ジェイロトロン改良については EC 加熱装置の改良で
記述する。また、高圧年化対策として、真空排気系の制御装置の更新が実施されている。

(4) トラブルの推移
図1 に高周波加熱装置

運転の初期段階 (1988 年～
1989 年) と JT-60 大電流
化改造後 (1993 年～1994
年) 及び EC を新設後 (2003
年～2004 年) について、年
代順に主なトラブル数を
比較した結果を示す。まず
建設当初の 1988 年～1998
年は制御設備、大電力増幅
設備、伝送系設備 (高周電
計測) など多様なトラブルが顕
出し、電源設備、励振増幅設
備と続いていっている。伝送系設
備では、高周波計測装置に係
わる伝送信号系の不具合や
JT-60 真空容器電位と高
周波設備を電気的に絶縁
して高周波を通過させる
DC ブレーキの耐電圧動作、
プラズマと IC アンテナとのインバータ化整合を行うスタブチューナーの耐電圧劣化等が発生してい
る。これらの機器は設計から見直し、改良を加えて以後トラブルは発生していない。

JT-60 大電流化改造後の 1993 年～1994 年にかけては、高周波加熱装置も LH、IC アンテナの大改造
が実施されたにもかかわらず、1988 年建設初期に比較してトラブル数は減少。主なトラブルでは LH
アンテナ先端損傷と本体室伝送系の高周波計測系等に初期不良、新設ランチャー用ベキシングガス配
管の一部から真空漏れである。IC では励振増幅系電子制御部の異常対策、本体冷却水漏れトラブルに
備え、特にガス管流量計に対して漏水検知システムを設置している。

EC 設備が新設され、運転が開始された 2003 年以降は、EC 用ジャイロトロンと周辺器具の未成熟機
器の改造が主で、数値に表されなかった変化は数多く発生している。これらは迅速に修理改良を加え
運転を継続してきた。しかし、建設当初からの機器では経年劣化による小さなトラブルも数多く発生
始めていることも事実で、交換部品の製造停等で修理部品の入手も困難な状況になり、使用停止し
た機器の部品を新たに修理して回転を続けているのが実情である。高周波加熱装置も運転開始から約
17 年になり、高圧年化による新たなトラブル対策の時代に入ることになる。
7 中性粒子加熱装置
7.1 正イオン NBI装置（P-NBI）の概要

目的
トカマクプラズマへの中性粒子入射（NBI）は、プラズマ加熱及び非誘導電流駆動に極めて有効な方法である。実際、100kV級の正イオン NBI装置が、JT-60 や TFTR、JET 及び DIII-Dのような大型トカマク装置の開発に貢献している。そのうえ NBI は、プラズマ分布やプラズマ回転制御、MHD 不安定性抑制等の能力を持つとともに、モーショナルシュトック効果による電流分布計測に不可欠なものである。さらに、プラズマの形状に左右されずにビームを入射することができるため、様々な実験に供することのできる。

構成
正イオン装置（P-NBI）は、1 ビームライン当たり 2 台のイオン源を有する 14 ビームライン、14 セットのイオン源用電源及びこれに 14 ユニットに共通の冷媒循環系設備や冷却設備、真空排気設備、制御設備などから構成される。図1に負イオン装置（N-NBI）も含めた NBI 加熱装置の全体ブロック図を示す。

a. イオン源
イオン源は、ビーム発散角（ωyΦ）；1 度以下、電流密度：270mA/cm²及びプロトン比；75％以上の中性ビームにて 10 秒の入射が要求されていた。それに加え、フィラメントの寿命は 1 年以上と課せられていた。そのため、2 台のイオン源テストスタンドを使って R&D を実施、その結果、プロトン比 90％、ビーム発散角 1 度にて、75kV、35A、10 秒の水素ビームを入射できるイオン源の開発に成功した。

b. ビームライン
ビームラインの入射角は、プラズマ水平面に対して 35.5 度の角度である。これは、初期の JT-60 真空容器には外側水平面にダイバーターコイルが配置されており、水平方向にポートが確保できなかったためである。ビームラインは、イオン源角度調整機構、2 本のズーム化セル、残留イオンを偏光し熱処理するための開始磁石とイオンプラン、それにクライオポンプ、ビームリミタ、真空仕切弁及びドリフトダクト（NBI ボート）から構成される。

c. 電源設備
イオン源は 1 ビームラインあたり 2 台設置されており、このための電源設備は 2 式のソースプラズマ用電源、各 1 式の加速電源、電子抑制のため減速電源から構成される。加速電源は、120kV、94A の容量を持ち GTO によって制御されている。減速電源は、-2kV、20A である。サービスブロックシステムは、加速部における放電破壊発生時のサイクルエネルギー抑制に使われている。

図1 JT-60 P-NBI 及び N-NBI の全体構成ブロック図
運転結果

1988年に運転を開始し、同年には定格入射パワー20MW（水素ビーム、75keV）を達成した。その後、プラズマ実験領域拡大のために、約40keVの低ビームエネルギー及び80keV付近の高ビームエネルギーより上、あるいはより高エネルギーを目的としたいかんを開発した。低エネルギー側では、イオン源の加速部を二段加速から二段加速に変更することによって40keV、16MWの中性粒子ビーム入射に成功した。高エネルギー側では、加速部の電極間隔を最適化することによって75keV、27MWのビームパワーを得ることができ、これはリソジナル設計に比べて30％も高い値であった。

1989年から1991年には、JET-60の大電流化改造に対応して、4ユニットを垂直入射から接線入射に改造した。この接線入射により、垂直入射でのリアルロスを30％以上から10％以下に低減することができた。改造では、加速ラインインターカップ及びドリフトダクトを除いたイオン源を含むビームライン機器のほとんどは再利用した。同時に全イオン源用電源において、重水素ビームによる120keV、40MW入射を目的とした改造を行った。この結果、1996年に重水素ビームエネルギー95keVにて入射パワー40MWを達成した。

1994年には、ヘリウム排気シミュレーション研究及びD-^4He 核融合反応実験のための高パワーでのヘリウムビーム入射運転を行った。本運転を行うためには、ビームライン内に蓄積された大量のヘリウムガスを排出する必要があり、水素/重水素ガスの排気用のクライオポンプを一部改造し、アルゴン凝縮器をクライオバッパルパネル面に形成するアルゴンガストラップング法により実現した。この結果、4ビームラインで80kV、4.8MWの^3He 中性粒子ビーム及び3ビームラインで60kV、2.8MWの^4He ビームパワーや、数秒間入射することに成功した。

2003年から2004年にかけては、接線入射ユニットのビームリミタやイオン源用電源及び制御系の一部を改良することによって、ビーム入射パラメータを定格の10秒から30秒に延伸させることを試みる。主な改良点は、7-10ユニット・ビームライン先端の入射ポート部内第3ビームリミタの熱的補強、加速電源等における出力制御GT0のゲート制御補強及び高出力真空管駆動回路のFET化、制御系設備へのVI、IV監視インターコロック回路の追加等である。ビームリミタの熱的補強では、ビームからの熱流束に対するリミタに被耐熱面を設けることにより、ビーム制御の基となる。また、この結果、平均11MWのビームを30秒間入射することに成功し、P-NBIの積算入射ビームエネルギーは340MJに達し世界最大値を記録した。

以上のように、正イオン NBI 装置は世界最高レベルの性能を発揮することにより、JET-60の DT 等価核融合電力増倍率：1.25及び核融合サイクル：3.0×10^16keVs/m^3等の達成に大きく貢献してきた。JET-60用P-NBI装置の全体配置と基本構成を図2に示す。また、表1にP-NBI装置の設計値と達成値を示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>設計値</th>
<th>達成値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>基本設計</td>
<td>改造後</td>
</tr>
<tr>
<td>入射パワー （MW）</td>
<td>20/^4He</td>
<td>40/^4D</td>
</tr>
<tr>
<td>ビームエネルギー （keV）</td>
<td>75-100</td>
<td>30-80</td>
</tr>
<tr>
<td>ビームパルス幅 (sec)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>イオン電流（A）</td>
<td>35/^4He</td>
<td>30/^4D</td>
</tr>
<tr>
<td>中性ビームエネルギー比 [^4He (E/2) : ^3He (E/2)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58 : 32 : 10</td>
<td>78 : 15 : 7</td>
</tr>
<tr>
<td></td>
<td>(E/2 at 75 keV)</td>
<td></td>
</tr>
<tr>
<td>ヘリウムビーム入射パワー</td>
<td>^4He ビーム：1.2 MW/ビームライン (at 78 keV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>^3He ビーム：0.8MW/ビームライン (at 58 keV)</td>
<td></td>
</tr>
<tr>
<td>クライオ冷却性能</td>
<td>^4Heガス：1300 m^3/s/ビームライン</td>
<td></td>
</tr>
<tr>
<td></td>
<td>^3Heガス：1400m^2/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D_2ガス：900m^2/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>^3Heガス：550m^2/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>^4Heガス：480m^2/s</td>
<td></td>
</tr>
</tbody>
</table>
図2 NBI装置全体配置図
7.2 正イオン源の開発・改良

目的
アーカ放電により正イオンを生成するとともに、正イオンを加速電極により高エネルギーに加速するものである。垂直入射 7 ユニットと接続入射 4 ユニットにより構成される正イオン NBI 装置では、1 ユニット当たり 2 台のイオン源を有しており、最大入射パワー 40MW の重水素等の中性粒子ビームを JT-60 プラズマに注入することを目的としている。

設計内容
図1にイオン源内部構造を示す。表1にイオン源の目標性能を示す。イオン源は1986年に最初のビーム成長実験を開始して以来、JT-60における加熱実験に必要とされるビームを供給するための各種改良や機能追加を行ってきた。アークチャンバーはマルチスティック型のイオン生成とし、加速電極は 12×27cm の加速領域を持つ静電型加速とした。また加速部は、イオン源から 8.3m の真空容器入口部にビームが集束するよう設計した。当初は、加速電極を二枚とした二段加速型イオン源であり、加速電極の構成はビーム上流側から第1正電極、第2正電極、減速電極及び接地電極の計4枚から成っている。表1に加速電極間隔の変遷を示す。なおこれらの改良目的である高パワーリー化等の結果は、7.7節に詳細に記述する。

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>JT-60</th>
<th>JT-60</th>
<th>JT-60</th>
<th>JT-60</th>
<th>JT-60</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速電極間隔(mm)</td>
<td>d1=5, d2=6.5</td>
<td>d1=4, d2=6</td>
<td>d1=4.5, d2=6.5</td>
<td>d1=4.5, d2=10</td>
<td>d1=4.5, d2=8</td>
</tr>
<tr>
<td>低次エネルギー入射</td>
<td>75keV, 40keV</td>
<td>80keV</td>
<td>110keV</td>
<td>95keV</td>
<td></td>
</tr>
<tr>
<td>高次エネルギー入射</td>
<td>35A (HP)</td>
<td>48A (HP)</td>
<td>48A (HP)</td>
<td>30A (D)</td>
<td>35A (D)</td>
</tr>
<tr>
<td>入射パワー</td>
<td>20MW (HP)</td>
<td>18MW (HP)</td>
<td>27MW (HP)</td>
<td>37MW (D)</td>
<td>40MW (D)</td>
</tr>
</tbody>
</table>

a. 1986年8月～1987年10月
JT-60の完成後、NBI加熱実験を開始した1986年8月～1987年10月の間に使用されたイオン源は、水素ビームエネルギー75keV、最大入射パワー20MWを得るように電極ギャップ、径環、バネ等を最適化していた。各電極間の間隔は、第1正電極第2正電極；d1。以下第2正電極；第2正電極；d2。減速電極；接地電極；d3。との間でd1=5mm, d2=6.5mm, d3=7.5mmである。特にd1, d2は、引き出されるビームの集束性を最良とするために、この間に印加される電界強度が比γを0.7、焦点距離を8.3mで設計した。

b. 1988年6月～1989年10月
1988年6月～1989年10月の間に使用されたイオン源は、ビームエネルギーは従来と同じ75keVで、入射パワーを20MWから25MWに増加させるために電極径環、電極板厚など電極体自体をそのまま、d1＝4.0mm, d2＝5.0mmにした。このような場合、ビーム引出面の電界強度は電極間の電界強度に比例して増加していなかったが、加速電流は電極間の電界強度に比例して増加しないことが判った。

c. 1991年～1994年
1989年11月から1年半をかけて、JT-60高性能化改修工事が行われ、これに対応して、JT-60NBIは従来の75keV, 20MWから一挙に120keV, 40MWに性能を向上させるために重水素ビーム対応及び加速電源の出力電圧を100kVから120kVに昇圧するなどの改修を行った。イオン源については、ビームエネルギー110keV前後で最大入射パワー40MWを得ることを目標とし、上記b項に示すイオン源のセラミックスペーサの大きさを変更し、電極ギャップ長をd1＝4.5mm, d2＝10.0mmに変更した。全体の改修は1989年4月から6月の間に14ユニットのうち1ユニットを用いて、加速電源及び偏置磁石電源の増力実験及び試験鉄運用を行ったが、その結果、ビーム引き出運転で最大105kV, 62A, 0.15sec、加速電源のビーム無し無負荷運転では最大114kVまで。
到達でき電源が正常であることの確認とイオン源のエージングをさらに十分行えば 110 kV 前後の高電圧領域での運転も可能であるとの見通しを得、全ユニットの改修を実施した。
1990 年 7 月から 10 月にかけて JT-60NBI 原型ユニットで水素ビームの特性試験を行ったが、1991 年 3 月から JT-60 において水素ビーム運転を開始し、同年 7 月から重水素ビーム運転を開始した。これ以
後 40 MW 入射のため、イオン源のエージングを行い運転電圧を上昇させるための努力を重ねたが、電圧上昇に伴いイオン源の外部の放電破壊が原因で運転時間と共に絶縁耐圧が劣化する現象が発生した。
この原因は第 1 正、第 2 正間のセラミックスペースを両端の印加電圧が瞬間的に絶縁耐圧を超
過するためにと、この対策として沿面放電バイパス用球ギャップを設け付けて解決できた。しかし加
速電圧が 105 kV 以上の領域ではイオン源内部で放電破壊が頻発し、第 2 正電極—減速電極間ギャップ
長 d2 を 11.0 mm あるいは 14.0 mm に拡大して電圧上昇を試みたが良い結果は得られなかった。以上よ
り、ギャップ長変更など従来イオン源の部分改修では高エネルギー領域の安定ビーム入射運転は不可
能との結論に達した。
1996 年 1 月～1997 年
上記したイオン源の試験結果により、高エネルギー領域での運転を断念し、90～95 kV 程度での大
ビーム電流運転により大パワーや得る方向に転換した。1995 年 6 月に一部ユニットのイオン源の第 2
正電極—減速電極間ギャップ長 d2 を 8.0 mm に短縮して特性試験を実施し、大パワーや得られること
を確認した。1996 年 1 月から、全イオン源の d2 を 8.0 mm に変更、運転を開始し、同年 7 月、40 MW
の入射パワーや達成した。
1994 年 10 月〜
2004 年 10 月からの 30 秒の長パルスビーム入射運転に向けてイオン源各電極の熱負荷について検討
を行った。その結果、電極は冷却水により強制冷却されていることから 30 秒入射においても問題無
いことを確認した。
結果
JT-60NBI は、1986 年に水素ビームを用いた NBI 加熱実験を開始し、定格中性粒子ビームパワーの 20MW
入射に成功した。その後、1991 年に重水素ビーム対応、高エネルギー化改修を実施して重水素ビーム
のエネルギー110keV で 40MW の入射パワーや得ることを目指し運転を行った。イオン源での放電破壊に
対する対策を講じながら高エネルギー領域での運転の安定化に努めたが、イオン源の基本的な
構造上の理由から安定化が果たせなかった。このため、イオン源加速部の電極ギャップ長の変更を行
うことにより、イオン源運転の目標を高ビームエネルギー領域から大電流領域に方針転換した。こ
の結果、1996 年、重水素ビーム対応及び加速電源の最大出力電圧を 95keV で、最大入射パワーや40MW を
達成した。また、2004 年 10 月からの長パルス改修後の運転で、接続ユニットのイオン源は 30 秒入射
に成功した。
考察、波及効果
イオン源の放電破壊は、十分解明されていない現象であるため、加速部に印加できる最大電圧の評
価・改良は試行錯誤を繰り返し見出す必要がある。現在のイオン源は、加速電圧 75kV で設計されたも
のであったが、様々な改良により 100kV まで動作領域を拡大し、最大入射パワーや40MW を得た。なお加
速電圧をさらに上げるには、電極支持構造等の基本設計の見直しが必要であると考えられる。これら
のイオン源の耐電圧改善を通じて得られた新たな技術・知見（例えば、沿面放電バイパス用球ギャッ
プ機能、絶縁スペース形状等）は、JT-60 の 500keV 負イオン NBI 装置や ITER の 1MeV 負イオン NBI 装
置の設計に反映されている。一方、長パルス化に関しては、30 秒運転を安定に動作できたこと並びに
主要部分の温度が飽和していることから、大幅な改修を行わなくても、更なる長パルス化の性能拡大
が期待される。
将来に向けて
今後の課題は、国内トカマク重点化装置に対応した 100 秒入射の技術的確立である。今回の 30 秒の
成功により、基本的な課題は解決していると考えられるが、各部の熱負荷について詳細な検討を行う
必要がある。
参考文献、特許
[1] 河合 観氏人、他、「JT-60N B I 用正イオン源のパワーア増大」、JAERI-Tech98-042
[2] 栗山武明、他、「JT-60 粒子入射加熱装置の設計及び技術開発」、JAERI-M87-169
[3] 豊岡 剛 52-1029999、「イオン源装置」、松田 振三郎
7.3 正イオン NBI 用ビームラインの開発・改良

目的
ビームラインは、イオン源で加速した高エネルギーイオンビームを中性粒子ビームに変換してトーアスに入射するとともに、中性化されなかった残留イオンビームを処理するためのものである。さらに中性粒子ビームを抜く NBI ポートを通して JT-60 プラズマに注入できるように、ビームの入射方向の測定、調整する機能を有している。

設計内容
運転開始時（1988 年）は、上ユニット 7 基、下ユニット 7 基、全体で 14 基の垂直入射ビームラインにより中性粒子ビームを入射し JT-60 プラズマを加熱するものであったが、1989 年から 1991 年におけ る JT-60 大電流化改造に伴い、4 基の垂直入射ビームラインを接続入射ビームラインに改造した。図 1 に、垂直入射ビームラインと接続入射ビームラインを示す。

図 1 JT-60 用正イオン NBI 装置ビームライン

(1) 垂直入射ビームライン
ビームラインの入射角度は、水平面に対して 35.5 度傾斜しており、各ユニットは主排気タンクを 1 單位とし、その中に、イオン源角度調整機構、中性化セル、クライオポンプ、打消冷却、偏磁石、カロリメータ、ビームダンプ等を収納している。イオン源角度調整機構は光学的にビームの軸ずれと発散を検出、測定しながらイオン源の取付角度を調整し、ビーム軸を NBI ポートの中心軸に合わせるためのものである。中性化セルはイオン源で加速された高エネルギーイオンを中性ガスと衝突させることで高エネルギー中性粒子ビームとするためのものであり、クライオポンプは、イオン源から流れ出す水素は重水素ガスを効率よく排気して、生成した中性粒子ビームを残留ガスで再び電離する のを抑えるためのものである。一方、中性化しなかった残留イオンビームは偏磁磁石や打消冷却により磁気的に偏向して、ビームダンプで熱化させる。また、ビームパワーの絶対値は可動式のカロリメータにより測定する。このカロリメータへの熱流束はビーム軸率を面に対して 1kW/cm² と非常に大きな値であるが、受熱面形状を 810 個のセグメントの V 字配列にすることにより、受熱面に対する熱流束を小さくし熱伝を含めた耐熱性能を確保した。
主排気タンクと JT-60 真空容器側の NBI ポートとの接続は、プラズマ放電終了時に高速で閉止する高速シャッタ、接続ペアロース及び金属シールゲート弁を介して行い、JT-60 本体からのガスや電磁力及び変位を NBI 装置に遮断するような設計を行った。また NBI ポート内壁には、中性粒子ビームや中性粒子ビームが再電離して発生する再電離ビームの衝突からポート内壁を保護するビームリミタや再電離保護板等を装着する構造とした。

(2) 接線入射ビームラインへの改造
1989 年から 1991 年において、JT-60 プラズマ電流等を大幅に増大する JT-60 大電流化改造が実施された。これに伴い、それまで不可能であった水平方向入射ポートを確保することができ、4 基の垂直ユニ
ニットを接線方向から入射できる改造を実施した。設計上の留意点は、従来の垂直入射ユニットの機器を最大限に使用することであり、このため接線入射ユニット化に当たって新規に設計を行ったのは、上下ユニットを合わせた大型の主排気タンク、ビームライン軸の変更による漏洩磁場変更に対する大手消荷コイル、ビームライン機器支持構造及び接線入射用 NBI ポート等である。また接線ユニットでは、金屬シールゲート弁に、弁位置を高速で閉止直前状態まで駆動する「アンシール機能」を追加することにより高速ショックを割愛、合理化を図った。

(3) 長パルス化改造
2003 年、接線ユニットの入射パルス幅を 10 秒から 30 秒まで延伸した。このために接線入射ビームラインの NBI ポート内壁のビームリミタ（材質：モリブデン）の形状を改良し、受熱面の拡大と熱容量の増大により、30 秒入射でのビームリミタ最高温度をモリブデンの再結晶温度領域以下である約 750℃以下になるよう改良を行った。さらに、再電離保護板に関しても熱負荷条件が厳しい箇所に、保護板の材質を等方性黒鉄から CFC 黒鉄に交換し耐熱性の改善を実施した。

結果
ビームラインは、イオン源で生成した高エネルギーアイオンビームを効率よく、中性粒子ビームに変換するとともに、プラズマの所定の位置に入射できるよう高精度にビームの軸合わせを行うことが必要である。これにより、極低損のクライオポンプから高温となるビームダングルまで熱的に非常に広い範囲まで厳しい条件で機器設計を行う必要があった。これまでの運転の結果、水素ビームで 20MW、重水素ビームで 40MW の中性粒子ビームをプラズマに入射することに成功し、システムの基本性能が確認できた。さらに 2004 年には、接線入射ビームラインにおいて入射パルス幅 30 秒の長パルス入射を達成し、また長パルス入射後のビームラインの内部点検において、再電離保護板の取付ボルトの一部が損傷していることが発見された。原因は、再電離ビームが熱的に弱いボルトに直接衝突する取付構造であったためであり、今後、取付構造の改良により、長パルス入射においても健全性を確保できると考えられる。

考察、波及効果
ビームラインは、大電流の高エネルギービームを機器内に通過させるものであり、ビーム加速条件の不適正によるビーム発散、ポート内真空度の劣化による再電離の増大等が発生すると、急速に耐荷荷が薄くなくなる設備である。さらに再電離したイオンビームの軌道は JT-60 トカマク運動に伴う漏洩磁場により大きく影響を受けるため、そのイオンビームの衝突による熱負荷の検討には、これまでの運転実績を基にして詳細に評価を進める必要がある。将来の 30 秒以上の長パルスビーム入射を想定すると、現在の慣性冷却方式では除熱が困難となり、強制冷却（水冷）が不可欠となることから、その準備に向けて、今後、熱負荷分布の計測に留意して運転を進める必要がある。

将来に向け
国内トカマク重点化装置として、NBI 加熱装置は 100 秒の長パルス化を要求されており、これまでの成果を踏まえて、ビームライン機器の水冷等の改良や新たな技術の導入を図っていく予定である。

参考文献、特許
[2] 実開昭 59-41792、「中性粒子入射装置用移動装置」栗山正明、㈱日立製作所から承継
[3] 特開昭 60-39800、「中性粒子入射装置用配管やぐら」栗山正明、㈱日立製作所から承継
[4] 特開昭 60-036892、「高熱流束加熱装置」栗山正明
7.4 正イオン源用電源の開発・改良

目的

イオン源用電源は、NBI 加熱装置の主電源であり、1 ユニットに装着される 2 台のイオン源に最大加速電圧 120kV、電流は 2 台合わせて 94A まで供給することができる。高エネルギー・ビームをプラズマに入射するためには、イオン源の動作特性に応じて高圧大電流の直流電源を瞬時に投入/遮断する必要がある。このため、ゲートターンオフサイリスタ (GTO) を採用した、高速遮断機能を有する電源システムを開発した。

設計内容

イオン源用電源は、ソースプラズマを生成するためのフィラメント電源、アーク電源、ソースプラズマからイオンを引き出し高エネルギーに加速する加速電源、またイオン源で電子が逆走するのを抑制する減速電源、さらには中性化しないイオンを分離するための偏向磁石電源や打消コイル電源から構成される。図 1 に P-NBI ポツイオン源用電源の構成図を示す。このイオン源用電源において最も重要な電源は、イオンを高エネルギーに加速する加速電源である。すなわち入射タイミングに応じて高エネルギービームを加速するとともに、イオン源の加速電極で時折発生する放射破壊時に、数十マイクロ秒内で高速に電源出力を遮断し、放射破壊から電極が損傷することを防ぐことが必要である。当初、この直流スイッチには真空管を使用することを予定していた。しかしながら、真空管の大容量化、強い寄生振動の発生、大きな陽極損失に伴う熱的機械的問題、陰極-陽極間の時折発生するフラッシュオーバーなどの問題で、JT-60NBI 加熱装置で必要な 100kV、100A の高電圧、大電流を真空管でスイッチングするのは技術的に難しいことが分かり、半導体素子を多数、直列接続した半導体スイッチの設計・開発を実施した。半導体素子としては高電圧大容量のものが必要であり、サイリスタ及びゲートターンオフサイリスタ (GTO) が候補として考えられたが、システム構成も簡素化できる観点からサイリスタではなく GTO を採用することとした。表 1 に P-NBI のビームパルス 10 秒運転時のイオン源用電源定格値、及び後に 30 秒運転用として改造を行った（7.9 参照）イオン源用電源定格値を示す。

<table>
<thead>
<tr>
<th>電源</th>
<th>10秒以下最大／～2.5MW/ユニット</th>
<th>10秒超過30秒時最大／～2MW/ユニット</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速</td>
<td>120kV/∥=0.75 (特例 ∥=0.70)</td>
<td>80kV/∥=0.75 (85kV/∥=0.70)</td>
</tr>
<tr>
<td>減速</td>
<td>-2kV</td>
<td>-2kV</td>
</tr>
<tr>
<td>アーク</td>
<td>120V</td>
<td>70V</td>
</tr>
<tr>
<td>フィラメント</td>
<td>15V</td>
<td>13V</td>
</tr>
<tr>
<td>偏向磁石</td>
<td>90V</td>
<td>70V</td>
</tr>
<tr>
<td>打消コイル</td>
<td>160V</td>
<td>50V</td>
</tr>
</tbody>
</table>

図 1 JT-60 用 P-NBI ハイオン源用電源構成図
結果
1986年に水素ビームにて運転を開始して以来、現在までイオン源用電源は信頼性高く安定に稼動している。この間、加速電圧を40kVから120kVまで、パルス幅を10秒から30秒に変更するなど様々に運転条件を変更してきたが、いずれの場合も、高電圧、大電流を高速スイッチし、イオン源に大きな損傷を与えることなくNBI装置を稼動することができた。

考察、波及効果
GTOスイッチは、もともと加速電源の大容量化に伴う直流スイッチの信頼性の低下を補うために開発したものであるが、開発時点ではGTOスイッチの信頼性自体も明確ではなかった。出力電圧に比べてかなり小さな定格電圧のGTOを直列接続して構成しているため、過渡的につれも各GTOの電圧分担にアンバランスが生じるとGTOの恒久的な破壊を引き起こすことになる。このため特定のGTOに過大な電圧が印加しない改良を施してきた。その主な改良点の一つは、インダクタンス（0.3H）の挿入箇所をGTOスイッチの入力側から出力側に移動したことである。この目的は、加速電極での放電破壊時のサージのGTOスイッチへの流入を緩和することにある。こうした改善により信頼性が飛躍的に向上した。またJT-60P-NBIの全14ユニットに使用されているGTOは1,760個にも上るが、このうち破壊したGTOは初期障害による数台程度であり、それ以降は故障もなく高い信頼性を得ている。

将来に向けて
本電源は、設計・製作から20年以上が経過していることから老朽化といった大きな問題があり、これらに対する処置が必要とされる。また、将来的には100秒運転の実現を目指すため、更なる改造を進める必要がある。なお、近年、GTOよりもスイッチング機能が優れたIGBT（Insulated Gate Bipolar Transistor）を用いた高圧・大電流スイッチシステムも開発されており、それらの開発状況も視野に入れた対応を進める必要がある。

参考文献
7.5 冷媒循環系設備の開発・改良

目的
NBI 加熱装置では、ソースプラズマを生成するためにアークチャンバーに重水素（或い是水素）ガスを導入する。一方、ソースプラズマで生成したイオンを加速する加速電極内は高真空に維持する必要がある。このためビームラインには大容量クライオポンプを内蔵した主排気タンクを設置し、ビーム引出し時の重水素ガスを瞬時に効率よく排気する。このクライオポンプに液体ヘリウム及び液体窒素を供給・循環させるための設備が冷媒循環系である。

設計内容
冷媒循環系は、重水素ガスの排気のためクライオバブルを3.7K以下に冷却する液体ヘリウムループと、重水素ガスの予冷とクライオバブルへの常温からの放射冷却のためにシュロックバブル及びシェールドを冷却する液体窒素ループから構成される。He 冷凍設備の主要フロー図を図 1 に示す。液体ヘリウムループは完全な閉サイクルである。He 冷凍機の冷凍能力は、クライオポンプ及びカールドボックスとクライオポンプをつなぐ真空断熱配管の浸入熱推定値より決定した。クライオポンプの推定熱負荷は、模擬負荷装置での測定値の 1 ユニット 52W をもとに 14 ユニットで 730W とした。また、ヘリウムの真空断熱配管は全長約 450m であり、その推定熱負荷はバイオフタインと手廻り、弁を含めて 970W である。合計熱負荷は約 1,700W であるが、クライオポンプ予冷時の運転等を容易にするため、冷凍能力は 2,400W とした。2 台の主圧縮機、2 台の液圧圧縮機は共に油圧を駆動するスクリュー圧縮機である。He ガスの精製はカールドボックス内の液体窒素温度に冷却された内部吸着器により行い、特別の He ガス精製器は持たない設計とした。クライオポンプの基本運転サイクルは、2 階間の運転の後、1 階間の停止期間があり、この間に He 冷凍機内の内部吸着器の温度を常温に戻し、吸着器からの不純物を回収することにより吸着器の活性化を行う。14 ユニットのクライオポンプに液体 He を分配供給するため液体 He 用真空断熱配管は、1 本の C 型マニホールド水平配管と 1 本の垂直配管、及びビームラインと各垂直配管を結ぶ接続配管から構成され、多くのはく、合流を含む全長約 500m の長尺複雑配管である。これらの液体 He 用真空断熱配管は、ビームラインと垂直配管及びカールドボックス壁の一部の配管を除き、3 重管と形成しクライオポンプに供給される液体 He 用内管、クライオポンプからの He ガス用中管、常温の外管及び中管と外管間の液体窒素冷却の熱シールドから構成される。クライオポンプに液体窒素の供給を行う液体窒素ループは、液体窒素タンクから主真空断熱配管を介してクライオポンプに圧送され、クライオポンプで蒸発発生した窒素ガスは屋外大気へ放出される開ループである。液体 He 用の真空断熱配管と並列に配置される部分では、He 配管と同一真空領域内液体窒素配管を設置し、He 配管の熱シールドも兼ねながらクライオポンプに液体窒素の供給を行う。なお、液体 He 用真空断熱配管の C 型部分における液体窒素配管に関しては、構造が複雑となる分岐の数をできるだけ少なくするため、複数の液体窒素配管を並列に設置する構造とした。
結果
a. He 冷凍機の冷凍能力
He 冷凍機は、14 ユニットのクライオポンプを接続する前に、単体による冷凍能力に関する性能試験を実施した。冷凍能力測定方法は、クライオポンプを模擬した容量 3,000W のヒータが内蔵された試験用デューラーを接続し、クライオポンプへの液体 He 液面が一定に保持される状態で、ヒータの最大出力値から冷凍能力を求めめた。その結果、3.6K で 3,020W の能力を確認し、設計仕様値の 3.7K で 2,400W を十分満足するものが確認できた。

b. 液体 He 用真空断熱配管の熱負荷測定
He 冷凍機と 14 ユニットのクライオポンプを約 500m の真空断熱配管を介して接続し、手動運転により 14 ユニットのクライオポンプ全てに液体 He を十分供給し 14 ユニットのクライオポンプの定常運転が可能であることを見た。次に、定常運転時ににおける負荷端であるクライオポンプでの He 冷凍機の冷凍能力の測定と液体 He 真空断熱配管の熱負荷の測定を行った。液体 He 用真空断熱配管の定常時における熱負荷は 678W（1m 当りの熱負荷は 1.65W/m）となり、設計値の 970W より約 30% 低い値を示した。また、He 冷凍機の運転中における He ループ全体の熱負荷の変動はほとんどなく、He 冷凍機の運転を含めてクライオポンプシステム全体は非常に安定に運転されることが確認できた。
c. ビーム入射運転時の安定運転
冷媒循環系は、1986 年の NBI 装置運転開始から 20 年以上にわたって長時間安定且つ高信頼性を維持している。この間、クライオパネル面にアルゴン凝縮層を形成しヘリウム排気を行うアルゴンガストラッピング法の開発や、JT-60 本体のダイバータ排気への転用等においても機能性を発揮し、JT-60 の実験成果に貢献している。

考察、波及効果
本システムは国内最大級の冷凍能力を有するシステムとして開発された装置であり、多岐に分岐された全長約 500m の長尺真空断熱配管を介して JT-60 本体に設置されている 14 ユニットのクライオポンプに液体ヘリウムを安定に供給し、並列運転を行っている。このような大規模低温装置の自動制御は過去例が無く、通常のプラントシステムとは大きく異なる。これらの制御上の課題を克服するため独自の制御方法を考案し、安定な自動制御を確立した。

将来に向けて
ITER や原型炉に向けて低温技術は必要不可欠である。特にシステムの自動運転化などを考慮した運転情報の蓄積を行い、将来のより大規模な冷媒循環系の設計/製作/運転の合理化に反映する予定である。

参考文献、表彰、特許
[3] 1997 年度、（社）県高圧ガス保存協会一般ガス部会、高圧ガス優良保存係員、大賀徳道
[4] 2003 年度、（社）県高圧ガス保存協会、高圧ガス優良保存係員、大賀徳道
[5] 特開昭 57-119185、「クライオポンプ」、松田慎三郎、他
7.6 制御系設備の開発・改良

目的
P-NBIの制御系設備は、イオン源用電源(14ユニット)としての加・減速電源、磁場電源、ソースプラズマ生成用電源と受配電設備の電源系とはビームライン機器類、冷却水設備、真空排気設備、冷媒循環系を含めたビームライン系を制御しNBI加熱装置全体の制御を統括するための設備である(図1)。

NBI加熱装置

図1 P-NBI制御対象機器

設計内容
P-NBIは、イオン源内電極間ブレーキダウンに伴うサージ電圧・電流がノイズ源として装置の誤動作の原因となりやすいこと、製造機械の規模が大きいという発電ユニットが14ユニットと多数であること、大規模な液体ヘリウムループを持つことなどの特殊性がある。このようなNBIの特殊性とJT-60との整合性の双方を考慮して、NBI制御系の設計の基本方針を以下のようにした。
a. NBI加熱装置は、JT-60とはNBI加熱実験時にのあらゆるサージ電圧・電流がNBI加熱装置自体に与える影響が小さいこと、NBI加熱モードはJT-60模擬モードとしての固有のNBI加熱モードを各ユニット別に有する。
b. NBI制御系は、全系とはルーズカップリングとする。NBI加熱時に必要な項目を制御情報交換を行い、全系からの入射指令は各ユニット別に受信方式とする。

- 261 -
c. NBI 加熱装置のうちイオン源用電源運転中には、NBI 中央制御盤に運転員が常駐して、NBI 加熱装置全体の運転操作を担当することを原則とする。
d. クライオポンプの制御を含む冷媒循環系の運転操作は c 項の例外として実験棟液化機室 II の冷媒循環系制御盤にて専任運転員が常駐して、中央制御盤運転員の指示の基づき運転する形とする。
e. NBI 制御系は NBI 計算機システムを有し、NBI 加熱装置全体の監視機能及びイオン源用電源制御機能などにより運転員の負担を軽減させる。また、イオン源用電源の制御方法は、運転員の判断もあると予想されるため計算機システム主導型 (CPU 運転) と運転員主導型 (手動運転とソフト手動運転) の 2 種類をいつでも選択可能な方式とする。

結果
P-NBI 加熱装置の特性を考慮して設計した制御系設備は、JT-60 実験運転時において、NBI 加熱装置の効率的運転を可能とした。特にユニット毎に制御できるため、入射ユニットの組合せ自由ででき、コンデンショニングが不十分なユニットは入射モードから切り離して単独でコンデンショニング運転が可能である。

NBI 計算機システムより加熱装置全体の運転監視が一括で可能となり装置のトラブルの早期発見、早期対策が可能である。また、自動運転と手動運転の選択により細かなパラメータ設定が可能で自由度がある制御ができ幅のある運転が可能となった。

