JT-6OU用負イオンNBI装置の建設

2001年11月

河合 視己人・秋野 昇・海老沢 昇・本田 敦・伊藤 孝雄
桃澤 稔・栗山 正明・澤垣 和彦・大賀 徳道・大原 比呂志
奥村 義和・佐藤 藤男・薄井 勝富・山本 正弘・渡邉 和弘

日本原子力研究所
Japan Atomic Energy Research Institute
本レポートは、日本原子力研究所が不定期に公刊している研究報告書です。
入手の問合わせは、日本原子力研究所研究情報部研究情報課（〒319-1195 茨城県那珂郡東海村）あて、お申し越しください。なお、このほかに財団法人原子力弘済会資料センター（〒319-1195 茨城県那珂郡東海村日本原子力研究所内）で複写による実費頒布をおこなっております。

This report is issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 〒319-1195, Japan.

©Japan Atomic Energy Research Institute. 2001
編集兼発行　日本原子力研究所
JT-60U用負イオンNBI装置の建設

日本原子力研究所那珂研究所核融合装置試験部

河合 視己人・秋野 昇・海老沢 昇・本田 敦・伊藤 孝雄

杉原 稔・栗山 正明・MERCHANTABILITY和彦・大賀 徳道・大原 比呂志

奥村 義和・佐藤 藤男・薄井 勝富・山本 正弘・渡邊 和弘

(2001年10月1日受理)

JT-60U用負イオンNBI装置（N-NBI）は、世界初の負イオン源を用いた高エネルギー中性粒子入射加熱装置で、JT-60Uにおけるプラズマ中心部の高密度領域でのビーム電流駆動と加熱の実験を行うことを目的に、1996年3月に完成した。N-NBIは、イオン源2台、ビームライン1基、イオン源用電源、その他の設備から構成され、装置の建設終了後、イオン源や電源の調整試験や改良を行いながら初期プラズマ加熱実験を行った。1997年9月より本格的加熱実験を開始し、ビーム性能向上のための試験を行うしながら、現在までに最大400keV、5.8MWの重水素ビームのプラズマへの入射を達成した。現在もビームエネルギー、及び入射パワーの増大のために各種改良を加えながら入射実験を行っている。
Construction of Negative-ion Based NBI for JT-60U

Mikito KAWAI, Noboru AKINO, Noboru EBISAWA, Atsushi HONDA, Takao ITO*1, Minoru KAZAWA, Masaaki KURIYAMA, Kazuhiko MOGAKI, Tokumichi OHGA, Hiroshi OOHARA, Yoshikazu OKUMURA*2, Fujio SATO, Katsutomi USUI, Masahiro YAMAMOTO and Kazuhiro WATANABE*3

Department of Fusion Facility
Naka Fusion Research Establishment
Japan Atomic Energy Research Institute
Nakamachi, Naka-gun, Ibaraki-ken

(Received October 1, 2001)

The world's first negative-ion based neutral beam injector (N-NBI) system has been developed for studies of non-inductive current drive and plasma core heating with high energy neutral beam injection in higher density plasma. Construction of the N-NBI system for JT-60U was completed in March 1996. The system is composed of a beamline with two ion sources, a set of ion source power supplies, control system and auxiliary sub-system such as cooling water, refrigeration and vacuum system. In July 2001, deuterium neutral beam injection of 400keV and 5.8MW into JT-60U plasma was achieved. In order to increase both beam power and energy we have to go on more improvement of the N-NBI.

Keywords: Negative-ion Based NBI, JT-60U, Neutral Beam Injection, Ion Source, Beam-line

+1 Department of Administrative Services +2 Office of ITER Project Promotion
+3 Department of Fusion Engineering Research
目次

1. はじめに ... 1
2. N-NBI 装置の概要 ... 1
 2.1 基本性能及び構成 .. 1
 2.2 パワーフロー ... 5
 2.3 建設工程 ... 5
3. 各部構成の詳細 ... 17
 3.1 イオン源 ... 17
 3.1.1 全体仕様 ... 17
 3.1.2 負イオン生成部 .. 18
 3.1.3 引出部 ... 18
 3.1.4 加速部及び絶縁カラム ... 19
 3.1.5 セシウム導入装置 ... 20
 3.2 ビームライン ... 26
 3.2.1 共通仕様 ... 26
 3.2.2 イオン源タンク部 .. 26
 3.2.3 中性化セル部 .. 28
 3.2.4 イオンタンク部 .. 30
 3.2.5 NBI ポート部 .. 33
 3.2.6 計測設備 .. 34
3.3 電源 .. 63
 3.3.1 負イオン生成部電源 ... 63
 3.3.2 引出電源 ... 65
 3.3.3 加速電源 ... 66
 3.3.4 SF₆ガスダクト、高電位テーブル ... 67
 3.3.5 サージ抑制機能 ... 67
 3.3.6 偏向コイル電源 ... 68
 3.3.7 受配電設備 ... 69
3.4 補機設備 .. 74
 3.4.1 1次冷却系 ... 74
 3.4.2 補助真空排気系 ... 75
 3.4.3 冷媒循環系 .. 76
3.5 制御系 .. 82
4. 調整試験運転 ... 93
 4.1 初期試験運転結果 ... 93
 4.2 主なトラブルと対策 ... 94
5. おわりに ... 98
参考文献 ... 98
Contents

1. Introduction ... 1
2. Outline of N-NBI System ... 1
 2.1 Specification and Composition ... 1
 2.2 Power Flow .. 5
 2.3 Construction Schedule .. 5
3. Details of Composition ... 17
 3.1 Ion Source .. 17
 3.1.1 Common Specification .. 17
 3.1.2 Plasma Generator ... 18
 3.1.3 Extractor .. 18
 3.1.4 Accelerator and Insulator .. 19
 3.1.5 Cs-oven Controller ... 20
 3.2 Beam-line Components ... 26
 3.2.1 Common Specification .. 26
 3.2.2 Vacuum Vessel for Source ... 26
 3.2.3 Neutralizer ... 28
 3.2.4 Vacuum Vessel for Ion-dump ... 30
 3.2.5 Drift Tube .. 33
 3.2.6 Diagnostics .. 34
3.3. Power Supply ... 63
 3.3.1 Plasma Generation Power Supply ... 63
 3.3.2 Extraction Power Supply .. 65
 3.3.3 Acceleration Power Supply .. 66
 3.3.4 SF₆ Gas-duct and High-voltage table ... 67
 3.3.5 Countermeasures for Surge Voltage .. 67
 3.3.6 Bending Coil Power Supply ... 68
 3.3.7 Power Distribution System .. 69
3.4. Auxiliary Sub-system ... 74
 3.4.1 Cooling Water System ... 74
 3.4.2 Vacuum System ... 75
 3.4.3 Refrigeration System ... 76
3.5 Control System .. 82
4. Initial Results of N-NBI Operation .. 93
 4.1 Initial Results .. 93
 4.2 Troubles and Countermeasures .. 94
5. Conclusion ... 98
References ... 98
1 はじめに

JT-60U 用負イオン NBI 装置（以下、N-NBI 装置という）は、JT-60U における高密度領域でのプラズマ中心部のビーム駆動と加速の実験を行うことを目的としている。この N-NBI は、イオン源 2 台を持つビームライン 1 基とイオン源用電源などから構成され、1996(平成 8)年 3 月に初めて JT-60U へ中性粒子ビームの入射に成功した後、イオン源や電源の特性試験や改良、調整を行いながら初期プラズマ加熱実験を実施した。1997(平成 9)年 9 月よりビーム出力向上のための改良試験を行いながら、本格的な加熱実験を開始し、現在までに最大 400keV、5.8MW の重水素(D9)のビーム入射を達成したところである。また、入射パルス幅については、イオン源 1 台の運転ながら、最長 5.3 秒の入射を達成している。

N-NBI 装置の設置においては、その工程を 2 期に分けて、早期立ち上げの実現と信頼性的向上を図った。すなわち、先ず第 1 期分の設置により、イオン源及びイオン源用電流の調整試験を実施し、その結果を可能な限り第 2 期製作分のうち 1 台のイオン源及びイオン源用電源に反映させつつ、残りのビームライン等構成機器をすべて製作し、JT-60U へのビーム入射実験を実施した。

この N-NBI 装置について、1995(平成 7)年度から実施された、装置の設置及び初期調整試験結果を中心に報告する。

2. N-NBI 装置の概要

2. 1 基本性能及び構成

2. 1. 1 N-NBI 装置の基本性能

N-NBI 装置の最終目標とする基本性能は次のとおりである。

- ビームエネルギーや最大 500keV
- 入射パワーや最大 10MW
- パルス幅や最大 10 秒
- 繰返し率や 1/60 以下
- ビーム種や重水素又は水素
- トーラスへのガス流入量や 0.1Pa・m³/s 以下

N-NBI 装置のビームラインの座標軸及び名称の定義、JT-60U トーラス中心との関係を第 2.1.1 図に示す。

2. 1. 2 N-NBI 装置の基本構成

N-NBI 装置の基本構成は次のとおりである。これらの全体構成ブロック図を第 2.1.2-1 図に、また、実験棟本体室／組立室内の機器配置図を第 2.1.2-2 図に示す。
イオン源

イオン源は重水素又は水素プラズマから負イオンのみを引出してビームとして加速するもので、セシウム添加型体積生成方式を採用した負イオン生成部、電子を分解して、負イオンのみを引出す引出部、引出部からの負イオンを最終エネルギーの 500keV まで加速する加速部、及びそれらを電磁的に絶縁・支持する絶縁カラム等から成る。1 ビームラインに上下 2 台のイオン源（上側をイオン源 U、下側をイオン源 L と呼ぶ）が設置されている。

イオン源の目標とする性能は次のとおりである。

・負イオン生成方式：セシウム添加型体積生成方式
・ビーム種：D^-/H^-
・ビームエネルギー：500keV
・ビーム電流：重水素 22A
・水素 22A
・パルス幅：10 秒
・ビーム発散角：5mrad 以下
・ビーム焦点距離：23.66m

負イオン生成部には重水素又は水素ガスが導入され、タングステンフィラメントとアークチャンパ壁との間でアーク放電が行なわれる。ソースプラズマ中では、セシウムとフィルタ磁場の効果により負イオンが生成される。また、引出される負イオン電流密度と電子電流密度を最適化する目的で、プラズマ電極とアークチャンパ間にはバイアス電圧が印加される。

引出部はプラズマ電極、引出電極、それに電子抑制電極の 3 種の多孔型電極から成り、ソースプラズマ中に生成された負イオンを引出す。負イオンと同時に引出される電子は引出電極に埋込まれた永久磁石による横磁場を用いて偏向させ、引出電極に衝突させて熱的に処理する。負イオンは、この横磁場による影響を受けることなく最大 10KeV まで加速され加速部に入射される。

加速部では、引出部からの負イオンビームを 3 段加速により最大 500keV まで加速する。各段には最大 180kV の電圧が印加できる。各段の電界強度を制御することによって生ずるレンズ作用を最適化することによりビームは集束され、発散角（1/e の半価幅）が 5mrad の集束性の良いビームを得ることを目標としている。

引出部と加速部が収納される絶縁カラムは、繊維強化プラスチック材料 (FRP) で製作されており、3 段で構成され、各段間の耐電圧は 200kVDC である。この各段間にはイオン源内部での
放電破壊発生時に、過渡的に耐電圧性能以上の電圧が印加されるおそれがある。この際、絶縁物表面で沿面放電を生じて表面が炭化し、その絶縁性能を著しく損なう可能性が高い。この沿面放電を防止するために、各段間にはイオン源側に、約180kVで放電する球ギャップを設置している。また、絶縁カラムは、負イオン生成部、引出部、加速部、及びそれらへの配線、配管の重量に耐える十分な機械的強度を有するよう製作した。

イオン源各部は、高い熱負荷を受けるため、水冷構造となっている。イオン源電極の冷却水は、冷却水ベッダから分岐され、電気絶縁配管によって各部へ供給される。負イオン生成部と引出部の各電源ケーブルは、イオン源近傍に設置されたイオン源保守ステージの端子台から、負イオン生成部と引出部のプラズマ電極と引出/電子抑制電極に接続される。加速部の各電源ケーブルはイオン源タンク上方のSF₆ガスダクトの各段出力端子を起点とし、加速電源出力ケーブルは高電圧ケーブル及びイオン源保守ステージを通って引出/電子抑制電極に接続され、第1加速、第2加速の各段出力ケーブルは限流抵抗を通ってイオン源各段に直接接続される。また、JT-60Uからの漏洩電場を遮蔽するために、負イオン生成部、引出部、加速部は単層の磁気シールドが設置されていた（しかし、内部の放電破壊を抑制する目的で、加速部、引出部の磁気シールドは1999年に撤去した）。

(2) サイズライン

ビームラインは、イオン源で加速されたイオンビームを中性ビームに変換してトーラスに入射するとともに、中性化されなかった残留イオンビームを熱化・処理するために、イオン源タンク部、中性化セル部、イオンダンプタンク部、及びNBIポート部から構成される。

イオン源タンクには、イオン源及び角度調整機構が取付けられ、タンク内部にはイオン源電極部の真空度を良くしてストリッピング損失を小さくするために大容量クライオポンプが設置されている。またJT-60Uからの漏洩電場によるイオンビームの偏向を防止するために、イオン源タンク部は2重の磁気シールド構造となっている。

中性化セルは長さ約10mで、イオン源U/Lに対応して2系統設置され、その中間部には必要なガス導入孔とガス導入孔が設置されている。セル内壁はビーム周辺部の一部発散成分による熱負荷を受けるため水冷されている。中性化セル全体は、イオン源タンクと同様に、二重磁気シールド構造である。

中性化セル出口では、中性ビームとその出力の約20%に相当する残留負イオン(D−)ビーム、及び正イオン(D+)ビームがそれぞれ存在する。残留イオンビームは、JT-60Uからの漏洩電場によって、負イオンと正イオンはそれぞれ左右逆方向に曲げられ、左右両側に設置されたイオンダンプに衝突して熱化される。漏洩電場は時間的に変化するため、これを補正する偏向コイルが設けられている。イオンダンプタンク内部には偏向コイル、イオンダンプの他、イオン源調整運転時の中性粒子ビームのターゲットであるカロリメータ、大容量クライオポンプ、仕切板、光プロファイロメトリ等が設置されている。

NBIポート部は、JT-60UとNBIを真空的に切離すための圧空式ゲート弁(GV1)及び真空容器内の大気開放作業時の安全確保用の手動式ゲート弁(GV2)、電気絶縁のための絶縁リング、接続ベローズ、NBIポート等から構成される。また、NBIポート内壁には中性粒子ビーム及び再電離イオンビームの内壁への直撃を防止するための保護板やビームレミタが設置される。
ビームライン全体構造を第 2.1.2–3 図に、ビームリミタ設置図を第 2.1.2–4 図に、それぞれ示す。ビームライン各部のビームパワー密度分布の計算予測図を第 2.1.2–5 図に示す。

（3）電源系

電源系はイオン源用電源及び受配電設備から構成される。イオン源用電源は負イオンを生成するための負イオン生成部電源、負イオンをソースプラズマから引出すと同時に電子を分離処理するための引出電源、負イオンを最大 500keV まで加速するための加速電源、SF₆ ガス絶縁のケーブルダクト、サージプロッカ、イオン源ガス導入系、それに偏向コイル電源等から構成される。

負イオン生成郡電源は、フィラメント電源、アーケ電源、バイアス電源、PGフィルタ電源から構成される。フィラメント電源は合計 48 本のタングスタンフィラメントを加熱し熱陰極とするためのものである。アーケ電源は、フィラメントとアーケチャンバとの間にアーケ放電させるための電源である。バイアス電源は、プラズマ電極をアーケチャンバに対して正の電位にバイアスし、負イオンと同時に引出される電子の量を抑制するためのものである。PGフィルタ電源はプラズマ電極自身に通電してフィルタ磁場を作るためのものである。

引出電源は、最大 10keV まで負イオンを加速し、負イオンを引出す（同時に電子も引出す）ための電源である。適切な引出電圧を印加することにより加速部のビーム光学に最適なエミッタンスを持つ負イオンビームを発生できる。

高電位テーブルは、最高 490kV までの高電位に浮いた状態で使用する、負イオン生成部電源及び引出電源の各電源機器を収納するためのものである。

加速電源は、10keV で加速部へ射出された負イオンビームを最終的に 500keV まで加速するための電源である。加速電源は 3 つの直流電源を 3 個に積み重ねたもので、それぞれ最大で、-490kV、-360kV、-180kV の電位を供給するものである。加速電源はインバータによる交流側スイッチング方式を採用し、イオン源加速部での放電破壊時の遮断時間は 200μs 以下である。

イオン源の引出部及び加速部電極間においては、高い頻度で放電破壊が発生し、これが原因となってイオン源用電源に向かってサージが伝播する。このサージによって電源が破損するのを防止するために、引出電源、負イオン生成部電源を収納している高電位テーブルからイオン源への給電ケーブル送出し部にサージプロッカが設けられている。

