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Recent approaches te heterogeneous reactor theory for numerical applications were
presented in the course of 8 lectures given in JAERI. The limitations of initial theory
known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in
1935 as Galanine—Feinberg heterogeneous theory:-matrix from of equations, -lack of
consistent theory for heterogeneous parameters for reactor cell, -were overcome by a
transformation of heterogeneous reactor equations to a difference form and by a
development of a consistent theory for the characteristics of a reactor cell based on
detailed space-energy calculations.

General few group (G-number of groups) heterogeneous reactor equations in dipole
approximation are formulated with the extension of two-dimensional problem to three-
dimensions by finite Furie expansion of axial dependence of neutron fluxes. A
transformation of initial matrix reactor equations to a difference form is presented.

The methods for calculation of heterogeneous reactor cell characteristics giving the
relation between vector-flux and vector-current on a cell boundary are based on a set
of detailed space-energy neutron flux distribution calculations with zero current
across cell boundary and G calculations with linearly independent currents across the
cell boundary. The equations for reaction rate matrices are formulated. Specific

methods were developed for description of neutron migration in axial and radial

Course of lectures given in JAERI in the pericd April 1 -June 24, 1994
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directions. The methods for resonance level’ s approach for numerous high-energy
resonances. On the basis of these approaches the theory, methods and cemputer codes were
developed for 3D space-time react or problems including simulation of slow processes
with fuel burn-up, control rod movemets, Xe poisoning and fast transients depending on
prompt and delayed neutrons. As a result reactors with several thousands of channels

having nen-uniform axial structure can be feasibly treated.

Keywords: Heterogeneous Reactor, Neutron migration, Resconance Absorption, Reaction

Rates, Collision Probabilify.
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Introduction

Heterogeneous theory is applicable to the reactors with arbitrary positions of channels
having different axially non-uniform properties, with axises parallel to some fixed direction
(fuel assemblies, control rods etc.) . The main supposition is that the channels are well
separated relative to neutron mean free paths, so that there are regions between channels
where the diffusion approximation is applicable. The properties of channels are supposed
to be derived from the solutions of neutron transport equations , the influence of channel to
channel is determined by Green functions based on diffusion approximation.

The basic idea of heterogeneous reactor theory belongs to academician L.D Landau and
first systematic formulation of theory was presented in an unpublished work by

Achiezer A.L, Pomerantchuk I.Ya.(Introduction to the theory of neutron multiplication
systems , 1947). The theory called lately as Galanine-Feinberg theory became well known
after the First Conference on Peaceful Uses of Atomic Energy held in Geneva in 1955 2.
Methods of summation developed by Galanine let it possible to solve some heterogeneous
reactor problems, for example, concerning thermal utilization factor.

Next stage of theory development - introduction to the theory the first asimuthal mode of
neutron distribution around channels that made it possible to develop the theory of neutren
migration in uniform lattices (in axial and radial directions).

Yet two obstacies prevented wide practical application of heterogeneous methods :
-matrix form of equations
- lack of consistent theory for heterogeneous parameters
for reactor cells.

The first obstacle was cvercome by a transformation of heterogeneous reactor equations
to a difference form ***®. The second - by the development of a consistent theory for the
characteristics of reactor channel or a cell based cn detailed space-energy calculations of a
cell 7.

Other approaches to the development of heteroheneous reactor theory can be
found in ¥,

As a result the reactors with some thousands of channels having non-uniform axial
structure can be feasibly treated. The problem becomes even simpler than for so called
homogeneous reactor equations due to a simpler structure of an operator used in inner
iterations. The extension to 3 dimensions is reached by finite Furie transformation relative
to axial dependence that leads formally to the same form of equations as for the case of 2
dimensions.

For the second part of the probiem a theory for heterogeneous parameters - effective
boundary conditions on the surface of a reactor cell - was formulated. In a few group
theory (with G groups) the main characteristic is GxG A-matrix relating a vector-flux to a
vector-current on a cell surface. The calculation is based on a series of G+1 solutions of
detailed space-energy multi-group problems with linearly independent neutron currents
across cell surface. Some weak suppositions concerning fission sources distribution and
superposition principle make it possible to separate absorption and slowing down from
fission processes and to construct A-matrix consisting of two parts and depending on
(1+G)*G/2+2*G parameters. Numerical methods for reactor cells with an arbitrary
isotopic composition were developed. Specific methods for resonance absorption
calculation are based on non-uniform subdivision of lethargy scale and effective resonance
level's approach for numerous high-energy resonances including unresolved regions.
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Specific methods are needed for A, and A, - matrices describing neutron migration in
axial and radial directions. Besides the theory for reaction rate matrices was developed.
The theory, methods and computer codes were developed for 3D space-time reactor
problems including simulation of slow processes with fuel burn-up, contro} rod movements
(or a change of boric acid concentration), Xe poisoning and fast transients depending on
prompt and delayed neutrons.

In lecture 1 general heterogeneous reactor equations are formulated.

Few group theory is used instead of age-diffusion theory in the moderator.

The solution is presented as a superposition of neutron fields due to point monopoles and
dipoles around each channel.

It is shown that 3 equivalent forms of heterogeneous equations are possible based on the
utilization of different variables:
Damplitudes of external neutron fields at channel centers
2)amplitudes of singular fields at channel centers
3)neutron fluxes on channel or cell boundaries.
Addition theorems for Bessel functions are used for the formulation of heterogeneous
reactor equations for the case of channels of finite radii.

It is shown how to convert initial equations given in complex values to equations in real
values (by linear transformations). :

Elementary symmetry relations are used for simplification of the problem.

The 2nd Jecture is devoted to one of the central points of the theory developments:

transformation of initial reactor equations to a difference form.

Initial matrix equations have limited applications - for small dimensional problems
(reactors or critical assemblies with no more than hundreds of channels).

Approximate difference form make heterogeneous equations applicable to reactors with
thousands of fuel assemblies having non-uniform structure in axial direction. The
extension of two-dimensional problem to 3 dimensions is obtained by finite Furie
expansion of axial dependence of channel characteristics and neutron fluxes. Symbolically
the equations remain of the same form (with extended dimension). Different approaches
are possible for the choice of difference equations parameters and they are based on some
best elimination of matrix elements outside some fixed set of indices around a given node.

Lecture 3 deals with the heterogeneous characteristics of a reactor cell.

Calculation of these characteristics is based on a detailed space-energy neutron flux
distribution calculation with zero current across cell boundary and G calculations with
linearly independent currents across the cell boundary (G- number of few groups for
reactor calculation).

Closed functional relations can be obtained for boundary parameters - monopole, axial
dipole and radial dipole.

The integral equation (collision probability for the case of monopole ) is modified for the
case of calculation of neutron migration parameters.

Calculations of neutron flux distribution in a cell are based on detailed multi-group
calculations with special treatment of resonance absorption (direct calculation with non-
uniform division of lethargy scale 7, effective resonance levels ') and the solution of
thermalization problem '>'® in thermal region of energies.

In Jecture 4 the methods of heterogeneous reactor equation solutions are considered:

_2_
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direct calculation of matrix equations with some preliminary matrix transformations
leading to an application of operator with some positivity properties; iterative method of
solution of direct heterogeneous reactor equations based on line by line multiplications.

Group-theoretical analysis is used for reduction of problem dimension m,

The solution of heterogeneous reactor equations in difference form is based on a
combination of inner iterations (symmetric succesive over-relaxation method ) and two-
stage Chebyshev’s method for outer iterations '*’. _

Sub critical systems with external sources are solved by a modified iteration method ),

Lecture 5 describes the methods for the solution of space-energy-time problems:

Space-time kinetics in a reactor cell is based on nuclear chain transformations (capture,
fission, decay, (n,2n) reactions), with step by step re-calculations of space-energy
distributions . Some interpolation procedures are used for increasing the time intervals
between this re-calculations.

3-dimensional burn up processes in a reactor (with control rod movements , fuel
reloadings and Xe poisoning) are simulated with time being simply a parameter ) For fast
transients (including the effects of prompt and delayed neutrons) a decomposition on
slowly varying and fast varying functions is applied , with a new cell characteristic A~
matrix (describing time-dependence)®”.

Lecture 6 is devoted to the application of perturbation and optimization theory to the
solution of some heterogeneous reactor problem 522} General approach is based on a
Lagrange principle for the systems with constrains and application of sequential
linearization method. A special approach is used for the solution of power distribution
flattening by control rods (change of variables from control rod positions to reactivities
immersed by control rods).

Lecture 7 is devoted to a description of some computer codes based on the above theory
and methods (for reactor cell, for calculation of reactors by direct heterogeneous methods,
for 3-dimensional calculations of a reactor by the solution of heterogeneous equations in
difference form, for simulation of slow and fast time processes in a 3-dimensional model
of a reactor).

Some numerical results - calculation of reactor cell characteristics, simulation of burnup
in a reactor cell, space distribution of reaction rates in critical assemblies, numerical
analysis of critical experiments, intercomparison of sclutions of matrix heterogeneous
reactor equations and solutions of heterogeneous reactor equations in difference form,
monopole and dipole one-velocity parameters, simulation of Xe poisoning transients and
transients taking account of prompt and delayed neutrons - are presented in the last 8th
lecrure.
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1. Heterogeneous Reactor Equations
1.1 Suppositions

Reactors with uniform moderator is considered (in the theory developed below this
supposition can be practically omitted since boundary conditions can be applied to cell
boundaries). The channels have arbitrary disposition with axises supposed to be parallel
to a fixed axis for example z-axis,; usually in a regular lattice - square or hexagonal.
Between the channels some regions exist where diffusion approximation is applicable. The
properties of each channel are supposed to be independent of the properties and positions
of other channels and can be determined separately. Reactor neutron problem is divided
into 2 parts: '
determination of properties of channels;
solution of reactor equations with the properties of channels pre calculated.

1.2 Source-sink heterogeneous reactor equations

A teactor system with large distances between channels:  exp(-R/I)<<I, where

R - atypical distance between channel surfaces, I-mean free path of neutron travel,

and small dimensions of channels:

C__”Vc:ha.nfvcell <<1,

is considered.

The neutron flux distribution in the vicinity of each channel is supposed to be independent
of azimuthal angle and every channel is characterized by 2 parameters:
vy -constant - the ratio of neutron current to asymptotic value of neutron flux on the channel
boundary;

7 - multiplication constant - the ratio of number of fast neutrons born in the channel to the
number of neutrons absorbed by this channel. _

Neutron transport in the reactor is described by 2 Green functions, giving the influence
at a given point r of unit point source at the point rg of fast neutrons and thermal neutron
sink correspondingly.

The neutron flux distribution at the point r is a superposition of these sources and sinks
influences at points ry

N(l"):’% {Gr(l'al‘k)ﬂ k'Gs(r:rk)]YkN(rk)

N(r,) - neutron flux on the surface of channel with the center of axis at ry..
For a reactor with cylindrical channels and infinite moderator age-diffusion Green
functions supposing r = r; are as follows:

G (r,r)=(12nD)K,(| rr, [/LY; G (ror)=(1/27D)K (P, /L);

Gi(r,r,)=(1/4xDYexp(t/L?) | expl~(z+(t; —1)? / 4z12)]dz/ z
/13

where D, 1, L2 - diffusion coefficient, age and square of diffusion length correspondingly,
py- radius of channel with number k , Ko- modified Bessel function, and we get a system of
uniform algebraic equations:
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N(ri);%: H(rnrk)N(rk); H(rl’rk) =[Gr(rl9rk) nk'Gs(rwrk)]Yk

having non trivial solution in the case if the next critical condition is fulfilled:
det(H-1)=0
1.3 General solution of few-group equations in monopole and dipole approximations

Instead of age-diffusion approximation few-group diffusion approximation in the
moderator is supposed.  Group fluxes in the moderator o; (after a change of variables to
1n;) obey the equations: ‘

(-A+1A+LON=T tyn; / 75 (1.3.1)
J<1
where n=(D;, /Dg)o.U; ;
= I (PdeU, tij = EU/ZR_]: I/LZJ':zaJ‘/Di; I/Tiz ZriDi s
U
G - number of groups, Dy, Dg - diffusion coefficient, i, Eal slowing -down
macroscopic cross-section and absorption macroscopic cross- -section in group i
correspondingly; Ty - scattering cross-section from.group jtogroup I; U; - lethargy

interval in the group i.
In a reactor of finite height after the separation of variables: n — n exp( iaz)

where o= n/H , H - reactor height , the system of equations becomes as follows:

(-Ai+1c2i)ni=jz<:itij¢7jnjj K2i=1/Ti+1fLi2+ oy K =1L o éjzsll‘cj. (1.3.2)

General solution with logatithmic singuliarities is consructed of Bessel functions:
n=e S PR (€0 ) off = T tudfegt)s LG

with the system of recurrence reIatio.ns for ¢, |

¢=1; ¢ =(U("- %)) éitkﬁckj (1.3.3)

If the loss of energy is less than group widths only neighbor groups are related to each
other by recurrence relations:

-1y T

¢, ~L; ¢;7ve, v—&i_f/(rczi- sz) (1.3.4)

A triangular matrix can be constructed:
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C= - (1.3.5)

Cijs 1> _] 1
and general solution presented as
N=CT A

.- a diagonal GxG matrix with functions fjo at the diagonal, A, - vector of arbitrary

constants. Green function is constructed as follows.

Suppose a unit source is placed in the center of coordinates

0
0

(r)e;/ Dg;e;= 1 -
0

Taking an integral to the boundary of a circle of small radius and for the limit of this
radius =0, we get '

2mCA,=e/Dy A=C"e/2nDy;
Gy | r-r,)=(1722D)C 5 | 1,1 )Ce; (1.3.6)

In 2-group approximation (k)" =1/t + okt =1/ Lr+ o)

! Ko(K.l r) I | ¢ I
Go' (1=(1/2nDg)| | 5 Go* (=(1/2nDg) | !
| (Ko(ka1)- Ko(xi ))/(1-1/ L?) | | (Ko(kz 1)

Addition theorem for Bessel functions is given by the next relation (Fig. 1.1):

exp(inq;;)Kn(a|r~rl|): iﬂ Im(alr-robKn+m(a|ro-r;|)exp(im(n-wo)

(1.3.7)
Let angle (o is measured from the direction of unit vector oo, ¢1 - from o
Following definitions, shown in the picture,

Yi=01-%Xo1 3 - Wo=Xic -Qo; K10 =Bro+ Xortm;
010 - the angle between ap and oy ; X0 -the angle measured from o to re-ri;
10 -the angle measured from ap to ri-ro; addition thecrem is rewritten in the form:

exp(ing)Ka(a! r-r1 | )=(-1)" exp(-in6 ;o) (1.3.8)

i Im(al r-ro| ) Kr,_m(al ro-r| Yexp(i(n-m)y,eexp(im Qo)

m=-@
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Ty Yo

Fig. 1.1. Addition theorem for Bessel functions
Wi=Pr-Xo1; T-Wo=x10-P0; X:1070:0T 01T X;
r-roy | <; I;-To

Suppose a source and sink of equal strength S are placed at the points ry*+dn , ry-dn .
The resulting neutron flux is next (Fig. 1.2):

S[Gé(|ryr,+dn})- Gi'([rpr;-dn )]

After application of addition theorem to functions KQ(Ki' r,-r;+dn i ), Ko(xi | r,r;-dn )
(assuming ag=0=n) we get:

T LG d) Kai | 1ot )= ;i In(kid) Km(i | rgor, Dexp(-imyio)[1-(-1)7]

the angle y0 is measured from n to ry-ry. Taking a limit d—»0, and assurning 28d=P to be
constant, instead of the last sum the following expression is obtained:

P Ki(k; | ri-rocoswy; cosy =(ry -1y, n)Y/ | ryro!
with the Green function giving the influence of dipole at point r, having the direction n:
Gy rerg, n) = CF1(| r-ro| YC'[( r-rp, m)/ 1 r-ro|]ej/(21tDG)

Fl(l l"l'ﬁl) = diag{ KjK](Kj |I‘-I'0| )}
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-Gy (|t 1y |) ry-dn

Fig. 1.2. Green function for dipele; ae=c)=n

Interchanging r and r, and taking the derivative of Go(|r -r, |} in the direction n, we
can get a relation '

(a8l rore DGI (| r-ro NI, =-G¢ (-1, 1)
G ( r-ry, n) -Green function of a unit dipole in the direction n at point r .
Taking a limit

lim [Gy ( r +mp-rq, n)- G { r-ro, 0))/p =(dG, , m )

p—9 .

we get an expression
(dG{,#)=(C3,Cei2nD, o); (1.3.10)

3(r-royn)=diag {iGK (; | r-ro | )0/ r-rol - 16/ r-rol %) Ka(i; [ r-ro| Y(r-ro,m)(r-ro)
i

Reactor with infinite moderator
General solution in a dipole approximation is presented by the next expression:

N(r-r)=% [Go(l r-re DA, + Gi(r-rBl
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A - a vector of arbitrary constants a;, j=1,...G; B,={b,;} - 2-dimensional vector,,
k =(k) k) -two-dimensiona vector, pointing the positions of channel centers.

For a Green function Goj(| r-ry |) function Koj(lcil r-r |)
according to addition theorem is equal:

Ko(Ki[ r-ry |)=I0(Ki| r-r; \)Ko(i(;t rg-ri |)+
+2L(c} e DKyl pery DOrery, rier D/ | rery | | rwee D)+

so that in the vicinity of every channel neutron field is as follows:

Go (| r-r )BwA, + z (1 &b Go (! r-11 ) +2(0/Q)G (r-ri(r-r)/ | v [) A
Tp=diag {Io(x; Lr-r,)}; Li/x=diag {Ix(x; | r-r, 1Y x i}

The influence of the second term is calculated in a similar way. The resulting neutron
distribution near the channel 1is given by expression

No{l r-n N=[Go(l r-ri YA, + Gi(r-ri,B)I8u+  (1.3.11)
+ 3 (1= 8 Go(l re-n 1) 420G (remi(r-r) | rr A
oG (F1-T 1B ) +2(1/K) (G2 (- B ), (r-r)/ | -1y 1)}

Gofr, - 1By = (CF2 C' /27D); Fa(ry - 1B = (1.3.12)

=di_ag{KjK;(1cj !rl - rk|)Bk/] r - rk| -{ X Y| r - rk|2) Ka(x; |rI - rk|)(r, -1, By (r -1}
j
The 4 terms determine the influence:

monopole-monopole, monopole-dipole, dipole-monopole, dipole-dipole. Function Gy is
the same as the derivative of Gs(r, - r,,B,) in the direction r-ry.

Cylindrical reactor of finite dimensions

For a cylindrical reactor of finite radius R general solution after a change of variables (B to
A) can be written in a form:

N(r)=CFCT'B;C"'B=A;A ={A} }; (1.3.13)

Fi(r)A;= %Z Ka(igjr — 1) exp(ing )AL 5 +

+2. C71, (k) exp(ivd)

and includes a regular part taking account of finite dimensions (the last term) . The angle 0

is measured from some fixed direction , for example direction of x-axis (Fig 1.3).
Suppose a boundary condition on the external surface of the reactor:

(1-$)N(R) -~ sRAN(R) / 8R =0 (1.3.14)
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Fig.1.3 Finite reactor of radius R

Represent addition theorem in the next form

exp(ing, K, (dlr — 1) = exp(~ind, ) x

w o (1.3.15)
x T1,.q(an K, (aR)exp(iv8 +i(n-v)xy)

and put the above expression into the equation for general solution
Flina, =2 exp(in(Pk)A?c,_jZIv—n(Kjrk)Kv(KjR) X

xexp(ind +i(n-v)x )+ Z CI(kR) exp(ivs).

Applying operator D =(1-s)—sR&/0R to the expression of neutron flux and
gathering together the terms for the mode exp(ive), we get

CIDIV(KJR) = “Z Z exp(—insk)Iv—n(Kjrk)DKv(KjR) X
n k
x exp(i(n— V)X )AL

Ci= —dj"§§exp(i(n— Wi — i3OGk jTOAR, 55

,_[(1-9-sR3/BRIK,(x R) (1.3.16)
} T (1-s)-sRA/ARIL, (x;R)
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The influence of every mode exp(ivO)l,(x;r) on the solution near channel 1is determined
with the next addition theorem (Fig. 1.4):

(r-ni<x)

exp(iv9)L, (x;r) =

= T exp(im3)) L e Jr = DLy (icj11) ¥ (1.3.17)
x exp(i(v —m)y, +imo,),

so that

ZClexp(ivd)], (k1) = -2 Z%Z exp(imo)l, x

x(i 1 = BDE, (kT d] exp(i(v —m)x; + (- V)xe) X

x exp(im$3, —in8y)

The first term for the neutron flux is calculated by addition theorem (Fig. 1.5):
%%Kn(mj{r — 1)) exp(in@ JAL ; =

= %exp(imwl)l'm(lcjlr - rJ)%%(—l)” exp(=indy) x

X Kn-m(Kj] 1, — ni exp(i(n - mg )AL ;

Fig. 1.4. Addition theorem for Bessel functions;

\y+6=8k+cpk



JAERI-Review 94-002

Fig. 1.5 Addition theorem for Bessel functions;

Wo=6 -x5; W=t

Finally, taking account of both terms we get the solution in the vicinity of channel L:

Fi(r)A = 3 exp(ime)) T B Kplicr = ni+
m k
! | mit,§ n (1'318)
+(1= 8y )L, (T — DT L3 AL

mnr,j _ pmn,j mn,j
Fp™ = Fycimr + Fiicjin

Emm = (1) exp(in8,y) K, (xjiti — i) exp(i(n - m)xw);

Freie = =2 exp(im8,)d} T, G im0 ¥
v
xexp(i(r- v )y + (v = m)x; = 1n8y).

mn,]
Flk,inf

mn,j
I':lk,_)’l‘n

- the kernal for the reactor of finite radius and the part responsible for finite radius of
reactor correspondingly.
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1.4 Different forms of few-group heterogeneous reactor equations
The solution near 1 th channel is presented by expression:
N(r)= C(K +IF)C'B, (1.4.1)

K =diag {Kalk|r-r D}, 1 = diag {I(x5| rr, 1)}
k| k,j

Introducing a vector @, =[CF C™'B], = {(D{’fj}
rewrite the above equation: N, = CIKC™'B, +IC"'®,]
Suppose a linear dependence exists: B=udy
then
O=CFC'u®d (1.4.2)
and the solution is transformed as follows:
N,(r) =[CKC"u + CIC™']®, (1.4.3)

The above equation (1.4.2) is a uniform system of linear equations relative to vector

@ , having the dimension KxGxH; K - number of channels, G - number of groups, H -
number of modes near channel surfaces (H=1 - monopole, H=3 - dipole approximation);
(G=1,...,G). '

The second equation gives the relation between regular and non regular parts of solutions
near channel 1 which is determined by matrix u . For each angular mode matrix u can be
determined from the solutions in an infinite media (with regular parts imposed) for
determination of non regular parts:

CL,C e, exp(im@,);

1 m .
CK,C'u™ exp(ime,)
me ;
{ u;yijr }
An other equivalent approach : instead of u-matrix the relations on channel boundaries are
given as: '

pEN/ 0p = AN,

N - KxGxH - vector; p - radii of channels; A - matrix composed of GxG sub matrices for
gach channel.

Apply the operator
d=pd/op

to both parts of equation (1.4.1) and use the relation



T e e e e e A

JAERI-Review 94-002

C(8K + JIF)C 'B= AN (1.4.4)

Do equivalent transformations
FC™'B:

FC'B="'FCT'B = ["IC7IC(-K + K+ IF)C'B =
=-I"'KC'B+17'C"'N

and put the result into (1.4.4)

C(K -8 'K)CB=[-Cal"'C'+A]N  sothat C'B=C™yN,
with C"y=(aK~an-1K)[C"A-&H“C“j.

Using the expression for Besse! functions Wronskian one obtains:

v = C(-IC'A + 3IC™H. (1.4.5)

Again using expression for B in (1.4.1) one gets:

N=C(K+IF)C-lyN (1.4.6)

Comparing the above expression with the expression for the solution by Green functions
we see that v is determined in such a way that the term

2aDgYN(p) gives the strength_of sinks and sources on channel axises
Using the relations:

u® =y (CKC'u+ CICH®,

we find the relations between equivalent values y and u:

y = u(CKC e+ CIC™H™,
-l | L Lot (1.4.7)
u=(1-yCKC™) " yCIC™ =y(1-CKC™y)  CIC
For the case of channels of small dimensions, monopole approximation, I=1, 31=0,
N=-C(K+F)C'AN,

and at the supposition of no slowing-down inside channels:

0yl
A‘[o y }2@’(6‘2)

one gets
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ny1 = s (Kolic (Y iy +
% (I- Slk)KD(Kim - rki)(T]Y)knk,zl

1 .
na= M—D; {{Ko(x2p1) = Kol (1 -1/ Lz)-l(‘ﬂY)! -

~Kolxap)7 []”t,z + % (1-0p )[(Ko(Kz‘ri - rkl) -

=Ko Geifr —r D=1/ L7 my)y -

—Ko(Kz‘rt - rkl)’{k]”k,z}-

The latter expression is the same as in the initial theory with 2-group Green functions
instead of age-diffusion Green functions.
Let us separate the terms depending on the number of secondary neutrons emitted in

fissions v:
u=(1-vf) 'uv-u, _ (1.4.8)

Matrix u, is provided by absorption and slowing-down of neutrons;
u; - by neutron fissions induced by the external neutron field CIC-1®;
Rewrite:

B=[(1-v)'uv-up] @;  (1-vHB=[u;v-(1-v)us} o

Thus 3 equivalent forms of heterogeneous reactor equations are obtained (A, & -
eigenvalues; k - effective multiplication factor):

B=(v/k)[f+(u,*+fu,)CFC B - u; CFC'B (1.4.9)
N=CK+IF)YC' (v, (V) /L —y,)N (1.4.10)
@= CFC[(1-v) vy /A-u,] © (1.4.11)

B- amplitudes of singular parts of equations

CKC™B;
& - amplitudes of external fields on channel axises

CIC™'®;
N - neutron fluxes on channel surfaces (extrapolated from the moderator, asymptotic)

N=N(p)=[CKC'B+CIC" @] - o).

As it will be shown later matrix A can be presented as:
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A=A +A A=-A/(1-0); 0= Ko-qA2No;

A7 and v linearly depend on the number of neutrons born in fissions. Introduce a critical
parameter - effective multiplication factor £ and devide by & both of these values:

A=Ak and v— O/

After the change of variable

N—N"=N/(1-0/k)

equation (1.4.6) (or (1.4.10)) transforms’ to the next form:
N=(0+CFC 'y, )N /k-CIC 'y, N’ 5 F=K+IF; (1.4.12)
y}’“—'CIC'IAl’erz; 12=C(IC"'A,-81C™H

Equation (1.4.12) has simple linear dependence on £.

1.5 Real representation of equations
For computational applications general equations given in complex form are to be
transformed to real form. Matrix elements were given in an arbitrary

fixed directions for angles near each channel. These angles for the reactor can be counted
from one fixed direction (say x-axis). In that case

For a cylindrical reactor, and a lattice having a symmetry center, it is better to take a
direction of radius-vector connecting the center of symmetry and the point r, of k channel
center, t.1. (for the central channel « can be chosen in the direction of x-axis)

oy =1y =1 /iny

In the expression for matrix elements now

By =% %% = %> $a = A~ Xas

Changing the meaning of variables (see picture), and using the relation (Fig. 1.6, 1.7):

V= Witk =X =% (1.5.1)

next relations are obtained for matrix elements:
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y Ok
Wk k

ry

r

QI

Y
r
X
0

Fig. 1.6. Change of variables: yw=@x-Yx, WI=0r X

y P
W Ik K
Iy
§ Kl
1\
Xt
ry
0

Fig. 1.7. The angles between ry, ryand re-ry;

L= T Wia= XX Vik— k- Xk
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F[k,in.f = Kn-m(xj‘irl - rkD exp(i(ryy —mwy))
(1.5.2)

mu.j

Bl fin = —2 dﬁv—m(%jrl)l v-nl X jfic) exp(iv(X; — %)
A
Formal algebraic transformation with the changes of basis

e={ept} = {exp(=imuyy )}
to basis
f= {fkm'“} = {fkoo = Lfkm'l =cosmyy, km'“l =sinmy, }

leads to a real form by the next matrix transformation:
1

e=Qf;Q= - ;

o
qﬂ::[l ilj|

The presentation of an arbitrary vector in basis e must coincide with its presentation in basis f:

qi

(f.y)=(ex)=(Qf x)={(f.Q x)(e.x)=Le.x,,
y=Q'x,
Q- conjugate-Hermite.

For a linear transformation § in basis e its representation in basis f is as follows:
x'= Fx :

(e,x')={e, Fx)=(Qf ,F(Q")'y)=
L QQF Q) )y =(f. Dy

that is two matrices in different basises are related to each other by following relation:
®=QF(Q")

For v=w the transformations of matrix elements are as follows:

L) 1-D1]
“""[((-1,%) ((-1,—%)}

OV =

o -
[ReU-f— ReV ImU—ImV}

>

—ImU-ImV ReU—-ReV

U=V =40

For the case m=0, or »n=0, or m=n=0 the next expression is valid:
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10y = {ReU;ImU};

w0 _. 2ReV R
1% }_[—ZImV:\’
O =320

For the infinite part of the kemel:

ReU+ReV =
= cos(my ~ My Ko-m(icffic = 1) £
+cos(ny + kal)Knm(Kﬂrk -

ImUzImV = 3
= sin(n\ulk - m\Um)Kn_m(Kjirk — I']l) +
Fsin(ny + me)Knm(Kj]rk - I‘ID

For m=1, n=1  F™kinf

are given by the next formulas:

[ cKo+cKy sKo+ s*Kz}
-5Ko+5'K, ¢ Ky—c*K;

E

(1.5.3)

ct = cos(Wu £ W)s
st = sin(Wi = Yi)-

Taking account of (1.5.1) and the following equality

2
Ko(2)=—7 K(2) + Ky (2)
instead (1.5.3) we obtain;
2
A — 1 Ki(kjine = 1) - sa
sin{x — %) €0s(Xk — X1

+2K2 (Kj[rk _ n|)I:COSOWH 0 } .

Sin Y
11 cos Wik 0
11 0 SIm W

Matrix elements correspond to function §,; if B is decomposed along unit vectors ng, Tk in
the direction of channel k and orthogonal to it correspondingly, and the vector r-r,along
n,, 7. The infinite part in dipole approximation -

|:COS(X.R = %) —sin(xx - xd} N

F]k, ir‘fm,ua;n,v
in correspondence with indices:

Im,pl n,V:
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[ 00 oLl OL-11)
Ll,l‘,O L1111 1,1;1,—1) is as following:
1,-10 L-LLT 1—-1L1~1

(Ko S S
Fu ™™= diag(l,2cosa,2sina)} § T T|-diag(l,cosb,sinb)+

J g
S TT

(0 0 0)

+2(Sh; | riem | diag(0,sina, cosa)L 0-11 J diag(0,sinb,cosb)  (1.5.5)

asvy,; b=wyy;S= Kl(}(j‘rk -5
KI(Kj‘rk - r,[)

KjJrk - r,l
The result for finite part of matrix elements:
Fue 5=

_ ~ o:1, 0 (o, -s,\(&I% 0
—-Gmgod{ﬁvpm( 0 5;111\,) (sv cvx 0 8;1'5)P"’ (1.5.6)

m,n=0,1;

T= KO(KjErk - r|}) +

_1/2;m=
bm = Lm>0

dJ - a coefficient that depends on the boundary condition on the reactor surface;

P, = ((1) (1 —06 OD - a projection operator on the first coordinate , if m=0;

O 1, =1, +L
8,5, are defined by the relations: ety vm e
a;n:Iv - Iv—m - I\.v+m;

By definition, ¢, =cosv(¥Xy — % )8, =sin V(X — vl = I(x;n)
Some formulas for trigonomertic functions in matrix elements.

Let © be the angle between axises of fixed system of coordinates. Vector k considered as a
complex value in the Decart coordinate system k=k+ik; has the next components

1=0;,b); k=li+l;coso; k=1, sinB;

For 2 vectors k = rexp(iQ), k'= pexp(i*t)
the product of complex conjugate k =rexp(~ig) by k' is:

kk' = rp[cos(y - ¢) +isin(y - 9)] =
11 1I‘+ 12 12‘+( 11 ]2“" 12 11‘)Cose+i(11 12‘- 12 11‘)sin9
that is cos(y-@)=[1; L+ 1o L+( 1 L+ 12 1,)cosB)/(rp);

sin(y-0)=(1; L'~ 12 1,*)sinB/(rp)
r=(1,*+ 1,2+21,1sc088)"%; p=(1‘12+ 14 2+21%,145c050)
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The above formulas give the expresions for trigonometric functions depending on the angles
between the vectors in an arbitrary coordinate system; for the case of hexagonal lattice:

I=(,L ;1= "1k cosd =1/2; sinb =J3/2

1.6 Reactor symmetry. Elementary relations

Let the loading in a heterogeneous reactor with a square or hexagonal lattice has some
symumetry.

Let ¢ corresponds to a rotation around the center of symmetry by the angle 2n/M, M=4, 6
for square, hexagonal lattice correspondingly. Double rotation is given by the product

ce=c’ M=g¢ _
M rotations superimpose the lattice with itself. The rotation in back direction is given by

¢, cei=e.

Another symmetry transformation - reflection relative to bissectrissa between the angles x
and y
G[,0,°0 = ol=e
The set of elements and its products presentes a finite group G.
The group with elements ¢, ¢ is defined as  Cy;, = {c"o1}
and includes 2M different elements.

Let k be a position of some channel , gk - the position after applying transformation g.
Neutron flux should be the same for all the channels gk ;

gcG = Cuy

In this case the number of unknown values decreases in 2M times. The above group is a
maximal symmetry point group possible. In other cases the symmetry can be described by
some subgroup of group Cyy,

To take account of all the channels having symmetric positions the next sum is taken:

Fie = 2 Fi -
geG

for Fyy¢ the calculations should be fulfilled for all the pairs: 1, gk. For finite parts of matrix
elements Fg,

Gi18 = o1

since the distance from symmetry center is the same for these channels, and the dependence on
g exists only in functions:

COS V(X g = K15 Sin V(X gk —%1)
Let

q=pM+d;d< M, y=%—%
Then
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Y exp(iq(Xgx —%1)) = Zexp(iqy +i(pM +d) x
’ m=1

geCy
2nm ) M 2mm
X =exp(i exp(id —) =
i ) = exp( qw)mZ=1 p( Y )
) ., 2r M-l 2nm
= exp(l expl{id — exp(id =
p(iqy) exp( M)méo p( M)

) o 2n M 2nm
=exn(1 exp(id — id——) -
p(iqy) exp( M)mZ:leXP(l M)

V2T
—sexp(i—d)=1,d <M.
p( v )

The 3d number of this chain of equations is equal to the last if and only if d=0; in this case the
sum (dependent on all m) is equal M. Consequently, if a subgroup Cy is included in the
symmetry group, then q=pM, p - integer value.