考察、波及効果
P-NBI 加熱装置の制御系設備は、P-NBI 加熱装置の運転と JT-60 実験運転がスムーズに行われるように全系とリンクするところはリンクし、P-NBI 加熱装置が単独で調整運転等を行う場合は、全系から切り離して調整ができるように自由度を持たせた点、さらにユニット毎に入射可能な点も JT-60 の効率的な実験運転に寄与できた。

基本設計方針が充分に生かされた制御系設備であり、実験運転時に P-NBI 加熱装置全体の運転監視が一括でできる点等は、運転員の負荷の軽減を含めて意義が大きい。

将来に向けて
近い将来において JT-60 実験計画の要求 (高パワー、長パルス幅等) に対応できるように P-NBI 加熱装置の制御系設備を検討する必要がある。

特許
[1]特開昭 59-117100、「中性粒子入射制御装置」河合賢二、横縄あゆみ
7.7 高パワーチ化と重水素及びヘリウム入射

目的

P-NBI 装置は、当初 14 ビームラインに設置された 28 台のイオン源を使って、75keV、20MW の水素によ る中性粒子ビームを入射する設計を行い、1986 年の完成とはほぼ同時に比較的容易に定格入射パワーよ
20MW を達成した。その後、水素ビームパワーや増大を目的として、80keV 付近の高エネルギービーム
及び 40keV 付近での低エネルギービームの 2 つの運動領域拡大を行った。1989 年からは、重水素ビーム
入射に対応した改造を行い、入射パワーや更なる増大を図った。一方、D-He 結合反応及びヘリウム
系気体能力研究のために、NBI 装置による He 及び He ビームを入射を実現した。

設計と運転

a. 水素ビームによる高ビームエネルギー加速機構改善

当初の 20MW 入射用イオン源は、加速電極を 2 枚とした二段加速型イオン源であり、加速部の電極構
成はビーム上流側から第 1 正電極、第 2 正電極、減速電極及び接地電極の計 4 枚から成っている。各
電極間の間隔を、初段（第 1 正電極～第 2 正電極）d1、以下第 2 正電極～減速電極、d2、減速電極～
接地電極、d3 とする）d1 = 5.5mm、d2 = 6.5mm、d3 = 2.5mm、d1、d2 の電界強度の比（'I'）は 0.7
とした。二段加速型イオン源では、ビーム引出しへの電極間ギャップ（d1、d2）の電界強度をより強
くすることによって僅かながらビーム電流を増やすことができる。一方、ゲートを狭くすることにより
ビーム集束性能が低下し、加速電極へのビーム衝突割合が増大電極への熱負荷が増大する危険性もある
る。1986 年の定格入射パワーよ 20MW（イオン源 1 台あたりのビーム出力は 35A）達成後、ビーム引出し
領域の電界を調整しビーム電流を増やして入射パワーよ増大を図った。具体的には、d1 を 5mm から 4mm
に、d2 を 6.5mm から 5mm に縮小し、加速電極への熱負荷を最大許容値内に抑えつつ、d1、d2 の
電界比を調整した。その結果、電極への熱負荷を大きく増やすことなく、イオン源 1 台あたりのビーム
電流を、35A から 45A に増大することができた。この結果、入射パワーよ、水素ビームにて 75keV、
27MW（当初設計レベルの 35% 増）に拡大することに成功した。

b. 水素ビームによる低エネルギー・高パワーチ化のための改善

1987 年、JT-60 の低密度プラズマ高性能化のために、40keV 付近の低ビームエネルギーにおける入射
パワーよ増大が求められた。これに対して、P-NBI 用二段加速型イオン源は、ビームエネルギーを 40keV
（加速電圧 40kV）とすると、ビーム発散や電極・ビームライン内受熱機器の熱負荷等運動領域の問題
からビーム電流を 30A 以下にしなければならず、入射パワーよは 8MW 以下に減少する問題があった。こ
の問題を解決するために検討を進めたところ、低エネルギービーム領域では、ビーム引出し領域においてより
高い電界強度を与える二段加速型イオン源の方が大電流を加速できることが明らかとなった。こ
ため、二段加速型イオン源をそのまま流用し内部の改造無くして一段加速型とする改造を実施した。
すなわち、内部構造は二段加速型のままとし、イオン源用電源からの出力ケーブルを巻き戻すこと
によって、全加速電圧を一段目の電極ギャップ d1 に印加し、d2 には電子抑制のための減速電源出力
を接続し、下流側 2 枚の電極（減速電極、接地電極）を接地電極とする。この結果、ビームエネルギ
ー 40keV にてイオン源 1 台あたり 48A のビームを引き出すことに成功し 28 台合計で 17.6MW の水素ビーム
入射化達成した。これにより同一エネルギーであれば二段加速型イオン源の約 2 倍である。この低ビ
ームエネルギー運転の期間は、約 1 ヶ月であったが低密度プラズマの性能改善に大きく貢献した。JT-60
用 NBI 加熱装置 1 ユニット (イオン源 2 台) あたりの運転領域を図 1 に示し、図 2 に水素ビームでのビームエネルギーに対する入射パワーを示す。

c. 重水素ビーム入射
1999 年から 1991 年の間、JT-60 の増力に合わせて重水素ビーム運転及び最大 120keV の高エネルギービームが入射できるよう改造した。目標は、イオン源 1 台当たり 120keV、30A の重水素ビームを引き出し、14 ビームライン、計 28 台のイオン源にて 40MW の入射である。なお、1992 年に、14 ビームラインのうち 4 ビームラインを垂直入射方式から斜線入射方式に変更し、リップル損失の低減及び電流駆動性能の向上を図った。

このためにイオン源は、加速電圧の増加に伴い、ビーム出力領域の電極間ギャップ d1 及び d2 をそれぞれ 4.5mm、10mm に変更した。加えて、加速電源の電気的絶縁性能及び直流側出力スイッチング/電圧レギュレーション能力を増強し、偏向電磁石の出力電流を 120keV 重水素ビームに合致させるべく 1500A から 2300A に増やした。改造後直ちに 120keV 化の確認試験を開始した。しかし、28 台のイオン源同時運転において、加速電圧が 100kV を超えると、イオン源の加速部内で頻繁に電圧破壊が発生し、多いときでイオン源 28 台のうち 2/3 以上にその現象が見られた。これは、水素運転に比べて重水素運転ではイオン源での放電破壊が起きやすいということを示しており、低速重水素粒子が頻繁に加速部内で荷電交換しその結果電荷を持つ重水素粒子が電極に当たり二次電子を放出して放電破壊を誘発しているものと思われる。さらにイオン源内部の放電は、電極間絶縁筒の耐電圧性能に徐々に劣化させた。これらのことから、安定したビーム出力領域・機器・サーマルパッケージを保つために、目標加速電圧を 90-100keV に下げ、この領域での入射電流分布を平均化することにした。このビーム電流増加のため、加速部のギャップ間隔 d2 を 10mm から 8mm に変更した。その結果、28 台のイオン源の全てが 90-100keV にて安定に運転が可能であった。その結果、1995年、重水素ビームの入射パワー 40MW (95keV) に成功し、また、定格 40MW に達するまでの入射パワー時間的経緯を図 3 に示す。

なお、重水素ビーム運転におけるビームダンプやカロリメータ等のビーム受熱器具からの中性子放射、ビームラインタンクの傍極に設置された 238U ファッションシャーターにより測定した。その結果、1 ビームラインあたりの中性子生成率 128n/keV/atom にて 6 x 10^6 n/s/A (3 x 10^6 n/s/ビームライン) であり、値は、他の NBI システムの測定結果からの予想値とほぼ一致するもとに、理論的計算結果と同じオーダーであることが明らかとなった。

d. ヘリウムビーム入射
水素または重水素ビームで設計した NBI 装置により、ヘリウムビームを生成するには、ビーム軌道等を考慮した運転条件の最適化と改造が必要である。He のイオン質量が、重水素のそれよりも約 2 倍あることから、ヘリウムイオン軌道を重水素イオンと同等に保つために、残留イオン偏向電場強度を√2 倍に増やす必要がある。しかしながら偏向電磁石の最大電流容量は重水素イオンの偏向で設計されており、電場強度の増加は困難であった。このため偏向電磁石を改造しない条件から、He ビーム、He ビーム、ヘリウムイオン・加速器の最大ビームエネルギーを 60keV、80keV として決定し、イオン源等の改造・設計を進めた。一方、ビームラインではビーム出力時のヘリウムガスの瞬時・効率よく排気する必要がある。初期の 1 ビームラインのみのヘリウムビーム運転では、SF6 ガス凝縮器によるクラウドウォパットの排気速度は、He ガスにて 1 ビームライン当たり 800m/sec であった。その後、5 ユニットにより高パワーのヘリウム入射が必要となった。しかしながら、5 ユニットのクラウドパットを SF6 ガス凝縮器クラウドウォパットに改造するには技術的にも金銭的にも困難であった。すなわち、7K のクラウドパット表面に SF6 ガスを凝縮させるためには、SF6 ガスがクラウドパット表面に到着する前に 7K のシュレーディンガースパッパルに吸収されないように大幅な改造が必要である。これに対して、クラウドパットのパネル表面にアルゴンガス凝縮層を形成してヘリウムを排気するアルゴンガス流込パッパルを開発した。これにより、ガス導入系の一連改造とアルゴンガスの導入タイミングの調整で効率的なヘリウム排気を実現するものである。測定の結果、アルゴンガス流込パッパルによる排気速度は、He にて 1 ビームライン当たり 550m/sec、He では 480m/sec であり、簡単な改造にもかかわらず SF6 ガス凝縮法の 60%の排気速度を実現し、ヘリウムビーム入射に必要な排気速度を確保できた。
この結果、二段加速型イオン源1台あたりのヘリウムビームのための最適な引出電流は、3He にあれば78keVにて18A、4He にあれば58keVにて14Aとなった。2イオン源による1ビームラインあたりの入射パワーは、3He では78keV、1.2MW、4He では58keV、0.8MWであった。

考察、波及効果
NBI加熱装置技術において最も重要なものは、イオン源からビーム電流を最大限に引出すことである。このためには、ビームの加速エネルギー、電流を考慮したイオン源形状（特に電極形状）の最適化が不可欠である。JT-60 NBI装置では、様々な技術的な試行により、世界最高パワー40MWの入射に成功した。これらの技術は、JT-60の500keV負イオンNBI装置やITERの1MeV負イオンNBI装置の設計に反映されている。

将来に向けて
国内トカマク重点化装置として、NBI加熱装置は100秒の長パルス化を要求されており、今回の成果を踏まえて、詳細な検討を進めていく予定である。

参考文献
1) M. Kuriyama, et.al.: “Operation and development on the positive-ion-based neutral beam injection system for JT-60 and JT-60U”, Fusion Science and Technology Vol.42, Sep./Nov.(2002)
7.8 再電離損失対策

目的
ブラズマへのビーム入射中、ビームの一部は、NBI ポート（ドリフトダクト）において再電離損失を発生する。再電離損失は、中性粒子ビームがダクト内の残留ガスと衝突しイオンとなり、その結果、入射パワーが低くなる現象であるが、NBI ポート表面が汚れ、発生したイオンが JT-60 からの磁場により偏芯し、汚れた NBI ポート表面に衝突し、そこから大量のガスを発生し再電離を加速する危険性がある。実際 JT-60 での空気ベンチ試験における初期ビーム入射時期における再電離損失は、50%以上に達し、これは 1 ダクト当たり 0.7MW 以上の熱負荷に相当する。さらに再電離したイオンの衝突箇所は、ビームエネルギー及び JT-60 の磁場強度によってダクト表面に局所的に集中する。このため、NBI ポートコンディショニングは、入射エネルギーの確保だけでなく、NBI ポート表面の溶融を防止する目的がある。

運転
再電離損失は、先に述べたように主にビームエネルギー及びトカマクからの磁場強度によると他に中性粒子ビームパワー、ビーム種、NBI ポートのサイズ、表面材料及びトカマク真空容器内の運転圧力等にも左右される。通常、NBI ポートコンディショニングのビームパルス幅は NBI ポート表面の溶融を防止のために 0.2sec 以下に制限し、NBI ポートの真空中で表面温度を監視しながらコンディショニングを実施する。

a. 垂直入射ユニット
図 1(a) に 1991 年運転開始時の垂直入射ユニットの再電離損失のコンディショニング時間経過を示す。この場合、再電離損失を 10%まで下げるのに、ビームパルス幅積算時間を 50sec 必要とした。このコンディショニング時間は、重水素化チタンの水素ビームでのコンディショニング時間の 3 倍以上である。その主な理由は、再電離の反応断面積が水素よりも重水素が大きいことと重水素ガスのコンダクタンスが水素より低いこと等と考えられる。コンディショニングのビームパルス幅積算時間 50sec は、通常のビーム入射運転の 1 週間に相当することから、早期の中性粒子ビーム入射を実施する上で、NBI ポートコンディショニングを迅速に実現することが必要となってきた。

第 2 回目のポートコンディショニングは、1992 年に約 2 ヶ月間の JT-60 真空容器内空気ベンチ後に行った。その際、ポートコンディショニングに先立ち JT-60 真空容器内での弱い He-GDC（ヘリウムガスを使ったグロー放電洗浄）を施した。その結果、若干のコンディショニング時間の改善が観測された（図 1(b)）。第 3 回目は、1993 年に 2 ヶ月の空気ベンチ後に実施し、数秒に強力な He-GDC を実施することで再電離損失の大幅な短縮を確認した。すなわち、ビームパルス幅積算時間 1991 年の値の約 1/3 の 15 秒程度に短縮できた。その後、数時間の He-GDC を実施することにより NBI ポートコンディショニング時間は、ビームパルス幅積算時間で数秒、ビームパルスショット数で十数ショットにまで縮めることができた。

b. 接線入射ユニット
接線入射ユニットは、1990 年に据付けられた。1991 年の最初の NBI ポートコンディショニングには、ビームパルス幅積算で約 150 秒を要した。これは、同時期の垂直入射ユニットに要した時間の 3 倍である。この理由には二つ考えられる。一つは、接線入射ユニットは上下二つのビームラインで一つのダクトを共有しているため 2 倍のパワー密度となっていることである。接線入射ユニットの 1 ビームラインののみの運転では再電離損失の減衰割合は垂直入射ユニットと大差ないが、2 ビームライン同時入射の場合は再電離損失が約 3 倍となることから、ビームパワー密度が再電離損失の急増を引き起こしていると考えられる。二つ目は、再電離イオンに対するダクトの保護タイルが、垂直入射ユニットではリピートタイルに対し、接線入射ユニットでは黒鉛製タイルとの違いがある。黒鉛製タイルは、
モリブデンダイムに比べてガスをより多く吸着できるにも関わらずビームの衝突による放出ガス量はモリブデンより小さいと考えられている。再電離損失が保護ダイムを大きく依存していることは、プラズマ電流とトロイダル磁場等の JT-60 運転パラメータの変更に伴って、再電離損失が大きく変化することからも明らかである。その後、He-GDC を導入することで、接線入射ユニットにおいても再電離損失の大幅な低減に成功した。実際、数時間の He-GDC により、NBI ポートコンディショニング時間を垂直入射ユニットと同様、10 秒以下に縮めることができ、大気開放後の中性粒子ビームの早期入射を実現した。

なお、30 秒入射時の NBI ポートコンディショニングに関しては、7.9 項の 30 秒化改造で別途、記述する。

考察、波及効果

NBI ポートコンディショニングは、再電離損失を低減して高パワービームを JT-60 プラズマに入射するためには欠かせない運転作業である。従来は、非常に長いコンディショニング期間が必要であったが、He-GDC の導入により、大気開放後でも比較的早い時間で実験に必要とされる再電離損失 10% を達成することが可能となり、実験効率の大幅な改善を実現した。再電離損失は再電離したビームがダクト表面に衝突し、そこからガスを発生し、再電離をさらに加速するという負荷還がかかることから、ダクト表面材をペーチングや He-GDC により脱ガス処理することが再電離損失の抑制に有効と考えられる。実際、ビーム入射中の NBI ポートの真空度は、NBI ポート表面材の温度とともに上昇していくことが観測されており、またその特性は通常のペーチング時の放出ガス特性と同様に温度の逆数で整理できる（図 2）。

このように、NBI ポートコンディショニングに関しては、再電離保護面の温度が重要な鍵であり、今後も注意深く監視していく必要がある。

将来に向けて

国内重点化装置として、NBI 加熱装置は 100 秒の長パルス化を要求されている。これまでの結果から、再電離損失の低減にはダクト表面の温度管理が重要であることが明らかとなっている。100 秒運転ではダクトを含むビームライン機器を強制冷却することから、運転開始前に動作温度以上のペーチング処理を行えば、強制冷却運転時には大幅な放出ガス低減が期待でき、NBI ポートコンディショニングが容易になる可能性がある。今後の運転においては、鍵となる温度情報などに留意しながら 100 秒運転を観測した NBI ポートコンディショニング手法の開発を進める予定である。

参考文献
7.9 正イオンNBI長パルス化改造

目的
IT-60における高性能プラズマの長時間放電実験を運転に伴いP-NBIのビーム入射パルス幅を30秒に延伸することが求められた。現行のNBIシステムに最大入射パワー、最大パルス幅はそれぞれ2.85MW、10秒であり、この値を必要最小限の運転にて、入射パワーの低減を可能な限り抑えて30秒に延伸するのが目的である。なお、改造は、主にP-NBI14ユニットのうち接線方向にビームを入射する4ユニットについて実施した。

設計検討と改造内容
パルス幅の延伸にかかわる設計検討は、制御系におけるインターコードや従来定格であるパルス幅10秒を超えての運転制御、データ収集機能をはじめとして、イオン源用電源構成機器やビームライン内の受熱機器について、最大30秒に目標に実施した。このうちイオン源用電源、イオン源用電源インターコード及びビームリミケの検討と改造内容を以下に示す。

a. イオン源用電源

イオン源用電源各構成機器の短時間過負荷容量について、建設当初の設計計算書や保護機器等を基に、定格運転時と30秒通電時の熱的裕度の比較検討を行った。具体的には、主回路に直接接続されている機器については1.1倍、各接続機器は1.1倍の値の10秒通電時と30秒通電時の比較を行った。その結果、概ね30秒通電の可能性を確認した。ブリーザ抵抗器等については若干厳しいものがあったため、想定される運転領域の熱的裕度を計算で確認した上、模擬負荷による通電試験を実施し、健全性を確認した。長パルス化に伴って最も厳しい機器は、加速電源の第2正電圧電源であり、加熱加熱される水冷抵抗器であり、この制限によりイオン源用電源の最大通電時間を30秒と決定した。なお、熱的裕度については、SF6ガスダクト内に収納されているソースプラズマ生成用電源の出力ケーブルも採用であったが、抵抗器同様の検討及び通電試験結果から30秒通電は可能と判断した。P-NBI装置の10秒運転時と30秒変化後の中間用電源の定格を7.4節の表1に示す。また図1に加速電源における30秒変化改造部分を示す。

![加速電源 30秒変化]

図1 加速電源 30秒変化

イオン源用電源における主な改造点は、加速電源及び減速電源の出力スイッチング用GTOゲートユニットの長パルス制御、第2正電圧電圧調整用高負荷真空管の駆動回路における真空管方式からFET方式への改造及び水冷抵抗器の過負荷保護（1.1倍）設定変更、減速電源のブリーザ抵抗器の増力等である。制御系機能では、10秒を超えるビーム入射運転のためのブリーザ増加を行うとともに運転時間超過検出回路の設定値変更等を実施した。なお、電源各構成機器のうち抵抗器やリアクトル、変圧器等外観検査ができるものについてはサーモラベルを貼付して監視した。

b. イオン源用電源の運転領域変更監視インターコード

イオン源用電源には、電圧、電流及び通電時間などそれぞれを個別に監視し、定格値に対する過負荷設定値を超えた場合は運転を停止する等のインターコードが設けられている。

ビーム入射パルス幅延伸においては、パルス幅のみ定格を超えることとなるが電流電圧等について
は定格の範囲内での運転となる。従って、従来の過負荷監視方式では実効的な保護を掛けにくい。そこで各電源の出力電流及び出力電圧と電流時間間を実測し、電流または電圧の 2 乗値との時間積（P1 または V1）による運転領域逆流検査監視及びその保護インターロックを新たに構築し、定格値と 30 秒運転での電力比が厳しい加速電源及びフィラメント電源に設置することとした。

監視装置は、各種方式を比較検討した結果、コンバクトで高性能及び近い将来の変更、改良の対応の容易さを考慮し、パソコンから容易にプログラミングできる市販のプログラマブルコントローラ（PLC）を採用することとした。本方式における保護インターロックのフローチャートを図 2 に示す。

図 2 保護インターロックフローチャート

a. ビームリミタ

ビームパルス幅を延伸した場合、イオン源電極やビームダンブ、ビームリミタ等の受熱源器の熱容量についても検討が必要であった。なお電極やビームダンブは冷却水により強制冷却されており、ビームパルス幅 10 秒では既に定常状態に達していることを確認しており、改造は不要である。

熱的には慣性冷却のビームリミタ（材質：モリブデン）が最も厳しい条件である。このため、詳細な熱解析を行い温度上昇が低減できる形状に改造を行った。ビームリミタは、ビームライン上最も口径の狭られた NBI ポート先端付近、JT-60 真空容器との接続部分に位置し、ビームの間隙部分を遮断しポート内壁等にビームが直接当たらないように設置されるものである。最大熱荷荷は約 500W/cm²であり、ビームパルス幅 7.6 秒で 192℃の温度上昇が観測されている。従ってパルス幅を 30 秒に延伸すると温度上昇は 758℃と見解もれ、モリブデンの再結晶温度領域に達するため温度上昇を低減しなければ 30 秒運転は不可能である。これに対して、リミタの配置状況や組成作業性、材料特性等を考慮した上で、リミタ受熱面（熱流密度の低減）及び体積（熱容量の増加）を拡大した新リミタを設計・製作した。この結果、30 秒通電でもリミタ表面の温度上昇を 400℃以内に抑えることができた。図 3 に、改造前のリミタ形状及び計算による温度上昇比較を示す。

図 3 第 3 ビームリミタ改前後における温度上昇比較（計算結果）

結果

a. NBI ポートコンディショニング

上記等パルス化改造後の、ビーム軸調整、NBI ポートコンディショニング等を実施した。NBI ポートコンディショニングは、7.8 項で述べたように再電離損失を極力低減させるために欠かせない作業であり、今回はビームリミタの改作業を実施したことから入念に実施した。コンディショニング運転は、0.1 秒程度の単パルスビームから開始し、ショット毎に再電離損失を確認しつつ徐々にパルス幅を伸ば
した。これらの結果、パルス積算時間をして10秒程度（ショット数：25〜30）で、再電離損失を、6〜7％に収めることができた。図４に、#7〜10ユニットの長パルス化改造後におけるショット毎の再電離損失減衰状況を示す。

b. プラズマ入射

NBI ポートコンディショニングにより再電離損失が約10%以下になったユニットから順次ビーム入射運転に移行し、改造した接続入射ユニット#1〜10ユニットで約2MW、30秒。その他の垂直入射ユニットでは10秒入射を3ユニット連続運転することで、図5に示すようにP-NBIとして平均11.3MWのビームを30秒間、JT-60プラズマに入射することに成功した。

ちなみに、このショットにおけるP-NBIの積算入射ビームエネルギーは、340 MJとなりNBI加熱装置としては世界最高値を達成した。

考察、波及効果

目標とする30秒入射を実現できたことから、電源等の検討・改造は的確であったと考えられる。また、熱的に厳しいビームリミタに関しては、30秒入射時の温度上昇を測定し、図6に示すように、測定点での温度を500℃以下に低減できた。この図は、#9、10ユニットのビームリミタ温度であり、#9ユニット、#10ユニットのおのおの2MW、パルス幅24.8秒、28.8秒入射時の温度上昇は、約294℃、約333℃であり設計検討した結果と極めて良い一致を示した。

このように、30秒入射で行った様々な検討、改造によりNBI加熱装置の装置性能を大幅に拡大し、JT-60のプラズマ性能の高性能化に貢献することができた。

将来に向けて

国内トカマク重点化装置として、NBI加熱装置は100秒の長パルス化を要求されており、今回の成果を踏まえて、詳細な検討を進めていく予定である。

参考文献

7.10 運転中の保護機能の開発・改良

目的
F-NBI 装置で最大 40MW の高パワービームを JT-60 プラズマに射入するため、射入中に何らかの原因で正規の運転状態を逸脱すると、NBI 装置だけでなく JT-60 本体にも重大な損傷を招く危険性を有している。ビーム射入実験運転において、プラズマ密度が低いとビームはプラズマを突きぬけ真空容器の対向面に衝突する。このビームのシアンスルーフ（突き抜け）の測定・監視は、プラズマに吸収されたビームパワーを正確に見積もるために必要ではなく、真空容器の NBI アーマータイルを保護する目的がある。

設計
NBI 装置で高パワーレベル・長パルス射入を行うためには、イオン源の放射破壊、ビームラインの再電離損失、ビームのシアンスルーフ（突き抜け）等を監視・抑制しながらパワープラススを上げていく必要がある（コンディショニング運転）。この運転を安全かつ効果的に行うためには、放射破壊現象を的確に検知するとともに、射入運転を高速で遮断する保護機能が必要である。以下に代表的な設計・動作を示す。

a. イオン源の保護
イオン源の加速部電極間には高電圧を印加するため、しばしば放射破壊が発生する。放射破壊の原因については電極表面の微小突起が放出ガス等を引くと考えられるが完全には解明されていない。塩が放射破壊を発生するとビームが生成できないばかりでなく、当該電極に損傷を与える。一方、弱い放射破壊は微小突起を削除し放出ガスを低減しコンディショニングを加速する。このため各電機流動の通電等、極間の不足電圧により放射破壊を検出し、瞬時に加速電源を遮断するとともに、放射破壊を消去した後、ビーム引出を自動再開する機能を具備した。ただし、1 パルス中の放射破壊回数が個別設定した値以上となった場合には、ビームの再起動は行わない設計とした。

b. ビームパワーの保護
ビームラインに関しては、7.8 項「再電離損失対策」で記述したように、イオン源から引き出された高速イオンは、ビームラインで中性化し NBI ポートを通過するが、ポート内の残留ガス量が多いと、中性粒子は再び電離し NBI ポートに衝突してしまう（再電離損失）問題がある。一方、再電離をしたビームが再電離保護板（グラファイト）に衝突すると、そこからガスを発生し、再電離をさらに加速するという正負盛りがかかる。このためビーム中に急速に再電離損失が増大し、再電離保護板を損壊してしまう危険性がある。これを避けるため、NBI ポートの真空度と再電離保護板の体積比の 1.1 の温度を監視し、真空度が 3mPa、再電離保護板（裏面）温度が約 550℃を越えると、ビームを遮断し再電離保護板を保護する保護機能を設けた。なお NBI ポートの真空度は、入射パワーの評価を行う際、中性ビーム Particle から再電離損失を減じてさらに不可欠な測定項目である。同様にビーム束の拡がりから NBI ポートで保護するビームリミタ温度を監視し、必要値に到達すると、遮断保全し、遮断を適応する保護機能を設けた。

c. シアンスルーフの評価・監視
JT-60 のシアンスルーフは、8 L'Aのアーマープレート各々に配置した熱電対及び赤外カメラで測定する。各熱電対は、モリブデンチップに銀ロート付けられ、温度感知の定数は実測値で 0.2℃以下である。熱電対の反応器が冷え易い部位は、アーマータイルに沿って約 5m 離れた位置に設置されている赤外カメラで、メガワード及びガラスウッソ製光学レンズを通して、赤外線温度として収録・監視を行う。これらのデータを基に、各ビーム入射ショットのアーマータイルの温度上昇を求めるシアンスルーフ評価する。熱電対ではビーム入射中の平均シアンスルーフ割合を精度良く求めることが可能である。他方、赤外カメラは温度の測定値を精度良く求めるのが難しいが、高速応答性を生かしてビーム入射中のシアンスルーフの時間応答を求めることが可能である。この 2 つを併用することで、ビーム入射運転のシアンスルーフの時間応答を比較的精度良く評価することに成功している。

一方、シアンスルーフへのアーマータイルの保護においても、熱電対と赤外カメラの両方を使用したシステムを開発した。特に熱電対システムには、アーマ温度の安定温度を再結晶開始温度以下にするための温度制限システムとビーム入射直後の温度上昇を検出し保護機能を用いる温度上昇監視システムを開発した。

なおシアンスルーフの評価は、プラズマの吸収パワーの評価を行う際に不可欠な測定項目である。
考察、波及効果
　イオン源に関しては、長年の運転においても、大きな損傷を起こすことなく今後まで至っており、基本的な設計が正しいことを示している。またシャインスルーに関しても、真空容器対向面のNBIアーマータイルに著しい損傷が見られたことは無く、高い信頼性が確認された。これに対してビームラインの再電離保護板に関しては、これまで2度の補修が必要となった。この理由は、再電離保護板の取付ボルトに直接、再電離イオンビームが衝突する構造であったことと、再電離保護板の温度監視用熱電対の取付位置が必ずしも最高温度でなかったためと考えられる。再電離イオンビームはJT-60本体の磁場により軌道を曲げられ、再電離保護板にほぼ垂直で衝突する。従って取付ボルトの頭を保護板の表面位置から下げるとしても、ボルト頭部に衝突しない。更に磁場を変更すると衝突位置が移動するため、1点の熱電対で、全ての運転領域をカバーするのは困難である。このため、取付ボルトを完全に遮蔽した新たな形状の再電離保護板を製作・装着する予定である。

将来に向けて
　保護機能は、単に機器を損傷から保護するだけでなく、効果的にコンディショニングを行うために、重要な役割を担う。現在、国内重点化装置として、NBI加熱装置は100秒の長パルス化を要求されており、その際、温度監視が最重要課題である。特に現在は慣性冷却であった再電離保護板や真空容器対向面のアーマータイルも100秒入射では強制冷却が不可欠であり、短パルスで実施するコンディショニングと長パルス入射するプラズマ入射の2つの時間をスケールに対応した新しい保護システムの検討が必要であろう。

特許
[1]特開平 01-169900、「アーキング検出回路」 松岡守、榊東芝
7.11 正イオンNBIトラブルとその対策

1986年から現在に至るP-NBI運転中に、多くのトラブルがP-NBI装置の全ての機器で発生した。トラブル数の時間変遷を図1に示す。

図1 P-NBI装置にて発生したトラブルの変遷

主なトラブル

a. ビームライン機器用冷却配管の凍結破損

クライオポンプ運転中、イオン源及びビームライン用冷却水は、凍結防止を行う必要がある。このため特に夜間等長時間ビームを運転しない時間帯でも、凍結を防止するため冷却水を運転時の約半分に絞る凍結防止運転を行っている。しかしビームライン受熱機器配管内に空気がたまると流量が低下し、その結果、配管が凍結破損し真空度イクを起こす事態が数件発生した。一例として、1992年1月の運転時にH1ビームリミタ冷却配管の2箇所に長さ約3mm最大幅約1mmの亀裂が発生した。原因は、接線入射化改造に際しヤグラ上部の冷却水配管内に空気が溜まっており、この空気溜まりが水頭圧を下げクライオポンプ付近のビームリミタ冷却配管の冷却水を通らなかったためと考えられる。対策として、クライオ装置停止運転時の冷却水の圧力を上げるため、熱交換器入口弁を全閉にし、熱交換器バイパス弁が自動的に開度調整することでビームライン手前の圧を低減した。加えて実験運転開始前には冷却水配管の空気抜きを行うようになった。

b. 冷水抵抗器の異常

冷水抵抗器は、イオン源加速部の第2正電極電圧を分圧印加するためのものであり、合計14台設置されている（7.9項「P-NBI長パルス化改造」の図1参照）。冷水抵抗器の構成は、600Ω、25Wのセラミック質抵抗器（以下、単抵抗器と言う）を150個直列にし、それを3並列としたものであり、1列ごとにFRP絶縁筒内に収められ乾燥水にて強制冷却されている。各抵抗器は、絶縁筒内上下方向に平行に設置されたFRP板2枚に固定されている。抵抗器は外部から目視確認ができないため、定期的に抵抗器全体の抵抗値を測定しての値により健全性の確認（管理値：30Ω）を実施している。

運転開始後から抵抗値は徐々に増加傾向にあり1993年に分解点検を使用した。その結果、補数の抵抗器表面の被覆（エポキシ塗装）に、所々、水滴ができたような跡を発見するとともに、抵抗器端部の金属製端子付近に亀裂がその中に水分の浸入形跡を確認した。また、抵抗器を固定しているFRP板2枚が5字形に変形していた。これらの異常は冷水抵抗器全数にわたって確認された。

原因は、冷却水流量不足による抵抗器の温度上昇を考えられ、それによってFRP板の変形が発生したものと推定した。また、抵抗器の亀裂は、抵抗器全体の温度上昇の上に局所的な電流集中による発熱の原因と考えられ、特に、本電源のようなパルス発熱の繰り返し運転ではそれが顕著である。冷水抵抗器全体の抵抗値増加はこの亀裂発生に起因すると思われる。

対策は、抵抗値が増加したものには新品と交換し、かつ、冷却水の流量増強と温度管理を徹底することとした。さらにFRP板は補強板に追加して変形を抑えることとした。交換した抵抗器の本数は、総数6300本のうち152本であった。

c. GCB投入用電源異常

NBI装置の変動系受電設備には絶縁ガスとしてSF6ガスを用いたガス遮断器（以下、GCBと称）を用いる。GCBの定格は、電圧24kV、電流1200A、遮断電流40kAであり、投入/開放のための制御電源はDC100Vである。P-NBIには本GCBを全計17台設置しており、一日平均3回の投入/開放操作を繰り返している。

1988年にGCB7台のうち1台が投入不能となった。調査したところ、投入パネル制御用モータのヒューズ溶断と投入命令用コイル絶縁不良による「遮断器投入命令信号」不動作によるものであった。
に、制御回路電圧を測定したところ、定格電圧 DC100V に対し DC320V（ただし無負荷時）もあることが分かった。本制御回路の電源は、中央制御台の制御盤で AC200V を単巻変圧器にて 130V に降圧しそれを整流し、約 40m 離れた GCB までケーブルで供給しているが、各部の電圧測定の結果、整流器入力電圧は AC130V で正常であるが、直流側電圧は DC320V であった。また、無負荷時 DC320V の電圧波形には、脈動成分がほとんどなく、脈動分電圧はほぼゼロであることが観測された。これらから、異常電圧は、電源ケーブル等の浮遊容量に無負荷充電が起きたためと判断した。

対策として、ケーブル等の浮遊容量に無負荷過充電が生じないように整流器出力部にブリーダー抵抗を追加し、かつ、単巻変圧器のタップを 130V から 100V に変更した。この処置により、無負荷時の直流側電圧はほぼ定格値に近い 110V から 125V 程度に下がり、その後現在まで同様の異常は発生していない。

d. 膨張タービン起動不具合

He 冷凍機の心臓部とも言うべき膨張タービンが、1996 年 7 月に軸偏芯（ジャーナル）方向振幅異常による起動不具合が発生した。正常時のタービン起動時の振幅は、数 μm まで跳ね上がっていたが、4 μm 前後に落ち着き、回転数についても 3 万 rpm 前後で安定に回転する。しかし、この場合、振幅誤が起動直後から増加し、最終的には振幅異常値である 17 μm を超え超えて、タービン停止に至った。分解点検の結果、目視確認では切削等の異物の混入はなかったが、ロータ側シャフト及びロータ側ブレーキパッドのジャーナル方向に円周状のキズが確認された。原因としては、シャフトの回転が約 2,000rpm まで落ちた時に瞬時に停止する機構であるため、停止時毎にシャフトとパッドが接触し、経年にジャーナル面に円周状のキズができたものと推測される。タービンの復旧は、シャフト、ファン、ロータ及びスラスト軸受については、一部研磨修正を行って再使用し、パッド（ジャーナル転受、断熱板及び連結リング等の消耗品については全て交換した。

対策としては、タービン起動・停止時の回転数及び振動データをより詳細に監視し、微小な異常をいち早く検知、消耗品の適切な交換を図るとともに、He 冷凍機運転開始前の不純物除去をより徹底し、異物による不具合発生を未然に防ぐとした。

e. 再電離保護板の損傷

NBI ボートを再電離ビームから保護するために、再電離ビームが衝突する NBI ボート領域にはグラファイト板からなる再電離保護板を設置している。これに対し 1994 年、2005 年の接線ユニットの NBI ボート内点検時に再電離保護板の取付ボルトの溶接が発見された。特に 2005 年に関しては、取付ボルトの完全に溶接し、その結果、2 枚の再電離保護板が脱落し、さらには NBI ボート全体が損傷する事象が発生した。原因及び対策については、図 10 項「運転中の保護機能の開発・改良」に記載した。

