核熱利用システムによる水素及びDME製造の経済性評価
（共同研究）

椎名 保顕・桜本 洋一*・西原 哲夫

日本原子力研究所
Japan Atomic Energy Research Institute
本レポートは、日本原子力研究所が不特定に公刊している研究報告書です。
入手の問い合わせは、日本原子力研究所研究情報部研究情報課（〒319-1195 栃木県那珂郡東海村）に、お申し出ください。なお、このほかに財団法人原子力弘済会資料センター（〒319-1195 栃木県那珂郡東海村日本原子力研究所内）で複写による実費領受をおこなっております。

This report is issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan.

© Japan Atomic Energy Research Institute, 2003
編集兼発行 日本原子力研究所
核熱利用システムによる水素及びDME製造の経済性評価
（共同研究）

日本原子力研究所大洗研究所核熱利用研究部
椎名 稔顧・桜木 洋一*・西原 哲夫

（2003年8月1日受理）

水素エネルギーは、2020年から30年頃の普及を目指して開発研究が行われているが、現在のガソリンやディーゼルあるいは都市ガスと同じように、社会の隅々まで水素エネルギーが普及するには、かなり長い時間がかかると考えられる。それまでの間、エネルギー源としてCO2放出の少ない液体燃料と水素が併行して使われるものと考えられる。近年、そのような見地から、DME等の石油代替燃料が注目されてきている。それらは、天然ガスの水蒸気改質法により作られる水素及びCO等の混合ガスから作ることができるため、水素とともに高温ガス炉の核熱を利用した化学プロセスの候補になりうると考えられる。

そこで、本研究では、水素とDMEを取り上げ、それらを商用プラントで生産する場合と核熱利用プラントで生産する場合について経済性評価を行った。まず、水素及びDMEを専用で生産する商用プラントの各工程における熱・物質バランスを求めて、各工程における費用を算出した。次に、水素及びDME生産に必要な熱を核熱で置き換えたシステムを想定し、経済性評価を行った。その結果、製品の価格は、一般産業による製品に比べて核熱を用いて生産した方が、水素の場合には約10%程度、また、DMEの場合は約3%程度安くなることが示された。CO2削減効果を評価すると、核熱の有効性はさらに高くなる。

本研究は原研と東京電力（株）との共同研究の成果である。
大洗研究所：〒311-1394 茨城県東茨城郡大洗町成田町新堀 3607
*東京電力株式会社
Cost Estimation of Hydrogen and DME Produced by Nuclear Heat Utilization System
(Joint Research)

Yasuaki SHIINA, Yoichi SAKURAGI* and Tetsuo NISHIHARA

Department of Advanced Nuclear Heat Technology
Oarai Research Establishment
Japan Atomic Energy Research Institute
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received August 1, 2003)

Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO₂ release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization.

In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO₂ release, utilization of nuclear heat would be more effective.

Keywords: Hydrogen Production, DME, HTGR, Cost Evaluation, Steam Reformer, Nuclear Heat

This research is a results of joint study between JAERI and TEPCO

* Tokyo Electric Power Company
目次

1 はじめに ... 1

2 将来のDMEの需要・供給についての検討 ... 2
 2.1 DMEの化学的性質と利用 .. 2
 2.2 DMEの供給 .. 3
 2.3 DMEの利用 .. 5
 2.4 DMEの流通 .. 7
 2.5 DMEを利用するにあたっての開発項目 .. 8

3 水素製造プロセスの経済評価 ... 10
 3.1 現行商用プロセスを用いたメタンからの水素製造プロセス(水蒸気改質法) 10
 3.2 核熱を用いたメタンからの水素製造プロセス(水蒸気改質法) 17
 3.3 高純度水素ガスの製造 .. 23