Thus in this case matrix elements become:

FI,k,ﬁn —-»M 2 Fl,sk,ﬁn’
seQ

the subgroup Q include unity e and possibly reflection ; .
the sum (1.5.6) includes only v values of the type: v=pM; p - an integer.

1.7 Justification of heterogeneous method and introduction of heterogeneous
parameters for a channel or a reactor cell

Justification of heterogeneous theory can be done in few-group approximation. In
the initial heterogeneous theory with small fuel rods every channel was characterized
by a thermal constant giving the relation between thermal flux (asymptotic) and the
current at the rod boundary

y = 27Dp(8N / 8p)N (1.6.1)

In a few- group theory vector-flux is composed of G components and the general
relation between flux and current on the channel boundary must be given by a GxG
matrix A:

pdN/dp= AN (1.6.2)

In a few-group approximation the flux in the reactor
can be considered as obeying a system of integral equations: .

N;(r)=§J Ki r, P)EehyviE 1 N r)d © (1.6.3)
i,j=12,...,G
K. (r,r') = exp[-s;(r,r")]/ 47R* R =[r - r] (1.6.4)

Let? be the operator in equation (1.6.3), and Z, corresponds to the same reactor

without channels ,
that is to the case of moderator in full volume.
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The equation (1.6.3) can be rewritten in a form:

N=7 N (1.6.5)

N=2N+Q; Q=(2 -ZN (1.6.6)

Let N be an arbitrary vector-function, defined for all the reactor volume . If the ray
(r,r’) does not intersects any channel than the result of integration for Q is zero since
£ coincides with £ ; for these cases.

If the ray intersects some channels than the result of integration decreases as

exp(-RZi moa)<<1, 1,j = 1,..G (1.6.7)

with the increase of the distance from channels (due to the behavior of kernel in
integral equations).

The function Q can be presented as superposition of
functions

Q(r)= %Qk(r) (1.6.8)

where function Qy differs from zero in some vicinity of channel k at the distances of
order of mean free path from it.
Let G be Green function for moderator, that is the solution of the equation:

Gi(r, ro)= 45 G(r, 1) +3(r — ro)e; (1.6.9)
The solution of the equation (1.6.3) can be presented as
superposition:

N(r )=§',J’ < G(r, rp)Q(rg )>d rp (1.6.10)

symbol < > means scalar product for G-vectors.
In one-group case the regular solution of the equation

NO@ =4, NO (1.6.11)
can be found as a superposition of plane waves:

NO (r)y=] C(n)exp[p(rn)]dn (1.6.12)
Insert the function

exp[p(rm)

into equation (1.6.11), then we get an expression
1=[ (exp[-Z | r-r’| —p(r-r’,n)}/47R*)ZR*dRdosinBd6
1={ exp(-ZR-pRcos8)ZR*dRsin6d6=
1
=—(1/2) Z| du/(pu-T) = (ZJ/2p)In[(1+pZ)/(1-pZ)]
21
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1=(Z4/2p)nf(1+p/Z)(1-p/E)]= (Z4/p)arcth(p/E) (1.6.13)

that is the plane wave is the solution of equation (1.6.11) if p is the root of equation
(1.6.13).

Suppose C(n)=1/47; then function lu(po Ir] ) is the solution of equation (1.6.13).
The function
L(po r| Jexp(ino) (| n ] =1,2,...) is also a solution of equation (1.6.11).

In a few-group approximation we have solutions of the type exp[p{rn)], p: being the
root of equation:

1=(ij/pj)arcth(pj,/2j) ' (1.6.14)
For i>j the solution can be found in a form,
Ni = bl_]NJ = bi] exp[pj(rn) (1615)

or after substitution in equation (1.6.13) and after integration we get a system of
equations for bj:

by = aij[gzimbmj + Zib; s
with recurrence relations for their determination:

. (1.6.16)

2 2
¢ =wi(Pioy/ Py Ziny o155 = (1.6.17)

For one-group case (j=G=1) Green function, that is the solution with line source
8(r - r,) can be obtained by Furie transform:

G(r)=a(c,1)Ko(por)+°Jf fip)Ko(prZ)dp (1.6.18)
I=1/Zc=2,/Z;a(c,])= pé(l—!zpé)/n(c—l+[2pg)

that is Green function is presented as a sum of asymptotic part and the part
decreasing exponentially at the distances of the order of several mean free paths:

G (1) = Ko por)
exp{~r)

fp)-

a bounded function. Similar presentation is valid in few-group theory.
The solution in the vicinity of channel 1 can be presented as:

N(r)=] <G(r, r)Qi(ro >dro + X[ <G(r, r)Qulre )>d rp (6.19)
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But if the distances between channels exceed several mean free paths we can take
asymptotic parts of Green functions:

N(r)=] <G(r, rp)Qi(re >d ro +}§lf < Ga(T, 1)Q i(ro )>d 1o (6.20)

Applying addition theorem for Bessel functions in Gas(r,ro) for the sets of points
(r,ro,ry) and (r,r,re) we see that the second term can be presented as a sum

N (r) = ZZlcUeXp(mtm)I S r—mD AL (1.6.21)
n j=

Thus the influence of neighbor channels leads to the presence of a regular part of
solution in the vizinity of a given channel 1. By definition the function Q, is:
QF(2-2o)N=(L-£0)N ' (1.6.22)

and the first term in (1.6.20) behaves as Ga( = ) at large distances lrry .
Thus function (1.6.20) can be presented as a sum:

N(r)=NY(r)+NO(r) (1.6.23)
Applying operator (1-Zp) we get
(1- 20)(NP+N)= (21 2o)NTHNT)

But since N - is a regular solution ~ (1- Z9N=0
we get an equation

NG =2 N+ (2,- 29N (1.6.24)
The behavior of N is known and depends only on the coefficients A";. The

solution N2 can only linearly depend on these coefficients and its behavior at the
distances of several mean free paths is as follows:

NP=% ):clJ exp(ing ) K, (x;r —n)) B (1.6.25)

l'l._]—

and the relation between A and B must be given by a GxG matrix u:
B =u"AS (1.6.26)
={Al}:Br={Bi}j=L....G (1.6.27)
The equation (1.6.24) can also be written in an equivalent form:
(NDHNO)= 2 (NN (1.6.28)

Matrix u can be found from G solutions with linearly independent A-coefficients.
Matrix u is uniquely related to matrix A.
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o Difference Formulation of Heterogeneous Reactor Equations
2.1 A difference approach

An approximate method has been developed leading to heterogeneous reactor problem
formulation in terms of a difference equation so that numerical solution for nuclear
reactors with several thousands of lattice elements can be obtained. The method has high
accuracy as it can be shown by a comparison with the solutions by direct method.

The method is based on a direct transformation of the heterogeneous equation to a
difference form. Application of a difference operator with free parameters which are
determined from the requirement of the “best” elimination of far distant terms immediately
lead to a difference equation which is directly related to initial heterogeneous equation.

The resulting difference operator providing sufficient (and really rather high) accuracy of
solutions appears to be broader than conventional Laplace operator (the difference scheme
for square lattice should include 9 points) that makes some widely used homogeneous
codes inapplicable. Chebyshev’s iterative metod for outer iteration combined with
succesive over-relaxation method for inner iteration were successfully used for the solution

of derived equations.

2.2 Transformation of heterogeneous reactor equations to a difference form
Boundary conditions are supposed to be given on channel surfaces in the form of a A-

matrix:

p@N/dp = AN,

N - KxG- vector of neutron fluxes on channel surfaces (extrapolated from the moderator,
asymptotic)

K - number of rods, G -number of groups;

p - radii of channels;

A - k - diagonal matrix is composed of GxG sub matrices for each channel, and consists
of two parts - A, and A, -depending on neutron fissions and on neutron absorbtion and

slowing down correspondingly:

A=A1 +A2; A1='A1,/(1-U); v= ko-quNo;

Ay’ and v linearly depend on the number of neutrons bom in fissions. After introduction
of a critical parameter - effective multiplication factor &:

Ay =>AC Tkand v— vk
and a a-change of variables
N->N'=N/(1-v/k)

the equation for neutron flux becomes as follows:
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N =(0+CIC 1y, )IN/k-CIC 'y, N* (2.2.1)
F=K+IF: (2.2.2)
1=CICT A +uys  ¥2=C(IC A2-BIC™) (2.2.3)

Triangular matrix C depends on moderator properties;

K=diag{Ko(xs pr); I =diag{Io(cspi}
gk g.k

g = Egt0’; Ko,lo - modified Bessel functions,
a=n/H; H — effective reactor height .

The (GxK)x(GxK) g-diagonal matrix F is composed of influence functions, which
depend, generally, on the boundary conditions on the outer reactor surface. Keeping in
mind that the latter can be formed by fictitious sources and sinks outside the reactor in
infinitely expanded moderator and in difference formulation the boundary conditions are
taken into account directly, it is enough for our purposes to take these functions for infinite
moderator. In this case and F -matrix elements are taken as:

Fia® =Kok | 1 - 11 | )(1-8) (2.2.4)

A difference form of heterogeneous reactor equation is derived as follows (first consider
monopole approximation,).

Introducing an arbirary matrix D (diagonal by k and g ) and taking account of (2.2.2),
equation (2.2.1) can be transformed to the following

UN=[Uv/ k+{Io" Kot F)(y /& -72)IN’
U=l,'C"! (2.2.5)
For N*’=UN”’ the following equation is obtained
N '=[v/k +(Io ' Ko-D+F+D)(v: "tk v )IN'; (2.2.6)
7= Uy =nUT
The aim of transformations leading to equation (2.2.6) was to bring the matrix F (2.2.4) on
the left. If instead of ry one takes an arbirary vector r in the elements of matrix F, then
each of them will satisfy an equation
(-B +c,” a)FY(r,r)=0 (2.2.7)
a - lattice pitch.

Approximately the same is correct if one operates onre by a difference operator including
an operator A; which substitutes the Laplace operator on the reactor lattice:
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(-A kg7 a) Foy =051k -1 >0 (2.2.8)

A ka=>% (fueger -41c )

e, ={(1,0), Qrotates a vector on the angles 0, 90,180 , 270 (for square lattice).

Now let it be some other operator instead of operator in (2.2.8 ), only some properties
being preserved: it must be of “local” type, that is it must connect only some neighbor
points, besides it must be symmetric relative to rotations around point k, superimposing the
lattice with itself. Thus for a square lattice for example one can take an operator (g-
diagonal with elements #,) which relates to each other the values of a discrete function in

some neighbor points:
ODS : fk = (-CL1A1—CX.2&2—...+BK82 a 2 ) fk I H =1, (229)

The operator A, differs from A, in that e; =(1,1) is substituted for e, =(1,0) so that A,
embraces the next to k set of points and so on. For example, in a 9-point scheme 7
includes only A; and A, and a=(ou;), @;=1-at;. The set of indices appearing after operating
by £ inthe point k is denoted by Uy (Fig. 2.1.).

It is naturally to make such a choice of & and  in (2.2.9) that provides the best
elimination of the elements outside Uy . Since Fig are invariant relatively to shifts of
the lattice it is enough for determination of & and B toset k=0.

Various criteria could be recommended for the choice of o and B. The result of
application of criteria :

O O O O O 0 Olal

O O PF=0
0O O
0
|l Uk PF=R

Fig. 2.1. The set of indices near k, Ux
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max | £ 4 (&,B)Fof | —> min (2.2.10)

1

for some rather wide set of points [ surrounding point 0 is shown in table 2.1.

If one operates on both parts of the eqution (2.2.6} by #(t,p) with the parameters o,
derived for example as above then for every K it approximately eliminates all the elements
in (2.2.6) outside every set Uy . On the contrary, the elements F, IcU,, arenot
eliminated. The result of operating by #(ct,p) on F,lcUy, is denoted as R:

R= (o, B) (F+D) (2.2.11)

2.3 2D monopele equations

Thus instead of (2.2.6) the following equation is obtained
PNT'=[ PO/kHP (Ig Ko-D)+R)(y:" /k=y2 )N (2.2.12)

if the elements FFy , 1 @ U,, are neglected.

Relation has a form of a difference equation: for every k # and R connect only the
points inside Uy, the other matrices ¥, lo, Ko, D - being k- diagonal .

It should be noted that matrix Ry,”  is triangular relative to g.

Expanding the set Uy, t.i. adding the neighbor points and adding correspondingly new
parameters to the set «,p it is possible to eliminate F outside U with a higher accuracy.
If F¢ operates in a short distance itself (as in epithermal groups), it can be retained in a
form stated in initial heterogeneous equation.

The solution of the problem stated above for determination of parameters a, 5 depends on
a single parameter
_ Z = Kqd
The results of application of criteria (2.2.10) for a 9-point scheme are presented in the
table below: the optimal parameters o, and B as well as elements of R-operator in points
0, ey, e, Bessel function K¢(z) and the maximal error

g=max [PF|,1¢UR.

The deviation of B from 1 shows how large is the difference between # - operator and
operator (A-z7). It should be noted that the signs of R-operator are inverse to that of
operator 7.

Table 2.1. Parameters of 9-point difference scheme for square lattice.

Z oy 3 Ro R, Rs Ko &

0.1 0.6425 10.9966 |-7.730 2.732 07614 |2.427 1.634-3
0.5 0.6437 |1.020 -2.846 | 1.706 0.4719 ]0.924 1.535-3
1.0 0.6477 |1.086 -1.25% | 1.283 04210 (0421 1.279-3
2.0 0.6624 | 1.385 -0.330 [0.906 0.2122 10.114 0.667-3
3.0 0.6834 |2.039 -0.100  [0.731 0.1362 10.035 0.259-3
4.0 0.7080 |3.381 -0.032 |0.636 0.0876 |0.011 0.081-3
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2.4 2D dipole equations

Generally in dipole approximation besides monopole component additional - dipole
components are added. If however the interaction between dipole terms is neglected
(monopole-dipole approximation) it is possible to derive a difference equation refative only
to one - monopole component. Consider one of the forms of heterogeneous equations : for
® variable (F* ... are neglected) -

o=Fwp,0=C0;w=C""uC

(pO Foo Fox  Eoy
o=|@x|=|F® 0 0 |
(_py Fye 0 0

wo 0 0 ]9 @4.1)
J 0 wl O—h (px
0 0 Wl_. 0

Rewrite the equation for each component:

(pO = o0 wO(pO +FX et + FY yte?;

(2.4.2)
0" =F 0% 0% 0" = POyl 0’

and put the values for ¢, ¢ into the first equation:

0 =F%%0 +Fw' w0 +FYw'F%%0 (2.4.3)

The terms FP%° ¢° , F%" ¢° can be estimated by taking a derivative of an approximate
expression for o":

0% = FP " (2.4.4)

For a fixed 1 consider a sum:

of = TFPwl o+ TFRwhoy (2.4.5)
kel ket],

The set of indices kU is defined in a difference scheme. Green function G, can be
expressed as a derivative of Gy. Thus if instead of r; an arbitrary point r is taken then

FF®(r-n)/ox=r"(r-n) (2.4.6)
If k &, then approximately we have an equality:

1
™2 1] el (Fie, i = File i (24.7)

Therefore approximately:

of = T (U2ad e )(EL i~ Rl wdon't ZFawoo®

kzU,



JAERI-Review 94-002

Expanding the first sum for all k and taking account of (2.4.4), the last equality can be
written in the form:

o= Bepr’ (2.4.8)

B o' —>(1/(2ax \ e, [ )
((P?-v—ex - (‘p?-ex) +

1
x0 _
S (R - 5

Z axle 1 Fig-oex,k - Fltj—oe‘,k)}w&(pﬁ
1 it

Operator J; can be chosen from the condition of best presentation of F® by a linear
combination of the differencies (2.4.7) along different directions:

8, = 0x(&)
£=1{g;}
ei(i=1,...,1)

IfR., R is the product of P(c,B) by F™, F¥ within U, then we can dérive an equation:

P’ =Rw%0"+ (R'w'd) ¢’

Co (2.4.9)
R'=(RL,RL;2=(5,.8,)

2.5 Extention to 3 dimensions

For the case of axially nonuniform properties of channels take a Green function for point
source:

Gé(}r-ro})=(1/4nDg)CHoC e (2.5.1)
function §y depends on
(1/| r-ro| )exp(-m\ r-rol ); r = (x,y,2)

For the equation (one of the forms of heterogeneous equations)
®=Fod; 0=C"uC (2.5.2)
matrix F depends on the elements

Fié=(1/2] reriDexp(-kil rerl)

Present the solution as finite expansion by trigonometric functions:

m=M
O= ¥ @uexp(iamz), o=n/H; (2.5.3)
m=-M



JAERI-Review 94-002

Multiplying the equation for ® by exp(-ionz) and taking the integral over z we have:
m=M . .
d=3 | exp[umn(z-z’)]Fd r-r’ ) explic(n-m)z’] o(z’)dzdz @
m=-M
Matrix element

Fud =S [ expl-ion(z2)k(p+(z-2)) Hdzi(p (22 ) =Kolp(ein®) ) (2.5.4)
m=-M

(ir-r’ | =(p*+(z-z")")"* ) differs from the matrix element of axiaily uniform reactor by the
change of argument: '

2 2 o222
K> Kj o~ K7 n (2.5.5)

Thus the system of equations is obtained:

m=M
0= Y Fu®m®um; (2.5.6)
m=-M

where
Opn= Q=] explic(n-m)zjw(z)dz

Since the solution is to be a real value the next equality is valid for complex conjugate ()
value:

o7 =-Py,
so that

D_=-D,, Op=0

and the above equation can be rewritten as follows:
D=

or
M

O= D= Y Fun(®im- o) Dy
m=1

TANEES

an(mnm - (Dn,—m) (Dm
1

Subtracting equations one from another and changing the order of summation we get:

M _
Oy=Fr 2 On{ Do = Ponen); (2.5.7)
m=1
where
H
On° = | o(z)cosmazdz; (2.5.8)
0 .

The indices m in the above sum have the limits:
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1<n-m£M 1€ m-nE M;

Since 1<n<M

C

and o,,° = ©.° it follows that m changes in the limits:

0 <m<2ZM .

Thus though the dimension of equation is M?, really the dimension of the problem is lower:
matrix F consists only of diagonal elements and matrix elements " for channel
parameters are to be calculated for

0 <m< 2ZM;

The equation for 3 dimensions differs from the similiar equation for 2 dimensions by the
dimension of the problem and by the arguments {k;,,) of matrix elements Fy, ; so
transformation to a difference form is applicablie in this case also , P and R operators
depend now on arguments

7,=a K, a - lattice pitch.

2.6 3D dipole equations

A general few-group heterogeneous reactor equation formulation is used:

N’=(U+C5C'1"{1’)N’/k-C5C'1 12 N’ (2.6.1)
where
N =N/ ( 1-v/k);
7’ =CIC-1 A} +72v,
v, =CIC-1 A, -CBIC™;

Matrices v depend on GxG A-matrices of effective boundary conditions relating vector-
flux to vector-current ona channel or cell boundary (of radius p) .

dN=AN; d=p &dr|=p (2.6.2)
p ={px}, px - radius of kth channel (or cell),
Taking account of azimuthal angle dependence of neutron flux near each channel
surface one gets a dipole approximation with 3-component vector-flux on the surface of
each channel : N(N° N'), N - scalar monopole component, N' - 2-dimensional dipole

component N' =(N* NY).
Finite Furie expansion taking account of axial dependence
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Ng (r,z)= ’i Wem (r) sinamz, c=n/H; H - effective height,

leads symbolically to the same form of equations as above with 7, K , I, F depending on

axial index m (and m-diagonal ), y-HxGxKxM - vector, y - (HxMxGxK) x (HxMxGxK) -

k-diagonal matrix with A elements calculated as follows (2M+1 instead of MxM
elements):

A 0mn =A Ocm-n - A OCm+n + a’an( A o z,m-n " A oc z,mtn ) (263)

1 _ ic 1C
A mn =A - A mn

m-T1

c el
A n=(a/n) | A{z)cosamzdz;
Q

K - number of channels in a regular lattice pointed by vectors k(ki,kz), G - number of

groups, g = 1,..G, M -number of axial modes, H - number of asimuthal modes : H=1 -
monopole, H=3 - dipole.

Matrix § has a structure:

F=K+IF; (2.6.4)

Kﬂdiag(Ko,K],Ki); I =diag(lo,11 ,I])

gmk g.mk

KoK Io,I; - modified Besse! functions, depending on arguments
Ke.mPks Kg.m2 = §g+0‘2m2

F - (HxGxMxK)x(HxGxMxK) h,g,m-diagonal matrix with zero elements on k - diagonal.

Neglecting the interaction between dipole components we can write F - matrix in the next
form:

FOO FOX FO}'
F=F¢ 0 0 (2.6.5)
o0 0

F® =K,: F™ =-K,(c+8s); F* =2K,¢c;
F% =_K,(8c+s); F* =2K;s;

c=cos (ym ); s = sin (), X - the angle between ry and x-axis;

6= 0

for square,
1/2

for hexagonal lattice;

Bessel function are defined for arguments Kgnmlik.

A = diag diag (A°,A",A"); v = diag diag &Ly )
k h k h

A difference form of heterogeneous reactor equation is derived as follows (first consider
monopole approximation).
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The elements F approximately obey the equation :
(-A) Tk, ) FEy =0 |k -1]>1 (2.6.6)

Ay Ifkﬁ'% (karQel -4fk.)

e, =(1,0), Qrotates a vecter on the angles 0, 90,180 , 270 (for square lattice}. After
some transformations of equation (2.6.1) and change of variables, operating on both 1its
sides by an operator # (a,3) with elements:

Py o fie= (Fondi—oAy—.. +8x gzo@ )i T oo =1L (2.6.7)

with best fitted parameters c, B, which effectively eliminate F-matrix elements outside
some fixed local set Uy of indices surrounding k, one obtains an approximate difference
form of heterogeneous equation:

FPe=QYQ

In dipole approximation the equation can be presented as follows:

{.p0= U/K‘F(DO'S)YO (p0+F700,Y0(p0+FDX_Y] (PX _i_PO}'Yl (Dy

(px — DI(PX + FXDYO(QO

o = Dlo? + F*¢y°¢° (2.6.8)
FsOC‘ :FOO _+_6 .
Di =Ii ! K; .

with (-A+kHF°(rn)=0; s=0,xy.
On the basis of equations

P = (2 (1-6%)) (BF( ryry ) % -0 BF°( 1,1 )/DY)

B = (2c/(1-8%) (BF°( 1,y Y 8y 6 GF°( r,ry) /0%)

kx =diag {Kem } (2.6.9)
g.m

introduce difference operators with approximate relations
6001:oo,z R
PE™ = R™ ; PoFY=RY ; (2.6.10)
PXFOOI — FKO _RXO; FYFOO’___F){O 'R.YO.
Use an approximate relation

(p(J: U/K' +(DO'6)"{0 (p0+FsOO,Y0(p0
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to exciude F and P from the second and third equations of (2.6.8) by means the
raslations (2.6.10).
Then we can get a difference equation:

Fo =P oko+Qyo ; (2.6.11)
o =(0%¢" ,07)

Pe 0 0 P,D,+R™® RY R¥
P = #., E © Q= #.D,+R® D; 0

£, 0 E £De+R® 0 Dy

with #, Q - local (difference) operators depending on axial index m and group index g (and
m,g-diagonal ), v - (HxMxGxK) x (HxMxGxK} - h, k - diagonal matrix (y matrix is related
now by simple transformations to the initial y-matrix; v =(1% v, ' )) , @ -HxGxKxM -
vector; difference operators are defined by approximate relations (2.6.10).

2.7 The choice of difference equations parameters
a)Square lattice (9-point scheme)

Consider addition theorem for Bessel functions (see Fig. 2.2):
exp(iny)Ko(al =S (@l - thKom(a I rDexp(imyo) (2.7.1)

Consider P°-operator for 9-point scheme (square lattice).
Let r be some fixed vector
Take the next sums:

00_ < e @ 00 e 5
Sy Zi Ko(kT117); S2 Zl Kolxry™); (2.7.2)
1= j=

The sum S, is determined for channels at the distance a:
sum S, - for channels at the distance 2a:
rij=r- a€'1j
where a - lattice pitch.
e; (1i=1,2; j=1,2,3,4) -unit vectors with the angles (relative to x-axis):

xi =(-Dn/2 +(i-1)m/4

By means of addition theorem for Bessel functions we have:
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Fig. 2.2. Addition theorem for the choice of difference scheme parameters

Ko(kr)= 31 (WK, (k)e™E ) (2.7.3)

m=—co
and the first sum can be presented as follows:

(W= I (WK (xr)e ™ Ye -
j=1

m=—co

=4 3L (K (e Y.

m=—u}

or after summing the terms with positive and negative m
we get an expression (and a similar expression for the second sum):

© = 4T, (Ko (k) +8 T 1, (1)K, (xr) cosdmu.

m=-—ac

90 _ 4T, (VIWK o (xc2) + 8 3 (—1)™ Lo (VZ)K, 1 (k) cOs4my.
m=1

Define the next sum:

§%= §,% +3° 8,2 =4[Io(h)+ BOlo(~/2h)]Ko(xT) + (2.7.4)
+8 [Li(h)- Boh(_x/’i h)Ka(kr)cosdy+ 8 21 [Lam(h)+(-1)™ B Tem(~2 )] Kam(xr)cosdmy
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Parameter B° can be chosen from the requirements to set the second term to zero:

o ly(h)
B —14(\/§h) (2.7.5) |

Define the elements of operator P as follows (Fig. 2.3.):

PO po=4[ () Bllo(vZhy; Pid = -1; [k =1; P = 8% |k [=2;(2.7.6)
P P 1 k I =1; 1 k\ =/2; - diagonal element of operator P and the elements for the first
and second rows of channels around the central channel.

The product PF’5,™ is by definition R™ -operator with the elements (8-matrix elements
are taken from the requirement to set parameters R;* equal zero):

RY: R,®=P%5- 4[Ko(h) +B°Ko(v2Zh)]; Re=0, |k |=1;

Ry P= Po’K (/2 )]-2[Ko(h)+ Ko(~/5h)] -

- B[ Ko(2v2h)+2 Ko(~/20)+8]; | Ki=v2; (2.7.7)
§=(PL-28"Ko(h)-2 Ko(~21)-Ko(2h) -2t Ko(~/5h)

The error of difference transformation can be estimated as the difference
20 = PRy - S17 - B°SY

k=2

For small h this error is estimated from the expantion

In(%) 2(}/2)™/m!; Kin(x) =(1/2)(x/2)™(m-1)!; x<<i; m>1

as
| 6.2 | ~(5/71)(h2)*Ka(h | k1) | cos8uyn | <(572)(1/ k[ ®)

For the other choice of the elements of operator P the above sum would include the terms
with m<2 end the error would be larger. For large | & | the error can be evaluated from
asymptotic expansion of Bessel functions:

l.20] ~(5h%71256)(n/2h | k |)

and becomes worse for the other choice of B°.
Maximal value - at|k] = 2 (for 9-point scheme)

| €] me=(5/2%)20.00977

For 5-point scheme (B° =0, V| = V2)
6% | = (142)'= 1/4

For mixed scheme (P - 5-points, R - 9 points):
| €% | e=(1/2)*= 0.0625

Now consider the product P°F™;
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F™(0,r)= -K: (xr)(x+8y)/r =-K,(xr)cosy; (2.7.8)

Take the sums:

SIG"=§ K (xry; Joosy's; Szo"=j}; Ky(xry’) cosy's;

Taking account of addition theorem (the sum with n and -n) in the above equation
Kl(m’)=(1/2)miw Ln(1) K 1(kr)exp(-i(m- 1))+ K (xr)exp(-i)(m+ L) ]exp(imy)
we get
$. % =A41a(h)K (kr)cosy + 4 5 I4m(h>[1<4m.mcos(@m-1)w)+K4m+1(1<r)_coé((4m+1)w)]
Finally,

§7%= 8,57 8, =4{lo(h)+ PL(VZWIK (xr)eosy -+ 4 5 - [Lin(h)+(- 1" B'Lin(v2H)]
(K1 (xr)cos((4m- 1))+ Kam+(krjcos((4m+1) )] (2.7._9)

The error:

PFo” =S™Po’Ko(h | k[)=4 £ [Lan(0)+(-1)" BLan(~21)]
[Kem1(xr)cos(4m-1 ) w+Kag (xr)cos(4m+1)w]

Thus the above choice of P suppress also two first terms in the expression for error
P°Fo . For small h:

| 6.5 =(40/81)(0V2) | Ko(h | k| YeosTyr +Ks(h 1 k| eos9ws | [ <(20/my( | ki *)[1+k*h7/224]
and maximal error is:

| 6% | =(20/512)/h = 0.039/h.
The elements of R-operator also are inversely proporticnal to h. |

Matrix R™ for 9-point scheme , square lattice, is presented by the next formulas (Fig 2.3.):

R%™ :R™,=0; R, = -r," (k,ey); 1k | =1
R™ =’ (ke); [k =13
RY : R =0; R = -1, (ke,); |k |=1 (2.7.10)
R = -, fk.ey); fk |=sz
o =P, K,(h) - K. (2h) 2K, (v3h) - (4p¥ 45) K, (+5h)
o =(2/2)P% K, (h) - K, (h) -(3/v5)K, (Zh)- B° [ K (Zh)+v2/2K, (2vzh)]

Now define operators P* and P¥ and their products with matrix elements Fx0
P P
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Fig. 2.3. The structure of difference operators
square lattice, 9-point scheme

R
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F(0,r) =2K (xr)cosw, F°(0,r) =2K,(kr)siny, (2.7.11)
COSW=X/T; SInyY=Vy/r.
For 9-point scheme introduce the sums:

\ _
S 0=Y Kolkry )x' i r"1= Ko(ir’11)- Ka(kr'15);

=
4 2 .
;=12 Z} Ki{xry’) X7y 05~ :-21 (1Y [Ko(kr2)- Ko(kr'2542)]
= 1=

Taking account of (2.7.3) we get

$9= 5 1u(h)Kn(kr) exp(<imy)[1-exp(imm)]=4 i;o Toryet (1)K zope: (KE)COS((2m+ 1))

m=-w

Similarly:

$% 5 Lu(Vih)Kn(xr) exp(-imy)[1-exp(im/2)]=

m=—0

=4 § (1) Lo (Fh)Kamer(k0)sin((2m+ 1m/4)exp((-i 2m+ w)=

m=-0

=8 3 (-1)" Loer (¥ h)Koome (k1)sin((2me+ Dm/4)cos((2m+1)y)=
m=0
457 3 sig(m) Tt (V7 h)Kame(x2)cos((2m+ 1)y);
m=o
sigm)= 1, m=0,3,4,7,8....
sig(m)=-1, m=1,2,5,6,9,...

Introduce the sum:

§¥= 8§, +B' S,= 4[[,(h)+ V2 B T(~v2 h)]K (xr)cosy +
+4 [I(h)- V2 B 5(~Z h)JK;(xr)cos3w+ (2.7.12)

+4 f;jz [Tamer () +~/ 2 sig(m)B Lo (VZ 1) [Kome: (kr)c0s((2m+ 1))

The expression for S° differs by the change of cos by sin.
Take the next value for B':

B=L;(h)/ V2 15(v/2h); (2.7.13)
The elements of P* and P¥ are defined by the next expressions:

P P, =0; P =p'k,; |k |=1
Py =Pp'ks; 'k I:JE
PY; PY, =0; PY=pky; |k | =1 (2.7.14)
Pe=piptk,; |k |=
p' =1/2L (h)+ V2B, (h));
R*: R%=0,Ry*=r"k, ; [k [=1
Ry=-1"k; |k |=2

R*: R%,=0,Re* =1k, |k | =1
R = -1k, ; |k |=J§
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r = 2K, (h)-p* [6-K, (v2h) +2B'(Ks (0)-K, (+5h))]

r, = ~yiK(s2h) +p'[K, (h) -K, (vsh) +B' (8-K. (22h))]
b) Hexagonale lattice

For hexagonal lattice we take the next sum:

&
§%= 2 Koler?)

The sum S is determined for channels at the distance a:

I=T-ae;

where a - lattice pitch, ¢ ( j=1,2,3,4,5,6) unit vectors with the angles
xi =(-D=/3 (§=1,... 6)

By means of addition theorem:

690 = 61, (h) K,y (3r) + 12 3 Ly, (h)K g (x7) cOSEmY

m=]

The elements of P°are defined by equalities:

P; Po= 61o(h); Pi=-1, | k| =1; (2.7.15)

The elements of operator R are calculated as follows
(the elements of & —matrix are chosen from the requirement

that R-matrix be diagonal):

RY: Ro%=P,"5-6K,(h); R=0, | k|=1;
8= (Po’-2)Ko(h)-2Ko( v3h)-Ko(2h); (2.7.16)

The error can be estimatgd as the maximum vaiue of the sum for |k |>1:
£ =PFp 0 =-12 ;il To()Kem(h | K| Joos6mus

For small h (taking account the first term of series expansion -)

|62 =(2/51)(h2) Ke(h 1 k ) | coswi f<(1/ k[ %)

and the maximum value is

62| o=(1/4/3)%= 0.037

Direct calculation shows that for h=0.1; 0.3; 1 the error is
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0.0363, 0.0360 and 0.0325 correspondingly.
For the product P°F*,

Fo(0,r)=-K (kr)(x+9y)/r =-K,(kr)cosy;

introduce the sums:

§%=6Io(h)K,(kr)cosy + 6 il Tem(h) [Kem:(h | k | Ycos((6m-1)yi)+
+Rsm+1(h 1 k] Yeos(6m+1)y)]

Using the expression for P we get the next formulas for R™, R

K=1

K=1 (2.7.17)

RO R§r = 0, RY* = 01k
RY: Ry =0; Rf* = —r%'(k,ey);

ro = (P¢ — K (h) 3K, (~/3h)
-K,(2h);

The product PFFY ; FO=2K, (kr)x/r; F**=2K,(xr)y/r;
is determined after introduction of the sum

5 3 . .
§9=3 KolBr= (17 Kol 5)- Kol )] =433 (0K (kr)sin(/3-y)+
J= =
+4/3 iz $ig () Lmer (WK g (<T)sin [ (2m+1)(n/3-)]
sigl(m)= 1, m=3];
0, m=31+1;
- 1, m=3[+2;

Similar expression can be derived for $* with the change n/3-y for y. Define

P*: Po*=0; P=p'k,, 1k|=1: (2.7.18)
PY; Pe'=0; Pf=p'k,, | kl=1;
pt=1/(3L(h));

Then
R Ry=0; R=-r'%,; |kl|=1; (2.7.19)
RY : Ry°=0; R,7= -r'%,; | k!=1;

rio = -2K;(h) + p![6 + Ko(h) -
—Ko(~/3h) - Ko(2)];
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3. Heterogeneous Characteristics of a Reactor Cell
3.1 Space-energy distribution of neutrons in a reactor cell
a)Solution of one-group equation

One -group integral neutron transport equation is used for determination of neutron flux
distribution:
N(r) = [K(r,r' )(ZN + Q)(r')dr

K(r,r'}y = exp(-s(r,r'))/ 47RZ; (3.1a.1)
R=ir—r! :

N(r) - neutron flux , integrated over angles; N(r)=JN(r,p)dp;
Q - neutron source (isotropic), Z - total macroscopic cross-section,

%, - scattering macroscopic cross-section, s(r,r') - optical length.