考察

図 2 1991-1994 における P-NBI 装置でのトラブル発生状況（総数 419 件）
図 3 1997-2004 における P-NBI 装置でのトラブル発生状況（総数 380 件）
将来へ向けて
正イオン NBI 装置は、JT-60 の主加熱手段として殆どのプラズマショットに入射することが必要である。このため 1986 年の運転開始以来、高い信頼性の確保に努めるとともに万が一トラブルが発生しても迅速に修理・対策を行い、現在に至っている。この間、発生したトラブルとその対策は、今後の ITER の NBI 加熱装置の設計・製作・運転に有用であるばかりでなく、大電流、高電圧、極低温等のシステム開発にも役立つものと考えられる。また本 NBI 加熱装置も国内トカマク焦点化装置の主加熱手段として期待されており、今後もトラブルの抑制とその適確な対策を進める必要がある。
7.12 負イオン NBI 装置（N-NBI）の概要

目的
中性粒子入射（NBI）装置により高密度プラズマの加熱・電流駆動研究を行うためには、ビームエネルギーを数100keV以上とする必要がある。従来の正イオンを用いるP-NBI装置では、ビームエネルギーとともに中性化効率が減少（500keVでは5%程度）するが、負イオンを用いると中性化効率が500keV以上でも60%に維持できる。このためJT-60において、プラズマ性能の向上とともにN-NBI加熱技術の開発を実施し500keV、10MWを目標とするN-NBI装置を導入した。JT-60用N-NBI装置は、世界に類の無いものであり、現在も性能改善を目指して運転条件の最適化と装置の改良を実施している。

設計内容
原研では、1980年代からN-NBI技術開発を進めてきた。1986年に1Aの水素イオン（H）電流の引出し、1989年に50keV、10AのH流、1993年に350keV、0.5AのH流を達成した。JT-60大電流化改造では、これらの技術を基にして、500keV、22A×2イオン源、10秒を目標性能とするN-NBI装置を設計・建設し、1996年から稼動を開始した。表1に、JT-60用N-NBIを設計時の1994年当時の負イオン源開発における最大実績値、及びJT-60大電流化改造用N-NBIの設計目標値を示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>1994年当時実績</th>
<th>JT-60大電流化改造用設計値</th>
<th>2004年末現在最大達成値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビームエネルギー</td>
<td>400keV</td>
<td>500keV</td>
<td>418keV/3.4MW/0.27s（H/1source）</td>
</tr>
<tr>
<td>負イオン電流</td>
<td>10A</td>
<td>22A×2sources</td>
<td>20.4A/406keV/0.54s（H/1source）</td>
</tr>
<tr>
<td>中性ビームパワーや</td>
<td>-</td>
<td>5MW×2sources</td>
<td>6.2MW/380keV/1.65s（H/2sources）</td>
</tr>
<tr>
<td>ビームパルス幅</td>
<td>24hours</td>
<td>10s</td>
<td>19s/345keV/1.5MW（D/1source）（矩形波）</td>
</tr>
<tr>
<td>同時達成値</td>
<td>400keV/0.18A/1s</td>
<td>350keV/0.5A/1s</td>
<td></td>
</tr>
</tbody>
</table>

図1 JT-60用N-NBI構成ブロック図

開発における同時達成値とJT-60大電流化改造用N-NBIの目標値の間には、超高エネルギービーム加速と大電流ビーム生成の同時達成という大きな飛躍がある。従って設計に当たっては、大電流負イオンを生成・加速するイオン源、それに500keVの直流高電圧を供給する電源に関してはR&Dを行いながら進めた。図1にJT-60用N-NBIの構成ブロック図を示す。ここでクライオポンプを冷却する冷媒循環系、一次冷却系等はP-NBI装置と共用としている。図2に負イオン源と高電位テーブル、イオン源タンク等の設置状態を示す。
a. 負イオン源

22A, 500keV の負イオンビームを生成するイオン源 2 台をビームラインに装着している。10A を超える負イオンの大電流ビーム引出しを実現するために、アーク放電による体積生成と、セシウムによる表面生成と組み合わせた大型かまばこ型放電室（直径 680mm、長さ 1220mm）によるセシウム添加型体積生成を開発・設計した。また引出した負イオンを 500keV に加速するとともに、そのビームを負イオン源から 24m 先の JT-60 のプラズマに集束させるため、3 段加速電極方式による加速部を設計した。

b. ビームライン

負イオンのビームラインは、イオン源と取付けビームの方向性を調整するイオン源角度調整機構部、イオン源の加速部の真空排気を行うクライオポンプ、イオン源から加速されたイオンを中性化する中性化セル、残留イオンを処理するイオンダングル等から構成される。特に P-NBI 装置とは違い、残留イオンを正／負の 2 種類のイオンを考慮する必要がある。これに対して JT-60 の溶拡磁場を積極的に利用し、残留イオンのビーム軌道を最適化したイオンダングルを設計した。またビーム中心の最大熱負荷は 180MW/m² と極めて高いので、そのパワー線定用カロリメータでは正イオン用 NBI ビームラインでの技術を発展させた V 字型構造体による熱負荷の低減（20 MW/m²）を図るなど、多くの熱設計を行った。

c. イオン源用電源

負イオン源を駆動するための電源は、負イオン生成電源、引出電源及び加速電源から構成される。負イオン生成電源はアーク放電により負イオンを生成するものであり、引出電源は負イオンを電子と分離するとともに加速部まで引出すためのものである。両者は電位的にはビームの加速電圧である 500kV で動作を行う必要がある。加速電源は、引出した負イオンを 3 段の静電加速により最大 500kV まで加速するものである。この加速電源には、イオン源の放電破壊時に超音波大電流を高速遮断する機能が重要である。このため、インパータを用いて低電圧側の周波数を上げ、その低電圧側を高速遮断するという交流スイッチング方式を新たに開発・設計した。

結果

1995 年から電極半体の試験を開始し、電源装置の 550kV の耐電圧の確認、模擬負荷による通電動作確認を実施した。さらにビームラインにおいて溶拡磁場の磁気シールドやクライオポンプの排気性能を確認した後、負イオン源と電源との組合せ試験を実施し、イオン源 1 台を用いて短パルスながら 400kV、13.6A の重水素負イオンビームの生成をカロリメータの熱負荷で検証し、システム全体の健全性を確認した。

1996 年から JT-60 のプラズマ入射を開始した。以降、2004 年までの 9 年間の運転で得られた最大達成値は表 1 の右欄に示すとおりである。世界最初の N-NBI 装置として、最初の約 4 年間は、様々な
な初期トラブルに加え、負イオン源の引出部やセシウム（Cs）オーブン、イオン源用電源等を中心
に、主に超電導電極間放電破壊に伴うサージ電圧に起因する各種のトラブル目に見舞われた。ま
た、運転電圧、ビームパワーる増大に伴い、流のリーキや絶縁変形の不良も発生したが、これ
をひとつひとつ対策・改良した結果、2000年以降は運転予定期間中に運転を長期中断して修理を
要するトラブルをほぼ克服することができた。その後、各種運転パラメータの最適化を進める、2001
年には電流で5.8ΜW、水素で6.2ΜWと、最大入射パワーカー達成した。2002年には、電極内の不均
一電界を修正することでビームの集束性を改善、その結果、NBI入射ポート間リミタの熱負荷を大
幅に低減し、2.6ΜW、10秒入射に成功した。2003年には、イオン源特性改良のための単独試験を実
施し、その結果を踏まえ、パルス幅を10秒から30秒まで延長する改造を実施した。また長パルス
化に当たっては、負イオン生成を行うアーク放電の時間変動という問題も発生したが、アーク放
電電流を制御制御により一定制御する制御方式を開発し、これを解決した。これらの結果、2004年
には、1イオン源により1.5ΜW、19秒（11ΜW、25秒）の長パルス入射を達成した。

考察・波及効果

負イオンで500keV、22Aという超高エネルギー、大電流の加速器は世界に例がなく設計ばかりで
なく運転技術も開発である。当面の最大の問題点は、ビームエネルギーが400keV程度と目標の80%、
入射ビームパワーカーは5ΜWと目標の60%にとどまっていることである。ビームエネルギーについては、
加速電圧性能が原因のため到達値でも約50kVであり、これを490kVまで印加できるよう、
放電箇所の安定とその改良に力を注ぐ必要がある。入射パワーサー増大のためにはビームエネルギー増
大の他、加速部電極間放電の抑制が必要であり、このためには、負イオンビームの強度分布の非一
様性改善やビームの集束のさらなる改善が急務である。これらの課題は、ITER用に開発中の1MeV
N-NBI装置で多くが共通であり、JT-60用N-NBIにおける性能向上のための技術開発は、ITER用N-NBI
装置へ反映されるものと期待される。

将来に向けて

本装置は現在も発展途上にある。今後もこれまでの実証、経験を活用しつつ、新たな技術の導入
を行い、目標設計値に近づくよう改良を図っていく必要がある。

参考文献、表彰、特許

[2] JT-60U 負 NBI 装置設計グループ、「JT-60 用負イオン NBI 装置の設計検討」、JAERI-M94-072
(1994)
injector system for JT-60U”, Fusion Science and Technology Vol.42, Sep./Nov.(2002)
and Technology Vol.44, Sep.(2003)
[7] 1997年度、日本原子力学会、技術賞、「核融合プラズマ用負イオン・中性粒子入射装置の開発」
栗山正明、他
[8] 特開平 08-327761、「負イオン中性粒子入射装置の運動方法」河合規己人、他、㈱日立製作所
7.13 負イオン源の開発・改良

目的

N-NBI 装置では 2 台の負イオン源をビームラインに装着し、JT-60 プラズマには中性粒子ビームとして目標パワー 10MW を入射する。負イオン源は、そのための心臓部であり、1 台当たりの負イオン源では、セシウム添加型体積生成方式による負イオンの効率的な生成を行うとともに、ビームの集束を考慮した 3 段静電加速方式により、最大 500kEV、22A（1 台あたり）の負イオンの大電流・高エネルギーのビームを生成する。

設計内容

JT-60U 用負イオン源は、500kEV のエネルギーディ22A の重水素および水素の負イオンビームを 10 秒間引き出すように設計した。設計に当たっては原研が 1980 年代から開発してきた負イオン源の様々な技術開発を反映している。特に大電流の負イオンを生成するため、半円筒（カマボコ）形の多極磁場型放電室に微量のセシウム添加するセシウム添加型体積生成方式（生成部）を開発・設計した。生成された負イオンは、総数 1080 個、14mm 径孔を有する多孔型電極から引出するとともに、局所的な磁場を加えることで負イオンと電子を分離する（引出部）。小孔から引出された負イオンは、3 段加速電極により最大 500kEV まで加速するとともに電極孔による静電レンズ効果で 1 ビーム当たりの発散角を 5mrad 以下に集束し、24mA 全のプラズマに全てのビームが集束する 3 段静電加速電極（加速部）とした。負イオン源の断面図を図 1 に示す。

a. 負イオン生成部

効率的な負イオンの生成のためには、アーク放電で生成するソースプラズマを高密度で低電子温度（1eV 以下）にする必要がある。これは電子温度が高くなると負イオンから電子が容易に剥がされ、急速に生成効率が低下するためである。さらに生成部から引出部に流れるガスが多くなると、ガスとの衝突により負イオンが中性化してしまうため、生成部の動特性を 0.3Pa 程度以下にすることが必要である。この難しい条件を満たすため、ソースプラズマは結晶的性能の良い半円筒形の多極磁場型放電室として、そこに低真空でも高い負イオン生成効率が可能なセシウム膜を形成するセシウム添加型体積生成方式を工夫した。

多極磁場型放電室は大電流を生成するため、直径 680mm、長さ 1270mm と非常に大きなものである。この放電室では、陰極であるタングステンフィラメント（最大 48 本）と陽極の放電室壁との間でアーク放電を行い、プラズマを生成する。生成されたプラズマは放電室内に取り入れられた永久磁石の作るラインキャプ磁場によって効率的に結晶化され、さらに引出部のプラズマ電極に電流を流し、ここで磁場を形成させる。ラインキャプの半径より負イオンと電子を分離する（磁気フィルタ）。またセシウム導入装置より放電室内にセシウム蒸気を導入し、プラズマ電極表面にセシウムを付着させることにより電極表面の負イオン生成の速率を低下して、負イオン生成効率を高めている。

b. 負イオン引出部

生成された負イオンを引き出し、最大 10kEV まで静電加速し加速部へ入射するとともに、負イオンと同時に引き出し可能な電子を回収・処理する機能を持つ。引出し面積は 450x1100mm^2 であり、5 枚のセグメントに分割されている (7.16 節参照)。各セグメントは、負イオン生成部側からプラズマ電極、引出電極、電子抑制電極の 3 組の電極から構成されている。各セグメントには 14mm 径、9×24 個の円孔があり、セグメント全体で 1080 個の電極孔により大電流負イオンを引き出す。またセグメントの法線は中心のセグメントに対して、0.5°、1° それぞれ中心に向かって傾けており、その幾何学的な設定によりビームを集中させていく。プラズマ電極は、前述したようにセシウム膜による負イオン生成効率（200℃～300℃位相当）を高めるため、プラズマ電極支持部の熱絶縁を行い、フィラメントの幅射熱およびアークプラズマにより 200℃以上に維持する。また引出電極は、内蔵した永久磁石によるダイポール磁場で、生成部から引き出された不純電子を曲げ、電子抑制電極に導き処理する。一方、負イオンは殆どその軌道を曲げられずに加速部に入るので、負イオンと電子を分離できる。

c. 負イオン加速部

引出部から入射された負イオンビームを最大 500kEV まで静電加速し、発散の小さい負イオンビームを発生するとともにビームを集束させる機能をもつ。円形の孔を有する 3 段の多孔電極 (第 1 加速電極、第 2 加速電極、接地電極) から構成されている。各段には最大 180kEV の電圧を印加され、それぞれの段の電圧を調節することにより静電レンズ効果を発揮し、孔を通るビームを集束させる。さらに接地電極の電極孔の軸方向を数 mm 変位することで、静電レンズ効果を起こし、周辺のビームを中心方向に偏向し、
多孔ビーム全体を負イオン源から24m先のプラズマ中心に集束する設計を行った。なお、加速部（および引出部）を支持する内径1800mm、長さ360mmの大型絕縁プラスチック（FRP）で構成した。このような大型セラミックの製作が困難であることから、採用にあたっては実験体が耐電圧特性に問題のないことを確認した。

結果
1996年の運転開始から、アーク放電条件、セラミック蒸発量、引出電圧、加速電圧等の様々な運転パラメータを調整し、水素では360keVで設計の22Aに対して20Aの負イオンビームを引き出し、水素では403keVで17.4Aの負イオンビームの引き出しに成功した。一方、負イオン源の特性評価を行い、孔からの1本のビークの発散、アーク放電の動作真密度、耐電圧を調べた。ビークの集束に関しては、負イオン源から5mmの下流側位置にモリブデン板挿入し、そこにビームを照射し、その密度分布測定よりビームの集束を評価した。この結果、ビームの集束と引出電圧や加速電圧により変わるものの運転パラメータ領域では設計値5mrad以下であることを確認した。一方、ビーム1本每の集束度は設計値を満足しているが、セグメンタル全体のビーム束の集束が不十分であることが、同様の測定手段により明らかとなった。これについては、7.16項「負イオンビームの集束性の改善」で記述する。

アーク放電の動作真密度に関しては、生成した負イオンを加速部内で加速する前に中性化させることで、生成部の真密度を極力低くし、加速部へのガス流入を少額する必要がある。このため低真空で安定したアーク放電を得るためにフィラメント電流、アーク電圧を調整したところ、設計圧力の0.3Paに対し、0.15Paでも所定の電流密度が得られ、カーボンの基本性能を確認した。ただし、電流密度が5枚のセグメント特に異なることが明らかになり、現在、その原因を調査中である。負イオン源の最大の課題の一つは、耐電圧特性が不十分であることである。これまでビームの無い条件で最大470kV、ビークが有る場合、最大400kVまでしか安定して印加できており、その原因は十分解明されていない。今後、入射衝撃の向上のためにも、放電破壊原因の解明と耐電圧の改善が不可欠である。なお、2003年からJT-60の長時間放電実験運転に伴い、30秒の改造に着手した。これについては、7.17項「N-NBI長パルス化改造」で記述する。

考察、波及効果
N-NBI装置において、イオン源は全体性能を決定する最も重要な機器である。正イオン源に対して、負イオン源は電子を負イオンの障害、そして加速エネルギー500keVを実現するため、様々な技術開発が必要であった。これらの技術は、ITER用NBI加熱装置の設計に反映している。さて、JT-60において世界で初めて負イオンNBIの建設・運転を行い、負イオンビームのビーム電流値、ビーム集束はほぼ設計値を満足している。一方、ビームの加速エネルギーが設計の8割に留まっている。イオン源の電極設計、最大加速電圧490kV（引出電圧10kV）で最適化されており、このため入射パワーユーザを目標の10kWにするためには、ビームエネルギーを500keVまで高める必要がある。加速部での絶縁破壊発生箇所及びその機構はまだ不明確であるが、ビーム無しの場合でも設計電圧490kVを印加できないことから、加速電極間の絶縁材である絶縁強化プラスチック（FRP）の耐電強特性の劣化や、電極表面の局所的で絶縁破壊が発生している可能性がある。今後、部分的に高電圧加減を実施し、放電破壊箇所の同定を進めるとともに、電界集中を軽減するコンデンサリング等の最適設計を行い、耐電圧性能の向上を目指す必要がある。

将来に向けて
当面は、設計目標である500keV、10MWの入射の達成であり、そのために耐電圧性能の改善を進めること。また、国内トカマク強化装置では、100秒運転が求められており、長パルス運転に向けて除電性能を高める必要がある。さらにITER以降の次期核融合用負イオン源においては、より高エネルギービームの加速技術とともに、トリチウム環境下のメンテナンスが容易なイオン源が必要である。この観点から、現在のスタンドペース（定期的に交換が必要）を用いたイオン源から、スタンドペースを使わないメンテナンスフリーを目指した高周波イオン源の開発も今後進める必要がある。

参考文献
7.14 負イオン NBI 用ビームラインの開発・改良

目的
N-NBI ビームラインの基本的な役割は、P-NBI ビームラインと同様に、イオン源で加速された大電流負イオンビームを中性粒子ビームに変換してトーラスに入射するとともに、中性化されなかった残留イオンビームを処理するためのものである。また中性ビームパワの計測、ビーム軌道の評価・調整を行うための計測機能も有している。

設計内容
N-NBI 装置では 2 基の負イオン源より、500keV, 10MW の中性粒子ビームを JT-60 プラズマに入射するものである。負イオンの中性化効率は約 60% であることから、ビームラインでは 18MW 近くの大電流負イオンビームを中性化 (10MW) 及び熱処理 (8MW) する必要がある。このために N-NBI 装置では、2 台のイオン源を装着したイオン源タンク、中性化セルタンク、イオンダングランク及び NBI ポート部からなるビームラインを設計した。図 1 に構成図を示す。イオン源タンクでは、イオン源（重量 6.5t）のビーム軸を精度 0.028° で調整するイオン源角度調整機械、イオン源内加速器での負イオンの中性化損失を少なくする高真空環境を作るためのクライオポンプ、およびトカマクからの漏洩磁場によるイオンビームの偏折を防ぐための磁気シールドを収納している。中性化セルタンクは、2 台のイオン源に対応した長さ 10m の 2 本の矩形中性化セルおよび磁気シールドから構成される。イオンダングランクは、中性化セールを出たあとの残留イオンビームを偏折し、処理するための偏折コイルおよびイオンダングランク、中性化ビームのパワーティタンおよびイオン源のコンディショニング運転時のビームターゲットとして使用するカーブリーダー、ビームライン内の真空度を補うために中性ビームの再電離損失の低減およびトーラスへの流入ガスを減らすためのクライオポンプを収納している。NBI ポート部は、JT-60 とビームラインを電的に絶縁するためのセラミック絶縁板、真空的に分離するための大口径ゲート弁などから構成される。

図 1 JT-60 用負イオン NBI 装置ビームライン

(a) 残留イオンビームの偏折
N-NBI 装置では、中性化セルの後で、ビームは中性粒子、負イオン、正イオンの 3 種類に分かれるため、負及び正イオンビームは偏折磁場により曲げて、イオンダングランクに当てて熱処理する必要がある。P-NBI 装置では、エネルギーが高いため N-NBI 装置では、正・負イオンビーム対応に加えて偏折磁場強度を大幅に強める必要があり、偏折磁場コイルが大型化してしまう問題があった。これに対して、JT-60 トカマクの漏洩磁場を偏折磁場として使用する方式を開発した。この方式は、トカマクの運転条件に対応した漏洩磁場の小型の補正磁場コイルが必要なもの、大型の磁場コイルやイオンダングランク近傍の磁気遮蔽を不要とし、システムの大幅な簡素化を実現した。

(b) 磁気遮蔽対策
N-NBI 装置では、中性化セルが長いため、中性化する前の負イオンビームに対しては微小な磁場でも大きな偏折を起こしてしまう。実際、500keV の重水素イオンビームの許容偏角を 1mrad 以下とするためには、負イオンビームの通過する領域では、残留磁場を 0.05G 以下にする必要がある。このために中性化セルおよびイオン源タンクには外層が Fe と SUS のクラッド鋼、内層がニッケルの 2 重磁気シールド方式を採用した。

(c) 受熱融施機能
中性化セル通過後の残留イオンビーム (D', D) を熱処理するためのイオンダングランクは、正負イオンビー
チームに応じて、最大 4.2 MW の熱負荷（熱流束：12 MW/m²）の熱負荷が可能な 2 つの受熱構造を有している。イオン源で加速された負イオンビームは、中性化セルの圧力により、残留イオンの正／負イオンの割合が変化するため、イオンシリングの熱設計としては 2 倍の粘度として 30 MW/m²、10 秒に耐えることとした。このため最大 12 MW/m² の熱負荷が可能な外部フィン付きスワール管を 56 本配置したイオンプランを開発した。一方、ビームファイバーの測定およびイオン源コンデンショニング運動時のビームターゲットとして、可動式的カロリメータを開発した。最大熱負荷は 10 MW、0.5 秒であり、断面当たりのビーム熱流束は約 130 MW/m² で達える。このため P-NBI ビームラインと同様、ビーム受熱面を縦 Y 字型構造とした。受熱面温度が熱流束を最大 20 MW/m² にするように工夫した。また受熱部には Mo と Cu の厚肉複合材を約 3000 個配置し、熱応力を緩和する構造とした。
(d) ビーム軌道計測機能
N-NBI 装置の負イオン源は、10 行 34 列のビーム引出孔を有する 5 枚のセグメントから合計 1080 本のビームレット（ビーム 1 本）を、NBI ポートを介して 24m 先の JT-60 トカマクに入射する必要がある。従って、このマルチビームの入射方向・発散を正確に測定することは非常に重要である。当初は、ビーム光測定等により軌道評価を試みたが、分解能等の問題から十分な評価が出来なかった。これに対して 2001 年に、可動式の Mo トーケー板を負イオン源から 3.5m 下流の位置に設置して、ビーム分布（ビーム軌道）を高精度赤外線カメラで測定するシステムを整備し、初めてビーム軌道の詳細なデータの取得が可能とした。図 2 に測定系を示す。

結果
負イオン NBI 装置は、目標性能であるビームエネルギー 500keV、入射パワー 10MW、入射パルス幅 10 秒のビーム入射を目指し、ビーム性能の向上を図り運動を行っている。この間、ビームラインとして、負イオンの最大の特徴である高い中性化効率（約 60%）を加熱システムとして世界で初めて実現した。また当初、イオン源からのビームの集束性が不十分であったために、ビームリミタの熱負荷が増大等の問題があり高パワーレンバーサルス運動が困難であったが、最近のビームの集束性改善（7.16 項「負イオンビームの集束性の改善」で述べる）により、大幅に熱負荷を緩和することに成功した。この結果、現在までに重水素ビームではエネルギー 400keV、入射パワー 5.8MW、入射パルス幅 0.9 秒、水素ビームではエネルギー 380keV、入射 6.2MW、入射パルス幅 1.7 秒のビーム入射を達成した。また 2004 年には、1 基のイオン源で、1.5MW、19 秒の入射に成功した。負イオン源の耐電圧が不十分のため、目標とする入射パワー 10MW に至っていないが、これまでの結果からビームラインの基本的機能の健全性は確認された。今後、負イオン源の性能向上に伴い、より高レベルでの技術評価を行う予定である。

考察・波及効果
N-NBI 装置は、装置の運転領域の拡張自体が新しい開発課題であり、ビームラインに関しても加速電圧が高くなるに従い、より高エネルギーのビーム運行に注意を払う必要がある。特に P-NBI ビームラインと異なり、イオン源内でのイオンと電子の加速方向が同じであるため、高エネルギーの電子ビームの挾入に関しても注意が必要であることが分かってきた。実際、長パルス運動後の内部点検では、電子のドリフト方向に対応した場所に損傷が発生された。逆に考えると、これらビームライン内の熱負荷情報は、様々な未解決な問題を有する負イオン源の負イオンや電子の生成・加速機構の解明に関わる貴重なデータである。今後、粗パルス運動に向けた耐熱性の向上と合わせて、計測機能の強化を考慮した開発を進めることが必要である。

将来に向けて
ビームエネルギーを高めることで NBI 装置開発に要求される基本的な方向であり、そのために中性化効率がビームエネルギー増大で低下しない負イオンビームを用いる N-NBI 装置が JT-60 で開発された。JT-60 でビームラインの基本的な機能が確認され、今後はより高パワーレンバーサルスでの確認が求められる。一方、ITER においては、炉環境の制限からコンパクトなビームラインの設計が行われており、ITER への技術的な展開も考慮した運動、改良も今後進める必要がある。

参考文献、特許
[3] 特開平 07-098392，「イオン源角度調整機構」，山本正弘，栗山正明

— 282 —
7.15 負イオン源用電源の開発・改良

目的
JT-60用負イオンNBI装置のイオン源に必要な500kVの超高電圧を発生する直流高電圧電源である。

設計内容
イオン源用電源の設計に関しては、490kV、64Aという超高電圧大容量直流加速電源の開発が技術上の最も重要な項目であった。電源にとって負荷であるイオン源の加速部では、負荷に相当する絶縁破壊しきい値に対して、耐電圧特性を向上させることが必要と想定。このため絶縁破壊が生じても過大なサージ電流で加速部電極の耐電圧を下げる損傷を防止するとともに、電源自身を破壊しない保護機能が必要である。このため200μs以下で大電流を遮断することが必要である。従来の100kV程度のNBI用加速電源では直流高電圧側に4極管やGTOサイリスタを用いた直流スイッチを設け、絶縁破壊時には直接に回路を遮断し、イオン源を保護する設計であつた。しかし、加速電源が500kVという超高電圧になると、多数の保護素子が必要となり製作コストが高くなるとともに、各素子への均等な電圧分配が難しくなり従来方式の適用は困難であった。このため図1に示すようにインバータにより交流側波形を高周波数に変換し直流フィルターパワーコンバータで大幅に減らし、交流側でスイッチングしてても加速部電極に過大なサージエネルギーが流入しない新しい方式を開発した。

方式用の直流電源の適用にあたっては、高熱負荷試験装置（JEBIS）の100kV、3kAの加速電源で試験を行い性能を確認した。なお本方式は、ITER用のM級加速電源の設計で提案されている。表1にN-NBIのイオン源用電源の定格を示す。

表1 N-NBIのイオン源用電源の定格

<table>
<thead>
<tr>
<th>電源</th>
<th>10秒時最大/〜3MW×2sources</th>
<th>10秒超過30秒時最大/〜2MW×3sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速</td>
<td>-490kV 64A 10s</td>
<td>-360kV 25A 30s</td>
</tr>
<tr>
<td>引出UUL</td>
<td>-10kV 80A 10s</td>
<td>-6kV 32A 30s</td>
</tr>
<tr>
<td>アークUUL</td>
<td>120V 5000A 11s</td>
<td>110V 2800A 31s</td>
</tr>
<tr>
<td>フィラメントUUL</td>
<td>15V 1200A×8 16s</td>
<td>13.5V 8750A×8 36s</td>
</tr>
<tr>
<td>PGフィルタUUL</td>
<td>5V 10kV 11s</td>
<td>5V 6.7kA 31s</td>
</tr>
<tr>
<td>バイアスUUL</td>
<td>10V 1600A 11s</td>
<td>2V 205A 31s</td>
</tr>
<tr>
<td>偏向コイル</td>
<td>1220V 1500A 13s</td>
<td>250V 700A 33s</td>
</tr>
</tbody>
</table>

結果
超高圧大電流電源であるため、運転開始から、負荷であるイオン源で頻繁に発生する電極間放電破壊時のサージ電圧による影響により、電源回路内の絶縁強度の弱い部分の絶縁劣化が多数発生した。例えば、1998年に電流計測装置の絶縁線内外の絶縁絞りの油中ガス分析試験において、アセチレンガスの発生（1ppm）が確認された。そのため、絶縁線内外の絶縁変圧器の分解点検を実施したところ放電痕が確認された。放電痕の周辺は黒化しており放電を数回繰り返したとも推定される。これは、イオン源電極間で発生した放電破壊による過大なサージ電圧が絶縁変圧器の耐電圧を超え、繰り返し印加されたことにによる放電に至ったものと推定される。対策として、耐電圧性能を上げた絶縁変圧器に交換すると共に、3段直流接続を3並列配置とし、新たに第1加速出力用絶縁変圧器に対する基準電流を直流側接地電位とし電位変動の低減化を図った。また1999年にソース電源絶縁変圧器の油中ガス分析に
おいて、アセチレンガスが検出された。これは変圧器内部での放電によるものであり、1次巻線の電磁力に対する強度を高める改良を行った。また、ACリアクトルのケーブル被覆表面に部分放電により発生した放電痕があり、ケーブル間に絶縁劣化が見られた。このようにサージ電圧による影響を、加速電圧の上昇に伴い新たに絶縁強度の弱い部分に波及し、安定運転を阻害してきたが、ひとつの対策・改良した結果、2000年以降は運転予定期間中に運転を長期中断して修理を要するトラブルはなくなり、各種運転パラメータの最適化が進み、2001年には入射パワーが重水素で5.8MW、水素で6.2MWに達した。2003年には、イオン源特性改良のための単独試験を実施し、その後、最長パルス幅を10秒から30秒にまで延長するための部分改造を実施した。その結果、2004年には、約1MW、25sの長パルス入射を達成した。なお、加速電圧に関しては、イオン源の耐電圧が不十分なため、400kV程度に留まっている。

考察、波及効果

本加速電源は、490keV、64Aという超高圧大電流電源でありかつ負イオン源の動作を満足するため投入時間：200ms以下、遮断時間：200μs以下と高速に大電流をon/off制御する必要がある。このため新たにインバータを用いた交流スイッチング方式を開発し、現在までプラズマ入射パワーアンド約6MWの入射に成功した。前述のように、数々の絶縁破壊現象に悩まされたが、交流スイッチング方式自体は良好な動作特性を示し、負イオン源に損傷を与えることなくJT-60の実験に供しており、今後の超高圧大電流電源の制御方式として展開されるものと期待される。一方、放電破壊時のサージ電圧に関しては、耐電圧の向上とともに、サージ対策が不十分な絶縁強度の弱い部分に影響が波及していくため、今後、目標値である加速電圧500kVのビーム加速の達成までは、適時、対策を行う必要があり、またその技術的知見は、超高圧大電流電源の開発に反映できるものと考えられる。

将来に向けて

設計条件である、500kV（加速電圧490kV、引出電圧10kV）、64Aの運転に向けて、イオン源を含む耐電圧特性の改善を図り、入射パワー10MWを目指すとともに、国内工程制御装置化要求されてる100秒入射化に向けた検討を進める。本電源は現在も発展途上であり、今後もこれまでの実績、経験を活用しつつ、新たな技術の導入を行い、目標設計値に近づくよう改良を図っていく必要がある。

参考文献
7.16 負イオンビームの集束性の改善

目的

負イオン源は、14mm 径の円形孔を 9×24 配列したセグメントを 5 枚、合計 1080 個のビームから大電流負イオンビームを生成する。イオン源から発射したビームはビームラインを経由し中性化された後 W-NECT ポートを通して 24m 先の JT-60 プラズマに射入する。このため 1080 本のビームを 24m 先に束として集束させる必要がある。

経緯

本装置で採用した多孔型電極では、ビームの集束に関しては、1本のビーム（ビームレットと呼ぶ）の散乱の抑制に加えてビームレットの束が 1 つの焦点に集中するように、ビームの軌道設計を行う必要がある。このため 1996 年の運転開始以降、ビーム光測定等より様々な軌道評価を試みたが、分解能等の問題から十分な評価が出来なかった。これに対し、2001 年、可動ターゲット板をイオン源から 3.5m 下流側に設置し、そのビーム位置（ビーム軌道）を高精度赤外線カメラで測定するシステムを整備し、初めてビーム軌道の詳細なデータを得ることが出来たようになった（図 2 参照）。

実験の結果、1 本のビームレットの集束に関しては、引出電極と加速電極との間隔や引出電圧と加速電圧の比で制御でき、運転パラメータの調整により設計値の 0.28 倍以下でできることを確認した。一方、セグメント全体のビーム束の集束に関しては、以下に示すようにビーム束が集束していないことが明らかとなった。

a. セグメント間の電界補正

1 セグメントは高さ 180mm、幅 450mm であり、そこに 14mm 径の小孔が縦に 9 個、横に 24 個配置している。負イオン源の中央に記述したが、セグメントは縦方向に 5 枚設置し、各々の法線の取り付け角度を 0.5 度ずらすことで、縦方向のセグメント毎のビーム束を 25m 先に集束するように設計している。これに対して、図 1 に示すように、ターゲット板上でセグメント毎に上下方向のビーム束が拡がっていることが明らかとなった（図中の白枠が各セグメントの投影領域「180mm×450mm」）。負イオン源の電極取付構造を詳細に再検討した結果、セグメントとセグメントの間にみ-mm 的隙間があり、この隙間が設計上、平行電界であるのを凹状に変形していることが分かった。実際、この電界形状を考慮してビーム軌道計算を行った所、ビームが外側に偏射することが確認された。このため、隙間に金属導体を取付けて電界を均一化した上で、再度、ビーム軌道測定を行い、ビーム束の集束性に改善されことを確認した。

b. セグメント端の電界補正

セグメントの左右方向のビーム束を集束させる方法として、接地電極の静電レンズ効果を利用して左右端のビームレットはセグメントの中心方向に偏射する設計を行った。しかしながら、実測によるセグメント左右端のビームレットが設計値に比べて外側に拡がっていることが分かった。検討の結果、この拡がりは隅り合っている負イオンビームの空間電荷の反発によるものであり、セグメント中央あるいはビームレットの両端からの反発力の結果偏射しないが、端部では内側の反発力ののみが発生しビームレットの外側に偏射させること分かった。このため、端部の拡がりを抑制する方法として、セグメントを増やすように薄い金属導体板を配置し、セグメント内に電界分布を局所的に補正することで、端部のビームレットを内側に偏射する方法を考察した（図 2）。金属導体については、その厚みを変えて、ターゲット板によるビーム軌道の実測を行い、2mm を採用した。この結果、セグメントの左右端の拡がりもほぼ設計値に集束することができた。この改良は 2003 年に行われ、2004 年の長バラス運転に反映した。
結果
2001年のセグメント間の隙間の電界補正、2003年のセグメント端の電界補正により、ビームの集束性が改善し、高エネルギービームを効率良くJT-60プラズマに入射できるようになった。特に2001年の改修では、NBIポート入口のビームリミタの遮蔽荷を従来比で半減することに成功し、この結果ビームリミタの温度上昇が抑制でき、2.6MW、10秒のプラズマ入射の達成につながった（図3）。また長パルス化に向けて実施したセグメント端の電界補正では、負イオン源の加速電極間を通過するビーム軌道を設計値に近づけることで、電極の衝突損失も改善された可能性がある。詳細な解析は今後の研究課題に残されている。

考察、波及効果
1996年から運転開始したN-NBI装置であるが、大型負イオン源から発射するマルチビームが設計通りにJT-60プラズマに投入しているかの検証は、長い間待たなかった。今回、ターゲット板と高精度の赤外線カメラとを組み合わせた測定システムの構築により、1本のビームの軌道を計測できるようになったことは大きな前進である。特にP-NBIに比べてN-NBIのイオン源は、電子と負イオンを分離するための周圏磁場、その負イオンへの影響の補正用の電極の中心軸変位を有しており、1ビームだけでも複雑な軌道となる。そのため、設計当時（1994年頃）では、主に1ビームによる基礎実験データを基に構造を定めていた。これに対し、今回、JT-60のビーム軌道測定により、マルチビームの大型電極構造ではセグメント間の電界効果やビーム同士の反発力の無視できないことが明らかとなった。このことから、現在のJT-60 N-NBIの大きな課題の1つである加速電極の大きな熱荷荷の原因は、ビーム軌道の最適化が不十分である可能性を示唆するものであり、マルチビームを考慮した最適設計により、更なる性能向上が期待できる。

将来に向けて
当面は、ビーム軌道の測定結果と3次元のビーム軌道計算との比較を行い、マルチビームの場合のビーム軌道評価方法の確立を目指す。それにより高速電極構造を最適化し、電極内でビームが電極に衝突する割合を最小化し、性能向上を図る。また、国内トカマク重点化装置では、100秒運転が求められており、長パルス運転に向けてビームラインへの熱荷荷を低減するよう、ビーム束の集束性を更に高める必要がある。そしてこれらの開発はITER以降の次期核融合用負イオン源の設計・開発においても非常に重要なものである。