4 DME製造プロセスの経済評価 ... 26
 4.1 現行商用DMEプロセス ... 26
 4.2 核熱を利用するDME製造プロセス(間接法) ... 36
 4.3 直接法DME製造プロセス ... 43

5 CO₂削減効果 ... 48

6 商用プロセスとの比較評価 ... 49
 6.1 核熱利用の効果 .. 49
 6.2 核熱の規模と炭酸ガス放出低減化 ... 50

7 まとめ ... 51

謝辞 .. 52
参考文献 .. 52
Contents

1 Introduction .. 1

2 Future Demand and Supply of DME ... 2
 2.1 Chemical Properties of DME and its Utilization ... 2
 2.2 Supply of DME ... 3
 2.3 Utilization of DME ... 5
 2.4 Currency of DME .. 7
 2.5 Development Items for Utilization of DME ... 8

3 Economic Estimation of Hydrogen Producing System .. 10
 3.1 Present Commercial Hydrogen Production Process by Steam Reforming 10
 3.2 Hydrogen Production Process by Steam Reforming with the Use of Nuclear Heat ... 17
 3.3 Production of Highly Purified Hydrogen ... 23

4 Economic Estimation of DME Production System .. 26
 4.1 Present Commercial DME Production Process ... 26
 4.2 DME Production Process with the Use of Nuclear Heat (Indirect Method) 36
 4.3 Direct Process for DME Production .. 43

5 Reduction Effect of CO₂ Release ... 48

6 Comparison and Evaluation between Commercial and Nuclear Heat Processes 49
 6.1 Availability of Nuclear Heat Utilization ... 49
 6.2 Scale Effect of Nuclear Heat on the Reduction of CO₂ Release 50

7 Conclusions .. 51

Acknowledgement .. 52
References ... 52
1. はじめに

近年、地球温暖化問題の観点からCO₂放出低減化が世界的な課題となっている。そのためCO₂を放出しない新しいエネルギー源として水素が注目され、燃料電池の開発の進展と相まって、水素への期待が急速に高まっている。燃料電池自動車の試作車が製作されており、水素エネルギーの需要も今後急速に高まるものと思われる。

このように、将来の水素社会の到来が確実視されるなか、水素需要に応えることが必要となってくる。現在の水素の製造は、工業的には化石燃料の燃焼用を用いて、天然ガスから水蒸気改質により水素を製造する方法が一般的である。この方法は化石燃料の燃焼熱を用いているため、CO₂削減に達しない方法である。そこで、化石燃料の燃焼熱の代わりに、高溫ガス炉の核熱を用いると、CO₂放出削減に大きく貢献することになる。そのため、核熱を用いた水素の生産への期待が高まっており、日本原子力研究所においては、2020〜2030年頃の高温ガス炉水素製造システムの実用化を目指し、HTTRを用いた原子炉技術、原子炉と熱利用系（メタン水蒸気改質プロセス）の接続技術、水から水素を製造する1Sプロセス技術の開発を行っている。

一方、水素エネルギーが社会の隅々に普及し、現在のガソリンやLPG並みにどこでも使えるようになるにはかなりの時間がかかると考えられる。そのため、水素エネルギーの実用化が実現しても、しばらくの間は水素と併行して液体燃料が使われると考えられる。特に石油代替の合成液体燃料としてDME（ジメチルエーテル）等は、CO₂や有害ガスの排出の少ない燃料であること及び既存のLPG等のインフラが利用可能なこともあって最近注目されている。また、将来、需要が急速に伸びると予測されている。このDME等は、メタンの水蒸気改質で得られる合成ガス（水素とCO₂）から製造できることから、前述の接続技術の開発によって、核熱利用システムとして早期に実現可能な有力候補となる可能性がある。

本研究では、メタンの水蒸気改質による水素製造システム及びDME製造システムが、早期に実現可能な核熱利用システムとしての可能性、将来性を評価することを目的として、文献等の調査、解析等を行い、核熱利用システムと一般商用システムの経済性比較を行った。
2. 将来のDMEの需要・供給についての検討

ジメチルエーテル（DME）は、新エネルギー源として世界的に注目を集めつつあるが、その理由は、LPGに良く似た物理的性質を持ち、取り扱いが容易で硫黄などの有害物質を含有しないクリーンな燃料となりうるからである。現在、DMEはメチルアルコールから間接法により生産されているが、石炭、天然ガスなどの燃料に、合成ガス（水素、CO）からの直接、高効率でDMEを合成する技術が開発されつつある。