Consider a multi-layer cylindrical cell of infinite height, surrounded by infinite scattering
media with zero absorption cross-section (returning neutrons have isotropic anguiar
distribution). The cell is subdivided by M thin layers, in every layer neutron fluxN is
supposed to be constant. After the change of variables ( to the density of neutron
emission):

OG=XN+Q (3.1a.2)
the integral equation transforms to the next:

O(r) = Zo(r)| K(r,r YO(r')dr + Q(r); (3.12.3)

o= (Zsi/zivi)spijvjq)j +Qpi=1..,M=1,
J

@; - mean value :
d; =1/ V) [ ®(r)dr
\%

Collision probability is defined by an integrai:

P;= [dr[drEK(r,r')/ V] (3.1a.4)
VoV,

The probability of collision in all the volume is 1:
[Z(r)K(r,r')dr = (3.1a.5)
that leads to the balance equation:

TPhi=1 (3.1a.6)
The symmetry of the kernel K(r,r’) leads to the symmetry relation:
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3.1a.7
PyViZj=Pii Vi (3.1a7)

The two above relations allow to exclude the variable in the last scattering infinite layer:

(Dl = (ZSI / Z]VI) S£P|1j V_](D_I + Ql’i = 1,...,M, (3.13..8)
J:
P =P+ Pﬁ“*ixiv"PM“’je (3.12.9)
kS=1PM+1,kazk

is a collision probability taking account of neutrons retuming from outer scattering region.
Parameter 8 is introduced for simulation of some albedo conditions (non zero current) on
the boundary of the cell.

Calculation of the probabilities.

For an arbitrary unit vector . its projection on a given plane IT is chosen along y-axis, and
X - axis is orthogonal to y. The volume of a flat figure can be written as an integral

%(x)
V=[dx [dy (3.1a.10)
si(x]
with 5;(X), 52(x) - coordinates of intersection of a straight line parallel to y-axis (Fig.3.1).

The above integral can be written for any direction, so that

Fig. 3.1. Integrals over V, and V;
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4nV=]du] dV =7 dujdx de (3.1a.11)
5(x)

For 2 figures having projections V; ,V; on I the integral over two volumes can be
presented by an expression:

s (x)
[dv, dv =l R*dRdp[dx [dy (3.1a.12)
s1(x)

For collision probabilities it is necessary to calculate the integral:
EREANLETENTY

J=(1/4m) [dR exp(-s(r,r’)dufdx  [du
0

After separation of the parts of the optical lengths in layers i and j:

exp[—s(r,r')] = exp(~Z;R) exp(-uZ;/sin 3)

. (3.1a.13)
exp(-Li.,;/sind),
the integral J can be presented as a sum:
I=2/ZZ)NCi 01— Cij = Ciogjor + Gy, ) (3.1a.14)
where
Cu=(1/87) | exp(-Ly/sin®)sin’0d6 dedx (3.1a.15)

(du=sin6d6do)

For cylindrically symmetric regions the integrals do not depend on ¢ (Fig. 3.2):
Cir=(1/87) | [exp(-(Li-L ¢)/sin6)- exp(-(LitL V/sinB)]sin’0de (1a.16)

By definition of Bicley functions
w2
Kin(z)= | sin™'Qexp(~z/sinB)do (3.1a.17)
0

the next formula can be used for collision probabilities :

Py =(2/Z;ViXC j1 —Ci;— Ciogjor + Cicr j)s (3.1a.18)
P

Ci = [(Kis(Ly ~ L) = Kis(Lg + Li))dx (3.1a.19)
0

where L; - optical distance from x-axis to the intersection with the circle of radius p, For
integration within a given physical region laying within radu (R 1-Rp) @ quadrature
formula may be used with a change of variables

x=R_—(R_—-R, )%, €[0,1] (3.1a.20)
m m m-1

jdx() ARy Rm_l)jtdt() (3.12.21)

Rm-l
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L+

L- Ly
I,

S a—— _H,—ﬂ\u\y

Fig. 3.2. Optical lengths in a cylindrical cell

Modified collision probabilities for axial migration of neutrons

One group migration area of neutrons in axial direction can be calculated by a formula

Lo~ (122 TP (Z, No + @)/ <Z N V >, (3.12.22)
<EaNoV>:VI Z, (PN (p)dp

with modified “collision probabilities™

.1a.23)

V5]

P*= PV, = S/4n \5 dr| dpplexp(-ZR) (

v,

( u, - projection of a unit vector in the direction of neutron movement to the axis z), having
symmetry relations

. P= TP (3.1a.24)

These probabilities are determined by integrals:

P*= £/4n [ dSdx ] R” dRdpy,” exp(-ZR) (3.1a.25)
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P’

J =TH L s O I (3.1a.26)

i i-1,j-1 1Lj—
where T,0= T 2.0 b.%, 1=i-1i; k=j-1j;2" =207 +17 +iiL;
. . 20
a) =2(L L =l 5 byt =2 (T - )
0

£ =Kiy(L) - Kis(L); £ = [Ki,(L) - Ki,(I)]Z; 5= {Ki, (L) - Ki5(L)] 77 (1a27)

|, - mean free path in region i, L - optical length, Z - geometrical length;

the signs +,- mean thét lengths are summed or subtracted :

L=L;£L,:L; -the optical distance from x-axis to the surface with number L.
For uniform media

SP=23 Vi) (3.12.27)

and the diagonal element is equal

P =(2/3) lezj - P* ?zj-:-lj (3.1a.28)

LT
or Py =(@3) Vil +2Th, - TP - T - s (3.1a.29)
this formula remains vaiid and for the case of different properties in neighbor regions. The

sum is transformed as follows:

sz= sy atjm (bmi']‘j- bmi.j_bmi-l,j-l + bmi,j-l )=

_vsol (b b, (3.12.30)
where

ciij—_— aim‘j ~at = 200 ) L)1 Czi‘j =a2i+u - 2,7 = 2L - |y o
o =a gt = (1= 1)L =0, (3.1a.31)
P{=% T ¢.H (b M -p H+ 23V, 1 (3.13.32)

Modified “collision probabilities” are used for determination of axial component A* of
(GxG) matrix A {section 3.3¢).
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bimulti-group calculations

For the calculation of heterogeneous reactor cell characteristics a detailed space-energy
neutron distribution in a multi-region reactor cell must be found, generally with nuclear
chain transformation simulation depending on time variable.

Thus the solution may depend on 3 variables: space - energy -time.
A library of microscopic nuclear data can mclude:
- multi-group microscopic cross sections,
- parameters of resonances and effective resonances.
- scattering matrices for neutron thermalization.
The data for chain transformations (channels for capture, fissions, decay, {n,2n) reactions)
are (and may be ) included in the library. -

It is desirable that input data include only data for geometry and isotope (nuclear
densities) composition (initial for the case of time simulation), power and time peints of
burnup calculations.

The results of calculations include :

- space energy distribution of neutron flux (depending on time if necessary),
- reaction rates for nuclides in all physical regions,

- multiplication factor,

- few-group cross-sections,

- monopole and dipole (axial and radial) few-group A-matrices,

- reaction rate R-matrices or vectors.
The latter data can be used as an input for 2 or 3-dimensional heterogeneous reactor

calculations and stored in some exchange files.

Calculation of space-energy neutron flux distribution in a reactor cell

Neutron transport in every group can be evaluated by collision probability method in the
solution of a multigroup system of integral neutron transport equations:

O'(O)=IK (1, 1) (Z @ +QNY(r)dr” (3.1b.1)

The source of neutrons Q in every group i in epithermal region consists of two parts:

Q=Q,+Q{, Q, =7y i (3.1b.2)

Jed

Q,' is due to neutrons scattered from upper groups, i,j=1,2,....
®j - neutron flux in group j; i - macroscopic scattering cross-section from group j to
group i. The scurce
Qs =8'S(r); (3.16.3)
S(r)=3. VIZIDi(r); (3.1b.4)
J

is due to fissions with the normalization:
T8I =1 [S(r)dV =1 (3.1b.5)
]

vi,vi - macroscopic fission cross-section and the number of secondary neutrons per
fission. The distribution of 6 corresponds to fission spectrum.
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Thus it is supposed that due to fissions 1 neutron appears in the cell having fission
spectrum distribution and some space distribution S(r); the last can estimated according to
a pre-calculated distribution of fissions by thermal neutrons. This is a weak supposition
since fast neutrons have large mean free paths comparative to cell dimensions, the
solution weakly depends on their space distribution and can be improved by iteration
procedure. '

Energy distribution can be based on multi-group approximation. A library has a fixed
group structure. When resonance absorption calculation is included
a special subdivision of energy scale allows an effective direct treatment of resonances for
prescribed nuclei . In this case lethargy scale is transformed to include a larger number of
intervals. Resonance parameters for chosen isotopes are used for calculation of group
cross-section for transformed lethargy scale. If both energy intervals i and j lay in the
basic library scale, scattering cross-sections are taken from this library; if at least one of
these intervals is subdivided for resonance absorption description, then the model of
scattering by free atoms is used with the probabilities

P jet

of elastic scattering from group i to group j , defined by the following set of expressions (A
- atomic mass of a nucleus):

(the probabilities are defined by integrals

(1/(1-e))f duf du’ exp(-(u-u’))

over Au; and Ay; ; u’ e(u-g,u))
a=(A-D)(A+1)% &= In(1/ o );

(3.15.6)
11

LSl ey

[e_(uj'*ui“) —
g2u’-u
e—(uj__‘-li') — e‘(uf_uf} + e_(u}'—ui_)],

) I a=min(g,uy - uy,uf —uf),

pici= g~(w ) uy —uf <g<uf—uf
Auy; (1-a) [ o S

or

e"d —e~f(a—uj +uj)]
i : - e
P uf —uf <&<uj-up;

T —ur o ygf
i 1 1 ) uy —up <guf —uf <&
P — [e~tw P s

Auyj (I-a £<ul —Uui; & <uj -y
gy —ur) — e—(ur—uf)

es(1-ut +uy + &),
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Reaction rates and neutron balance

For every isotope k in every region 1 with nuclear concentration ¢, capture, fission and
multiplication rates are to be calculated:

. 1 ..
w=Vo kalf‘;l@iG &
) i .
Ey = Vicw 2 ®loh; . (3.1b.7)
=l

) i .
VE, = Vicw _ZlCDf((vc)i;;
J= .

and the current along energy axis:

ei=V T T I (3.1b.8)

1<j41 m>i
their tétal values for the ceil:
CF VE, ¢ (3.1b.9)
and total current of neutrons (from the first group to the given energy, defined by lower

boundary of group i) across the cell boundary: T
For all the groups below the lower boundary of fission spectrum the next balance

equation is valid:

Ci+Fi+si+]Ji=1 (3.1b.10)

(the sum in the left part of above equation can be different from 1 due to (n,2n) reactions).
For zero current across the cell boundary full number of neutrons reactions by capture

and fission is equal to unity:

C+F (+]) =1. (3.1b.11)

and by definition multiplication factor in both cases (zero or non zero current across
boundary) is equal:

ke = VE;
k:g =k, (3.1b.12)

- infinite multiplication factor if the current J across cell boundary is equal zero.
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¢) thermal neutrons
(thermalization problem)

Space -energy distribution of thermal neutrons { for example in the energy interval from
0 to 0.465 eV or 1 eV) in a reactor cell depends on up and down scattering of neutrons by
chemically bounded nucleus. Some models for scattering of neutrons can be used.
Space-energy distribution of thermal neutrons in a multi-region cylindrical reactor cell is
the solution of the equation:

R
v,r) = thg)r'dr'S(r' ,v) (3.1c.1)
P(r'lr,v) '

(r',v)= I“dv' OV, rHZ(V'|v, ')y + (3.1¢.2)
+S8F(v,1')

v -relative neutron velocity, V., -its upper boundary, r - radial coordinate, R - cell
radius -

P(r' l r,v) - space kernel normalized to 1.

R
2n| rdr P(r'[r,v)=1 (3.1¢.3)
¢ .
Ts(v'lv,r)— - scattering cross-section with the normalization
Vmax
[AVE(Viv, 1) = Z(V,T) (3.1c.4)
0

S (v.r) - external source due to slowing down of epithermal neutrons.
Piece-wise representation of equation. _
For M groups and N radial rings piece-wise representation of equations is as follows:

0(.J)= LSGDPGLD

D= ¥ o(m,iH(mlLi) +
m=1

+5(1,1)
o)) = Z,(L )P, AV Ar;

- (3.1c.5)
o(l,j) - collision density
H(mjl, i) = Z(mlL, i) / Ze(m, B);
Zs(rr{l,i) = (1/ Ava) [dv [V E(Viv,5) (3.1e.6)
Av)  Avg
-scattering matrix with normalization:
M
1E{l‘:s(ml,i) = Z(mli);
s(L,i} = Ar; [dvs(v,r); (3.1¢.7)
Avy
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- external source due to slowed-down neufrons.

H(ml,i)—  the probability of scattering to group 1 for a neutron having a collision in
group m.

Scattering matrices

Next models are used for scattering cross-sections:
1. diagonal
2. free gas
3. Brown-Saint-Johns
4. Nelkin
5. Koppel-Yong
All the models obey detailed equilibrium condmon with (M(v} - Maxvelian spectrum):

M(vjos(yv) = M(v)o(V|v);

(v) (2v3 / v exp(—v2 / v3), (3.1c.8)
vt =T/293;
so that calculations are to be done only for indices m < 1.

1. Diagonal mode!l

(applicable for heavy elements without transition of neutrons from group to group)

o(ml) = 0, ()80 (3.1c.9)
8,1 — Kroneker

delta-function

2. Free gas model

Chemical binds are neglected. The formulas are as follows:

oy(V|v) =o02m(v/ v2)[derf(BOv — B¢
derf(BOv + fev' —POV-Bov)], v'> v

o5(v) = o2{(L/ v nBv)exp(—p2v2) +
(1 +1/ (2B°v2))[l exp(—p2vi)-

erfl(Bv)]}: (3.1¢.10)
o =limoy(v);

m- atomic mass of scattering nucleus;
0=(m+1)/(2m), {=(m-1)/2m; g% =mT, /T; T, T=293 K, (3.lc.11)

T - media temperature,
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derf(x,y) = sign(x) — exp(-x2)-

Eerré}(x) +erfl(y)}; (3.1c.12)
erf(x) = 1- exp(—x*)erfl(x),x =0

erf - probability function.

3. Brown-Sent-Johnce model

In the center of mass system the scattering cross-section is as follows:

os(v:) = 05 + Bexp(-Kv); .
vr - relative neutron velocity, B,K - empirical constants.
The next expression is used for scattering cross-section
J(v,v)=0cF9(v,v)+ BOm(v/v?)x
(73 / (1+ m(1 - 72)) exp(-kz?v? ) x (3.1c.13)
derf(B8v - pg' v, 38 vV'-F¢' v) + T
derf(BG v+ B V' — P& v V)], V'> v

o (V)=a SO HBT {(Tn'? Bv)exp(-BV ) HT + 2BV
[exp(-kTv))-exp(-8*VD)erf1(1Bv)]}; =B /(B*+K);

0'=6/1; §=tC~(1-t)0/1; (3.1¢.14)
4. Nelkin model

Based on quantum-mechanic model for H;O by Nelkin, parameters for D,O - by Honeck,
simplified version of the next model.

5.Koppel-Yong model

Double - differential cross-section is calculated as follows:

o(E'—E, W) = (au/4m)(E/E") HdvivD), (3.1c.15)
where
f(v2)=(1/(4111@”)”2);:0 (m)E/)™ é.m L(E/B)x

exp[-£/A +ne/2KT -(E-E’+no+mo/B+rE) /4AEE"]
(3.1¢.16)
0b=c5°s(m+1)2/m2- scattering cross-section of a binded nuclei, u— mean cosines of scattering
in a laboratory system of coordinates
§=E’+E-21,1(E’E)”2 - square of momentum change, E eV; [(x) - Bessel function.

For IE’-E | <E;:
7\.=7\.T,
E”=kT, T - media temperature K,

A=[h 0+ Afos+ Ao+ (Ao, Jeth(@/2KT)T; - (3.1e17)
B=(l‘jﬂ)r )Sh((DrIZKT)s =0, le/lls a'/l3=0)l;
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For |E’-E |>E1:

A=Ay A E"=(AKT+ALE)A, E=o{1/[exp(o/kT)-1]+1/2},(3.1c.18)
A= Af0st Asfos+ (/o eth(w/2KT)] ™ B=(r/o; )sh(w,/2kT),
=0, P=1/(A+1;), /B=w,=0;;

Ar » Apa3 - the weights of rotation and 3 oscillations.

The weights of rotation and oscillations depend on the angle v:

e =2 (1VD), hp =300 507 (3.1c.19)

For Nelkin model summation is used instead of integration with mean values
A=x"i=r,1,2,3. :

The next parameters are recommended for H and D

in H;O and D,0

A Ar M=A=As | O, @, ©,=W0; E, Cb, bamn

H!0.0556 [0.4310 10.1712 10.060 0.205 0.480 0.320 81.6

D|0.0500 10.2433 10.0689 10.050 ]0.150 0.350 0.250 ] 7.54

On the basis of formula for scattering cross-section next moments are calculated:

1
6\ =(B'—E)=(4m/2) | dupo(®E >E,w), (v |v)=2val(v’? »v7), 1=0,1. (3.1¢.20)
-1

with the change of variables:

E—E/0.0253=v , 0—=®/0.0253, kT—>T/293.
Next calculations must be fulfifled:

Gauss summation formula are used for p, v integrations:

1 15 (15)
(1/2) Il g(u)dw-“k};l Wi g (3.1c.21)
l 2 1 2z 3 (5
_ji f(v)dv=2fy f(v)dv=23. Wi f(v) (.1e22)
For Nelkin model
1
[ fvidv=2 (VDY) (V=) vidv=1/3 (3.1¢.23)
-1

Bessel function can be calculated by Stegan Abramovich algorithm with initial parameters:
I,.,=0, =5, k=13, 8=10"".
For x<2x 10~ the first term of series expansion L(x)=(x/2)"/n! can be taken.

Source

The source due to slowing down of neutrons scattered on the nuclides with atomic mass A:
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sT(v)= I dv O (V)s (v 1 v),
OF(v)= ?/v Fermi flux, (3.1c.24)

o' (v

(2ve’ vi(1-0%)), (vev'svia);  a=(A-1)/(A+1);
V)=
{ 0 (vi<v, v>via)  (3.1c.25)

Number of neutrons coming to group 1 is equal:
vi+Av /2 )
sf(= | dvsf(v)
vi—Av/2
or after integration:

Vi A VI _ g2 In(1+ (Av, / (vi — Av; / 2))

(3.1¢.26)

sT(h=0"y2/(1- af)x [Fr—

max

For vi+Av| /2 € av s =0
Trerations

The dimension of the problem is MxN with the (MxN)(MxN) matrix structure as M
( NxN.) matrices multiplied by N (MxM) matrices.
2 stage iteration procedure with sequential averaging over space and over energy is

applied for the solution of equations:
- o~ — - I - . .
S(ig)=F B(g',iHH(gle. i) + sF(g, )5 Ban(e.D) = TG, 0)PGlie) (:1627)
g i'=

i=1,...1- I - number of layers;  g=1,....G; G - number of groups;
Spectral normalisation

At the 1st step S(i,g) is excluded
® (g, i) =

12 [gZ_ &(g,1)H(glei') + s (g 1P, 2)
Summing and using next notation we obtain:

T (i) =@ &) =509 (3.1c.29)

(3.1¢.28)

g

®- | .
L1381l + @) ]

i M-—< ot -

Changing the order of summation we get:
(9=

Z[3 3@/ 0)3 BElHEle ) 1 +s¢(g) (3.10.30)
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The solution of above equation is used for spectrum renormalization by a multiplier

a(l) = @, (1) / O(1)
a(l) = ¥ a(m)H(mlt) + F()
1 ) .

F=S(1)/&(1)
o) = % O(L )

i
corrected
(1, j) = ©(1, pa(l)

(3.1c.31)
Space normalisation

Define P(il D=sE)E S(L,OPG! L DZ(L)Y Ty (3.1e.32)

Define b(j) as the ratio below; excluding ®(l,j) and taking a sum over [ we get next
formulas for space correction:

b(j)=S4(G)/S();  b()=2 bl P(i 1)) + F(); FGY=S«GYSG);
8:() =% " (L) S(=Z SG.D ;5 8G.D-b()SED

The procedure for renormalization is applied usually after 3-5 simple iterations.
d)Resonance absorption
A special subdivision of energy scale allows an effective direct treatment of resonances

for prescribed nuclides (in this case twin isotopes can be introduced instead of basic
isotopes). Subdivision of lethargy scale in a given lethargy interval

(l.lg s Uy )
corresponds to a uniform division of F - image

F(u)=F(u)+A, A=F(u,)/n; u=InEE, (3.1d.1)

where function ( F(ug) =0 ) :
F(u)y=% +zj/[; / 2E; (arctgx;™-arctgXy); (3.1d.2)
1 .

Z"J'Wij/\f 1+ Yii » ¥5TG Urij]i Xy~ 2(E-Eu)/ru Zj: ' (3.1d.3)

roughly estimates absorption by all resonance nuclides present ; ¢j- nuclear concentration
of isotope i having resonance parameters in the given lethargy interval, |, - estimated mean

chord for isotope i; Ej - energy of the center of resonance j for isotope j; o'y - capture
cross-section at the center of resonance ; I - resonance widths.
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This procedure provides accumulation of lethargy points near the centers of resonances.
As a result only a few lethargy intervals ( 5-7) are needed to describe absorption by a
given resonance with a reasonable accuracy.

The cross-section for a single resonance is determined by Breight-Wigner formula:

6o =2608-106((A + 1) / AYegl, / T

Oy = O'Uw(x, \9) .
+EGoGpgfn [ TV2y(x,8)+op; (3.1d.4)
oy = oo(Ty /T)Ee / EY}2y(x,8),

where A- atomic mass, x=(2/T)(E-Es), o,- potential scattering cross-section;
62 = 29015AT2 / (Eo(eV)T(°K)); (3.1d.5)

The functions v, x for Doppler broadening are calculated as the solution of the set of
differential equations:

dy(x,0)/dx =02/ 4)x(x,0) - dy(x,8) / dx = 62(1 — w(x,6)) -
—(82 / 2)xy(x,0); —(82 / 2)xx(x,98); (3.1d.6)

with the initial conditions:

0,8) = (v / 2)0 exp(82 / 4)erfe( /2
¥((0,8))= (g m/ 2 expl®? / Qerle(012) (3.1d.7)

erfe(z) =(2/ «fr_c)afexp(—zz)du

Effective resonance levels technique can be used as well for description of resonance
absorption with reasonable accuracy. A set of parameters
(E7 rn:rY:L: 0); . (31d8)

L - Doppler-broadening parameter divider (see below), o - constant (background) capture
cross-section in the group where this resonance lays, makes it possible to describe
resonance absorption by a single resonance level instead of tens or hundreds of resonances
in a given lethargy interval. The theory is based on a pre calculation of resonance
absorption by initial set of resonances and by effective one in some simple homogeneous
model, and the fact that an approximate equivalency exists between resonance absorption
in homogeneous and heterogeneous systems.

Effective resonance levels

In narrow resonance approximation resonance absorption by a single level is defined by
an expression

T, /T (3.14.9)

and by n levels with the same widths by

nI‘Y.{I“rl /T, =L, /nl},/ (nI,) (3.1d4.10)
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If we define one resonance with width n time larger it is expected that the absorption by n
resonances can be approximately described by one resonance with increased widths.
Effective resonance level is defined as a resonance that approximately describes resonance
absorption by some fixed set of resonances. This is important for numerous high energy
levels of uranium , for example (hundreds of resonances). The goal is - to substitute in
calculations resonance absorption by many resonances for resonance absorption by few
effective resonances.

There exist an approximate equivalence relation that describes resonance absorption in a
heterogeneous media by resonance absorption in a homogeneous media and the last
depends on the set P of 2 main parameters - dilution cross-section s and the temperature of
media T, P={s,T}. The homogeneous model is used for the construction of effective levels,
though after they their determination they are used for heterogeneous media.

The theory of intermediate resonances (defined by parameter 1) is used for this approach.
In an intermediate resonance theory resonance absorption by a single level is determined
by a resonance integral: '

=ry,]
=Ml (3.1d.11)

where
r =Gy I"Y / E

Go= 2608 10°(A + 1)
/AVT, /{TE},
Ty =(s+ A o[l + AL,

(3.1d.12)

o f, = w(®, +y(O®,x)+
5= | 5.6, x)dx; = VO VO 5

& (@, )]

€= [cprn / (001-)]”2:

3.1d.14
£, = €Al / (T, +AT,) (.1d.19)

Doppler broadening functions may be defined as real and imaginary parts of probability
integral: '

v =_J-§®Rem[%®(x+ Dk g)(z) = exp(—z2)[1+ (2i/ “E)(]3 1d.15)
2 d o
X =_J2£®Imm[%®(x+i)]; ‘j’exp(t .

Parameter A is determined as a solution of transcendental equation:

z, =L, / (2M3);

A+(1/z))arctgz, =1,
_ 5 =8EA /[(A+1)T];

(3.1d.16)
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L= [oildx ; M= Joadx; o =w/(y;+w). (3.1d.17)

Let a set of pairs of Py ={s,t} parameters is fixed; U - the set of parameters of the
effective resonance level (L - a divider in equation for Doppler-broadening function, E -
energy of the center of resonance, A atomic mass). For every P resonance integral of
effective resonance can be defined:

Plk=1..K
© =T/(LA)), U={ETl,.[,.L
(LA)) | o (3.1d.18)
A=2JET/A LU}
Pk

M

I, = LI - resonance integrals of a chosen fixed set of M resonaces, also depending on
m=1

Py can be calculated.

Take a function

HUP3 {EAUp FEU)} + AEEsD +BL(U)e (U)-1)

(3.1d.19)
f (U) = (T (S, Ts U) - L (S, T U/ (3.1d.20)
(IS, T = IS, LN -1
F (U =1(8;, T)) / 1 (8, Tj; U) - 1 (3.1d.21)
and put a requirement:
g — min (3.1d.22)

{0

The solution of this minimization problem gives the set of parameters of effective
resonance fevel. :

For nonresolved region of energies (11, 12, 13 groups of Abag'ans system) mean distance
between s-levels for U238 was assumed to be D =20.9 eV , between p-resonances
D1=7.2 €V . Radiation width was taken to be equal [, = 0.0235%V.

To generate resonance parameters in nonresolved region Porter-Thomas distribution was
taken for neutron widths defined by the parameters:

o

T} x=Th/Ta;

n=1 v=r ; / TL

and

n=2

P(x)dx = P(x)dx; P(y)dy = P,(y)dy;

3.1d4.23
P(x)=exp(-x/2)/~2mx;  Py(y)=exp(-y); ( )
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For determination of mean values of T° no, " ' next values of strength functions were

used:
b =12-107,

 =12.107
o =< gl >;

 =<gli>/<3D, >

The parameters of effective resonances determined by the procedure described above are

given in the table 3.1d.1

Table 3.d.1. Effective resonance levels parameters for U238

Group |E,eV Cev eV L o, barn

number

11 15062.8 |254.7 14.36 102.15 0.2347

12 7532.9 136.9 7.007 73.74 0.1996

13 34993 49.34 2.308 42.7 0.0546

14 1874.4 1.902 1.6136 14.18 0.2921

15 694 .48 0.5008 | 0.4027 10.1 0.3138

16 342.51 0.1415 | 0.1564 595 0.2779

17 150.23 0.5055 | 0.079%4 4.45 0.00056

3.2 One-velocity heterogeneous parameters of a reactor channel or a cell
a) monopole

Extrapolated length of a channel by definition is related to parameter A as follows:
I'= N p)(I6N & (p) /6p) =p/(1A) (3.2a.1)

Suppose a multilayer cylindrical channel is surrounded by an infinite moderator. At distances of
the order of several mean free paths from channel surface the solution can be written as:
N 45 (r)=AIo(xr)+uKo(xT)] (3.2a.2)

u - a parameter (response coefficient) is related to A and I" by equation:

A= a/T=y[Li(y)-uKi(y)V/ [To(y)+uKo(y)] (3.2a.3)
The equation for neutron flux can be written in a form:
H N= H, N+( H - Ho)N=0; H=1- 2 (3.2a.4)

where ¢ - operator of one -velocity integral transport equation and H, is related to the system with

no channel (infinite moderator)

If '

G os(r,ro)= ale.8) Ko (KI r-ro| )

- asymptotic part of Green function for moderator

(3.2a.5)
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Ho G (ryro)= 8(r-ro) (3.2a.6)
asymptotic solution can be written as (after application of addition theorem for Bessel functions):

N (1) = afe.&) Ko(xr)IT o(xro)(Ho -H)Ndro (3.2a.7)
Comparing (3.2a.2) and (3.2a.7) we get next expression for response coefficient:

u=( ale. /A 1 o(kro)(d- 2 N drg= (3.2a.8)
= ale. /A (2~ 20)" ToN(r;) dry

Therefore the solution should be integrated over channel volume and in its vicinity of the order of
several mean free paths (function (- 2 )" I cexponentially decreases at several mean free paths)

with the weight function:

W=[T (©) JK(r,r o) - ZmoalKo (157 0)] T o(kro)dro (3.22.9)
For u next expression can be used **;

u= ale. ) IA) [ T o(xro)[ Qo)+~ 2 ) N dro (3.22.10)

Parameter u is zero if the properties of the channel are the same as of moderator. as it follows
from equality (3.2a.10). The result of application of operator (2- £o)onN or

(¢~ #4) onl,can by expressed by collision probabilities Pj.
For a cell of finite radius the calculations are as follows. Let the channel is surrounded by a thick

layer of moderator.
The solution is presented as follows:

N(r)= N(r)+ NO(r) (3.2a.11)
where
NO=Io(r) . (3.2a.12)

- a fixed regular part of solution extended into the channel volume.
The equation for NV is next:

NO(r)=2 N(”(r)+Q; Q=( £- 2oN@ (3.2a.13)
Z and 2, are defined now for finite cell. At large distances the solution can be written as:

Nas(r)=uK (xr) +A[Io(xr) +uKo(xr)]= (3.2a.14)
=A[Io (x0)+(I; (kR) /Ki(xR))Ko (x1)]

the first term is due to fixed regular part of solution. the second depend on finite dimensions of
reactor cell. The last equality follows from boundary condition: the current is equal zero.
Coefficient A can be found from the requirement of the best adjustment of the solution to its
asymptotic part. Then:
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u=A( (kR) /K (KR)V(1+A) (3.22.15)

The results of calculations of ['(s), «=p/1 for absorbing rod , ¢=2¢/ £=0.9, by the method described
above (*) in comparison with approximate formula
(Kavenoky A. -IZIucL Sci. and Engng.,.1978. v.65.p.514)
0,710;151 +0,6939a+0,01147 (322.16)

a® +0,5416a+ 0,0086
having the accuracy about 0.01% are given the table 3.2a.1.

T(a)=

Table 3.2a.1. Response parameter u and boundary condition I for absorbing rods.

~K -Kavenoky, * present calculation, 8T/ T % -difference

a u I -K r * 3T/ %
0.1 -0.05781 138556 |1.39790 |0.89
0.2 -0.10988 |1.29505 |1.30461 |0.74
0.3 -0.15974 [1.22836 [1.23675 [0.68
0.5 -0.25921 |1.13360 |1.13951 [0.52
0.7 -0.36445 11.06851 |1.07204 |0.33
1.0 -0.54463 11.00158 |1.00251 |0.09
2.0 -1.55752 |0.89206 {0.89258 |0.06
3.0 -4.09100 [0.84595 10.84795 [0.15
50 -30.2026 |0.80625 |0.80816 10.36
8.0 -664.035 10.78355 |0.78760 [0.52
b) Axial dipole

Consider one-velocity problem.
For an axially uniform reactor of finite height H the variables can be separated as follows:

N(r)=exp{ioz)N(x,y) (3.2b.1)

o=n/H
In this case parameter A can be presented in a form:
A = AM+aZA® (3.2b.2)

In diffusion approximation the neutron flux in a uniform cylindrical rod is equal
N(r)=Alo(xir); ki =1/Li*+ o2 (3.2b.3)
By definition (i -channel, e- moderator)

A=(pON(p)/Bp) Ne(p)= (DyDe)p(dN{p)/8p)/ Ni(p)=
=Dip*c*/(2D.Q) (3.2b.4)

Q=I(xip)/(2 xip Li(xip)) (3.2b.5)

so that for A®, A? the next expressions are derived:
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A"=p*z/2D.Q; : (3.2b.6)
A=p"w/2Q; ®=Dy/D.