参考文献、表彰
[2] 2004年、文部科学大臣 創意工夫功労者賞「負イオン NBI装置の大電流ビーム収束法の改良」本田敦、他
7.17 負イオンNBI長バルス化改造

目的
JT-60において高性能プラズマの長時間放電実験運用に伴いP-NBIと同様、N-NBIのビーム入射バルス幅を30秒に延伸することが求められた。このため2台ある負イオン源の1台を用いて電源容量の範囲から制限される2MW、30秒の運転を目指す改造を実施した。

設計検討と改造内容
30秒のバルス幅延伸を目指し、初めて負イオン源用電源に30秒運転の性能評価を実施、その上で負イオン源、ビームライン内の受熱機器さらには制御系について検討した。このうち特に重要な負イオン源用電源、負イオン源の排気速度改善、アーク放電の一定制御に関して述べる。

a. 負イオン源電源
負イオン源用電源のビームバルス幅延伸のために、設計定格の10秒電時と30秒電時のイオン源用電源開発に短時間に向けた電源設計を行った。具体的には、主回路に直列接続する電源は1台で、並列に接続する電源は2台について比較検討し、熱的定格容量を超えない範囲の30秒電源可能な電流、電圧を求めた。その結果、主回路を変更するような改造は不要で、一部の改造で30秒電源が可能であることが分かった。なお電圧30秒電圧において最も厳しい電力は30秒電源用電源の定格値を30秒化の性能を7.15節の表1に示す。同条件で示すと30秒後の電力電流(V×I)において、アーク電源(約1.4倍)やフィラメント電源(約1.5倍)及び偏磁磁石電源(約1.5倍)では、若干、定格値を上回っている。このため、P-NBIのイオン源用電源と同様、30秒電源の運転領域を変更した後、検査機の検査回路増加及び制御系の設備の長時間使用を検討する。

b. 負イオン源の排気速度改善
従来の負イオン源では、電極の電界の不均一を修正することで2.6MW、10秒電に成功していたが、その後でも予想電極の冷却水温が100℃近と、これ以上の長バルス化は困難であった。このため、負イオン源の長バルス化には、加熱電極の電極材料が電子束に耐えることが最急務課題であった。電極熱負荷の原因としては、負イオンしきが電極に直接衝突する衝突損失と、加速途中の負イオンが加速部内の残留ガスと衝突する電子が電極に衝突するストリッピング損失が考えられる。前者については、試験例の負イオンビームの効果性の改善で記述したように14mm径から30cm径の負イオンビームを3cmの加速電極の孔を精度良く通過させる必要があり、更なる電極の電界分布の最適化が必要であり、今後の課題である。一方、ストリッピング損失は、加速部の残留ガスを減少させることで低減が期待できる。従ってストリッピング損失を25%、イオン源の衝突損失を低減するためには、イオン源の圧力下に低くすれば良いが、その場合、負イオンの生成量が圧力と共に減少するとの問題が発生する。この問題を解決するために、電子の散乱が起こりやすい負イオンの低エネルギーレベルの圧力のみを低下させ、負イオン生成部の圧力を一定に保つような工夫をイオン源に施した。具体的には、図1に示すようにソースプラズマの不均一の問題で、負イオン電流が少ない第1、第5セグメントを大きな排気速度専用孔で改善した（従って、第1、第5セグメントから負イオンビームが出る）。これにより放電室から加速部へのガス流を減少させるとともに、加速部内の電場分布を改善し、放射室外の電流（負イオンの低エネルギーレベル）の透過を7割程度に低減できた。なお排気速度改善のための排気孔は、電流計算を行い、排気孔によるビームを加速する第2、3、4セグメントの電界分布に影響が無い最大形状で設計した。

c. アーク放電の一定制御
長バルスでの課題の1つの負イオン源の生成部のアーク放電の時間的安定制御がある。すなわち負イオン電流は、生成部のソースプラズマの密度に依存するため、負イオン電流を長時間、安定に保つためには、ソースプラズマを生成するアーク放電を安定制御することが不可欠である。アーク放電は、熱電子を発生するフィラメント電極と放射室壁間で発生するごとで生成・維持しているが、アーク放電のアーク電流はフィラメント電極から発生する熱電子に大きく依存する。一方、アーク放電が始まるときアーク放電電流全体がフィラメントに流れため、アーク放電とともにフィラメント
ント温度が上昇し、この結果、アーク放電の強度を必要以上に増大してしまう問題がある。このため、従来はアーク放電開始後一定時間経つと、フィラメント電流電圧を低減するブレプログラム制御方式を採用していたが、パルス幅が10秒をこえるとアーク放電の変動レベルがブレプログラム制御値を超える場合の問題が発生した。この問題に対して、アーク放電電流を計測し、その値をフィラメント電流制御値に帰還制御することで、アーク放電中に変化するアーク放電を安定化する帰還制御システムをNBI装置として初めて開発した。この方法では、図2に示すように、初期はブレプログラム制御でアーク放電を立ち上げ基準値を定めた後、アーク電流が基準値から上限下限以内に入れるようなフィラメント電圧を帰還制御するものである。これにより、パルス幅が長くなってもアーク放電電流の変動を抑制し、一定な負イオン電流の引出しが可能となった。

結果

a. 加速電極の熱負荷

イオン源の改造によるストリッピング損失の改善は、図3に示すように加速電極の熱負荷のイオン源生成部の真空度依存性のデータから明らかとなった。ここで、△は改造前、●は改造後の加速電極（最終段の加速電極）のビームパワーに対する熱負荷である。両者ともイオン源生成部の真空度を下げるとともに熱負荷が低減されるが、真空度に依存しない熱負荷成分はビームが電極に衝突して起こす衝突損失と考えられる。従って、全体の熱負荷から衝突損失を引いた熱負荷の差が、ストリッピング損失の改善度と考えられ、その値が真空中の改善度（約7割）と同程度である。この結果、1.6MW、19秒入射時において加速電極の冷却水温度上昇の飽和（35℃程度）を検証し、本改造により電極熱負荷が目標とする2MW、30秒運転に必要なレベルに低減できたことを確認した。

b. アーク放電の一定制御

実際のプラズマ入射運転の際の本制御方式を検証した。図4に示すように、アーク放電開始後、アーク電流（I_{arc}）が下限値よりも低いため、フィラメント電圧（V_{fil}）を上げる制御が働く。一方、アーク電流が増加して上限値に達すると、フィラメント電圧に負の帰還制御指令が入り、アーク電流を減少させる。下限値を下回ってフィラメント電流を増加してもフィラメント溶接の回復に2秒程度かかることが明らかとなったが、この時間内においては、十分に安定したアーク放電を得ることが可能であった。この結果、ブレプログラム方式では困難であった大電流ビーム（1acc）の一定出力制御を得たことができることになる。

c. 入射パルス幅の伸長

長パルス運転は、2004年に実施した。改造したイオン源は、下側のビームラインに着目し、制御系、電源系等の動作を確認しながら徐々にパルス幅を伸ばした。図5に長パルス運転前と運転時の入射積算エネルギーを示す。ここで、□は改造前の2001年までの値、■は2004年の改造イオン源と従来型イオン源の2台を用いた値、●は改造イオン源1台による長パルス入射の値である。改造イオン源では、1.6MW、19秒までは1MW、25秒までのパルス幅の伸延に成功した。パルス幅の伸延に伴い、パルス中の加速部の放電破壊の回数が増加するため、更なるパワー増加、パルス幅の伸延には十分なコンディショニングが必要と考えられる。

考察、波及効果

N-NB1装置の長パルス化に当たっては、鍵となる負イオン源の動作特性を把握、改造が必要であった。特に負イオン源の加速部の排気速度改善により、加速電極の熱負荷に対するストリッピング損失の寄与の定量評価とその低減を実現したことは、今後の負イオン源の更なる長パルス運転に対して指針を
示すものである。さらに、アーク放電の長時間の安定化をフィラメント電圧の帰還制御により実現したこととは、従来、非常に難しかった負イオン生成の高精度度化を開拓するものである。

パルス幅、パワーはまだ目標には達していないものの、30秒入射に向けて行った様々な検討、改造によりN-NBI装置の装置性能を大幅に拡大し、JT-60のプラズマ性能の高性能化に貢献することができた。この成果は、今後のN-NBI加熱装置の30秒化の実現だけでなく、将来の定常核融合炉において連続運転技術に繋がる技術である。

将来に向けて
国内トカマク重点化装置として、NBI加熱装置は100秒の長パルス化を要求されており、今回の成果を踏まえて、詳細な検討を進めていく予定である。

参考文献
1) N.Umeda et al., "Recent progress of negative ion based neutral beam injector for JT-60U", to be published in Fusion Eng. Des
7.18 負イオンNBIトラブルとその対策

N-BTIは、1995年の5月から電源とイオン源の組合せによる総試験を実施しつつ現在に至っている。この間の不具合発生项目的推移を図1に示す。年間の運転日数は、平均80日程度で、不具合発生件数は40〜80件（1件/日）であった。

主なトラブル

a. ソース電源絶縁変器内部異常放電（油中ガス分析にて不具合確認）
1999年1月の定期点検時にソース電源用絶縁変器の油分析を実施したところアセレンガスが14ppm検出された。その後、定期的にお中ガス分析を実施した結果、13%から20%間で数値が変動していた。このため電源時、ガロナ音監視装置で放電発生の有無を調べたが明確な異常は見つからなかった。運転休止期間に、製品工場内にて分解点検を実施した結果、W相1次コイルにてダーレン間絶縁破壊を起こしていった。タンク間放電破壊の推定原因は、負荷側での相間短絡、接地などによる過大電流又は、1次側遮断器投入時の Flame入熱電流により、雑音に電磁機械力が加わるためと思われる。対策として、電磁機械力に対する耐力を向上させるため雑音の線線サイズを大きく、絶縁物の厚みを増した。また、コイル製作工程での寸法管理を徹底するなどの対策を施した。
2003年3月に絶縁変器の油中ガス分析においてアセレンガスが1.9ppm検出された。そのため、油中での異常放電の可能性が高いことから追跡調査を実施したところ、アセレンガス濃度が増加傾向にあるため分解点検を行った。その結果、U相の均圧抵抗部下段側の高電位電極部とシールドの先端に部分放電が確認された。また、ケーブルホルダー上部円周（約1/4周）にクラックが発生していたことで、本体と高圧ブッシング内の絶縁油が連絡し高圧ブッシング内油面が低下する異常があった。U相に発生した部分放電は、高電位側シールドと絶縁パリア間の油膜間隔が極めて小であったために、イオノン源ブレーキダウン時のサージ電圧により、高電位側シールドと絶縁パリア間の油膜で局部放電が高まったために生じたものと推定される。対策として油膜間隔を10mm以上確保するように絶縁パリアを新規製作及び取り付けた。また、高圧ブッシング内油面の低下を防ぐため本体用途油量調整装置を現状よりもより10m以上することで本体と高圧ブッシング両者の油量調整を行うこととした。
b. 電流計測装置内部放電破壊
電流計測装置用絶縁油中ガス分析で81ppmのアセレンガスが検出された。内部短絡の可能性があるため分解点検を行った。点検の結果、絶縁筒の表面とコイル押さえ金具間での絶縁劣化による放電痕を確認した。絶縁劣化の原因は、イオノン源電流加速時にイオノン源電極部で発生した放電破壊時のサージ電圧が、電流計測装置の上中下段各電源回路において位相が遅れることによる瞬時に絶縁変器の耐電圧性能を失ったことによるものと推定された。対策として、耐圧性能を向上させた絶縁変器、絶縁筒及び絶縁架台に交換し、さらに、電流計測装置の配置を3段階から3並列とし、第1段階に出力値用絶縁変器に対するスイッチ電位を直流側接地電位として電位変動の低減化を図った。
c. ACリアクトル絶縁劣化
ソース電源制圧回路に設置されているサージ電流抑制用ACリアクトルに絶縁劣化が生じたため、ソース電源の電力供給回路に挿入されているサージ電流抑制用ACリアクトルの点検を実施した。その結果、ACリアクトルの一部に絶縁劣化の兆候が見つかった。ACリアクトルを工場に持ち込んで検査を実施した。その結果、ケーブル被覆表面には放電流れが発生した放電流れが多数あり、ケーブルの相間で絶縁劣化が見られた。絶縁劣化の原因は相間電流を着目して使用したことによる電流相互間の部分放電によるものと推定された。対策として電源は従来の物と同等物（100sq、OCケーブル）を使用し、電流の表面に絶縁テープを巻き付けて絶縁強化を図った。

引出電源印加不具合（ガス導入系セラミックブレーキ内部で異常放電あり）
イオン源のコンディショニング中に引出し電圧Vext=5.0kV以上するとブレーキダウンが生じた。異常発生部の切付けは、イオン源のダミナルボックスにて給電ケーブルを取り外して運転したところ、Vext=5.5kV以上にてブレーキダウンが多発。検討の結果、電源とガス導入系での絶縁不良が判明した。ガス導入系を徹底調査した結果、下イオン源から上イオン源へ渡る2本のセラミックブレーキ付フレキシブルSIS配管の片側の内側が黒く汚れていた。セラミックブレーキの予
備品が無かったため、当面、セラミックブレーキを取外しての運転が可能に、ガス供給ラインを変更した。セラミックブレーキ内部がなぜ、いつ汚れたかは不明であるが、正常側も内部洗浄してから復旧した。

c. イオン源内部水漏れ
1995年から1998年にかけて合計3回の水リークが発生した。発生部はフィラメント導入端子からの水漏れが2回、フィラメントセラミックスからの水漏れが1回であった。その後の運転では、フィラメント導入端子の正極側のみにコンデンサを設置していたものを負極側にも取付け、アーキングカウントアップ発生時にGTOのみならずSCRも“切”とするように改良したことで、その後の運転では現在に至るまでアークチャンバー内部での水漏れは発生していない。

考察
これまで発生したトラブルを設備毎に分類すると、図2に示すように全体の39%がイオン源用電源の不具合、次に制御計器の不具合29%、ビームラインが13%、イオン源が11%の順になっている。設備の大部分が正イオンNBI装置と共用している一次冷却系、補助真空排気系などの附属設備の不具合は全体の10%に満たない。これは500kVという超高電圧大電流電源自体が、大きな開発用品であり、そのため運転開始当初から多くのトラブルが発生した。しかし、図1に示すように、電源トラブルの件数及び全体に対する割合も少しずつ減少してきており、運転実績を積み重ねながら確実に性能が向上していることが分かる。同様な傾向は、正イオンNBI装置においても見られており、高エネルギーシャープの生成/加速において電源の占める役割の高さと技術的な難しさがトラブル発生を通じて改めて分かる。

将来へのメッセージ
負イオンNBI装置は未だ開発途上にあるため、今後もトラブルの発生は避けられない。しかし、トラブルの解決を通じて新たな技術的な知見・経験が得られる。現在の負イオンNBI装置の加速電圧は400kVに留まっているが、今後500kVの運転に向けて様々な改良を進める予定であり、それに当たってはこれまでのトラブルの原因・対策を十分検討することが必要と考えられる。またJT-60の負イオンNBI装置の様々な経験は、ITER用NBI装置の製作・運転に非常に有益であり、今後もトラブル解析を通じていくことが求められる。
8. プラズマ計測装置

8.1 プラズマ計測装置の概要

JT-60のプラズマ計測装置は、装置の保護と運転に必要な基本計測、主要パラメータ計測、物理現象のための計測を行い、JT-60の実験・運転及び解析・評価に必要なデータを取得することを目的としている。加えて、ITER等の次期装置のために必要な計測技術の開発も重要な目的である。

本計測機器群は、約50のシステム及び共通設備で構成されており（図1）、JT-60のプラズマ性能の進展、運転領域の拡大、物理現象の進展等に対応して、常に改良を加えるとともに新規の計測を開発・適用して来た。また、計測の進歩が、JT-60の性能の進展や成果の拡大に中心的な役割を果たして来たとも言うことができる。例えば、 JT-60の不調が世界最高に導いた「Hβモード」や「負強磁気シアー模様」の発見・改善、及びその高い物理的価値を活用した実験装置の作製や、電流ヒート温度分布計測等が発見を演じ、これらが結果に基づいて実施した「排気付きB型ダイバータ化改修」によるヘリウム排気や大パワーワー長時間熱電解等の成果を生み出した。

さらに、プラズマ中心部から周辺部に至る組織的な性能の同時達成と安定保持を目指す最新の研究開発においては、電子サイクロトロン放射計測を用いた電子貫通温度の安定化計測や、遠赤外レーザ及び貯蔵ガスレーザ干渉計測による電子密度測定等の実用化が進行中の評価を著しくとなっている。ITERにおける保有プラズマ研究に必要な物理R&Dは広範囲に及ぼし、特に、JT-60の炉心駆プラズマを用いた中性子発生及び高エネルギーイオン挙動の計測は、高エネルギーイオンと波との相互作用等の分野で大きな成果を挙げて来た。また、ITERの標準プログラムを先進運転モードに亘る周辺特性の予測研究として、トムソン散乱計測による電子温度と電子密度分布、CXRSによるイオン温度と回転分布、MSEによる電流分布、及び反射計による密度拡散等のデータ等を用いた輸送研究は、最近の理論シミュレーション研究の進展と呼応する形で飛躍的に進んでいる。
第2章で述べたように、現在の炉心プラズマ研究では、プラズマ諸量の「空間分布」を精度良く測定することが最も重要な要素である。このためには、1m程度の半径のプラズマの内部で、数cm程度の空間分解能で測定する必要がある。現象によっては、局所的にはあるが数mmの空間分解能が必要である。また、数メートルの中心プラズマから数万度のダイバーテプラズマまで、温度範囲として4桁に亘る異なるプラズマ領域を総合的に計測する必要がある。さらに、対象とする現象の時定数は、マイクロ秒から数10秒（約6桁）の広範囲に及ぶ。JT-60の計測機器は、このような必要性に応えるべく、改良を重ねてきた。計測開発は、基本的にシグナルノイズ比向上への挑戦であり、各計測機器の構成に応じて、電磁ノイズの低減、中性子遮蔽の強化、真空容器内光学機器の整備低減、ディテクターの改良等が重要な要素であった。レーザ入射を用いる計測においては、レーザ強度の確保や光軸の調整も中心の課題であった。また、中性子発生率に代表される各種インターロックや、高性能プラズマの定常維持に必要な各種避難制御等を可能とするために、計測データの信頼性と精度の向上に努めた。加えて、広いパラメータレンジでの各種の実験運転に柔軟に対応すべく、信号のゲイン等の調整を迅速に変更できるシステムを構築している。特に速い現象に関しては、各計測器の間の因果関係を明らかにすべく、データ収集の同時性の確保に努めた。さらに、個々の計測器に加えて、真空設備、冷却設備、電気設備、計測制御設備、データ収集設備等の共通設備の点検や保守、放射線源や物質・物の管理を含む安全対策等を行うことで、円滑な実験運転に貢献してきた。本章では、代表的な計測機器に関して、詳細を述べていく。

参考文献
[1]「特集／JT-60における計測」プラズマ核融合学会誌特集号（1988）
8.2 ルビーレーザトムソン散乱測定装置とYAGレーザトムソン散乱測定装置
の開発・改良

目的
本測定装置は、JT-60の基幹計測装置として、プラズマの電子温度（T_e）と電子密度（n_e）の空間分布を測定することを目的としている。

現在の基本構成と仕様
現在のJT-60のトムソン散乱システムでは、精密な空間分布はルビーレーザトムソンで測定し、YAGトムソ
ンは空間分布の詳細な時間変化の測定を受け持っている。すなわち、YAGトムソンでは、周辺プラズマ測定用（斜下側）の集光器を追加し、現在では空間15点（コアプラズマ9点、周辺プラズマ6点）での測定を行い、電子温度と密度の内部輸送壁の時間発展をはじめとする、空間分布の時間変化を50Hz
で測定している（図1、表1参照）。

図1 トムソン散乱の計測視野。(a)集光器の配置、(b)ルビーレーザトムソンの測定点、(c)YAGトムソンの測定点

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>レーザとその性能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルビーレーザー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(JK社製 PDS-4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エネルギー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22J（シングルショット）</td>
<td>13.7J（パルス間隔4秒）</td>
<td>5.7J（パルス間隔2秒）</td>
<td>2.75J（パルス間隔1秒）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ルビーレーザー2台（JK社製PDS-4及びPDS-2S）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エネルギー：13.7J（パルス間隔4秒）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2J（パルス間隔2秒）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75J（パルス間隔1秒）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レーザ増力</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>集光器の増設</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>レーザ増力</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>増力増力</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

測定点数 | 6点（約100mmの分解能、200mm間隔） | 最大60点 | 9点（約25mmの分解能、約100mm間隔） | 15点 | 周辺プラズマ測定用6点の追加
測定期間 | シングルショット〜1秒 | 2mS（パーストモード）〜2S | 100mS | 33mS | 20mS |
検出器 | 光電子倍増管 | 光電子倍増管（PMT）及び2次元検出器（PDA） | アラパンシェフォトダイオード |
分光器 | リトローワイプ | 干渉フィルター型ポリクロメータ |
波長分割数 | 8 | PMT系：最大6 | PDA系：12 | 6 |
性能の進展とJT-60実験へのインパクト

1980年代後半のJT-60の運転当初は、レーベーレーザ用をいた最も一般的な方針（リビットムソ）により、約1.15 m³の領域で電子温度・密度の空間分布の測定を、空間6pt (散乱長0.1m, チャンネルピッチ0.2m)で測定していた。しかしながら、これはIIモードのような閉じ込め改善の物理を研究するには不十分であった。すなわち、IIモードでは発電後、プラズマ境界近傍の薄い薄層で密度と電子温度に急激な非線形（境界輸送障壁）が形成され、コアプラズマの閉じ込めが改善される。境界輸送障壁を含むプラズマ周辺部の構造（周辺ベッド）、の特性は、近年ITERの性能予測を行う上で重要である重要な研究課題となっている。プラズマ周辺部での空間分解能の向上が必要となった。そのため、次のような指針を定め、既存のルピットムソを発展的に改良した。

指針1: 小さな集光立体角のもので、10keVを越す炉心部プラズマ測定の信頼性を向上
指針2: 空間分解能の改善(最小分解能10mm未満を目指す
指針3: 時間分解能の改善 (msオーダーの最小時間分解能を目標とする
指針4: 高精度の光軸調整方法の開発
指針5: 既存の設備を最大限に使用する

ここで、指針1-3は、JT-60の物理研究上の要求であり、炉心域の超音波プラズマ、輸送障壁などの詳細な分布形状、レーベル入射時のような過渡的な現象を測定するための基本的な項目である。また、指針1に関しては、100keVを超える超音波プラズマを対象とする場合に適応可能なスペクトル密度の解釈の解析式をベースとしたデータ処理方法を開発し、また、検出器系の分散方向分割(帯域幅や帯域数)が必要であると認識し、その実用化の検討を行った。指針2を満足するために、コアプラズマ、周辺プラズマをそれぞれ別々の集光器で測定を行うこととした。すなわち、それぞれの集光器は、可能な限り多くの散乱光を取り込むよう設計した。このうち両プラズマ測定用の屈折型集光器は、典型的な集光立体角は6m×10⁴srであり、真空中容器外から向かって空間分解能8mm (空間20pt)、空間分解能16mm (空間10pt)を有する。また、コアプラズマ測定用の反射型集光器は、典型的な集光立体角は5m×10⁴srであり、空間分解能は22mm (空間30pt)である。図1に測定装置と集光光学系の配置、表1に測定性能を示す。また、検出器系は、システムをコンパクトにするため、従来の光電子増倍管に加え、TVTS方式の2次元検出器（20空間pt×12波長点のフォトダイオードアレイ、PDA）を採用した。これらによって、大型トカマクでも最高の空間分解能（空間7mm、空間分解点最大60点まで）が測定可能となり、指針2に満たすことができた。指針3においては、ルピットムソ（繰り返し0.25Hz）を1台追加し、2台のレーザーによるルビーバルスを短縮させること（バーストモード）によって、過渡的な測定を可能とした。このため、同じ波長のレーザー光を同一軸上にアライメントするために、偏光板とファラデーレーテータによって構成されるビーム合成器も新たに開発した。過渡的な測定においてTVTSに用いる検出器はその読み込み時間が問題となる。そのためのPDAは1msの周期で測定できるよう開発した。これにより、バーストモードでは最少時間差2msでの測定が可能となり、レーベル入射直後の分布測定などの過渡的な現象の測定が可能となった。空間分解能の改善により、IIモード周辺ベッドスタイクル構造の測定が可能となり、IIモード研究さらには、その後の内部輸送障壁研究の進展に貢献した。

指針4に関しては、観測面の形成の開発と、集光器の多重アライメントの許容範囲の設定や測定実行の開発、密度測定の信頼性の向上を図ることができた。なお、指針5の実現のため、ルピットムソや、周辺プラズマ測定用の集光器は、既存のものを再利用し開発コストの低減を図った。

JT-60では、運転当初から前述のルピットムソによって、電子温度・密度の空間分布の測定を行ってきた。しかししながら、ルピットムソのノリは、新たなプラズマ輸送形態の形成過程などに連続した現象を観測するために不向きであった。電子系の内部輸送障壁の形成メカニズムなど連続した現象を研究するためには、より小さな空間分解能で測定を行うトムソ散乱システムが必要である。そこで、ルビットムソに付加する装置、次の指針5の下でトムソ散乱システムを整備することにした。

指針5: 時間分解能をさらに向上させる(閉じ込め時間の1/10未満を目指す)
指針5: 所有のルピットムソの機器を最大限に利用する
指針6: 満たすための解として、Nd-YAGレーザ（YAGレーザ）をブローパー用に用いることをであること。
YAGレーザは比較的高い繰り返しで運転できる、これを使った多パルストムソ散乱は、1982年頃ドイツのASDEXトカマクで初めて開発された。1990年頃には米国のITERでこの場を採用し、この方法によるトムソ散乱計測を確立するに至った。JT-60においてもこれらの装置と同様な方式、すなわちファルダーメーカで散乱光とシリコンバランシュジェットダイオード（APD）で検出を行う、YAGレーザトムソ散乱測定装置（YAGトムソ）を採用することとした。JT-60のYAGレーザは、当初繰り返し10Hzから運転を開始したが、現在では50Hzで運転しており、閉じ込め時間の1/10未満の時間分解能を確保するために至っている。指針5に対しては、レーザ出射光束、集光器、計測架台などと共有することにした。YAGレーザは、前述のルピットムソビーム2本と光軸調整用He-Neレーザビーム1本をダイラーキャニスターで組み合わせプラズマに入射するようにした。また、集光系に関しては、コアプラズマ測定のための集光器は新規に製作せず、ルピットムソのコアプラズマ測定用集光器を共有することにし、コストの低減および製作期間の短縮を図ることができた。
YAG トムソンで用いられる APD は温度に非常に敏感な検出器であり、検出器の温度変化に伴い検出感度が大きく変化する。そこで、次の指針で APD 検出器の改良を行った。

指針 8 検出器の温度の変化を ±3°Cにする。

DIII-D 等では、検出器の温度を一定にするため、検出器のケースに冷却チャンネルを設け、温度調節された冷却水を循環させることにより検出器温度の安定化を図っている。しかしながら、この方法では室内的温度変動を受けやすいため、鰐流素子を着目し、鰐流素子上に APD 素子を直接配置することにより、APD の温度を安定化することを考慮した。これにより、従来必要であった冷却水循環装置や、冷却配管などが不要となり、コンパクトな検出器システムを構築することができた。さらに、検出感度は 0.5%以内の温度で安定化することに成功した。

日付モード研究で重要な周辺ベテラノ構造を観測するためには、セパラトリックス近傍の低密度プラズマから比較的高密度のコアプラズマまでを S/N 比で測定する必要がある。そこで、次の指針のために先進的な研究開発を行った。

指針 9 検出性能のさらなる改善。

指針 9 のためには、まず、YAG トムソンの低温測定の測定精度の改善を行った。従来、レーザ波長を含む観測長さは、光の発生のため、温度評価に用いられなかった。しかし、JET-60 の光学系では光が少なく、作用あるあることに着目し、信号から光を差し引く、散乱を評価することに変更した。すなわち、レーザ波長が含む波長域の温度の評価に初めてでしく、1eV 近傍の電子温度の測定誤差を 5 割以上改善することができた。これにより、ディスラプション直後に発生する逃走電子のパルス温度を測定することに初めて成功した。

次に、散乱光はレーザ強度に比例するため、既存のレーザの高効率化改善を進められた。一般に、高比率の増幅器では、レーザ出力が図られる熱変形により生じる散乱光が困難である。そこで、誘導プルシアン散乱種相共役透過 (SBS-PCM) のように、大阪大学との協力研究により SBS-PCM を既存のレーザ装置に組み込み光学レイアウトを最適化することにより、波面歪みを完全に補正し、当初のレーザ出力（エネルギー i.33, 練り返し 30Hz, 平均出力 45W) から 8 倍以上の性能 (7.4J, 50Hz, 365W) を達成し、フラッシュランプ励起の Q スイッチ固体レーザーとしては世界最高性能のレーザ装置を開発した。これにより、S/N 比が格段に向上し測定性能を改善することが出来た。また、散乱計測に誘導プルシアン散乱種相共役を通して、レーザを再発生させることによりプラズマ中で 2 倍の散乱光を発生可能、ダブルパルス散乱計測を考案し、初期実験では 1.6 倍の散乱光を発生させこの測定手法の有効性を実証した。さらに、デュアルスパルス散乱計測を発展させ、レーザを無限に発生させ数倍以上の散乱光を発生させるマルチスパルス計測も考案し、あわせて特許の出願を行った。

検討、考察、さらなる改良に向けての提案

考察して第一に、さらなる改善に向けての提案を述べる。先に述べたように、JET-60 のトムソン散乱ではレーザー白熱と YAG トムソンを組み合わせることにより、高空間分解計測と高時間分解計測を独立に行っている。物理研究を深めるためには、高空間分解かつ高時間分解計測の重要性である。そこで、既存の設備を最大限に生かした。空間分解かつ高時間分解計測の可能性を検討した。近年のレーザー技術の進歩により YAG レーザー以外の結晶でも高圧出力の適用が得られるようになった。レーザー白熱の一つであるレーサーサイクライオンは、波長 700～818nm（可変）で発散し、衝突効果に強いため高出力加工（高圧）で発散し大出力エネルギー発振）が可能である。出力エネルギー 10J 程度、700nm 近傍の波長のレーサーサイクライオンレーザーを開発することにより、既存のレーサー白熱の散乱の測定系を改善し、大きな改善をなして高空間分解で高時間分解の測定が可能と考えられる。

第二の考察として 20keV するような超高電流プラズマの測定の可能性について述べる。近年、電子サイクライオン加速 (ECCD) のように、体積密度で電子密度が 20keV を越えるプラズマの生成が可能となった。しかしながら、現状のトムソン散乱装置では、そのような高密度測定は当初の設計の範囲を超えているため測定が困難である。そこで、レーサートムソンと YAG トムソンの測定系を合わせて使用することにより高密度領域を拡大し、超高電流測定が可能かどうか検討を行った。初期の検討結果から、YAG レーザーを用い可視領域から遠赤外領域までの散乱光を測定することにより、数十 keV まで十分な精度で測定できることが明らかとなった。

第三の考察として、トムソン散乱装置で開発した技術の波及効果について述べる。位相共役鏡を用いたレーザーの高出力化技術は産業分野への直接応用が可能である。この技術により、比較的コンパクト、高圧力、大出力の加工レーザーの開発が可能となる。さらに、位相共役鏡を用いるとビーム品質が格段に改善されるため、従来の加工レーザーにビームをさらに微細なスプットに集光することが可能となり、加工精度の改善が期待できる。また、高エネルギー電子ビームとレーザとの相互作用（逆コンプトン散乱）による短波長 X 線源の開発が検討されているが、ここではいかにして X 線強度を上げるかが開発課題となっている。この分野における位相共役鏡によるマルチスパルス散乱を応用することにより、X 線の発生効率の向上が期待される。
結論
結論として、JT-60 でルビーレーザートムソーン散乱測定装置及び YAG レーザートムソーン散乱測定装置を開発した。開発のために設定した指針をクリアすることにより、装置の測定性能は導入当時から段階に改善され、両方の測定装置を用いることにより高空間分解・高時間分解の測定が可能となった。このトムソーン散乱計測により、電子系の内部転送障壁の物理、H モード及び周辺ペデスタルの物理、ディスラプション研究など、JT-60 における多方向の物理研究の進展に貢献することができた。ここで開発された技術は ITER のトムソーン散乱計測に応用可能であり、より完成されたトムソーン散乱測定装置の構築のために必須の技術となりうるであろう。

参考文献、特許
[16] 波多江伸紀、中嶋正大、特開 2008-240715 号、マルチパルスレーザ散乱測定方法
8.3 遠赤外レーザ干渉測定装置及び炭酸ガスレーザ干渉・偏光測定装置の開発・改良

目的

本測定装置は、プラズマの線積分電子密度計測、及びプラズマ密度帰還制御のための実時間電子密度信号出力を行うことを目的としている。

現在の基本構成と仕様

遠赤外レーザ干渉測定装置（図1、表1）：遠赤外レーザ干渉測定装置は、光源レーザ部、伝送光学部、干渉計部、真空室部、制御信号処理部、などにより構成される。光源レーザ部は、さらに遠赤外メタノールレーザ、励起用磁気ガスレーザ、安定化磁気ガスレーザより構成される。メタノールレーザ（波長118μm、最大出力33mW、連続発振）は、ヘテロダイナ検波のため発振周波数に2MHzの差をつけた2式をブローチレーザ、局所発振用レーザとする双子型を採用している。メタノールレーザの励起は、増出力の励起用磁気ガスレーザ（9μm帯P(36)ブランチ、最大出力77W）を用いて行い、励起用磁気ガスレーザの出力及び発振周波数は、より出力の安定化磁気ガスレーザ（出力6W程度）との周波数差を12MHzにロックすることで、安定化されている。以上のレーザ装置群は、実験棟1階のレーザ室1に設置されており、メタノールレーザ光は、伝送光学部により地下埋設ピット経由で本体室基礎架台P16セクション設置の干渉計部まで導かれる。ブローチレーザ光は、垂直ポア（U1、U2）下部より真空窓（結晶石製）を通してJT-60の真空容器内に入射され、上部のコーナーキューブリフレクタ（真空中に設置）にて若干の光軸シフトを受けて反射の後、再び真空窓を通り干渉計部まで戻される（マイケルソン配置）。

干渉計部では、ブローチレーザ光と局所発振用レーザ光を干渉させ、液体ヘリウム温度冷却Ge-Ga検出器により、電子密度情報を含むプラズマビット信号（2MHz）を検出している。干渉計部では、別途プラズマ外をしたブローチレーザ光と局所発振用レーザ光の干渉によりリファレンスピット信号を得ている。他方、これらの干渉信号を重ね合わせ振動数成分の補償のため、安定化ヘリウムネオンレーザを光源とした可視干渉計が干渉計部内に設置されており、遠赤外レーザと同一光路にて振動補正用干渉ビット信号（ブローチ及びリファレンス。20MHz）を得ている。（このような光源レーザ波長の異なる2つの干渉計を組み合わせて振動補償を行う方式を2波長干渉計方式と言う）。

以上のビット信号は、波形形成、増幅後の光信号に変換され、光ファイバを介して実験棟3階のピールドーム1に送られ、制御信号処理部の位相比較器により干渉位相信号が抽出される（メタノールレーザ干渉位相信号に対する位相分解能：1/100フレンジ）。これらの干渉位相信号は、CAMACメモリおよびTMSにそれぞれ1ms、5μsのサンプリング時間で格納され、放電シーケンス終了後、ショット間処理計算機にて線積分電子密度演算を行い、その結果を計測データベースに転送している。また、実時間プラズマ密度帰還制御のための実時間信号は、CAMACリフレクティブメモリ系とコンパクトPCIモジュール系の2系統にて処理しており、得られた実時間密度信号は、実時間処理計算機を通じて全系計算機まで送出されている。

図1 遠赤外レーザ干渉測定装置の基本構成

表1 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>光源レーザ</td>
<td>遠赤外メタノール(CH3OH)CWレーザ、波長118.8μm</td>
</tr>
<tr>
<td>干渉計</td>
<td>帯電マイケルソン式、可視ヘリウムネオンレーザ干渉計による振動補償</td>
</tr>
<tr>
<td>検出器</td>
<td>液体ヘリウム温度動作Ge-Ga検出器</td>
</tr>
<tr>
<td>位相検出方式</td>
<td>2MHz干渉ビットに対する200MHzクロック計数方式（分解能1/100フレンジ）</td>
</tr>
<tr>
<td>時間分解能</td>
<td>最高5μs</td>
</tr>
<tr>
<td>空間分解能</td>
<td>垂直2コード(U1、U2)(JT-60E大電流化改造以降)</td>
</tr>
<tr>
<td>線積分電子密度分解能</td>
<td>0.94×10^11 cm^-3</td>
</tr>
<tr>
<td>測定セクション</td>
<td>P-16セクション（基礎台）</td>
</tr>
</tbody>
</table>
炭酸ガスレーザ干渉・偏光測定装置（図2，表2）：炭酸ガスレーザ干渉・偏光測定装置は、光源レーザー部、伝送光学部、透鏡部、干渉計部、偏光計部、制御信号処理部、などにより構成される。光源レーザー部、伝送光学部、干渉計部、偏光計部などの主要な機能は、実験棟地下1階でFIL電源室でリング内炭酸ガスレーザー室に設置されている。干渉計部は、波長の異なる入力安定化炭酸ガスレーザー2式（出力5W、波長10.6μm及び9.27μm）をそれぞれ光源とする2つの干渉計を同軸に組み込んだ構成となっている。プローシャーガスは、光学光発光変調器により40MHzの周波数シフトを受けたもののは、伝送光学部を介してP8センションピータ内で導かれ、真空室（CVDダイヤダイヤモンド製）を通して時計回りに接続方向より真空容器に入射される。プローシャーガスは、P13センションピータの真空窓を通過後、真空容器外のコーナーキャップフリクタで反射され、再度真空容器内を通ると若干斜めにかつもはや元の経路を逆に回って炭酸ガスレーザー室まで戻される。