2.1 DMEの化学的性質と利用

(1) DMEについて
DMEは常温常圧では無色の気体で、常圧で－25℃に冷却するか、または常温で6気圧程度に加圧すると容易に液体になる。その性質がLPガスの主成分であるプロパン、プロパノンに類似しているので、貯蔵、輸送、利用にLPガスの技術を応用できるという特徴を有している。
現在DMEは、日本国内では約10,000 t/年、世界では150,000 t/年程度生産されている。
DMEはオゾン層破壊や人体に対する毒性が非常に低いので、現在の生産量の大部分は、フローガス代替法としてスプレイ用噴射剤（塗料、農薬、化粧品用）として利用されている。
今後、DMEが安価に製造されるようになれば、その用途としては一般家庭でのLPガス代替燃料から、大規模な発電所での燃料などが考えられる。

(2) 既存燃料（LPガス、軽油、メタノールなど）との化学的性質の比較
DMEを燃料として見た場合、他の類似の燃料と比較したものもTable2-1に示す。主な特徴としては、
①重量当たりの発熱量（kcal/kg）で比較すると、プロパン、メタンより低いが、メタノールより高い。
②気体状態での発熱量（kcal/N㎥）で比較すると、メタンより高い発熱量を持つ。
③液体状態での体積あたりの発熱量（kcal/L・液）で比較すると、プロパン、ブタンにより劣るが、メタノールよりは大きい。
④爆発下限はプロパンより高く、漏洩に対してより安全である。
⑥火炎は天然ガスのように可視光でなく、天然ガスのコンロがそのまま使用できます。
⑥DMEはオクタン価が低いことからLPガス自動車（オートガス）には不向きであるが、セタノアが55～60と軽油（60以下）より高く、ディーゼルエンジン燃料として利用が可能である。さらに、低分子量の含酸素化合物であるために、エンジン燃焼特性が良く、その結果、排気ガスの最大の問題である微粒子、NOxの発生も大きく低減されるクリーンな排気ガスとなる。

(3) 新エネルギー源としてのDMEの評価
DMEは、天然ガス、石炭、バイオマス等からも製造することができ、用途も発電用、民
生用ＬＰＧ代替、ディーゼルエンジン用、燃料電池用等と多岐にわたり、また、取り扱いもＬＰＧのように簡便であることから、将来の新エネルギー源として有望視されている。