® - a parameter - axial polarizability of the channel describing neutron migration in axial
direction.

b)Neutron migration area

Consider a uniform lattice of channels.
For a reactor of finite height H the variable of axial dependence for source Q and flux N
are separated (o=n/H):

Q(r)=q(p)exp(iaz); N(r)=N(p, o*)exp(iaz);

Next expression for neutron flux can be written:

N= 2(ZN+q)exp(-ia(z-z")] (3.2b.7)
Suppose:
N(p,e2y=No(p)-(1/2)a™N1(p). (3.2b.8)

Takihg the expansion of exponential function up to o, the next equations can be derived:

Ng= £(ZN+q) (3.2b.9)
Np= 42, Ni+ £ (2-2") (ZNo+q)
The probability to escape leakage P, can be defined as the ratio of neutrons absorbed in the

reactor of finite height to the number of neutrons absorbed in a reactor of infinite height:

P,= N(p,o®)Za(p )d p /[ No(p)Za(p )d p=

=1 -(o2) | Ni(P)Zp ) p /f Ne(p)Za(p )d (3.2b.10)
Assuming

P,=1/(1+c’L?) (3.2b.11)
the next expression can be written for L

L= Ni(p)Za(p )d p /(2] No(p)Zu{p )d p) (3.2b.12)

Multiplying (3.2b.9) by Z(p) and taking the integral over all the volume we obtain:

JNU(P)Zup )X p=] drdp”S(OK(r, p™)(z-27) (3.2b.1)
[Zs(p” WNo(p™)+q(p™)]
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so that

L= 2, (P E(pINo(p)+a(p)}/(2 | No(p)Zo(p )d p) (3.2b.13)
2, (p) =] Z(p)u* R? exp (- £ R) dR/(4nR* ) (3.2b.14)

projection of mean square path of neutrons on z-axis, taken with the weight - neutron
emission 2 No+q.
In homogeneous media

P=053) 1% q=2,N, ' (3.2b.15)
L=U3%,. (3.2b.16)

Subdividing the cell by thin layers, the expression for the square of diffusion length is
written as a double sum

L2~ (1/2)Z ZP% (E,Np + Q) / < Z Ny V >, (3.2b.17)
<L, Ny V>= ] Z, (PN (p)dp (3.2b.18)
Vee

depending on modified collision probabilities P

Behrens formula > (for a cell with an empty cylindrical channel) is derived as follows:

L’ =(12) P (Ta Ny +q)/ (T2 N;Va) (3.2b.19)
=(1/2) P} 2,/ (Z,Vs)

Neutron flux is supposed to be constant in the moderator and balance relation was used:

.q=zazN2.

The formula for modified collision probability in this case is written as follows:
P =(2/3) Vyl™-Vy(e, b, ' +¢, b, ') (3.26.20)

Taking account of the expression for Bickley functions for the limit 1} — e we get

Ki,(2) = Ki(0) - 2Ki,,(0) +(z/2)Kin.2(0) + o(Z’) ; (3.2b.21)
Ki(0)=n/2; Kiy(0)=1; Kis(0)=n/4; Ki,(0)=2/3
b =(Vi/31)(1 - 2p/,); b, = (Vi/3)(4p/li-1)
and finally Behrens formula is obtained:
L2=[1+2p(1+pM], P= Vi Vinoder - (3.2b.22)
Axial polarisability coefficient
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A closed functional expression can be derived for axial coefficient of polarisability.
Suppose L. is determined by above formula.

Find A” in the boundary condition

odN/dp = (A° o, AP N, (3.2b.23)

Take integral of the both parts of diffusion equation

(-DA + £, )N = q; 2eDpd/dp + (Dar,” + Zy ) NooaVinas =G Vinoa (3.20.24)
or 22D (A’ +e,A") N(p) + (Det;” + T ) NavoeVimos = q Vi
By definition of neutron leakage escape probability

1 +0,’L,} = q Vs / (27DA° N(P) + =, moaNmod Vimes)  (3.20.25)

v

_[A0 4 Ymod 2 _ .

Az=[A"+ 2l ¢L2 — Vw6 / 27 (3.2b.26)
= Nrmod /N(PT

Lzz = (Dmojd /Ea,cell)(li Pgal)_l(’l + Pga‘t) "

p= Vehan / Vrnod;go = Nod / Nechan; (J 2b27)

A=(pY2)( Newan N{PY - (3.2b.28)

A closed functional expression for  is derived as follows. In the expression for L,
[ 2, N dp=27DN[A*HV 1og/ (2L 1a JE] (3.2b.29)
consequently

AZ=(1/ZﬂNo(P))[3/2flz2(P)/lmod(ZsNoﬂDdP-vf Ne(p)dp] (3.20.30)

But
[ Z(p)No (p)dp =

0k

V! [Z{p)No (p)+q(p)]dp (3.2b.31)

and the last term in (3.2b.30) can be written as:

)

Thus the functional expression for o is as follows:

N(p)dp=lmd[vj (ZNo+q)dp— VI Z(p) N(p)dp]  (3.2b.32)

od
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K =(1/27N(p)) vgeu(('i/f?)lz (P mod~Lmoa) ZN+ QAP+ [ 1mgaZ(P) No(p)dp]

od

(3.2b.33)
At the distances of the order of several mean free paths from channel surface
GILHPY = ned (3.2b.34)
so the first integral is taken over channel volume and in some vicinity around, the second -
over channel volume only.
The first term is zero if total cross-section in channel is the same as in moderator ; if the ¢
channel properties are the same as moderator properties then:

A=V, /2, o=1. (3.2b.35)

3.2 ¢) Radial dipole

Suppose a multilayer channel is placed in an infinite moderator %), In one-velocity theory
radial polarisability coefficient gives the relation between regular and singular parts of
solution: :
N(r) = [ (kr)+u'K (xr)]Acosg; u' = -k*p*B/2 (3.2¢.1)
In the case of small absorption in the moderator:

N(r) =(r-p*8/r)A cos (3.2¢.2)

Suppose the regular part of solution is extended into channel and try to find the solution of
integral equation in the next form:

(x+NO=L(x+N) (3.2¢.3)
Function X is the solution of the equatidn:
x=Lo(X) (3.2c.4)

so that regular part is presented as a source in the equation:
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N® = IND +Q;Q=(L -Ly)x | (3.2¢.5)

Function Q(r) exponentially decreases at large distances from the channel and NP
asymptotically behaves as:

N ~ COSO/T.

Divide the channel into thin layers. Multiplying the equation (3.2¢.5) by 2E:x/V; and
taking integrals over volumes V; and assuming by definition:

N® =[F(r) / rlcose =[F(r) / r’lx, (3.2¢.6)
we derive the next equation for F:

Zg

F. = SP FJ +Q;, (3.2¢.7)

I
1

with matrm elements:

Pi'=(5/2m)] | drdr(c/(R¥rexp(-s); R={r-r’| (3.2¢.8)
and the source term:

Q=(2Z/V)Y |l drdr(xx /(Rr ) (exp(-s) Zs- (3.2¢.8)
-exp(-s0)Zs)/ J(47rR2)

(s - optical length, s, -optical length for the case when all the space is occupied my
moderator)

Calculation of modified “probabilities”
Taking account of the relation

x=x"+pcos(m + ') = x'+p{cos® cos ' —sin sin@'—>
- x'+(x'/1")pcosw
we can present the probability as a sum of two terms:

Pl =P;+Py (3.2¢.10)
P;= (Z/41c)[ [ drdr’exp(-s) /R* (3.2¢.11)
=3, /47:)[ [ drdr’(x’¥r*) Ry, exp(-s) /R? (3.2¢.12)

Above next relation was used:

[x?/r?dr'=(1/2)]dr (3.2¢.14)
V.

J

P; is proportional to the traditional collision probability
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By definition of P’;
L - is the projection of the direction neutron movement
to vector r’ in the plane (x,y) (Fig. 3.3):

i, =sin 9 cosw,
w- the angle between projection of vector

R=r-r’andr
If the center of coordinates is taken at point r’ , the volume element is:

dr = R*dRdu
(du = sin 8d8dw)
Taking integrals over R,8 and ¢’ the next expression for P*; can be derived:

(3.2¢.15)

Pr==(1/Z)§ (ieydIDcose/p[Kis(L)+pEiKix(L)] | dr’
I, A,

(3.2¢.16)
The integral is taken over the boundary of layer i in the plane (x,y) :
dIT =n]I1 the element of arc with inward orientation along unit normal vector m; ; gy -
projection of vector (r-r’Y| r-r’ | on the plane (x,y)

t,= dIT /p= *d@

Fig. 3.3 The system of coordinate
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The sign = depends on mutual orientation of vectors wy and n; and coincides with the sign
of scalar product  (p, mj). :

For P a similar expression can be written
Pij=§ ((uxydﬂ)/p)lKlz(L)] I r’ dr’ (32017)
i1, A
but in this case more simple expression exist.
The source. -
The part due to Lo is easily calculated as follows:
QP =(254VIE |] drdr(ac)(exp(-s)E/ (4nR%)= - (U2)Ze(pii™+pi)
j
(3.2¢.18)

The other part is next:

Q=Q2EJVIT [ | drdr(oc)exp(-s)Zy/ (47R7)
v

V.

I

First the integral by dr” is taken with the center of coordinates at point r:

dr'= R2dRd\L,
x'=x+pcos(® + @) = x+pCoSW COSP;

p=(r'-r)/|r'-r.

" The result of calculations are given by the expression:

Qi=(Za/Vi) | r'dri ((ueydID) /p)[( To/Zi } Kiz(L)(1+peosw/)+ 34/Z% Kis(L) cosw /r]+
A I, .

(3.2¢.19)
(251/2)( Zsifzi‘ 1 )(pi-12+p52)+Q’ s ,ij

The last term takes account of diagonal terms of Q.
Full source in the layer i is the sum over all layers and can be written after the change of order
of summation as follows: '

g -
Q= T;“ %[(ajﬂ —a;)Ay+ (b1~ bj)Bij]mJJ'H +
' (3.2¢.20)
1 Zg 5 2
*5 Z (E = Dlpi +p7)-
The values in (3.2¢.20) are defined by next expressions:

a=Eg/T;; b=a;/Tj; 0011 =5 GNPy Wie1) (3.2¢.21)

A= | odri do Ki(L)(1+pcosair)

A; iT;
Bi= :{, r'dr 1§r do Kis(L)cose

IT; is the boundary of radius p;.

The sum depends on thedifferences ;. - ¢; and by - by that are zero if the properties of
neighbor layers coincide - that is the sum is taken over boundaries of layers with different
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physical properties and the sum is taken to the last boundary of channel. For the layer in the
moderator the last term in (3.2¢.20) is zero and the other terms exponentially decrease at
distances of the order of several mean free paths from the channel boundary.

Coefficient of pelarisability

In accordance with asymptotic presentation (3.2¢.2) and definition (3.2¢.6) the limit of F(r) at
infinity must be a constant value and is related to B as follows:

p=-(1/p") lim (F(r}T) (3.2¢.22)

The other approach is to calculate the current of some field g,, defined below ),
Multiplying integro-differencial equation for neutron flux (space-angle distribution):

WVN(r,W+E(r) N(r,w) = 2(0)f N(r,wydp+ S(r,uw) (3.2¢.23)

by xZ +u, (the regular solution of adjoint integro-differencial equation) and taking integral over
angles, the next conservation equation can be derived for g«

divg, +(Z(r) - £)j, + xZ(r)IN(r) =S, + xZ3y; (3.2c.24)

(g =Zxji+ | LiN(r,u)du (3.2¢.24)
The dependence on the difference in channel and moderator properties exists inside the channel.

In the moderator a conservation low can be written in the next form:

divg, O. (3.2¢.25)

If we take two surfaces - one - the surface of the channel , the other - at some far distance from
the channel boundary and take integral over the volume between these two surfaces the next
expression can be derived for B as an integral over channel boundary:

B=(312mp") § g.dn (3.2¢.26)

with inward orientation of dr on channel boundary. The calculations give the next expression for
B:
B=(3/21p%) § ((xydm) /p) § dr’(rF+r'®) [Kiz(L)Z(1+pcosw/t’ )+ Ki3(L) cos /r']
! A
(3.2¢.27)

Since the function F reaches a constant limit at infinity it is possible to choose some number J of

layers and in the final layer to suppose an equality
Fj+1 = FJ (3.20.28)

Then the system of equations for F becomes closed:

ol
i :%jglpi}Fj + QP =Fpi=l..J (3.2¢.29)
171



JAERI-Review 94-002

For empty channel an interpolation formula by Carter -Jarvis exists -
(Carter C., Jarvis R.J. Reactor Sci. and Technol.., 1961, v.15, p.76)

Be=(1/2 + a)(1 + a); a=pZ (3.2¢.30)

For black bodies the next result can be derived from balance equation (3.2¢.26):
By = (3/4)(a -3/4a)/(1 + 3a/4 +f{(a)); (3.2¢.31)

fl)= Gam)] dxKis(exarctg(x) . (3.2¢.32)

At limiting cases:

Bo—> - 9/32a; By—> ( 1-2W/a) (3.2¢.33)
a—0 a—>x
A=0.7104

3.3 Few-group heterogeneous parameters of a reactor cell.
a) monopole (A - matrix)

A-matrix is defined as GxG matrix in a boundary condition at the cell surface of radius
P, giving the relation between the current and the flux N

pdN/dp= AN (3.3a.1)

in a few group theory (G - number of groups) for heterogeneous reactor calculations.
A-matrix is calculated as follows.

Let in a cell of radius p a source of neutrons S is given. It has an energy distribution
corresponding to fission neutron spectrum and some preliminary estimated space
distributicn. S source is normalized to unity.

Let

N=NO

be a few-group vector-flux on the cell boundary derived from multi-group calcu ation
the case of zero curreht across cell boundary:

7 =0.
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LetN ,J -are similar values obtained for G multigroup solutions of space-time
problems with G non-zero linear independent currents across cell boundary J®and the
same neutron source S, g=2,....,G+1. _

A system of equations is valid for triangular A,-matrix, depending on slowing down and
neutron absorption: '

A® £ N, =N® o= G+l (3.3a.2)
Let
K= | vZo®(ur)dudVv (3.3a.3)

Ay o
be the number of neutrons appearing in the cell due to fissions in group 1 for the problem
number g. A similar system of equations is valid for the elements of matrix Q, that
determines the influence of currents J on the values of integrals (3.3a.3). The relations

QJ® +K,=K® | K=KD; g=2,.G+I; (3.3a.4)

describe fission sources Q due to currents J® .

Summing the components of of vectors in equation (3.3a.4) we get an equality valid for
any J (qJ - scalar product of vectors q and T):

QI(k-ko)=15 (3.3a.5)
G G
qJ':i:Z] Qi k=1=§:1 Ki

The equality (3.3a.5) can be considered as balance relation - the currents at cell boundary
must compensate the difference ko -1 in a critical reactor. Substituting (3.3a.5) as a
multiplier at Ny in (3.3a.5) the next expression is derived:

(No ®q ~ {Ng;qj}):
N=[A3 + N, ®q/ (k-k)
In other words full A-matrix is determined by the next relation:

(3.3a.6)

A =A7 + N ®q/ (k-ky)
(k=1)

(3.3a.7)

-for critical reactor.
The expression (3.3a.7) can be transformed to exclude a possible singularity in the

second term. Multiplying (3.32.2) by A, and taking a scalar product with q we obtain:

qJ = qA,N/[1+qA, Ny / (k- k)] (3.3a.8)

Substituting gJ in (3.3a.6) for the right part of (3.3a.8) we get the relation that determines
the full A-matrix
(® - means tensor product of two vectors):

A=A+ Ay, A =-A, No®qgA, /(kes -0); (3.3a.9)
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v = ko -qA2 N, (3.3a.10)

It follows from the expression (3.3a.9) that for ke=ko
Ny is the eigenvalue for matrix A.

Response matrices U. Equivalence of U and A matrices.

An equivalent to A —matrix characteristic is a response matrix U . Few-group diffusion
solution in the moderator

can be written as:

N=1A+KB; -
I=ClCY : (3.32.11)
KECKoC—l, .

Vector J is equal :

J=alA - fKBa=Cylp'C™;
B=CyKiKs'C™h;
y = diag {«, 0}

g

Le N, be a solution due to the source defined for calculation of A—matrix with zero
currents across cell boundary, W - a constant G-vector:

(3.3a.12)

No =(I+KP)W, P =CLK{ICY

n= _NO:
A =K({J + An); B =—I(J - om); (3.3a.13)
UzA =B; .

(1+ U,K)J = (I = UK B)n.

Matrix U, is due to slowing-down and absorption of neutrons; A, is related to U, as
following:

Ar=Ta - KB+ KUz)™! (3.3a:.14)

The components of triangular matrix
P obey the equation

PAE +Yo=%8:g=2,.,G+1 (3.32.15)

Taking a sum of all components of vectors in (3.3a.15) we find:
pA/(k—ko)=Lp; = X5 (332.16)
=1

Re defining one of equations in (3.3a.13) we can write a relation

U;A+Bg= B,By = IaNo (33317)
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Taking account of (3.3a.16) one obtains:

U, +Bo®p/(k-ko)JA =B, o
U=U;+UnuUi=Be®p/(k-ko) (3.3a.18)

the relation between U and A being the same as the relation between U; and As. Due to
{(3.3a.13) A is equal:

a=K(1+ A o (3.32.19)

and the relation between Q and /# is given by the equality:
Q=P K(I+BAS). (3.32.20)
Consequently the equivalency of A and U is proven.

b)Reaction rate matrices

A similar method is used for reaction rate R-matrices calculation (reaction of type x):
Let reaction rate due to I, cross-section in the given
volume V. is defined as

HE® ] @dudV
AuVy
Ty——>
Vi——
(i=4....,G)
Po——>
P, defines the contribution of neutron currents on a cell boundary to above integrals
depending on slowing-down and absorption of neutrons and in this case the next system of

equations can be written:

Px,zj(g) +Hy= H(B); Ho= HD;
g=2,..,G+1; _
For full matrix (including fission reactions (3.3a.21)

the next expression is valid:
ij=ﬂDx,2 + Ho ®qA2 /(k—V)

In the limiting case when effective multiplication factor

k-—=k; P—>H,
that is reaction rate is determined by vector Ho.
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¢) axial dipole

The solution of multigroup equations for a reactor cell of finite height H can be presented
with separated variables:

D = P(r)el®; Q= Q(r)e'™;r = (x, y). (e.1)

an additional term in A-matrix should be defined due to neutron migration in axial
direction and all the values defining A—matrix are to be calculated accounting for the Ist
order expansion by a parameter ( H - reactor height):

2, 2y

o= /H%

A A+EAY A= A +oP AT (3.3¢c.2)
No=No+o’N?; k= k+o?k*; q= q+ &’ q”

If the cell is divided by M thin layers with volumes Vi, and in the infinite volume outside
cell boundary it is supposed

PIVRE Zomser = T

a system of equations based on collision probability method can be derived with matrix
elements Lag:

Vo =L@)(ESD+Q);V=diag{V,} (3.3¢.3)
m
Lmn = Tmn - Tm—ln - Tmn-l + Tm-ln-l(m > n);
Lmn = LRH’I;
(3.3¢.4)

Lo = Ty = 2Tyt + Ty + (Vo / o)arctg(ce / )5

T = Ryn + Ry

Rt = 2T d{‘f2 d8 exp[-(smts,)sind] (0cos™8+Zn")" (¥cos?0+Z,")" {cos[B(XntXn))( Em Zn-
c:nzcosze)-0 ’

SIn{B(Xp?Xa)] & (Zm +Zm }}s

where

X, =1/r,3 + rz;B = actgd;

= TGy

k(r,>t)

(3.3¢.5)

If we neglect the terms of the order higher than

(12

@ = @, + 0> D% Q= Qy+a?Q4L =Ly +a’L?

a system of the two equations can be derived:
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Vo= Lo(Z,D5+Qq );

. ; (3.3¢.6)
V2 = Ly (S,0% + Q%) + LAZ, Dy + Q)

Matrix elements for L, and L? are given in sections (3.1a). Boundary conditions on cell
surface for ®* are derived as follows. The leakage of neutrons in axial direction for
neutrons in the layer n with emission density

Vor = anq)(}n + Q(}n; (3 -30-7)

can be presented as
5 M+1
Jon=0" Z Lo 2 ¥ (3.3¢.8)
m=1

In the external layer M+1 a compensating source of neutrons with the next intensity is
assumed

Qb =I5 et/ Vs (3.3¢.9)

Taking account of normalization condition:

M+1 :
Vo= 2 Zulom (3.3¢.10)
1

m=

next equations for M-vector fluxes are obtained:

VY, =2 L% +Qy;

\ . (3.3c.11)
Ve =2 L Pw? + 2 LOW + Q%
Operators
L®=Lo+0 Ly; L@ =1L*+6 L*; (3.3c.12)

Lo’ mn = LoNa Lo.mn/So;
L®mn =( Lo L . + Lonn L % =SS0}/ So;

M
S= Z] ZaLlan; N=M+1
can be derived from the next equation for M-vector -flux, if the terms of the order higher

than o are neglected:
V¥(a?) = Z L9 (a®)¥ + Q(a?);

Ly (@2) = Ly (02) + OL' , (@2 );
L'mn (az) = LmN(G'Z)LNn(az) f S(az);

2 M+1 5
@)= Tl

N=M+1
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The current ], for 8 differing from 1, and its axial component can be presented as the next
sums (<I, -symbol of summation).

T, = (L(E-©)ZL's ¥y ); 53013
J.a0.

T2 = (I V(E - S0 - S[L7 + (0 - E)L7 ¥y

The equations for A*now can be presented as follows:

(R5)' 1O + A 5 FPO+NO=N,

QHIE + QIFE+K, A=K, (g=2,..G); . (3.3c.14)

K= | vEDTVdudV;
Au;

NG@=N; Ko@=K"D; Az =-Ao(A)" A
Matrix elements for different currents at cell boundary are determined by the same

collision probabilities (or modified “collision probabilities ), the difference - only in
parameter ©.
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4. Methods of Solution of Heterogeneous Reactor Equations

4.1 A method of solution of heterogrnrous reactor equations based on matrix
iransformations

Heterogeneous reactor equation can be written is as follows:
N =(Hy, /A-Hy,) N; H=CC}; F=K+IF (4.1.1)
The norm of operator H can be estimated by a sum

G = % KQ(K_J n-r ki)
or approximately by the integral

o, = (2n/ad)] kdkKo(xk) =(2n/kj"a’)

For a finite reactor with regular lattice the solution can be presented in as exp{icka)N(ry;
and the above the sum is estimated by an equality

o = 2n/[ il (1+e k) | (4.1.2)
(1'11\
]
N =
ng

has K-subvectors n; as its components.
Suppose linear relations exist between n; and ng:

n=tng (4.1.5)
N=Un,
[ 81 3
U=l (4.1.6)
Ug
it
TUng=(y//A-v)Unc (4.1.7)

The first row is used for determination of unknown value ng:
T, Umng =2 (v1)3;(U;/ A)ng
]

(4.1.8)

The other refations consider as the requirment for U-components determination (j=2, ...G):
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(T+y 221U+ . H{TH2) 261 U= (TH12) 26 (4.1.9)

(T+y ) Ui + . HTH2) 6 6.1 Uga= -(THY2) 6.6

For G=2:

(TorHy 220U = - (Tazty222)

Uy =-(Taty220) 1 (Tagtvz22) (4.1.10)

T=CC'=

:( 5 0} @.1.11)
en(A =8 & o

so that H, is as follows:

Hy =U U v (142 Yom) en @ - F2r221] Y102 (4.1.12)

For small channels with no absorption and fissions in epithermal region
H, = (1472 Y2.22) 021 - F2)] V2 (4.1.13)

The properties of operator {1+72 vz 2" become clear from the next homogeneous

LS

analogy. Consider two Green functions in a homogeneous media with absorption macroscopic
cross-section

2™ Zartla

(-A+Z/DYG(r,rg) = &(r - 1g)/D (4.1.14)
(-A+Z41/D)G{r,ro) = 8(r - ro)/D

The solution of the equation with an arbitrary source S:
(-A+E/DIN=S/D (4.1.15}
can be written in a form:

N(r) =]G(r,ro) S(ry) dry | (4.1.16)
or , transforming the equation (4.1.13)
(-A+Z,/DIN=S/D-NZ;/D

in the following form:

N(r) = fGl(T,fo) S(rg) dro-Zaz IGl(F,l‘o) N(ro) dro
Define operator:

A()=IGy(r,ro) () dirg
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then

N =(1+A | Z,5)-1A,S (4.1.17)
So that we have next decomposition of Green function G by means of Green function G,

G(r,10)=Gi(r,rg) - [Gi(r,r1) Gu(ryre) dry Zaz +(-DMG(r,ry) Gi(ry,ra)...Go(riero)dry Za+...
(4.1.18)
Thus we have a decomposition

A=(1+A 1200 1A (4.1.19)
In a similiar way operator

(1432 v20) " %2

presents a Green function in a heterogeneous media, with 7, presenting Green function in the
moderator.
In 3-group approximation matrices U;and U, are calculated as follows:

U ={W3a Wt Wa-W3 ) H{Was Wi Wl 123);
U= -Worl (y23Wo Uy), (4.1.20)
Wi =Tty (4.1.21)

and matrices T - from the relations:

S=Tu= 71 171,23 Tor=cnlS - 82); Tsa=cs5a(Sy - S3);
Ts1= ¢51(S1 - S5 )C21832(S5 - S2); (4.1.22)

For large arguments and large indices the expressions
Loty 50 o ()
v—1 1 V-1t ] 1 IV(XJR) H

n,m=43,l,
with asymptotic behaviar:
Iy-n(2) ~ exp(z) /V27z;

K. (z4) ~ 7/ 27, exp(—7,)
are to be calculated. In this case instead of Bessel functions their products by exponential
functions should be calculated and after that exponential multipliers depending on z-zo be
applied.

A method of simple iterations may be used for the solution of equaticn for ng:

16" = Hi ng® ; 277 = p(ng™o(na®) (4.123)

¢ - a [inear functional.
Iterations are finished if the next condition is fulfilled:

50 = mlaﬁ nt - nl) <e (4.1.24)
¢- a chosen small value.
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4.2 Application of group-theoretical analysis for reduction
of problem dimension

Symmetry in the reactor can be used for the reduction of problem dimension.
First transform the heterogeneous equation as following:

(1+CKC™ 'y, )N = [C(K+IF)C 'y, / A~ CIFCTly,IN  (42.1)
U=(1+CKCyy,); N'=UN; v = U (4.2.2)
N*=[C(KHF)C'v*//k - CIFC"' y*IN (4.2.3)

In the above equation matrix F is the full matrix (with zero diagonal elements) and it depends
only on 1 and k channels positions, while y- matrices depend on the properties of a k channel.
Consider a cylindrical reactor with different channels placed in a regular lattice, so that under
group transformations

(gb),

this lattice superimposes with itseif. ~ Let b= Cy, (M=4, square lattice)

Consider a channel with the number 1, and all the channeis with the numbers:

{gli={1, o1l cl, c,o}, ...},

Consider also k channel and all the channels: {gk}={k, ok, ck, coik, ..}

If independently g;, g.cb then we have 2Mx2M=64 matrix elements:

F(gil, 22K}, 81,82 € &

But due to symmetry (Fig. 4.1)

F(cl, ck) = F(Lk) and this is fulfilled for all g=! F(gl, gk) = F(Lk)

Therefore:

F(gl, 22K)=F({, grlg:k), g= gr'gch and for determinatjon of all the elements
F(gl, gok) it is enough to calculate the elements: F(lLgk), geb.

The number of these elements is 2M=8 '

Let there is some symmetry in channels properties, for example for k and ¢2k the properties
are the same.

Let H is a subgroup with the elements {h}={e, c2}. Take elements g & and consider a
set of elements . gH={g, gc?}.

Then group ¥ is splitted into left cosets - conjugacy classes with no intersections (factor
space of ¥ by H): #/H={g:H, g;H....}.

Let xy,... are the points of this space. Matrix elements now depend on the pairs of these
points F(x,y). For the example above these poits are Xy x,={l, c}; x, = {oil, cZo1l };
x;s={cl, ¢31}; xa={col, c3g;1}and the same for Y, so that matrix element are to be
determined as follows:

F(xy, y1) =F(LK) + F(l, ¢2k) and so on.

To find matrix elements for x, y; x € Xand y €Y

it is necessary to take the sum:

YFQAk),heH
h

In a more complicated case , for example dipole approximation more detailed
group-theoretical analysis is needed. Consider again b= Cy, (Fig.4.2);
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o cl F(lé‘llﬂf ok
+ +

0 + + 0

+ | +
] 0

Fig. 4.1. Matrix elements for pairs of channels after group
transformation

T2 T3 T2

Fig. 4.2. Symmetry elements for groups Ca., Cev

The main relations in this group are (t; -reflection relative to x-axis etc.):

ckel=clcrbmedM | cTy=0;; T2=¢; G2=¢;
T, = ctjel i=1,2(3). (4.2.4)

Let x be seme node of lattice and gx its image. The set X={gx},g < ¥ is a j-orbite, or a uniform
space, so that the set of all the nodes is splitted into orbites. The set heHes, {h:hx=x} is a

subgroup, - a stationary subgroup of point x, and uniform space is isomorphic to factor- space
5/H. For example, if the channel position is on x-axis, then stationary subgroup is H=Z, ,

Z.={e,7,}. For the channel in the center of coordinate H=j.
Fig.4.3 shows different uniform spaces.
For a fixed point x, and for all the elements xeX choose an element s(x)ed, so that
5(x)Xg = X (4.2.5)
that is a unique correspondence is stated between elements

Xax <« -os(x)ed (4.2.6)
then for each element g there exist unique decomposition
g =s(0h(g) (4.2.7)

that is cross-section s(x) in & has a unique correspongence with xe X, and function h-i(g) gives a
projection  g—X (Fig. 4.4.)

For example for uniform space X, a cross section can be chosen as follows (Fig. 4.5.)

X] 6 —¢C; Xz ¢ —CT; X3 €« —>C2; x4 ¢« —>c3

For the given cross-section the element G, can be presented as follows:
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Fig. 4.3. Orbits in a reactor with square lattice

g
H g
S(x) g=S(x)h(g)
X
X=G/H

Fig. 4.4. Decomposition of group over uniform space X

g,=cTy=ceT ¢ =637 =s(xq)1y; h(o2)=1

Suppose on X a space of functions f(x)eL(x) is gtven with the image in a linear space L,
and these functions are transformed due to some representation of group H:

h = U(h); hihy— Uth hy)=Uh)U(h,)
A representation of group ¥ induced by U(h) is defined by equalities:

[T(g¥1(x) =U-1(h)f(g1x) (4.2.8)

with h determined from the relation:
g-1s(x) = s(g'x)h (4.2.9)

that is the image is the value of f in the point g-ix, transformed by U(h) with h determined by

(4.2.9) (Fig. 4.6.)
Another equivalent realization of induced representation - in the space of functions on 4, but not

on X : o(g)e (¥ ). This subspace is determined by the following properties:

(b )={o(g) : (gh) = U-(h)p(g) } (4.2.10)

Projection operator from L(%) to I(g) 1s:
P:L(H )= 1(}), P= ZU(h)e{gh)/dimH
heH
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e c ¢ ¢
Q 0
H=Z1:
o} o 0
2 3

T C7y 4 "2 31
X1 X X3 Xy
X=G/Zr;, G=C,

5279(X4 )11

Fig. 4.5. An example of cross-section for X, space

g S(x) S(x)

Fig. 4.6. Description of induced representation

The induced representation is given by a relation:

[T(g1)el(g) = o(gig) (4.2.11)

with the values of ¢ determined by their values on s(x) and Uth).
Suppose two orbites are given : X and Y and a linear operator C from L(X) to L(Y):

Cio(y) = ZXC(Y»X)f (x) (4.2.12)

with two representations Ty and T, induced correspondingly by
Ul(hl): hIEHl; U(hz), hQEHz;

Operator C is called a binding operator if the next diagram is commutative:

C
L(|X)—>L1(y)

To(®) + LT
C

LeF—>L(y)
Binding operators present a class of operators

C
LX) = L(Y),
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that is invariant relative to b:

co{gy.gx)= Ui(hy) e(y. Uy ' (ha); (4.2.13)
gs(y)=s(gy)(hy);  gs(x) = s(gx}he.

In the equivalent representation for the functions on the group & in the spaces 11(¢) and [;(»), the
binding operator is given by the next relations:

o(g) =T 0(g &)/ (&) (4.2.14)

®(highs) = U (h)D(2) Uz (hy),

In other words matrix elements are given by a function ®(g) that is constant on double factor
spaces H;\b/H; (and changing only by U-operators). It follows that the dimension of C-space is

determined by the number of double conjugacy classes or: by the number of H; orbits in X or
the number of H; -orbits in Y. In any case this dimension is lower than dimension of the group &.

The order of space of arbitrary linear operators from L(X) to L(Y) is equal dimXxdimY, if L, is
one-dimensional.

For example (Fig.4.7.),

H1:Zt X Cz, H2=ZU X Cz, X:b/Hz ; Y=b/H1

B

Fig. 4.7. Determination of the dimension of
the space of binding operators
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The space of H, -orbits in X consists of one orbit, coincident with all the space
X:{x,,01%, }={x1,%}=X, that is the dimension of binding operators is equal unity,
so that only one matrix element should be determined (in monopole case).
Dipolar part is a two-dimensional vector , that is the space L, is two-dimensional. It can be
decomposed into two one-dimensional spaces.
Consider an orbit: X=4/E. Suppose a vector field is given on X, that is the space of functions

with its images in E,. For a transform x—gx function f is transformed in the following way:
[T(e1(x)=V(gfigx). (4.2.15)

V(g) - some transformation E ,—E,.

Take a decomposition of f in the basisn , T,

& is a unit vector with the direction from cymmerty center to point x and t - a unit vector
ortogonal to n. Then

[T(@)(fan ATl (%) = V(A 0 1ctf(g 1¥) Ter 1]
But

V(gng 1m0, V(g)ty1,=ntg 1, = (g) Ty

with |

Hg={ lgek J(g122) = J(g1) I(g2)- (4.2.16)
{-1geH

where H, is a maximal subgroup with generator ¢, so that 5=H. @1 H;
and vector-field is decomposed to two one-dimensional components:

[T(e)fal(x) = filg1x);
[T(g)f (%) = I(gl(g1x). (4.2.17)

The construction of induced representations for f . can be described as follows.
Suppose we have a fixed point and a cross-section:

x=s(X)Xg; X ¢~ —5(x)
Instead of £i(x) consider ()= J(s(x))f:(x), with an operator multiplier on X
B(x) = J(s(x)) (4.2.18)

The transformation of @, is given by the next expression :

[T(g) @ J(x) = 9i{g1x). (4.2.19)
If X=4/H, then
[T(g) 0.)(x) = U-1(h) @(g-1x) ; gls(x) = s(gx)h. (4.2.20)
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An arbitrary function f; transforms in a following way:

[T(e) £](x) = B-1(x) U-i(h) B(g-1x) fi(g-%) ; (4.2.21)

If we accept for H including Z, or Z, , to choose cross-sections with no change of the
orientation:

(X =5/Zs, x> or x> ¢ 61), then B-1(x) B(g-1x) = Js(x)H(s(g1x)) = 1.