干渉測定においては、プローシャーガス光と所定発振用レーザ光（プローシャーガス光と光路長を合わせるため）を遅延光学部を通したもの。音響光学変調器により42MHzの周波数シフトを受けている。これ干渉計部にて干渉させ、電子冷却型HgCdTe検出器にて2MHzのプラスマピート信号を検出している。2MHzリファレンスピート信号は、40MHz及び42MHzの音響光学変調器の信号を電気的に相互干渉することで得ている。プラスマピート信号とリファレンスピート信号は、波形成形、信頼性の高める信号に変換され、光ファイバーガスを介して実験棟3階のシールドルーム1に送られ、2系統の位相比較器（位相分解能1/100フリング仕様及び1/12800フリング仕様）によりそれぞれ2つの炭酸ガスレーザ干渉位相信号が得られる。干渉位相信号は、専用ワークステーション内及びTMDにそれぞれ1ms、5μsのサンプリング時間で格納され、放電シーケンス終了後、ワークステーションを用いて線積分電子密度演算を行い、その結果を計測データベースに転送している。さらに、実時間プラズマ密度帰還制御のための実時間信号処理ワークステーションにて行われており、得られた実時間密度信号は、実時間処理計算機を通じて全系計算機まで送出されてい

一方、偏光測定においては、炭酸ガスレーザー室まで戻ってきたプローシャーガス光の一部を分岐し、そのフラット回転偏光角を求めている。偏光角の検出は、2つの中弾性変調素子（変調周波数45kHz変調周波数50kHz）及び偏光素子（設定角22.5°）を組み合わせた方法を採用している。

変調されたレーザ光は、電子冷却型HgCdTe検出器にて光強度が検出され、ロックインアングルによりそれぞれの変調成分振幅が抽出される。変調成分振幅信号は、FDSで16μsのサンプリング時間で格納される。同時に、光ファイバーガスを介してシールドルーム1のワークステーション（干渉測定と共用）に1μsのサンプリング時間で送られる。放電シーケンス終了後、これらの信号より、線積分電子密度演算を行い、計測データベースに転送している。また、実時間プラズマ密度帰還制御のための実時間信号処理も合わせて行っている。

表2 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>光源レーザー</td>
<td>炭酸ガス（CO₂）CWレーザー、波長10.6μm及び9.27μm</td>
</tr>
<tr>
<td>干渉計</td>
<td>軸はずれるマイケル孙式、2波長炭酸ガスレーザー干渉計による振動補償</td>
</tr>
<tr>
<td>検出器</td>
<td>電子冷却型HgCdTe検出器</td>
</tr>
<tr>
<td>位相分解能</td>
<td>1/100フリング及び1/12800フリング</td>
</tr>
<tr>
<td>時間分解能</td>
<td>最高5μs</td>
</tr>
<tr>
<td>空間分解能</td>
<td>接続1コード（大半径3.11mを通る）</td>
</tr>
<tr>
<td>線積分電子密度分解能</td>
<td>5x10⁻¹⁸ m⁻³（1ms平滑化後）</td>
</tr>
<tr>
<td>測定セクション</td>
<td>P-8セクション及びP-13セクション（水平ポート）</td>
</tr>
</tbody>
</table>
性能の進展と JT-60 実験へのインパクト

遠赤外レーザー干渉測定装置: 本装置は、1985年 の JT-60 運転開始当初よりプラズマ線積分電子密度を測定してきた。当初、4つの測定コード（メインプラズマ測定用 3 コード、ダイバータプラズマ測定用 1 コード）、測定時間 10秒での測定を行っていたが、JT-60 大電流化に合わせて、2 コード、16秒間の測定に変更した。また、近年の JT-60 長時間化に伴い、測定時間を 70 秒程度まで行えるように改造している。特に、実時間処理装置（コンパクト PCI モジュール系を新設）（2003年）、これによって来襲装置（CAMAC リフレクティブメモリ系）では行なったフィンジゴメディアス波数の検査が容易であり、信号の物理的変換の面から波数用の 64 倍として、JT-60 長時間放電時においてより信頼性的高い密度波時光測定が可能になった。（JT-60 運転開始当初は、ファレラア回転偏光測定部が装置されていたが、現在は測定を行っていない。）

炭酸ガスレーザー干渉・偏光測定装置: 本装置は、JT-60 大電流化改造に合わせて、プラズマ中心コードにおける線積分電子密度測定を目的に開発され、データを供給している。稼動開始は 1992年（偏光測定は1997年）である。当初は、炭酸ガスレーザー干渉計と赤外ヘリウムネオンレーザー干渉計の組み合わせによる 2波長干渉計の構成としたが、赤外ヘリウムネオンレーザー干渉計は、JT-60 では良好な運転が困難であることが判明し、より高い精度性・高精度での測定を目的として、2波長炭酸ガスレーザー干渉計が開発された（1994年）。さらに、干渉計の原理的な弱点であるフィンジゴメディアスの発生しない高精度炭酸ガスレーザー偏光計が開発された（1997年）。その後、大型トカマク装置に適した計測真空管として CVD ダイヤモンド管を採用（それまで ZnSe 製造）し、その有効性を確認している（2002年）。最近では、JT-60 長時間化に伴い、測定時間を 70 秒程度まで行えるよう改造している。

検討、考察、さらなる改良へ向けた提案

遠赤外レーザー干渉測定装置: 本装置は、世界最新の干渉測定装置として開発され、JT-60 の基幹計測装置として稼働している。開発時は要所で 20 年以上が經過し、数々の問題点が解決化している。一つには、装置全般に及ぶ老朽化の問題である。老朽化による性能低下や故障の頻度が増加しているもの、装置メーカーが撤退（担当部門が消滅）していることもあって、交換部品調達、機器メンテナンス、故障対応が著しく困難となっている。もう一つは、装置のブロックボックス化である。装置全体が大規模かつ複雑であるにもかかわらず、現状の工事や報告書類も大半とは言えない事、また当初開発に携わった研究スタッフが異動していること、などが原因である。従って、稼働開始以来、一度も点検及びメンテナンスが行われていない主要機器は多数もので、容易に手がけられない状況が続いている。JT-60の研究開発にあたっては、数年の歳月を要し、相当に予算的及び人材資源が投入され、基本設計及び製作が優秀であったことも、等、その遺産としてこれまで 20 年間の長期に亘りほぼそのままの姿を残しつつ稼働してきたものと考えられるが、前記の諸問題によりせつぞろ限界に近いという認識を持ち至っている。今後さらなる 10 年 20 年単位での取り組みが必要であるとして、スクラップアップに至ることを求めることが求められると考えられる。

炭酸ガスレーザー干渉・偏光測定装置: 本装置は、接線視線でのレーザー干渉・偏光測定という前例の無い課題を設定したから、当初よりほぼ完成形とする必要があった遠赤外レーザー干渉測定装置とは異なり、JT-60 実験に使用した時に、実機を用いた計測実験を繰り返しながら開発を進めてきたものである。その過程においては、世界初の接線 2波長炭酸ガスレーザー干渉測定装置の開発、世界初の接線赤外レーザー偏光測定装置の開発、等の成果が得ることができ、また得られた知見は、ITER の接線干渉計・偏光計の設計に取り入れられている。課題としては、やはり装置の老朽化が挙げられ、特に光源レーザーについては、交換することが望まれる。また、現在シンクルコードでの測定を行っているが、マルチコード測定を行うことができれば、電子密度空間分布の評価が可能となるのに加えて、電子密度計測の信頼性向上にも繋がる。これまでこのようなマルチコード測定の提案を行ってきたものの（対外部資金も含めて）、時宜を得ず採択には至っていない。

結論

遠赤外レーザー干渉測定装置及び炭酸ガスレーザー干渉・偏光測定装置は、JT-60 の最も基本的なプラズマパラメータである線積分電子密度計測を通じて、JT-60 実験に貢献している。

感想、次回／未来へのメッセージ

JT-60 に限らず、レーザー干渉測定等による電子密度計測は、普段等も留めているが無くなると致命的である空気のような存在であるといえる。今後も、安定な測定を行うことができるよう検討することが肝要である。

一方、大型トカマクにおけるレーザーを用いた電子密度計測の特徴は、一般に、装置が大規模かつ複雑になり研究開発に長い年月を要すること、開発後はルーチン的な測定転用が求められること、開発者（データ供給者）がデータ使用者になるとは限らないこと、レーザー干渉や偏光の原理自体はよく知
されているとされ、等が挙げられる。新たに本分野に参加しようとする研究者は、このような特徴を踏まえつつ新しい領域を切り拓いて行くことが求められると感じる次第である。

参考文献、表彰
[1] 福田武司、長島章、石田真一、他、「JT-60の干涉測定システム」、プラズマ・核融合学会誌 核融合研究、第59巻別冊「特集 JT-60における計測」、16頁（1988）。
[13] 河野康則,“磁場閉じ込め高温プラズマにおけるレーザー応用プラズマ計測の最近の進展”, JT-60Uにおける偏光計測”,プラズマ・核融合学会誌, 76巻、9号、855頁（2000）
[17] 1998年度、河野康則他、プラズマ・核融合学会、第3回技術進歩賞、「大型トカマクのための接線炭酸ガスレーザ干涉計の開発」
8.4 電子サイクロトロン放射測定装置の開発・改良

目的：
本測定装置は、プラズマからの電子サイクロトロン放射（electron cyclotron emission, ECE）を測定することにより電子温度分布および電子温度動揺分布を評価し、プラズマの閉じ込め性能や不安定性の空間分布・成長過程を明らかにすることを目的としている。

現在の基本構成と仕様：
ECE測定装置は、フィードバック分光装置（FTS）、回折格子型分光装置（GPS）、ヘテロダイナミクスオーディオメータ（HRS）からなり、それぞれ1983年、1988年、1992年に入所された。導入時期と各々の内容等を表1にまとめる。JT-60プラズマからのECEを全長約40mの導波管で計測調整室1に導き測定している（図1、2参照）。2004年現在、P-14系導波路をFTSとGPSに接続し、P-17系導波路をHRSに接続して測定している（図2）。

表1 ECE計測装置の改造・増強の経緯

<table>
<thead>
<tr>
<th>装置名</th>
<th>年度</th>
<th>内容</th>
<th>改造・増強の目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTS</td>
<td>1983</td>
<td>新設, $f_t=3.7$GHz, $\Delta t=25$ms</td>
<td>電子温度分布の測定</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>電子温度観測装置の構築</td>
<td>中心電子温度分布測定</td>
</tr>
<tr>
<td>GPS</td>
<td>1988</td>
<td>新設, 20チャネル, $\Delta t=20$μs</td>
<td>電子温度分布・動揺の測定</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>クライオスタットを用いた検出系の導入</td>
<td>同上。特に低雑音での測定。</td>
</tr>
<tr>
<td>HRS</td>
<td>1992</td>
<td>新設, 176-181GHz, 8チャネル, $\Delta t=20$μs</td>
<td>MHD不安定性の構造の測定</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>181-188GHz 観測装置, 4チャネル</td>
<td>測定範囲の拡大</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>188-200GHz 観測装置, 12チャネル</td>
<td>測定範囲の拡大</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>110GHz ハイブリッド装置の導入</td>
<td>低圧電子管時の電子温度測定</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>148-175GHz 観測装置, 24チャネル</td>
<td>測定範囲の拡大</td>
</tr>
<tr>
<td></td>
<td>2001.2</td>
<td>実時間TM安定化システムの構築</td>
<td>実時間でのTM安定化の実証</td>
</tr>
<tr>
<td>共通</td>
<td>1996</td>
<td>コルゲート導波路の導入</td>
<td>伝送損失の低減による高精度測定</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>P-17系観測系・導波路の敷設</td>
<td>HRSへの信号強度増大</td>
</tr>
</tbody>
</table>

※ f_t: 周波数分解能, Δt: 時間分解能

性能の進展とJT-60実験へのインパクト
観測窓・導波路
・コルゲート導波路の導入：1996年度
計測ポートの整備により、2系統あったP-14系導波路のうちの１つが廃止されることになった。伝送損失が少ないコルゲート導波管を本体室内の導波路に敷設した結果（図1参照）、伝送損失が矩形導波路のときの約半分になり、3装置で電子温度計測を継続することが可能になった。
・P-17系観測窓・導波路の敷設：2003年度
2003年度まではP-14系導波路を分離して各計測装置に接続していたが、ヘテロダイナミクスオーディオメータの増設により分岐回数が増大し、十分な信号強度が確保できない場合でも発生したため、新たに観測窓と導波路を敷設した。この導波路の導入によりヘテロダイナミクスオーディオメータへの入力強度が約5倍

図1 本体室の導波路（P-14系）
図2 計測調整室1のECE測定装置の配置

計測調整室1
フーリエ変換分光装置
電子温度分布の測定
（液体窒素を用いた絶対較正を実施）
回折格子型分光装置
電子温度分布および広い空間領域に
わたるMHD不安定性の測定
ヘテロダイナミラジオメータ
電子温度分布およびMHD不安定性の
構造の測定

になり、ELM(周辺局在モード)発生前後の電子温度の変化量などが評価できるようになった。

フーリエ変換分光装置

・電子温度分布測定システムの構築：1998年度
フーリエ変換デザュールで電子温度を実時間で評価し、NB加熱装置を用いて電子温度を制御するシ
ステムを構築した。その結果、プラズマ中心部の電子温度が電子温度が制御に成功した。

回折格子型分光装置

・クライオスタットを用いた検出系の導入：1999年度
本計測装置では4.2Kに冷却したInSb検出素子を用いている。導入時の冷却方式(冷凍機)では機械
的にノイズがECE信号に混入し振動測定の支障となっていたため、液体ヘリウムを用いた検出系を導
入した。さらにプリアンプと測定結果への重ね合わせのためを採用し低周波の増幅特性の改善を図った。その結
果、振幅の小さいMHD不安定性やガスパース発生時の中子発光が詳細に測定できるようになった。

ヘテロダイナミラジオメータ

・チャンネルの増設：1998年、2000年
ヘテロダイナミラジオメータは、導入時は8チャンネル（約16cmの空間領域）であったが、測定領域
を拡大するために1994年度に4チャンネルを増設した。さらに、1998年度に12チャンネル、2000
年度に24チャンネルのラジオメータを導入した。その結果、テインティングモードやELMのようなMHD
不安定性の空間構造を明らかにすることが可能になった。さらに、1998年度からはJFT-2M用に開発された
110GHz帯ラジオメータを組み込み、低磁場実験（B=2T）の電子温度も測定可能となった。

・実験用NTM制御システムの構築：2001-2002年
ヘテロダイナミラジオメータの信号から新古典テインティング不安定性（NTM）の発生位置を実時間で同定し、
電子サイクレスト（EC）波の入射角度の最適化とEC波の入射によりNTMを安定化するシステムを開
発した。このシステムを用いることにより、高βpモード実験において発生したNTMを安定化しベ
ータ値を適切に設定することに成功した。

結論、検討、考察、さらなる改進に向けての提案
ECE測定装置はJFT-60の運転開始時からの運用を開始し、その後も改修・増設を行ってきた。現在
は3種類の測定装置、88チャンネルの高速測定系など、世界的に見ても最高レベルのECE測定装置
となっている。ヘテロダイナミラジオメータは当初、局所的な挙動を目的として開発されが、
現在は回折格子型分光装置に匹敵する領域をカバーできるようになった。感度や空間分解能等のデ
ータの質のほか、保守の点でもヘテロダイナミラジオメータの方が優れていることから、今後はラジ
オメータが主流となるようになり、125GHz帯、200-240GHz帯のラジオメータを整備することが重要である。
表1に改修・増力の経緯を示す。

参考文献（下記以外もhttp://www-jt60.naka.jaeri.go.jp/english/diag/html/diag_44.htmlに掲載）
8.5 荷電交換分光装置の開発・改良

目的
本測定装置は、中性粒子ビームとプラズマ中のイオンとの荷電交換反応によって放射される光を分光測定することで、ドッパラー幅からプラズマのイオン温度をドッパラーシフトから回転速度をそれぞれ空間・時間分解能よく測定するものである。イオン温度は熱核融合反応率に直接関連するプラズマ性能の指標の一つであり、回転速度分布はプラズマの輸送過程に影響する物理量と考えられている。そのため、JT-60では実験開始当初から本測定装置の重要性に着目し、1987年の試験測定を皮切りに分布測定の性能を段階的に上げ、数々の成果を献してきた。

現在の基本構成と仕様
JT-60の大電流改変に伴って1991年から整備したシステムが定常的に稼働し、放電と同期してデータ収集、データ処理、加工データのデータベースへの転送が全て自動で行われている。装置の基本構成を図1に示す。本装置は、斜め上方からトーラスに射入される加熱用準垂直ビーム（85keVのDビーム）とプラズマ中に照射する完全電離炭素イオンとの荷電交換反応に伴う発光を観測する。光学系はトロイダル系とポロイダル系の2系統があり、それぞれがビームを観測する光学系と背景光評価用（ビームを見込まない）の光学系を有する。プラズマからの可視領域の発光は、石英レンズで集光された後、純石英光ファイバーで周辺室の分光器に導入される。各空間点のスペクトルはCCDカメラで電気信号に変換してデータレコーダーに記録される。空間点数と時間分解能等の基本性能を表1に示す。

図1 装置の基本構成と視野

性能の進展とJT-60実験へのインパクト
本測定装置は、高性能プラズマの研究において不可欠のイオン温度及びプラズマ回転速度の分布の時間変化を測定し、プラズマの輸送現象の研究に寄与してきた（表1）。

<table>
<thead>
<tr>
<th>実験目的</th>
<th>能動粒子線を [86%) 使った測定</th>
<th>長時間</th>
<th>分布測定</th>
<th>高速度測定</th>
</tr>
</thead>
<tbody>
<tr>
<td>開発要素等</td>
<td>電荷測定</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.6 中性子計測の開発・改良

目的
中性子計測は核融合反応を測定する手段として最も基本的な計測である。また、核融合プラズマにおいては、中性子計測を通じてα粒子の発生分布やその輸送といった情報を獲得することが求められている。JT-60では重水素プラズマで発生する DD 反応中性子の計測、さらには中性子の情報からプラズマ中の高エネルギー粒子の輸送を調べることを目的に、フィッションチェンバー（中性子モニタ）やマイクロフィッションチェンバーによる全中性子発生量の計測、および大型コリメータアレイを利用して中性子発生分布の計測を行っている。さらに、中性子モニタによって、JT-60の調和的な運動を確保することも大きな目的である。

現在の基本構成と仕様
中性子モニタ
235U フィッシュンチェンバー、238U フィッシュンチェンバーのセットを P3、P7、P13 の水平ポート外側に設置し、3 箇所の計測により全中性子発生量をモニタしている。それぞれ中性子が原子核（ウラン 235、ウラン 238）に衝突した際に生成する核分裂反応を、利用する核分裂計数管である。235U フィッシュンチェンバーは検出器の周囲を 5cm 厚のポリエチレンで覆うこと、検出器の中性子感度を調整している。さらに、熱化中性子の寄与を除くために、カドミウムで外側を覆っている。また、238U フィッシュンチェンバーは約 1 MeV の閾値を持ており、散乱中性子の影響は 238U に比べて受けにくいが、中性子の感度が約 10^-3 と低く、相対的にガンマ線の影響が大きくなるため、ガンマ線の遮蔽材として鉛を検出器の周りに置いている。

計測は通常 1ms サンプリングで行われる。地震的な揺れや真空管内のスラッジの中心軸上をスキャンすることにより行っている。

中性子発生分布計測
中性子発生分布の計測は図 1 に示すように斜め下より 6 チャンネルの大型コリメータアレイ (2.6m × 1.5m × 3m) を用いて計測を行っている。コリメータアレイは視線以外の中性子を遮蔽するためのポリエチレンとガラス線を遮蔽するための鉛とから構成される。通常コリメータの径は 30mm である。

コリメータアレイの後部に中性子検出器を配置し、中性子を検出したときに出力するパルスを計数することで、それぞれの視線上で発生する中性子の計測を行っている。検出器としては開発当初、中性子検出器として広く使われていた NE213 有機液体シンチレータを使用していた。しかし NE213 有機液体シンチレータをはじめとする有機シンチレータはガラス線内にも感度を持つことから、ガラス線の弁別は大きな課題であった。また、散乱中性子をいかに除去するかも大きな課題であった。そこで新たに、ロシアで開発された n-γ 弁別回路付きのスチルベン中性子検出機を導入した。この検出器はスチルベン有機液体シンチレータと中性子 (γ) とガラス線 (γ) の弁別機能を組み合わせた検出器で、本検出器だけでは、中性子のみの計測が可能となっている。実際には、線源を用いた性能試験によりスチルベン中性子検出器は十分な弁別機能を有していることを確認している。また、MCNP と呼ばれる中性子の輸送計算コードにより、散乱 (透過) 中性子の評価を行ったところ、ほとんどは 1 MeV 以下のエネルギーであることが計算されたので、測定ではスティルベン中性子検出器の閾値レベルを 1 MeV に設定し、散乱中性子をできるだけ除去している。

通常測定は 10ms サンプリングで行われているが、高エネルギー粒子の輸送解析を目的とした実験等では 1ms サンプリングに変更して計測を行っている。

図 1 JT-60 中性子発生分布計測用コリメータ
マイクロフィシッシュンチャンバー

マイクロフィシッシュンチャンバーは図2(a)に示されるような小型の235Uフィッシッシュンチャンバー（200mm×14mm）でITER等の装置において真空容器内のプランケット周辺に配置することを目的に設計、開発が行われてきた。強磁場下で中性子モンタとしての性能を立証するためにJT-60ではP-8水平ポート近傍に設置し測定を行っている。検出器からの中性子出力はITERの真空容器内への設置を想定し、MIケーブルを介して行われる（図2(b)）。測定システムは中性子モンタと同様の方法を採用している。

JT-60実験へのインパクト

中性子モンタ

中性子モンタは、JT-60の安全な運転の確保に不可欠な中性子発生率の計測のため、また、プラズマの性能を示す指標を提供するため、高い信頼性で計測を続けてきた。同時に、不安定性等による閉じ込め効果の目安として使用されている。さらには、プラズマ実験のフィードバック制御にも利用されている。

中性子発生分布計測は計測器の改善およびコード計算による散乱中性子の影響の評価等を行うことにより、得られた中性子分布が計算コードを用いたシミュレーション結果と良い一致を示すようになり、中性子発生分布の計測が行えるようになった。

また、マイクロフィシッシュンチャンバーによる中性子計測では、中性子モンタに対して広い測定領域で線形性を示し、強磁場下での性能を立証し、ITERにおける中性子モンタの一つの候補としての研究開発が進められた。

高エネルギー粒子輸送解析のための中性子計測

JT-60における中性子計測は中性子の計測そのものだけでなく、高エネルギー粒子の輸送解析において活用され、特にアルヴェン固有モード発生時の高エネルギー粒子の輸送解析において重要である測定結果を与えてきた。燃料プラズマでは、核融合反応で発生した高エネルギーピアルクのα粒子により、アルヴェン固有モードの発生が指摘されており、この不安定性により、α粒子の閉じ込めが悪くなり、加熱効率の低下や、損失したα粒子が第一壁にダメージを与えることが懸念されている。このため、アルヴェン固有モードの発生機構の解明、およびAEと高エネルギー粒子の輸送の関係を調べることは重要であると考えられる。

近年、JT-60では負イオン源中性子ビームを用いてアルヴェン固有モードの研究を行ってきた。このようなプラズマでは中性子の大部分はビーム成分であるために、中性子発生率は高エネルギービームのビームを示す指標として用いることが可能である。本測定により、振幅の大きなアルヴェン固有モードパースト時の全ての発生の低下を観測し、高エネルギービームの閉じ込めの効果を確認した。さらに、その閉じ込め効果がどのように変化するかを調べるために、アルヴェン固有モードパースト発生時に中性子発生分布計測を行ったところ、中心領域に視線を持たず信号の減少、周辺部に視線を持つ信号の増加するという結果を得た。そこで、得られた中性子発生分布計測結果は図1に示すように視線に沿った積分値であるため、中性子発生密度は磁気面積数であると仮定して、アーベル変換を行うことにより中性子発生密度分布を得、さらに、中性子発生量を求める表現から、中性子計測の結果とともにいくつかの仮定を用いて高エネルギー粒子の密度分布を評価した。その結果、アルヴェン固有モードパーストにより高エネルギー粒子の空間的な再分配がおこったことを示す結果を得ことが可能に世界で初めて成功した。

検討、考察、さらなる改良に向けての提案

中性子モンタは開発を行う際、これまでに使用している235Uよりも実験条件に近い（重水素プラズマでは2.45MeVの中性子）中性子源もしくは中性子発生装置を使用するのが好ましく、一つの検討課題である。

中性子発生分布の大きな課題の一つは、検出器として使用しているスチルベン中性子検出器の係数の上限（105個/秒程度）の問題である。実験では検出器がその計数率の上限を超えないようにプラズマの状態にあわせて数を絞った簡単コリメータを用いて対応している。しかし、その現状では統計
精度の観点から早いサンプリングを行う時にはSNは改善されない。これを改善するために、デジタル信号処理(DSP)を用いた測定システムを導入し、係数率の上限を1桁程度上昇させることを検討している。

また、JT-60実験へのインパクトの項で記述したようにAEによる高エネルギー粒子の輸送を解析する際、中性子発生量は磁気面関数と仮定していたが、中性子発生分布およびAEなどによるその変化をより詳細に測定するために、縦方向の中性子発生分布測定を新たに行い、2次元計測を行う計画を進めている。既に全8チャンネルからなるコリメーターをJT-60本体室内に配置し、1チャンネルの計測を開始している。今後、縦方向中性子発生分布計測を確立していく予定である。

またマイクロフィッションチェンバーにおいては、NBIが切れたときに生じている信頼のスパイクを除去することが課題であり、高性能なノイズカットフィルターの導入を検討している。

結論

JT-60における中性子モニタは、プラズマ性能及び安全性の指標となるデータを提供する重要な計測装置として活用されている。中性子発生分布計測においては、高エネルギー粒子の輸送の解明に寄与し、ITERにおいて重要な課題となるα粒子の挙動解析に大きな知見を与える。またマイクロフィッションチェンバーの成果はそれがITERにおける中性子モニタの候補になることを示している。

参考文献
8.7 連続電流分布測定装置（モーショナルシュタルク効果分光計測装置）
の開発・改良

目的
モーショナルシュタルク効果（MSE）分光計測はプラズマ中の安全係数および電流密度を測定するため、1992年より導入した（当時1チャンネル）。安全係数はトカマクプラズマの閉じ込め、安定性に大きく影響するため重要な物理量でありながら、高温プラズマ内部の安全係数の直接測定は困難であった。MSE計測により、実測にもとづいた安全係数を考慮して放電条件作成ができるようになった。

現在の基本性能と仕様
図1（a）にポロイダル断面におけるMSE計測点を、図1（b）に現在のMSEの全光学系の配置、図1（c）にMSE計測基本図を示す。MSE計測はプラズマ中に注入された中性粒子ビーム（NB）が、プラズマとの衝突により励起された後に出射される水素のパルマーα光を観測する。パルマーα光は中性粒子が破壊を横切って動くときに感じる電場（電場と垂直）により電場と垂直方向の円偏光と平行方向の直線偏光に分岐し、直線偏光については電場強度に比例した波長だけずれる（シュタルク分岐）。JT-60では円偏光の偏光角を測定することで、プラズマ中の磁場の方向（ビッチ角）を測定する。このため、MSE計測光学系の焦点は接続入射NB（#7、#8）の各二つあるイオン源のうち、#7B、#9Bイオン源のビームライン上にある（図1（a））。偏光角の測定には真空容器ポート近傍に配置した光弾性変調器を用いている（図1（c））。偏光角の時間変化は、独立した二つの周期数で変調した光の強度変化として120mの光ファイバー（耐放射線）を用いて計測室に伝送する。伝送された光は干渉フィルターを通して光電子増倍管により円偏光成分の強度を測定し、変調された光の強度変化より偏光角を求める。プラズマ内部の磁場のビッチ角（偏光角）を拘束条件に加える再構築することで、プラズマ内部の安全係数分布および電流分布を求める。

図1 MSE計測の概要 (a) 視野図、(b) 全体図、(c) 構成図
表1に現在の仕様を示す。MSE計測データは10msで計測データベースへ送られ、主に光子数に起因する信号の揺らぎを減らすために平衡再構築の際には50–100ms程度の時間窓で平滑化を行ったデータを用いることが多い。

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>チャンネル数</td>
<td>30ch (17ch for P17, 4ch for P13, 9ch for P3)</td>
</tr>
<tr>
<td>空間分解能</td>
<td>10cm以下</td>
</tr>
<tr>
<td>時間分解能</td>
<td>10ms</td>
</tr>
<tr>
<td>光ファイバー</td>
<td>120m、石英製、コア径φ0.4mmを1チャンネル当たり20本程度使用</td>
</tr>
<tr>
<td>光学干涉フィルター</td>
<td>平面物0.3mm、透過率40%以上、有効径φ45mm以上、中心波長は温度により微調整</td>
</tr>
<tr>
<td>光電子増幅管</td>
<td>浜松ホトニクス R943-03</td>
</tr>
<tr>
<td>光弾性変調器</td>
<td>ハインズ PEM-90 (20kHz, 23kHz一体型)</td>
</tr>
</tbody>
</table>

性能の進展とJT-60実験へのインパクト
1992年開始時のP13水平ポートの光学系（P13系）の1チャンネルから、分布計測のためにチャンネルを増設し1994年に5チャンネル、1996年にはP17水平ポートの光学系（P17系）の2チャンネルを加え14チャンネル、1998年にP17系を15チャンネルに増設、2000年には絶電場計測用光学系をP3斜上ポート（P3系）の9チャンネル増設し計28チャンネル、2001年には周辺部の空間分解能の更なる向上のためにP17系に2チャンネル増設して計30チャンネルで現在に至っている（図1(a))。現在の空間分解能は径方向に6-10cm程度である。空間分解能の向上により、負磁気シア放電による臨界条件の実測（等価Qω=1）とさらなる核融合性の向上（Qω=1.25）、負磁気シア安全係数分布と内部輸送障壁の関係の理解とそれを利用した閉じ込め性能の向上などがなされてきた。その際、MSE計測による安全係数分布の時間変化から加熱分布を調整することで安定性を回復することが可能になった。さらに、計測精度の向上と3つの独立光学系からのデータの詳細な検討により、初めて電流ホールを発見した。計測精度の向上は主に磁場基準周波数の変動により、磁場基準の光学系を通過する光に対する旋光（Faraday回転）の影響の補正、ミラーでの反射時における偏光角の回転を考慮する伝統的回転の採用、実験前のミラー・検出器条件下的での実測による偏光角の回転の補正などに負っている。Faraday回転の影響は、トロイダル・ボイド磁場磁場コイルの単独通電による各コイルの影響の詳細検討を行った。また、ミラーによる偏光角の回転の詳細測定では、磁場基準回転装置を製作することにより真空中で基準の被野線量で制限されていた測定チャンネル数を増やすと共に、偏光回転中のその形状精度を上げることができることが報告されている。これら空間分解能と計測精度の向上により、電流駆動（CD）理論の検証（負イオンNBCC、電子サイクロトロン波CD、低エネルギーCD）や、不安定性（新古典テリアリングモード）発生時の磁気圧による自発電流の減少を、減衰した自発電流を電子サイクロトン波CDにより補う際に不安定性が抑制される様子が発見された。

など、2000年からはMSE計測の基本的要件が定められ、実際のデータは安定性を向上させている。実際のデータの評価は、従来の10cmから1時間程度必要であったがこれを10ms毎に行える手法を開発し、実際の計測条件を実験した。このデータ収集の高速化評価は、1)プラズマの内部磁場をパラメータ化した最外端磁場から推定し、2)MSE計測点がプラズマの赤道面近くにあり磁気面がほぼ垂直であるため、MSE計測の偏光角がプラズマの形状に強く依存せず、ほぼピッチ角を近似できるを利用可能になった。

検討、考察、さらなる改良へ向けての提案
上記の分析において、MSE計測はプラズマ中に入射された中性粒子の発熱する電流の方向を測定する。
JT-60ではローレンツ電流が最も強く、軸対称のある高閉じ込めプラズマでは閉じ込め電流(絶電場)も重要になりMSE計測は両電場の和を測定していると考えられる必要が生じる。今後の課題としては、2000年に増設した絶電場計測用光学系を用いて両者を分離する平衡コードを開発し、絶電場の直接測定による乱流輸送物理の解明を目指す。

結論
MSE計測はJT-60の総合性能向上、閉じ込め研究、安定性研究、定常化研究、実時間分布制御、電流ホールの発見と物理研究などに広く貢献した。

参考文献
8.8 分光器の開発・改良

目的

JT-60 では、プラズマ中の粒子（水素および不純物）挙動を診断するために、種々の分光器を整備した。これら分光器を用いて、核融合が実現するための 1 つの重要な課題であり、JT-60 における主要な研究課題の 1 つである粒子及び熱の制御に関する研究が進められた。

現在の基本構成

JT-60 の主な分光器の性能を表 1 に、その視線を図 1 に示す。主プラズマ中の不純物計測には、表に示した主プラズマ計測用真空紫外分光器を主に用いている。ダイバータの不純物計測には、表に示すように、イースタ、インテリジェント・リラックス、時間分解能等を考慮して選定している。

表 1 JT-60 の主な分光器の性能の進展

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>分光器</td>
<td>JT-60</td>
<td>外部ダイバータ</td>
<td>内部ダイバータ</td>
<td></td>
</tr>
<tr>
<td>採集長</td>
<td>5-100m</td>
<td>5-100m</td>
<td>5-100m</td>
<td></td>
</tr>
<tr>
<td>時間分解能</td>
<td>10ms</td>
<td>10ms</td>
<td>50ms</td>
<td></td>
</tr>
<tr>
<td>空間分解能</td>
<td>10mm</td>
<td>10mm</td>
<td>20mm</td>
<td></td>
</tr>
<tr>
<td>色</td>
<td></td>
</tr>
<tr>
<td>分光器</td>
<td></td>
</tr>
<tr>
<td>採集長</td>
<td>5-100m</td>
<td>5-100m</td>
<td>5-100m</td>
<td></td>
</tr>
<tr>
<td>時間分解能</td>
<td>10ms</td>
<td>10ms</td>
<td>50ms</td>
<td></td>
</tr>
<tr>
<td>空間分解能</td>
<td>10mm</td>
<td>10mm</td>
<td>20mm</td>
<td></td>
</tr>
<tr>
<td>色</td>
<td></td>
</tr>
<tr>
<td>分光器</td>
<td></td>
</tr>
<tr>
<td>採集長</td>
<td>5-100m</td>
<td>5-100m</td>
<td>5-100m</td>
<td></td>
</tr>
<tr>
<td>時間分解能</td>
<td>10ms</td>
<td>10ms</td>
<td>50ms</td>
<td></td>
</tr>
<tr>
<td>空間分解能</td>
<td>10mm</td>
<td>10mm</td>
<td>20mm</td>
<td></td>
</tr>
<tr>
<td>色</td>
<td></td>
</tr>
</tbody>
</table>

図 1 JT-60 の主な分光器の視線。(a) 主プラズマ計測用真空紫外分光器、ダイバータ計測用真空紫外分光器、ダイバータ計測用可視分光器（斜上方から 60 視線、外横側から 32 視線）、(b) Hα/Dα 測定器の視線（実線、U2 垂直を含む）、可視制動放射光測定器（接続及び U2 垂直。接続については、ポロイド断面上的観測点を X で示す。)

－311－
たダイバータ計測用真空紫外外分光器およびダイバータ計測用可視分光器を主に用いしてきた。可視制動放射光測定は、主プラズマ中での不純物挙動を示す実効荷電数を導くために用いられてきた。νHe/νe 测定器、水素/重水素のパルマー-α 線（He 線/D 線）の強度分布を測定し、水素/重水素原子の電離（水素/重水素イオンのソース）に関する情報を得るために用いられてきた。ダイバータプラズマにおける水素/重水素の挙動判定には、ダイバータ計測用の可視分光も用いられてきた。