（4）補機設備

a）1 次冷却系

冷却対象機器は、イオン源、中性化セル、イオンダブ、カロリメータ、ビームリミタ及び電源設備の一部等であり、冷却水は既設の正イオン NBI 装置の 1 次冷却系より供給される。

b）補助真空排気系

補助真空排気系は、クライオポンプの作動領域まで N-NBI の両タンク内の真空引き、クライオポンプ再生時の再生ガスの排気、及びイオン源短パルス運転時の作動ガス排気の、3 種の役割を担う設備であり、イオン源タンク、イオンダブタンクを真空排気する。粗引ポンプ系は正イオン NBI 装置の補助真空排気系設備を共用する。

c）冷媒循環系

冷媒循環系は、イオン源タンク、イオンダブタンクに取付けられているクライオポンプに
液体へリウム、液体窒素を供給するための設備であり、正イオン NBI 装置の冷媒循環系閉ループの中に組み込まれて、冷媒を供給する。

（5）制御系
制御系は、電源系、ビームライン等の制御、データ収集・処理を行うものである。N-NBI 装置は超高電圧発生装置であると同時に放射線発生装置であるために、その制御は安全を第一とする一方で、実験装置であるために、細かく運転制御ロジックや収集データ処理内容の改良等の改造が容易なように配慮されたハードウェア、ソフトウェアで構成されている。

2.2 パワーフロー

N-NBI 装置の設計段階のパワーフロー図を第2.2-1図に示す。負イオンビーム出力 500keV、44A、22MWに対し、加速電源出力は、490kV、47A、23MW、引出電源出力は 10kV、44.5A×2台、0.45MW×2が必要である。引出電流のイオン源1台あたりの内訳は負イオン電流が29.5A、電子電流が15Aとした。負イオンのストリッピング損失を、引出部と加速部の合計で25%と仮定すると、イオン源出力で22A×2、負イオンビームパワーで22MWとなる。中性化セル内で1.2MW（5%）が失われ、中性化効率は60%なので、中性化セル出口部での中性化ビームパワーは12.4MW、残存する正負イオンビームパワーはそれぞれ4.2MW、8.4MWである。NBI ポート内では、再電離損失の3%と幾何学的損失3.5%を合わせて0.8MWの損失として、正味の入射パワーは11.6MWであり、加速電源出力から見た入射効率は50%となる。

2.3 建設工程

N-NBI 装置建設の全体工程を第2.3-1図に示す。図のように、N-NBI 装置の建設は、2期に分けて実施した。第1期分で製作、据付を完了した設備/機器を使用してイオン源、電源単体及びイオン源と電源の組合せの各試験を実施した。引き続き、第2期分の機器の製作/据付及び試験を順次実施し、N-NBI 装置全体の試験、更に JT-60Uへのビーム入射を実施した。第1期、第2期の内訳を第2.3-1表に示す。

（1）第1期分
負イオン源については、1993（平成7年）10月から、イオン源テストスタンド（ITS-2M）で負イオン生成部の単体試験を行ない、次いで、1994（平成6年）10月から、MeV級試験装置で加速部も含めた負イオン源の高電圧試験を行った。第1期分の機器据付け完了後、イオン源用電源の単体試験を実施し、1995（平成7年）6月から、両者の組合せ試験を開始した。この組合せ試験は、イオン源タンク内の短パルスビームターゲットを使用した0.2秒パルスのビームを加速しながらのイオン源と電源の調整試験を同年10月まで実施した。これらのイオン源と電源の単体試

* ただし、最近の試験において、イオン源加速部での損失が4.5%の設計に対し、19%程度、NBI ポート入口部の第3ビームリミタでの損失は無視可能と見込んでいたものが、6〜7%程度と設計値より大きなことがわかったため、さらに改良を継続中である。

- 5 -
験及び組合せ試験の結果は、第2期で製作する分の電源及びイオン源に可能な限り反映させた。なお、短パルスビームターゲットは、第1期分調整試験の完了後に取外した。

(2) 第2期分

第2期で建設する設備は、機器の設付は一部を1994(平成6)年10月から12月に実施し、残りを1995(平成7)年11月から開始して、1996(平成8)年2月までに完了した。その後、直ちに、第2期分の単体試験、イオン源2台の組合せ試験、磁場試験、短パルスビーム入射を含めたJT-60Uとの組合せ試験を開始し、予定どおり同年3月に180keVで0.2MW程度の中性ビームをJT-60Uに入射することに成功した。同年4月から、イオン源のエージングやイオン源及び電源の改良を行って、同年9月にはエネルギー350keV、パワー2.5MW、のJT-60Uへの入射を達成した。
第2.3.1表 第1期、第2期建設項目内訳

<table>
<thead>
<tr>
<th></th>
<th>第1期（〜1995/3）建設分</th>
<th>第2期（〜1996/3）建設分</th>
</tr>
</thead>
<tbody>
<tr>
<td>イオン源</td>
<td>イオン源1（L用）</td>
<td>イオン源2（U用）</td>
</tr>
<tr>
<td>ビームライン</td>
<td>イオン源タンク</td>
<td>イオン線スクリーブ</td>
</tr>
<tr>
<td></td>
<td>短バルスビームターゲット</td>
<td>イオン源タンククライオポンプ</td>
</tr>
<tr>
<td></td>
<td>イオン源角度調整機構一式</td>
<td>中性化セル部一式</td>
</tr>
<tr>
<td></td>
<td>計測設備のイオン源及びイオン源タンクに係わる部分</td>
<td>ビームラインガス導入系一式</td>
</tr>
<tr>
<td></td>
<td></td>
<td>イオンダングタンク部一式</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB Iポート部一式</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計測設備の中性化セル及びイオンダングタンクに係わる部分</td>
</tr>
<tr>
<td>電源</td>
<td>負イオン生成部電源（イオン源L用）</td>
<td>負イオン生成部電源（イオン源U用）</td>
</tr>
<tr>
<td></td>
<td>引出電源（イオン源L用）</td>
<td>引出電源（イオン源U用）</td>
</tr>
<tr>
<td></td>
<td>加速電源</td>
<td>偏向コイル電源</td>
</tr>
<tr>
<td></td>
<td>SF₆ガスダクト</td>
<td></td>
</tr>
<tr>
<td></td>
<td>高電位テーブル</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電源現場制御盤</td>
<td></td>
</tr>
<tr>
<td></td>
<td>イオン源ガス導入系一式</td>
<td></td>
</tr>
<tr>
<td></td>
<td>受配電設備</td>
<td></td>
</tr>
<tr>
<td>1次冷却系</td>
<td>イオン源L、イオン源タンク、加速電源に係わる部分</td>
<td>イオン源U、中性化セル部、イオンダングタンク部に係わる部分</td>
</tr>
<tr>
<td>補助真空排気系</td>
<td>イオン源タンクに係わる部分</td>
<td>イオンダングタンク部に係わる部分</td>
</tr>
<tr>
<td>冷媒循環系</td>
<td>-</td>
<td>イオン源タンク、イオンダングタンククライオポンプに係わる一式</td>
</tr>
<tr>
<td>制御系</td>
<td>イオン源Lの運転制御に係わる部分</td>
<td>イオン源Lの運転制御に係わる部分以外の全ての部分</td>
</tr>
</tbody>
</table>
第2．1．1－1図 ビームラインの座標軸及び名称の定義

角度と寸法:

\[\angle \text{DOT} = 30^\circ \]
\[\angle \text{DOH} = 101.5^\circ \]
\[\angle \text{DCO} = 40^\circ \]
\[\angle \text{OPH} = 18.5^\circ \]

寸法:

\[\text{OH} = 2613 \]
\[\text{IM} = 1135 \]
\[\text{MF} = 23660 \]
\[\text{MG} = 2660 \]
\[\text{EF} = 7200 \]
\[\text{FH} = 4000 \]

MH = 27660
OP = 8236
PB = 14151.51
PH = 7810.39
BH = 21961.9
BM = 5698.1
OC = 5476.94
HC = 4813.23
第2.1.2-1図 N- NBI装置ブロック構成図
第2. 1. 2-3 図 ビームライン全体図
第2.1.2-4 図 ピームリミタ設置位置
第2.1.2-5a図 ビームライン上でのビームパワー密度その1（5 mradの場合）
第2.1.2-5b図 ビームライン上でのビームパワー密度その2（8 mradの場合）
加速電源出力
490 kV × 47A
23 MW

イオン源出力
11 MW × 2

中性化セル出力
20.8 MW

イオン源加速部
0.5 MW × 2 (4.5%)

中性化セル
0.6 MW × 2 (5%)
4.2 MW × 2 (36%)

正負イオン・シンプル
ヒ・ピー・ミミタ+再電離
0.8 MW

 JT-60U

加速効率 = 11.6 / 23 = 0.5

第 2. 2-1 図 N-NBI パワーフロー 図（設計値）
3. 各部構成の詳細

3.1 イオン源

イオン源は、イオン源1とイオン源2と呼ばれる、同一の構造を有する下側(L)用と上側(U)用の2台の負イオン源から構成される。各イオン源は、負イオンを生成する負イオン生成部、生成された負イオンを引出し抽出部、最終エネルギーまで加速する加速部、それらを電気的に絶縁し、支持する絶縁カラムから構成される。イオン源の断面図を第3．1－1、2図に示す。

3.1.1 全体仕様

(1) 真空

イオン源を組立てた後の、全体の許容真空リーク量は1×10^-6Pa·m^3/s以下とした。このために、負イオン生成部、抽出部、それに加速部で使用する真空シールの必要な各部品について、一カ所あたりの許容真空リーク量は1×10^-7Pa·m^3/s以下とした。

(2) 製作精度

イオン源はビームラインに装着された状態において、各電極の引出孔の相対位置精度は50ミクロン以下となるように製作した。電極平面度は1セグメントあたり、0.2mm以下を目標とした。電極平行度は1mrad以下とした。

(3) 永久磁石

永久磁石は、すべてサマリウムコバルト(Sm-Co)で、寸法は、幅9.4mm、厚み22.4mm、長さ25～50mm、エネルギー積24MGエルステッド以上のもを使用した。

(4) 引出部及び加速部電極共通仕様

引出部及び加速部電極の主要パラメータを第3．1．1－1表に示すとおりである。引出部及び加速部の計6種の各電極は、それぞれ5枚のセグメントにわけ、各セグメントを幾何学的に26.3m先の焦点に向けて、傾けて設置している。

各電極間の標準的な間隔と調整可能幅は、電極多孔部において以下のとおりである。なお、括弧内の数値は、定格運転時における標準的な印加電圧の一例である。

・プラズマ電極－引出電極 6mm ±100μm (8kV)
・引出電極－電子抑制電極 3mm ±100μm (同電位)
・電子抑制電極－第1加速電極 75mm ±2mm (163kV)
・第1加速電極－第2加速電極 65mm ±2mm (163kV)
・第2加速電極－接地電極 55mm ±2mm (163kV)

*1 後に、より磁力の強いNd磁石を使用したが、水素吸収による脆化で水素吸収気中では使用できないことが判明した。
3. 1. 2 負イオン生成部

負イオン生成部の主要パラメータは第3. 1. 2 - 1 表に示すとおりである。
（1）機能
導入された重水素又は水素ガスにより、0.3Pa 程度の圧力に維持されたアークチャンバ内で、陰極であるタングステンフィラメントと陽極であるチャンバ壁との間でアーク放電を行なうことにより、重水素又は水素のプラズマを生成する。生成されたプラズマはチャンバ壁に取付けられた永久磁石の作るラインカスプ磁場によって効果的に閉じ込められる。更に、プラズマ電極に電流を流して発生する横磁場（磁気フィルタ）によるタンデム方式によって、負イオンを生成する。
また、プラズマ電極表面の仕事関数を低くして負イオンの表面生成過程を利用することによって、負イオン生成効率を高めるために、セシウム導入装置よりアークチャンバ内にセシウム蒸気が導入される。
（2）構造
a) アークチャンバ
内径680mmφ、内側の長さ1,220mmの半円筒型で、「カマボコ型」と呼ばれる。ラインカスプ磁場形成のために、幅14mm、厚さ30mmの永久磁石を多数用いている。この永久磁石の配置を第3. 1. 2 - 1 図に示す。ラインカスプの1列毎に冷却チャンネルを設け水冷する。ラインカスプの間には96本の電流導入端子を設け、最大48本のタングステンフィラメントを装着する。アークチャンバの材質は無酸素鋼で、磁石押えや支持柱、フランジなどはステンレス又はアルミニウム合金を使用している。
b) ガスの供給
ガス供給配管と18φゲージポートの一カ所で取合い、アークチャンバの長手方向5カ所に設けられたガス導入口に分岐している。
c) セシウムの供給
セシウム蒸気導入のために、セシウム導入装置の導入口を熱絶縁ポートの一カ所で取合い、この導入口先端をアークチャンバの中央部に露出させている。セシウム導入装置は全体を300℃まで加熱でき、オーブン温度を遠隔制御することにより、セシウム蒸気の導入量を調整する。

3. 1. 3 引出部

（1）機能
生成された負イオンを負イオン生成部から引出し、最大 10keV まで加速して加速部へ入射するとともに、負イオンを同時に引出される電子を回収・処理する。
（2）構造
円形の孔を有する3種の多孔型電極から構成され、負イオン生成部側からプラズマ電極（PLG）、引出電極（EXG）、電子抑制電極（ESG）と呼び、それぞれ5枚のセグメントからなる。プラズマ電極と引出電極の間に最大 10kV の引出電圧を印加するとともに、引出電極と電子抑制電極の
間に電子抑制電圧（最大 8kV）が印加可能であるが、1996（平成 8）年 5 月より、永久磁石による電子抑制効果が十分なため同電位で使用している。プラズマ電極には、最大 10kA の電流を長軸方向に流し、アークチャンバ内に負イオン生成に必要な横磁場（フィルタ磁場）を発生する構造である。この磁場を PG フィルタ磁場と呼ぶ。

プラズマ電極の電極多孔部は、セシウム導入による負イオンの表面生成効率を高めるため、表面温度を 200℃以上に加熱する。加熱は、フィラメント及びアーク放電からの放射熱により行われる。プラズマ電極には表面の温度測定用として、5 枚の各セグメント端部に熱電対が取り付けられている。

引出電極には、孔 1 列ごとに永久磁石が埋め込まれており、この磁場により負イオンと同時に引出される電子を偏向して加速部へ入射しないようにしている。また、この磁場による負イオンビームの偏向を補正するために、電子抑制電極の電極孔を他の電極の中心軸に対して、0.5mm ずつ変位させている。セグメントの長手方向の各列毎に永久磁石の極性を交互に入れ替えているため、この変位方向もセグメントの長手方向の各列毎に交互に逆になっている。

3. 1. 4 加速部及び絶縁カラム

3. 1. 4. 1 加速部

（1）機能

引出部から入射された負イオンビームを加速して、最大エネルギー 500keV の集束性の良い負イオンビームを発生する。

（2）構造

円形の孔を持つ 3 段の多孔型電極から構成される。負イオン生成部側から第 1 加速電極（A1G）、第 2 加速電極（A2G）、接地電極（GRG）と呼び、引出部から入射された負イオンビームを、3 段加速により最大 500keV まで加速する。各段には、最大 180kV の電圧が印加可能である。

3 段の電極の、それぞれ 5 枚のセグメントは、第 2. 1. 1 － 1 図の焦点 F に向けて 0.5 度刻みに傾けて設置して上下（チャンバ長手）方向のビーム集束を行っている。さらに、接地電極の電極孔を他の電極の中心軸に対し、上下左右両方向の合成で最大 4 mm までの範囲で変位させることがより、上下左右両方向のビームレットの集束を図っている。

3. 1. 4. 2 絶縁カラム

（1）機能

負イオン生成部、引出部、加速部を支持するとともに、それらを最大 500kV の印加電圧に対し
て絶縁する。

（2）構造

現状の最大合成変位量は、イオン源 1 で 3.53mm、イオン源 2 はその半分の 1.76mm としている。なお、文献 1)では、チャンバ長手方向の 0.5 度刻みのセグメント傾き量に応じてこの変位量は異なる設計をしていただけが、現状は 5 枚のセグメントとも同一の変位量である。
絶縁管と接続フランジ、電極支持枠から構成される。イオン源全体およびケーブル類の全荷重に耐える強度を持ち、かつ内部の真空圧に対しても十分な強度を持つ。電界の緩和のために、各段間にコロナシールドを設け、真空内側のコロナシールドに関しては、負イオンビームから絶縁管内壁が直視できない構造になっている（当初、各段のコロナシールドには 1cm 厚の μメタルを張付け、JT-60U からの漏洩磁場に対して磁気シールドしていたが、イオン源内部の放電破壊抑制目的で 1999（平成 11）年に撤去した。）

a) 絶縁管内径寸法 : 直径 1.8m
b) 材質 : 絶縁管は FRP
c) 絶縁耐圧 : 絶縁カラム全体の耐電圧は DC550kV、10 分間（外側は大気で湿度 60% 以下、内側は 1×10^{-2} Pa の真空を想定）