If  H=Cy,, ISM; €M,
B-1(x) B(g-ix) = J(g). (4.2.22)

Binding operator has a characteristic property
o(gy,gx)=B1-1(gy) Ui(hy) Bi(y)e(y.x) Uzr(h)Ba(gx)

B -1(gy) Bi(y)= J(g), if Hi=Cy,
1 ,ifH;includes Z; or Z, (4.2.23)

In the following J (g) is supposed to be unity for monopole or normal dipole compenent and as
determined above for tangential component.

Suppose a reactor loading has a symmetry of group R and some set of cnannel centers is
defined - a uniform space X=5/H. This space is decomposed to R-orbits -space Xr

Xp=w; @, U ... = RW/ H, (4.2.24)
If for example H=7. and R=Z,,
Xp=0 U0y ; Xg ckxg ; 01={Xy X1} 02={X2 X3}

Is Xz a uniform %-space? In this case not (Fig.4.8): cx=xe ,, CX=X€& W3 ;
that is one element of ©1 after transformation lays in @1 the other in w,.
Xy is a uniform space if R is a normal subgroup: '

Xg=R \ /H=4/RH. (4.2.25)

If for example R={c}; k=0,1; H=Z,. Then Xg=wJ/wz ; 0 ={Xp Xz} ©2={X , X3}

The elements g do next transformations on Xg

C:I W2, G 010, T O <0, Wy <> W7,

that is @, , © transform to each other. Therefore instead of R for symmetry group a
maximalk-normal subgroup is to be taken in this group.

For example if loading symmetry correspond to Z, then maximal normal subgroup is E, so
that reactor is to be considered as fully non symmetric (in loading).

So if we take as symmetry group only normal subgroups, then binding operators
dimension is determined by the number of H; orbits in X or the numbers of H, -orbits in
Yr , that is by the number of double classes :
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efeof-

X=G/Z+ Xe= Zs |GlZ

&

Fig. 4.8. The example of Xz being not a uniform space
(above) and uniform space (below)

RH[ \ b /RHZ :H1 \h /RngRHI L /Hg (4226)

Thus for symmetry group R the procedure is as follows. All channels are divided into 4-orbits
X={gx}, ged.

So all the space of channels positions is a unification X, WX, ... Inside X; an arbitrary element
is taken x; and an R-orbit is determined:

{rx;} ,re R; so that X; is decomposed into R-orbits:

Xi _)XR'[ = (DiIU(Diz =3 /RH
The task is : to determine the dimensions of spaces of binding operators
L(Xg; )=>L(Yg;)
that is the numbers of independent matrix elements; to indicate the pairs of indices for
application of these matrix elements and the way they are transformed for different pairs of
indices.
Suppose
R={c™} = Cpyp, n divides M. (4227

Below are the calculations for different pairs of spaces HI ,  H2 are presented :
I.Hl,Hz =E; XR=£J.'IR., YR:b /R.

Take a cross-section



JAERI-Review 94-002

s(xp)=¢' 6% (1=0,..,n-1; k=0,1); ©,=0¢ (4.2.28)
and correspondingly a cross-section for elements:

YQ,J.-nB GYR(G' = O,l,...,ﬂ— 1,B: 0,1),
Binding operator is given by a formula:

(Vo5 Xiank) ® D(6'G*) = Dreu (4.2.29)

The next set of transformations is applied:

[}
g=c%cP,

gs(¥g) = c*cPe = 5(Youp )

gs(Xjon) = cCaPolak = @t TDRIGEk -

= S(gx]-*.—n_k) = Cvcé = S(Xy+né):
that is

=(v—(=1) )modnr;
o=(r= (=1 modr (4.2.30)

= (£ -~ k)mod2.
Thus matrix element CD(c[o‘k )= @y gives the relations of functions in points X yin and ¥ qeng
with the relations between indices given by (4.2.30), the number of matrix
elements equals 2n.

2.
H;=E;H,=2Z,={e,0, 1 Xg = 8 /RH; 3xy;
- ol
sx) =3 | (4.2.31)
{yo, X)) =D(c) =Dy
1=90,...,n—1,

gs(x)=c*cPc =¢ UM 5 B =g(gx )y s(gxn) =¢'=c¢ @)l = 5 P
Thus 1 matrix elements give the relations between points Xy, ¥ a+ap , Where
a=(y-(-1}*1) modn, he=0o g

3. H=E: Hy=Z.={e,1}; T,=¢ 'o1; XaD x;; s(x)=¢’;

gs(x)=c*c’c = ¢ a+(=171+ BB =g(gx)hy; it follows that
s(gx)=c’ == ¢ w1718, poeoB and @y, yaeap X, have relations between indices:
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o=y - (ﬂl)Bl - P)modn,h, = P
4. Hi=Z;3Ha=2Z;;

1.
s(x) = ¢;8(y,) =¢c”
Since To=¢’;

(4.2.32)
O = O(ri01c) = P(ric o) =
= U, (z)@(cHUz(0))
and binding operator is enough to calculate for points: ¢! ;  [=0,...,[(n+1)/2].
For
s=c¢%g*
gs(y,) = c*o*=c* 1%,
s(8Yg) = S(Yqry) =¥
h = %
gs(x)=c o *c! = PGt =5(gx)hy;  s{gx)=c" LA W
consequently

O; 1= 0,...[(n+1)/2]; x,, v=0,..,n-1; ¥.=0,...,n-1

i

o=y~ {-D*+%)modn;

h=1%hy=a*%x=0,1

The results of all calculations are presented in the table below:

in the first row - the relations between indices of elements Xy, ¥ g+op and Djup, neXt row -

the elements h;, for representations Ui(h;) and finally the dimensions of Yg, Xr and of the
space of binding operators.

Table 4.2.1
E Lo Z. b
E o=(v-(-1}’Dmodn  a=(y-(-1) *1) modn a=(y-(-1)* 1+£) modn h=c'c®
B=(£-k)mod2 hi=c® hy=t5 |
2n, 2n, 2n n, 21, n n,2n, n 1,2n,1
Zs o=(y-(-1)"Ymodn  a=(y-1) modn o=(y-(-1) *+%) modn
(x=0,1)
hy=c b hi=t * hy=c x h1=CV
2n,n,n n,nn n, o, [(n+1)2]+1 1,n,1

Z. oa=(y-(-1) Pl-B)modn oa=(y-(-1)*l-x) modn a=(y-1) modn

(x=0,1)
hz'—‘TB h1=0x h2=‘fx hIICT
2o,, 1 n, n, [(n+1)/2]+1 n,0,0n 1,n, 1
A h2=CaG B hz:CCl hz=CC1
2n,1,1 n, 1,1 n I, 1 1,1
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For symmetry group including reflection

R={c"g™.,m=0,L (4.2.33)
o =(v — [jmodn (4.2.34)
If one of the spaces 1s

Hi

HZ - Zt

then the space of operators -one dimensienal.

The groups that are not normal subgroups: n=4 for square lattice; n=3 or 6 for hexagonal
lattice intis case maximal normal divider {c™} is considered as symmetry group in R. For
central channel dipotar flux is two dimensicnal and transforms according to representation

with the next basic matrices for o; and ¢
01
too=§ a:

U(c)= B) _01} for square lattice;

_1
U(c)= {(1) 11J for haxagonale lattice

If

Yr=G/G

Xy+n§ € XR' hI = CY G%

clyy. 2] = Ujler of) x @(1) 12{g)

Matrix U; can be expressed by U(c) and U(c )
Uieop) = (U()"U(s?)

If
Xp=b /5 : then hy=c%c" ; c(gyexo)=JP(g)O(Uy ' (c*cP)) (4.2.36)

Uz (c* o) = Ule™(U(e) ™ (4.2.37)

Calculation of matrix elements

At initial spaces of functions L(y), L(x), Y=b /Hy, X=b /H, an arbitrary linear operator can
be presented as:

oly)= ey xfix)
xeG/H,

If the lodaing in reactor corresponds to symmetry group R and the basis in 1.(x) is taken so
that
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fx) V(D/ (0 _ (4.2.38)

X-space is splitted to R--cosets ;, so that
olyl= ¥ Zely ] Virflx) (4.2.39)

wsG/RH, r=R

and in each © a representative x i1s chosen. If R includes a subgroup Ry , stationary for x,
then

2, = V()

reR reR/R,
and itmustbe  f(X)=V(ro) f(x),r0 €Ry
The last equatity is valid if and only if

f(X) = Pxf(x);
Pz TV(r)

NO , R,
- projection
operator on functions which are constunt relative to V{ry). Similarly an operator R, can be
defined and both operators can be included in the matrix element

Py, 2c(y,™x)V(r) Py {4.2.40)

reR/R,
For example if the function F(x) is transfored corresponding to the rule:
V(e)=1, V()= -1,
and the point X is a stationary point:
g:ox=X G&RycR

Then

P, =[V(e)+ V(c)}]/2=(1-1)/2=0

so that matrix element is equal zero.

For exampie consider a reactor having 17 channels (see Fig. 4.9). For monopole
approximation the exist 17x 17 matrix elements. The order of the spaces of binding
operators L(X;) — L(X;) for the case of symmetry absence R,=E and for symmetry groups
R,={c*™} and

R; ={c™ o'} is shown in table 4.2.2 .

Table 4.2.2 Parameters for different symmetries

X\ X X X, X X,

X, Ll (Lt (Lir 1
X, LLL 1322 2,010 421
X; LLL 120,10 322 422
X L1 421 [422 [842

4.3 An iterative method of solution of heterogeneous reactor equation based on line by line
multiplications.

Contrary to the method based on matrix transformations the operator of equation ( 2.2 ) Is
no longer positive, on the contrary it has a structure of a difference of two operators with
big norm. The next approach can be used to transform it to an operator with some property
of positivity.
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Initial space Ro={c™}
i
o |
.
X1 Xz
N
o
|
X5 X4

R3= { Czkﬁj}

Fig. 4.9. Reactor with different symmerties
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N=H(ho )N | (4.3.1)
H(ko) = Hi/Ao—Ha (4.3.2)

Define functional g, and suppose a positivity properties are fulfilled for H; and H;
operators:

¢ (N) = ngx (4.3.3)
N>0— o, (H:N)>0
Corresponding to equation define operator

T{e ) ={ Hl/min [o(Hi®) 7 @ ((E+Hy) » )] -Ha} (®) (4.3.4)

Non linear operator T has positivity property:

N>0—-¢, (T(N))>0 foranyk (4.3.5)
since

@ (T(N)) =0 HxN)me [pu{(E+H)N )/ ¢ W(HIN)-  (4.3.6)

—e(H.N) 7 0 (HiN)J>0

Besides it is a uniform operator,
T(tN) = tT(N) (4.3.7)

so that it is defined on a compact space so that it must have a stationary positive point -
the solution of equation:

N =T(N),¢, (N)>0 (4.3.8)
The iteration procedure is defined as follows

20D = min [ (HN®) / @ ((E+H;) N
k
NEV=[H,/ A0 .H,) N© +ao, N® (4.3.9)

Parameter @, can be used for shift of operator spectrum.
Spectral radius of operator

(H/ADH,) -1 fornoew.
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4.4 4 method of solution of heterogeneous reactor equation in difference form

A nonlinear procedure is used for the solution of heterogenecus reactor equation:
PN = Qv(K SN = (4.4.1)

(P+S)N ‘QOY\T *m QKL ) -8y +SINT
A —>k N SN
(4.4.2)
KJ "KJ —(l -1)/(ok /BK o)
52 /aK ——(k 2 )/(Kieff KJ 1)
K’ -K \I — N
- number in cycle of outer iteration, n- number of outer iteration; 7& " _ flow value of main

egenvalue with fixed Keg .
For iteration acceleration S-matrix is introduced and for separation of stable solution -
triangular matrix

&y = -1, C'8ACI, (4.4.3)

SA - lower triangular matrix with no diagonal elements
not depending on k and m. Negative values S of S-operator usually increase the distance
between the main and the second eigenvalues.

To provide convergence of inner iterations the elements of matrix S must meet the
requirement
S za

Cuter iterations
The iteration procedure for A determination (with Kes fixed) can be rewritten as follows:

N = (147 HN® H=(P+S-Q&y)” [Qy(K ) -8v)+8]
A =IHN"YINY =4 N'>N (4.4.4)

1(y) - a linear functional:

M+1

(y)=(/K)T i (LQRu=1)WG2m1x (4.4.5)

For outer iterations the Chebyshev's acceleration procedure may be used:
W™ = HN" (1, -8) N

Nn+1 — \U]‘l'l']./l(wn'i'l ); (44_6)

;\'n+1 — 1(W[\“'l ) 4"[“‘:,1 -6

& — parameter of operator spectrum shift

1 - parameter for iterations determined by the expression:
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7, =((A; +8)/2)(1+cosmb),)

X, - estimate for second egenvalue
0 - an ordered numerical sequence inside interval [0,1]:

e {3/4,1/4,7/12,....5/36} (4.4.7)
composed of 18 elements and optimal at n=2,6,18.
Spectrum shift parameter usually is taken inside interval

& c(2,6)
Negative elements of S increase the distance between the main and second eigenvalue.

Inner iterations:

The solution of nonuniform linear eqution for each group g and each axial mode m is
found by the symmetric successive over- relaxation method with the change of direction in
step by step iterations.

Agmcpgm = qgm
Ay =Per +Sy (4.4.8)
= QIZ T (Ke)- SV E T L5 &y, 3+, N

=l m=

Successive over- relaxation method for inner iterations
For a reactor with square lattice the next procedure is applied:

? ?J =(1-w) @E;{‘f‘ (@/ P)(GQ?_LJ' + @zjq
-1 n-—1 .
Ot Pt )

i, i

¢ Mo (- w) g+ (@ PNl + ol (4.4.9)
+ gj?—l,j + gpirjjﬁ] +q i,j);
i, jl;

@ - iteration parameter, determined from the relation:

o =2/(1+1— %) (4.4.10)
it - spectral radius of a matrix A with elements divided by diagonal elements;

An analytical estimate of 1L is next:
p(square) = (4/ (Py +S))(1-
i1

S S 1=

. T .
—sin® N, +1/ (1= ) (4.4.11)
wlhex)={6/(Py+8)(1-

—2sin?

w
N, T1/(=5)

for square and hexagonal lattices correspondingly;
N,, N, - maximum number of channels in opposite directions along x and - axises.
The number of inner iterations can be estimated from the relation:
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N =Cln(1/e)/In((1/{w-1)) (4.4.12)

C -an empirical constant (taken to be 2),
¢ - a given accuracy of inner iterations.

Subcritical reactor with external sources
A heterogeneous reactor equation for a suberitical system with external sources q
N=CF(yN+q) (4.4.13)
a=lp C7'S: S external source term, can be written in a difference form
PN=Q(yN+q); Q=P(I"'K-D}*R; (4.4.14)

For an axially uniform system y-matrix is m-diagonal (m=1,...M) and the system of
equations decomposes into M independent equations, so that for a nonuniform source the
result is the sum of M independent solutions.

For a weak axial dependence of y-matrices the problem can be decomposed to a M; (<M) -
dimensional problem and M-M, one-dimensional problems.

Numerical method:
The next outer iteration procedure is used

PN"=Q[y N+ (y—&)N""+q] (4.4.15)

Two-term Chebyshev method is used for
Acceleration of iterations:

Ne=(1- ) N* + r,(HN+ )

H=(P-Q&) " Qy—dy); (4.4.16)
f=(P-Qdy)"'Qq

T ,— acceleration

parameter

Number of iterations grows as

(1= Ap~12

Al

- main eigenvalue of operator H, equal 1 for critical reactor.
For weakly subcritical system with

{—A<<1=2; (4.4.17)

(1, -second eigenvalue) the next two - stage procedure can be applied for the choice of
T, . Atthe Ist stage t, are chosen on the basis of uniform suppression of error inside the
interval:

A €[Amin>A2 ]

= (4.4.18)
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=2/(b+a+(b—a)cosng,)
aand b - lower and upper boundaries of
operator I-H
(azl_ﬂ—lsb: 1W/?-'m.u'l)
8 ,—a numerical sequence
inside interval [0,1]

- the same as used above for critical reactor calculations.

The main eigenvalue is calculated until the difference in A becomes less than a given
accuracy £r:

Al=1-1/ 7+ AN/ ANY!

AN = (1/K)Z T (1 m) (N~ Njak) (4.4.19)

A=A 0 |ser

£r —agivenvalue

At the second stage the error for the main eigenfunction is suppressed and is flattened for
other egenfunctions..

Take

1 m,H:a—lO; do=1- Al (4.4.20)

If the system of eigenfunctions is full, then the norm of error
g" =N"-N
after n, iterations of second stage satisfy an unequality:

&'

R Jmax, P, (,lj
No-+1y
Po(A)=(1-4/0) TT (1= 7:7) (44.21)

The parameters t (n=n+2,...,n+n} are found from a condition that the value

maxP(A) is minimal
[a.B]

For n;=2 this problem is solved analitically:
[2b-325+2+/2 (b-a)]/(4b* -dagb-ap”); ¢>0

Toorz = (4.4.22)
(a+b-2ag)/(a’+b*-ap(a+h)) ;<0
c=b-a - (a—ao)«/i

¢ - the point of function P(A)=(1-A/ap)(1-Tm01 )

extremum.

For ¢>0 this point is inside [a,b]

for c¢<0 outside [a,b]

If after 2nd stage the accuracy is not obtained the Ist stage is repeates and so on.
Calculation is finished if the following unequalities are satisfied (e - given accuracy):
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HIH DN qi_ -
<¢ 442
(1= L2 (3429
MMt
Sy ¥ L |
Z(py=(1 )% I:L-; Zm_llwg,zm—l,k.
M1
o2l
W) =UKIE Y = Weonik |

¥ m=1 2m-—1" "7

A rough estimate of & , is possible , and some times it is enough to take it zero.
The experience of calculations has shown that for A.> 0.9 two-stage procedure leads to
saving in running time 3 times and more.

— 100 —
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5. Space-time Reactor Calculations
5.1 Space-time kinetics in a reactor cell

Let channel volume is divided by L regions, I, - number of isotopes in region |;
=Lh+h .0 (5.1.1)

- full set of indices for isotopes in these volumes; (i=1, ....I).
Let p be a set of isotope concentrations in these volumes: p ={pi}; G -number of groups in
multigroup calculations of neutron space-energy distribution in the cell.

R® means a linear vector-space of dimension K.
The following system of equations describes destruction and build-up of isotopes
concentrations:

dp(ty/dt = o(t)[<e(t),yF>s p + <0,()C>c p] + Ap; (5.1.2)

where

@ is vector-flux; yF - matrix of fission cross-sections and production due to fissions (y -
yields of fission products; F -fissions); C - matrix of capture cross-sections; A - matrix of
decay constants for corresponding pairs of nuclides;

<, >, means scalar product of values depending of group index g=1,..., G;

p eRp e RO yF e R x RIXG;
C eRIxR>G; A eRUx R -
(5.1.3)

<@, yF>5,<@,C>geRI xR

The equations are normalized to W - power production in an axial layer of the cell of unit
height:

0=W/(e,<p,F>cp), (5.1.4)
dWrdt=w[e,<@,F>p], WteR" (5.1.5)

e - power released in fissions of corresponding isotopes;

Wt = burn-up in the layer of unity height.

It should be mentioned that yF, C and A are sparse matrices , diagonal relative to region
index [ and connecting isotopes only in a given volume:

yF- fissite isotopes and fission products ;

C - connecting isotopes (by neutron captures) with atomic masses differing by 1;

A - connecting isotopes with charges of nuclei differing by 1 or 2 and atomic numbers
differing by 0 or 4 depending on the type of decay (B or o).

In the same way reactions (n,2n), n(3n) and so on can be included,;
As soon as initial state

- 101 —
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p(0)=p0 (5.1.6)

is given all the connections between isotopes which are incorporated in the library must be
included in the equations (5.1.2).
The time interval is divided by points (t,t;,...,T) and for every time point @ multigroup
space-energy neutron distribution problem is solved. The last is the most time-consuming
procedure. The cross-sections in (5.1.2) are derived from the results of these calculations as
reaction rates divided by mean fluxes and nuclides concentrations in corresponding
volumes.

To increase the time intervals within between re calculations for the solution of cell
space-energy problems within (t, T) the next procedure can be accepted.

It is supposed that reaction rate r for some isotope 1 in some volume can be separated to
thermal and epithermal parts :

I = Tth + Tiepis (5.1.7)

The slowing down source of neutrons entering thermal group is equal to the number of
thermal neutrons absorbed in the cell. Usually removal cross-section in the cell is a weakly
changing value with burn up. In this case slowing down current across upper energy
boundary of thermal neutrons (the source of thermal neutrons) is close to constant value
and mean flux in the channel is inversely proportional to the mean value of macroscopic
absorption cross-section, so that within a given time interval the next dependence can be

supposed:
ra(t) = (A: / Za(D) + By (5.1.8)

where A; and B; are determined by reaction rate values at initial and final points of a given
interval.

For resonance absorbing nuclides the next time dependence of R (1) 18 assumed:

Tiepi (D=2 bi//pi(t) (5.1.9)

with & and b; determined at the boundary points of given time interval (t;,4+) . Then the
solution of differential equations is repeated.

— 102 —
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5.2 Burn-up calculations including control rod movements and refueling

A method of simulation of 3D-space time kinetic of a reactor including burn-up of fuel
assemblies, reloading of fuel, control rod movements, change of reactor power Xe
poisoning and transiens, reactivity control by a solution of an absorber in moderator (boric
acid) - is presented below. Heterogeneous reactor equations in a difference form are used
for neutron flux description in a reactor. Some thermohydraulic models can be included for
simuiation general neutron termohydraulic process. Control rods movements can be used
for automatic holding criticality of a reactor.

It is supposed that time interval is subdivided by fixed points and power dependence on
time is a given function.

Isotopic composition for each part of a fuel assembly or an absorbing rod is supposed to
depend on one or two parameters - burn up, or fluence, specific power, one of the “main”
nuclides concentrations and so on. It is supposed that channel characteristics are pre
calculated as function of these parameters and stored in some arrays.

Axially non-uniform channels are supposed to be placed in the nodes of square or
hexagonal lattice,
boundary conditions on channel surfaces of radii px are given in the next form:

0ON/Bp =AZSIN(Z) - A(z.8)FN(2)/822 (5.2.1)
N - GxK - vector-flux (G - number of groups, K - number of channels including moderator
cells);

p — k-diagonal matrix of radii, A — is composed of GxG matrices for every channel.
The state vector includes the next values:

S = (B(t),X(T),T(t),U(t)) (5.2.2)
B= (B1,B2) - burn up, X- Xe concentrations,

T - temperature and density of coolant, U - criticality parameter (control rods depths , Boric
acid concentration or kes)

Neutron flux in the moderator is supposed to obey next equations :
SANK1,Z,E) + ENA(r,Z, )= £ N (2, t); 2=1,...,.G (5.2.3)
G-number of groups, £=1/1 (g<G); Eg=1/L°

After finite Furie expansion

N¥(r,z)=3" N&(r) sinamz, o=n/H (5.2.4)

H -reactor height, heterogeneous reactor equation in a difference form can be written as:
PN=Q y(S)N (5.2.5)
N - MxGxK - vector-flux,

P end Q - difference operators defined in section 2.
v(S) - depends (linearly) on A matrix (axial expansion)
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B and X are given values, T and U depend on the solution N . So the above equation is a
nonlinear one.

Next iteration procedure is considered:

PNP = (1/A8 ) Qy(Sv1)Nn (5.2.6)
Nr—»N S8-55; At—1

Nt and A" are main eigenfunction and eigenvalue
of linear equation (5.2.6);

S "=(B,X"TU"

Xt =XorXs =X (N*m)

Ur=Unl + (Ae-1)/8 Av1/9U;

g AU = -(Ar-pn-1y/(Ur-Us-1); (5.2.7)
To=T(N™) + BTN ) - T(N=T ), 0<f <1

Nonlinear iteration process is reduced to a successive eigensolutions of linear equations.
Parameter B is introduced to provide stability of iteration procedure for the case of a strong
negative thermohydraulic feedback .(calculation of boiling water reactor with strong feed
back caused oscillations of solution and stability was achieved at =0.25)

Burnup calculation
Let k channel is divided by L, layers
Normalizing constants can be determined as follows:

Ax(t) = %T W, (z,By) Ny(z,D)dz (5.2.8)

i=1,2; (in this case i=1 is related to fuel burnup, i=2- to absorbers depletion) . The change
of burn-up or other parameter describing the dependence on time within a given time
interval obeys the equation:

OB(z,t) / Bt = Cp P AL(Z,BtV/AR(D; Bi(z,0)=Bo(2);
Al (Z,Bot) = o (z,By) Nu(z,1) (5.2.9)

The values of W and o - are composed of power and reaction rate G-vectors for each
axial layer of channels (cells);

Cg = 1/E; (E:. - energy release per fission ) if B -the amount of fissile material per unit
height of channel, ¢t - reaction rate vector.
For a time interval (t;, tj+1)

B = Bl + CgPAI/ Alp(ts - t)); BO=Bo (5.2.10)
=0,1,2,..
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(the indices k -number of channel, Iy - number of layer in channel k, 1, -are omitted);

Al =d (BN (5.2.11)
AF= kZl Wle(B‘jkl)NjRIAzg

Ni =1/ cdz, ;(I/m N, (cos amzy.) - cos amz);
Az =17y- 214
5.3 Transients with xenon poisoning

With fixed burnup I, X - [ and Xe concentrations (k -vectors) obey the next nonstationary
gquations:

Sz .t/ ot=yP(z,t)-A1(z,t) (5.3.1)
FX(2,0/3t=y«P(z,t) + MU Z)-(AtAX(ZB)X(z,0)

with

P(z,t)=CxPt(t)W(z,B)N(z,1)/Ae(t) (53.2)

Ay (z)=P(t) & N(z,B VA1)

Pt(t) - prescribed power behavior, y; , yx — [ and Xe yields; A;, Ax -decay constants for [, X.
Cy=1/S§ E¢ (if I, X describe mean concentration in channels); Sr- cross-section area of fuel

At the beginning T and Xe are supposed to have stationary initial values:

1(z,t)=yiP(Z,to)/ Ay (53.3)
X(z,t)=(( yxty )Pz )/ (A +A% (z,B))

Analytical solution of above equations , at the suppesition of a constant P is as follows
(now within a time interval corresponding to time scale splitting for description of Xe
transient process):

I'=D¥exp(-MAti)+ yiPYA; (5.3.4)

X =(DMSX-A)exp(-AiAti )+ DVexp(-8 At +(yx+y P/ S¥;

Dliz Ii_ YIPE/R-I : DXi:Xi‘(yX+ y I)Pi/ sz - DIi?\.] /( Sxi_?\'l)

IP=y P A Xo=(yyty )P% S©

i=0,1,2,...; ( 1=1,2,....L - numbers of layers were omitted)

S=h A% A¥= Pl T(BINYAL; PI=CPLW T(BINYAY; A=Y, W I(B)NAZ;
kI
Nie= 1/(oAz)Z(1/mN g (cosoumz, - cosamzy); Az=z-z.;,  (5.3.5)
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5.4 Three-dimensional simulation of transients in a heterogeneous reactor with delayed
and prompt neutrons.

Non-stationary equations and non-stationary boundary conditions, accounting for a
difference in neutron spectrum of prompt and delayed neutrons are applied for simulation
of 3D -space -time transients. The solution is presented as a product of a 3D function as a
solution of 3D stationary equation by a function describing point kinetic of mean values in
the reactor. 3D solutions of heterogenecus reactor equations for critical reactor and sub
critical system with external source are used for process simulation.

Consider a heterogeneous reactor with nonuniform channels in a hexagonal or square
lattice. Few-group time dependent equations in the moderator can be written as follows:

(1/vgDg (8Ng(r,z,t)/ St-AN=(r,z,t) +
égNg(rzzvt): ag- INg- l(raz’t); gzl :---:G (5 4. i)

G- number of groups, &.=1/1, (g<Q), Ec=1/L%

T3, L* ; vg ;D,- age, square of neutron diffusion in thermal (G) group, neutron velocity
in group g, diffusion coefficient.

Non-stationary boundary conditions on channel surfaces can be presented as:

b (BN(z,t) dp=A"(z,t)N(z,t) - SYZ,OB(z.). (5.4.2)

B(z,t) = ZA,C{z,Y), (5.4.3)

- the rate of decay of precursors (supposed J groups)

Cj(z,t) - concentrations of precursors of delayed neutrons,

A; - their decay constants.
C; are determined from the equations:

BCi(z,t) &t + MGz )= B2 W (ZHN(ZD). (5.4.4)
Bi(z) - fractures of delayed neutrons

Operators A, ,S, W are determined by the next gxpressions:
AP=AP - AP(H07H)+ AP{oret); (5.4.5)
Sd = §4- 8@y, (5.4.6)
W = 0"N(z,t)- 0P (&N(z, )/52%).

AP, AP, AP, @F, ©F; and $4. §9, are determined for prompt and delayed neutrons.
The boundary conditions for a stationary state:

T=AN;
F=p (@N/Gp); A=A +A,
A= Swo; S=AN%L-Y) (5.4.7)

©=qAy: V=K -qAN°
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A system of equations in the cell is used for the determination of above parameters:
Stationary system of integral equations in the reactor cell-

o' (1)=Ki(r,r*) (T o'+Q)(r")dr’ (5.4.8)

the source consist of two terms Q=Q,+Q: -due to scattering of neutrons from upper groups
(s) and due to fissions (f).
In a non-stationary case the system of equations becomes as follows:

@ (r,0)= Ki(r,r )T (v () +QI(r' t)dr (5.4.9)
t'=t-(] r-r'Mv;
Suppose:
Qr,t) =Q'(r,to)exp(6t) (5.4.10)

ty - some fixed time point
Assume

@' (r,0) =0' (tto)exp(8t) = |
o'(r,0= 1K g (r,r )T L(r)e' (r',) +Q'(r,n]dr’ (5.4.11)

with the next difference
Y= TL+0 /v inthe kermel K

Let (at the supposition that 8/v, is small)
Ag be presented as a linear function of 6:

Ao= A +6 At (5.4.12)

At can be derived from the equation (5.4.12), while Agmay be calculated with a 1/v
absorber of small concentration included uniformly in the cell:

At =(Ag- A)By B=Za0vo (5.4.13)
Ta0 - absorption cross-section of 1/v absorber at some velocity vo.
Now

J (1) = Asg N(¥) (5.4.14)

and due to the dependence
N(t) /88 =06 N(t) (5.4.15)
the next non-stationary equation is derived:

J(t) = AN(t) + A ON(t) / &t (5.4.16)

The last expression is valid for an arbitrary superposition:
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Q'{r,D) :; q o{r)exp(Bnt) + Jq(r, tyexp(B t)do (5.4.17)

Let us take into account delayed neutrons.
Since @N -is the rate of fissions, present it as

oN =(1-B)oN+ B (5.4.18)

B- the source due to delayed neutrons by the decay of precursors..

Parameters Az, q, N° K° depend on source Q spectrum.

Since the spectrum for delayed neutrons is different from fission spectrum, additional
calculations for this different spectrum-are necessary. Thus next expression can be used for

1"\1:
AN =(1-B)A? N -S4B; (5.4.19)

p - prompt; d - delayed neutrons; §§ — total fraction of delayed neutrons.
Non-stationary boundary conditions can be written now as follows:

dN = APZONW(Z) - A, Pz )] Nz 02 +A Xzl INW(z.t)/2t] Sz LBz t)+
+8%, . (ZD[ 8 Bi(z,t/022] ;AN =pudN/p lp=g (5.4.20)

whers

AP = AP ¢ (1- BYAP); AP= - SPP ; @P= qPAPy; Spd=- AN /([-ypd )

ypd = jopd o grdA pdNOPd (5.4.21)

C;x - the amount of precursors for group j;j=1,..,d ; J - number of groups of delayed
neutrons.
Then

Bzt =3 A;Cudzt) (5.4.22)

7

The concentrations of precursors C are defined from the next system of equations:
[8C; kl(z,1)/8t] +ACilz,t) = BiWi(zt) ;

Wi(zt) = 0 XZONLZY) - 0, [ Ni(z,)/622], (5.4.23)
B; - fraction of delayed neutrons for group J.

The initial conditions taking account of stationary state at initial moment can be written as
follows:

-ANEAENE = Eo N g=1,...,G (5.4.24)

PkONG/p, = Ao kNok - Aoz k8 “Nox/ 828 Ao =APzox ~[(1-B)Se.kP +BSo.l] @o,P;

CO,jk = (Bj’{?‘dj)[CDO,kpNO.k' (D()z'kpazNo,k/aZ 2]; j:1,... J
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The system of above equations with boundary conditions and initial conditions presents a
closed system of equations for non-stationary dynamic process in a reactor.

Method of solution

Time interval is devided by subintervals and neutron flux is presented as a preduct:
N&(r,z,t) = P(t)D*(r,z.t), (5.4.25)

P(t) - amplitude coefficient; ®2{r,zt) - form - function , weakly dependent on time.
Finite Furie expansion is used for flux and precursors concentrations presentetion:

De(r,zt) =3 we,(r, t)sinanz (5.4.26)

Calat) =5 Co(osinanz

(o=n/H) sin amz - axial modes. Next system of equations can be derived in the moderator:
(11vgDg ) (BW°a/Bt-AA W W =E e W s (5.4.27)
K2gm=EgH(1/v D PP/t m?; g=1,...,G; m=1,... M,

with boundary conditions:

d¥ = A"¥ -S" B (5.4.28)

B(t) = z A Ci(t)s

¥ consists of G-vectors Wi, ; components of A” -matrices and vector S” are as follows:

H
Alean(®) = Qoim)| [AP (z,0) +on? A2,  (Z,)+[1/POI(P(/ADAL i (z,)]sinamzsinanz dz;

g

H
Sk ma(D) = (2o/nP(t)) g [S4 (z,t) +a2n2 S84, (z,1)] sina mz sinc nz dz (5.4.29)

C; -compenents obey the equations:
BC™ /8t +A,C i = PO(BW™)'; (5.4.30)

(Bijk(t))*: (2a/m) 3 Ig Bi (2)[wPu(z)+e?n? ©, (Z)] Wia (t)sina mz sinan z dz.