Table 2-1 DME及びその他の燃料の物性値

<table>
<thead>
<tr>
<th>項目</th>
<th>DME</th>
<th>プロパン</th>
<th>n-ブタン</th>
<th>メタン</th>
<th>メタノール</th>
<th>椛油</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学式</td>
<td>CH₃OCH₃</td>
<td>C₃H₈</td>
<td>C₄H₁₀</td>
<td>CH₄</td>
<td>CH₃OH</td>
<td>-</td>
</tr>
<tr>
<td>分子量</td>
<td>46.07</td>
<td>44.09</td>
<td>58.12</td>
<td>16.04</td>
<td>32.04</td>
<td>170〜200</td>
</tr>
<tr>
<td>熱点(℃)</td>
<td>-25.1</td>
<td>-42.0</td>
<td>-0.5</td>
<td>-161.5</td>
<td>64.6</td>
<td>180〜370</td>
</tr>
<tr>
<td>液密度 (g/cm³, 20℃)</td>
<td>0.67</td>
<td>0.49</td>
<td>0.57</td>
<td>-</td>
<td>0.79</td>
<td>0.84</td>
</tr>
<tr>
<td>ガス比重 (対空気比)</td>
<td>1.59</td>
<td>1.52</td>
<td>2.00</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>蒸発潜熱 (kcal/kg)</td>
<td>111.7</td>
<td>101.8</td>
<td>92.1</td>
<td>121.9</td>
<td>262.0</td>
<td>60.0</td>
</tr>
<tr>
<td>飽和蒸気圧 (atm, 25℃)</td>
<td>6.1</td>
<td>9.3</td>
<td>2.4</td>
<td>246</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>最大燃焼速度 (cm/sec)</td>
<td>49</td>
<td>41</td>
<td>38</td>
<td>36</td>
<td>52</td>
<td>-</td>
</tr>
<tr>
<td>発火温度(℃)</td>
<td>235</td>
<td>457</td>
<td>430</td>
<td>540</td>
<td>464</td>
<td>316</td>
</tr>
<tr>
<td>爆発範囲(%)</td>
<td>3.4〜18.6</td>
<td>2.1〜9.5</td>
<td>1.9〜8.4</td>
<td>5.0〜15.0</td>
<td>7.3〜36.0</td>
<td>1.0〜6.0</td>
</tr>
<tr>
<td>セタン価</td>
<td>55〜60</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>40〜55</td>
</tr>
<tr>
<td>低位発熱量 (kcal/Nm³)</td>
<td>14,200</td>
<td>21,800</td>
<td>28,300</td>
<td>8,600</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>低位発熱量 (kcal/kg)</td>
<td>6,880</td>
<td>11,000</td>
<td>10,930</td>
<td>12,000</td>
<td>4,800</td>
<td>10,000</td>
</tr>
<tr>
<td>低位発熱量 (kcal/L-液)</td>
<td>4,600</td>
<td>5,460</td>
<td>6,230</td>
<td>5,180</td>
<td>3,770</td>
<td>8,530</td>
</tr>
</tbody>
</table>

2.2 DMEの供給

(1) DMEの製造技術

DMEの製造においては、まず天然ガス等を出発原料として、水蒸気改質法のようなガス化技術により、一酸化炭素と水素から成る合成ガスを製造する。次に、この合成ガスを使用してDMEを製造するが、製造方法には大きく分けて、以下の二つのルートがある。

① メタノール塩化法（間接法=現行商用プロセス）
合成ガスを原料にして、メタノールを製造し、次にメタノールの脱水反応によりDMEを合成する方法。技術的には確立しており、商用プロセスとして世界中で生産が行われている。

② 直接合成法（開発中のプロセス）

\[2\text{CO} + 4\text{H}_2 \rightarrow 2\text{CH}_3\text{OH} \]
\[2\text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O} \]
合成ガスを原料として、これから直接DMEを合成する。この技術は現在、世界で開発中であり、日本では、NKKが試験装置を運転中である。なお、直接法に関する詳細は次章に記述する。反応式は以下の通りである。

\[3\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{CO}_2 \]

また、COと水素の合成ガスは、天然ガスから得られるだけではなく、ガス化技術の選択によって、石油残渣、コークス、石炭、バイオマス、廃棄物なども原料になりうるために、DMEは原料の選択に広い利点を有しているといえる。

(2) 供給プロジェクトの計画状況
DMEを海外でのガス田を利用して製造し、日本に輸送して供給しようとする計画が以下のように立案されている。

① 日本DME㈱
三菱ガス化学、伊藤忠商事、日揮、三菱重工の４社が２００１年６月に日本DME㈱を設立した。プロジェクトは、西豪州ダンビアにおいて、天然ガスを原料にしてメタノール製造法によるDMEプラントを建設するもので、規模はDMEで１４０～２４０万トン/年であり、２００６年までに操業を目指している。

② BP
BPはインドの企業連合とDMEコンソーシアムを作り、カタール、イランなどのガス田において、直接合成法によりDMEを製造し、南インドの発電所に供給する計画であり、余剰分は日本にも供給したい意向である。２００５年の操業を目指している。

なお上記のほかに、DMEインターナショナル㈱が東南アジア、豪州立地で、また、三井物産グループがインドネシア、イランで、事業化調査を実施中といわれる。また、中国・四川省における、DME生産プロジェクトのFeasibility StudyがNEDOで実施されて報告されている。