耐電圧試験は各段ごとに行い、外側は大気で湿度 60% 以下、内側は SF6ガス封入の状態で各段ごとの耐電圧 200kV、10 分間で実施した。

d) 真空リーク量 : 1×10^{-8} Pa・m^3/s 以下

3. 1. 5 セシウム導入装置

負イオンの生成効率を高めるためにアーキャンパ内にセシウム蒸気を導入するためのもので、セシウムオープン、手動弁、導入管により構成される。またこれら全体を最高 300℃ にまで加熱するためのヒータ、保温材、熟電対などから構成される。なお、セシウムオープンコントローラーは高電位テーブル台内に装置されている。当初は、電磁弁や圧空弁などで使用していたが、温度の一様性に問題があったため、現在は、手動弁のみの構造とし、また、ヒータも当初シースヒータであったが現在はマントルヒータを使用している。

セシウム導入装置の外形図を第 3. 1. 5-1 図に示す。
第 3. 1. 1-1 表 引出部及び加速部電極パラメータ

<table>
<thead>
<tr>
<th>項目</th>
<th>設計時データ(JAERI-M94-072)</th>
<th>現状データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>電極の種類 引出部</td>
<td>プラズマ電極(PLG)</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>引出電極(EXG)</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>電子抑制電極(ESG)</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>第 1 加速電極(A1G)</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>第 2 加速電極(A2G)、</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>接地電極(GRG)</td>
<td>同左</td>
</tr>
<tr>
<td>加速部</td>
<td>1662cm² (PLG)</td>
<td>1366cm² 注1）</td>
</tr>
<tr>
<td>セグメント数</td>
<td>各 5</td>
<td>同左</td>
</tr>
<tr>
<td>電極孔総面積</td>
<td>45cm×110cm(45cm×18cm／セグメント)</td>
<td>同左</td>
</tr>
<tr>
<td>電極透過度</td>
<td>41% (PLG)</td>
<td>同左</td>
</tr>
<tr>
<td>電極孔の数</td>
<td>1080個(216個＝9列24行／セグメント)</td>
<td>888個注1）</td>
</tr>
<tr>
<td>電極孔の直径</td>
<td>PLG 14mm φ</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>EXG 14mm φ</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>ESG 14mm φ</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A1G 16mm φ</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A2G 16mm φ</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>GRG 16mm φ</td>
<td>同左</td>
</tr>
<tr>
<td>電極厚み</td>
<td>PLG 6mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>EXG 11mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>ESG 3mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A1G 20mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A2G 20mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>GRG 20mm</td>
<td>同左</td>
</tr>
<tr>
<td>電極間の距離</td>
<td>PLG-EXG 6mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>EXG-ESG 3mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>ESG-A1G 75mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A1G-A2G 65mm</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>A2G-GRG 55mm</td>
<td>同左</td>
</tr>
<tr>
<td>電極材質</td>
<td>プラズマ電極 モリブデン</td>
<td>同左</td>
</tr>
<tr>
<td></td>
<td>その他 5枚の各電極 無酸素鋼</td>
<td>同左</td>
</tr>
</tbody>
</table>

注 1) アークチャンバ長手方向の上下両端にあたる、PLG 引出領域の一部をマスキングして
いるため、上 3 列、下 5 列の場合を示す。

2) 引出部電極は、上表に示す寸法の変更の他、ESG を EXG と一体化する改造を、1998
年 1 月に実施した。

3) 引出部では、EXG の永久磁石の磁場による負イオンビームの偏向の補正のために、
ESG の電極孔を他の電極の中心軸に対して、0.5mm ずつ変位させている。

4) 加速部では、ビームレットの集束を図るために、GRG の電極孔を他の電極の中心軸に
対し、両方向の最大合成量で、イオン源 1 は 3.53mm、イオン源 2 は 1.76mm、それ
ぞれ変位させている。
第3.1.2-1表 負イオン生成部パラメータ

<table>
<thead>
<tr>
<th>項目</th>
<th>設計時データ(JAERI-M94-072)</th>
<th>現状データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>アークチャンバ形状</td>
<td>半円筒形</td>
<td>同左</td>
</tr>
<tr>
<td>長さ</td>
<td>122cm</td>
<td>同左</td>
</tr>
<tr>
<td>直径</td>
<td>φ64cm</td>
<td>φ68cm<sup>1)</sup></td>
</tr>
<tr>
<td>奥行</td>
<td>深さ 44cm</td>
<td>深さ 55cm</td>
</tr>
<tr>
<td>体積</td>
<td>287×10<sup>3</sup> cm<sup>3</sup></td>
<td>384×10<sup>3</sup> cm<sup>3</sup></td>
</tr>
<tr>
<td>表面積</td>
<td>20(22.5)×10<sup>3</sup> cm<sup>2</sup></td>
<td>24×10<sup>3</sup> cm<sup>2</sup></td>
</tr>
<tr>
<td>体積/表面積</td>
<td>14.4(12.7)</td>
<td>16.0</td>
</tr>
<tr>
<td>カスプ磁場磁石</td>
<td>2.2kG</td>
<td>9.4mm×22.4mm, 26等配, 10列</td>
</tr>
<tr>
<td>カスプ長</td>
<td>14mm×33mm, 18等配, 7列</td>
<td>4,274cm</td>
</tr>
<tr>
<td>フィラメント</td>
<td>φ1.5mm×24本</td>
<td>φ1.5mm×48本</td>
</tr>
<tr>
<td>磁気フィルタ</td>
<td>PGフィルタ, 1,000G·cm</td>
<td>同左</td>
</tr>
<tr>
<td>アークパワー</td>
<td>〜70V, <5kA, <350kW</td>
<td>同左</td>
</tr>
<tr>
<td>電流密度</td>
<td>13mA/cm<sup>2</sup></td>
<td>同左, 又はこれ以上<sup>2)</sup></td>
</tr>
<tr>
<td>運転ガス圧</td>
<td>0.3Pa</td>
<td>同左</td>
</tr>
</tbody>
</table>

注 ¹⁾アークチャンバの大型化の改造は、1995年の第1期試験開始前に行った。
²⁾アークチャンバ長手方向の上下両端にあたる、PLG引出領域の一部をマスキングしているため。
第3.1-1図 JT-60U用負イオン源（横断面図）

第3.1-2図 JT-60U用負イオン源（縦断面図）
第3.1.5-1図 セシウム導入装置
3. 2 ビームライン

ビームラインは、イオン源からの負イオンビームを中性粒子ビームに変換して JT-60U に射入し、中性化されなかった残留イオンビームを処理するもので、イオン源タンク部、中性化セル部、イオンデンプタンク部、及び NBI ポート部から構成される。

3. 2. 1 共通仕様

（1）真空部材質
イオン源タンク、中性化セルタンクの材質として、磁気シールドと真空断面壁の両方の機能を持たせるため、ステンレスクラッド鋼 1 種（JIS G 3601）を使用した。母材は SS400 で、必要な磁気シールドファクターを確保できる厚みとし、真空側の合わせ材は SUS304 厚み 2 mm を使用した。イオンデンプタンクの材質は SUS304 である。

（2）許容ヘリウムリーク量
真空部の許容ヘリウムリーク量は 1 × 10^{-7} Pa·m³/s とした。

（3）ビームラインガス導入系
ビームラインガス導入系は中性化セルガス導入系と光プロファイルモノタガス導入系から構成される。流量調整機構は第 3. 3. 1. 5 項のイオン源ガス導入系と同様である。最大流量はニードル弁の開度調整により、容易に変更可能である。イオン源ガス導入系も含めたガス導入系の系統図は第 3. 2. 6. 1-1 図のとおりである。中性化セルガス導入系は中性化セル U、I の各中央部に設置された導入孔から、光プロファイルモノタガス導入系は第 3. 2. 6. 4 項の光プロファイリングモノタが設置されるイオンデンプタンクの NBI ポートフランジ部の導入孔から導入する。

3. 2. 2 イオン源タンク部

イオン源タンク部はイオン源タンク、ビーム軸合わせのためのイオン源角度調整機構、イオン源と中性化セルからのガスを排出するためのクライオポンプ、水平方向の発散の大きいビーム成分をカットするとともにクライオポンプへのビームの直撃を防ぐためのビームスクリューパ及び中性化セル入口部を発散性ビーム成分から保護するためのビームリミタなどから構成される。

3. 2. 2. 1 イオン源タンク
イオン源タンクは、真空部を形成する上板、下板、下板及びそれを支持する下スカートから構成される。真空部にはイオン源及び角度調整機構が取り付けられ、ビームスクリューパ、ビームリミタ、及び大容量クライオポンプ等が設置される。また、JT-60U からの漏洩磁場を遮蔽してイオンビームの偏差を防止するために真空部は 2 重の磁気シールドで覆われている。

タンクの形状、寸法は内径 3,000mm φ×内面高さ 4,800mm の円筒形で、第 3. 2. 2. 1-1 図のとおりである。真空部の材質はクラッド鋼、サポート部は SS400 である。
3.2.2 イオン源タンク磁気シールド

イオン源タンク磁気シールドは JT-60U からの漏洩磁場をシールドしてイオン源タンク内への漏れ磁場を 0.05G 程度以下に抑えることにより、イオンビームが偏向されるのを防ぐためのものである。その構造を第 3.2.2.1, 2 図に示す。

・磁気シールド方式：二重
 ・外層 : SS400, 厚さ 30mm（イオン源タンク壁材を兼ねた構造）
 ・内層 : μメタル, 厚さ 10mm

3.2.2.3 イオン源角度調整機構

イオン源角度調整機構は、イオン源 U, L とイオン源タンクの間に各 1 台設置され、第 2.1.1-1 図のイオン源 U, L 各中心軸とビームラインの幾何学的中心を一致させるようにイオン源の角度を調整するものである。調整精度は ±0.05 mrad 以下、モーメントは 1,100mm×6.5 トンである。構造、寸法を第 3.2.2.3 図に示す。なお、自重は 1 台あたり 7.8ton である。

イオン源の角度調整は、ビームライン軸と直交する第 3.2.2.3-1 図の X 方向、Y 方向について行う。調整幅は両方向ともビーム中心軸に対して ±10 mrad である。角度調整操作は中央制御室のパソコンより遠隔制御される。

3.2.2.4 ビームスクレーバ

ビームスクレーバは、水平方向の発散性ビームからクライオポンプ、クライオポンプ配管及びイオン源タンク内スーパーセル膜の一部を保護するためのもので、水冷された汚荷の除去、冷却とりの SUS 製クライオ保護膜、スーパーセル膜保護膜より構成される。2 台のスクレーバの寸法は以下のとおりである。

・スクレーバー1: 480mm 幅×4,000mm 長×2 枚
・スクレーバー2: 270mm 幅×4,000mm 長×2 枚

ビームスクレーバの設置位置は第 3.2.2.2-1 図中に示すとおりである。

3.2.2.5 第 1 ビームリミタ（イオン源タンクビームリミタ）

第 1 ビームリミタは、イオン源タンク内の中性化セル入口直前部分において、イオンビーム周辺部の発散成分をカットし、この周辺の中性化セル入口構造物やイオン源タンク内壁を保護するためのものである。

本ビームリミタは、ビーム外周部をカットする受熱部とイオン源タンク内壁をビームから保護する SUS304 製の保護壁より構成され、イオン源タンク内の中性化セル直前部の、ビームライン中心軸上の Z=3,760mm（後線）、ビームライン中心軸より下に 954.6mm（中央）の位置に、イオン源 U, L に対応して合計 2 台が設置されている。

本ビームリミタの構造は第 3.2.2.5-1 図のとおりであり、ビームライン軸を含む平面内に上下左右各 1 本ずつ、計 4 本の熱電対（φ1.非接地型 K）が銀線付きされている。
3.2.2.6 イオン源タンククライオポンプ

本クライオポンプは加速途中の負イオンのストリッピング損失を抑制するためにイオン源タンクに設置され、イオン源及び中性化セルからイオン源タンクに流入する大量の重水素又は水素ガスを排気する、液体ヘリウム冷却によるクライオ凝縮型ポンプである。円筒形クライオポンプモジュール4本、ヘリウム及び窒素の気液分離器、ヘリウム及び窒素用配管によって構成され、排気速度は、モジュール1本あたり300m³/s（重水素値）であり、設置位置は第2．1．2－3図中に示すとおりである。

（1）クライオポンプモジュール

クライオポンプモジュールはガス粒子を吸着するために液体ヘリウム温度まで冷却されクライオバネルと液体窒素温度まで冷却されたシェブロンバップルから成る。本クライオポンプの外形を第3．2．2．6－1図に示す。

a）クライオバネル

SUS316L製の二重管構造である。

・外管寸法：3,600mm×372mmφ（外径）

・内管寸法：3,600mm×362mmφ（外径）

b）シェブロンバップル

垂直方向に対して100度傾いたアルミ製の円筒形のバップル板を液体窒素で冷却されたパイブに25mm間隔で取付けた構造である。

・フィンの寸法：3,900mm×540mmφ（外径）

412mmφ（内径）

・材質：A1100（アルミ）

（2）気液分離器

a）ヘリウム気液分離器は、216mmφ×600mm、窒素気液分離器は216mmφ×530mmで、材質はSUS316Lである。

（3）内部配管

a）液体ヘリウム配管

第3．2．2．6－2図にヘリウムのフローシートを示す。予冷用及び定常用の2系統で構成される。配管材質はSUS316Lとし、配管の全長にスーパインシュレーション（SI）を巻く。

b）液体窒素配管

第3．2．2．6－3図に窒素のフローシートを示す。

3.2.3 中性化セル部

中性化セル部はイオンビームを中性化するためのもので、中性化セルタンク、中性化セル、中性化セル受熱部、中性化セル磁気シールドから構成される。中性化セルの中間部には中性化セル

*）本クライオパネルは、薄板2重管構造のため、保守時等、タンク側が大気の状態でクライオポンプ内を真空引きすると座屈を起こす可能性があるため注意が必要である。
内のガス線密度を保つための中性化セルガス導入系のガス導入孔及び真空計測用ポートを設けている。中性化セル内壁の受熱部は発散性ビーム成分の照射に対して問題ないように水冷している。中性化セル全体もイオン源タンクと同様、外層を真空容器壁と兼ねた二重磁気シールド構造としている。中性化セル中の構造を第3.2.3.1図に示す。材質は第3.2.1項のとおりである。

3.2.3.1 中性化セルタンク
中性化セルタンクは、イオン源タンクとイオンダンプタンクをつなぐ矩形断面形状のものである。中性化セル全体は、2重の磁気シールド構造とし、中性化セルタンクをステンレスクラッド鋼製として磁気シールドの外層部の役割を兼ねている。内壁には受熱板が取付けられ、水冷される。

・内面寸法、形状
イオン源側：1,260mm×800mm
イオンダンプ側：1,650mm×840mm
・全長：10m

3.2.3.2 中性化セル受熱部
中性化セル受熱部は、第3.2.3.1図のとおり、イオン源中心軸に沿って磁気シールド内外層と共にI、II、IIIの3区分から成る矩形状のダクトである。中性化セル受熱部の水平方向の総延長は10,200mmであり、その始点はイオン源タンク中心から水平に1,500mm離れた位置である。

・長さ：10.2m
・入口口径：縦1,060m×横500mm
・出口口径：縦780m×横500mm

中性化セル受熱部の出口部には上下左右の4点に熱電対を設置している。設置位置は上下左右の面の各中央部で冷却チャンネル間の中央、中性化セル受熱部出口端部より1cm手前の位置である。

3.2.3.3 中性化セル磁気シールド
中性化セル磁気シールドはJT-60Uからの漏洩磁場をシールドして中性化セル内への漏れ磁場を0.05G程度以下に抑え、イオンビームが偏向されるのを防ぐためのものである。

・シールド方式：二重
・外層：SS400、厚さ40mm／20mm（中性化セルタンク壁を兼ねる）
・内層：μメタル、厚さ10mm

内外層間隔は100mmとし、外層の厚みはイオンダンプタンク側3.2mが40mm、他は20mm厚である。
3. 2. 4 イオンダングタンク部

イオンダングタンク部は、第3. 2. 4-1図のとおりで、イオンダングタンク、偏向コイル、イオンダング、カルリメータ、クライオポンプ、仕切り板及び2台のビームリミタから構成される。

偏向コイルは、JT-60Uからの漏洩磁場を補正してビームエネルギーに対応した一定の磁場を生成して、中性化されなかった残留イオンビームを偏向し、イオンダングに導くものである。JT-60Uからの漏洩磁場がない場合には、単独の偏向磁場を生成する。イオンダングは残留イオンビームを受け止め熱化させるもので、強制冷却を利用した水冷のパネルである。カルリメータは、イオン源のコンディショニング運転等に中性粒子ビームのターゲットとして用いるもので、ビームパワー及び強度分布の測定も可能である。受熱部は慣性冷却により除熱している。クライオポンプは中性化セルから流れ込むガスや、イオンダング表面で発生するガス、及びJT-60U本体から流れ込むガスを排気するものである。仕切り板は、NBIポート部内の真空度を良くし中性ビームの再電離を低減するために、イオンダングタンクを2室に分け、差動排気するためのものである。