Applying Furie expansion for initial moment t=t;, we get.

g 2.2 _ -1 e .
-A W0.m + ég-’_a m )Wgo,m_ég-lwg 0.m » g_ls"':G:

dW, = A'¥o; (5.431)

H
App ™= (2a/m) | [Aoy(2) +on? Agz (2)] sina mz sina nz dz
0
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For determination of P(t) consider an adjoint equation:

o+]

B HE Y 0wV ) o (3432
d \{JO+ = A‘[)+ LPO+1
Ayt - transpose of A”y

Multiplying equations (5.4.27 ) by y*'; , and equations (5.4.32) by W% m, Subtracting,
summing by g and by m , taking integrals over r and taking account of Gauss-
Ostrogradsky theorem we can derive the next equation for P in the interval At:

dP(t/dt=(p" (- ¥Ix P() + ¥ AC (1) (5.4.33)
0 = WrTIAY, - AT ()]Wix; CT) = P TS CY(xD)

B =W TS B Wk, BT =% B;
=W TA W, =W TA P .

B,"W"- vector consisting of components (B;Wx")"; AP, A'P- Furie expansions of A -
matrices; p°, B%, G, 1- have an evident physical meaning; x - parameter of
normalization. For derivation of above equations the next condition was used:

d(¥y TARY)/dt=0 (5.4.34)

Multiplying (5.4.30 ) by S * and taking a supposition that it does not depend on time
within a fixed time interval , multiplying by ‘Ws* and taking sum over g, m, k we get an
gquation:

4G (0)/dt =( BYDP() MG (93 5= 1, (5.4.35)

The system of equations (5.4.34), {5.4.35) is a point-like system of differencial equations
with the initial conditions:

P(t)=Po; p* (to)=0; C*j(to):B*j(to')Po/(l(to))\j), 7710 (5.4.36)

Adiabatic approximation

The sources of prompt and delayed neutrons are united and time derivatives in (5.4.27) are
supposed to be zero. For each time point the equations for criticality are calculated. For
point approximation form-function is calculated only for initial state.

Quasi-static approximation

Takes account of space-time dependence of delayed neutrons precursors. The first term in
equation (5.4.27 ) is supposed to be zero. P(t) and its derivative is determined from point
kinetic equation. In this case form-function is calculated by the method of solution of
heterogeneous reactor equation with external source. In a given time interval the value
co=1/P(dP/dt) in (5.4.27) is supposed to be constant and is estimated from a previous time
interval. For the initial moment it is estimated as a value o=po/ly
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6. Perturbation Theory and Optimization

6.1 General formulation

The problem of optimization of reactor characteristics generally can be formulated as
foilows *. Consider a reactor in a steady state. Two types of variables can be defined:
1) u - a set of free parameters ("controls")

(nuclide densities, channel sizes, control rod depths etc.)

uel (6.1.1)
2) vector-flux N - the solution of the equation:
H{u, AIN=0; H{u,A)=H,(u)/A-Hx(u) (6.1.2)

H depends on u and its positive solution exists for a maximal positive eigenvalue A.
Physical parameters (mean power output, critical mass etc.) are given by functionals

F(u,N) (6.1.3)

Consider a perturbation of parameters:
u—utv

Variation of parameters leads to a variation of flux N-—»N-n and a variation of functional

F(N,u) ——>F(N+n?u+v) (6.1.4)

The aim of perturbation theory is to present variation of functional with the accuracy in
linear terms as depending only on free value v, but not n, that depend on v in a
complicated manner , since the equation (6.1.2) must be now valid for N+n, u+v:

E(N+n,u+v)= FON,u)+gN,uv +o(l [ vl1) (6.1.5)

so that g{N,u) operates only on the free variable v, but not on unknown value n.
By definition g(N,u) is the gragient of functional.
Consider a Lagrange function:

Lo(N* N, u)=<N", Hy(w)N>/<N"H,(u)N> (6.1.6)

< > means scalar product for all the independent variables (space, energy).
Let Ny , No™ be the solutions of reciprocal adjoint equations with he same eigenvalue:

HN,=0; H'N, =0, (6.1.7)
The value of Ly with N, N is an inverse value of & :

Lo(Ny ,Ng,w=1/A. (6.1.8)
For a functional of the type

FON,u)=P(N,u)/ Q(N,u); P(N,u)=<L, p(N,u)>; (6.1.9)
QN wy=<Lg (N,u)>
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introduce lagrange function:

Le(N",N,u)=[<N", H(u)N>+P(N,u) /Q(N,u) (6.1.10)

Ly isequal F if N is the solution of equation:
HN()=O
Let N be the solution of the equation (index N means derivative by N)

H'N"=-py+Fgn= - Ty (6.1.11)

Then the variation of L¢ does not depend on n, n", under the variaticn
u—u+v, N—>N+n, N'>N"+n"

That is gradient of functional F is equal:

g=[(N"HNo)+p,-Fq.)/Q (6.1.12)

the brackets ( , ) mean scalar product relative to energy variable; index u - derivative by u.
The independence of functional variation on the variation of 1/A is provided by the
requirement

<N" H,N>=0 (6.1.13)

that always can be fulfilled since N allows an additional term:

N «N+AN, (6.1.14)
and
<N, ,H,Ng>=0; since A=0. (6.1.15)

The gradient of functional 1/A is given by the expression

SLy=guv; 2 =<Ny HNg>/<Ny ,HNy> (6.1.16)

It is essential for linear perturbation theory to be able to find the solution of nonuniform
equation for N* | provided operator H'(u) has a nontrivial solution of uniform equation:
H* (w)No™=0.

The solution exists if and only if the source term is orthogonal to N

<Ng, -PyTFq>=0 (6.1.17)

This condition is fulfilled due to definition of F.
The problem of optimization is formulated as follows.
Let a set of physical restrictions is given in the form

ue-U
ag<Fy=1/A<bga;<Fj<bj,j=1... (6.1.18)

Find a maximal value of functional F
Fi—>max (6.1.19)
if N obey the equation (6.1.2).
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The simplest functionals do not depend on N explicitly, in this case their gradients do not
dependon N .
On the contrary functional of the type:

max p(N,uy/Q (6.1.20)

(flattening factor) gives rise to a set of functionals for "hot" points.
Suppose some u is taken as an initial value and the gradients of functionals are calculated.
The solution of linear programming problem

aﬁ]-FJ < gJV < bj-Fj,jIO,...,J-l, (6121)
gv-—>max, (urviclU :

aliows to improve the solution u-» u+v

{some restrictions are to be applied to v from the requirements that [inear approximation
for functional variations be valid). '

The iteration procedure is defined for step by step variations of v (n=0, ...

until linear programming problem has only zero sclution (with a prescribed accuracy).
For the functional of the type

max p(N,u)/Q

a set of K functionals corresponding to "hot" points is introduced with the restrictions:
g vHw<EFS k=1, K (6.1.21)

and max value

w—nax

is to be found.

At the initial stage, while some of the restrictions are violated some types of "punishing"
functions are introduced, bringing the functionals to their boundaries.
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Formulation of optimization problem for heterogeneous equations in difference form

The above theory is applicable to the solution of optimization problem governed by
heterogeneous reactor equation >

N = H(y,/A-v,)N; H=CFC-Y; F=K+IF (6.1.22)
that can be presented in difference form as follows:

HN=0; H=H,-(I/A)H;;

H, = (PI'K + R)y () Hy = PW(u) + Ry, (w), (6.1.23)

v1{u) = ‘"IC—IA1(”);

v, (1) = =1C"A, (u) + 8ICT

W(u)=17(C™" + Ky, (w).

The lattice and moderator properties are supposed to be fixed, the properties of channels
can be varied by changing the "control” function u; A(u) are supposed to be pre calculated

with u-dependence presented for example by polinomials.
Adjoint operators can be written as follows:

Hy =y (u)(IT'KPT+R™);
Hi = W (u)P" +v; ()R".

(6.1.24)

symbol means transpose relative to energy (group) index.
P* and R’ are the same as P, R (except for the central channel if a symmetric problem is

considered).
The derivative is written as:

H,=PIK+RICTA A, =1/ MDA, — Ay (6.1.25)

sothat F gradients depend on the values

(NT,H,N) = (IT'KP™ + R™INT,ICTIA,N,) (6.1.26)

Uniform adjoint equation for Ny~ is solved by the same method as the equation for N (for

eigenvalue a more exact expression now can be used - functional Lg).
Non-uniform equation is solved as follows (starting from group G)

0" = (1= 0,)0" 0 (TT7 /A + Q)

T = (H))'H5Q = ~(H) (W) T Fiy.
0°=0; 0" >N

(6.1.27)

The eigenvalue is fixed and the inverse of H," is taken by the next iteration procedure:

A;Wg “Qg; AS+E P g+ FY¥2 goR s+ ; Y#:\{W"; (6.1.28)
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Qs=2y* ool KPR )™ +f, — 2 7 %R g By = (W) Fin

g=g+
(=G, G-1,...1)
The component Ny~ can be excluded at the end of iterations by the condition:
(Nj,HlNo)zo. (6.1.29)
The convergence of iteration procedure is provided by next: in a subspace orthogonal to Ny the
spectrum of operator T'/A lays inside the circle of radius unity( A- maximal eigenvalue) so that

T*/A is a compressing operator:

(17 23)(THe, T ) < (A5 7 M )Xo, ) < (0,9, (6.1.30)

Consequently the difference between N;” and its value at iteration m

6’”5@”’—1\1; (6.1.31)
obeys an equaticn
8™ = (1/M)T™8" (6.1.32)

and due to (6.1.30) 8" — 0 if m—ec.

6.2 Minimal critical mass

The problem of minimum critical mass is formulated as follows. Consider a cylindrical
heterogeneous reactor with axially uniform channels placed in a regular lattice (hexagonal
lattice was considered). The core is surrounded by radial reflector . The properties of
reactors and the results of the solution of optimisation problem are given in table 6.1.

1 case
Fission and absorbing properties of channels are supposed to depend linearly on fissile
material concentration. No absorption of epithermal neutrons is supposed.
The solution of this problem for one-dimensional homogeneous case is known and has
been derived by Goertzel: optimal control should provide flat thermal flux in the core.
The solution of the problem stated above is similar: thermal neutron flux on all the channel
surfaces with nonzero control (fuel concentration ) occurred to be constant (table 6.2).
2 case

Tt is supposed that epithermal absorption exists and the As in 3-group approximation
describing epithermal absorption is non-zero and is proportional to JU |, simulating
resonance absorption with self-shielding. The solution appeared to be typical for the case
of resonance absorption: in some of the channels fuel concentration appeared to become
zero (Fig. 6.1, table 6:3) so that in optimal solution a lattice changed to provide higher
probability for neutrons to escape resonance absorption.
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Table 6.1 Minimal critical mass problem;
Case 1 - no epithermal capture of neutrons,
Case 2-with epithermal capture of neutrons.

- 1Case 1 Case 2
Number of groups 2 3
Reactor radius, m 22 2.2
Pitch, m (hexagonal lattice) 0.28 0.20
Neutron age, cm” 120 40:80
Square of diffusion length, cm® | 5500 5500
Number of fuel channels 199 379
Channel radius,cm ' 6.4 6.4
A—matrix 0;- 0;0;-1.0426U
0.95711U
0;0.9C 0:0.05U"%; 0;
0;0;0.9U
Critical mass
initial 199 379
minimal 110.67 38.04

Table 6.2. Case 1. Optimal fuel concentration (upper values) and thermal flux (lower

values)
(initially U=1. for all fuel channels)

0
0.37
0.20 0 0
1.00 075 | = 0.34
1.16 0.66 0.14 0 0
1.00 |. 1.00 1.00 0.67 0.25
1.99 1.59 1.08 0.54 0 0
1.00 1.00 1.00 1.00 0.98 0.50
232 2.21 1.89 1.41 0.86 0.30 0 0
1.00 1.00 1.00 1.00 | 1.00 1.00 0.77 0.30
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Table 6.3 Case 2 . Optimal fuel concentrations (upper values)
and thermal flux (lower values),
(initially U=1. for all fuel channels)

0.47
0.59
0.62 10.54
0.64 10.59
071 10.66 0.51 (041
0.73 10.68 ' 0.57 0351
074 10.72 0.64 [0.57
0.78 10.75 ' 0.66 0.6l
0
O 0 0
0 0 0 0

O 0 0 0 0O
0O X 0 0 0 O
X X 0 0 0o 0 0O
X 0 X X 0 0 0 0O
0O X X 0 X 0 0 O 0O
X X 0O X X 00 O O O
X 0 X X 0 X X 0 0 0O
0O X X 0 X X 0 0 0 O O

Fig 6.1. Minimal critical mass; case 2
(with epithermal capture of neutrons);
o - fuel concentration zero in optimal solution;
x - fuel concentration non zero.
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6.3 Optimal power distribution flattening by control rods movements

The next problem is considered:
for a given set of control rods find its positions giving the best flattening of power
distribution in the reactor.

Optimization problems usually are effectively solved by the method of sequential
linearizing (reducing of initial nonlinear problem to a sequence of linear optimization
problems). Yet due to high nonlinearity of the problem under consideration relative to
control rod positions an alternative approach to the solution of neutron power flattening by
control rods is applied. The method is based on the change of variables - control rod
positions to reactivities inserted by control rods movements (this approach was used in
the work: Afanasiev A.M. “Optima”-computer code for optimal power ditribution ina
reactor”, Preprint ITEP (Russ.), N 112, Moscow, 1982 and applied by Malofeev V.M
(3D power flattening in a heterogeneous reactor, Report ITEP(Russ.), N 804, Moscow,
1992) to heterogeneous reactor. It can be expected that the dependence of power
distribution due to changes of reactivities caused by control rods movements is close to
linear.

Suppose that 3D flux distribution obeys the steady state heterogeneous equation in a
difference form:

Tp=0; T=P-Qy(u); v(wy=v: (K ;) vz (); (6.3.1)

© - MxGxK vector, representing the flux taken as a finite Furie expansion with M axial
modes,

G-number of groups,

K-number of channels

u- [-vector of control rod positions, chosen for

flattening of power distribution (I - the number of control rods),
P and Q - difference operators

The equation for power normalization is as follows:
Pw=<W,N> _ (6.3.2)
Pw - reactor power

W- vector of power coefficients

N - G-K vector flux (recovered from ¢).
Optimal state { pointed out by *) can be supposed to be reached after variations:

w*=ut+du; @*=p+o@; y*=y+dy. (6.3.3)
Take the reactivities p={p;}, i=1,...], caused by control rods positions changes, as new

independent variables instead of u.
Due to criticality cordition the next sum is to be zero:

¥ p=0; (6.3.4)
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pi= ~(0",Qdy2 (0,du)p*) ; 8y, (u,duy) =y2(utdw) -2(w)  (6.3.5)

Su;- vector with i-th nonzero component, g+ the solution of adjoint equation:

T @' =0; T" =P+ (WQ7y'=y" (K ) 72 (W) (6.3:6)

with normalization condition:

(0", Qnie)=1 | (6.3.7)

Symbol " means transpose.
Critical condition does not require that &u, 8¢, &y be small values.
o* is related to @ by an equality:

O* =+ P (6.3.8)
provided ' are the solutions of the equations:
Ty' =g, i=1,2..L

q' = Qi -(QBY2(u,5u)e*)/(0",Qv2(u,3us)p*) (6.3.9)

Due to normalization condition for power:
<W, n>=0 (6.3.10)

n' is related to ' in the same way as N'to ¢'.
Since an arbitrary term constN can be added to v/, the latter can be chosen from the
relation

n = n'-(W,nyYPwN (6.3.11)

so that condition (6.3.10) is fulfilled.

The equations (6.3.4)-(6.3.11) are exact relations between ¢* and ¢ provided critical
condition is fulfilled. But the solution depends on the unknown value ©*.

Suppose an approximate relation exists:

8v2(u,8u)@* ~cidy2(u,6u)¢ (6.3.12)

¢; - unknown constant multipliers. :

This condition is exact in 2D case or if 8y, depends only on thermal neutrons absorption
In 3D case the above relation is rather exact if neutron flux d13tr1but1on across control rod is
changed weakly (but amplitude can change strongly).

Since dy; is not known an additional supposition is assumed

Sya(u,Buy) & 6% 2’ () ' (6.3.13)

with qui defined as a derivative of y» by u;, ¢;* - constant multiplier.
For the case of one variable depending on u; in &y2(u,8u;) the above relation is exact.
Under the above suppositions:
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q =Qnio -(Qrz W) (e .Qra 0) (6.3.14)

Iteration procedure .

The iteration procedure is determined as follows.
For n th iteration suppose ¢" be an n-th approximation to ¢*:

ok = oty plw O = (6.3.15)

p" - n-th approximation to p; as the solution of the next linear programming problem:

i pi" =0;

©"+ ¥ P <P P kK5 (6.3.16)
o< pit <p™; =L L

" => max

By definition:

pi™ = (0", Q81 wui" -ui)e"); (6.3.17)

pi" = (0", Q¥a(uui -ui)o";

g =<Wy, 0> (6.3.18)

and u”,u” are maximal and minimal control rods positions;

K" - the number of potentially "hot" channels . The problem (6.3.16)-(6.3.18) is being

solved until @ (see(6.3.15)) does not converge to ®*, and p"—>p.
Vector du is determined as a solution of transcendental equations:

pi Ho",QdY2(u,5u)o*) =0; i=1,...I (6.3.19)

A new stationary distribution is re calculated with new values u*.

If a necessary flattening of power distribution is not reached, the iteration procedure is
repeated.

The experience:

2D calculation (1 axial mode) needs 1 cycle of iterations; exact solution for 3D case is

usually obtained after 2 cycles of iterations.
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7. Computer Code’ s Descriptions

The methods of heterogeneous reactor theory presented in lectures 1-6 has been used
for the development of computer codes.
The limitations of initial heterogeneous reactor theory were overcome by a transformation
of heterogeneous reactor equations to a difference form and by the development of a
consistent theory for the characteristics of reactor channel or a cell based on detailed space-
energy calculations of a cell. These two main points created the basis for the development
of effective computer codes from codes for detailed space-energy calculations of a reactor
cell (with a simulation of time process) to 3D space-time reactor codes for simulation of
slow processes and fast transients.

The system of computer codes was tested by comparisons with calculations by other
methods (Monte-Carlo, WIMS) and by comparisons with the results of critical experiments
in heavy-water critical assemblies and graphite-moderated, light water-cooled critical
assemblies (RBMK type). The work on verification of the system of computer codes is
continued now.

Computer codes are widely used for the analysis of physical properties of
reactors of different types - heavy-water gas cooled , modular heavy-water moderated,
heavy water cooled, research reactors with high flux, graphite-moderated, gas cooled
(RBMK).

7.1 Reactor cell calculations - steady state and space-time kinetics

Computer code

Name: TRIFON®

Computer: IBM/PC; VAX.

Physical problem solved: calculation of detailed space-energy neutron distribution ina
multi-region reactor cell (with fast, intermediate or thermal spectrum); simulation of
time-dependent nuclear chain transformations in a reactor cell.

Thus generally the solution depends on 3 variables: space - energy -time.

Method of solution®™*'9);
Neutron transport in every group is evaluated by collision probability method (see 3.1) in
multiregion cylindrical geometry and in cluster geometry, by and by S, -method in R-Z
geometry. The system of neutron transport equations is solved for space-energy
distribution of neutrons. The source of neutrons in every group in epithermal region
consists of two parts: due to neutrons scattered from upper groups; due to fissions
corresponding to fission spectrum with the normalization of space energy distribution to
unity. Space distribution of neutrons born by fission is estimated according to a pre-
calculated distribution of fissions by thermal neutrons. This is a weak supposition since in
a cell of small dimenmsions fast neutrons have large mean free paths, the solution weakly
depends on their space distribution and can be improved by iteration procedure.

Energy distribution is based on multi-group approximation. The library may have an
arbitrary fixed group structure (now 26 groups library is used with the upper energy 10.5
Mev).
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A special subdivision of energy scale allows an effective direct treaiment of resonances
for prescribed nuclei (in this case twin isotope has a prefix RZ). Subdivision of lethargy
scale in a given lethargy interval (U , uy ) corresponds to uniform division of F - image

F(u)=F(u)+a, A=F(u,)/n; u=IinE/Ee
where function ( F(ug) =0 ): F(u) roughly estimates absorption by all resonance nuclei
present. This procedure provides accumulation of lethargy points near the centers of
resonances. As a result only a few lethargy intervals ( 5-7 ) are needed to describe
absorption by a given resonance.

The cross-section for a single resonance is determined by Breight-Wigner formula:

The functions w, x for Doppler broadening are calculated as the sofution of the set of
differential equations:

Effective resonance levels technique can be used as well for description of
resonance absorption with reasonable accuracy. A setof parameters
(E,Tp,I+,L,o); L- Doppler-broadening parameter divider, ¢ - constant capture cross-
section in the group where this resonance lays, makes it possible to describe resonance
absorption by a single resonance level instead of tens or hundreds of resonances in a given
lethargy interval. The theory is based on pre calculation of resonance absorption by Initial
set of resonances and effective one in some simple homogeneous model, and the fact that
an approximate equivalency exists between resonance absorption in homogeneous and
heterogeneous systems.

If both energy intervals I and j lay in the basic library scale, scattering cross-sections are
taken from this library; if at least one of these intervals is subdivided for resonance
absorption description, then the model of scattering by free atoms is used with the
probabilities Piof elastic scattering from group i to group j.

Reaction rates and neutron balance

For every isotope k in every region I with nuclear concentration Cy, capture, fission and
multiplication rates up to a flow group j are calculated: Cf, Fiuf , VFiZ ,

and the current along energy axis € g

their total values for the cell:

Ci, Fi, vFi, ¢' and total current of neutrons (from the first group to the given energy, defined
by lower boundary of group i) across the cell boundary: J. :

For all the groups below the lower boundary of fission spectrum
the next balance equaticn is fulfilled:

Cit+Fi4gi+]i=]
(the sum In the left part of above equation can be different from 1
due to (n,2n) reactions).

For zero current across the cell boundary full number of neutrons
reactions by capture and fission is equal to unity:

C+F (+I)=1.

and by definition multiplication factor in both cases (zero or non zero current across
boundary) is equal:

kg = VE;
ke = Koo

if the current J is equal zero.

The problem of space-energy distribution of neutron flux in the thermal region of
energies is solved by subroutine TERMIT.

Time -dependent equations {see (5.1) ) are solved for burn-up simulation.

Nuclear data included in the library:
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- multi-group microscopic cross sections,

- parameters of resonances and effective resonances.

- scattering matrices for neutron thermalization and tables giving the dependence of
absorption and fission cross-sections on energy.

The data for chain transformations (channels for capture, fissions, decay, (n,2n) reactions)
are (and may be ) included in the library.

Input data include only data for geometry and isotope (nuclear densities) composition
(initial for the case of time simulation), power and time points of burnup calculations.
Special language has been developed for input data:

- for geometry and isotope composition,
- a set of orders (pointed by symbol *) to generate the library, to change the basic nuclear
data (editor), to define the special regimes of calculations and for output data.

Qutput :
- space energy distribution of neutron flux {depending on time if necessary),
- reaction rates for nuclei in all physical regions, depending on energy (starting from the
first , fast group)
- multiplication factor,
- few-group cross-sections,
- monopole and dipole (axial and radial) few-group A-matrices (3.3a; 3.3b),
- reaction rate R-vectors.

The latter data are used as an input for 3-dimensional heterogeneous reactor codes and
stored in exchange files.
Programming language: FORTRAN-77.
Tests: comparisons were done with the results of calculations by Monte-Carlo methods
for TRX, BETTIS, MIT reactor cells, for light-water cells NB, for RBMK cells.
Output data for heterogeneous parameters (A— matrices and reaction rates vectors) were
used for investigation of critical assemblies experiments of heavy-water type and critical
assemblies of RBMK type.

Status: anew version is under development to improve the structure of computer code
and the system of input data and to extend it for the case of subcritical systems with an
external source (for simulation of target/blanket accelerator-driven facilities)
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Computer code
Name:TERMIT'®
Computer: IBM/PC; VAX.
Physical problem solved:T space -energy distribution of thermal neutrons ( in the energy
interval from 0 to 0.465 eV or 1 eV) in a reactor cell depending on up and down
scattering of neutrons by chemically bounded nucieus.
Method of solution'>'®:
Space-energy distribution of thermal neutrons in a multi-region cylindrical reactor cell is
the solution of the multigroup system of neutron transport equations.
Piece-wise representation of space-energy dependent functions is used with M groups and
N space regions. :
Scattering matrices
are based on the models:1. diagonal, 2. free gas, 3. Brown-Saint-Johns, 4. Nelkin
5. Koppel-Yang.
Source
The source due to slowing down of neutrons scattered by the nuclides depends on the
atomic mass A and scattering cross-sections of nuclides.
Iterations
The dimension of the problem is MxN with the (MxN)(MxN) matrix as a product of a
systern of N Mx M “energy matrices™ by a system of M N xN “space” matrices.
Simple iteration. procedure for the solution of this system of equations is combined with
2 stage iteration precedure with sequential averaging on space and energy.
The computer code is used now as a subroutine in computer code TRIFON.
The library for thermal neutron consists of a system COMBIB.EXE (FOR}-
to create temporary library from basic data COMBIB.DAT and COMBIB.DBF,
with the indication what elements are to be included and a system of constant cross
-sections. Cross-section library can be changed by any FORTRAN editor
{for example Multi-Edit).
Input data include only data for geometry and isotope (nuclear densities) composition ,
scattering models and are inctuded in the input of computer code TRIFON.
Some data are used by default.
To change the input data for neutron thermalization is possible by changing some
parameters of arrays
(used as NAMES in TRIFON) : ITH, RTH
ITH(1) =0 uniform division of V-scale,
i the centers of groups - in the array RTH, starting
from RTH(2);
2 the boundaries of groups in array RTE;
[TH(2)= 0 standard scattering models;
| models in array ITH, starting from ITH(10},
(models: 1 - diagonal, 2 - free gas, 3 - Brown-Saint-Johns,
4- Nelkin, 5 Koppel-Yang)
ITH(3) - number of groups
ITH(4) = 1 printing of spectrum in points
0 no print
ITH(S) - similar for zones
ITH(6) = 1 printing of flux averaged by spectrum,
0 no print
ITH{8) =1 transport cross-section
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0 scattering cross-section

GROU(50) - number of groups (besides 26th) included in thermal reglon;
by default 1 :25, 26 groups of Abag’ans system are included in thermal region with upper
energy of neutrons 0.465 eV; for value 2 the upper boundary of thermal region - in group
24 -1¢eV).
The order:
*NOTE can be use d to ignore thermalization ; in this case 1-group cross-sections from
Abag’an system are used

Library data are in the file

COMBIB.DBF;
NOTE: The second names used for isotopes in TRIFON should be the same as the names
in thermal part of library. :
(For example U235 has two names: RS and 92235 , the latter
is given in input files for COMBIB)
The isotopes that are to be included in the thermal part of library in TRIFON are to be
given in file

COMBIB.DAT
{second names, in a sequence corresponding the sequence in COMBIB.DBF).
Execution
>run COMBIB
includes these isotopes in the library.
Cutput .
- space energy distribution of neutron flux (depending on time if necessary),
- reaction rates for nuclei in all physical regions, depending on energy are used for overali
calculation in computer code TRIFON.

7.2 2D heterogeneous reactor calculations in monopole and dipole approximations

Computer code
Name:DISHER™'?
Computer: IBM/PC; VAX.

Physical problem solved: 2-dimensional flux, power or reaction rates distribution in a
heterogeneous reactor of finite height with cylindrical outer boundary in monopole or
dipole approximation (in this case with azimuthal dependence of flux on channel
boundary).

Method of solution™'™:

the solution of few-group heterogeneous reactor equation in matrix form (see equation
1.4.12), 2-dimensional problem; dipole approximation; group-theoretical analysis based on
consideration of symmetry groups Cay, Cs, or their subgroups for square and hexagonal
lattices correspondingly is used to decrease the dimension of problem table 4.2.1). The
method of solution of heterogeneous matrix equations is based on an iteration procedure
with line by line multiplications of matrix by vector-flux after preliminary transformation
of the problem to a problem with an operator having some positivity properties (see lecture
4,(4.3.1)-(4.3.9)).

Input data include data on the lattice its loading by different types of channels, symmetry
parameters; the characteristics of channels ( few-group A-matrices, giving the relations
between vector-flux and vector-current on channel or cell boundaries and reaction-rate
vectors) are supposed to be calculated by computer code TRIFON and stored in some
exchange files. The number of fuel assemblies or controi rods - several hundreds.
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Output includes effective multiplication factor Keg, 2-dimensional distribution of
neutron flux (including asimuthal dependence on charnel boundaries in the case of dipole
approximation), power (or reaction rates) distribution and the values that determine the
balance of neutrons- numbers of fissions, neutron captures in channels and so on.

Programming language: FORTRAN-77.

7.3 3D heterogeneous reactor calculations based on a difference form of heterogeneous
reactor equations in monopole and dipole approximations; subcritical systems with
external sources

Computer code

Name: TRECD'®, TRECS™
Computer: IBM/PC; VAX.
Physical problem solved: 3-dimensional flux, power or reaction rates distribution in a
heterogeneous reactor of finite height in monopole or dipole approximation. The channels
are supposed to have non-uniform piece-wise properties in axial direction.
Method of solution®*>% '*%-
the solution of 3-dimensional heterogeneous reactor equations in difference
form (see lecture 2, (2.6.8)-(2.6.11)), dipole (or monopole) approximation, for a reactor
with square or hexagonal lattice (parameters of difterence operators defined in 2.7).
Axial dependence is presented as finite Furie-expansion of few-group vector-fluxes
and A—matrices - characteristics of channels, giving the relations between vector-flux and
vector-currents on channel or cell boundaries (including their axial and radial parts), as
well as reaction rate vectors. The number of axial modes
M, the number of channels K and the number of types of channels T are limited by a
relation 3K+2T(2M+1)< L (where L is of the order 20 000 and depends on the type of
computer), for example calculations can be fulfilled for a reactor with 2000 channels , 100
types of channels and 10 axial modes. '

The method of solution is based on Chebyshev acceleration procedure for outer
iterafions , and symmetric successive over-relaxation method for inner iterations (see 4.4).
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Input data include data on the lattice its loading by different types of channels, the type of
reactor lattice and so on. Channel characteristics (A-matrices, reaction-rate vectors) are
supposed to be pre calculated by computer code TRIFON and stored in some exchange
files.

The ourput includes effective multiplication factor K. , three-dimensicnal distribution
of reaction rates (power distribution) and the values that determine the balance of neutrons-
numbers of fissions, neutron captures in channels and so on.

Programming language: FORTRAN-77.

7.4 Simulation of 3D slow reactor processes with reloading of fuel, control rod
movementis, Xe poisoning.

Computer code

Name: BARS™

Computer: [BM/PC; VAX.

Physical problem solved: simulation of 3D-space time kinetic of a reactor including
burn-up of fuel assemblies, reloading of fuel, control rod movements, change of reactor
power, Xe poisoning and Xe transients, reactivity control by a solution of an absorber in
moderator (boric acid). Axially non-uniform channels are supposed to be placed in the
nodes of square or hexagonal lattice 0f 3D model of a reactor.

Method of solution™**”: heterogeneous reactor equations in a difference form are used for
neutron flux description in a reactor. Some thermal-hydraulic models can be included for
simulation general neutron termal-hydraulic process. Control rods movements can be used
for automatic holding criticality of a reactor.

Time interval is subdivided by fixed points and power dependence on time is a given
function.

Isotopic composition for each part of a fuel assembly or an absorbing rod is supposed to
depend on one or twe parameters - burn up, or fluence, specific power, one of the “main”
nuclides concentrations and so on. It is supposed that channel characteristics, depending on
a number of burn-up parameters and physical properties of channels (A-matrices, reaction
rate vectors ) are pre calculated as function of these parameters by computer code TRIFON
and stored in some arrays.
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The state vector includes the next values (see 5.2, 5.3):
S = (B(),X(T),T(1),U(®)

B=(B{,B?) - burn up, X- Xe concentrations,

T - temperature and density of coolant, U - criticality parameter (control rods depths , Boric
acid concentration or keff)

Non-linear problem is reduced to a sequence of linear problems to resoive the dependence
of temperature and Xe-I concentrations on neutron flux:

Analytical solution of above equations for Xe and I concentrations are used for a given
time interval end point. At fixed time points a decision can be taken for reloading of fuel
assemblies and for power distribution flattening by changing the positions of control rods.
Reactivity effects (for example void effect can be calculated at fixed time points by
additional calculations with the change of some physical properties of channels). Some
thermal-hydraulic medels are included (for heavy water-cooled, gas cooled and

boiling light-water cooled reactors).

Programming language: FORTRAN-77.

7.5 Simulation of 3D fast transients with the effects of prompt and delayed neutrons

Computer code

Name: DINAR™

Computer: IBM/PC; VAX.

Physical problem solved: three-dimensional simulation of time transients in a
heterogeneous reactor with delayed and prompt neutrons.

Method of solution®**?: non-stationary equations and non-stationary boundary
conditions, accounting for a difference in neutron spectrum of prompt and delayed
neutrons are applied for simulation of 3D -space -time transients (see 5.4). The solution is
presented as a product of a 3D function as a solution of 3D stationary equation by &
function describing point kinetic of mean values in the reactor. 3D solutions of
heterogeneous reactor equations for critical reactor and sub critical system with external
source are used for process simulation.

Heterogeneous reactor equations in difference form are used for reactor steady-state
caleulations for a reactor with non-uniform channels in a hexagonal or square lattice. Few-
group time dependent equations in the moderator include the term depending on fast
transients that is included into point-like equation for overall power change simulation A
system of equations in the cell is used for the determination of above parameters:

Time dependent boundary conditions depend on a “time”characteristic

At -matrix that can be calculated (by computer code TRIFON) with a 1/v absorber of
small concentration included uniformly in the celk:

The system of equations include a set of equations for slowly varying function describing
power (or flux distribution), a set of equations for delayed neutron precursors and point-
like equation for fast varying function describing the change of reactor power . Steady-state
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adjoint equations are used for formulation of point-like equations depending on
generalized parameters: time of life of prompt neutrons, mean fractures of delayed
neutrons, change of reactivity.

Adiabatic approximation

The sources of prompt and delayed neutrons are united and time derivatives For each time
point the equations for criticality are calculated. For point approximation form-function is
calculated only for initial state.

Quasi-static approximation

Takes account of space-time dependence of delayed neutrons precursors. P(t) and its
derivative is determined from point kinetic equation. In this case form-function is
calculated by the method of solution of heterogeneous reactor equation with external
source. In a given time interval the value'a,=1/P(dP/dt) is supposed to be constant, is
estimated from a previous time interval and is included in moderator characteristic for a
given time interval.

Programming language: FORTRAN-77.
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8. Numerical Results
& | Reactor cell calculations

Light water systems

As the first example the results of comparisons for light-water TRX cells are presented.
Geometry and nuclear cell composition is presented in table .8.1.1; the results of
calculations by computer code TRIFON(T) *” and by method Monte-Carlo (MC)

(Hardy J. Monte-Carlo analysis of TRX lattices with ENDF/B-3 data, Seminar on P
resonance capture, 1975, BNL-NCS-50541.) - in table .8.1.2.