(3)供給可能価格と経済性
DME供給を考える場合、その価格に競争力があるかどうかについては、上記の計画プロジェクトなどで、Feasibility Studyが行なわれており、コスト試算も複数の企業で実施されている。

図-2-1に、その代表的な数値を、資源エネルギー庁のDME検討会の報告書中のから引用して示した。この数値からは、プラントの立地、ガス価格、生産規模次第で、LPガス輸入価格と比較して競争力がありうる結果が示されている。
2.3 DMEの利用

2.1 で示したように、DMEの用途としては、スプレー剤、LPG代替燃料、及びディーゼル油の代替が主なものである。更には、将来の発電燃料、燃料電池用等の用途が予測されている。

(1) スプレー剤

1996年頃でエアゾール製品は10.1×10^9本の販売があり、その生産量は急速に伸びている。エアゾール製品には、従来塩素含有フロンが使用されてきたが、オゾン層を破壊し、地球環境に大きな影響を与えてきた。そのために、モントリオール協定で使用が禁止され、代替品として、現在は、LPG、DME、圧縮空気、HFC等が使用されるようになった。現在、スプレー剤としてDMEが占める割合は、西欧、アメリカでは約25%、日本では約10%である。

(2) LPG代替燃料

DMEの燃料としての特徴は、Table 2-1 基礎物性に示したように、蒸気圧がプロパンとプロタンの中間にあること、また、単位質量あたりの発熱量はメタノールより高く、LPGの62%と低いことである。この性質により、DMEはLPGのように圧縮により液化しやすく、その常温での液化圧縮圧力は1.35MPa程度であり、LPGの貯蔵圧力である1.92MPaよりも小さい。このため在来のLPG用の貯蔵及び輸送設備が転用できるという最大の特徴を有して
いる。
またDMEを燃料とする場合、LPG用の器具は、その発熱量の相違から若干の改良が必要であるが、メタン（天然ガス）用の器具であればそのまま使用できる。燃料としてのDMEはそれ自身酸素を含み、燃焼は良好であり、煤の発生も無く、残液もない。燃焼オフガスは、SOx、NOxともに極めて低く、理想的なクリーンな燃料の一つといえる。また、DMEは一定の比率で都市ガスまたは天然ガス中に入れてピーク時の調節用にも使用できる。

(3) ディーゼル油代替
Table 2-1 基礎物性に示したように、DMEはオクタン価が低いことからLPガス自動車(オートガス)には不向きであるが、非常に高いセタン価（55-60）を持つため、直接ディーゼル車用燃料として使用できる。同じ代用燃料であるメタノール燃料は低温での起動性と加速性に関問題を有しているのにに対して、DMEはその短縮期間でなく、圧縮効率と低污染という特徴をもっている。また騒音も低く、排出するオフガスも難を含まず、処理することもなく、例えば、米国、カリフォルニア州の自動車に関する厳しい排ガス規定も満たすことができる。
またアモコ石油の経済分析によると、DMEのコストは現状ではディーゼル油より高いが、液体プロパンと圧縮天然ガスなどの低汚染代替交通燃料は未だユニークな可能性を有していると考えられる。
DMEが優れたディーゼル油代替燃料であることは明らかであるが、新しい燃料に転換する場合は、インフラの問題が発生する。DMEを燃料に用いる場合は、既存のLPガス自動車用燃料供給技術や施設を利用できる点は極めて大きな魅力となる。国際機関であるIEAのAMP(Alternative Motor Fuels)において「自動車燃料としてのジェットエタノール」に関するワークショップが設置され、燃料規格の確立、自動車燃料として、DMEの安全性の評価、他の燃料と比較した場合のDMEの環境影響の評価なども検討され始めている。
自動車用ディーゼル油は、国内で年間380百万トン消費されている。