3. 2. 4. 1 イオンダングタンク

イオンダングタンクには、大容量クライオポンプと仕切り板、偏向コイル、イオンダング、カルリメータ、ビームリミタ等が設置されている。

タンクの形状、寸法は内径φ3,500mm×内面高さ4,800mmの円筒形である。真空部の材質はSUS304である。

3. 2. 4. 2 偏向コイル

偏向コイルは、中性化セル通過後に残存する正負の高速イオンを磁気的に偏向してイオンダングに導くために使用するもので、上下対の空心コイルから成る。イオンダング表面の時間平均の最大熱流束を低減するために、偏向コイル電流は2 Hz程度で振動可能である。

（1）取付け位置

偏向コイルと偏向磁場測定用のホール素子の取付け位置を第3. 2. 4. 2-1図に示す。偏向コイルの中心はイオンダングタンク中心より中性化セル側に600mm寄った位置である。2個のコイルの中心高さは、FL+8,000mm±600mmの位置である。個々のコイルは半径1,000mmの円形コイルで、上下方向の磁場を発生する。

ホール素子の取付け位置は、FL+8,000mmにおいて、偏向コイルの中心からイオン源から見て右側に350mmずらした位置で、極性は下向きの磁場を正としている。

（2）コイル

コイルは水冷するためにホロー導体とし、ターン数は各50である。

コイルの定格電流は1,200±300A、最長通電時間13秒、デューティはビームパルス基準で1／60とする。つまり、最短周期では30秒毎に3.5秒間通電する。±300Aは最大1,200Aを中心にとして最大±300Aの範囲で電流を2Hzで振動させることを意味する。一対のコイルは電気的に
直列に接続し、コイル極性は、上方より見て時計回りに電流が流れる方向を正と定義する。

3. 2. 4. 3 イオンダング

イオンダングは、中性化セル内で中性化されなかった負イオンと中性粒子を経て生成された正イオンを偏向磁場により中性粒子ビームから分離して受け止め、熱化処理するものである。受熱面の受熱パワーは負イオン、正イオンそれぞれ2.1MW×10sec、最大熱流束は最高1.5kW/cm²である。除熱はスワール管を用いた強制冷却方式により行われる。

イオンダングの設置位置及び構造は第3. 2. 4. 3 - 1図のとおりである。

（1）構造、寸法

イオンダングは、支持架台、マニホールド、受熱面を構成する外部フィン付管の配列、背面に無酸素銅製水冷パイプを銀ロー付した鋼板、温度監視用熱電対、及びスパッタシールドから成る。

a）受熱面

イオンダングの受熱面は縦1,600mm、横1,980mmである。正/負残炭イオン用受熱面各1枚がそれぞれビーム軸を含む鉛直面に対して対称に500mmの間隔で設置されている。

受熱面は0.2%銀入り無酸素鋼製のフィン付冷却管を並べて構成する。この熱負荷はイオンダング受熱面中での位置に依存するため、第3. 2. 4. 3 - 2図のように中央部にはフィン付管、周辺部は低熱部受熱板と呼ぶ鋼板を設置している。フィン付冷却管の詳細は第3. 2. 4. 3 - 3図に示すとおりで、フィン幅25mmと26mmのものを交互に並べた計28本が1式で、計4式から成る。フィン付冷却管には、熟伝達促進を図るためのインコネル製のスワールテープがツイスト比：3で挿入されている。冷却水は、全体流量で4000l/min、最大流速で10m/sである。

b）熱電対

受熱面には、第3. 2. 4. 3 - 2図に示される計22箇所に、熱電対を第3. 2. 4. 3 - 3図に示されるように埋込んで銀ロー付けしている。

c）スパッタシールド

イオンダングの上下開口部には、鋼製プライド構造のスパッタシールドを設置し、イオンダングからのスパッタ粒子がクライオポンプへ到達しないようにしている。スパッタシールドは水冷構造である。

3. 2. 4. 4 カロリメータ

イオン源のコンディショニング運転時には差込位置に移動し、中性粒子ビームのビームターゲットとして使用するもので、ビームパワーの測定にも使用される。JT-60Uへビーム入射時には引抜位置へ移動し、ビームの軌道を開ける。カロリメータは、受熱部、駆動部等から構成され、イオンダングの下流側に設置される。

最大熱流束は2kW/cm²、受熱パワーは、10MW×0.5secである。

（1）受熱部構造、寸法

受熱部の構造、寸法は第3. 2. 4. 4 - 1図のとおりである。高パワーの中性粒子ビームを熱化処理するため、受熱部断面形状は第3. 2. 4. 4 - 2図に示すようなビーム軸に対し三段
階の角度をもったV字型形状である。受熱面は65本の水冷パイプを並べ、1本の水冷パイプに23個の受熱セグメント（モリブデンと0.2％銀入り無酸素鋼母材の接合体）を串ざし状に銀ロープ付けしたもので構成される。セグメントの形状、寸法は第3.2.4.4-2図のとおりである。

受熱セグメントには、熱電対計21本を第3.2.4.4-1図に示される位置に埋込み、銀ロープ付けして、上下それぞれのイオン源中心軸に合わせて十文字状の位置の温度分布計測が可能である。

3.2.4.5 イオンデンプタンククライオポンプ

本クライオポンプは、中性ビームの再電離による損失を抑制することを目的として、イオンデンプタンク内部に設置されている。差動排気により排気効率を上げるために、2本ずつのクライオポンプモジュールを仕切板により分けている。本クライオポンプの設置位置は第2.1.2-3図中に示すとおりである。

本クライオポンプの各機器仕様は、第3.2.2.6項「イオン源タンククライオポンプ」と同一である。

3.2.4.6 イオンデンプタンク仕切板

イオンデンプタンククライオポンプの排気効率を上げるため、タンク内の二室の間に仕切板を設置する。仕切板の設置位置は第3.2.4-1図中に示すとおりである。

3.2.4.7 第2,第3ビームリミタ（イオンデンプタンクビームリミタ1,2）

イオンデンプタンク内の中性化セル側及びNBIポート側には、ビームの発散成分や不正に偏向されたビームをカットし、ビームライン・ポート部を保護するための2台の水冷式のビームリミタが設置されている。

(1) 設置位置

設置位置は第3.2.4-1図中に示すとおりである。

・第2ビームリミタ：ビームライン中心軸上Z=14.9mの位置

・第3ビームリミタ：ビームライン中心軸上Z=18.2mの位置

(2) 構造

各ビームリミタの詳細構造は、第2ビームリミタが第3.2.4.7-1図に、第3ビームリミタが第3.2.4.7-2a、b図にそれぞれ示されるとおりである。第3ビームリミタは、無酸素鋼製の受熱部と、ビームリミタ周辺のイオンデンプタンク内壁をビームから保護するためのSUS304製の保護板により構成される。

各ビームリミタの受熱部は、厚さ10mmの銅板に外径10mm、肉厚1.5mm相当の銅製冷却管を銀ロープ付けしている。また、第3ビームリミタについては、第3.2.4.7-2図中に示すとおり、各イオン源中心軸上の左右二箇所及び上下一箇所ずつ計6本の熱電対を銀ロープ付けして

*第3ビームリミタの熱負荷が設計時よりも大のため、2001年3月より、改良型のものと交換を実施した。改良前が第3.2.4.7-2 a図、改良後が同b図である。
いる。

3. 2. 5 NBIポート部

NBIポート部は、N-NBI装置とJT-60Uとを電気的に絶縁するための絶縁リングを含むNBI側接続ベローズ、真空的に切り離すためのゲート弁、N-NBIとJT-60UとをつなぐNBIポートから構成される。NBIポートには各所にビームの発散成分からNBIポート内壁やベローズ等を保護するためのビームリミタや保護板を設けている。NBIポートはJT-60Uに合わせてベーキングができるように外周にヒータと保溫層を取付けている。

3. 2. 5. 1 NBI側接続ベローズ

本接続ベローズは、後述の手動ゲート弁GV2と圧空ゲート弁GV1との間に設置され、GV1及びJT-60U本体真空容器の水平ポートボックスとの設置誤差、変位及び振動等を吸収するためのものである。イオンタンクポートにGV2を設け本接続ベローズを設置する。GV1との間に絶縁リングによる電気的絶縁部及びスペースを設ける。ベローズは溶接ベローズとし、概略寸法は、内径=1,100×600mm、フランジ間距離43.5mmである。

3. 2. 5. 2 ゲート弁

ゲート弁はGV1、GV2の2台があり、これらの設置位置は第2、1、2-3図中に示すところである。GV1は圧空式、バイトンシールで、N-NBIとJT-60Uの真空絶縁のためのものである。当初、GV1だけが設置されていたが、1997（平成9年）2月に手動式ゲート弁GV2の追加を行った。GV2は、真空仕切弁を二重化することによりJT-60U真空容器内とN-NBIタンク内のいずれか一方が大気に、もう一方が真空の状態で大気側の真空容器内で作業を行う際の安全性を確保するためのものである。

3. 2. 5. 3 NBIポート

NBIポートは、中性粒子ビームをJT-60Uプラズマへ入射するための接続管で、第4ビームリミタと台座保護板、再電離保護板、ポートボックス壁保護板、接続ベローズから構成される。NBIポートはベーキングが行えるように、外側に電気ヒータ及び温度測定用熱電対が取付けられている。NBIポートの寸法、形状、構造を第3、2、5、3-1図に示す。NBIポートの材質はSUS304である。

（1）第4ビームリミタと台座保護板

第4ビームリミタはNBIポート内壁への熱負荷を軽減するために、ポートの入口部、中間部及び出口部に設置されるモビリズム製のもので計5箇所に設置されている。その取付位置及び形状は第3、2、5、3-1図に示すところである。

（2）再電離保護板

再電離保護板は、再電離したイオンビームが磁場によりトロイダルコイル外側近傍のポート内
壁に、直撃するのを防止するための純モリブデン製の保護板である。取付け位置は第3．2．5．3－1図のF点より3,000mmの位置から約1,650mm長さの全周である。
（3）ポートボックス保護板
ポートボックス保護板は、高熱負荷を受けるJT-60U真空容器のポートボックス内面に設置される、等方性黒鉛製の保護板である。
（4）熱電対
ビームリミタ、再電離保護板、ポートボックス保護板及び保温層に熱電対が以下のとおり、取り付けられている。
・ビームリミタ：計19点、第3．2．5．3－2図。
・再電離保護板：計4点、第3．2．5．3－2図。
・ポートボックス保護板：3点、第3．2．5．3－3図。
・保温層：計3点。ポート軸方向の両端近傍、中央。ポートベーキング用。
（5）接続ベルーズ
中間接続ベルーズは、ゲート弁GV1とNBIポート接続時の変位吸収及び、NBIポートベーキングによるGV1への熱伝導を防ぐために、GV1とNBIポートの間に設置されている。
本体側接続ベルーズは、NBIポートとJT-60U真空容器水平ポートボックスとの接続部に用いられ、ポートの設置誤差吸収及び真空容器のベーキング（〜300℃最大）時の変位とプラズマ放電時の電磁力による変位を吸収する。ベルーズ内面にはベルーズをビームから保護するための保護板を設けている。

3．2．6 計測設備

3．2．6．1 真空計測設備
イオン源、イオン源タンク、中性化セル、イオンダングタンク内の圧力を測定するため、第3．2．6．1－1表に示す電離真空計、ベニンク真空計、ピラニ真空計、圧力伝送器、パラトロン圧力測定器などの各種真空計が設置されている。これら真空計と残存ガス分析計の取付位置は第3．2．6．1－1図に示すとおりである。電離真空計はフィラメントが2本付いた磁気シールド付きのヌードゲージを使用している。

3．2．6．2 受熱部温度監視
ビームライン各機器の受熱部には温度監視用の熱電対が設置されている。温度監視項目一覧を第3．2．6．2－1表に示す。熱電対全体配置及び熱電対番号を第3．2．6．2－1図に示す。

* 本保護板はJT-60真空容器内に設置されていたMo板の再利用品である。
* 本体側接続ベルーズの許容応力からNBIポートをベーキングする場合のJT-60真空容器のベーキング温度は最高150℃に制限している。
3.2.6.3 分光モニタ

分光モニタはドップラーシフトしたビーム光（D_a）を分光することによって、負イオンビームのエネルギー成分や不純物量を測定するもので、ビーム光を集光するレンズ系、集光した光を通送するための大口径光ファイバなどから構成される。集光のための開口窓とレンズ系をイオン源タンク部、イオンダングタンク部に設置している。集光した光は光ファイバにて一つの分光器に集め、光ファイバを切り替えて測定する。イオン源出口部用に1式、中性化セル出口部用に1式の、計2式である。設置位置は3.2.6.3－1図に示すとおりである。

3.2.6.4 光プロファイルモニタ

光プロファイルモニタは、光学的に水平、垂直の二方向から見たビームの中心軸と発散角を測定する装置で、イオンダングタンク出口部に設置される。ビーム観測窓付きフランジ、固体素子センサーマラ、ビーム中心軸を与えるための軸中心光源（マーカーライト）から構成されている。

プロファイルモニタの捕付位置は第3.2.6.3－1図中に、カメラ及びマーカーライトの捕付ポータ第3.2.6.4－1図に示す。CCDカメラ及びレンズは垂直用、水平用に各一式である。水平視野角58.7度、焦点距離4.5mm程度のレンズを使用している。

3.2.6.5 赤外モニタ

赤外モニタは正負イオンダング、カロリメータ、対向面の温度分布を赤外線熱画像により計測、監視するシステムで、赤外線カメラ本体を含む制御部は正負イオンダング、カロリメータ用と対向面用の二式で構成する。設置位置は第3.2.6.3－1図中のとおりである。
（1）窓材は、直径100mm、厚さ10mmのサファイア単結晶を使用している。透過率は、1～4nmの赤外線に対して85％以上、5nmの赤外線に対して40％を有し、透過部分はφ65以上である。
（2）赤外線レンズ系
a）イオンダング、カロリメータ用は視野中に正負イオンダングとカロリメータの両方が入る設計であった。
b）対向面用は測定位置より約20m離れたJT-60U真空容器内第1壁のN-NBI対向面の1m×1mの領域を観察できる。
c）赤外モニタ制御部
視野中にある設定温度以上の部分が検出された場合にはアラーム信号を出力することが可能である。

3.2.6.6 内部監視カメラ

本監視カメラはイオン源の接地電極監視用に一式、中性化セル入口監視用に一式及びイオンダングタンク内カロリメータ部監視用に二式の計4式で構成され、カメラ、支持架台、ゲートバルブ、真空照明器具等から成る。
第 3．2．6．1-1 表 真空計器一覧

<table>
<thead>
<tr>
<th>番号</th>
<th>種類</th>
<th>測定範囲 (Pa)</th>
<th>取付ける位置</th>
<th>計器No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>電離真空計</td>
<td>1.0×10^5 ～ 1.0</td>
<td>イオン源接続フランジU</td>
<td>IG1</td>
</tr>
<tr>
<td>2</td>
<td>ボンプ</td>
<td></td>
<td>L</td>
<td>IG2</td>
</tr>
<tr>
<td>3</td>
<td>ボンプ</td>
<td></td>
<td>イオン源タンク（中性化セル入口部）</td>
<td>IG3</td>
</tr>
<tr>
<td>4</td>
<td>ボンプ</td>
<td></td>
<td>中性化セルU</td>
<td>IG4</td>
</tr>
<tr>
<td>5</td>
<td>ボンプ</td>
<td></td>
<td>中性化セルL</td>
<td>IG5</td>
</tr>
<tr>
<td>6</td>
<td>ボンプ</td>
<td>1.0×10^6 ～ 3.1×10^1</td>
<td>中性化セル出口</td>
<td>IG6</td>
</tr>
<tr>
<td>7</td>
<td>ボンプ</td>
<td></td>
<td>イオンタンク P1室</td>
<td>IG7</td>
</tr>
<tr>
<td>8</td>
<td>ボンプ</td>
<td></td>
<td>イオンタンク P2室</td>
<td>IG8</td>
</tr>
<tr>
<td>9</td>
<td>ボンプ</td>
<td></td>
<td>ドリフト部</td>
<td>IG9</td>
</tr>
<tr>
<td>10</td>
<td>ボンプ</td>
<td></td>
<td>NB I ポート</td>
<td>IG10</td>
</tr>
<tr>
<td>11</td>
<td>ベニング</td>
<td>1.3×10^{-3} ～ 1.3</td>
<td>イオン源タンク上部</td>
<td>Peg1</td>
</tr>
<tr>
<td>12</td>
<td>ベニング</td>
<td></td>
<td>中性化セルU</td>
<td>Peg2</td>
</tr>
<tr>
<td>13</td>
<td>ベニング</td>
<td></td>
<td>イオンタンク P2室</td>
<td>Peg3</td>
</tr>
<tr>
<td>14</td>
<td>ピラニ真空計</td>
<td>4×10^{-1} ～ 2.7×10^3</td>
<td>イオン源タンク上部</td>
<td>Pig1</td>
</tr>
<tr>
<td>15</td>
<td>ピラニ真空計</td>
<td></td>
<td>中性化セルU</td>
<td>Pig2</td>
</tr>
<tr>
<td>16</td>
<td>ピラニ真空計</td>
<td></td>
<td>ドリフト部</td>
<td>Pig3</td>
</tr>
<tr>
<td>17</td>
<td>ピラニ真空計</td>
<td></td>
<td>イオン源タンク上部</td>
<td>CCMT</td>
</tr>
<tr>
<td>18</td>
<td>ピラニ真空計</td>
<td>4×10^{-1} ～ 3.0×10^3</td>
<td>イオン源 U アークチャンパ</td>
<td>PAU</td>
</tr>
<tr>
<td>19</td>
<td>ピラニ真空計</td>
<td></td>
<td>イオン源 L</td>
<td>PA\</td>
</tr>
</tbody>
</table>
第3.2.6.2-1表 受熱部温度監視項目一覧