性能の進展と JT-60 実験へのインパクト
a) 主プラズマ計測用真空紫外分光器
 本分光器は、JT-60 の実験開始から現在に至るまで、主プラズマ中の不純物挙動を直接観測するために一般に用いられてきた。開発された当時、世界で最も波長の長い領域まで観測可能な平面結晶型斜射入射分光器の 1 個であった。1991 年以降、JT-60 の大電流化改造に伴い、移設工事を行った。2003 年には、JT-60 の長時間放電に対応して、時間分解能を低下することなく測定時間を延長した。この分光器により、第一壁の材料が金属および炭素の場合、リミタ－位置およびダイバータ配位（外側開ダイバータ、下側開ダイバータ、W 型ダイバータ）の場合、NB、IC、LH、FC 加熱の場合、長時間放電の場合等、観測条件の下で、主プラズマ中の不純物挙動を明らかにすることができた。これにより、JT-60 の主プラズマの特性が計測された。著者等は、主プラズマ中不純物挙動に影響を与えないことを得ている。同開発が JT-60 の実験に大きく寄与した。

b) ダイバータ計測用真空紫外分光器（斜射入射分光器）
 本分光器は、JT-60 の実験開始時には外側スリット点に近い主プラズマの周辺領域を観測していたが、1991 年の大電流化改造に伴い下側ダイバータを観測するように移設した。JT-60 では下側ダイバータの放電が最も有効と考えられている遠隔放射冷却に関連する研究が精力的に行われてきた。本分光器は、ダイバータ領域から放射される主な紫外外スペクトル線を同時に測定することにより、遠隔放射冷却を用いた熱制御の研究に貢献した。

c) ダイバータ計測用真空紫外外分光器（直接入射分光器）
 本分光器は、1987 年に主プラズマ計測用真空紫外外分光器内およびダイバータ計測用真空紫外外分光器内に設置できる直接入射分光器として開発された。大電流化改造後は、主にダイバータ計測用真空紫外外分光器内に設置され、放射冷却に寄与する主なスペクトル線（C1-C2 の 2s-2p 遷移に伴うスペクトル線、水素のライマン線）を同時に測定することにより、遠隔放射冷却を用いた熱制御の研究に貢献した。

d) ダイバータ計測用可視分光器
 本分光器は、1989 年にダイバータプラズマの不純物挙動を直接観測するために導入された。遠隔放射冷却が大きさで観測できる状態で測定が可能になるために、改善開発を進め、開発した。1997 年には、回折格子を交換し、測定可能の波長範囲を広げた。これにより水素のパルマー系列を測定できるようになり、非接触ダイバータプラズマでは電子温度が 1 eV 以下になり、プラズマの体積再結合が生じていることがわかった。2003 年の測定は、高分解能を低下することなく 65 秒間測定可能とした。2004 年には、検出器を CCD カメラに交換し、分光器の入射光学系を改造することにより、同時に 40 線測定可能とすると共に波長分解能を向上させた。現在、次の述べるダイバータ計測用可視分光器（空間分布測定）と共にダイバータプラズマにおける不純物、水素の挙動の計測に用いられている。

e) ダイバータ計測用可視分光器（空間分布測定）
 本分光器は、ダイバータプラズマを空間分布測定できる、種々の目的で利用できる高分解能の高い分光器として 1999 年に導入された。3 種類の回折格子を用い、高い波長分解能の測定に応じた波長範囲を測定に付与できる。ダイバータプラズマの光学適用性に対する水素不純物の発生、水素分子のリサイクル、ダイバータプラズマのイオン-電子再結合および分子再結合を定量化に寄与した。

f) ダイバータ計測用可視分光器（高空間分解フィルター分光器）
 本分光器は、1991 年にダイバータプラズマを空間分布測定するために開発された分光器である。4 つの波長の光を、紫外光で測定する波長の最短である。1995 年に再構成をし、2003 年には測定時間を長時間とした。観測された光強度の空間分布を不純物輸送コードと中性粒子輸送コードを用いて解析することにより、JT-60 が世界をリードするダイバータプラズマにおける不純物の発生、輸送、水素分子のリサイクル、放射損失に関する研究を可能にした。

g) ダイバータ計測用可視分光器（高波長分解）
 本分光器は、ダイバータプラズマから放射されるスペクトル線のドップラー広がりが観測可能（ダイバータ計測用可視分光器として）世界最高の波長分解能を有する可視分光器である。HeII 線のドップラーアイビーの測定では、水素分子挙動とその HeII 線の放射に及ぼす影響を明らかにした。He のスペクト
線測定では、水素イオンによる弹性散乱がHeの輸送に影響することを実験的に初めて観測した。この弹性散乱の効果は、ITERのエネルギー増幅率の予想に大きな影響を与えた。2003年には、光電面がGaAsの検出器に交換することにより、検出感度を約5倍改善した。現在、炭素不純物輸送の研究、ダイバーツプラズマのイオン温度測定に用いられている。

h) 可視制動放光測定器

本測定器は、1991年に実効電荷数の空間分布を測定するために設置された。1997年には視線数を14に増やし、2003年には長時間放電に対応する改造を行った。主プラズマ中の不純物密度分布に関する情報を高い信頼性で与えている。

i) Hα/Hα測定器

本測定器は、1986年に設置した時には主プラズマを8本、外側ダイバーツを4本の視線で観測できた。JT-60の当初の最大の特長の1つであったダイバーツ配位における水素イオンクラインング、粒子閉じ込め性能を明らかにするとともに、H モード・プラズマの開発に寄与した。1991年には、光ファイバを利用した下側開ダイバーツも含めて18の視線で観測できる新たなシステムとして整備し直した。これにより、中性粒子発射に関する空間分布情報が得られるようになり、中性粒子発射に関する定量的な研究、高性能プラズマの開発に寄与した。2003年には長時間放電に対応する改造を行い、長時間放電における重要な研究項目である第1壁の粒子飽和現象および中性粒子発射の変化に関する研究が進められた。

j) Hα/Hα測定器（高時間分解）

本装置は、上のHα/Hα測定器の検出器出力を高速でサンプリングするもので、これによりELMに関する高速時間分解の研究が可能となった。2003年には長時間放電に対応する改造を行い、長時間放電における重要な研究項目である第1壁の粒子飽和現象およびELMの変化に関する研究が進められた。

検討、考察、さらなる改良へ向けての提案

主プラズマ計測用真空紫外分光器によって、主プラズマ中の不純物挙動診断において最も重要な真空紫外領域のスペクトルが観測されている。これに加えて可視領域、X線領域の分光器が整備されれば、性能と無響な不純物挙動診断が可能になると考えられる。また、主プラズマ計測用真空紫外分光器は、高性能な研究施設の老朽化により保守が困難になっている。ダイバーツ計測用には、種々の分光器が開発、整備されてきた。高空間分解フィルター分光器については、検出器の老朽化のため保守が困難になったので、これに代わりより性能の高い分光器として、ダイバーツプラズマにおける粒子挙動を2次元で詳細に計測できる分光器（空間分解能：100 視線、同時測定波長幅：350～750 nm）の整備を進めている。Hα/Hα測定に関連しては、周辺プラズマでの粒子輸送、密度挙動を観測するために、高速テレビの設置を新たに進めている。

結論

JT-60では、様々な高性能分光器を開発、整備することにより、主プラズマおよびダイバーツプラズマにおける粒子（水素および不純物）挙動診断を可能とした。これにより、高性能プラズマの開発、粒子および熱管制御の確立に向けた粒子挙動の理解に寄与した。

参考文献
8.9 ポロメータ計測の開発・改良

目的
ポロメータとは、プラズマを構成する不純物や水素が放出する光（電磁波）や粒子を薄膜で受け、熱として感知する測定器である。プラズマの放射損失を電力（パワー）として直接計測するので加熱入力等との直接比較が可能である。計測器は受光薄膜とそれに密着させた薄膜抵抗、受光素子、と増幅器で構成され、薄膜の変化（熱）によって電子抵抗の変化を専用のプリジッド増幅器で電圧信号として取り出す。プラズマ中で放射損失は一様ではなく、空間分布はトカマク放電の性質に応じて周辺部や中心部で様々に変化する。特に、ダイバータプラズマの放射損失はダイバータ板の熱負荷と密接に関連する量でもあり、ダイバータ研究において重要な役割を担っている。

性能の進展とJT-60 実験へのインパクト
従来から JT-60 トカマクでは金薄膜抵抗型ポロメータを多数用いて多チャンネルのアレーを構成し、放射損失の分布測定を行ってきた。素子の絞りは、小型のレーザーなどで受光素子を直接照射する方法と外部電源を印加して素子を自己発熱させ、それ自身の抵抗変化を入力の関数として求める方法がある。後者によって実際の測定条件（真空度、壁温度）での特性を求めることができられる。
JT-60 のポロメータは 1986 年の設置当初から今日に至るまで多くの改良が加えられている。最近 10 年間の主な改良点を表 1 に示す。1992 年にはダイバータ部を測定するための新たなアレーが追加され、捕戦されず高流速イオンが壁に衝突する時に発生する中性粒子の影響などが明らかになった [2]。

<table>
<thead>
<tr>
<th>期間：項目</th>
<th>目的</th>
<th>チャンネル数、空間分解、感度</th>
<th>応答時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-6: ダイバータアレー</td>
<td>ダイバータ領域の空間分解能を 2 倍にする</td>
<td>ダイバータ領域 20ch. ～3cm、1v/l、>50ms</td>
<td></td>
</tr>
<tr>
<td>1995: 放射損失実際時間処理</td>
<td>JT-60U ダイバータ/主プラズマ放射損失の負荷遮断能</td>
<td>応答時間 (演算処理：0.001 秒、ガス注入遅延時間：0.1 秒)</td>
<td></td>
</tr>
<tr>
<td>1997-9: ダイバータポロメータ</td>
<td>ダイバータ各部の局所放射損失計測</td>
<td>ダイバータ領域 16ch. ～3cm、5v/l、<10ms</td>
<td></td>
</tr>
<tr>
<td>2003-5: イメージング・ポロメータ</td>
<td>核燃料実験用イメージング・ポロメータの開発</td>
<td>全断面 100ch 以上、S/N≈10（等価面積 0.05mm²、33ms）</td>
<td></td>
</tr>
</tbody>
</table>

1995 年には 1/1.5 に小型化した素子を用いて斜上ポータ等からダイバータ部を詳細に測定するポロメータアレーを 3 台新規に製作・設置した。この改善により、ダイバータ部の空間分解能は 1 チャンネル当たりの 3.1° から 1.2° と 2 倍に向上させる事が出来た。同時に静止電荷放電時の中性子照射による回路素子の損傷を軽減するためにポリエチレン遮蔽を設置した。図 1(a)は現在の JT-60 のポロメータ計測の視線配置である。これに用いる増幅器や信号伝送線は現在では製造中止されており、代替法や新技術の開発も重要な課題である。1997 年には JT-60 の W 型ダイバータ改造工事に併せてダイバータポロメータを新設した。図 1(b)にダイバータポロメータの断面を示す。内側と外側のダイバータ放射をゼロパラリティクスに沿って 4 節所観測する 2 台のカメラと X 点近傍を水平方向と垂直方向から観測する 2 台のカメラで構成され合計 16 チャンネルである。ダイバータポロメータは 300 度以上高温に耐え加熱ディスラプションに誘導される飛散熱が重畳さ

(a) JT-60Uポロメータ計測全体構成 (b) ダイバータポロメータ

図 1 JT-60 ポロメータ計測の視線配置 (a) 及びダイバータポロメータ (b)
れため、当初は素子の断熱断面が顕著であった。これを解決するため1999年にセラミックパネルを挿入するなど電気的かつ熱的な耐久性を強化する改修を施した。この結果、素子の寿命を2年以上とすることができ、ダイバータ放射に関する詳細な研究が可能となった。またECHなど高パワーの高周波ノイズ対策としてワイヤーメッシュ等を追加した。これら新旧合わせて合計48チャンネルのプラズマ各部の視線データを逆変換するソフトウェアを日米協力により開発し、ダイバータ放射強度のトモグラフィ処理によりJT-60ダイバータ放射の2次元分布解析が可能となった。高密度放電時に発生するMARFEと呼ばれる高密度放射現象やその前段階のデータチャートと呼ばれるダイバータ板からプラズマが離れる様子など、ダイバータに関する様々な現象を分かりやすい2次元画像の形で表すことが出来た。これらの結果は、今後ダイバータプラズマの理解を深める上で貴重なデータとなる。他方、放射損失パワープーチをJT-60Topマーキー実時間制御装置の制御パラメータの1つに加える機能も構築した。プローベターの信号を高速で演算処理して全系制御と組み合わせ、ガスパフや加熱パワーを用いたアルゴリズムに応じたプラズマの放射パワー制御が出来るようになった。この機能は以後のJT-60Topマーキー実験により多様性を加えるものとなり、不純物注入による放射ダイバータ実験などに重要な役割を果たしてきた。その他2003年にはJT-60放電の長時間化への対応としてデータ処理ソフト改修を行った。長時間放電時にはデータ収集サンプリング時間及び微分演算ステップの長い部分が切り換えて運転を行っている。ポロメータ計測の新展開として、2003年から核融合科学研究所と共同で赤外イメージング・ポロメータの試験を開始した。電気的に検出する従来の抵抗型ポロメータが異なり受光薄膜の温度を真空容器の外から高感度の赤外カメラで直接計測する方法で、多数の回路を必要とせずポンダラスな量の視線データが得られるなど優れた性質を持っている。ディスラプションに対する耐久性や中性子照射など核燃料トカマク環境下での開発研究として2004年度研究費に採択された。図2は測定器の構成図、ポロメータ側面の視野（左図太線）、測定領域を既存ポロメータアレーパ（点線）とほぼ同じにし、スクリーンの中心をトロイダル方向にずらせて3次元的な分布を観測出来るようにしたい。ITERなど今後の核燃料トカマクに有効な計測法の開発を目指すことに、また、放射損失のトロイダル分布などJT-60の実験にも新しい視点をもたらすものと期待される。

図2 JT-60Uイメージング・波ロメータ計測装置と視線配置

検討、考察、さらなる改良へ向かう提案

抵抗型ポロメータについては、より耐熱性並びに耐放射線特性に優れた検出素子の開発が必要である。中性子照射下での核変換による物質損の変化のない白金を用いた素子の開発や真空容器内部での素子交換のための耐熱型接続端子の開発などが今後の課題である。増幅器には層高い動作安定度が望まれる。例えば、従来の単純なプリッジ回路に電力信号の帰還制御を加えて安定化を図るなどの考えられ、回路系が複雑になる欠点があるが、JT-60の結果から、圧力や温度センサーを組み合わせた動作点の帰還制御も重要な検討課題であると考えられる。赤外イメージング・ポロメータについては、赤外カメラ自体の性能はここ数年長足の歩みを遂げている一方、低損失遮蔽壁の外へ導くために必要なZn-Teレースの開発など赤外領域の光学技術は未成熟であり今後の進展が望まれる。

参考文献
1. 西谷健夫，他，核融合研究 59(1988)226．
2. N. Hosogane，et al.，Nucl. Fusion 34(1994)527。
8.10 静電プローブの開発・改良

目的
スクレイプオフ層（SOL）およびダイバータプラズマのイオン飽和電流（Ii）、電子温度（Te）、浮遊電位（Vf）を測定する。さらに、可動静電プローブはマッハプローブ用に電極が配置され、磁力線に沿うプラズマ流の速度（マッハ速度、Ma）を測定する。

現在の基本構成と仕様
4種の静電プローブ（設置の早い順に）（1）ダイバータ静電プローブ、（2）赤道面可動マッハプローブ、（3）X点可動マッハプローブ、（4）内側可動マッハプローブ、が設置されている。図1に設置概要を示す。

図1 静電プローブの設置概要図
（左1列）ダイバータ静電プローブ、（中2列）X点可動マッハプローブおよび、（右）赤道面可動マッハプローブ

（1）ダイバータ静電プローブ
P3ポート付近のW型ダイバータ板に、ドーム型のシングル静電プローブが合計72本設置されている。2組の18本ボロイダルアレイ（内側・外側ダイバータに9本つづく）、と3組の12本ボロイダルアレイ（内側・外側ダイバータに6本つづく）がトロイダル方向に並ぶ。ダイバータ板上におけるプローブ間隔（空間分解能）は、ボロイダル方向は2.5〜4cm、トロイダル方向は5〜6cmである。
2003年から時間分解能を改善しデータ容量を増加した新システムへ移行し、ELMyHモードでも測定できるようにした。トランジェントレコーダ（TR）のチャンネル数の制限（全30チャンネル）のため、現在は1組の18本ボロイダルアレイでダイバータプラズマのIi、Te、Vfを測定し、さらに5個所でのVf、
の高速時間変化を測定している。時間分解能は印加電圧の周期により最高 2ms から 50 ms、測定時間はメモリー（約 512Kch）で制限され 2.5s から 60s 程度である。
(2) 赤道面可動マッハプローブ
P18 ポート水平ポートの LH ランチャー架台に設置されている。磁力線に沿って上流側と下流側にそれぞれダブルプローブを、また端端に浮遊電位プローブ電極を配置した（5 種のマッハプローブ）。上流側と下流側での T_e と I_e の比から M_e が評価できる。約 1 秒間で 25cm を往復し、主プラズマ周辺 SOL の半径分布を 1 mm の空間分解能で測定できる（時間分解能は印加電圧の周期従来おり、EML 発生時などにおける I_e および M_e、あるいは T_e の高速変化（最高 500kHz）を測定できる。
(3) X 点可動マッハプローブ
W 型ダイバータ改造時に P9 斜め下ポート設置され、外側ダイバータ板から X 点すぐ下までのダイバータプラズマ分布を測定できる。電極配置は赤道面可動マッハプローブとはほぼ同様であり、上流側と下流側での T_e と I_e の比からダイバータ X 点付近におけるプラズマの速度が評価できる。赤道面可動マッハプローブと同様に約 1 秒間で 25cm を往復し、半径分布を 1 mm の空間分解能で測定できる。X 点下のプライマート領域におけるプラズマ分布も測定できる。
(4) 内側可動マッハプローブ
W 型ダイバータの P2 下 U1 ポート設置され、内側パドル板上部の高磁場計 SOL プラズマをダイバータトマカウで初めて測定した。電極配置は赤道面可動マッハプローブとはほぼ同様であり、上流側と下流側での T_e と I_e の高磁場計 SOL におけるプラズマ流の速度が評価できる。約 1 秒間で 35cm を往復し、1mm の空間分解能で測定できる。

性能の進展と JT60 実験へのインパクト
4 種の静電プローブ装置の設置および改善の経緯について簡単に説明する。表 1 に静電プローブ装置の開発経過と仕様概要を示す。

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JT-60</td>
<td>-大電流化改造</td>
<td>-ダイバータ改造</td>
<td>-長パルス化改造</td>
<td></td>
</tr>
<tr>
<td>ダイバータ板</td>
<td>1s 180度</td>
<td>18s 180度</td>
<td>-180度高速化、長時間対応</td>
<td></td>
</tr>
<tr>
<td>静電プローブ</td>
<td>-時間分解能: 0.1s（電圧スイープ時間）</td>
<td>-時間分解能: 0.5-50ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-測定時間: 1s</td>
<td>-測定時間: 1s-5s</td>
<td></td>
</tr>
<tr>
<td>合同可動</td>
<td>-3電極</td>
<td>-マッハプローブ化（5電極、駆動軸交換）</td>
<td></td>
</tr>
<tr>
<td>静電プローブ</td>
<td>-時間分解能: 2ms（電圧スイープ時間）</td>
<td>-時間分解能: 2ms（電圧スイープ時間）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-測定時間: 1s（往復時間）</td>
<td>-測定時間: 1s（往復時間）</td>
<td></td>
</tr>
<tr>
<td>内側可動</td>
<td>-マッハプローブ化（5電極）</td>
<td></td>
</tr>
<tr>
<td>静電プローブ</td>
<td>-時間分解能: 2ms（電圧スイープ時間）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-測定時間: 1s（往復時間）</td>
<td></td>
</tr>
</tbody>
</table>

(1) ダイバータ静電プローブ（参考文献：開放型ダイバータ [1-6]、W 型ダイバータ [7,8]）
1991 年（大電流化改造）：III-D で使用したドーム型の CFC 製プローブ電極を参考にして、開放型ダイバータ板に 15 本電極を配置した。ダイバータ研究の主要計測器としてストライク点位置の評価、低温・高密度ダイバータ研究に大きく寄与した。米ベリの仕様限界のため、通常は 100ms の時間分解能で 13 秒間の測定を行なったが、ELM 2 モードや非接触ダイバータ発生におけるプラズマの変化と熱流の傾向を定量的に測定できる。サンプリング速度も速く（1ms）で、低温プラズマの評価にも不確実性が大きかった。
プラズマパラメータ（電子温度、イオン共鳴電流、浮遊電位）を評価するため、ランギュラー・プローブ関数を非線形フィットしている。それらの結果、イオン共鳴電流側のフィット範囲をイオン共鳴電流の 1-3 倍と変化し、X 二乗が最小となる場合のフィットパラメータを選択するソフトを開発し使用している。
1997年（W型ダイバータへの改造）：ダイバータ板に合計72本の静電プローブアレイを設置し、1組（18本アレイ）を使用し、ダイバータブラズマ分布計測を行った。特にプローブに電圧を印加し測定する場合、損耗や絶縁劣化が進行しやすい問題を改善するため、ストライク点付近を測定する3組の12本アレイを設置し、問題発生時には他の電極へ配線変更を行っている。主な計測としてストライク点位置の評価や非接触ダイバータ研究に大きく寄与した。

1998年（高速測定化を開始）：非接触ダイバータの発生やELMの測定には、高時間分解能の測定が必要であるため、新TRとワープセッショ（WS）システムの開発を開始した。18本アレイによる主要計測とは別に、8チャンネルの測定システムを2001年から運転し、時間分解能（電圧検出時間）は100ms（1kHzサンプル）から最高2ms（200kHzサンプル）へ改善され、1電圧検出当たりのデータ数も100点から200-400点に増加し特に低速（数-10eV）の分解能が向上した。この高分解能非接触ダイバータ発生の機構解明やELMのダイバータ板への輸送研究に大きく寄与した。

2002-2003年（長時間放電対応）：JT-60の長時間放電に対応すると同時に、18チャンネルを高速測定するため、新クロックをもとに新TRなどのハードウェアおよびソフトウェアの高性能化を行った。さらに、長時間運転中のありのまま帯（最大5回）で、さらに長時間収集へ変化できるパーストモードをJT-60の計測装置では初めて実装した。2003年より運転から高速ダイバータプローブ計測を常時運転し、以前の収集システムでは使用中止した。この高出力化により、高速ダイバータやELM特性の変化を長時間プラズマ放電（2004年から）高速測定可能になった。

2004年（大量データ処理の改善）：高速ダイバータプローブ計測のWS（SunSparc5）はSバースを使用するため全チャンネルの収集時間が放電間隔（25分）を越えてしまうが、この放電ではフルスケックのデータ量の半分を集積している。また、非線形フィットでプラズマ温度やイオン流密度を評価する（例えば1チャンネル当たり2000時間点程度）ため、全てのデータ解析に1-2時間もかかる、実験運転に役立っていることが難しい。このため、WSの高性能化（SunBlade150と1500）と新クレートコントローラ（CC-net）を使用した新システムへ改善した。さらに、データは新解析サーバ（naka-srv）へ保存する様にし、アクセス時間やリソースの手間を短縮できる。

（2）赤道面可動マッハプローブ（参考文献：トリプルプローブ[9-11]、マッハプローブ[8,12,13]）

1993-1994年（可動静電プローブの設置）：JETで開発された動静電プローブを可動化できるように、3本のCFC電極を持つ可動静電プローブを、LHランチャー架台に設置した。ダイプローブおよび浮遊静電プローブとして使用し、静電プローブによる計測は一般的であったが、LH波のランチャー結合特性研究および高密度SOLでの密度分布の変化などの実用化で初めて測定結果が発表された。

データ処理計算機で、有効なWSでなく価格の低価格のPC（Apple社Macintosh）を使用し、収集および解析システムを新たに開発した。0.5sで25cmの高速運動中に位置を1mm以下の高分解能で測定するため、レーザー距離計を使用した。また、極電極先端部の形状を磁気力を形状に合うよう整形（30度に加工作）することにより、ダブルプローブ特性に近い反射対象の電圧-電流特性を得た。また、極電極の突き出しを約1.2mmに調整し、高密度でアンプ定格（2.5A）近くに達するよう最適化を行い、約5x10^{-2}2x10^{-3}の空間分解能（電子温度変化も考慮）の測定が可能となった。

1997-1998年（可動マッハプローブへの改造）：W型ダイバータへ改造に伴い、可動プロープの駆動軸を60cm長く400cmに延長し以前はLHランチャー架台でであった荷物の停止位置をさらに95cm前まで移動できる様に改造した。これにより、LHランチャーが引きかかった荷物状態も測定が可能となり（さらに、一壁附近で固定固定位置のELMの影響の測定が可能となった）が、一壁内で固定することは許可されなかった。可動プロープにおいてLH駆動により25cm内側まで挿入し使用した。さらに、1998年より、駆動軸と電極形状をマッハプローブへ改造した。これにより、プラズマ流れの速度と方向を測定した結果、静止モデルの予想が異なり、赤道面においてダイバータから離れる方向へ流れが発生していることを発見した。また、高速運動中に高速サングリーンを行うELMプラズマの磁力線方向及び半径方向への輸送研究に貢献した。

（3）可動マッハプローブ（参考文献[7,8,12,13,14,15]）

1997年（X点マッハプローブの設置）：排気量W型ダイバータへの改造に伴い、可動プロープの駆動軸を60cm長く400cmに延長しは荷物の停止位置をさらに95cm前まで移動できる様に改造した。これにより、LHランチャーが引きかかった荷物状態でも測定が可能となり（さらに、一壁附近で固定固定位置のELMの影響の測定が可能となった）が、一壁内で固定することは許可されなかった。可動プロープは一壁附近で停止し駆動機により25cm内側まで挿入し使用した。さらに、1998年より、駆動軸と電極形状をマッハプローブへ改造した。これにより、プラズマ流れの速度と方向を測定した結果、静止モデルの予想が異なり、赤道面においてダイバータから離れる方向へ流れが発生していることを発見した。また、高速運動中に高速サングリーンを行うELMプラズマの磁力線方向及び半径方向への輸送研究に貢献した。

（4）内側可動マッハプローブ（参考文献[13,16,17,18]）

2001年（内側マッハプローブの設置）：SOL全体のプラズマ流れを理解する上で高磁場面測定データが不可欠であり、内側パッフ板上においてSOLプラズマ流れを測定する全長4.3mの可動マッハプローブをP-2下UIポートに垂直に設置した。プロープ駆動軸の駆動を1mm程度以下に抑制するため、駆動装置以外に常に1点でガイド管と接触するようペアリングとガイド間の内径を設定した。ダイ
パーアトカマクでは世界で初めて高磁場側の SOL プラズマを測定し、ダイバータ排気により特に高磁場側で流速や密度が増加することや ELM による SOL プラズマ拡散などの研究成果に貢献した。

検討、考察、さらなる改良へ向けた提案

(1) ダイバータ静電プローブ

ダイバータプラズマの基礎計測器であるため、ダイバータ研究の進展に伴う高速・長時間化の要求を満たす高性能化を行なった。近年、ダイバータ板以外にブライベート部および第一壁まで広がる低温プラズマの生成やそのプラズマ壁相互作用にはたす役割を研究することが重要と考えられている。

さらに広範囲の測定が要求されている。

収集システムの高性能化により低温プラズマの評価も改善された。同時に電子飽和電流の飽和現象も精度よく観測され、再計算を少なくするためには、現在固定値としている電子飽和電流側の電圧選択性を自動的に選択できるように解析ソフトを改善する必要がある。

維持、経年劣化に関する問題（高性能化し測定対象が増加すると伴い、絶縁不良や断線などが発生した場合、維持・交換などの作業を定期的に行なう必要性）が増している。こうした作業の経験者の不足が問題である。ダイバータ下を通っている MV ケーブルの絶縁劣化も進んでいる。

(2) 赤道面可動マッハプローブ

第一壁内まで挿入し固定できるよう設計したが、安全面で許可されず、高速駆動により第一壁から最大 25 cm が測定可能な範囲である。つまり、全体積のプラズマ（80m³以上）での測定が可能である。高速駆動距離は 35 cm の圧縮シリンダを開発した方が多くの配位に対応可能であった（内側可動ブレードでは 35 cm の圧縮シリンダを開発した）。

維持、経年劣化に関する問題：111 ランチャーのガイドと駆動軸を絶縁しているサラミックス製のベアリングが小さかったため、近年損耗が進んでいる。111 ランチャーとガイド管との絶縁は保持されているが、このベアリングの交換（軸を取り出して行なう）が必要と考える。また、以下のシステムも同様。開発時に使用した Macintosh Quadra と CCMac（クレートコントオーラ）は交換および修理が不可能である。

(3) X 点可動マッハプローブ

防護付近の 4 cm 程度はプローブが届かないため低 X 点配位で排気性能が向上する場合のブライベートプラズマが測定できる。電極間距離の長さは最大 13 cm のため不可能であるが、16 cm の専用タイルがあれば測定可能である。下流側の連続距離が短いため現状の Hutchinson モデルによる評価は難しいため、マッハ速度評価の改良が必要である。

ディスラプション発生時の中立子を重視し、ガイド管やベアリングは十分な検討を行なったため問題点は発生していない。測定装置維持、経年劣化に関する問題としては圧縮シリンダを傾けて使用しているためか、2001 年度に内部のグリースが漏れる問題が発生した。それ以後、使用回数が少ないと考えられ、発生していなかったが、今後の点検が必要である。

(4) 内側可動マッハプローブ

2001 年に二期的な研究成果を得たが、2002 年に実験初期の不純物の多いプラズマで測定中ディスラプション発生により、ヘッドが破損し現在は待機状態である。修理と補強計画を提案している。

参考文献

8.11 反射計の開発・改良

目的

熱化プラズマ中での粒子の輸送は新古典輸送理論で予想されるよりも一桁以上大きく、異常輸送と呼ばれているが、この粒子の輸送を決める拡散型輸送の特性は、電子密度の微視的振動が決めていと考えられる。この電子密度の振動を計測することを目的に本計測器を導入した。

ここに簡単に反射計の測定原理を述べる。プラズマ中で電磁波を入射すると誘電率が零となるところで反射する。反電率が零となる反射層の密度は入射波の周波数で決まる。そこで反射してくる電磁波の位相を測定すれば反射層の振動を観測できると思われた。その後、この解析では実験データを正しく解釈できないことが判明したが、1993年に設置された最初の0モード偏波周辺測定用反射計（旧0モード反射計）はこの原理で設計された。すなわち、測定量は反射波の位相の変化のみであった。実際は反射計の信号は反射層近傍の密度振動による散乱に支配されており、反射波の位相だけではなく強度も含めた計測が必要である。そこで、1998年に設置したXモード偏波中央部測定用反射計（Xモード反射計）と1999年以降に設置した新0モード偏波周辺測定用反射計（新0モード反射計）とは反射波の位相だけではなく強度も計測しており、電子密度振動の計測が可能となった。ここで0モード偏波とは電磁波の電場の向きが背景磁場に平行の場合で反射層はプラズマの電子密度で決まる。Xモード偏波とは電磁波の電場の向きが背景磁場に垂直の場合で反射層はプラズマの電子密度と背景磁場の強度で決まる。

反射計の計測原理についての若干の変化はあったものの、この計測器の測定対象はプラズマ中にある反射層近傍での密度振動である。他の計測器に比較してこの長所は、プラズマ中に入射するものが微弱なパワーエネルギーであるのでプラズマを乱すことなくプラズマ内部の計測ができることである。同様に微弱な電磁波を用いる散乱計測に比しての長所は、散乱計測の計測領域が電磁波の波長の十倍程度であることに対して、反射計の計測領域が反射層近傍の波長程度と狭く空間分解能が高いことにあ。このように反射計のプラズマ中での密度振動をプラズマを乱すことなく、空間分解能良好計測できるので、空間的に観測しているIIモード中の周辺部輸送壁、磁気シナ配位中などの内部輸送壁での密度振動の観察が可能である。我々はこれらの領域での振動観測の理解を目的として以下のようなスペックの反射計を設置した。

現在の基本構成と仕様

最初に導入され旧0モード反射計はXモード反射計の導入時にXモード反射計との共用のための導波路、アンテナの変更、オドラマチア型位相検出（反射波の位相と強度が計測できる検出方式）の採用、周波数の変更等大幅な改造をおこなった。現在では測定周波数を34.1GHz、38.0GHz、48.5GHz（カットオフ密度ではそれぞれ1.4x10¹⁰m⁻¹、1.6x10¹⁰m⁻¹、2.9x10¹⁰m⁻¹に対応）に設定している。測定可能周波数は1MHzサンプリングで4秒間の測定を行っている。（図1及び表1）Xモード反射計は発振器、受信器の幾度かの故障の後、現在休止中である。参考までに仕様を表1に記す。

![図1 器の構成図](image)

表1 現在の仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>Xモード反射計</th>
<th>新0モード反射計</th>
</tr>
</thead>
<tbody>
<tr>
<td>チャンネル数</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>入射周波数 (GHz)</td>
<td>102</td>
<td>34</td>
</tr>
<tr>
<td>109.5-f</td>
<td>34-40</td>
<td></td>
</tr>
<tr>
<td>109.5+f</td>
<td>48-50</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発振器</td>
<td>Gunn発振器</td>
<td></td>
</tr>
<tr>
<td>検波方式</td>
<td>スーパーヘテロダイコンオドラマチア型位相検出</td>
<td></td>
</tr>
<tr>
<td>データ収集サンプリング</td>
<td>1μs(typ.)</td>
<td></td>
</tr>
</tbody>
</table>

- 320 -
性能の進展（表 2）と JT-60 実験へのインパクト

旧 0 モード反射計は LI ム損時の周辺部振動の計測への使用が試みられた。しかしながら、位相のみの計測であったり、播動計測には不十分であったことがわかった。そこで 1998 年に設置した X モード反射計と 1999 年以降に設置した新 0 モード反射計とはクロダラチュア型位相検出方式を採用し、反射波の位相だけではなく強度も計測が可能になった。これにより、密度播動計測が可能になり、密度播動計測の標準装置として JT-60 実験に貢献した。

プリンストン大学プラズマ物理研究所（PPPL）との協力で製作した X モード反射計は内部輸送障害での密度播動の相関長測定が可能なように PIN スイッチ素子により周波数を階段状に変える機構を有している。この機能により負磁気シアプラズマ中に発生する内部輸送障壁中での密度播動の相関長測定に世界で初めて成功し、内部輸送障壁内部での播動の相関長が短くなっていることを見出した (1998 年)。また、新 0 モード反射計は内部輸送障壁における密度播動計測を行うため、2000 年 3 月と 7 月にチャンネル数の増加を行った [2]。その結果、内部輸送障壁における密度播動の波数スペクトルと強度を評価することが可能になった。また、時間・空間分解能が高い特長を活かし、Edge Localized Mode によるベテスタル構造の崩壊過程の研究では、世界に先駆けて成果発表を行った。

<table>
<thead>
<tr>
<th>表 2　機器改良の年表</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993 年</td>
</tr>
<tr>
<td>1998 年</td>
</tr>
<tr>
<td>1999 年 7 月</td>
</tr>
<tr>
<td>2000 年 3 月</td>
</tr>
<tr>
<td>2000 年 7 月</td>
</tr>
<tr>
<td>2002 年</td>
</tr>
</tbody>
</table>

検討、考察、さらなる改良へ向けての提案

X モード反射計が休止中であるのは残念なことである。ミリ波機器の信頼性の低さを重要視し、改良の機会があれば、低損失コルゲート導波管を周辺室までのぼし、そこにミリ波の機器を再設計すべきである。反射計のデータの理解は full-wave の数値計算を行わないと定量的に評価しているとはいいたいが、我々は PPPL との協力研究で PPPL が full-wave の数値計算コードを開発して特定のケースを解析したが、今後の研究ではこのようなコードを利用した解析をより多くのケースで行うことが重要である

参考文献
8.12 計測共通設備の開発・改良

目的
計測共通設備の高信頼性化・高安定化を図る為、主にシーケンサーを中心とした真空制御系一元化、冷却水循環対策の開発・改良をする。

現在の基本構成と仕様
計測共通設備とは、真空排気設備、真空制御設備、電気設備、冷却水設備、圧縮空気設備など各種計測装置に共通して必要となる5つ設備により構成され、JET-60の実験運転に対応可能な安定稼働を厳しく要求される基盤設備である。共通設備は1982年に構築され、JET-60の運転開始から20年間以上、定常に運転されて来ているため、老朽化対策及び高信頼性化・高安定化を図るための改良など設備更新等を行い現在に至っている。各設備の構成は以下の通りである。

真空排気設備
各種計測装置の内部を大気圧から超真空状態まで確実に真空排気し、清浄な真空を維持するための設備である。本設備は、ターボ分子ポンプ、メカニカルブースタポンプ、ロータリーポンプなどの真空ポンプ35台、計測装置の内部圧力を測定監視する80台の真空計、各種真空バルブ200台など、数多くの器具類から構成され、必要に応じて各種計測装置の内部を10⁻⁵Pa〜10⁻⁰Pa台に真空排気・維持することができるサブシステムである。

真空制御設備
真空排気設備の主体となるターボ分子ポンプ、メカニカルブースタポンプ等の真空ポンプや、各種計測装置の観測窓等のシール部材を冷却するための循環式冷却設備であり、光リンクを通して中央制御室の真空制御装置より遠隔にて真空ポンプ・真空計の制御、または圧縮空気の制御により真空バルブの開閉、機器状態の監視など一元化して集中制御・管理を行うことができるサブシステムである。