Next example - for uranium-light water cells (Badalov A F., Kononov, S.L., The results
of Monte-Carlo calculations for light-water lattice cells with different moderator-fuel ratio.
VANT (Russ.) , ser. PHTYAR, 1988, v.3, p. 24-29); the parameters of cells are presented
in table .8.1.3. The results of calculations of conversion ratic (CRR)-absorption by Yy
absorption by *U and K. - in table .8.1.4, reaction rates (normalized to 1 for total
absorption ) -in table .8.1.5. The comparison is given between TRIFON (T), WIMS
and Monte-Carlo ) results (computer code MCU -Liman G.F., Maicrov L.V., Yudkevich
M.S., A complex of MCU programms for the solution of neutron transport probiems
in nuclear reactors by Monte-Carlo method, VANT (Russ.) , ser. PHTYAR, 1985, v.7,

p. 27-31).

Table .8.1.1 Composition of TRX celis

Regicn AR, cm Isotope concentr. ®
(10** cm™)
Fuel 0.4915 U235 0.0006253
U238 0.047203
Gap 0.0127
Clad 0.0711 Al 0.06025
Moderator 0.181 H 0.06676 1.00
O 0.03338
0.373 the same 2.35
0.566 the same 402
0.938 the same 8.11
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Table .8.1.2 Reaction rates for TRX cells by TRIFON (T} and Monte-Carlo (MC);

C -capture, F -fission, t-thermal neutrons, e- epithermal neutrons;  -the ratio of moderator

to fuel volumes; in brackets - statistical error (%) of MC method.

0]
1.0 2.35 4.02 8.11
F-c [T [0.05862 0.03863 0.02836 0.01893
MC  0.05908(0.3) 10.03896(0.5) [0.02873(0.5) [0.01907(0.5) |
8y [C-e T 0.3436 0.1969 0.1290 0.07030
; MC [0.3477(0.3)  [0.1962(0.5)  [0.1294(0.6) _ 10.07035(0.8)
[ C-t T  [0.11295 0.1492 0.15575 0.1424
! MC 0.1125(0.2) [0.1488(0.1)  [0.1548(0.1)  0.1409
L F-e [T  10.07093 0.03898 0.02511 0.01354
; MC  10.07044(0.3) [0.03865(0.4) 10.2501(0.5)  0.01357(0.5)
F-t [T 0.29543 0.39920 0.42017 0.38626 !
MC  [0.29541(0.2) [0.40075(0.1) 0.42032(0.1) 10.38508(0.1)
U IC-e [T 0.03540 0.01950 0.01251 0.00666
MC  0.03151(0.4) [0.01764(0.4) 0.01135(0.5) 0.00601(0.5)
Ct [T [0.05126 0.06841 0.07166 0.06564
MC  0.05187(0.2) [0.06919(0.1) 10.07209(0.1) 0.06573(0.1)
K. T  [1.0502 1.1676 1.1559 1.0194
MC 110517 1.1732 1.1587 1.0185

Table .8.1.3 Composition (107 1/em’ ) and dimensions for uran-water cells (Clad Zr

0.0425)
Parameter Variant
1 3 3 6
Fuel VO, U Uuo, U L0, U
Enrichment % 3.9 2.0 5.9 3.0 7.9 4.0
Fuel
composition
U-235 0.00085 0.00085 0.00128 0.00128 0.00165 0.00165
1J-238 0.0205 0.0409 0.0200 0.0405 0.0197 0.0401
O 0.0426 0.0426 0.0426
Cell radius, 0.693 0.597 0.531
cm
Fuel pin, rad. 0.387
cm
Pin in clad, em 0.455
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Table .8.1.4. The resuits of calculations of conversion ratio (CRR) and K. for uranium-

water cells

Variant TRIFON WIMS [ Mcu
K CRR K. CRR K. { CRR
1 1.449 0.318 1.451 0.311 1.458/.1/ [0.317/.4/
2 1 1.274 0.556 1.282 0.542 1.278/.2/  0.560/.7/
3 '1.417 0372 1.425 0.358 1.421/.3/  10.370/.9/
4 1.239 0.640 1.256 0.607 124172/ |0.643/.6/
5 1.293 0.484 1.314 0.449 1.301/3/  |0.473/1/
5 [1.116 10.832 1.146 0.768 11.113/.4/  10.844/1.1/

Table .8.1.5. Reaction rates in uranium-water cells, C-capture, F -fission for **U and **U.

Var | Method | E>1eV E<leV
iant
C5 F3 C8 F§ Cs F3 1C8
1 | TRIFON [0.0312 |0.0595 0.1576 0.0228 ]0.0877 |0.5124  |0.0622
MCU 0.0301/1 | 0.0605/1 [0.1555/4 [0.0230/1 {0.0869/1 |0.5084/8 |0.0617/1
2 | TRIFON |0.028 00546 |0.2204 |0.0390 |0.0729 104261 [0.1035 |
MCU 0.0273/1 10.0556/1 |0.2206/8 10.039/1 |0.0722/2 10.422/1 10.1024/2
5 {TRIFON [0.1074 [0.2246 10.2900 0.0427 |0.0448 |0.2584 10.0173
MCU 0.1071/5 10.2339/7 | 0.2824/14 |0.0432/1 10.0430/3 | 0.2490/18 | 0.0168/1
6 | TRIFON |0.0884 |0.1898 0.3934 0.0662 10.0334 [0.1931 |0.0264
MCU _ 10.0889/5 [0.1973/8 [0.3951/17 [0.0663/2 [0.0312/3 0.1806/18 | 0.0250/2

Next example -uranium-plutorium-water cells (Williams M.L. et.el., Analysis of thermal
reactor benchmarks with design codes based on ENDF/B-V data. Nuclear Techn., 1985,
vol. 71, p. 386-401). Composition of NB cells is presented in the table .8.1.6.

Table .8.1.6. Composition of NB cells (nuclear densities , 10** cm™; h, s -hexagonale,
square lattice; for NB-2 lattice some amount of B-10 was dissolved in moderator).

Variant
Parameter NB-1 NB-2 NB-4 NB-3
Fuel Uo2 U+Pu o2 U
Fuel composition
U-233 (0.0003112 0.0001304 0.0006465 0.0006%411
1U-238 0.023127 0.02073 0.022559 0.021865
Pu-239 0.0005974
Pu-240 $.00003344
Pu-241 0.0000016
O 0.046946 0.04401 0.04442 0.045047
Pitch, cm 1.5557 (h) 2.210({s) 1.4605(s) 1.166(h)
Fuel pin, rad., cm 0.4864 0.6414 0.508 0.4675
Pin in clad, rad., em | 0.5735 0.7176 0.59474 0.529
Clad comp. AJ{0.04899) | Zr(0.04266) Zr(0.04015) | Al(0.0473054)
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The results of calculations of K., ps (the ratio of epithermal to thermal captures by =)
and conversion ratio CR (the ratio of **U captures to **°U fissions) - in table .8.1.7

Table .8:1.7. The results of calculations of NB cells , in brackets / /-
statistical error of Monte-Carlo method (last digits).

| TRIFON WIMS Moante-Carlo

K. |1.1344 1.1254 1.1471/16/
NB-1  ips 1.375 1.458 1.363/8/
CR 10.804 0.829 0.798/3/
K. |1.1734 1.1640 1.1748/23/
NB-2  |pg 2.526 2.372 2.612/15/
CR_|2.110 2.315 2.148/8/
K. {1.3363 - 1.3424/35/
NB-4 | py 2.666 - 2.654/16/
CR [0.556 - 0.549/2/
K. |1.1302 - 1.1456/17/
NB-5 | pg 8.452 - 8.503/68/
CR {1.015 - 1.006/3/

Computer code TERMIT used as a subroutine in computer code TRIFON has been tested
by comparison with THERMOS code results { Stammlerr R.J.T et.al.Neutron thermalization
in reactor lattice cells: an NPY-project report, Vienna, 1966), compositicn of reactor cells
was taken from the work by Stammler, the results of calculations are presented in the table
.8.1.8.

Table .8.1.8 The ratio of neutron densities and neutron fluxes £, , 8., in moderator and
fuel; the ratio of neutron densities and neutron fluxes & , 6. in clad and fuel; [*]-
calcuiation by THERMOS code, TERMIT - by TERMIT code; e —difference (%) in the
results.

| N1 N2 N3 Y1 Y2 Y3

£ [*] | 1.457 1.576 1.658 1.614 1.745 1.862

TERMIT | 1.438 1.547  11.629 1.598 1.717 1.825

£ -13 -1.8 -1.8 -1.0 -1.6 2.0
S [*] 1.327 1.423 1.490 1.464 1.579 1.683

TERMIT |1.314 1.400 1.468 1.451 1.556 1.654

£ -1.0 -1.6 -1.5 -0.9 -1.5 -1.7
£ [*] 1.178 1.180 1.181

TERMIT |1.172 1.173 1.173

£ 0.5 -0.6 0.7
3, [*] 1.132 1,136 1.137

TERMIT |1.128 1.131 1.132

£ -0.4 -0.4 -04
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Heavy-water systems

An exampie of neutron flux dependence in a two-region heavy water cell with resonance
absorprion by 2* U is shown in Fig 8.1

An example of calculations of heavy-water cells of a Modular heavy-water reactor
(Bergelson B.R,, Kiselev G,V., Chuvilo 1.V., The modular heavy-water reactor (MHWR}
as an energy source for nuclear thermal station and nuclear power station. ENS/ANS-
Foratom Conference Transactions, v.II, p.816-820, 1990 (Lyon, France, Sept. 23-28))
with and without coolant by TRIFON code and MCU (Mente-Carlo) code are presented in
table .8.1.10 (the cell composition - inner region with heavy water, Zr tube, coolant, two
rows of fuel pins, two Zr tubes, heavy-water moderator) . Nuclear densities in fuel pins
(material 1), clad and tubes (material 2}, coolant (material 3) and moderator (material 4} are
given in the table .8.1.5.

Table .8.1.9. Nuciear composition of materials for MHWR
Material Nuclear densities, 107 1/cm’

1 U235 3.0787-4

U238 0.0233

0 0.047364

2 Zr 0.047364
3 like 4 or O 0.0001
4 O 0.035

D 0.066

H 0.0001339

INRAme “‘“’?’”g

W 2

| [ [ I l I ] | f J

0
w0 02 104 {05 108 0 140 150 40 450 1§0u

Fig 8.1 An example of neutron flux dependence on lethargy in fuel rod (1) and in heavy-
water moderator {2) for a two-region cell with 28] resonance absorption.
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Table .8.1.10. Reaction rates and multiplication factor for Modular heavy-water reactor
cell with coolant (D,0) and without coolant (empty); T-TRIFON, M-C -MCU-cluster, M-H
- MCU -homogenized (cylindrical geometry); statistical error by MCU - in brackets / /.

Cs-epi Cg-th Fs -epi
T 0.04762 0.0715 0.00459
D:0 M-C 0.0473/3/ 1 0.0707/3/ 0.0468/6/
1 row M-H 0.0488/5/ ' 0.0656/3/ (.00458/5/
T 0.0402 0.0746 0.005%4
Empty M-C 0.0411/4/ 0.0741/3/ 0.00611/7/
M-H 0.0418/4/ 0.0730/3/ 0.00594/7/
T 0.0649 0.118 0.00670
.0 M-C 0.0648/6/ 0.117/4/ 0.00675/7/
2 row M-H 0.0661/6/ | 0.116/4/ 0.00670/7/
T 0.0613 0.118 0.00835
Empty M-C 0.0620/5/ 0.116/5/ 0.00853/9/
M-H 0.0635/6/ 0.115/4/ 0.00844/9/
T 0.1125 0.190 0.0113
0.0 M-C 0.1121 6.1874 00114
M-H 0.1149 0.1860 0.0113
Total T 0.1015 0.1920 0.0143
Empty M-C 0.1031 0.1899 0.0146
M-H 0.1072 0.1883 0.0144
T 1.3141
D.C M-C 1.3149/38/
Ker M-H 1.3053/40/
T 1.3369
Empty M-C 1.3378/40/
M-H 1.3279/38/

Coolant removal effect SK . =K. /K20 -1:
T M-C M-H
0.01735 0.01740/42/ 0.01730/42/

The cells of critical assemblies MIT
The dimensions and nuclear composition is presented in table 8.1.11. The results of
calculations by computer code TRIFON?” and by Monte-Carlo method (RosensteinW.,
Thermal reactor lattice analysis using ENDF/B-IV data with Monte-Carlo resonance

reaction rates, Nucl. Sci. & Engng., 1976, 59, p.337-349) -in table 8.1.12.

Table .8.1.11. Composition of MIT cells

Region R, cm Isotope concentr.
(10** cm™)
Fuel 1.283 U235 0.0003441
U238 0.04745
Clad 1.354 Al 0.06049
Moderator H 0.000185
D 0.06641
Pitch (hex. lattice), cm O 0.03321
MIT-1 11.43
MIT-2 12.70
MIT-3 14.605
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Table 8.1.12 The results of experiments {Exp), calculations by TRIFON (T) and by

Monte-Carlo method (MC) for MIT cells; pg -the ratio of epithermal to thermal capture
by 2*U, 855 - the ratio of epithermal to thermal fissions by 2351, 844- the ratio of “*U to
255 fssions, C -the ratio of captures of neutrons by “*U to U fissions. Experimental
error is given below measured experimental values.

MIT-1 MIT-2 MIT-3
T IMC  |Exp [T MC |[Exp |T MC  |Exp

03 0481 (0500 |0.498 10383 |0411 [0394 [0.307 |0315 0305
0.008 0.002 0.004

825 0.0452 |0.0462 |0.0447 |0.0369 [0.0376 [0.031 |0.0284 |0.0284 }0.0248
0.001% 0.003 0.0010

Bas 0.0588 10.0579 | 0.0597 |0.0568 |0.0562 |0.0596 |0.0552 {0.0546 |0.0583
0.0020 0.0017 0.0012

C 0958 10965 |1.017 10900 |0913 [0.948 [0.855 |0.856 |0.859
0.023 0.020 0.016

Light-water cooled graphite moderated cell (RBMK type}

The results of calculations light-water cocled graphite moderated ceil by TRIFON and
MCU are presented ion table 8.1.13 ( TRIFON input-output see Appendix)

Table 8.1.13. TRIFON(T) and MCU(M) reaction rates and multiplication factor for REMK

ceils (statistical error of MCU - in brackets / /).

empty water
epi-thermal thermal epi-thermal thermal
U235 M 0.0239 0.0864 0.0153 0.0877
T 0.0243 0.087% 0.0156 0.0886
M 0.0587 0.501 0.0361 0.513
T 0.0539 0.511 0.0342 0.518
U238 M 0.1469 0.1005 0.1072 0.101
T 0.1454 0.1022 (0.1087 0.102
M 0.0185 - 0.0151 -
| T 0.0176 - 0.0145 -
| Ko 1.4147/43/ 1.3790/45/
| T | 1378
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Simulation of burn-up calculations in a reactor cell

The results of bum-up calculations for light-water cell by TRIFON code and comparison
with experimental data (Gabeskiria V.Ya et.al. Atomic Energy (Russ.), 1978, 44, p.446;
Stepanov A.V. et. al. , Atomic Energy (Russ.), 1980, 49, p.225) are presented in Fig. 8.2-
8.8. Input data for TRIFON code are presented below {C ( ) - concentration , RZ means a
twin isotope for resonance absorption calculation, NGRR - the sets of initial groups for
lethargy scale subdivision, NSRE - numbers for subintervals for resenance absorption
calculation, POWER - power Mwt/cm of cell height, TBURN includes time points in years)
* ASSIGN BN
ZONE 1:T=.2, NS=3
C(O)=0.04552,C(U5)=0.0006913,C(U8)=0.02207,C(RZU8)=0.02207
C(UB)=0.,C{RZUS) =0.,C(PUS) =C., C(PUO) =0.,C(RZPUO) =0.,C(PU1) =C.,C(PU2) =O0.,
C(RZPU2) =0.,C(AM3) =0.,C(FP5) =0.,C(FP) =0.,C(FP8)=0.,C(FP1)=0.,C(FP8)=0.,
C(ZEL1) =0..C(ZEL2) =0.,C(ZEL3) =0.,C(XE) =0.

ZONE 2:T=.1, N&=3

“Initial composition the same as in ZONE 1

ZONE 3:T=.0775, NS=3

" Initial composition the same as in ZONE 1

ZONE 4:T=.0775, NS=1, C(ZR)=.0365

ZONE 5:T=.214, N$=5,C(H)=C.052,C{0)=0.026

ZONE 6:T=.018, NS=1,C(ZR)=0.0429

NGRR =17,17.18, 21,22,22,23,24, NSRE=40,6C,10,10
NGROU=26 NGAUSS=7 NZONE=8, =1.204-4, TEMPER=718,71 8,718,578,533,533
TBURN=5,0,3,.17,3,.34,3,.783,5,1.7,10,3.4

*END* '

235U, kg/t

Jo

iff
\,
\\

s o
\\B\G\
1o “':-\
° Mu—
d 5 0 73 P 75 3T Wt , kg/t:

Fig. 8.2. THe dependence of #°U concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
0, O - experimental data -Gabeskiria, Stepanov
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235U , kg/t

40

20 O
o} /
) JT/
3 a s 20

Wt kg/t

Fig. 8.3. The dependence of 23617 concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
0, O - experimental data -Gabeskiria, Stepanov

B3 Yojt
%5 <3 . ]
?:\Q\QD
35 g
\
s \o\
L NG

P 23 o = z5 Jo ‘Wt,kg/t

Fig. 8.4. The dependence of **U concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
0, O - experimental data -Gabeskiria, Stepanov
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m
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i 0 z ad 7 Wt keg/t

Fig. 8.5. The dependence of *’Pu concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
[, O - experimental data -Gabeskiria, Stepanov
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Fig. 8.6. The dependence of 2**Pu concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
O, O - experimental data -Gabeskiria, Stepanov
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Fig. 8.7. The dependence of **'Pu concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),
0, O - experimental data -Gabeskiria, Stepanov
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Fig. 8.8. The dependence of 2**Pu concentration (kg/t) on burnup
Wt (kg/t fission products in a tone of heavy nuclides),

0, O - experimental data -Gabeskiria, Stepanov
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The results of calculations of responce parameter u and boundary condition I (lecture
3.2a) for 4-region channels are presented in table 8.1.14

Table 8.1.14. The resuls of calculations of parameters u and [ in one-velocity theory for
two 4-region channels; AR; - layer thickness, cm, %; , Iy - total and scattering

Macroscopic cross-sections.

N Parameter i
1 2 13 4 Moder. |u T

AR; 5.0 0.1 0.3 0.04

1 P 0.2 | 0.09 3.0-3 0.09 0.4001 |-0.2385 |3.039
T 0.14 0.08 3.0-5  10.08 0.4000
AR; 2.5 0.4 0.3 0.3

2 I 0.5 0.01 2.0 0.01 0.4001 |-0.1830 12.922
T 0.23 0.01 1.98 0.01 0.4000

One-velocity dipole parameters of channels

The results of calculations of polarisability coefficient for one region rods by Py,
P, approximations of spherical harmonics method, by balance method (Kochurov B.P.,
Calculation of dipole moment of a cylindrical rod, Atomic Energy (Russ.),
1965, v.19, N 6, p.530) and by the method, presented in lecture 3.2c (*)are given in table

8.1.15.

Table 8.1.15. Polarisability coefficient B for one region channels

2 Yem! | Z,emt Py P, Balance| *

1.0 107 107 - - 0.7408 |0.7373
0.1 107 107 - - 10.5428 |0.5394
1.0 20.0 001 - - 0.0886 |0.0836
0.1 50.0 0.01 - R 299 1-2.89
1.0 0.15 0.15 0.7391 |0.5469 |0.5880 |0.5857
1.0 0.15 0.075 |0.7409 |0.5545 |0.5944 :0.5909
1.0 0.15 0 0.7425 10.5621 |0.6004 0.5958
1.0 0.5 0.5 0.3333 [0.2914 |0.2979 |0.2976
1.0 0.5 0.25 0.3720 |0.3287 10.3404 |0.3375
1.0 0.5 0 0.4054 [0.3510 |0.3723 |0.3667
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The dependence of B on macroscopic absorption cross-section I, and the dimension of
gap A by present method ( * )— and by method (B) used in the work :

Berna Ph., Comparison between Benoist and Selengut diffusion coefficientsin one-
veloceity theory when absorbing media is present in the cell. -J.Nucl. Energy, 1973, v.27,
p.663. -is presented in table 8.1.16.

Tabte 8.1.16 The dependence of B on macroscopic absorpticn cross-section
T, and the dimension of gap A; * — present method; B- Berna

A, cm Zﬂ,c;[n'1
0.01 0.1 103 0.5
0 * -0.2237 |-0.1246 [0.0088 |0.0868
B 02189 |-0.1232 |0.0102 10.0867
3 * 05511 [0.5695 ]0.5959 {0.6124
B 0.5514 |0.5704 [0.5972 10.6422

8.2 Comparison of calculations by direct equation solutions and solutions of equations in
an approximate difference form

A comparison of the results of calculations by approximate 9-point scheme for
difference equations (with parameters of difference operators from table 2.3.1) and by
direct metod of solution of matrix equations is presented in table 8.2.1.

Next example - calculations for two graphite-moderator critical assemblies with fuel
assemblies of RBMK type . The height of critical assemblies 408 cm, radius 295.5 cm ;
pitch 25 em for square lattice, 26.86 cm for hexagonal lattice, symmetry- 1/4 and 1/6
correspondingly, the fuel assemblies were placed in positions (measured by pitch distance
in square and hexagonal lattice): 00, 1 0,20, 1 1. The results of calculations in monopole
approximation - power W, neutron flux N and Ky by computer codes DISHER (matrix
equation) and TRECD (difference equation, parameters of difference operators taken from
section 2.7) are presented in table 8.2.2, in dipole approximation - in table 8.2.3. The
difference between dipole and monopole approximations in Keg is about 1% for square
lattice and 0.7% for hexagonal lattice, in power and flux distribution - about 3-4%.

The error of difference equation solution relative to direct solution in W and monopole
component of flux for square lattice is about 0.1%, for hexagonal lattice 3-4 times higher,
the error in Keg 1s 0.0005 for square, 0.0015 for hexagonal lattice; the error in dipole
component of neutron flux N' is about 10 %.
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Table 8.2.1. The main reactor characteristics and multiplication factor and flux difference
between direct (computer code DISHER) and difference equation solution {computer code
TRECD), for 9-point scheme in square lattice , with difference operator parameters taken
from table 2.3.1 (lecture 2.3)

N 1 2 3

Numb. of groups 2 3 3

Reactorrad., m 650 500 105

Pitch, m | 0.26 0.20 0.085

Neutron age, cm” 100 "140; 80 80; 40
Diffusion area, cm’ 10 000 50060 10 000
Number of channels | (1}-35; (2)-2 (1)-124; (2)-20; (3)-77 | (1)-124;(2)-97,
Channel radius, cm | (1)-5.7; (2)-2.9 (1)-5; (2)-3; (3)-5 (1)-3; (2)-3

8 Keer <10 <10™ 2.5x10™

8 (Flux) <107 <to” 1.4x107

Table 8.2.2. The results of calculations in monopole approximation by computer codes
DISHER(D) and TRECD(T) , k(k,,k,)- coordinates of channels

Lattice square hex.
k 00 10 20 11 00 10 20 11
W D 1.00 0.869 ;0.683 10.827 {1.00 0.899 |0.680 10.745
T 1.00 0.897 10.683 [0.827 |1.00 0.898 10.679 10.745
N, D 1242 [1.064 |0.556 |0.815 [1.176 [1.049 0.614 10.745
T 1245 [1.064 |0.556 10.816 |1.171 |1.045 |0.613 |0.741
Ny’ D 1.00 0.908 |0.754 |0.878 |1.00 0.901 0725 10.777
T 1.00 0.909 |0.754 (0.879 |1.00 0.900 (0.723 |0.776
Kt D 1.0042 1.0678
T 1.0043 1.0655
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Table 8.2.3. The results of calculations in dipole approximation by computer codes
DISHER(D) and TRECD(T)

Lattice square hex.
k 00 10 20 11 00 10 20 11
W 1.00 0.887 |0.660 [0.808 [1.00 0.891 |0.655 |0.723

1.00 0.887 |0.661 [0.808 |1.00 0.891 10.655 10.724

1253 [1.064 10.541 [0.806 |1.181 |1.046 10.597 0.729

1255 |1.063 |0.541 {0.806 |1.175 ]1.042 ;0.595 ;0.726

1.00 0.899 |0.730 | 0.858 |1.00 0.892 0.697 [0.754

1.00 0.90¢ 10.730 | 0.859 |1.00 0.892 [0.697 |0.754

0.00 0206 (0314 10.381 |0.00 0.140 |0.319 |[0.310

0.00 0.209 |0.320 10.390 0.00 0.139 |0315 10.306

z
sliviiziiviisliviis el lwile e,

IN,'] 0.00 0.105 |0.118 |0.063 [0.00 0.106 10.085 |0.082
0.00 0.111 |0.107 [0.07C__10.00 0.113 | 0.084 10.086
Kes 0.9941 1.0606
0.9946 1.0590

& 3 Reaction rate distributions
Light - water critical assembly

The composition of uranium oxide- water, uranium - water cells (Kouts e.a. Physics of
slightly enriched, normal water lattices (theory and experiment} , In: Proc. Second UN

International Conf. on the Peaceful Uses of Atomic Energy. Geneva, 1958, v. 12, p.446-
482) is presented in table 8.3.1.

Table 8.3.1. Composition of cells for uranium-water critical assembly (37 cells of the ist

type in the central region; 936 cells of 2nd type in outer re gion)
| Type |Region AR, cm Isotope (10** cm™)
Fuel 0.486 U235 0.000303
U238 0.0232
O 0.047
1 Clad 0.071 Al 0.0602
Moderator 0.391 H  0.0666
O  0.0333
Fuel 0.4%0 U235 0.000615
(U238 0.00474
2 Clad 0.071 Al 0.0602
Moderator 0.387 H  0.0666
O  0.0333

Reaction rates distributions (*°U detectors (fissions) and **U detectors (fissions)} -
experimental and calculated by computer codes TRIFON and DISHER is shown in Fig 8.9.
1t should be noted the difference in fast flux distribution and ***U fissions distribution;
theoretical distribution of 2*U fissions(calculated on the basis of reaction rate vectors and
heterogeneous equations solution for flux) is close to the experimental points.

— 144 —



JAERI-Review 94-002

Fig. 8.9. Reaction rates distributions in a uranium-water critical
assembly ; 1- 2°U detectors (fissions), 2- ©**U detectors (fissions) ;
o, A — experiment, solid curves - calculation by computer code
DISHER (solution of heterogeneous matrix equations) ,

- - - - -fast neutron flux.
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RBMK critical assemblies
Examples of reaction rates distribution (Cu detectors) for 3 RBMK critical assemblies
are shown below {upper values - calculation by TRIFON- TRECD, lower-
-experimental values , experimental error about 3%.
Ass. 5 0.86 0.72
087 [0.70
0.84 [1.02 J1.13  1.05  [0.91
0.84 {1.04 115 [1.06 090
094 1.13 [1.24 119|101
094 115 126 1.19  J1.01
0.92 [1.11  1.21 .14 [0.96
0.92 [1.12 122 |1.14  0.96
0.80 [0.96 .05 0.97 0.83
077 096 [1.04 0.7 0.79

Ass.7 0.88 [.o1 093 0.71
089 |[1.03 0.94 0.68
1.11 .25 1113
1.11 127  J1.13
1.12 126 |1.10
1.13 1.27  (1.10
0.68 091 1.01 10.88
0.65 (092 1.02 {0.88

Ass. 8 0.77
0.90 1.03 1.05 0.92
0.89 1.05 1.06 [0.91
1.01 1.18 1.18 1.03
1.02 1.18 1.20 1.06
(.99 1.17 1.18 1.01
1.02 1.18 1.18 1.03
0.87 1.02 1.02 10.90
0.84 1.02  |1.03 0.89

0.66

8.4 Critical experiments

An example of a representative set of critical experiments and its numerical analysis by
heterogeneous reactor code calculations - for the model of a research reactor TWR-M.
The experiments were cariied out in the period 20.12.1983 to 29.06.1984 in an
experimental heavy-tvater facility “MAKET” in ITEP (Shvedov 0.V, Kukushkin Yu. A.
et.el., Experimental and Numerical studies of neutron-physics parameters of the model
of TBR-M reactor on the facility “MAKET” Report ITEP N409, (Part 1 and 2), 1985)
and included 85 critical experiments. The key physical parameters of critical assemblies
are presented in the table 3.4.1.
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Table 8.4.1 The key physical parameters of critical assembiies for the model of TWR-M
reactor

Core, height, D;0 level, m 180 m
Fuel assemblies height 0.6355 m
Number of cylindrical tube fuel elements in a fuel asembly 6
Number of fuel assemblies (3 row with 6 assemblies in hexagonall
lattice) 18
Inner diameter of a heavy-water vessel with a reflector : 260 m
Hexagonal lattice pitch 0.11 m
Lattice pitch for fuel assemblies and SLR channels 0.0635 m
Fuel assembly outer diameter (6 th ring) 0.07 m
U-235 amount in fuel assembly  Refative. Weight{g)

0.791 298.39

0.633 238.57

0.468 176.63
Temperature 17.5-:23.0 grad.C

Steel tube was placed in the center of the core
Al tubes for control rods were placed in the reflector
near themaximum of neutron flux distribution.

The composition of critical assemblies was changed due to

- insertion or removal of Gd neutron absorbing pins in fuel assemblies {diam. 4 and 6 mm);
- filling with D,0 or removal of D,0 in SLR channels

- insertion of Cu tubes in the channels of SLR (diam. 6x0.5 mm or 6x1.0 mm);

- interchange of Al and steel control rods;

- the level of heavy water moderator (upper reflector)

The main part of theoretical values of K lays in the limits

Keg=0.996 £0.002;

6 experimental points - with GD absorbers near 1.005 £0.001

8.5 Calculation of states of Nuclear Power plant

An example of calculation by computer codes TRIFON and TRECD of some steady
states of nuclear power plants with reactor cores of RBMK type , for Ignalina and
Smolensk power stations are showm in table 8.5.1 and some reactivity effects - in the table
8.5.2.
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Table 8.5.1 Multiplication factors for different NPP states

NPP Kenr

Ignalina 1. Basic state 1.0052
2. AH contr. rods removed 1.6330
3. All contr. rods completely inserted ' 0.9537
4. Control rods in basoc state, coolant removed 1.0227

Smplensk 1. Basic state 0.9990
2. All control rods removed 1.0119-
3. All control rods completely inserted 0.9473
4, Control rods in basic state, coolant removed 1.0304

Table 8.5.2. Reactivity effects for NPP

Effect Smolensk | Ignalina
Mean controi rod worth 3.5%x10™ 4.6x10™
Coolant removal effect 0.0334 0.0175

8.6 Simulation of Xe poisoning 30D space - time process

An example of sumulation by computer code BARS (with cell parameters calculated by
TRIFON as function of Xe, I concentrations) of Xe poisoning 3D space-time process for a
heavy-water reactor , based on the work : S.V.Akimushkin, B.P.Kochurov, V.M.Malofeev,
The studies of Xe stability of reactor TR-1000 PB, Report N805 (Russ.), ITEP, 1991.-1s
presented below. _

Xe stability of heavy-water reactor TR-1000 PB at a constant level of power and
without control rod influence on neutron flux distribution was studied. From a steady state
the reactor was shut down for a 10 hour period of time and after that the reactor was put
into operation at 100% power level. Re distribution of Xe concentration over reactor core
during 10 hours period caused a redistributicn of neutron flux, simulation of Xe process
during 140 hours period of time showed the existance of stable periodic oscilations of
neutron flux , I and Xe concentration in x-y plane with a period about 37 hours; no axial
oscillations were discovered. The maximum of neutron flux in the periphery of reactor
core moved a around with a period 37 hours. The oscillations of neutron flux in a channel
(row 9, position 18) is shown in Fig. 8.10, Xe-I oscillations in the phase plane
concentration I - concentration Xe - in Fig 8.11
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- time, hours

Fig 8.10. Time dependence of Xe concentration, 10" cm?, in channel 9,18.

time=60 hours

time = 100 hours

)

Fig 8.11. The dependence of Xe concentration C(Xe), 10" cm™, on I concentration C(I),
10" cm™, in channel 9, 18.
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8.7 Simulation of fast transients on prompt and delayed neutrons

The model of reactor -heavy-water gas cocled , the main parameters are presented in
table 8.6.1. The transients were caused by a chenge of control rods positions - some
inserted , some removed .The results of calculations by computer code DINAR are

presented in table 8.6.2.

Table 8.6.1 Reactor parameters for investigation of transients due to change of control

rod positions (heavy-water, gas cooled reactor).

@actor height, m 5
radius 5
Pitch, m (hex. lattice) 0.43
Channel
number 361
radius, cm 10
Fuel composition , 10* cm™ U238 0.0089; U235 0.00004; Pu239 0.00002
Prompt neutron life time, s 0.0007
Delayed neutron fracturg 0.0058

Table 8.6.2. Power dependence on time- transients due to jump insertion and removal of

control rods ; A-adiabatic, Q-quasi-static, P - point approxomations.

p/B 1=0,5 s =60 s
A Q P A Q P
6 -0,25 0.7576 10,7575 |0,7067 [0,2478 10,2465 10,1809
18 -0,94 04512 10,4476 03762 |0,0582 10,0570 10,0396
12 0.18 1280 1269 [1.158  [8.014 [7.958  [3.492
6 0,09 1020 |1,117_ [1,073  [2,262  [2,258  |1,720
30% -0,23 0,9758 10,7875 103327 |0,34i6 10,2766 |0,0314
42%* 0,18 1,501 |1296 10597 18490 7,135 0,105

* [nserted 6, removed 24 control rods;
** The same for 6 and 36 control rods.

A big difference can be observed between adiabatic, quasi-static and point
approximations (see Lecture 5.4)
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Conclusion

Some new approaches in the development of heterogeneous reactor theory has been
presented in the course of 8 lectures given in JAERI in April-June 1994.