(4) 火力発電用燃料
DMEは、NOx、CO及び飛散などの少ないクリーンな燃料であり、そのクリーンさを活かして、高効率コンパインドサイクル方式の発電用燃料として、特に、LNG導入が難しい中小規模の発電所での利用が考えられる。
タービン発電機におけるDMEの利用については、基本的な技術的問題はないと報告されている。
既存石炭火力の改変によるDME火力も可能となっている。この場合、石炭専焼ボイラのDME専焼ボイラへの改変、過熱器の改良、DME燃焼用バーナの追加、微粉炭燃焼設備の撤去が必要とされる。
石炭火力は、全国で34発電所、2,830万KWの発電規模であり、石炭使用量は、約5,800万トンである。
(5) 燃料電池用

DMEは、含酸素化合物であり、メタノールと同様に、低温での水蒸気改質反応による水素製造が可能であることが報告されている。改質温度はメタノール、DMEは250～300℃位であり、DMEは反応条件がマイクロドなために、装置が小さく、シンプルで運転性も良好とされている。但し、改質触媒の開発はまだ水についたばかりである。

2.4 DMEの流通

DMEはLPGと物性等が類似している液化ガスであることから、LPGインフラの活用が考えられ、LPGと流通を共有できる可能性がある。図2-2に、DME流通のイメージを示した。

LPGの輸入基は現在、全国で36ヶ所、二次基地は79ヶ所と、合計120ヶ所が全国の沿岸をカバーしている。運搬設備としてはオーシャンタンカー33隻、コースタルタンカー約100隻、タンクローリー4,600台が稼働している。更に、シリンダーにLPGを充填する充填所が約2,800ヶ所、自動車へLPGを供給するスタンドが約1,900ヶ所あり、家庭用・業務用にLPGを供給するためのシリンダーは、全国で約5,000万本あるといわれている。

DMEは、LPGと同様に金属に対する腐食性はなく、蒸気圧もプロパンとプタンの中間にあるため、プロパン設備で取り扱うのは基本的に問題はないが、プタン設備の場合は、設備技術基準に戻って、設備強度のチェックが必要になる。また、シール材の耐性の問題があり、実際の使用条件下でのテストが必要である。

その他に、LPGの流通設備をDMEに転用する場合の技術・保安面の課題が各流通設備毎に存在する。尚、次章の開発の課題中にもこの問題に関して記述した。

図2-2 DME流通イメージ
2.5 DMEを利用するにあたっての開発項目

DMEの利用分野は多岐にわたると考えられる。それぞれの用途における利用機器についての技術課題の検討を行い、進次、実証試験を行なっていく必要がある。図2-3に、「DME実用化・普及に向けての経済産業省案」を参考のために示した。利用技術の開発のみならず輸送・貯蔵に関する確認、法整備及び製造プロジェクトの計画調査も含まれたスケジュールである。

用途別の利用技術の課題は以下のとおりである。

(1) 一般民生用
- 燃焼特性の把握（火炎形状、排ガス組成、不完全燃焼状態等）
- 各種燃焼機器（コンロ、給湯器等）との適合性
- シール材の開発

(2) 工業用
- パーナー開発
- ポンプ、コンプレッサの改造、開発

(3) 発電用
- 石炭専焼ボイラのDME用への改造（過熱器、パーナー等）
- LNGガスタービンのDME用への改造（燃焼器、気化器、圧縮機等）
- ディーゼルエンジン発電（噴射ポンプ開発等）

(4) 自動車用
- 粘性向上剤の開発
- 燃料噴射系の改良
- エンジン性能、排ガス特性の把握

(5) 都市ガス用
- 混合ガスでの最大燃焼速度特性の把握
- 最適な原料混合比率の選定（DME—LPG—空気）

(6) 燃料電池用
- 交換用触媒の開発
- DME用燃料電池の試作、実証試験
図2-3 DME実用化・普及に向けて（経済産業省案）(1)
3. 水素製造プロセスの経済評価

3.1 項では通常の「CH₄から H₂を製造する Process」を選びの、経済性の検討に必要な数値を整理する。さらに、これを基礎にして 3.2 項においてプロセスヒートとして核熱を利用する場合について検討する。