<table>
<thead>
<tr>
<th>番号</th>
<th>名称（略称）</th>
<th>点数</th>
<th>測定範囲（℃）</th>
<th>警報器／設定温度</th>
<th>予想値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>第1ビームリミタU、L（1BL）</td>
<td>4+4</td>
<td>0〜500</td>
<td>U-0／100℃</td>
<td>150℃</td>
</tr>
<tr>
<td>2</td>
<td>中性化セルU、L（NC）</td>
<td>4+4</td>
<td>"</td>
<td>U-1／150℃</td>
<td>150℃</td>
</tr>
<tr>
<td>3</td>
<td>イオンダンプ右（IDR1）</td>
<td>4</td>
<td>"</td>
<td>U-2／100℃</td>
<td>100℃</td>
</tr>
<tr>
<td>4</td>
<td>（IDR2）</td>
<td>8</td>
<td>"</td>
<td>U-3／150℃</td>
<td>150℃</td>
</tr>
<tr>
<td>5</td>
<td>（IDR3）</td>
<td>10</td>
<td>"</td>
<td>U-4／170℃</td>
<td>170℃</td>
</tr>
<tr>
<td>6</td>
<td>イオンダンプ左（IDL1）</td>
<td>4</td>
<td>"</td>
<td>U-5／100℃</td>
<td>100℃</td>
</tr>
<tr>
<td>7</td>
<td>（IDL2）</td>
<td>8</td>
<td>"</td>
<td>U-6／150℃</td>
<td>150℃</td>
</tr>
<tr>
<td>8</td>
<td>（IDL3）</td>
<td>10</td>
<td>"</td>
<td>U-7／170℃</td>
<td>170℃</td>
</tr>
<tr>
<td>9</td>
<td>カロリメータ（CM1）</td>
<td>6</td>
<td>0〜1000</td>
<td>U-8／250℃</td>
<td>250℃</td>
</tr>
<tr>
<td>10</td>
<td>（CM2）</td>
<td>4</td>
<td>"</td>
<td>U-9／250℃</td>
<td>250℃</td>
</tr>
<tr>
<td>11</td>
<td>（CM3）</td>
<td>11</td>
<td>"</td>
<td>U-A／250℃</td>
<td>250℃</td>
</tr>
<tr>
<td>12</td>
<td>第3ビームリミタ（3BL）</td>
<td>6</td>
<td>0〜500</td>
<td>U-B／250℃</td>
<td>150℃</td>
</tr>
<tr>
<td>13</td>
<td>第4ビームリミタ（4BL）</td>
<td>19</td>
<td>0〜1000</td>
<td>U-C／550℃</td>
<td>550℃</td>
</tr>
<tr>
<td>14</td>
<td>再電離保護板（RP）</td>
<td>4</td>
<td>"</td>
<td>U-D／400℃</td>
<td>550℃</td>
</tr>
<tr>
<td>15</td>
<td>ポートボックス保護板（PP）</td>
<td>3</td>
<td>"</td>
<td>U-E／400℃</td>
<td>550℃</td>
</tr>
<tr>
<td>16</td>
<td>突突ガス（SM）</td>
<td>4</td>
<td>"</td>
<td>U-F／550℃</td>
<td>790℃</td>
</tr>
<tr>
<td>17</td>
<td>ピーム分布計測板</td>
<td>1</td>
<td>"</td>
<td>L-0／350℃</td>
<td>350℃</td>
</tr>
</tbody>
</table>

注1.本表の内容はH13.7.6現在の最新情報を示す。

2.イオンダンプ、カロリメータの警報設定グループと各熱電対番号との関係は次のとおり。
 - IDR1/IDL1：No.1,2,7,20
 - IDR2/IDL2：No.3,4,8,9,18,19
 - IDR3/IDL3：No.5,6,10〜17
 - CM1：No.1,2,7,15,20,21
 - CM2：No.3,4,18,19
 - CM3：No.5,6,8〜14,16,17

3.3BLの250℃はH12年9月より
第3.2.2.2-1図 イオン源タンク磁気シールド（平面図）
保護板(t1) SUS304

保護板(t1) SUS304

イオン源U中心軸

イオン源L中心軸

第3.2.2.5-1図 第1ビームリミタ
① クライオパネル
② シェブロンパッフル
③ 気液分離器
第3.2.2.6-2図 液体ヘリウムの供給フロー
第3. 2. 2. 6-3図 液体窒素の供給フロー
第3.2.4-1図 イオンダングタンク部
第3.2.4.2-1図 偏向コイルとホール素子の取付け位置図
第3. 2. 4. 3-1 図 イオンダンプ設置位置及び概略構造図
第3.2.4.3-2図 イオンダング受熱面の配置

第3.2.4.3-3図 外部フィン付スワール管詳細

1mm径シーズ熱電対
熱電対先端は表面より
1mm±0.2
図3.2.4.4-1図 ガリオノーマー受熱器構造
受熱面材料はモリブデンで無酸素銅母材に銀ロー付けとする。

第3・2・4-2図 カロリメータ受熱セグメント詳細
第3. 2. 4. 7-1 図 第2ビームリミタ
保護板（t1）
SUS304

熱電対取付位置

第3. 2. 4. 7-2a 図 第3ビームリミタ（改造前）
第3.2.4.7-28図 第3ビームリミタ（改修後）
第3．2．5．3-2図 第4ビームリミタ、再電離保護板の熱電対取付け位置
第3.2.6.2-1 図 ビームライン機器熱電対配置図
分光モニタ
赤外線カメラ
中性化セル部
イオン源タンク部
プロファイルモニタ
分光モニター
赤外線カメラ

第3. 2. 6. 3-1 図 分光モニタ、赤外線カメラ、プロファイルモニタ設置位置
3.3 電源

電源はイオン源用電源及び受配電設備から構成される。
イオン源用電源は、イオン源にソースプラズマを生成し、そこから負イオンビームを引出し、加速するために必要な各種電力を供給するための電源である。第3.3.1-1図に示すとおり、二式の負イオン生成部電源（フィラメント電源、アーク電源、バイアス電源、PGフィルタ電源）及び引出電源、一式の加速電源及び偏向コイル電源より構成される。また、負イオン生成部で使用される二式のイオン源ガス導入系も、ここではイオン源用電源の一部として扱うものとする。各電源の定格は次のとおりである。

<table>
<thead>
<tr>
<th>電源名稱</th>
<th>出力電圧</th>
<th>電流</th>
<th>パルス幅</th>
<th>リプル</th>
<th>器数</th>
</tr>
</thead>
<tbody>
<tr>
<td>負イオン生成部電源</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィラメント電源</td>
<td>15V</td>
<td>1200A×8系統</td>
<td>16秒</td>
<td>6%pp</td>
<td>2式</td>
</tr>
<tr>
<td>アーク電源</td>
<td>120V</td>
<td>5000A</td>
<td>11秒</td>
<td>3%pp</td>
<td>2式</td>
</tr>
<tr>
<td>バイアス電源</td>
<td>10V</td>
<td>1600A</td>
<td>11秒</td>
<td>3%pp</td>
<td>2式</td>
</tr>
<tr>
<td>PGフィルタ電源</td>
<td>5V</td>
<td>10kA</td>
<td>11秒</td>
<td>3%pp</td>
<td>2式</td>
</tr>
<tr>
<td>引出電源</td>
<td>-（2〜10）kV</td>
<td>80A</td>
<td>10秒</td>
<td>2%pp</td>
<td>2式</td>
</tr>
<tr>
<td>加速電源</td>
<td>-（150〜490）kV</td>
<td>64A</td>
<td>10秒</td>
<td>10%pp</td>
<td>1式</td>
</tr>
<tr>
<td>偏向コイル電源</td>
<td>1220V</td>
<td>1500A</td>
<td>13秒</td>
<td>-</td>
<td>1式</td>
</tr>
<tr>
<td>（イオン源ガス導入系）</td>
<td>（流量：最大 20Pa・m³/s）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2式</td>
</tr>
</tbody>
</table>

3.3.1 負イオン生成部電源

負イオン生成部電源はイオン源の負イオン生成部（アークチャンバー）でアーク放電を生じさせ、ソースプラズマを生成させるための電源で、フィラメント、アーク、バイアス電源及びPGフィルタ電源から構成され、イオン源U、Lに対応して計二式より成る。

3.3.1.1 共通仕様

(1) 各電源の繰返し率（デューティ）は、ビームパルス基準で1/60以下である。ビームパルス基準の繰返し率は、実際に引出されるビームの繰返し率であり、各電源に対する繰返し率は高く、例えば45秒周期で0.8秒のビームを引出す場合、フィラメントは予熱時間が6秒程度必要なのでフィラメント電源の通電時間は6.8秒となり、繰り返し率は6.8/45となる。

(2) 最短繰り返し周期は、30秒である。

(3) JT-60加速用発電設備は、電圧で+7.5%〜-10.5%、周波数で77.6〜54.2Hzの範囲の出力変動があるが、これに対して各電源の出力変動を抑えるよう補償する機能を持つ。

3.3.1.2 フィラメント電源

(1) 基本構成
フィラメント電源は絶縁変圧器、サリスタスイッチ、8系統の降圧変圧器、ダイオード整流
器、直流フィルタにより構成される。
(2) 基本性能
 a) 出力電圧は 0～15V 連続可変、最大電流は 1200A×8 系統である。ただし、この電流値は
 定常値とし、通電開始時に過渡的に 3 秒間、最大 130%の電流を流すことが可能である。
 b) ソフトスタート
 フィラメント通電開始時点の電流立ち上がりのピークを抑えるため、サイリスタ制御によ
 りソフトスタートをかける。ソフトスタートの定常値の 90%までの立ち上がり時間は 0.2～3
 秒の範囲で可変である。
 c) フィラメント断線時の保護
 イオン源 1 台あたりフィラメントは 6 本×8 系統装着されている。この 8 系統毎の電流が
 200A 以下となった場合、フィラメント断線として、ビーム引出し禁止の保護動作を行う。
 d) 結線方式
 フィラメント電源とイオン源及びアーク電源との結線方式を第 3. 3. 1 ～ 2 図に示す。高
 電位ケーブル内のある 8 系統のフィラメント電源出力は、セーブルを通してイオン源保
 守ステージ内の端子台で中継した後、イオン源の 8 系統のフィラメント端子と接続される。
 フィラメントのマイナス端子とアーク電源マイナス端子とはアーク限流抵抗を通して接続さ
 れ、アーク電流の帰路はフィラメント回路を分断する。限流抵抗を介したアーク電源のマイナ
 ス端子はフィラメント端子のプラス極と接続することも可能である。
 アーク電源のプラス出力ケーブルはセーブルを通してイオン源のアークチャンバ端子
 に接続される。アーク電源マイナス出力は 8 系統に分岐され、それぞれ直流スイッチと限流
 抵抗を通った後、セーブルを通してイオン源保守ステージでさらに直列の限流抵抗を介
 した後、端子台においてフィラメント出力（8 系統）のマイナス極に接続される。

3. 3. 1. 3 アーク電源
 "アーク電源は陰極であるフィラメントと陽極であるアークチャンバ間に電圧を印加し、ソース
 プラズマを生成するための電源である。
(1) 基本構成
 アーク電源は、絶縁変圧器、サイリスタ変換器、直流フィルタ、それに 8 系統の直流スイッチ、
 限流抵抗などから構成されている。
(2) 基本性能
 a) 出力遮断性能
 アーキング発生時等の出力遮断時間が 100μs 以下である。ここで、遮断時間とはアーキング
 発生後から電流が定格の 5%以下となるまでの時間である。
 b) 受電電圧の変動に対し、出力電流が±100A 以上変化しないようにサイリスタ位相制御に
 より補償している。
 c) 限流抵抗
 アーク電源マイナス出力側には、8 系統毎に限流抵抗を設け、定電流性を持たせるとともに、
 8 系統間に流れるアーク電流の分流を均等化することを行う。限流抵抗の値は当初 100mΩ で
あったが、イオン源保守ステージ側に直列に抵抗器追加し、現在は最大200mΩとなっている。

（3）高速保護
 a）イオン源放電破壊時の保護
 イオン源の加速部電極、又は引出部電極間で放電破壊が発生した場合、第3．5．2項に述べるように、アーク電源も連動して高速遮断し、保護動作を行う。
 b）アーキング時の保護
 通常、アーク放電はフィラメント表面を布わって一枚の放電であるが、フィラメントの表面の一カ所に集中することがあり、これをアーキングと呼ぶ。アーキングはフィラメントの重大な損傷を伴うため、第3．5．2項に述べるように、これを高速に検出し、遮断させるようにしている。

3.3.1.4 バイアス電源、PGフィルタ電源
 バイアス電源はアークチャンバーに対して、プラズマ電極に電位を与え、負イオンと共に引出される電子量を抑制するための電源である。
 PGフィルタ電源はプラズマ電極に直接電流を流し、フィルタ磁場を形成させ、負イオン生成効率を最適化するための電源である。
 （1）基本構成
 両電源は、絶縁変圧器、サイリスタスイッチ、降圧変圧器、ダイオード整流器、直流フィルタより構成される。

3.3.1.5 イオン源ガス導入系
 イオン源ガス導入系の構成は第3．2．6．1－1図中に示すとおり、配管を5系統に分岐し、それぞれが電磁弁及びニードル弁を通った後、再度一系統に合流している。各系統のニードル弁を調整して、系統毎の流量比が1:2:4:8:16となるよう設定しており、開とする電磁弁の組合わせを変化させることにより流量を調整する方式である。最大流量は当初20Pa m³/sであったが、現在は465Pa m³/sに設定している。
 供給ガスは重水素又は水素であり、高電位テーブル内に設置されているガス集合装置のガス種選択用電磁弁により選択される。

3.3.2 引出電源

引出電源はプラズマ電極と引出電極に負の電界を与え、ソースプラズマから負イオン（電子も含む）を引出すための電源である。
 （1）基本構成
 引出電源は、絶縁変圧器、サイリスタスイッチ、直流発生装置、直流フィルタ、直流スイッチ、分圧器、接地装置、非線形抵抗より構成され、イオン源U、Lに対応して計2式より成る。
 （2）基本性能
 a）負荷パルス中の受電電力変動に対して、出力電流変動率は±2.5％以下である。
b）高速遮断機能

放電破壊発生時等の出力遮断時間は100μs以下である。ここで遮断時間とは放電破壊等の発生から電流が定格の5%以下となるまでの時間で定義する。また、放電破壊発生時のイオン源へのエネルギー流入量は1J以下を目標としている。

c）出力電圧設定分解能 50V

3.3.3 加速電源

加速電源は引出された低エネルギーの負イオンビームを最大500keVまで加速するための電源である。

（1）基本構成

加速電源は、降圧変圧器、コンバータ、インバータ、直流発生装置、過電圧抑制用コンデンサ、サージ抑制用リアクトル、出力安定化は用 механизム無抵抗器、分圧器、接地装置、非線形抵抗より構成される。インバータ、直流発生装置は三組交互に、直流発生装置は直列接続され、接続点より2個中間出力が可能である。コンバータは共通に1台設けられる。イオン源U、L共通に一式である。

（2）基本性能

a）出力電圧

加速電源出力 490kV（単体最大出力500kV）

第一加速電極出力 最大360kV

第二加速電極出力 最大180kV

b）出力電流

加速電源出力電流 64A

第一加速電極電流容量 20A

第二加速電極電流容量 10A

c）電圧立ち上げ時間

出力電圧が定常値の10%〜90%に達するまでの立上げ時間100ms以下。

d）電圧変動率

負荷パルス中の受電電力の変動（電圧+7.5%〜−10.5%、周波数77.6Hz〜54.2Hz）に対して、出力電圧変動率±2.5%以下。

e）高速遮断機能

放電破壊発生時等のインバータ出力遮断時間200μs以下。

f）出力電圧設定分解能 1kV

ドリフト 3%以下（1時間間返し運転中）

g）デューティ 1/60以下

最短電極周期 30秒

パルス幅 10ms〜10sec

h）出力電圧の調整はコンバータの位相角制御及びインバータのパルス幅制御により行う。各
段の電源は独立に半固定式で制御可能とし、一段あたり最大 180kV の出力が可能である。

i）電流遮断時の過電圧抑制
引出部の放電破壊等により加速電源の出力電流が遮断された場合、直流発生装置変圧器巻線の漏れリアクタンスに蓄えられたエネルギーにより出力過電圧が発生する。この過電圧を抑制するため出力端に過電圧抑制用コンデンサ 0.36 μF を設ける。同コンデンサには放電破壊時のイオン源へのエネルギー流入を抑えるため抵抗 164Ωが直列に接続される。

j）配線方式
加速電源出力は第 1 加速電極出力及び第 2 加速電極出力、それにソース電源用絶縁変圧器二次出力とともに SF₆ガスダクトを通して実験装置に通入し、SF₆ガスダクトを出た後にサージ抑制用リアクトルを通して高電位ネットワークに接続される。第 1 加速電極出力及び第 2 加速電極出力は SF₆ガスダクトを出た後に保護抵抗を通した後、二分割してイオン源 U、L の各電極に接続される。保護抵抗は、組立室内と電源室内に設置され、放電破壊時の電流を 1kA 以下にするよう、第 1 加速電極用が 400Ω、第 2 加速電極用が 300Ωの抵抗値である。