冷却水給排水設備
真空排気設備の主体となるターボ分子ポンプ、メカニカルブースタポンプ等の真空ポンプや、各種計測装置の観測窓等のシール部材を冷却するための循環式冷却設備であり、4〜7kg/secの圧力で約250l/minの水量を供給する。本設備は、1次冷却水設備から冷却水を受け、これを必要に応じて計測装置の近傍まで供給するサブシステムである。

性能の進展
真空制御系の一元化
真空制御設備は設置されてより20年余り定常的に運転されており、保守終了部品など構成機器の老朽化が進行していた。また、真空計フィラメント切替え操作など遠隔操作機能も無く運用効率の点においても問題があった。これに対応するためシーケンサーを用いたシステムへ改良し、リアルタイムにて遠隔監視・制御化を図ると共に、各種真空機器の不具合内容の収集・表示、遠隔リセット機能の追加など、真空制御系の一元化を図った。

図1 真空制御設備の構成
制御設備は元来 CAMAC 及び特殊計算機を用いたシステムにて構築され、真空排気設備機器の状態監視、操作、データ収集及び表示などを行ってきた。しかし、老朽化によりデータ収集用基盤、信号変換用モジュール等の信頼性低下や故障の頻度が増大しているものの、製作メーカーの保守停止による交換部品調達、機器メンテナンス、故障時対応が著しく困難な機器が多くなくな、また、遠隔操作機能が十分でなかったため、軽度なリセット操作においても管理区域への入室が余儀なくされ、実験運転効率の点においても問題があった。その対策として、不具合発生時に対応しやすい設備を目指しシステム設計の拡張性があるコスト面に優れている汎用型シーケンサー及びパソコンを用いたシステムに改良を行った（1990 年）。シーケンサーには各の機器操作、監視、各データ収集・表示機能などを一元化させた機能を持たせると共に、操作端末パソコン部には Ethernet 回線へ接続する事を基に、居室等からでも真空排気設備の遠隔操作及び監視が可能となった。これにより、信頼性及び制御機能の向上が得られた。

冷却水漏洩による影響の改善

冷却水給排設備は、真空容器や主要設備の近傍に設置されている多数の観測窓等へ給水を行っているため、漏水が発生した場合、広範囲な影響が及ぶ事が懸念されていた。これに対応するため系統別に独立した冷却水循環式制御ユニットを設置し、冷却水漏洩による影響の縮小化を図った。

本体室に設置されている各種計測装置、真空ポンプ・観測窓等の冷却を行うため、1 次冷却水設備より各系統（基礎架台系、計測架台系、P8 ヤグラ系、P2 ヤグラ系）へ給水を行っている。しかし、仮に漏水が発生した場合、発見するまで最大で毎分約 500 の流量で漏水が続き、特に計測架台系に関しては漏水の影響が他系統よりも広範囲に、さらに下に位置する真空容器やトロイダル磁場コイルなどの深刻な影響が及ぶ事が懸念された。このため、計測架台系については既設冷却水設備とは切り離し独立した冷却水循環式制御ユニットによる冷却方式に改良した（1995 年）。冷却水槽の全容量は 20 と小さいため、万一漏水に至った場合においても、リスクを格段に軽減する事ができる。これらの実績を基に、現在、残りの系統についても冷却水循環式制御ユニットによる冷却方式へ移行する事となり、2005 年に改善工事が完了する事となっている。

漏水検知監視化

上述のように、1 次冷却水設備及び冷却水循環式制御ユニットにより各設備機器へ給水を行っている。しかし、漏水が発生した場合、ただちに検知する手段を備えていないため早急な発見対応が困難であった。これに対処するため、給水を行っている各種計測装置・真空ポンプ・観測窓など主要な機器近傍 25 キロに絶縁被覆型水分検知センサーの設置を行った（1995 年）。これにより、中央制御室にてセンサー設置エリア別に常時漏水監視を行えると共に、漏水初期段階での発見・対処ができ、JT-60 機器への影響を軽減することが可能となった。

検討、考察、さらなる改良へ向けての提案

従来に見られなかった現象として、N-791 の出力上昇運転に伴い発生するイオン源でのブレーキダウ ショと同期して真空制御用シーケンサー-CPU の異常停止を称するトラブルが発生した。これは、ブレーキダウ ショに伴う急激な電圧変動により発生する高速ノイズや伝導性ノイズが、シーケンサー電源及びアースラインに影響し、CPU を異常停止させてしまうものと考えている。そのための対策として、サーチ吸収用コンデンサーの追加、露出ケーブルのシール化、制御電源回路へのカスケード接続式ノイズカットトランスの追加、シーケンサー CPU 電位の変更等の対策を実施した。これらの対策により不応果は上がっているがまだ全ては至っていないのが現状である。より外来ノイズに強い CPU ユニットを使用するなど新たな対策を検討し、今後とも、高信頼性化・高安定化を運転を行うことができるよう開発・改良することが肝要である。

参考文献
9．データ処理設備

9.1 データ処理設備の概要

JT-60 計測用データ処理設備（以下「データ処理設備」と言う）は、JT-60 計測装置を構成する設備の一つで JT-60 実験運転時に各計測装置の制御とこれらの計測装置から得られる計測データの収集、保存、管理を行う設備である。

このデータ処理設備は、JT-60 の運転を総合統括する全系制御装置からの各種制御指令を各計測装置に同期させて運転を行い、プラズマ放電実験で取得されたデータの収集、定型的な計算・図形表示処理及び処理結果データの必要設備への転送・保存処理を行うことを主な役割としている。

このような役割を実現するため、データ処理設備は、MSP-ISP 計算機を中核とした、CAMAC インターフェース制御装置（CICU）、マンマンインターフェース装置（MMI）、実時間補助制御計算機（RTP）、全系情報交換計算機（diagseq）、マイクロコンピュータ付補助クレートコントローラ（ACM-A）、大容量記憶システム（TMDs）、高速 VME データ収集装置（FDS）、およびタイミングシステム等の計算機系より構成され、各装置はワークステーションで処理を行っている。これらの装置は計測データ収集用 LAN（GigabiEther（1000Mbps））及び計測装置用 LAN（FastEther（1000Mbps））に接続され、データ処理設備の機能分散型システムを構築している。

図 1 に JT-60 データ処理設備システム構成略図、表 1 に各計算機の機種と役割を記す。

![データ処理設備システム構成略図](image-url)

ショット間処理計算機
CAMAC インターフェース制御装置
マンマンインターフェース装置
実時間処理計算機
全系情報交換計算機
マイクロコンピュータ付補助クレートコントローラ

大容量記憶システム
高速 VME データ収集装置
実験データ保管装置

ISP: Inter-Shot Processor
CICU: CAMAC Interface Control Unit
MMI: Man Machine Interface Unit
RTP: Real Time Processor
diagseq: diagnostics sequence

ACM-A: Auxiliary Crate Controller with Microcomputer type-A
TMDs: Transient Mass Data Storage system
FDS: Fast VME Data acquisition System
EDKS: Experiment Data Keep System

[図 1 JT-60 データ処理設備システム構成略図]
<table>
<thead>
<tr>
<th>名称</th>
<th>機種</th>
<th>主な役割</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP-ISP</td>
<td>富士通 GS21 Model1200</td>
<td>JT-60 データ処理設備の中核となる計算機</td>
</tr>
<tr>
<td>UNIX-ISP</td>
<td>富士通 PrimePower 450</td>
<td>次期、JT-60 データ処理設備の中核となる計算機</td>
</tr>
<tr>
<td>CICU</td>
<td>picoforce 5VT/32</td>
<td>MSP-ISP - CAMAC 間、インターフェース用計算機</td>
</tr>
<tr>
<td>MMI</td>
<td>FORCE-CPU5VT/64</td>
<td>タイミングの分配、およびタイミングシステム監視</td>
</tr>
<tr>
<td>RTP</td>
<td>CONCURRENT System 9200</td>
<td>実時間磁鼓制御用計算機</td>
</tr>
<tr>
<td>diagseq</td>
<td>SUN Ultral Turbo GX/140</td>
<td>全系制御計算機 - 1 MSC-ISP 間のインターフェース用計算機</td>
</tr>
<tr>
<td>ACM-A</td>
<td>FORCE-CPU5VT/128</td>
<td>CAMAC 制御及びデータ収集</td>
</tr>
<tr>
<td>TMDS 41,2</td>
<td>富士通 S-7/300U/2200</td>
<td>各計測装置からのデータ収集（61 チャンネル）</td>
</tr>
<tr>
<td>FDS #1,2,3</td>
<td>富士通 S-4/20U/150, GP300S/2</td>
<td>各計測装置からのデータ収集（30 チャンネル）</td>
</tr>
</tbody>
</table>

計測装置の制御・データ収集は、CAMAC（Computer Automated Measurement And Control）規格のモジュールを使用している。各計測装置は、通常実験シーケンスに同期して計測装置内の計測機器の設定や電源の制御、監視等を行っている。また非同期でも調整が行えるように独立したマイクロコンピュータモジュール（ACM-A）を中心とした光シリアルハイウェイ構成となっている。そしてさらにそれぞれの ACM-A と CICU がシリアルハイウェイで結合する 2 段階構造となっており、ショット間処理計算機からの指令（CAMAC 制御・データ収集等）は CICU を介して行っている。

実験では、全系制御装置からの指令に同期して処理シーケンスが流れ、処理シーケンスは大別すると、放電要請を始めとするプラズマ放電前の準備処理、プラズマ放電中の測定記録処理及び、プラズマ放電後のデータ収集／転送／計算加工／保存処理である。

プラズマの計測データは、大容量データ記憶システムおよび高速 VME データ収集装置を用いて約 91 チャンネル分のデータ（約 1.5GB）を収集し、そのデータはネットワークを通じて、ショット間処理計算機に転送され物理量変換処理（以下、定型処理と言う）を行う。この定型処理後のデータは、実験データベースサーバと呼ばれる実験データ管理用計算機に転送され、実験データベースとして保管される。

また、定型処理を行うために収集されたすべてのデータは、プラズマ計測生データとして実験データ保管システムの MO（Magneo Optical）に保管され、再度、定型処理を行う等の再計算処理時に利用される。

プラズマ計測データの一部は CAMAC サブシステムから実時間処理計算機を経由し、全系制御装置からのタイミング信号（1mS/10mS）に同期してプラズマの密度制御等のための実時間制御も行っている。

表彰

[1]1998 年度、戸塚俊之、佐藤稔、科学技術庁、科学技术庁長官賞、ネットワーク対応 JT-60 大容量実験データベース管理システムの考察

- 325 -
9.2 CAMACインターフェース計算機の改造

目的
当初JT-60データ処理設備（計測設備A-7）のマンモシンインターフェース計算機（MMI:Man Machine Interface computer）/CAMACインターフェースコントロールユニット（CICU:CAMAC Interface Control Unit）/マイクロコンピュータ付補助クレートコントローラ（ACM-A:Auxiliary Crate Controller with Microcomputer type A）は、大型汎用計算機であるショット間処理計算機（MSP-ISP）の周辺装置として位置付けられ、ミニコンピュータまたはマイクロコンピュータとCAMACで組み上げられた特殊システムであった。MMIは各種の設備とのコミュニケーション用としてタイミングシステム、真空制御システム（VCS）及び保護インターロック関連等の制御・モニタを行う運転系の装置である。全系制御設備（全系）から送信されるタイミング信号を計測用のタイミング信号に変換して各計測装置に配信、またVCSの制御情報を全系と取り合う1a回線から受信して、VCSに送信する。また、タイミングシステム、VCS及び1a回線を常時監視して、異常があれば計測A状態として全系インターロック盤に保護インターロック信号を出力する。CICUはMSP-ISPとACM-A間のCAMAC制御・データ収集を中継する装置であり、3台のCICUが20数台あるACM-Aを制御して、計測CAMACデータを収集する。ACM-Aは、16ビットモデル型マイクロコンピュータであり、各計測CAMACシステムに一回搭載され、計測装置に対応したCAMACモデルにて制御し、システムの制御・監視を行う。（図1参照）
約10年前からシステムの老朽化に伴い、保守及びシステムの機能拡張に支障をきたすようになったため、これらを汎用性の高いUNIXのワークステーションシステムに置き換える作業（UNIX化）を行った。

システムの遷移
ミニコンピュータ（PANAFACOM U-1500, U-1200）で構成されたMMI/CICU、マイクロコンピュータで構成されたACM-Aは、それぞれSUNマイクロシステムス社のワークステーション（SUN-WS）またはSUNのチップを搭載したFORC.EComputer社のVMEワークステーション（VME-WS）にそれぞれ置き換えた。CAMACとのインタフェースには、CAMACシリアルハイウェイドライブモジュール（米国Kinetic社製2140-21A、以下KS2140）を採用した。

図1 JT-60データ処理設備概略図
ータのソース（アセンブラ、PL/M等）リストを基にUNIX環境（C言語）に移植する形をとった。2000年にMMI-全系ACD回線（1a回線）をCAMACからネットワーク回線に切り替え、老朽化対策を行うと共にSUN-WSからCICU/ACM-Aと同じVME-WSに移行して、システムの共通化を実施した。

結果
これまでMMI/CICU/ACM-Aは独自の特性を持ったハードウェア及びソフトウェアで構成されてきたが、それぞれ共通のVME-CAMACシステムに置き換えられたことで、CAMACとのインタフェースが共通となり、各々のソフトウェアを入れ替えてシステム（ワークステーション）の使い回しができるようになり、保守が容易になった。また、ネットワーク対応になり遠隔操作はもとよりGUIを導入するなど操作性が向上した。

評価
MSP-ISPの周辺装置と位置付けられるMMI/CICU/ACM-Aは、基本的にハードウェア及びソフトウェア共に従来の機能を維持してMSP-ISPとの整合性を保つことができた。老朽化が問題になっているCAMACについてもこの改造を機会に合理化を進めた。また、ACM-Aが全てUNIX化されれば、CICUを必要としないCAMAC制御・データ収集ができるようになり、JT-60データ処理設備システム全体の合理化及び処理分散化が実現できる。

各システム共通である老朽化したCAMACをいかに効率よく使用することは最大の課題であると同時に、保守の観点からCAMACのインターフェースを現在のコンピュータシステムに合わせる必要がある。今回のUNIX化では、今後のCAMAC制御システムの開発に応用できるものと考える。

参考文献
[1]笛士通「核融合実験データ処理システム特集号-臨界プラズマ試験装置 JT-60」FUJITSU 1986-1月号
[3]横柳哲雄、他、新CICUの開発、JAERI-Tech 97-073
[5]佐藤稔、他 JT-60データ処理設備周辺装置のUNIX化、分子科学研究所技術研究会 2000年
[6]佐藤稔、他、ACM-AのUNIX化(1)、核融合科学研究所技術研究会、2002年
[7]岩崎慶夫、他、ACM-AのUNIX化(2)、核融合科学研究所技術研究会、2002年

- 327 -
9.3 データ処理設備実時間処理計算機の改造

目的

JT-60 データ処理設備実時間処理計算機（以下「RTP」と称す。）は、JT-60 実験放電で生成されるプラズマに対し、実時間帰還制御を行うためのパラメータとなる複数の計測データを収集し、収集した各計測データに任意の演算処理を実施後、全系制御設備に転送するという一連の処理を 1ms 周期で実施している（以下「実時間処理」と称す）。

JT-60 立ち上げ当初、RTP は、PANAPACOM U-1500 ミニコンピュータを中心としたシステムで構築されていたが、システムの老朽化に伴い、ハードウェア、ソフトウェアの両面から保守することが困難な状態になりつつあったこと、および、より多くの計測装置を用いた実時間帰還制御の実現を目指し、ミニコンピュータを中心としたシステムから、UNIX 系計算機を中心とした新システムの構築を図った。これと同時に VME-CAMAC インターフェース装置として米国 KINETIC 社製 Model2140-ZIA シリアルルータウェイドクライアントを導入し、本装置を動作させることで必要となるデバイスドライバ（ソフトウェア）の開発を行った。また、RTP と計測装置間のデータ収集経路を従来の CAMAC シリアルルータウェイ経由だけでなく、アナログデータでのデータ取得も可能となる現在の A/D 変換器（米国 PENTLAND 社製マルチファウンドボード MPV56）を併用して導入した。

システム拡張

1994 年、ミニコンピュータを中心としたシステムの老朽化に伴い、ハードウェア、ソフトウェア共に保守することが困難な状態になりつつあったこと、および、より多くの計測装置を用いた実時間帰還制御の実現を目指し、ミニコンピュータを中心としたシステムから、UNIX 系計算機を中心とした新システムの構築を図った。これと同時に VME-CAMAC インターフェース装置として米国 KINETIC 社製 Model2140-ZIA シリアルルータウェイドクライアントを導入し、本装置を動作させるために必要となるデバイスドライバ（ソフトウェア）の開発を行った。また、RTP と計測装置間のデータ収集経路を従来の CAMAC シリアルルータウェイ経由だけでなく、アナログデータでのデータ取得も可能となる現在の A/D 変換器（米国 PENTLAND 社製マルチファウンドボード MPV56）を併用して導入した。

1996 年度、実時間帰還制御系開発計画が示され、次年度、次々年度にかけて新たに 3 項目の実時間帰還制御装置の追加が求められた。しかし、当時の RTP 内には既に 3 項目の実時間帰還制御装置が組み込まれており、新たに実時間帰還制御装置を追加する場合、アナログデータ入力部の増設が必要になった。このため、アナログデータ入力部の増設、および、これに伴う A/D 変換処理設備の増設を考慮し、より高速な A/D 変換器を導入することを検討した。さらに追加予定となっている実時間帰還制御装置の各々の演算処理アルゴリズム高度化に伴う実時間処理スケジュール計画への対応も課題であった。当時のシステムに於って実時間処理実施時、最も処理時間を要する処理は、RTP と全系制御設備間の CAMAC シリアルルータウェイを介した DPMD（高速通革 D アドレスデータリモートメモリー）通信であり、演算処理アルゴリズムをより高度化するためには、この設備間データ転送処理時間の高速化が必要不可欠であった。このため、DPMD 通信を介する設備間データ転送方法として光ファイバケーブルを介したレフライティーブメモリを RTP 内に導入することを検討した。これに加え、各記録もシステム内に導入するにあたり、最も重要となっていく CPU の処理能力を考慮し、各記録の導入、新規実時間帰還制御アルゴリズム処理に耐える CPU 処理能力が必要との判断のもとに、より高性能なホスト計算機（コンカレント社製 System9200（MIPS R4400、150MHz））を導入し、1998 年に A/D 変換器（米国 VMIC 社製 VM1VE-M31230）、1999 年に光リフレクティブメモリ（米国 VMIC 社製 A/D 変換ボード VM1VM6-5576）を順次導入し、システムの拡張を図った。
結果
1985年、システム立ち上げ時においては、JT-60実験放電にて実施可能であった実時間帰還制御項目はFIR干渉測定装置を用いたプラズマ密度実時間帰還制御の1項目であり、RTPとFIR計測装置間のデータ取得経路はCAMACシリアルハイウェイに限られていた。これに対し、UNIX系マシンを中心とした新システムの構築、およびA/D変換装置の導入により、2004年度実験運転においては、12項目の実時間帰還制御が組み込まれたJT-60実験放電における実時間帰還制御システムの発展に貢献することことができた。また、実時間帰還制御実施時、RTPと全系制御装置間のデータ通信方式をCAMACシリアルハイウェイ経由（20μS/1アクセス）から、光リフレクティブメモリ経由（1μS/1アクセス）にしたことにより、設備間データ転送時間は約20倍の高速化を実現した。

波及効果
新システム構築にあたり、ソフトウェア製作を外注することなく全てを原研が自前で作成した。その結果、新規実時間帰還制御项目的追加、長時間放電に対する改良作業等のさまざまな要求に対して、迅速、かつ柔軟に対応することが可能となった。この実績は、次世代の実時間処理システムの開発、あるいは、他のシステムの開発においても十分応用できるものであると考える。また、本システム構築時に開発されたVME-CAMACインターフェース装置となる米国KINETIC社製Model2140-21Aシリアルハイウェイドライバ用デバイスドライバは、データ処理装置が有するCICU（CAMACインターフェース制御装置）をはじめとする多数の装置に応用され、各種プラズマ計測に役立てられている。

結論
本システムは、システムの置き換えを含め、数段階のステップを経て改良を実施してきた。これらの改良により、より多数の計測データの収集、より高度化した実時間帰還制御用演算処理アルゴリズムの組み込みが可能となり、JT-60実験放電における実時間帰還制御系の発展に貢献している。しかし、JT-60実験放電におけるRTPの位置付けが実時間帰還制御系の試験装置である以上、現システムはあくまで開発途中のシステムであることを認識し、今後もJT-60実時間帰還制御系の高度化通信に貢献していく予定である。

参考文献
[1]坂田信也,他「新データ処理設備実時間処理計算機(RTP)の開発、および高性能化」,JAERI-Tech 2000-043
9.4 大容量データ収集システムの更新

目的

JT-60 計測装置 データ処理設備 大容量データ収集システムは、コンピュータ処理による実験データの収集と解析を目的とした物で、多数の計測器から高速に大量に発生するデータをリアルタイム収集するための大規模なコンピュータシステムとしてスタートした。

その後、技術革新に即し、メディアはテーブルから半導体メモリに変化していき、計測器とのインタフェースを保持しながら、チャネル増加や高速化を目的として改造をしていた。

大容量データ収集システムの変遷

大容量データ収集システムは、1984年に大容量データレコーダサブシステム MDR(Mass Data Recorder)から始まり、1988年にはミノコンピュータを用いた大容量データ記憶システム TMDS (Transient Mass Data Storage System)、1996年に高速 VMEデータ収集装置 FDS(Fast VME Data acquisition System)、2000年には TMDSのVME版となり、WS(Work Station)とVMEメモリモジュール (MDMV/A; Measurement Data Memory for VMEbus/A)から構成される。高速サンプリング時間(5μs)で15秒間（現在65秒間）のプラスマ放電のデータ収集を行い、FDSが約100MB/ショット、TMDS(VME)が約300MB/ショットのデータをギガビットイーサネットスイッチ(GbE: Giga bit Ethernet)でデータサーバおよびショット間処理計算機ISP(Inter-Shot Processor)に転送する。

MDRからTMDSへの改造

JT-60データ処理設備完成当初(1984年)のMDRは、サンプリング速度5μs(200kHz)、PCM変調で記録する方式で30チャネル(トラック)からなる磁気テープドライブおよびCICU(CAMAC Interface Control Unit)から構成されていた。システム概要を図1に示す。A/D変換された各計測器からのデータは1MDR(Mass Data Recorder Interface)モジュールでシリアル変換され、EOH(Electric to Optical High-speed converter)/OEH (Optical to Electric High-speed converter)モジュールで光信号に変換されMDRを経由して、ショット間処理計算機ISPに送られ、データ解析に使われた。しかし、MDRで使われる磁気テープはランダムで頻度が高いデータアクセスに不向きで、また、信頼性で問題があった。

これらの問題に対処するためには、MDRに代わり半導体メモリ技術を使ったTMDSが1988年に開発された。この結果図1に示すように、MDRとデータ転送部を、半導体メモリモジュールを実装したミノコンピュータとデータ転送には富士通独自のLANを用いたシステムに置き換えた。

また、多数の計測器の要求に対処するため4/6GBのメモリチャンネル数は、61チャネルと元の倍に増やし、ショットあたりのデータの総量は約300MBまでになった。これらのデータは最終的にISPに付属しているCTL(Cartridge Tape Library)に格納されデータ解析に利用された。
FDS への改造

FDS は VME バス規格のメモリモジュール (MDMV/A) を装備した WS で構成される（図 2）。TMDS のチャネル増加の要望に対処するために、TMDS は別の装置として開発され、現在 3 システム 24 チャネルが稼動している。MDMV/A は、サンプリング速度 5μs (200kHz) または 1μs (1MHz) が選択でき、1 チャネルあたり最大 6MB のデータ取得ができる。光受信・電気データ変換機能 (OEH) と半導体メモリモジュール (MEM、直接電気データ入力) の両方の機能を持つ新モジュールは、VME バスで設計された。

また 1MIB と EOH は現在設計され新 1MIB と EOH-B となり、サンプリング速度 1μs が追加されたが、EOH-B にはオリジナルの EOH と互換性はなく、NEDB (Network Experimental Database Manager) と NSERQ (Network SEQUENCE transmitter) は、最新の WS を用いた多数の計測器に適用され、FDS の制御と ISP とデータサーバーへの計測データ転送に利用される。これにより、解析 WS からネットワーク経由で早くてデータへアクセスすることも可能となった。

現 TMDS への改造

TMDS のメモリモジュールを装備したミニコンピュータは、チャネル増加の要求に対して、メモリのコスト高と、WS のオープン系への技術変化を考慮し、すでに開発された FDS のソフトウェアとハードウェアをベースに、二つの WS と四つの VME サプラックから構成される現 TMDS に更新された。このような計測器からのデジタル入力信号は、レーザドライブ信号を含む信号を用いる。MDMV/A の電気入力（データ受信側）で接続されている。そして高速データ転送性能を提供するために現 TMDS と ISP とデータサーバーとの間は、FDDI シテッド Gbe スイッチで接続されている。

現 TMDS の更新後、CPU と LAN のアップグレードにより、全処理速度を 50%以上高速化の設計目標を立てた。実際には低CPU 負荷の条件下で現 TMDS と ISP 間のデータ処理速度測定をしたところ、ディスク上書き込みまでの全処理速度は約 1.9Mbps であり、それは、旧 TMDS よりも 60%以上速い結果が出た。

結果

大容量データ収集システムは、JT-60 実験開始当初から高速サンプリング計測器用として使われてきた。現在のシステムは FDS と現 TMDS の二つからなり、WS と VME バス規格メモリモジュールから構成され、それらは FDDI、Gbe 等の高速ネットワークで有効に結合されている。収集データは両方で約 400MB/ショットの能力を持つ。

これらのシステムは、計測器でデータ収集用の複数ソフトウェアを開発することなく、A/D コンバータにデータとタイミング信号を入力すれば ISP とデータサーバー上にデータが格納され、それにネットワークでアクセスするだけで、プラズマの物理的挙動を詳細に解析することが可能である。

今後

計測器の要望に応じるため、拡張を検討した時に、現 TMDS は、チャネル数が 61 チャネルで四つの VME サプラックは最大 76 チャネルの容量を持つ。FDS は 24 チャネル稼動で最大 57 チャネルまで拡張可能である。

しかし、運用から 5 年目をむかえ、やはりの WS のサポート切れの時期が迫っている。今度、送信側で、計測器から (TMDS 以降) の更新を検討している。具体的には、PKI 規格のトランジェントメモリ型 ADC と PC を組み合わせてハーモニクスツリーミズノシスを設置する計画である。

また、TMDS データを用いたオンライン解析ジョブは、従来的 ISP 大型汎用計算機 OS (MSP-ISP) 上ではなく、高性能 WS の UNIX OS (UNIX-ISP) 上に移行してあるが、最新の WS に更新することにより、ジョブ処理の高速化が期待できる。

結論

大容量データ収集システムは、世代にも渡り改善して行ったが、改善前と比較していくと、データの高速処理、データの信頼性回復、データの保存技術、コスト等の点において、優れたものとなっています。結果として研究効率の向上につながった。

参考文献
[1] 富士通、核融合実験データ処理システム特集号 - 臨界プラズマ装置開発 J. 1986-1
[3] 大島恵幸、他、JT-60 データ処理装置・大容量データ収集システム、技術研究会、2000 年
9.5 磁気流体平衡熱処理システム（FAME）の開発及び改変

はじめに

JT-60 の非定常プラズマ輸送解析に必要な 100 点を越える時間系の磁気流体平衡計算を、ショット間
に処理するため、磁気流体平衡熱処理装置 FAME（Fast Analyzer for Magnetohydrodynamic
Equilibrium system）が開発された。FAME は現在 3 世代に入っており、1 個のファイアルサーバと
9 個の計算サーバからなる PC クラスターで、最大理論性能が 23.6GFLOPS の小規模並列計算機である。
ソフトウェアとしては、並列処理用にチューニングされた最外殻磁気面同定コード FBI と、磁気流体
平衡解析コード SELENE とを使用しており、65 秒放電実験において100 ミリ秒間隔の時間系の磁気流体
平衡の計数が、60 秒以内に完了するまでに到っている。また、計算した結果として、時刻毎の各種物
理量の平衡データ、物理量毎の時系列データ、およびポロイドコイルによる平衡磁場配置の時系列画
像データを作成している。これまでに約 44000 ショット分の計算結果がそれぞれデータベース化されて
おり、随時参照することができ、計算資源の有効利用を実現している。

FAME1 の開発

トカマク実験において平衡磁場配置の計測は、プラズマ物理研究の根幹となる重要な作業である。
当初、実験放電の間隔研究者が平衡磁場配置を数时刻分計算し、その時刻の平衡磁場配置及びプラ
ズマパラメータの分布を解析し、次実の実験の放電を抑制するパラメータ（放電パラメータ）の設定
を反映させていた。しかし、手動で実験放電の間で計算できる時刻数には限りがあり、また過去の実験
を参照するのに再計算するも、次実の放電パラメータの設定を迅速に行うためのシステム
が必要とされていた。

これらの事情に応じて 1993 年に JT-60 放電と同期して自動的に磁気流体平衡計算を処理し、更に
平衡データベースを作成することを目的とした専用の並列計算システム FAME1 を開発するに到了
[1]。これは、多段スイッチで接続された 20 個のマイクロプロッサからなるMIMD（Multi Instruction
stream Multi Data stream）型の小規模並列計算機である。その計算処理速度は最大理論性能で
250MFLOPS であり、原研に当時設置の大型汎用計算機 FACOM M780-10S に比べて 7 倍の性能を有してい
たが、15 秒放電実験において100 ミリ秒間隔の時系列磁気流体平衡の計算が、放電完了から平衡デ
ータベースが確立するまで 21 分を要し、次実の放電放電パラメータの設定に反映させることができなかっ
た。しかし、約 1 万放電分の平衡データベースを作成され、計算資源の有効利用を図るという目的
は達成された。

FAME2 への移行

JT-60 では 15 秒間の実験放電を最短 15 分間隔で行ってしまい、円滑に実験を行うために、実験放電
の間に行う熱処理計算及びプラズマパラメータの分布を解析し、結果を次の実験放電の放電
パラメータの設定に反映できるようにする必要があり、一方、計算結果として得られた大量の平衡
データ群を保存・管理し、実験期間の内外の間で多数の利用者からのデータベース参照要求に応え
られるシステムが必要となってきた。

これらの事情に応じて 1998 年に IBM POWER 並列サーバ RS/6000 SP の 7 ノードモデルを並列計算
機として採用し、平衡計算処理とデータベース参照要求に、処理する計算機を分離した機能分散
型の FAME2 を導入した
[3]。計算処理速度は最大
理論性能で 2.4GFLOPS を
有し、15 秒放電実験にお
いて 100 ミリ秒間隔の時
系列磁気流体平衡の計算
が、放電完了から平衡デ
ータベースが確立するま
で 11 分で済み、計算結果
を次の実験放電の放電パ
ラメータの設定に反映さ
せることが可能となった
（図 1）。

更に以下で述べるよう
な改良・開発を通じて 6
日で処理が完了するに到
り、一方、計算に必要な
実験データ取得の際には、NAK 共通と本システムを 100Mbps の FDDI で接続し、高速にデータ取得
を可能とし、また、データ転送によるネットワーク負荷を軽減するため、計算結果である平衡データ

332
は並列計算機に直接接続された大容量ディスクサーバへ保存することで高速・大容量のデータベース化を可能とした。

FAME3 への移行
2003年より最長65秒の長時間実験放電が開始され、それに応じて、FAME2の計算処理能力では、計算結果を次実験放電の放電パラメータの設定に迅速に反映させることが難しくなることが予想された。また、蓄積した平衡データも4000ショットを越え、データベース容量も限界に近づきつつあった。一方、計算機技術の著しい進歩により安価で高速なPCが出現し、更に大量書・高密度の磁気ディスクも安価に入手することが可能となった。

これらを背景にして、1個のファイアルサーバと9個の計算ノード、及び100Gバイトの磁気ディスクを備えた、PCクラスターによる長時間放電対応磁気流体平衡画像処理システムFAME3を導入した。このシステムの計算処理速度は最大理論性能で23.6GFLOPSを有し、60秒放電実験において100ミリ秒間隔の時系列磁気流体平衡計算が、放電完了から平衡データベースが確立するまで50分以内で済む、計算結果を次の実験放電の放電パラメータの設定に反映させることができた。（図2）

平衡データ圧縮・復元ソフト及び平衡DBアクセスライブラリの開発
限られた計算資源を有効に利用するため、平衡データ圧縮・復元ソフトを1993年に開発し、より多くのショットの平衡データをディスク上に保存できるようにした。この技術は、配列データの最大値と最小値の間を1024区間に等分し、データの量子化を行い、その量子化したデータの差分をホフマンの符号化法を用いて符号に置き換えることによりデータを圧縮するものである。量子化の際、データの可逆性と精度は損なうものの、有効数字3桁で元データと圧縮・復元データは一致しており、容量的に約1/10に圧縮することができた。FAME1以降配列の大きい実数型データのみにこの技術を適用

一方、圧縮された平衡データを、自動的に復元して利用者に提供するため、平衡DBアクセスライブラリを開発し、平衡データを容易に利用できるようになった。

FBI・SELENEの並列処理用最適化
FAME1導入当時は、価格、処理性能、共にJT-60トカマク放電解析に必要な要件を満たす市販中心をなかったため、ハードウェアを開発することから始まったが、著しい計算機技術の進展に伴い、FAME2以降、要件を満たす市販の計算機を採用した。このハードウェアの変更に伴い、FBI及びSELENEを並列処理できるようにプログラムを最適化する必要が生じた。

並列化の方法として、すべてのノードで同じプログラムを実行するSPMD（Single Program Multiple Data stream）モデルを採用して並列化し、同時に、MPI（Message Passing Interface）並列処理言語を用いて、マスタノード（ファイルサーバ）からサブノード（計算サーバ）で制御するようにした。計算に必要な実験データの取得では、一度のアクセスで計算する全ての計算を含むようにし、高速化を図った。計算する割合の分割方法は、FBIでは1割で計算に要する時間が同じなので、予め各ノードで計算する時刻を決めておく静的分割方式をとり、SELENEでは収束計算を行っており1割の計算に要する時間が異なっているため、計算の終了したノードへ次の計算する時刻を圧次指示する動的分割方式を採用した（図3）。この並列化技術はFAME2以降反映し、並列処理を高速化に実現している。

高速化ツールの開発
FAMEによる磁気流体平衡計算は、実験放電完了後、JT-60実験データベースの完了を待って開始されるが、完了までの時間が約7分間か、高速化を阻んでいた。そこで1999年にフィードバック計算機（Fb）から放電結果データを直接送信してもらい、データの受信とデータの編集機能を持ったツールを新たに開発した。これにより、従来11分30秒かかっていた計算処理を約5分短縮することができた（図4）。

この高速化ツールは、次実験に必要な実験データを取得するものではなく、Fbからまだデータベース化されていない代替データを取得するものであるが、計算結果においては大差がなく、一致している。しかし、取得できるタイミングは一度だけで、ネットワーク障害等の外的要因によりデータの受信が失敗することもあり、不安定な要素を持ち合わせ
せている。また、平衡データの品質を維持するため、実験時間外に本来計算に必要な実験データを用いて再計算し、平衡データを更新する必要がある。
このツールを導入以後、2000年まで使用し効果を上げてきたが、JT-60実験データベースサーバの高速化に伴い、実験データのデータベース化完了までの時間が2分脇になり、高速化ツール無しでは高速にデータ取得ができるようだったため、現在は使用していない。

時系列データの生成・登録ツールの開発
FAMEによる磁気流体平衡計算は、各時刻は独立な事象として処理しており、よって平衡データは時刻毎にデータベース化している。しかし、特定の物理量を時系列で参照したい場合には、適した保存形態ではなく、新たなデータベースを作成する必要があった。
この要件に応じ、1996年に、平衡データを編集し、特定の物理量毎に時系列に並べ替え、実験データベースへ登録する機能をもたせ、時系列データの生成・登録ツールを開発した。当初37項目の時系列データを登録していたが、後、度々項目の追加を繰り返し、現在では125項目の時系列データを作成・登録している。登録された時系列データは、DAISYS(Data Illustration System)で参照することができる[3](図5)。

FAME画像モニタリングシステムの開発
FAMEによる磁気流体平衡計算を、実験放電の解析や、次の実験放電の放電パラメータの設定に反映させるために、プラズマ断面の2次元平衡磁場配置と、計算された主要な制御パラメータ値を1つの画像に可視化し、動画として再生できるシステムを1997年に開発した。以後、実験放電を迅速かつ効率よく行う上で寄与している[4](図6)。
このシステムでは、FAMEから転送される各時刻の静止画像をショット番号毎に管理し、利用者はショット番号を選択するだけで再生でき、停止やコマ送り、早送り等の機能を使って、見たい時刻やその前後の様子を観察することができる。また、再生時に、選択された計測器の視野を合成して表示したり、ダイバータ周辺を拡大して表示したりすることができ、実験放電の解析を効率よく行うことができるように工夫されたシステムである。