3.1 現行商用プロセスを用いたメタンからの水素製造プロセス（水蒸気改質法）

3.1.1 フローシート

図 3-1 にフローシートを示す。原料 CH₄は、Reformer で、H₂、CO、CO₂になり、次いで、CO はシフト反応(\(CO + H₂O = H₂ + CO₂\))にて H₂に転換し、最後に CO₂をアミンで吸収除去し、製品 H₂ガスを得る。製品 H₂の純度は、乾燥基準で 97%である。この水素純度は、将来の水素エネルギーの利用の場合に必要な燃料電池における水素純度（99.99%以上）より低い。99.99%の高純度水素はこの 97%の水素から製造する。

製品 H₂の組成

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>49℃</td>
<td></td>
</tr>
<tr>
<td>圧力</td>
<td>15 atm</td>
<td></td>
</tr>
<tr>
<td>組成</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>97.2%</td>
<td></td>
</tr>
<tr>
<td>N₂ + inerts</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 物質収支・熱収支

図 3-1 中に本プロセスの物質収支に示す。規模は、製品 H₂（as 100%）309,000Nm³/h である。Reformer の熱源は、CH₄ガスの燃焼による。以下に示すように、Reformer 部分で、熱源の 64% を消費して、947℃の排ガスを得る。これを予熱器、スチーム過熱器、空気予熱器にて熱回収し、最後に 310℃の排ガスとして大気放出する。以下に示す F-101 等の記号は図 3-1 中の記号である。

<table>
<thead>
<tr>
<th></th>
<th>℃</th>
<th>Mcal/h</th>
<th>割合 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101</td>
<td>947</td>
<td>223,509</td>
<td>64</td>
</tr>
<tr>
<td>E-101</td>
<td>674</td>
<td>55,429</td>
<td>16</td>
</tr>
<tr>
<td>E-102</td>
<td>439</td>
<td>45,351</td>
<td>13</td>
</tr>
<tr>
<td>E-103</td>
<td>310</td>
<td>23,935</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>348,224</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
3.1.3 プロセス区分と、各区分の用役消費、建設費

プロセスの原料・用役消費量（1時間あたり）をTable 3-1に示す。また、機器リスト、及び建设費内訳を同表に示す。*を付したのものは、核燃利用によって変化するものである。

3.1.4 経済諸元と経済計算

経済計算に用いる数値を経済諸元にまとめ、これに単価等を掛けて、H₂のコストを算出
た（Table 3-2参照）。CH₄単価を21.4円/Nm³（=30円/kg=2.5円/Mcal）とおいた。減価償却は、NEDOの数値を参考にして10%とした。ROI (Return on Investment、利益率) = 8%とおいて、通常商用プロセスでのH₂の価格は12.4円/Nm³となった。
なお以上の検討は、製品水素濃度として97.2%（水素の多量の消費先である石油精製プロ
セス向けの通常の値）に対するものであるが、燃料電池向け水素の場合、水素純度として
99.99%以上が必要となる。高純度水素を得る場合の経済性については、3.3に検討結果を
示す。
図 3-1 水素製造現行商用プロセスフローシート(1/2)
ダイアクリティック