3. 3. 4 SF₆ガスダクト、高電位チェーン

(1) SF₆ガスダクト
SF₆ガスダクトは 3 軸構造とし、3 本の内管はそれぞれ加速電源出力、第 1 加速電極出力、第 2 加速電極出力の導体を兼ね、外管より絶縁支持される。外管は加速電源の戻りラインを構成し、建家より絶縁支持される。ソース電源用絶縁変圧器の二次出力ケーブルは加速電源出力内管の内側を通して配線される。SF₆ガスダクトの断面図を第 3. 3. 4-1 図に示す。
実験装置本体室の壁貫通部は放射線遮蔽のため、迷路構造とし、中性子の減衰率は 7×10⁻⁶以上とした。

(2) 高電位チェーン
負イオン生成部電源及び引出電源は、加速電源の出力電位上に浮いた状態で使用されるため、500kV 以上の十分な対地絶縁能力を持つ高電位チェーン上に収納される。
高電位チェーン上の機器用電源はソース電源用絶縁変圧器により SF₆ガスダクトを通して供給される。この電源は高電位チェーン上で降圧され、低圧分電盤を介して各機器に供給される。
高電位チェーンにはイオン源 U、L の各プラズマ部電極の電位となるプレートを設け、各電源は U、L 毎に各プレートに電位固定される。高電位チェーンからイオン源へのすべての配線は、サージブロックを贯通させる。イオン源と電源間の配線図を第 3. 3. 4-2 図に示す。
イオン源のセシウム導入装置の遠隔制御用現場盤も高電位チェーン上に設置されている。

3. 3. 5 サージ抑制機能
サージ抑制はイオン源での放電破壊時に流入するサージ電流を抑制することにより、イオン源及び電源の保護を行うものであり、サージブロック、及びサージ抑制用リアクトルより構成される。サージ電流抑制用リアクトルは、サージブロックが大型化するのを防ぐために、加速電源及
びソース電源の各電源出力に挿入するものである。

（1）サージブロッカ

サージブロッカは、高電位テーブルの各電源からイオン源への給電用ケーブルを貫通させることにより、イオン源での高電圧放電破壊発生時のサージ電流を抑制するために設置される。磁性材として、新素材のファインネットコアを用い、2次回路に600Ωの電流抑制用抵抗、1mHのバイアス回路用リアクトルを設置している。

a）構成

ファインネットコア φ900－φ500×25.4mm 30枚重ね

b）性能

ピーク電流1kA以下、エネルギー6J（Varc＝100V一定と仮定）以下を目標とした。

c）磁気特性

最大動作磁束量 8.93～9.83mWb
リセット磁化力 23A/m
バイアス電流 114A

（2）サージ抑制リアクトル

加速電源出力、ソース電源用絶縁変圧器二次側の、電源室の送出し部と高電位テーブル上の受け部にそれぞれ2台ずつ、3mHのリアクトルを設置している。

3.3.6 偏向コイル電源

偏向コイル電源は、中性化セルを選過したビームについて、中性ビームから正及び負イオンビームを分離させるために使用する偏向磁場コイル用の励磁電流を供給するものである。加速電圧に応じてコイル電流を変化させ、磁場強度を変化させて運転する。また、プラズマ放電中に変化する漏洩磁場に対して偏向コイルの発生磁場強度を制御し、偏向磁場一定制御を行う。さらにイオンダングの熱負荷を低減するために、2Hzの正弦波成分を重畳することも可能である。

（1）基本構成

偏向コイル電源は、降圧変圧器、サイリタ变换器、直流フィルタ、限流抵抗などから構成されている。

（2）基本性能

a）負荷

負荷は空心の偏向コイルであり、抵抗値は460mΩ、インダクタンス値は80mHである。

b）定常状態での電流リップルは±2％以下とした。また、設定値に対する差は±2％以下とした。

c）立上がり、立下がり時間は1秒以下である。ただし、ここでの立上がり時間は通電開始から設定値の±2％以内の範囲に入るまでの時間である。

d）制御方式は、第3．5．2項に示すとおりである。
3.3.7 受配電設備

受配電設備は変動系受配電設備と常用系受配電設備から構成される。

（1）変動系受配電設備
変動系受配電設備はJT-60 加熱用発電設備のN-NBI用遮断器から、18kVの電力を受電し、特別高圧閉鎖配電盤により、加速電源、ソース電源（負イオン生成部、引出部電源）、偏向コイル電源に配電する。また、試験調整用運転などの際、加熱用発電設備を使用しないで運転できるように、単一試験系受配電設備と呼ぶ商用系からの受電も可能となっている。

（2）定常系受配電設備
定常系受配電設備はJT-60 操作用配電設備から低圧（420V）電力を受電し、N-NBI装置構成設備の低圧動力用電力及び制御用電力を供給するものである。
SF₆ガス（〜3kg/m³）

-163kV

φ660.4

-327kV

-490kV

第3.3.4-1図 SF₆ガスダクト断面図
3. 4 補機設備

3. 4. 1 1次冷却系

1次冷却系は、ビームラインやイオン源の各受熱機器を冷却するビームライン冷却系及び電源系設備の一部を冷却する電源冷却系で構成される。系統図を第3. 4. 1 - 1 図に示す。
ビームライン冷却系は、既設ビームライン循環系から分岐し被冷却機器へ冷却水を供給する。電源冷却系は、正イオン NBI 用の RV 循環系（II）から分岐し被冷却機器へ冷却水を供給する。

3. 4. 1. 1 ビームライン冷却系

ビームライン冷却系は、正イオン NBI 装置#9、10 用の冷却系配管の分岐部より、ビームライン及びイオン源に冷却水を供給する。イオン源ヘッドとイオン源間のシンフレックスチューブの長さは、水の電気伝導度より7mとした。

(1) 冷却対象機器

a) イオン源全体の最大設計熱負荷は1MW×10sで、各部の冷却水流量は次のとおりである。

負イオン生成部	アークチャンバー(ARC)	200(l/min)	145	FIS-22U、L
フィラメント電流導入端子(FIL)	16	20	FIS-24U、L	
引出部	プラズマ電極支持枠(PGF)	40	不使用	FIS-26U、L
	引出電極(EXG)	200	165	FIS-28U、L
	電子抑制電極(ESG)	30	EXGと一体化のため削除	
加速部	第1加速電極(A1G)	216	180	FIS-32U、L
	第2加速電極(A2G)	216	180	FIS-34U、L
	接地電極(GRG)	216	200	FIS-36U、L
	接地電極支持枠(GGF)	20	同左	FIS-38U、L

注)1998(平成10)年1月に、ESGはイオン源内でEXGと同一電位、一体構造に改造したため、冷却水ヘッドとの取合いは不要となった。

b) ビームライン各機器の冷却水流量、最大設計熱負荷は次のとおりである。

<table>
<thead>
<tr>
<th>項 目</th>
<th>設計最大熱負荷</th>
<th>設計流量</th>
<th>実流量</th>
<th>計器No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>イオン源</td>
<td>ビームスクリバ</td>
<td>30(l/min)</td>
<td>同左</td>
<td>FIS-52</td>
</tr>
<tr>
<td>第1ビームリミタ</td>
<td>中性化セルU</td>
<td>0.6MW×10s</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>中性化セルL</td>
<td>0.6MW×10s</td>
<td>同左</td>
<td>FIS-64</td>
<td></td>
</tr>
<tr>
<td>イオンダングリパンク部</td>
<td>第2ビームリミタ</td>
<td>4.2MW×10s</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>カロリーメータ</td>
<td>10MW×1s</td>
<td>30</td>
<td>同左</td>
<td>FIS-72</td>
</tr>
<tr>
<td>偏向コイル</td>
<td>0.6MW×2×13s</td>
<td>90</td>
<td>同左</td>
<td>FIS-76</td>
</tr>
<tr>
<td>NBI ポート</td>
<td>ゲート弁絶縁リング部</td>
<td>30</td>
<td>同左</td>
<td>FIS-78</td>
</tr>
<tr>
<td>ポート絶縁部</td>
<td>30</td>
<td>同左</td>
<td>FIS-80</td>
<td></td>
</tr>
</tbody>
</table>

注)1.2001(平成13)年現在、第2ビームリミタは40l/min に、第3ビームリミタは改造があったため、80l/minに増量した。

2. 偏向コイルは上下一対のコイルで、ホロー導体通電時の発熱を想定したもの。
（2）通水モード
a）定常運転
被冷却機器に（1）項に示す定格流量を供給する運転であり、機器入口圧力は、10kg/cm²
Gである。
b）凍結防止運転
クライオポンプからの放射冷却による被冷却機器の配管内凍結を防止するために、定格流量
の数％の流量を供給する運転である。

（3）ヘッダ
ヘッダは、イオン源系ヘッダU、同L、イオン源タンク系ヘッダ及びイオンダウントンク系ヘッダ
によって構成され、冷却水は各ヘッダから、イオン源U及びL、イオン源タンク内機器及び
イオンダウントンク内機器と一部NBIポートへ各々供給される。
イオン源系ヘッダの電極及びアークチャンパ系統については、各系統毎にマニホールドを介し
て、電極については5本（5セグメントに対応）、アークチャンパについては4本（4分割／イオン源）に
それぞれ分岐し、その他の系統は1本にて、シンプレックスチューブ（～7m）を通
してイオン源に接続する。

（4）計測制御
1次冷却系計装盤の水温差計測信号を第3．4．1－1表に示す。

（5）正イオンNBIとの同時運転
文献1）の設計検討では、N-NBIビームライン循環系を通水する場合、正イオンNBIの14ユ
ニットのうち、2ユニットを停止する必要がある、としていたが、N-NBIと正イオンNBIの14ユ
ニット同時運転が可能であった。これは、N-NBIビームライン冷却系の必要流量が458m³/h
であり、正イオンNBI14ユニットの必要流量が3,080m³/hで、合計3,540m³/hと、ポンプ3台
の供給可能流量以下で、バイパス流量が多量にあったのを補填して解決できたためである。

3.4.1.2 電源冷却系
電源冷却系は、正イオンNBI装置冷却系のRV循環系（II）の入口配管より分岐し、電源系設
備の加速電源インバータに冷却水を供給する。最大設計熱負荷は1.1MW×10s、冷却水流量は
1,500 l/min、機器入口圧力：5kg/cm²Gである。

3.4.2 補助真空排気系
補助真空排気系（以下、補助排気系と言う。）は、イオン源タンク及びイオンダウントンク内
部を大気圧からクライオポンプの作動領域（約3×10⁻²Pa以下）にまで排気すること、及び両
タンク内のクライオポンプ再生時にクライオパルメータから放出される重水素又は水素ガスを安全
かつ円滑に排気すること、さらにクライオポンプを使用しないで、補助排気系だけの排気のみで、
短パルスのビーム加速運転もできることを目的としている。補助排気系系統図を第3.4.2－
1図に示す。
（1）被排気容器の種類、容積は、次のとおりである。
・イオン源 ————約 3m³ ×2
・イオンダブタンク部 ————約 34m³
・イオン源タンク部 ————約 46m³
・中性化セル部 ————約 10m³

これら容器は、それぞれの間に真空仕切りがないため、四者を同時に排気する。
（2）粗引系とTMP排気系は既設の正イオン NBI用の設備を配管配加により改造し使用し、TMP排気系を新規製作した。TMPは、当初イオン源タンクに4台設置され、その後、イオンダブタンクにも2台追加設置され、合計6台である。

N·NBI単独で大気から排気する場合の概略所要時間は次のとおりである。
①数 Paに達し、TMP排気開始可能となるまでの時間：1.5〜2時間
②10¹²Pa以下となるまでの時間：2〜3時間

3. 4. 3 冷媒循環系

冷媒循環系は、イオン源タンク、イオンダブタンクに設置されているクライオポンプに液体ヘリウム、液体窒素を供給するための設備で、正イオン NBI装置の冷媒循環系の中の一部として運転される。
（1）配管系、トランスファーライン

液体ヘリウムトランスファーラインは、正イオン NBI装置冷媒循環系閉ループより分岐し、イオン源タンク、イオンダブタンク近辺の取合口までを接続する。

液体窒素トランスファーラインは、正イオン NBI装置冷媒循環系閉ループより分岐する。イオン源タンク、イオンダブタンク近辺の取合口までの液体窒素ラインは、液体ヘリウムトランスファーラインのシールドの役割を兼ねる構造とする。

第3. 4. 3 - 1 図に配管関係の系統図を示す。

（2）正イオン NBIとの同時運転

文献1)の設計検討では、N·NBIの2基のクライオポンプを運転する場合、正イオン NBIの14ユニットのうち、2〜4ユニットを停止する必要がある、としていたが、N·NBIと正イオン NBIの14ユニット同時運転が可能であった。これは、従来の正イオン NBI14ユニットの運転に比べ、予冷運転に要する時間を長くした（〜17H〜〜23時間）こと、及びヘリウムを液化する工程の供給ガス量を増大した（12kg/cm²→14kg/cm²）ことにより、解決できたためである。

（3）クライオ予冷運転処置時間

冷媒から予冷開始し、常温となるまでの所要時間は概略次のとおりである。
①クライオ予冷開始から、クライオ常温となるまでの時間：〜20時間
第3. 4. 1-1 表 1次冷却系計装盤水温差信号一覧

<table>
<thead>
<tr>
<th>系</th>
<th>統</th>
<th>Tag No.</th>
<th>計 装 盤</th>
<th>初期換算比</th>
<th>現状換算比</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC U</td>
<td>DTT21U</td>
<td>組立室 LP-W2</td>
<td>±5℃/10V</td>
<td>同 左</td>
<td>注</td>
<td></td>
</tr>
<tr>
<td>EXG U</td>
<td>DTT27U</td>
<td>同 左</td>
<td>不使用</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESG U</td>
<td>DTT30U</td>
<td>同 左</td>
<td>不使用</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIG U</td>
<td>DTT31U</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2G U</td>
<td>DTT33U</td>
<td>±10℃/±10V</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG U</td>
<td>DTT35U</td>
<td>±10℃/±10V</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGF U</td>
<td>DTT37U</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC L</td>
<td>DTT21L</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXG L</td>
<td>DTT27L</td>
<td>同 左</td>
<td>注</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESG L</td>
<td>DTT30L</td>
<td>同 左</td>
<td>不使用</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIG L</td>
<td>DTT31L</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2G L</td>
<td>DTT33L</td>
<td>±10℃/±10V</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRG L</td>
<td>DTT35L</td>
<td>±10℃/±10V</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGF L</td>
<td>DTT37L</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビームスクリバ</td>
<td>DTT51</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1 ビームリミタ</td>
<td>DTT55</td>
<td>組立室 LP-W2</td>
<td>±10℃/±10V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性化セル U</td>
<td>DTT61</td>
<td>本体室 LP-W4</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中性化セル L</td>
<td>DTT63</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イオンダング 右</td>
<td>DTT69</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イオンダング 左</td>
<td>DTT67</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カリリメータ</td>
<td>DTT71</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第2 ビームリミタ</td>
<td>DTT73</td>
<td>同 左</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第3 ビームリミタ</td>
<td>DTT75</td>
<td>本体室 LP-W4</td>
<td>±5℃/10V</td>
<td>±20℃/±10V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注)EXG はイオン源内で ESG と一体化しているので実際は EXG+ESG の水温差である。

関連 H12.4.11: 第 2、第 3 ビームリミタの流量 30l/min から 40l/min に変更。

H13.2 : 第 3 ビームリミタの流量 40l/min から 80l/min に変更。
第3.4.1-2図

注記
1. 記号の説明がないものはすべて artisans を指します。
第3.4.2-1図 補助真空排気系系統図
第3.4.3-1図 冷媒循環系系統図
3. 5 制御系

本制御系は、N-NBI装置の電源系（受電配設設備、イオン源用電源）及びビームライン系（ビームライン機器、1次冷却系、補助真空排気に、冷媒循環系）の運転制御を統括管理するための設備である。