The limitations of initial heterogeneous reactor theory known as Galanine -Feinberg
heterogeneous theory were overcome by general formulation of few-group heterogeneous
reactor equation in dipole approximation, its transformation a difference form and by the
development of a consistent theory for the characteristics of reactor channel or a cell
based on detailed space-energy calculations of a cell. These main points created the basis
for the development of effective computer codes from codes for detailed space-energy
calculations of a reactor cell (with a simulation of time process) to 3D space-time reactor
codes for simulation of slow processes and fast transients.

This work has been carried out in the Institute for Theoretical and Experimental Physics,
Reactor Physics laboratory, starting approximately from 1975.

The main outlines of the theory (difference approach to the solution of heterogeneous
reactor theory and the theory of boundary conditions on the surface of a reactor cell
surface) were developed by B.P.Kochurov , the part for neutron migration with
collaboration with A.Yu.Kvaratzheli, computer code TRIFON was written by
B.P.Kochurov and A.Yu.Kvaratzheli ** (with participation of A.Ya Burmistrov at the
initial stage), computer code TERMIT - by V.M.Michailov "*'%,
computer code DISHER - by B.P.Kochurov™'”, computer code TRECD - by
V. M.Malofeev and S.E.Smirnov %, computer code BARS - by V.M.Malofeev **. The
method for the calculations of fast transients taking account of prompt and delayed
neutrons and computer code DINAR - by A.V.Avvacumov and V.M.Malofeev ),

The system of computer codes was tested by comparisons with calculations by other
methods (Monte-Carlo, WIMS) and by comparisons with the results of critical experiments
in heavy-water critical assemblies and graphite-moderated, light water-cooled critical
assemblies (RBMK type). The work on verification of the system of computer codes is
continued now.

Computer codes are widely used for the analysis of physical properties of reactors of
different types - heavy-water gas cooled , modular heavy-water moderated, heavy water
cooled, research reactors with high flux, graphite-moderated, gas cooled (RBMK). These
codes can find applications for such kinds of reactors as CANDU, FUGEN, ATR.
Additional studies are necessary to understand the possibility of application of these
approaches and computer codes to light-water reactors.

The work for the extension of computer codes for subcritical systems (based on the
modification of code for cell calculations for the case of extended subcritical systems with
modified for this case collision probabilities (A.P.Knyazev) and heterogeneous reactor
equations) and new versions for 3D -space time simulations is under development now.
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presented in the course of 8 lectures given in JAERI in April-June 1994.

The limitations of initial heterogeneous reactor theory known as Galanine -Feinberg
heterogeneous theory were overcome by general formulation of few-group heterogeneous
reactor equation in dipole approximation, its transformation a difference form and by the
development of a consistent theory for the characteristics of reactor channel or a cell
based on detailed space-energy calculations of a cell. These main points created the basis
for the development of effective computer codes from codes for detailed space-energy
calculations of a reactor cell (with a simulation of time process) to 3D space-time reactor
codes for simulation of slow processes and fast transients.
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The main cutlines of the theory (difference approach to the solution of heterogeneous
reactor theory and the theory of boundary conditions on the surface of a reactor cell
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methods (Monte-Carlo, WIMS) and by comparisons with the results of critical experiments
in heavy-water critical assemblies and graphite-moderated, light water-cooled critical
assemblies (RBMK type). The work on verification of the system of computer codes is
continued now.

Computer codes are widely used for the analysis of physical properties of reactors of
different types - heavy-water gas cooled , modular heavy-water moderated, heavy water
cooled, research reactors with high flux, graphite-moderated, gas cooled (RBMK). These
codes can find applications for such kinds of reactors as CANDU, FUGEN, ATR.
Additional studies are necessary to understand the possibility of application of these
approaches and computer codes to light-water reactors.

The work for the extension of computer codes for subcritical systems (based on the
modification of code for cell calculations for the case of extended subcritical systems with
modified for this case collision probabilities (A.P.Knyazev) and heterogeneous reactor
equations) and new versions for 3D -space time simulations is under development now.

Acknowledgments

I wish to express my acknowledgment to the members of Reactor Physics laboratory of
ITEP for their participation in the development of methods and computer codes for
heterogeneous reactor studies. '

I am grateful to Dr. K. Tsuchihashi for his invitation to present a course of lectures on
heterogeneous methods in JAERI and his kind support in preparation of these lectures for
publication. '

— 151 —



JAERI-Review 94-002

References

1) Galanine A.D., Calculation of thermal utilisation factor in a heterogeneous reactor,
Reactor Design and Reactor theory, The reports of the Soviet delegation at international
Conference on Peaceful Uses of Atomic Energy (Geneva, 1955), Moscow, AN USSR,
(Russ.),1955, vel.5, p.236
2) Feinberg S.M. Heterogeneous methods of reactor calculations , ibid., p.152.

3) Kochurov B.P et. al. A difference approach to the solution of heterogeneous reactor
equations. Annals of Nuclear Energy, 1977, V.4, N1, pp.21-25.

4) Kochurov B.P. et. al. 3D heterogeneous reactor calculations. Atomic Energy (Russ.},
1980, v.48, N6, pp.387-388.

5) Kochurov B.P. Numerical methodsin heterogeneous reactor theory, Moscow, -
Atomizdat (Russ.}, 1980 .

6) Kochurov B.P. An advanced method of heterogeneous reactor theory. [zvestiya Akad.
Nauk USSR, Ser. Energy and Transport (Russ.), 1991, N 4, pp. 35-45.

7) Kwaratzhely A.Yu., Kochurov B.P. A methed of calculation of physical parameters in
a heterogeneous reactor celi. Atomic Energy (Russ.), 1985, V.58, N2, pp. 83-91.

8) Auerbach T., Hetercgeneous theory of finite reflected lattices. I. Two-dimensional
multigroup theory with one thermal group and flux-independent cross-sections,
Wurenlingen, Eir Bericht N 100, 1967, II General theory. Influence function representation
and analitycal treatment of uniform lattices, N200, 1670.

9) Berna Ph. A consistent approach of heterogeneous reactor theory leading to a dipolar
formulation. I. Formulation, Journ. Nucl. Energy, 1972, v.26, p.303.

11. Calculation of heterogeneous parameters, p. 319.
10) Blackburn D., Griggs G., Methods for the interpretation and prediction of reactor
power distribution with an application to fuel reactor calculations, ANL-7050, 19635, p.231.
11) Gorodkov S.S. Two-group calculations of heterogeneous reactors by a quasi-atbedo
method, Preprint [AE-2251 (Russ.), Moscow, 1973
3D formulation of quasi-albedo method for heterogeneous reactor calculations,
Preprint JAE-2729 (Russ.), Moscow, 1976.
12) Laletin N.I, Eljshin A.V., Improvement of the method of heterogeneous reactor
homogenisation, Atomic Energy (Russ.), 1977, V.43, N4, p.530.
13) Kochurov B.P. Effective resonance levels. Atomic Energy (Russ.), 1986, v.60, N3,
pp.-176-181.
14)Akimushkin S.V., Kochurov B.P. Effective resonances of 2% U. (Russ.), VANT, ser:
PHTYAR (Russ.), 1991, v.1, p.25.
15) Michailov V.M. TERMIT - computer code for the solution of multi-group integral
equation for thermal neutrons in a cylindrical cell, Preprint ITEP N119 (Russ.), Moscow,
1978. .
16) Michailov V.M., Computer code TERMIT abstract, VANT, ser: PHTYAR (Russ.),
1985, N4, pp.45-47.
17) Kochurov B.P. On heterogeneous reactor caiculations in dipole approximation,
Preprint ITEP-(Russ.), N141, 1976
18) Malofeev V.M. 3D heterogeneous reactor calculation in dipole approximation, Preprint
[TEP N73 (Russ.), Moscow, 1987.

Malofeev V.M., Smirnov S.E. TRECD - computer code for 3D heterogeneous reactor
calculation in dipole approximation. Preprint ITEP N164 -88 (Russ.), Moscow, 1988.
19) Malofeev V.M. Method and computer code for a subcritical heterogeneous reactor with
external source. Preprint ITEP N107 (Russ.), Moscow, 1985

— 152 —



JAERI-Review 94-002

20) Malofeev V.M. 3D burnup and Xe transients simuiation in heterogeneous reactor
accounting for themal hydraulic (computer code BARS). Preprint ITEP N111 (Russ.),
Moscow, 1991. .

21) Avvacumov A.V., Malofeev V.M. 3D delayed neutrons transients simulation for
heterogeneous reactors. Atomic Energy (Russ.), 1991, V.70, N1, pp. 8-12.

22) Kochurov B.P. , Malofeev V.M., Optimization of physical characteristics of a
heterogeneous reactor, Atomic Energy (Russ.), 1979, V.46, N3, pp. 146-148.

23) Kwaratzhely A.Yu., Kochurov B.P., Computer code TRIFON abstract., VANT, ser:
PHTYAR (Russ.), 1985, N4, pp.45-47.

24) Kochurov B.P. On the calculation of effective boundary condition on the susface of a
multi-region cylindrical rod, Atomic Energy (Russ.), 1980, V.48, N3, pp. 151-153

25) Behrens D.J. The effect of holes in a reacting material on the passage of neutrons.
Proc. Phys. Sos., A, 1949, , v.62, p. 107.

26) Kochurov B.P. Calculation of a dipole momentum of a cylindrical rod,. Atomic Energy
(Russ.), 1965, V.19, N6, p.530.

27) Kochurov B.P. Test calculation of physical parameters for critical assemblies TRX,
BETTIS and MIT by computer code TRIFON, Preprint ITEP N164 (Russ.), Moscow, 1980.

— 153 —



JAERI-Review 94-002

Appendix. Tnput-output data for TRIFON code,
RBMK-type reactor cells , 18 fuel pins, water-cooled,
graphite-moderated, with and without water coolant.

VERSIO, 1.04 OT 16. 4.90
ITEF, MOSCOW, 1990,
*ASSIGN BN

*NOPEN, file MVAX1$DUAO,|LAB321, KOCHUROVIFOR001.DAT;3
bk (oot RBME ****** EMPTY, multi-fayer moderator *
! multi-layer coolant air*

*CLUS ’

LB 13,18,1,0,1,100,10,-12

NSUB 2/

RAN .75,0.91,2.29,2.41.3.79,4.,4.4,5.4043,6.5986,

8.01889,9.70788,11.71643,14. {05/

NZR1 L1/

RARL 0.59,.68/

RODI 2,6,1.6,0.,1.,2,12,2.994370061,.80233904,0./

SQ2 0.0/

TTH(1)=2

ITH(6)=0
NGRR=11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,21,26,26
NSRE=10,10,10,10,10,10,10,4¢

GROU=11,17,24.26
NGRO=26 NGAU=7 NZON=]17 NCAN=11

ZONE 1,RV=.75 N8=1,C{(ZR)=0322

ZONE 2, RV=0.91 NS=1

C(O=1.-4

ZONE 3 RV=2.29 NS=I

C(O)=1.4

ZONE 4,RV=.59 N§=1
C(US)=.0005465,C(U8)=022022,C(RZUS)=.022022,C{0)=.045137
ZONE 5,RV=.68 NS=1,C(ZR)=.0425

ZONE 6,RV=2.41 N5=]
C(O)y=1-4

ZONE 7,RV=3.79 NS=1

C(O)=1.-4

ZONE 8 RV=.59 NS=1
C(U5)=.0005465,C(U8)=.022022,C(RZUB)=,022022,C(0)= 045137
ZONE 9RV=68 N§=1,C(ZR)=.0425

ZONE 10,RV=4.0 N5=1

C(O)=1.-4

ZONE 11,RV=4 4 NS=1,C(ZR)=0425

ZONE 12,RV=5.4043 NS=1,C(C)=.0837

ZONE 13,RV=6.5986 N5=1,C(C)=.0837

ZONE 14,Rv=8 01889 N8=1,C(C)=.0837

ZONE 15 RV=9.70788 NS=1,C(C)=.0837

ZONE [6,RV=11.71643 NS=1,C(Cy=0837

ZONE 17, RV=14,105 N8=1,C(C)=.0837

*END*

.......... HORDA= 1.942

CRSBL FOR U5 , HORD= 0.1941E+01 §= 0.9426E+03 TEMPER= 0.2930E+03 GROUPS, 11 23
CRSBL FOR US , HORD= 0.1942E+01 §= 0.2338E+02 TEMPER= 0.2930E+03 GROUPS, 8 21
CRSBL FOR ZR , HORD= 0.1310E+01 §= 0.1839E+02 TEMPER= 0.2930E+03 GROUFPS, 11 24
_..FOR 126 GROUPS AND 34 GEOM. ZONES

LENGTH of Ser. BLOCK FOR SOURCES AND FLUX I3 4284 WORDS
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group | ,from Tto1l 1030000 MEV  10.00000 KEV

GROUPS CROSS SECTIONS..
FLUX CC Cr CNF CE CT CI-I+]

CELL ,0.18001 0.00024 0.00020 0.00054 0.26578 0.26621 0.00846 0.00000 0.00000
CANAL ,0.26310 0.00106 0.00092 0.00251 020727 0.20925 0.00278 0.00000 0.00000
ZONE 1, 0.29553 0.00037 0.00000 0.00000 0.19226 0.19263 0.00050 ¢.00000 0.0C000
ZONE 2, 0.30204 0.00000 0.00000 0.00000 0.000332 0.00033 0.00000 $.00000 0.00000
ZONE 3, 0.29900 0.00000 0.00000 0.00000 0.00033 0.00033 0.00000 ¢.00000 0.06000
ZONE 4, 0.31387 0.00380 0.00376 0.01024 0.31603 €.32358 0.00187 0.00000 0.00000
ZONE 3, (.30347 6.00048 0.00000 0.00000 025156 0.25204 0.00064 0.00000 0.00000
ZONE &, 0.29751 ©.00000 0.00000 0.00000 0.00033 0.00033 0.00000 0.00000 0.00000
ZONE 7,0.27742 0.00000 0,00000 G.00000 €.00033 0.00033 0.00000 0.00000 0.06000
ZONE 8, 0.29754 0.00389 0.00372 0.01013 0.31855 0.32616 0.00198 0.00G00 0.0G000
ZONE 9, 0.28372 0.00049 0.00000 0.00000 0©.25430 0.25479 0.00069 $.00000 0.00000
ZONE 10, 0.25552 0.00000 0.060000 0.00000 ¢.00034 0.00034 .0.00000 0.00000 0.00000
ZONE 11, 0.24607 0.00050 0.0000¢ 0.00000 ©.26288 0.26339 0.00079 0.00000 0.00000
ZONE 12, 0.22370 0.00002 0.00000 0.00000 0.26685 0.26687 0.00751 0.00000 0.00000
ZONE 13, 0.20056 ©.00001 0.00000 0.00000 (127282 0.27283 0.00837 0.00G00 0.00000
ZONE 14, 0.18217 0.00001 0.00000 0.00000 ¢.27781 0.27782 0.60919 0.00600 0.00000
ZONE 15, 0.16780 0.00601 0.00000 0.00000 028185 0.28186 0.00992 0.00600 0.0G0GO
ZONE 16, 0.15793 0.00001 0.06000 0.00000 0.28464 028465 0.¢1047 0.00000 0.00000
ZONE 17,0.15648 0.00601 0.00000.0.,0000G 0.28389 ¢.28390 0.01053 0.00000 0.00000
BALANCE, C+F= 0.4876775E-01, C+F-1=-0.9512323E+00;

REMUV=0,9514192E+00; C+F+REMUV-1=0.186%202E-03

group 2 (from 12 to 17 10.00600 KEV  100.00000 EV

GROUPS CROSS SECTIONS..

FLUX CC CF CNF CE cT C LI+

CELL ,0.11823 0.00072 0.00016 0.00039 0.36241 036330 0.01200 0.00000
CANAL |, 0.11110 0.00522 0.00117 0.00282 0.29672 0.30310 0.00549 0.00000
ZONE 1, (110723 0.00179 0.00000 0.00000 ©.23842 0.24020 0.00087 0.00600
ZONE 2, 0.10681 0.06000 0.00000 0,00000 $.00036 0.00036 000001 0.00000
ZONE 3, 0.10746 0.00000 0.00000 0.00000 ©.00036 0.C0036 0.00001 0.00000
ZONE 4, 0.10619 0.02082 0.00560 0.01356 (.48524 0.51567 0.00430 0.00000
ZONE 35, 0.10707 0.00236 0.00000 0.00000 0.31476 0.31712 0.00115 0.00000
ZONE 6,0.10778 0.00000 0.00000 0.00000 0.00836 0.00036 0.00001 0.00000
ZONE 7,0.11000 ¢.00000 0.00000 0.00000 0.00036 0.00036 0.00001 0.00000
ZONE 8, 0.10827 0.02385 0.00362 0.01361 0.50722 0.53670 0.00430 0.00000
ZONE 9, 0.10954 ©,00237 0.00000 0.60000 0.31456 0.31692 0.00115 0.00000
ZONE 10, 0.11199 0.00000 0.06000 0,00000 0.00036 €¢.00036 0.00001 0.00000
ZONE 11, 0.11265 0.00238 0,00000 0.00000¢ 0.31424 031662 0.00115 0.00000
ZONE 12, 0.11463 0.00600 0.00000 0.00000 0.37291 0.37291 0.01256 0.00000
ZONE 13, 0.11668 0.00000 (.00000 0,00000 0.37292 0.37292 001271 $.00000
ZONE 14, 0.11820 0.00000 0.00000 0,00000 0.37292 0.37292 (.01287 0.00000
ZONE 15, 0.11928 0.00000 0.00000 £.00000 0.37293 037253 0.01300 0.00000
ZONE 16, 0.11997 0.00000 0.00000 0.00000 0.37293 0.37293 0.01310 0.00000
ZONE 17,0.12023 0.00000 €.00000 0.00000 0.37293 (.37293 0.01314 0.000C0
BALANCE, C+F=0.1139829E+00; C+F-1=-0.8860171E+00;

REMUV= 0.8866040E+00; C+F+REMUV-1= 0.5869863E-03

group 3 ,from 18 to 24 100.00000 EV 046500 EV

GROUPS CROSS SECTIONS..

FLUX CC CF CNF CE CcT CI-I+]
CELL ,0.11872 0.60136 0.00050 0.00122 0.36029 0.36215 0.01009
CANAL , 0.10153 0.01067 0.00401 6.00969 026669 0.28137 0.00505
ZONE 1, (.09457 0.00013 0.00000 0.00000 0.19759 0.19772 0.00081
ZONE 2, 0.09359 0.00000 0.0000¢ 0.00080 0.00G36 0.00036 0.00001
ZONE 3,0.09452 0.00000 0.00000 0.00060 0.00036 0.00036 0.0000}
ZONE 4, 0.09201 0.04651 0.02007 0.04858 039759 0.46417 0.00418
ZONE 5, 0.09377 0.00017 0.00000 0.00000 0.26080 0.26097 0.00107
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ZONE 6, 0.0%499 0.00000 0.00000 0.80000 0.00036 €.06036 0.60001
ZONE 7, 0.09919 0.00000 0.00000 0.00000 ¢.00036 0.00036 0.00001
ZONE 8, 0.09561 0.03657 0.02009 0.04861 040165 0.4783] 0.00414
ZONE 9, 0.09821 0.00017 0.00000 0.00000 0.26080 0.26096 0.00105
ZONE 10,0.10321 0.00000 0.00000 0.00000 0.00036 0.00036 0.00001
ZONE 11, 0.10458 0.00016 9.00000 0.G60000 0.26080 0.26096 0.00103
ZONE 12, 0.10862 0.00002 0.00000 0.00000 0.37373 0.37375 0.01112
ZONE 13,0.11351 0.00002 0.60000 0.00000 0.37373 0.37375 0.0109%
ZONE 14, 0.11760 0.00002 0.6000¢ 0.00000 037373 9.37375 0.0108%
ZONE 15, 0.12090 0.00002 0.0000¢ 0.00000 0.37373 037375 0.01082
ZONE 16, 0.12325 0.00002 0.00000 0.00000 0.37373 0.37375 0.01078
ZONE 17, 0.12424 0.00002 0.00060 0.00600 037373 0.37375 0.01076
BALANCE, C+F= 0.2521915E+00; C+F-1=-0.7478085E+0C;

C REMUV= 0.7483930E+00; C+F+REMUV-1=0,5844831E-03

group 4 from 25t 26 046300 EV 000000 EV

GROUPS CROSS SECTIONS..
FLUX CC CF CNF CE CT

CELL ,0.25353 0.00150 0.00322 0.00780 0.35219 0.356%2
CANAL ,0.16454 0.01375 0.03383 0.08188 0.26623 0.31382
ZONE 1,0,12766 0.00386 0.00000 0.00000 0.23486 023872
ZONE  2,0.12295 0.00000 0.00000 £.00000 0.00034 0.00034
ZONE 3,0.12785 0.00000 0.00000 0.00000 0.00034 0.00034
ZONE 4,0.11571 0.07279 ©.19492 0.47170 0.33538 0.60309
ZONE 5,0.12405 0.00507 0.00000 0.00000 0.30997 0.31505
ZONE 6, 0.13025 0.00000 0.00000 0.00000 0.00034 0.00034
ZONE 7,0.15152 0.00000 0,00000 0.0000¢ 0.00034 0.06034
ZONE &, 0.13480 0.07619 0.20510 0.49634 0.33559 0.61689
ZONE 9, 0.14645 0.00535 000000 0.00000 031017 0.31552
ZONE 10, 0.17193 0.00000 0.00000 0.00000 0.00034 0.00034
ZONE 11, 0.17963 0.00562 0.0000¢ 0.00000 0.31037 031599
ZONE 12, 0.20177 0.00020 0.00000 ¢.00000 0.36050 0.36070
ZONE 13, 0.22689 0.00020 0.00000 0.00000 0.36088 0.36109
ZONE 14, 0.24785 0.00021 6.00000 0.00000 0.36110 0.36130
ZONE 15, 0.26479 0.00021 (.00000 0.00000 0.36122 0.36143
ZONE 16, 0.27699 0.00021 0.00000 0.00000 0.36130 0.36151
ZONE 17, 028195 0.00021 0.00000 0.000600 0.36133 0.36154
BALANCE, C+F= 0.10C0583E+01; C+F-1=0.5829334E-03;

REMUV= 0.0000000E+00; C+F+REMUV-1=0.5829334E-03

zones 17#groups 25 #integration nodes 7 #spectrum FISS...... #variant, 0 .......
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*PRINT FULL

kiR togt RBME ***+%* H20 |, multi-layer moderator *

' multi-layer coolant  *

*CLUS

LB 13,18,1,0,1,100,10,-12

NSUB 2%/

RAN .75,0.91,2.29,2.41,3.79,4.,4.4,5.4043,6.5986,
8.01889,9.70788,11.71643,14.195/

NZRL 1,1/

RAR? 0.59,.08/

ROD1 2,6,1.6,0.,1.,2,12,2.994370061,.80233504,0./

SQ2 0,04/

TTH(1)=2

ITH(6)=0

NGRR:I1,11,12,12,13,13,14,14,15,15,16,16,17,17,18,21,26,26

NSRE=10,10,10,10,1¢,10,10,40

GROU=11,17,24,26

NGRO=26 NGAU=7 NZON=17 NCAN=11

ZONE 1,.RV=_75 N8=1,C(ZR}=.0322

ZONE 2,RV=0.91 NS=1

C(H)=.066,C(0)=.033

ZONE 3,RV=2.29 NS§=1

C(H)=.066,C(0)=.033

'CO)=1.-4

ZONE 4, RV=59 N&=1

C(US)=.0005465,C(U8)=.022022,C(RZUB)=.022022,C(0)=.045137

ZONE 3 RvV=68 N3=1,C(ZR)=.0425

ZONE 6, RV=2.41 N&=1

C{H)y=.066,C(0)=.033

ZONE 7.RV=3.79 NS=1

C{H)=.066,C(0)=.033

ZONE 8. RV=59 N5=1

C(U5)=.0005465,C(U8)=.022022,C(RZU8)=.022022,C(0)=.045137

ZONE 9, RV=68 NS&=1,C(ZR)=.0425

ZONE 10,RV=4.0 N5=!

C(H)=.066,C(0)=.033

ZONE 11,RV=4.4 NS=1,C(ZR)=.0425

ZONE 12,RV=5.4043 N5=1,C(C)=.0837

ZONE 13,RV=6,5986 NS=1,C{C)=.0837

ZONE 14 RV=8.0188% ,NS=1,C(C)=.0837

ZONE 15 RV=570788 NS=1,C(C)=.0837

ZONE 16 RV=11.71643 N§=1,C(C)= 0837

ZONE 17,RV=14.105 NS=1,C(C)=.0837

*END*

.......... HORDA= 1.222
CRSBL FOR U5 , HORD= 0,1221E+01 $= 0.1499E+04 TEMPER= 0.2930E+03 GROUPS, 11 23

CRSBL FOR U8 , HORD= 0.1222E+01 $= 0.37[15E+02 TEMPER= 0.2930E+03 GROUPS, 8 21
CRSBL FOR ZR , HORD= 0.6322B+00 S= 0.3809E+02 TEMPER= 0.2930E+03 GROUPS, 11 24
_.FOR 126 GROUPS AND 34 GEOM. ZONES
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group 1 from 1te 11 10.30000 MEV  10.00000 KEV

GROUPS CROSS SECTIONS..
FLUX CC CF CNF CE CT CLI+

CELL ,0.11960 0.00023 0.00024 0.00065 027404 0.27450 0.01287 0.00004 0.00000
CANAL . 0.17115 0.00163 0.00112 0.00308 0.27026 0.27243 0.02683 0.00021 0.00000
ZONE 1, 0.19597 0.00035 0.00000 0.00000 0.18396 0.18431 0.00041 0.00000 0.0G000
ZONE 2,6.20142 0.00013 0.00000 0.00000 €.26553 0.26566 0.08670 0.00074 0.00000
ZONE 3, 0.19268 0.00012 0.00000 0.00000 0.26830 0.26843 0.08985 .00077 0.00000
ZONE 4, 0.21458 0.00350 0.00433 0.0118%9 0.30192 0.30975 0.00148 0.00000 0.00C00
ZONE 35, 0.20168 0.00046 0.00000 0.00000 024018 0.24064 0.00052 0.00000 0.00000
ZONE 6,0.19171 ¢.00013 0.00000 0.00000 0.26760 0.26772 0.08993 0.00077 0.00000
ZONE 7,0.17633 ¢.00012 0.08000 0.00000 $.27369 0.27381 0,09703 0.00084 0.00000
ZONE 8, 0.20314 ¢.00357 0.00432 001184 ©.30354 0.31143 0.00138 §.00000 0.00000
ZONE 9, 0.18659 ©.00047 0.00000 0.00000 0.24254 0.24301 0.00037 0.00000 0.00000C
ZONE 10, 0.15957 .00010 0.00000 0.00000 0.28250 0.28261 0.10738 0.00093 0.00000
ZONE 11, 0.15434 0.00049 0.00000 0.00000 0.25372 0.25421 ©.00671 0.00000 0.00000
ZONE 12, 0.14309 0.06002 000000 0.00000 0.25823 0.25825 §.00672 0.60000 0.00000
ZONE 13, 0.13032 0.00002 0.00000 0.00000 0.26489 0.26490 £.00736 0.00000 0.00000
ZONE 14, 0.11996 0.00001 0.00000 0.00000 0.27049 027050 $.00835 0.00000 0.00000
ZONE 15, 0.11179 0.00001 0.60008 0.00000 0.27504 0.27506 0.00905 0.00000 0.0000¢
ZONE 16, 0.10620 0.00001 0.00000 0,00000 0.27818 0.27819 0.00938 0.00000 0.50000
ZONE 17, 0.10572 0.00001 0.C000C 0.00000 0.27749 0.2775¢ 0.00964 0.00000 0.0000C
BALANCE, C+F= 0.3488538E-01; C+F-1=-0.9651147FE-+00;

REMUV=0.9652418E+00; C+F+REMUV-1=(.1271963E-03

group 2 from 1210 17 F0.00000 KEV 100.00000 EV

GROUPS CROSS BECTIONS.,
FLUX CC CF CNF CE CT CILI+]

CELL ,0.07042 0.00082 0,60016 0.00038 0.38113 0,38210 0.02093 $.00004
CANAL ,0.06419 0.00610 0.00118 0.00285 0.43424 0.44152 0.07205 0.00027
ZONE 1,0.06113 €.00212 ©.00000 0.00000 0.23776 0.23988 0.00091 0.00000
ZONE 2,0.06109 0.00012 0.0000¢ 0.00000 0.55684 0.53696 0,27580 0.00113
ZONE 3,0.06143 0.00012 0.60000 0.00000 0.55685 0.55698 0.27673 0.00113
ZONE 4,0.06021 £.02397 0.00574 (.0I1390 0.51887 0.53058 0.00451 0.00000
ZONE 5,0.06104 0.00281 0.60000 0,00000 0.31387 0.31668 000120 0.06000
ZONE &, 0.06174 ©.00012 0.0000¢ 0.00000 0.55687 0.5369% 0.27718 0.00114
ZONE 7, 0.06297 £.00012 0.060000 0.00000 0.55690 0.55702 0.27843 0.00114
ZONE 8,0.06180 $.02736 0.00576 0.013%94 0.52672 0.55984 0.00453 0.00000
ZONE 9,0.06268 0.00281 0.00000 ¢,00000 0.31367 0.31649 0.0012]1 0.06000
ZONE 10, 0.06460 0.00012 060000 0.00000 0.55692 0.55704 0.27922 0.00115
ZONE 11, 0.06562 £.00281 0.00000 0.00000 0.31352 0.31633 0.00120 0.06000
ZONE 12, 0.06717 0.00000 0.00000 0.00000 0.37292 0.37292 ¢.01305 0.00000
ZONE 13, 0.06883 0.00000 0,00000 €.00000 0.37292 0.372%2 0.01302 0.00000C
ZONE 14, 0.07018 0,00000 0.00000 0.00000 0.37292 0.37292 0.01302 0.00000
ZONE 15, 0.07125 0.00000 ¢.00000 0.00000 0.37292 ¢.37292 0.01302 0.00000
ZONE 16, 0.67201 0.00000 0.00000 0.00000 0.37292 0.37292 0.01303 0.00000
ZONE 17, 0.07231 0.00000 0.00000 0.00000 0.37292 0,37292 0.01304 €.00000
BALANCE, C+F=0.7780000E-01; C+F-1=-0.9222000E+00;

REMUV= 0.9227269E+00; C+F+REMUV-1=0.5269051E-03

group 3 Jdrom 18 to 24 100.00000EV 046300 EV

GROUPS CROSS SECTIONS..

FLUX CC CF CNF CE CT CI-I+)
CELL ,0.07360 0.00178% €.00052 0.00127 037729 0.37959 0.01776
CANAL ,0.06513 0.01354 0.00403 0.00976 0.4010% 0.41867 0.06295
ZONE 1, 0.06023 0.00014 0,00000 0.00000 0.19759 0.19773 0.00078
ZONE 2,0.06017 0.00172 0.00000 0.00000 0.56541 0.56714 0.24439
ZONE 3, 006104 0.00172 G.00000 0.00000 0.56541 0.56713 0.24369
ZONE 4, 005797 0.06344 0,02047 0.04953 0.40289 0.48680 0.00411
ZONE 5, 0.05990 0.00019 0.00000 0.00000 0.2607% 0.26098 0.00104
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ZONE 6,0.06174 0.00172 0.00000 0.00C00 0.56541 0.56714 0.24420
ZONE 7,0.06412 0.00172 0.00000 000000 0.56541 0.56713 ©.24330
ZONE 8, 0.06078 0.06778 0.02047 0,04953 0.40428 (.492352 0.00410
ZONE 9,0.06301 ¢.00019 £.00000 000000 0.26079 ¢.26698 0.04103
ZONE 19, 0.06694 0.00172 9.00000 0.00000 0.56541 0.56713 0.24207
ZONE 11, 0.06789 0.00019 ©.00000 0.00000 026079 0.26098 0.00102
ZONE 12, 0.06952 0.000¢2 0.00000 0.00000 037373 0.37375 0.01107
ZONE 13, 0.07157 ¢.00002 0.00000 0.00000 037373 0.37375 0.01104
ZONE 14, 0.07331 ¢.00002 0.00000 0.00000 037373 0.37375 0.01102
ZONE 15,0.07472 0.00002 0.00000 0.00000 0.37373 0.37375 0.01101
ZONE 15, 0.07573 0.00002 000000 0.00000 ¢.37373 0.37375 0.01100
ZONE 17, 0.07615 0.00002 0.00000 0.00000 $.37373 0.37375 0.01160
BALANCE, C+F=0.1837328E+00; C-+F-1=-0.8162672E+00;

REMUV= (.81678 [0E+00; C+F+REMUV-1=0.5137920E-03

group 4 from251026 046500 BV 0.00000 BV

GROUPS CROSS SECTIONS..

FLUX CC CF CNF  CE CT CI-I+]

CELL ,0.24634 0.006194 0.00337 0.00815 0.397%0 0.40321
CANAL ,0.17047 0.01714 0.03314 0.08019 0.71631 0.76658
ZONE 1, 0.11124 0.00433 0.00000 0.00000 0.23523 €.23956
ZONE 2,0.11262 0.01644 0.00000 0.00000 2.05527 2.07171
ZONE 3,0.11832 0.01646 0.00000 0.0000G 2.05695 2.07341
ZONE 4, 0.10050 0.07970 0.21559 0.52173 0.33575 0.63104
ZONE 3, 0.11042 0,00562 0.00000 000000 0.31040 0.31603
ZONE 6,0.12902 0.01665 0.00000 0.0000¢ 2.07380 2.09045
ZONE 7, 0.15060 0.01693 0.00000 0,0000¢ 2.09911 2.11604
ZONE 8 0.12838 0.08223 0.22325 0.54027 0.33584 0.64131
ZONE 9, 0.14155 ©.00580 0.00000 0.00000 0.31053 0.31633
ZONE 10, 0.18758 0.01754 0.00000 0.6000¢ 2.15454 2.17208
ZONE 11, 0.20511 0.00619 0.00000 0.0000C 0.31081 ©.31700
ZONE 12, 0.21880 0.00022 ©.00000 0.00008 0.36176 0.36198
ZONE 13, 0.23394 6.00022 0.00000 0.00000 0.36182 0.36204
ZONE 14, 0.24663 0.00022 0.06000 0.00000 0.36186 0.36208
ZONE 15, 0.25692 0.00022 0.00000 0.00000 0.36189 0.36211
ZONE 16, 0.26433 0.00022 0.00000 0.00000 0.36191 0.36213
ZONE 17, 0.26737 6.00022 0.00000 0.00000 0.26192 0.36214
BALANCE, C+B=0.1000517E+01; C+F-1=0.5170107E-03;
REMUV= 0.0000000E+00, C+F+REMUV-1=05]70107E-03
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