3次元立体可視化システムの開発
JT-60は核融合プラズマ研究者による共同実験装置として重要性が高く、一方、IT技術の進歩により遠隔研究を進める基盤技術が開発されてきており、遠隔共同研究の礎を構築することが重要である。
遠隔共同研究を進める上で重要な要素の1つに、VR(Virtual Reality)の技術を用いて、遠隔実験で得られたプラズマを3次元立体表示し、遠方にある協力研究者が臨場感を持って遠隔実験に参加するための遠隔可視化システムの開発が挙げられる。
この遠隔可視化システムの開発に先立ち、その基礎を成す技術を検証するために、2004年に、約15-60分ごとに繰り返される実験放電の間に3次元可視化処理を行い[図2]、トーラスプラズマを3次元立体図として再現する3次元立体可視化システムを開発した[5](図7)。
現在の技術において、放電完了から立体図の作成が完了するまで約28分を要し、更なる高速化処理技術の開発が必要である。また、FAMEによる磁気流体平衡計算は、プラズマが轴対象であるとしてそのボロイズル断面上で平衡計算を行っているが、平衡を3次元で計算し、結果を表示する際に、このシステムは有効な可視化システムであるが、一方このシステムは、コラボレーション技術を利用することにより、3次元立体図を遠隔地と共共有することができ、遠隔共同研究の躍進に寄与できるものである。
検討・考察
(1) FBI/SELENE のコードの最適化の必要性
計算機の処理速度の向上に伴い、FBI/SELENE コードを並列処理する上で中間ファイルの作成と削除のタイミングが各ノードで同時に起きやすくなり、再現性のない不具合が起きる場合がでてきた。コードの最適化し、中間ファイルを使うないような工夫をする必要がある。
(2) 平衡データの圧縮の必要性の検討
平衡データの圧縮技術の開発された背景には、多容量高速アクセスが可能な磁気ディスクが存在していたため、多少精度を落としてもデータベース化をすることが優先された。しかし、現状では、多容量高速アクセスが可能な磁気ディスクが市販されるようになり、より精度の高いデータを利用者に提供できる状況に到っている。これらのことから、平衡データの圧縮の必要性を検討する必要がある。
(3) FAME モニタリングシステムの改良の必要性
長時間放電実験に伴い、生成される静止画の量が従来の! 倍程になり、モニタで再生する際、フレームの取り込み時間が 2 分以上かかるようになってきた。FAME の計算結果を迅速に次の実験放電に反映させるために、スムーズに取り込み・再生ができるようにモニタリングシステムの改良をする必要がある。

将来への提案
(1) 磁気流体平衡計算処理を実時間で行うシステムの開発
今まで実施した磁気流体計算は、7 節で開発した高速化ツールも含めて、計算する全時間分の実験データを全て取得してから開始されるものであった。しかし、将来、より長時間に渡り実験放電が行われた時に、これらの方法では実験放電終了後、計算が開始されるまでの待機時間が長くなり、迅速かつ効果的に計算結果を次の実験放電に反映させることができない状況が予想される。
この状況を解決するための 1 つの手段としては、1 時刻毎に実験データの受信・計算・表示を行うない、磁気流体平衡計算処理を実験と同期して実時間で行うシステムの開発を提案することができる。現在、FAME3 において計算に要する時間は、1 時刻当たり FBI で約 50 ミリ秒、SELENE で約 300 ミリ秒であり、100 ミリ秒間隔の時系列で計算し表示するには 4～5 倍程度能力が足りない。
この新システムの開発の実現には、計算機の処理能力の向上を待つだけでなく、計算コード、特に SELENE の高速化に向けた大規模な改良が必要不可欠であると思われる。
(2) 遠隔可視化システムの実現に向けてコラボレーション技術の改良
現在のコラボレーション技術で検証した結果、作動の再生に対してはネットワークの負荷が大きく約 1 フレーム／秒であり、スムーズな再生ができず高速化に向けた改良が必要と思われる。1 つの提案として、共有するデータを幾何データ（座標や物理量など）と制御データ（変位量や回転角、フレーム番号など）に分け、通信が確立した際、時系列の幾何データを相手側に送信し、その後、制御データのみの通信でコラボレートを実現するのが、簡単かつ効果的な方法に思われる。

参考文献
http://www-viz.j.kgt.co.jp/content/96/index.xml
9.6 テレビ会議システム・ビデオストリーミングシステムの開発

目的

日本原子力研究開発機構（原研）の核融合研究は、共産政治の交渉を検討するようになることと、従来の人間を越えた新しい研究協力が期待されるようになった。そのためコンピュータネットワークやIDSN電話回線等を利用したデータの相互参照および遠隔実験参加による研究協力を積極的に推進することを目的に、原研内の遠隔地からJT-60に実験参加する「遠隔研究システム」の開発を行った。

遠隔研究システムは、「データリンクシステム（DLS）”、“遠隔制御システム”、“テレビ会議システム（ISDN）”、“テレビ会議システム（IP（インターネット））”、“ビデオストリーミングシステム（ライブ中継）”から成るが、その中でも、テレビ会議システム（図1）とビデオストリーミングシステム（図2）について導入背景、仕様、改造内容等を記述する。

テレビ会議システム（ISDN）

遠隔研究システムでは、リアルタイムで双方のコミュニケーションを図る手段が必要である。1995年度当初、インターネットを利用したツールを検討したが、限定された国際回線の容量では、1995年度当時128Kbps、2005年度現在6Mbps）ディスプレイ制御システムを使用しながらコミュニケーションを行うのはネットワークに対して過負荷となり困難であった。また、通信衛星もコストの点から考えて時機尚早であると判断した。そこで、調査、検討の上ISDN（サービス経済デジタル網）回線を利用して、テレビ会議システムを導入した。

本システムにより双方向通信して議論し、実験時のプラズマ放電テレビ、中央制御室内映像の伝送、グラフなどの書類提示をリアルタイムで伝えることができた。このテレビ会議システムの構成は次のとおりである。

通信装置（データ通信装置、音声通信装置）：PictureTel S-420ZX、ハウリング防止機能付・マルチポータリープリント（多地点同時接続通信装置）：最高4ヶ所まで同時接続・その他：セカンドカメラ、書類やグラフ提示のための書画カメラ、ビデオデッキ、G4FAX、外部着用マイク、照明等。

本システムでは、異機種間および国際間接続を実現するため、テレビ会議システム国際標準方式ITU-T H.320を採用している。当初は、ISDNの回線不安定や電話変換機（PBX）等、インフラストラクチャや各機器間の問題があったが、テストを繰り返し行って整備してきた結果、現在は国内や欧米の各研究所との利用に問題は生じていない。

また、このテレビ会議システムは、会議室にも設置しており、実験時のデータ解析結果の議論や事前予定の議論のために利用されている。1998年10月のIAEA核融合エネルギー国際会議（横浜）で共同発表した協力研究にも大いに威力を発揮した。

テレビ会議システム（IP）

昨今のインターネットの普及と通信回線の広帯域化による大容量高速データ通信が可能となり、原研における研究活動の背景としても、外部研究機関との協力研究がより一層進められ、ISDNよりも手軽なコミュニケーション環境構築の要望を受け、2003年にIPベースのテレビ会議システムを導入し、各種の環境整備を行った（Polycom ViewStation/ViaVideo、TANDBERG 990、PC/NetMeeting等）。

IPベースのテレビ会議システムは、インターネット回線を利用したITU-TのH.323規格に基づいたシステムである。整備したものを従来のISDNベーステレビ会議システムと比較すると低コスト（通信費用が時間単位の課金制でない）、高速通信（2Mbpsまでの通信が可能で画質がより良い）、導入の容易さ（ISDN回線でなくLANがある場所でも）などが利点として挙げられる。
接続形態としては、単独では1地点対1地点での接続と、多数地点制御装置による多数地点間の接続が可能である。ここで、異機種間互換性とファイアウォールセキュリティの問題があり、解決のために、アプリケーションゲートウェイを設置して外部との通信を制御する方法や、各テレビ会議システムをネットワーク上の配置場所に配置するなどの方法を検討中である。また、ゲートキーパを設置してIPアドレスのエイリアス化も考えられる。

システムを構築したことで核融合科学研究所を始めとして、京大、東大など国内の研究機関はもとより、GA（米国）やIPP（ガルホン）など海外の研究機関とも相互に利用されている。現在は経費率上昇の傾向であり、今後は上記の問題点を解決して、より安全で利便性の高いシステムにしていくことを目標としている。

現在では主に、国内とはIPベーステレビ会議システム、海外とはISDNベーステレビ会議システムを併用して使用している。ただし、事前にネットワークトポロジー（ネットワーク網形態）の設定が相互とも完了しているものに限ってIPベースの使用をすることにしている。

ビデオストリーミングシステム

遠隔研究システムの一環として、JT-60中央制御室内とセミナールームをビデオカメラとマイクにてインターネットを通じて所内と所外へ実験情報をテレビ中継の上に常時ライブで伝えるストリーミングシステムを2001年に構築した。これは、遠隔地において実験現場の臨場感をもたらす。

従来、テレビ会議システムではビデオと音声を双方向通信（対人対）しているが、それと併用する形でこのシステムを開発した。背景として、近年、ネットワークの回線容量が増加され、大容量（768kps）ビデオ、音声信号（A/V）をストリーミング配信することができた。

このシステムの仕様は、A/V信号の処理をReal Producer（PC）で加工、そのデータをReal Server（PC）でストリーミング配信、クライアント側は、Real Player Basic（無料ソフトウェア）で見ることができる。多くの人が視聴できるように（ライセンスの制限を拡張）前段Real ServerからミラーサイトReal Serverへのデータ受信、そこからの配信（スプリインング制御）をする工夫をした。

また、実験者とホストを含めてセミナームルーム等のライブ中継を示し保存ビデオのVOD（Video On Demand）による配信にも使用している。

結果

コンピュータやネットワーク機器の技術は日進月歩で進展して行くため、また、ユーザのより高度な要求に応えるために、特にそれに対応したシステム作りを構築・改善していく必要がある。機器を開発・整備していく上では、ソフト・ハード面の技術に関して、試行錯誤の結果多くの知見が得られた。

一方、波及効果として、大容量高速データ通信を行うことは、原研全体のネットワークの増強化やセキュリティ機器導入の一因もあり技術向上につながった。その結果、従来、外国との研究協力を手紙や出張を手段として行っていたことが、研究がいながらにして実現できるようになったことは、原研としての利便性や時間、コスト節約の点からも有益な結果をもたらしたことがある。また、ここで開発されたシステムは、将来のITERでの遠隔実験における技術基盤に貢献するものである。

参考文献

[7]射場克幸、大島貴美、岩崎慶太、LANによるテレビ会議システムの構築、東京大学総合技術研究会技術報告集、2003
[8]大島貴幸、射場克幸、JT-60遠隔研究用コミュニケーションツールの構築、（社）プラズマ・核融合学会 第20回年会予稿集, 2003
10. 建家関連の重水素化対策

10.1 重水素素化対策の概要

JT-60 では 1989 年の実験まで水素放電を実施して来たが、1989 年～1991年にかけて行った JT-60 大電流化改造終了後の 1991 年から重水素を使った実験運転を開始した。重水素実験では高エネルギーを持った中性子が発生し、互いに反射でプラズマ中でトリチウムが生成されるため、法的には放射線障害防止法（障防法）の適用を受けることとなった。JT-60を放射線発生装置におけるプラズマ発生装置として位置付けるとともに RI の使用が可能となるよう大電流化改造に合わせて重水素化対策の改造を行い、JT-60 施設として整備した。JT-60 施設は 1989 年 7 月に障防法に基づく使用許可申請を行い、同年 11 月に許可を得た。

JT-60 施設に行う重水素素化实验に対象必要な放射線安全への対策を図 1 に示す。重水素実験ではプラズマから 14MeV、2.4MeV の中性子が発生する。中性子の一部は JT-60 装置や、周辺構造物と衝突し 2 次 γ 線を放出する。建家壁に到達した中性子、及び 2 次 γ 線は側壁開口部等を通過して体室内周辺に漏洩するため、このような開口部はすべてクラック構造にするなどのストリーミング対策を講じた。また、天井部を貫通するスカイシャインが及ぶ数地境界への影響を考慮して天井部の遮へい補強を実施した。さらに中性子、及び 2 次 γ 線は体室内内部の空気を放射化する。空気と空間して生成する主要核種は 3N、31Ar であり、これらの核種を含む空気は法定許容濃度以下で放出する必要がある。プラズマ中で発生したトリチウムは真空排気設備を通して排気するため、真空容器からの排ガスは体室内換気と合わせて一つにまとめて、新たに設置した排気筒から屋外放出するようにした。定期点検作業にともなって排出される手洗い水等にはトリチウムが含まれる可能性があるため、放射線排水システムを分け、新たに設置した DP タンクに貯留するようにした。また、定期点検で発生する可燃性廃棄物及び使用済第一壁等の不燃性廃棄物は、新たに建設した JT-60 廃棄物保管棟にて保管廃棄が可能なようとした。

図 1 JT-60 実験棟における重水素化対策

JT-60 装置における年間の中性子発生数（線源条件）を 2×10^{17}n/shot、3×10^{18}n/年とし、この線源条件に対する施設周辺への放射線影響を評価し、以下の安全対策を実施した。

1) 中性子、及び 2 次 γ 線
- 天井の遮へい補強
- 体室内周壁の遮へい壁、遮へい扉の設置
- 壁貫通部の遮へい補強（L 字クラック化等）

2) 排気システムの分離と統一
- 体室内換気系を他系統に分離。1 統一排気系
- 真空排気系を統一し、かつ本体換気系と合流

3) 排水システムの分離と統一、DP タンク設置
- 体、NBI の冷却水、及び第 1 管理区域内排水を統合し、DP タンクへ送水。

上記施設の安全対策と並行し、定期点検作業者の被ばく低減化対策も実施した。JT-60 真空容器等の構
造物は中性子照射により放射化する。また、プラズマ中で発生したトリチウムの一部は炭素第一壁表面に残留する。定期点検では真空容器内部に入れて作業する場合があるため、できるだけ作業者の被ばくの低減を図る必要がある。こうした観点から真空容器内作業の直前には、トリチウム追い出しと、放射化した真空容器の冷却の二つの目的を持つ、水素ガス放電によるガス出し運転を実施して、適切な運転保守計画の下に被ばくの低減を図ることとした。

以下に、具体的な内容とその結果、効果等について述べる。

10.2 JT-60 実験棟の遮へい補強

方法、設計（仕様）
JT-60 施設では、中性子線、γ線に対しては、管理区域内外や地階基盤において遮断法に従い表1に示す法的規制を受けることとなった。JT-60 実験棟本体、組み立て室周辺部（側壁、床部）の開口部からのストーリングを評価し、このような開口部約40ケ所について、直線型ケーブルダクトをL型ダクト構造に変更迷路化する等の遮へい対策を実施して管理区域境界値を満たすようにした（図1）。

また、敷地境界に対してはエタノールの影響を評価し、JT-60 実験棟上部防風壁上のシンダーコンクリートを剥がし、ポリエチレン板にコンクリートを被せた遮へい対策を講じた（図2）。こうした改造によるJT-60 施設の整備を1971年7月に完了し、重水素実験を開始した。

また、JT-60 実験棟1階、地階にある7ケ所の遮へい扉については、インテロックを設けて実験運転中に作業者が立ち入らないような措置を講じた。また、プラズマ電流、中性子発生率に関しては、2年間の遮へい扉を設けた遮へい性能試験を実施した。試運転時検査では、従来はプラズマの性能を上げ、最大性能となった中性子発生率5.6×10^4/s を達成するまでの間に三段階の出力上昇検査を実施した。敷地境界及び開口部約40ケ所を含む遮断評価地域に中性子ラインカウンタ及び、ガンマ線測定用の電離管サーベイメータを配置し、放射能の漏洩濃度を測定した。この値に基づいて評価した結果、すべての評価点で管理基準値（計算評価値）以下にあることを確認した（表1）。この施設検査の過程で得た最大中性子発生率5.6×10^4/s は、重水素放電での世界記録となった。

結果、成果
1991年から1993年の3年間に渡り、科学技術庁放射線安全課、及び原子力安全センターによるJT-60施設の施設検査が実施された。重水素実験の開始前に試運転前検査（外観、寸法検査及び関連する資料の確認）を行い、重水素実験開始後は試運転時検査として、実際の重水素放電に合わせた遮へい性能試験を実施した。試運転時検査では、従来はプラズマの性能を上げ、最大性能となった中性子発生率5.6×10^4/s を達成するまでの間に三段階の出力上昇検査を実施した。敷地境界及び開口部約40ケ所を含む遮断評価地域に中性子ラインカウンタ及び、ガンマ線測定用の電離管サーベイメータを配置し、放射能の漏洩濃度を測定した。この値に基づいて評価した結果、すべての評価点で管理基準値（計算評価値）以下にあることを確認した（表1）。この施設検査の過程で得た最大中性子発生率5.6×10^4/s は、重水素放電での世界記録となった。

<table>
<thead>
<tr>
<th>表1 JT-60施設の遮へい設計基準と中性子発生率5.6×10^4/sでの実測評価結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>遮へい設計基準</td>
</tr>
<tr>
<td>管理区域内</td>
</tr>
<tr>
<td>管理区域境界</td>
</tr>
<tr>
<td>敷地境界</td>
</tr>
</tbody>
</table>

検討、考察
JT-60 はプラズマ発生装置として位置づけられ、国内で最初の法的規制を受けたことにより、その後の大型核融合実験施設での前例を作った。特に核融合科学研究所（NIFS）の LHD 装置で始まった重水素実験の検討に大きく貢献した。

中性子出力の確認実験は初めてのケースであったため原子炉での施設検査の方法が適用されて、3段階分の出力上昇実験を3年もの間実施した。過去13年に渡る重水素実験での安全性を踏まえ、今後こうした試験ステップの簡略化が望まれる。

結論
1989年から1991年にかけて行われた JT-60 施設での重水素化改造において、敷地境界に対しては JT-60実験棟上部の遮へい対策を講じた。また、JT-60実験棟本体室、組み立て室周辺部（側壁、床部）の開口部約40ケ所について、貫通ガスをダクト構造に変える等の遮へい対策を実施して管理区域境界値を満たすような改造を実施した。1991年から開始した重水素実験において、施設検査を実施し、中性子発生率5.6×10^4/s までの最大プラズマ性能で JT-60 施設の遮へい性能がすべて管理目標値以下にあることを確認した。
参考文献
・那珂研究所、放射線発生装置、放射性同位元素の使用許可申請書、平成元年7月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成3年3月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成3年10月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成4年11月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成5年5月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成6年4月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成7年9月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成8年9月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成9年11月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成12年6月
・那珂研究所、放射線発生装置、放射性同位元素の変更許可申請書、平成13年6月

図1 高周波加熱装置のケーブルダクトのクランク構造化遮へい工事

図2 実験棟屋上の遮へい補強工事（白い板はポリエチレン板）
10.3 排気・排水対策

方法、設計（仕様）

重水素反応により発生した中性子により空気が放射化するため、本体室・組立室がホット排気系となることに伴い、13N, 41Ar 等を排気する本体室・組立室換気系、及びトリチウムを排気する真空ポンプ排気系を図 1 に示すように、排気ルートを一つにまとめ、建屋排気口から大気放出するような構成にして、これに排気系の性能向上を図った。真空ポンプ排気系から排気される水素または重水素の濃度を爆発限界以下とするため、このシステムには真空排気設備を設け、換気空気を取り入れている。また、定期点検期間における真空容器内作業に対応するため、真空容器内換気専用の排気系を新設した。各排気系の排気設備は、排風機、フィルタ、排気管、排気モニター、排気筒より構成される。排風機、フィルタは組み立て室、排気筒は JT-60 実験棟屋上に設置した。

管理区域から排出される手洗い水、コイル冷却水（一次冷却水）等は、図 2 に示すようにサンプルまたはサンプルタンクに一旦集水し、排水管を経由して、JT-60 廃棄物保管棟地階の排水設備室に設置した DP タンクに貯留するようにした。DP タンク内の廃水は、サンプリングして放射性濃度が排水に係わる基準を満たしていることを確認した後、構内一般排水管を経由して構外専用排水管に排出される。

図 1 排気設備の改造
図 2 排水設備の改造

結果、成果

JT-60U では 1991 年から JT-60 施設として障害防止法（防防法）の適用を受け、JT-60 施設からの排気、排水に対しては、表 2 に示す法的濃度規制を受けた。1991 年から 1993 年に実施した施設検査（試運転時検査）において、プラズマ最大性能（中性子発生率 5.6×1014/s）の下で排気・排水濃度を実測した。

実験棟の排気筒から放出される 13N, 41Ar 及び 41Ar については、それぞれ連続監視している排気トリチウムモニタ、及び排気ガスマニタで検出を試みた。いずれの核種も検出感度以下であり、規制値以下にありことを確認した（表 1）。トリチウムについては固体捕集法でも捕集し、月の平均放射能濃度でも評価して規制値以下であることを確認している。

表 1 JT-60 施設における排気・排水濃度の規制値と評価測定結果

<table>
<thead>
<tr>
<th>核種</th>
<th>法定濃度規制値</th>
<th>計算評価最大値</th>
<th>実測評価結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Bq/cm3)</td>
<td>(Bq/cm3)</td>
<td></td>
</tr>
<tr>
<td>排気</td>
<td>$3H$</td>
<td>5×10^2</td>
<td>1.6×10^4</td>
</tr>
<tr>
<td></td>
<td>41Ar</td>
<td>5×10^4</td>
<td>2.7×10^4</td>
</tr>
<tr>
<td></td>
<td>13N</td>
<td>6×10^4</td>
<td>7×10^3</td>
</tr>
<tr>
<td>排水</td>
<td>$3H$</td>
<td>60</td>
<td>3.5×10^5</td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>0.1 (60Coの例)</td>
<td>2.3×10^2</td>
</tr>
</tbody>
</table>

JT-60 廃棄物保管棟の DP タンクに送られた管理区域からの排水については、施設検査期間において送水された廃液サンプルを採取し、その放射能濃度を測定した。トリチウムはガラスバイアル瓶に廃液 20cm3 にクリアソルシングレータを加えた試料を液体シンチレーションカウンタで測定した。その他全 γ は、Ge 核種分析装置で測定し、いずれも規制値以下にあることを確認した（表 1）。

- 341 -
結論
1989年～1991年にかけて行ったJT-60施設での重水素改修において、JT-60施設管理区域から排出される排気・排水に対する対策を講じた。1991年から開始した重水素実験において、施設検査を実施し、放射性排気、排水の濃度測定を実施した結果、すべて规格値以下にあることを確認した。

参考文献
[1] 那珂研究所、放射線発生装置、放射性同位素の使用許可申請書、平成元年7月
[2] 研究所、放射線発生装置、放射性同位素の変更許可申請書、平成3年3月

10.4放射性廃棄物の保管対策

目的
JT-60では大電流化改修後の1991年から重水素を使った実験運転を開始した。重水素実験で発生するトリチウムは真空容器内炭素第一壁中に蓄積し、また中性子は第一壁の金属製台座を放射化する。真空容器内定期点検等では不要となった第一壁が廃棄物として発生するため、大電流化改修に合わせてJT-60施設内に廃棄物保管室を新設し、これらの廃棄物の保管廃棄を開始した。

方法、設計（仕様）
JT-60では1991年からJT-60施設として放射線障害防止法（障防法）の適用を受けた。真空容器内第一壁については炭素タイル中の7Be、SUS台座中に生ずる放射性核種（90Co、60Co他核種）をR1核種として申請し、1989年7月に障防法に基づく使用許可申請を行った。

JT-60廃棄物保管棟（図1）は、地階1階、地上1階の耐火構造の鉄筋コンクリート構造である。固体廃棄物は鋼製ドラム缶に入れて、可燃、不燃の区別及びその他の性状毎に分類し、廃棄物保管室(480m²)に保管廃棄する。第一壁は真空容器から取り外し後、JT-60実験棟本体室内の第一壁保管室内で一旦冷却後、廃棄保管室へ移して保管廃棄する。空調フィルタ類は、ビニールシートで包装し、段ボール箱に収納して保管廃棄する。トリチウムが混入する真空ポンプ類の廃油は、ステンレスドラム缶に入れ、防火区画、甲種防火扉で仕切られた構造を持つ油脂類保管室(39m²)にて保管廃棄する。JT-60の実験・保守作業により年間当たり発生する廃棄物量を表1のように仮定し、これをベースに廃棄物保管室及び油脂類保管室の収容能力をそれぞれドラム缶1,340本、容量6.5m³（ドラム缶換算で32.5本）とした。

真空ポンプについては1995年から1998年に入れて油式真空ポンプから回転油を必要としないドライポンプへの交換を実施して油脂類廃棄物の発生量の低減化を図った。また、放射性廃棄物の低減化を図るために、1999年度以降は可燃物について40%／年程度を東海研のバックエンド部放射性廃棄物管理第1課に引き取ってもらい焼却処理するようにした。

データ

<table>
<thead>
<tr>
<th>区分</th>
<th>種類</th>
<th>年間発生量（リットル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>固体</td>
<td>可燃物</td>
<td>7,000</td>
</tr>
<tr>
<td></td>
<td>不燃物</td>
<td>14,200</td>
</tr>
<tr>
<td></td>
<td>イオン交換樹脂</td>
<td>7,000</td>
</tr>
<tr>
<td></td>
<td>フィルタ類</td>
<td>13,480</td>
</tr>
<tr>
<td>液体</td>
<td>真空ポンプ油</td>
<td>1,050</td>
</tr>
</tbody>
</table>

図1 JT-60廃棄物保管棟平面図

- 342 -
結果、成果
重水素実験を開始した1991年度から2003年度までの固体廃棄物の保管状況を図2に、また油脂類廃棄物の保管状況を図3に示す。不燃性廃棄物のうち、難燃材質や第一壁等のドミナント数は8本／年のベースで、また、フィルターはドミナント算で20本／年のベースで保管処理されてきた。1998年度までの可燃性廃棄物については25本／年の割合であったが、1999年度以降は東海研での焼却処理を開始したため、その後は減少傾向にある。油脂類に関しては、当初2本／年のベースで増加したが、1997年度以降は1本／年となり、真空ポンプのドライ化改造の効果が現れる結果となった。

重水素実験を開始後13年間で発生した固体廃棄物の総ドミナント数は470本であり、このベースが保たれれば、保管能力を越えるまでにはまだ30年弱の十分な余裕がある。また、油脂類に関しては、今のベースであればあと15年程度の余裕がある。

検討、考察
現在設計検討が進められているJT-60装置の改修計画が実施されれば、JT-60装置本体の解体に伴う大量の放射性廃棄物の発生が見込まれるが、現在の保管能力からすれば、急な増収物発生があっても十分に対応は可能な状況にある。さらに可燃、不燃廃棄物はパレット2段積みにすればさらに容量を増することはでき、また、廃棄物保管室は一部2階建てへの増設も可能なようになっている。

結論
1989年～1991年にかけて行ったJT-60装置での重水素改修において、重水素実験によって発生する放射性廃棄物を保管処理するため、JT-60廃棄物保管棟を建設した。放射性廃棄物については東海研へ輸送して蒸散処理に至る、また、油脂類については真空ポンプのドライ化を図って発生源となる油脂そのものの発生を抑える等の工夫を図りつつ放射性廃棄物の低減に定着を試みた。その結果、現状ではまだ十分な保管廃棄物のゆとりがあり、今後の重水素実験の継続や、JT-60装置改修計画への対応が可能である。

廃棄物保管室の収容能力はまだあるものの、できるだけ放射性廃棄物を出さない努力が重要である。真空ポンプのドライポンプ化や特に可燃物の焼却処理は効果的である。可燃物が減少した分、最近フィルター等の不燃物の保管廃棄物が目立つようになっている。今後は、不燃物についても東海研で減容処理の手段を検討して行くことが重要である。

参考文献
[1] 那珂研究所、放射線発生装置、放射性同位素の使用許可申請書、1989年7月
11. まとめ

JT-60 は 7 年の建設期を経て 1985 年 4 月から運転を開始した。それまでの核融合実験装置に比べ規模の大きさや技術的困難さなど格段に飛躍したものであることを考慮すると極めて顕著な立ち上がりだったと言える。それ以来、価値ある 1 ショットにするための実験手法に工夫をこらしながら 20 年間 に約 35,000 ショットの実験放電を経験してきた。その間にはプラズマ性能向上を目指して大小の改修、新規設備の導入を始めとする多くの技術開発を精力的に行い続けている。その結果、世界をリードするプラズマ性能に関する成果はもちろん、機器開発、運転保守技術そして実験運転や保守に関わる計画管理技術等において多くの先駆的な成果を築いてきた。これらの成果は原研内の関連部門や核融合研究委員会、大学等との協力・共同研究及び製作メーカー等との協力を忘れてはならない。

常に最先端の成果を求める研究においては最先端の技術開発や技術導入は必須条件である。一方、予算上の制約もあるため大型実験装置においても多くの主要設備は容易には更新できず従来技術の活用を継続する必要があるという現実もある。当然そこには設備の高齢年化という課題も折り出していく。従って先進技術と従来技術で構成する大规模装置を健全かつ安全に稼動して初めて成果が出るものであると認識し JT-60 プロジェクトを推進してきた。プロジェクトの進展にはその推進母体である実験運転に関わる当事者の知識や技術力を培い高めるばかりでなく、さらに高い意気や旺盛な探究心がなくてはならない。JT-60 においてはこれらの条件を備えた集団の力が結集し、総合力を高めることによりこれまでの成果を結実させてきたと言える。

今後の核融合研究は ITER を中心に進展し、実用化へ向けられて世界の研究者及び技術者が研鑽・協力していくことになるろう。JT-60 は ITER に対してこれまでの多くの成果を提供し重要な役割に寄与してきたが、今後の開発及び実験においても引き続き貢献し続けることが使命となる。そのためには国内重点化装置への改修、人材の育成そして技術の継承が極めて重要な位置付けとなる。

本報告では JT-60 のプラズマ性能の進展と設備・機器の改良との関わりを始めとして、設備・機器に関して 20 年以上に亘る経験に基づく技術資産即ち初期状態から改修や改修及び新規開発について、さらにはトラブルやその対策も含めたものを簡潔に織めた。言い換えれば、JT-60 の進展と表裏一体の先進的技術開発の経緯と結果及びそこからの提言も含めて織めたものである。

本報告が今後の核融合研究に携わる多くの研究者及び技術者の参考になれば幸いである。

謝辞

JT-60 の技術開発に関わった原研内外の多くの方々に深く感謝いたします。また、本レビューを編むに当たり松田慎三郎理事、関昌弘那珂研究所長からのご支援と多くの助言に感謝いたします。
付録 ハイライト写真（本体設備を中心として）

JT-60装置全景（1987年3月）
壁を隔てて奥がJT-60本体室、手前が組立室。計測段台の上部に突き出ている設備は2基のその場コーティング装置、真空容器内構造点検装置、可動リミタ等（5.1節(11)、(12)、5.11節(2)参照）

JT-60装置全景（1999年8月）
組立室側に設置されているのは負イオンNBI装置のイオン源と高電位テーブル（7.12節参照）
建設最終段階における JT-60 装置真空容器内部の様子（1984年11月）
第一壁には TiC 被覆した金属第一壁（モリブデンリミタ、インコネルライナ等）が使用された。（5.1節（1）参照）

大電流化改造工事終了後の JT-60U真空容器内部の様子（1991年2月）
真空容器内第一壁は全て黒鉄化された。ダイバータイプには C/C コンポジット材が使用された。
(5.5節（3）参照)
1. JT-60 本体室床面基礎架台工事
右は下側ポロイダル磁場コイルの支持架台
(1983年2月)

2. 真空容器支持架台と内側ポロイダル磁場
コイルの設置
(1983年5月)

3. 真空容器及びポロイダル磁場コイル設置後の
トロイダル磁場コイル回し込み作業の開始
(1983年10月)

4. トロイダル磁場コイル13個の設置、左はMB1
サポート設置用治具
(1984年1月)

5. 上架台の据え付け
(1984年6月)

6. 計測架台を設置し、完成間近のJT-60 装置
(1985年2月)

JT-60 本体室内におけるJT-60建設工事の様子
(1983年2月〜1985年2月)
大電力入射用電力分岐型 LH アンテナ
20Hz 帯の高周波をプラズマに入射し、トカマク装置での非
誘導電流発電において世界最高の 3.6MA を達成した低域高
周波 LH アンテナの高周波放射部（6.3 節参照）。

高性能 IC 加熱アンテナ
120MHz、7MHz 帯の高周波入射を実現し、数MeV の高エネルギ
ギイオンの挙動研究等に貢献したイオンサイクロトロン (IC) 加熱アンテナの高周波放射部（6.5 節参照）。

負イオン源（2台）
1 合当たり最大 500KeV、22A の
負イオンビームを生成・加速
イオン源タンク
負イオン誘電壊成で負イオンが
中性化するのを抑制
中性化セル
高エネルギー負イオンビームを
中性粒子ビームに変換
高電位テーブル
500KeV 電位にする負イオン源
機器への電源供給
(7.12 節参照)

実験棟本体室に設置した JT-60 負イオン MBI 装置

磁場コイル電源の直流フィーダー
各磁場コイルの発生磁場制御は、MG で発電された交流をサイリスタ変換
器により直流に変換（整流）し、その直流側の発生電圧を増減させるこ
とにより行われている。サイリスタ変換器が格納された盤から、上写真
のアルミ製のフィーダーで本体のコイルに送電される。左右奥には直流
電流を非接触で計測するリッジ状の検出器が見える（4.11 節参照）。

JT-60 発電機棟内の 3 台の
電動発電機（MG）
写真手前からトロイダル磁場コイル電源用
（T-MG、三菱電機製）、ポロイダル磁場コイル
電源用（P-MG、東芝製）、加熱用発電設備
（H-MG、日立製作所製）の各 MG、3 台最大で
合計 130 万 kWh を発電出来る。このうち、T-MG
と H-MG は、それぞれ重さ 650t、320t（直径
6m）のフライホイールを回転子の下に直結し
ている（4.16 節参照）。

− 348 −
表 1 SI基本単位および補助単位

<table>
<thead>
<tr>
<th>量</th>
<th>長さ</th>
<th>質量</th>
<th>時間</th>
<th>電流</th>
<th>熱力学温度</th>
<th>物質密度</th>
<th>色度</th>
<th>平面角</th>
<th>立体角</th>
</tr>
</thead>
<tbody>
<tr>
<td>名称</td>
<td>メートル</td>
<td>キログラム</td>
<td>秒</td>
<td>チューブル</td>
<td>ケルビン</td>
<td>キログラム/メートル³</td>
<td>ト専</td>
<td>ラジアン</td>
<td>ステファニアン</td>
</tr>
<tr>
<td>記号</td>
<td>m</td>
<td>kg</td>
<td>s</td>
<td>A</td>
<td>K</td>
<td>mol</td>
<td>sr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2 SIと関係する単位

<table>
<thead>
<tr>
<th>量</th>
<th>分、時、日</th>
<th>度、分、秒</th>
<th>リットル</th>
<th>ソーン</th>
</tr>
</thead>
<tbody>
<tr>
<td>記号</td>
<td>min, b, d</td>
<td>°, ′, ″</td>
<td>L, L</td>
<td>i</td>
</tr>
</tbody>
</table>

表 3 常用の名称をもつSI換算単位

<table>
<thead>
<tr>
<th>単位</th>
<th>ペルミアン</th>
<th>ナノメートル</th>
<th>ミクロン</th>
<th>マイクロン</th>
</tr>
</thead>
<tbody>
<tr>
<td>記号</td>
<td>n, pm</td>
<td>nm</td>
<td>μm</td>
<td>μm</td>
</tr>
</tbody>
</table>

表 4 SI基準の効率的維持される単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>オーム</th>
<th>バール</th>
<th>ジール</th>
<th>ギェル</th>
<th>チューブル</th>
<th>レッド</th>
</tr>
</thead>
<tbody>
<tr>
<td>記号</td>
<td>Ω</td>
<td>μA</td>
<td>mV</td>
<td>V</td>
<td>A</td>
<td>Hz</td>
<td>Hz</td>
</tr>
</tbody>
</table>

表 5 SI換算単位

<table>
<thead>
<tr>
<th>次元</th>
<th>接頭語</th>
<th>記号</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>×10⁻²</td>
<td>デシ</td>
<td>d</td>
</tr>
</tbody>
</table>

擾算表

<table>
<thead>
<tr>
<th>壓力</th>
<th>MPa</th>
<th>kgf/cm²</th>
<th>atm</th>
<th>mmHg (Torr)</th>
<th>lb/in² (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10192</td>
<td>0.0980665</td>
<td>0.007592</td>
<td>1145.9</td>
<td>15.0</td>
</tr>
</tbody>
</table>

(注) 1. 表 1 - 5 は「国際単位系」第5版、国際度量衡局1985年発行による。ただし、1 eV および 1 u の他はCODATAの1986年推奨値による。
2. 表 4 には海里、ノット、アール、ヘクタールも含まれているが日常の単位なのでここでは省略した。
3. 表 5 には、JISでは流体の圧力を表す場合に限り表 2 のカテゴリに分類されている。
4. dukeはkJ/(m²K)を表す。