本制御系は、第3. 5. 1－1図に示すとおり、計算機システム2)、電源系制御設備、ビームライン系制御設備により構成される。

3. 5. 1 制御系の構成、機能

(1) 計算機システム

本システムは、ワークステーション2台とその周辺機器（プリンタなど）、データ収集盤（制御室用、本体室用、液化機室用）により構成する。

a）ワークステーションのうち、1台は主に、オフラインで過去のショットデータの保存、再表示などを行うデータ処理機能を有する。残り1台は主に、イオン源運転時の設定変更操作や運転／計測データの表示、N-NBI装置全体の運転監視およびJT-60全系制御設備（全系）計算機システムとのイーサネットを介した通信などの機能を有する。各ワークステーションは、イーサネットにより、N-NBI内各データ収集盤、電源系制御盤内のプログラムナルコントローラ（PLC）、タイミング制御装置（TSC）との通信の他、全系制御設備との通信機能を持っている。

b）データ収集盤は、VMEバスシステムにより構成される。このうち、制御室データ収集盤は、JT-60制御棟中央制御室に設置され、主にイオン源用電源からの計測データの高速収集とビームライン系からの運転状態／警報データを収集する機能及び計算機システムや電源系制御盤との通信機能を持つ。本体室データ収集盤は、JT-60実験棟PIG電源室に設置され、液化機室データ収集盤及び光ファイバケーブルで接続され、主にビームライン受熱機器の温度や冷却水温度などの計測データの低速収集と温度が冷却水流量低などの警報データを収集する機能を持つ。液化機室データ収集盤は、JT-60実験棟He液化機室IIに設置され、真空度などの計測データの低速収集機能を持つ。

（2）電源系制御設備

本設備は、電源系制御盤、低圧制御ユニット、その他より構成される。電源系制御盤及び低圧制御ユニットは、中央制御室内に設置され、受電設備やイオン源用電源の遮断器の入／切等の操作を行う他、ビームライン系制御設備との信号授受、N-NBI運転モードの管理、イオン源運転時の制御／保護のインターロック機能、タイミング制御の機能などを有する。また、イオン源用のセンサ部導入装置もこれら制御盤から制御される。

（3）ビームライン系制御設備

本設備は、ビームライン系制御盤、受熱部温度監視盤、その他より構成される。ビームライン系制御盤は、中央制御室内に設置され、ビームライン系設備の遠隔制御／監視機能の他、必要な信号授受を電源系制御盤との間で行う機能を持つ。また、受熱部温度監視盤は、JT-60実験棟本
体室に設置され、ビームライン受熱機器の温度を監視し、警報出力機能の他、1点毎の計測データを本体室データ収集盤に出力する機能を持つ。

（4）正イオン NBI との同時運転

文献1の設計報告では、N-NBI と正イオン NBI を同軸遠転する場合、正イオン NBI の最大運転ユニット数は 12 に制限する、とした。この理由のひとつであった、1次冷却系や冷却循環系の能力不足は第 3. 4 節で述べたように解決し、これらの全ユニット同時運転は可能になった。しかし、もう一つの理由である実験棟本体室の放射線遮蔽能力の条件（中性粒子加熱パワー最大値：44MW）は不変のため、同時運転時の正イオン NBI の最大ユニット数は 12 のままである。このため、正イオン NBI のイオン源運転ユニット数が 13 以上である場合、N-NBI のイオン源運転のターキークネスを停止とするインターロックを追加して対処した。

3. 5. 2 電源系制御設備

（1）運転機能

a）運転モードの管理

N－NBI 運転モードは、第 3, 5, 2－1 図に示すとおりで、各モード中の運転内容、モード間の移行ルートも図中に示すとおりである。

b）タイムシーケンス

各タイミング設定値の詳細は第 3, 5, 2－1 表に、各運転モードにおけるタイムチャートを第 3, 5, 2－2～3 図に示す。CND, BAA 各運転モードの場合は、N-NBI 単独に最短周期 30 秒, 縦返し率 1/60 を超えない範囲で運転を行う。BAA モードの場合は、最大パルス幅を 0.2 秒とし、正イオン NBI の場合を異なり、対向面で上下ビーム軸道が重なることがないため、イオン源 2 台同時の運転も可能とした。INJ モードの場合、全系からの指令に従って、フラッシング（最短周期 30 秒、縦返し率 1/60 など CND モード相当）と実際入射を実行する。

イオン源のビーム加速運転を行うタイムシーケンスとして、加速、引出の各出力をオンした後、アーク出力をオンするアーク立上げ方式と、加速、アークの各出力をオンした後、引出出力をオンする引出立上げ方式の二種がある。これらは、各タイミング設定値を変更することにより選択可能である。通常、アーク立上げ方式を使用している。

c）電源系の運転

ア. 計算機システムと取合うイオン源用電源出力設定値は、次のとおりである。

<table>
<thead>
<tr>
<th>電源</th>
<th>定格値</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速電源</td>
<td>0～10V／0～－500kV</td>
</tr>
<tr>
<td>引出電源</td>
<td>0～10V／0～－10kV</td>
</tr>
<tr>
<td>P Gフィルタ電源</td>
<td>0～10V／0～10kA</td>
</tr>
<tr>
<td>バイアス電源</td>
<td>0～10V／0～10V</td>
</tr>
<tr>
<td>アーク電源</td>
<td>0～10V／0～120V</td>
</tr>
<tr>
<td>フィラメント電源</td>
<td>0～10V／0～15V</td>
</tr>
<tr>
<td>ビームエネルギー</td>
<td>0～10V／0～500keV*</td>
</tr>
</tbody>
</table>
イオン源ガス導入系 ×2 0〜10V/0〜4.65Pa・m³/sec
中性化セルガス導入系 ×1 0〜10V/0〜7.75Pa・m³/sec
なお、加速電源の各段電圧比、及びプロファイリングモニタガス導入系の流量は低圧制御ユニット盤からののみ設定可能である。

イ. 偏向コイル電源の運転制御は、次のとおりである。
①必要的偏向コイル電流 Idc は次のとおりである。

\[I_{dc} = I_{v} - I_{bs} + I_s \]

ここで I_v はビームエネルギー依存成分、I_{bs} は JT-60U からの漏洩磁場の補正成分、I_s はビームをスイープするための正弦波電流成分である。

②I_v はビームエネルギー E_b により次式で与えられる。

\[I_v = K_a \times \sqrt{E_b} \]

ここで、定数 K_a は計算機システムの定数テーブルの値で設定し、E_b は引出電圧設定値 U、L の平均値と加速出力電圧設定値の和を NBI 計算機が求め、出力する値である。

③I_{bs} は JT-60U からの漏洩磁場 Bs により次式で与えられる。

\[I_{bs} = K_b \times B_s \]

ここで、定数 K_b は低圧制御ユニット盤で設定する値であり、漏洩磁場 Bs は正イオン NBI 装置 #13 ユニットの計測値を分岐して用いている。

④I_s は周波数 2Hz の正弦波電流成分であり、振幅は低圧制御ユニット盤で設定可能であり、最大電流振幅は 300A である。

(2) 保護機能

a）電極開放電破壊時
イオン源の電極間では放電破壊がしばしば発生する。この時、イオン源及び電源を保護するために引出電源、加速電源は以下の動作を行う。

ア. イオン源内放電破壊は、三種類に分類し、その内容は次のとおりである。

・加速電源ブレーキダウン(BD)

<table>
<thead>
<tr>
<th>BD項目</th>
<th>検出レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iacc OC</td>
<td>120% 76.8A</td>
</tr>
<tr>
<td>Vacc OV</td>
<td>114% -570kV or 110% -550kV</td>
</tr>
<tr>
<td>Vacc UV</td>
<td>10% -50kV</td>
</tr>
<tr>
<td>Ia1g OC</td>
<td>120% ±24A ▼ Iacc 立上げ時の過渡的通過に要調整</td>
</tr>
<tr>
<td>Valg OV</td>
<td>110% -396kV</td>
</tr>
<tr>
<td>Valg UV</td>
<td>10% -36kV</td>
</tr>
<tr>
<td>Ia2g OC</td>
<td>120% ±12A ▼ Iacc 立上げ時の過渡的通過に要調整</td>
</tr>
<tr>
<td>Va2g OV</td>
<td>110% -198kV</td>
</tr>
<tr>
<td>Va2g UV</td>
<td>10% -18kV</td>
</tr>
<tr>
<td>Vacc-Valg UV</td>
<td>10% -16kV</td>
</tr>
<tr>
<td>Valg-Va2g UV</td>
<td>10% -16kV</td>
</tr>
<tr>
<td>Vacc-Va2g UV</td>
<td>10% -32kV</td>
</tr>
</tbody>
</table>

・引出電源 U、L ブレーキダウン(BD)

| IextU or L OC | 120% 96A |
| VextU or L UV | 10% 1kV |
イ. 放電破壊検出後、加速電源、該当する側の引出電源及びアーク電源の出力を高速遮断し、各電源毎の設定時間（第3.5.3－1表の、T4A、T1n、T2n）経過後にそれぞれ自動的に再起動する。

ウ. 1パルスの間のいずれかのBD積算回数が、許容回数（1～9回可変）に達した場合をカウントアップと呼び、そのパルス中の再起動は行わない。ただし、INJモード中の実験入射時には、一定時間（0.5、1.0、1.5秒間の半固定値）内に許容回数に達したかどうかを監視するようになっている。

b）イオン源内アーティング時

イオン源のアークチャンバ内で、フィラメントのある一部にアーク放電が局所集中してしまう「アーティング」がしばしば発生する。この時、イオン源フィラメントを保護するために、低圧制御ユニット盤、電源系制御盤で次の保護インターロック動作を行う。

ア. アーティング検出

フィラメントの8グループ毎に流れるアーク電流の最大と最小の差を監視し、これが設定レベルを越えた場合をアーティングと判定する。電流差は50～500Aの範囲で設定可能である。

イ. 遮断

アーティング検出時に、放電破壊時と同様に、該当するアーク及び引出電源と加速電源の出力を高速遮断する。最初、放電破壊時と同様に、1パルスの間に9回以内の遮断、再立ち上げが可能であったが、より確実な保護動作とするために1回だけで再立ち上げ動作を行わないよう改造した。

c）運転時間超過検出

ア. 電源毎の運転超過時間検出は、各電源盤毎に自身の通電時間を監視する機能である。

イ. 引出電源モニタ値による超過時間検出

引出電源の出力電圧を監視し、定格の10%以上のレベルが運転モードにより異なる設定時間以降も継続した場合、モード毎運転時間超過として、タイムシーケンス停止とする。設定時間は、CND／FLA時には運転設定電圧に応じて、0.6～1.1秒、BAA時には0.26秒、EXINJ時には1.1～10.1秒の各半固定値である。CND/FLA時の設定電圧対運転可能パルス幅の関係を第3.5.2－4図に示す。

d）ビームライン機器等の保護

ア. タイムシーケンス停止

イオン源のビーム加速運転中に非標準事態が発生した場合には、これをただちに検出し、高速にビーム遮断させる機能を持ち、このために、非標準事態信号を直接タイミング制御装置へ入力し、タイムシーケンスに従った動作を強制的に停止させて各電源等への運転指令をオフとしてビーム遮断を行う、この動作をタイムシーケンス停止と呼ぶ。

イ. ビーム引出禁止

タイムシーケンス停止の他、シーケンスそのものは停止させずに、加速電源等への運転指令のみをオフする、この動作をビーム引出し禁止と呼ぶ。

ウ. 中性化セルガス圧の監視

イオン源のビーム加速運転中において、加速電圧に応じた中性化セルガス流量が過不足し、
中性化セルゲス圧正常がオフとなった場合は、ビーム引出禁止として、タイムシーケンス停止動作は行わない。

e）磁場系異常時の保護

磁場系異常信号は、偏向コイル電源異常、ホール素子不調があり、この場合にも高速にタイムシーケンス停止の動作に入る。また、偏向コイレ電流値が目標値の±30%（可変）を超えた場合は、シーケンス停止はすぐにビーム引出し禁止とする。なお、本異常検出は、当初、偏向磁場モニタ値を監視していたが電流値に変更したものである。

f）TSC の異常検出

ア．タイミング指令の監視

TSC の誤動作の場合にも機器保護できるよう、タイミング指令の出力継続時間を監視し、各運転モードにより異なる設定時間を超えた場合に時間超過として、タイムシーケンス停止させる機能を持つ。設定時間は、CND/FLA 時に 100ms、BAA 時に 50ms である。

g）実験入射時の保護

全系からの入射開始／中断指令は、正常時には Ip 動起シーケンス開始信号受信後、NBI 停止指令受信までの間、どちらか一方が 10ms 周期で発信されている。これが両方受信できない場合、あるいは Ip 動起シーケンス開始信号受信後一定時間経過以前に入射開始指令が受信された場合には、それぞれ異常として、タイムシーケンス停止を行っている。
第3.5.2-1表 タイミング設定値一覧

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>名称</th>
<th>設定範囲</th>
<th>ステップ等</th>
<th>有効モード等</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T_{cycle}</td>
<td>マスタパス繰返し周期</td>
<td>30〜990s</td>
<td>15s</td>
<td>C, B, F</td>
</tr>
<tr>
<td>2</td>
<td>T_{IF}</td>
<td>フィラメント遅延時間</td>
<td>100〜5800ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>3</td>
<td>T_{IG}</td>
<td>イオン源ガス導入遅延時間</td>
<td>100〜9700ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>4</td>
<td>T_{NC}</td>
<td>中性化セルガス導入遅延時間</td>
<td>100〜9700ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>5</td>
<td>T_{PG}</td>
<td>フィラメント・バックガス遅延時間</td>
<td>100〜9700ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>6</td>
<td>T_{IA}</td>
<td>引出・アーク等SCR遅延時間</td>
<td>3900〜9900ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>7</td>
<td>T_{TA}</td>
<td>アーク GTO遅延時間</td>
<td>10〜990ms</td>
<td>10ms</td>
<td>全</td>
</tr>
<tr>
<td>8</td>
<td>T_{GM}</td>
<td>ビーム引き出基準時間</td>
<td>500〜9990ms</td>
<td>10ms</td>
<td>C, B, F, (E)</td>
</tr>
<tr>
<td>9</td>
<td>T_{4L}</td>
<td>アーク休止時間 U</td>
<td>T_{4L}+8ms</td>
<td></td>
<td>全</td>
</tr>
<tr>
<td>10</td>
<td>T_{4L}</td>
<td>アーク休止時間 L</td>
<td>70〜990ms</td>
<td>10ms</td>
<td>全</td>
</tr>
<tr>
<td>11</td>
<td>T_{SA}</td>
<td>ビームパルス幅</td>
<td>10〜2000ms</td>
<td>10ms</td>
<td>C, F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B: 10〜200ms</td>
</tr>
<tr>
<td>12</td>
<td>T_{6L}</td>
<td>アーク中断時間 U</td>
<td>10〜990ms</td>
<td>10ms</td>
<td>E</td>
</tr>
<tr>
<td>13</td>
<td>T_{6L}</td>
<td>アーク中断時間 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T_{16L}</td>
<td>引出GTO遅延時間 U</td>
<td>70.0〜999.9ms</td>
<td>0.1ms</td>
<td>全</td>
</tr>
<tr>
<td>15</td>
<td>T_{16L}</td>
<td>引出GTO遅延時間 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T_{SB}</td>
<td>加速コンバータ遅延時間</td>
<td>50〜99ms</td>
<td>1ms</td>
<td>全</td>
</tr>
<tr>
<td>17</td>
<td>T_{SG}</td>
<td>OFF時アーク遅延時間 U</td>
<td>1〜99ms</td>
<td>1ms</td>
<td>全</td>
</tr>
<tr>
<td>18</td>
<td>T_{3G}</td>
<td>OFF時アーク遅延時間 L</td>
<td></td>
<td></td>
<td>全</td>
</tr>
<tr>
<td>19</td>
<td>T_{SG}</td>
<td>OFF時加速・引出遅延時間 U</td>
<td>1〜99ms</td>
<td>1ms</td>
<td>全</td>
</tr>
<tr>
<td>20</td>
<td>T_{SG}</td>
<td>OFF時加速・引出遅延時間 L</td>
<td></td>
<td></td>
<td>全</td>
</tr>
<tr>
<td>21</td>
<td>T_{OFF}</td>
<td>フィラメント等停止遅延時間</td>
<td>100〜9900ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>22</td>
<td>T_{DC}</td>
<td>偏向コイル遅延時間</td>
<td>100〜9900ms</td>
<td>100ms</td>
<td>全</td>
</tr>
<tr>
<td>23</td>
<td>T_{IC}</td>
<td>フラッシュデータ遅延時間</td>
<td>100〜990ms</td>
<td>100ms</td>
<td>INJ</td>
</tr>
<tr>
<td>24</td>
<td>T_{SC}</td>
<td>カリメータ差込遅延時間</td>
<td>100〜9000ms</td>
<td>1000ms</td>
<td>INJ</td>
</tr>
<tr>
<td>25</td>
<td>T_{IP}</td>
<td>光ファイバビーム導入遅延時間</td>
<td>100〜9900ms</td>
<td>100ms</td>
<td>B, E</td>
</tr>
<tr>
<td>26</td>
<td>T_{FD}</td>
<td>フラッシュデータ遅延時間</td>
<td>計算値 (1〜99s)</td>
<td>1s</td>
<td>INJ</td>
</tr>
<tr>
<td>27</td>
<td>T_{EVI}</td>
<td>TSC遅延時間検出</td>
<td>計算値</td>
<td>10ms</td>
<td>C, B, F</td>
</tr>
<tr>
<td>28</td>
<td>T_{SB}</td>
<td>加速インパータ遅延時間</td>
<td>20〜99ms</td>
<td>1ms</td>
<td>全 No.31〜33</td>
</tr>
<tr>
<td>31</td>
<td>T_{FL1-3}</td>
<td>トリガパルス発信時間</td>
<td>0.01〜99.99s</td>
<td>0.01s</td>
<td>全 No.34〜36</td>
</tr>
<tr>
<td>34</td>
<td>T_{FL1-3}</td>
<td>トリガパルス発信時間</td>
<td>0.01〜99.99s</td>
<td>0.01s</td>
<td>E</td>
</tr>
</tbody>
</table>

No. 29, 30 は欠番

注1) \(T_{FD} = T_{cycle} + (T_{FL} - 11) \mod T_{cycle} \) \((T_{FL} : FLA 所要時間) \)

\[
T_{EVI} = (T_{a1} + T_{d1} + \max \{ T_{b1}, T_{d1} \}) + \alpha \quad (\alpha = 50 \text{ms} \text{ (B)} \text{ or } 100 \text{ms} \text{ (C/F)})
\]

注2) 有効モード欄の記号；C = CND モード、B = BAA モード、F = INJ モード中のフラッシュ

E = INJ モード中実験入射

- 87 -
第3.5.1-1図 制御系全体構成図
第3.5.2-1 図 N-NBI 運転モード
第3.5.2-2図 CND/BAA/FLA時のタイムチャート
第 3. 5. 2-3 図 EXINJ 時のタイムチャート
第3.5.2-4図 引出設定電圧対運転可能パルス幅
4. 調整試験運転

N-NBI 装置の建設は第 2、3、1 図の計画どおりにほぼ実施され、1995（平成 7）年 3 月に第 1 期分の建設を終了し、この後、イオン源及びイオン源用電源を組合せ試験を実施した。同時に第 2 期分のもう 1 台のイオン源及びイオン源用電源、残りのビームライン等構成機器の製作を進め、第 1 期試験終了後に、第 2 期分の据付けを実施した。その後、イオン源 2 台を使用した調試試験、及び JT-60U への初めての入射試験を実施して、1996（平成 8）年 3 月に、N-NBI 装置全体の建設を終了した。その後、本格的なイオン源のエージングや特性試験、改良試験を開始した。

4. 1 初期試験運転結果

第 1 期分及び第 2 期分の試験を実施した、1995、1996 年度の 2 年間の試験内容、トラブル、及び改良項目についての概略を第 4、1-1 図に示す。

（1）第 1 期分試験

第 1 期分の建設終了後、イオン源用電源の単体通電試験として、負イオン生成部電源 L、引出電源 L、加速電源について、それぞれ模擬負荷を用いた各電源毎の通電試験を行い、最後に加速電源の短絡試験を実施し、1995（平成 7）年 5 月初旬までにすべて終了した。

その後、5 月末より、イオン源 L を実装し、電源とイオン源とを組合せた実負荷通電試験及びビーム加速試験を開始した。この試験は、イオン源タンク内に設置した短バルスビームダーテットを使用した 0.2 秒までのビームを引出しながらの調整運転試験で、1995（平成 7）年 10 月まで実施した。

代表的な運転パラメータは次のとおりであった。

加速電圧 〜410kV（ビームなし）
引出電圧 〜4.2kV
アーク電圧 〜66V
アーク電流 〜1930A
フィラメント電圧 〜12.0V（フィラメント 4 本×8 グループ）
PG フィルタ電流 〜1.5kA
バイアス電圧 4.0〜4.5V
イオン源ガス流量 4.75Pa・m³/sec (PAC=0.17Pa、TMP 排気)
最高データ 〜400kV、10.8A(10⁻²=0.85A)、0.13sec (1995.9.9 データ)

（2）第 2 期分調整試験

第 2 期分の機器据付工事は、1995（平成 7）年 11 月から 1996（平成 8）年 2 月の期間に実施され、その後直ちに、第 2 期分の単体試験、イオン源 2 台の組合せ試験、磁場試験、短バルスビーム入
射を含めたJT-60Uと組合せ試験を行ない、予定どおり1996年3月に、イオン源であるJT-60Uへの最初のビーム入射を達成した。その後、同年4月から、イオン源2台のエンジングやイオン源の特性改良試験を本格的に開始し、同年9月にはエネルギー350keV、パワー2.5MWのJT-60Uへの入射を達成した。

代表的な運転パラメータは次のとおりであった。

<table>
<thead>
<tr>
<th>運転パラメータ</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>加速電圧、電流</td>
<td>~375kV、41A</td>
</tr>
<tr>
<td>引出U/L電圧、電流</td>
<td>~5.1/5.0kV、31/25A</td>
</tr>
<tr>
<td>アークU/L電圧、電流</td>
<td>~65/62V、2500/2300A</td>
</tr>
<tr>
<td>フィラメントU/L電圧</td>
<td>12.5/12.7V (フィラメント6本×8グループ)</td>
</tr>
<tr>
<td>PGフィルタU/L電流</td>
<td>5.4/2.8kA</td>
</tr>
<tr>
<td>バイアスU/L電圧</td>
<td>5.0/4.7V</td>
</tr>
<tr>
<td>イオン源U/Lガス流量</td>
<td>6.0/6.0Pa・m³/sec</td>
</tr>
<tr>
<td>中性化セルガス流量</td>
<td>3.0Pa・m³/sec</td>
</tr>
</tbody>
</table>

(以上、1996.8.30データ)

4.2主なトラブルと対策

運転中止を伴う修理、対策が必要だったトラブルは、イオン源の不具合が最も多く、次いで、イオン源用電源の不具合、それに真空リレー等が主なものであった。

（1）イオン源用電源

イオン源用電源では、運転初期を中心に、イオン源加速部電極間の放電破壊時のサーチ電圧に起因する各電源の誤動作が頻発し、そのためのノイズ対策として、ソース電源を構成する各電源、引出電源、それにイオン源ガス導入系やサージブロッカバイアス電源について、電位固定の強化、制御回路へのサージ侵入抑制用のコンデンサや絶縁アンプ等の追加、その他の各種の処置を対症療法的に実施した。これら対策の実施により、誤動作の発生頻度を徐々に低下させることができた。

（2）イオン源

イオン源の大きなトラブルとして、第1期試験開始から、引出部の絶縁不良が計7回、負イオン生成部フィラメント導入端子からのホリーノが3回発生し、その都度イオン源を分解修理して再度試験を実施した。引出部の絶縁不良は、1995(平成7)年7月から1997(平成9)年7月の間に発生したもので、①Lのみ、イオン源内部の電子抑制電極(ESG)の給電用同軸ケーブルの端末処理改良、②Lのみ、内部のESG用電流導入端子の交換、③U/Lとも、ESGと引出電極(EXG)の同位化、内部の電流導入端子部改良、④Lのみ、内部のEXG用同軸ケーブル改良、⑤U/Lとも、引出部セラミック交換、⑥U/Lとも、引出部同軸ケーブルを同軸管に交換、⑦U/Lとも、同軸管テフロンタープをポスト端子と交換、などの対策を重ねた結果、以後、引出部の絶縁不良は発生していない。なお、引出部は1997(平成10)年1月より、EXGとESGを一体化し、EXG引出孔の径の縮小やESGの厚み変更などを行った改良型電極との交換を実施した。

フィラメント電流導入端子からのホリーノは、1995(平成7)年8月から1998(平成10)年9月の
間にすべてイオン源Lで発生し、導入端子がサージ電力により破損していた。電流導入端子の改良型との交換、イオン源外部端子にサージ吸収用コンデンサを追加設置した後は発生していない。また、運転後の定期開放点検では、加速部の各所で数多くの放電痕や接地電極の端部の部分的溶痕が確認されたため、電極及び支持枠に各種の電界集中緩和対策や上下(チャンバ長手)方向両端部の一部ビーム引出孔のマスク処置等を実施し、これら放電痕や溶痕の低減に努めた。このマスクの設置は加速部電極の熱荷荷低減に効果があった。

イオン源に直結して設置されているセシウムオープンは、イオン源の電極間放電破壊時のサージ電圧に起因するヒータ断線や温度コントローラの破損などの不具合発生を繰返し、ヒータ通電中に放電破壊が発生すると高い確率で、断線が発生することがわから、加速電圧印加中はオープンのヒータへの通電をオフとする回路の追加や各部電位固定の修正、強化を実施したことにより、トラブル発生を抑制することができた。

（3）ビームライン
真空リーチとして、イオン源フィラメントの冷却水リークの他、イオン源タンク内に設置のビーム強度分布測定用の可動プロープからリークが数回発生し、改良を加えたが、根本的対策となりらず、1999(平成11)年8月に撤去した。その後に、冷却水を使用せず、リーク発生の可能性が低い、赤外線カメラを使用する新規のビーム分布測定装置を設置した。

タンク内部観察用窓のひび割れが、1997(平成9)年10月と1999(平成11)年8月に2回発生した。この原因は、電子ビームが偏光されてガラス窓に照射されたためであり、ガラス窓交換と運転中のゲート弁全開とする処置を実施した。

イオン源のビーム軸調整に使用する角度調整機構が一旦、軸調整実施後で設定した角度からずれてしまう不具合のあることがわから、1997(平成9)年2月にブレーキ付モータと交換する対策を実施した。
試験／運転概況

年度	1995 (H7)	1996 (H8)
月 | 4 5 6 7 8 9 10 11 12 1 2 3 | 4 5 6 7 8 9 10 11 12 1 2 3

J T－60

N-NBI 全体工程試験／運転

TOPICS

イオン源L点検
(7/10-15)
引出絶縁不良→同軸端末改良
(8/23-29)
AC 内ファイラット冷却水漏れ→修理
(9/14-22)
引出導入端子割れ→修理
11-12月
PLG 変形→片端支持化
絶縁が挿放電流→Gap 長 65mm
ファイラット 4 本⇒6 本（計 48 本）

イオン源U/L点検
5月
U/L: 引出絶縁不良対策実施
(9/24-10/4)
U: PLG 四隅電子漏れ止板追加
(7/23-29)
L: 赤板絶縁スペーサー対策
U/L: Cs オープン圧空バルブ化
最初の入射ビーム波形(E26136)

第4.1-2図
5. おわりに

JT-60U 用負イオン NBI 装置は、世界初の負イオン源を用いた中性粒子入射加熱装置として1996年3月に完成以来、負イオン源の改良試験を進めながら、JT-60Uのプラズマ高密度領域でのビーム電流駆動実験やプラズマ性能の向上に大きく貢献してきた。しかしながら、2001(平成13)年現在、設計上の定格値である、500keV、10MWの目標に対して、400keV、5.8MWにとどまっている。これは負イオン生成部のソースプラズマの空間的な非一様性や加速部での放電破壊等、多発ないくつかの解決すべき課題が残っているためである。現在、これら課題の解決を目指してさらに試験を進めている。今後とも、さらに改良を加え、ビームエネルギー、入射パワーの増大を図る必要がある。

最後に、負イオン NBI 装置の建設にあたり、終始変わらぬご指導と励ましをいただきました清水正彦核融合装置試験部長はじめとする JT-60U関係者の皆様、NBI装置試験室及び NBI 加熱研究室の皆様に感謝を申し上げます。

参考文献
1) JT-60U 負イオン NBI 装置設計グループ (秋野昇、海老沢昇、朴木敏郎、樫村隆則、河合視己人、梶澤稔、国枝俊介、栗山正明、小泉淳一、松岡守、水野誠、藻垣和彦、大賀徳道、大原比呂志、佐藤正志、清水和彦、高橋春次、高安利男、宇佐美広次、薄井勝富、山本正弘、山崎武、荒木政則、花田義浩、井上多加志、前野修一、宮本賢治、小原祥裕、奥村義和、鈴木哲、渡邉和弘)：JAERI-M 94-072， "JT-60U 負イオン NBI 装置の設計検討" (1994)
2) 河合視己人、青柳哲雄、大原比呂志、本田敷、栗山正明：JAERI-Tech 97-012， "JT-60U 負イオン NBI 計算機システムとそのソフト開発" (1997)
国際単位系（SI）と換算表

<table>
<thead>
<tr>
<th>表1 SI基本単位および補助単位</th>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>熱力学温度</td>
<td>ケルビン</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>光速</td>
<td>カンデラ</td>
<td>cd</td>
<td></td>
</tr>
<tr>
<td>角度</td>
<td>ラジアン</td>
<td>rad</td>
<td></td>
</tr>
<tr>
<td>立体角</td>
<td>ステラジアン</td>
<td>sr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表2 SIと使用される単位</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>分、時、日</td>
<td>min、h、d</td>
<td></td>
</tr>
<tr>
<td>度、分、秒</td>
<td>°、′、″</td>
<td></td>
</tr>
<tr>
<td>リットル</td>
<td>l、L</td>
<td></td>
</tr>
<tr>
<td>トン</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>電子ボルト</td>
<td>eV</td>
<td></td>
</tr>
<tr>
<td>原子質量単位</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

1 eV = 1.60218 × 10⁻¹⁹ J
1 u = 1.66054 × 10⁻²⁷ kg

<table>
<thead>
<tr>
<th>表3 固有の名称をもつSI組立単位</th>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>周波数</td>
<td>ハertz</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>压力</td>
<td>パascal</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>電気容量</td>
<td>フラクル itm</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>電気抵抗</td>
<td>オーム</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>シート</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>電位</td>
<td>ヨューム</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>電磁気誘導</td>
<td>レム</td>
<td>rem</td>
<td></td>
</tr>
</tbody>
</table>

1 Hz = 1 s⁻¹
1 N = 1 m·kg/s²
1 Pa = 1 N/m²
1 W = 1 N·m/s
1 C = 1 A·s
1 V = 1 W/A
1 Ω = 1 V/A
1 T = 1 Wb/A
1 H = 1 Wb/A
1 Wb/m² = 1 H/m
1 Bq = 1 s⁻¹
1 Gy = 1 J/kg
1 Sv = 1 J/kg

<table>
<thead>
<tr>
<th>表4 SIと共に慣用的に使用される単位</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>オンスストローム</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>パーセント</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>バー</td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>ケルシー</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>グラム</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>ガラム</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>クロ</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>ソン</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>レントゲン</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>ラド</td>
<td>rad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表5 SI換算単位</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁶</td>
<td>エクソ</td>
<td>E</td>
</tr>
<tr>
<td>10⁻³</td>
<td>ベクタ</td>
<td>P</td>
</tr>
<tr>
<td>10⁻²</td>
<td>テラ</td>
<td>T</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>デカ</td>
<td>G</td>
</tr>
<tr>
<td>10⁰</td>
<td>ケルビン</td>
<td>K</td>
</tr>
<tr>
<td>10¹</td>
<td>メガ</td>
<td>M</td>
</tr>
<tr>
<td>10²</td>
<td>キロ</td>
<td>k</td>
</tr>
<tr>
<td>10³</td>
<td>ヒク</td>
<td>h</td>
</tr>
<tr>
<td>10⁴</td>
<td>デカ</td>
<td>da</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>デシ</td>
<td>d</td>
</tr>
<tr>
<td>10⁻²</td>
<td>センチ</td>
<td>c</td>
</tr>
<tr>
<td>10⁻³</td>
<td>ミリ</td>
<td>m</td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>マイクロ</td>
<td>μ</td>
</tr>
<tr>
<td>10⁻⁹</td>
<td>ナノ</td>
<td>n</td>
</tr>
<tr>
<td>10⁻¹²</td>
<td>ピコ</td>
<td>p</td>
</tr>
<tr>
<td>10⁻¹⁵</td>
<td>フェート</td>
<td>f</td>
</tr>
<tr>
<td>10⁻¹⁸</td>
<td>アト</td>
<td>a</td>
</tr>
</tbody>
</table>

(注) 1. 表1-5は「国際単位系」第5版、国際度量衡局1985年刊行による。ただし、1 eV および1 uの値はCODATAの1986年推定値によった。
2. 表4には海里、ノット、アール、ヘクタールも含まれているが日常の単位なのでここでは省略した。
3. barは、JESでは液体の圧力を表す場合に限り表2のカテーテリに分類されている。
4. 国際電気会議ではSI、barおよび「血液の単位」mmHgを表2のカテーテリに入れている。

<table>
<thead>
<tr>
<th>基本単位</th>
<th>キログラム</th>
<th>サートン</th>
<th>ルート</th>
<th>セルビス</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>1</td>
<td>10⁻¹²</td>
<td>10⁻⁶</td>
<td>10⁻³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>計算表</th>
<th>MPa（10 bar）</th>
<th>kgf/cm²</th>
<th>atm</th>
<th>mmHg（torr）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1972</td>
<td>9.86923</td>
<td>750.062</td>
<td>101325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基本単位</th>
<th>キログラム</th>
<th>サートン</th>
<th>ルート</th>
<th>セルビス</th>
</tr>
</thead>
<tbody>
<tr>
<td>kgf</td>
<td>1</td>
<td>10⁻¹²</td>
<td>10⁻⁶</td>
<td>10⁻³</td>
</tr>
<tr>
<td>m</td>
<td>10⁻³</td>
<td>10⁻⁶</td>
<td>10⁻⁹</td>
<td>10⁻¹²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>放射能</th>
<th>Bq</th>
<th>C1</th>
<th>Gy</th>
<th>rad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2.70270 × 10⁻¹³</td>
<td>1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

(86年12月26日現在)