<table>
<thead>
<tr>
<th>Stream No</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
<th>⑨</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>NG Feed</td>
<td>Steam Feed</td>
<td>Reformer Feed</td>
<td>Reform</td>
<td>C-301 Outlet</td>
<td>C-302 Outlet</td>
<td>Product Raw Gas</td>
<td>Drain</td>
<td>Product Raw Gas</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
</tr>
<tr>
<td>CH4</td>
<td>①</td>
<td>16</td>
<td>3,463</td>
<td>94.5</td>
<td>3,463</td>
<td>17.8</td>
<td>283</td>
<td>1.1</td>
<td>283</td>
</tr>
<tr>
<td>CO2</td>
<td>②</td>
<td>44</td>
<td>20</td>
<td>0.5</td>
<td>20</td>
<td>0.1</td>
<td>1,523</td>
<td>5.7</td>
<td>3,090</td>
</tr>
<tr>
<td>C</td>
<td>③</td>
<td>28</td>
<td>2.82</td>
<td>7.8</td>
<td>2.82</td>
<td>7.8</td>
<td>70</td>
<td>1.9</td>
<td>70</td>
</tr>
<tr>
<td>H2</td>
<td>④</td>
<td>2</td>
<td>11,997</td>
<td>45.0</td>
<td>13,564</td>
<td>50.9</td>
<td>14,009</td>
<td>52.6</td>
<td>14,009</td>
</tr>
<tr>
<td>N2+inert</td>
<td>⑤</td>
<td>28</td>
<td>28</td>
<td>0.8</td>
<td>28</td>
<td>0.1</td>
<td>28</td>
<td>0.1</td>
<td>28</td>
</tr>
<tr>
<td>C2H6</td>
<td>⑥</td>
<td>30</td>
<td>99</td>
<td>2.7</td>
<td>99</td>
<td>0.5</td>
<td>99</td>
<td>0.5</td>
<td>99</td>
</tr>
<tr>
<td>CH3+</td>
<td>⑦</td>
<td>58</td>
<td>54</td>
<td>1.5</td>
<td>54</td>
<td>0.3</td>
<td>54</td>
<td>0.3</td>
<td>54</td>
</tr>
<tr>
<td>H2O</td>
<td>⑧</td>
<td>18</td>
<td>15,810</td>
<td>100.0</td>
<td>15,810</td>
<td>81.2</td>
<td>10,721</td>
<td>40.2</td>
<td>9,154</td>
</tr>
<tr>
<td>H2O</td>
<td>⑨</td>
<td>32</td>
<td>81.2</td>
<td>15,810</td>
<td>100.0</td>
<td>15,810</td>
<td>81.2</td>
<td>10,721</td>
<td>40.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,364</td>
<td>100.0</td>
<td>15,810</td>
<td>100.0</td>
<td>19,474</td>
<td>100.0</td>
<td>26,644</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total

Weigt Flow	kg/h	63,197	284,579	347,776	347,776	347,776	261,022	86,753	196,180
Temp	°C	29	316	871	404	229	138	138	68
Press	MPa	2.14	2.14	2.04	1.93	1.79	1.73	1.73	1.69

ダイアクリティック

<table>
<thead>
<tr>
<th>Stream No</th>
<th>⑩</th>
<th>⑪</th>
<th>⑫</th>
<th>⑬</th>
<th>⑭</th>
<th>⑮</th>
<th>⑯</th>
<th>⑰</th>
<th>⑱</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>Drain</td>
<td>C-201 Outlet Gas</td>
<td>CO2</td>
<td>Methanetor Outlet</td>
<td>Product H2</td>
<td>Drain</td>
<td>Fuel Gas</td>
<td>Combustion Air</td>
<td>Flue Gas</td>
</tr>
<tr>
<td></td>
<td>MW</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
<td>kmol/h</td>
<td>vol%</td>
</tr>
<tr>
<td>CH4</td>
<td>①</td>
<td>16</td>
<td>293</td>
<td>1.9</td>
<td>365</td>
<td>1.4</td>
<td>365</td>
<td>1.4</td>
<td>1,801</td>
</tr>
<tr>
<td>CO2</td>
<td>②</td>
<td>44</td>
<td>3,533</td>
<td>18.1</td>
<td>10</td>
<td>0.5</td>
<td>1,986</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>③</td>
<td>28</td>
<td>70</td>
<td>0.4</td>
<td>14,009</td>
<td>88.6</td>
<td>1,791</td>
<td>51.8</td>
<td>1,791</td>
</tr>
<tr>
<td>H2</td>
<td>④</td>
<td>2</td>
<td>14,009</td>
<td>88.6</td>
<td>1,791</td>
<td>51.8</td>
<td>1,791</td>
<td>51.8</td>
<td>1,791</td>
</tr>
<tr>
<td>N2+inert</td>
<td>⑤</td>
<td>28</td>
<td>28</td>
<td>0.2</td>
<td>28</td>
<td>0.1</td>
<td>28</td>
<td>0.1</td>
<td>28</td>
</tr>
<tr>
<td>C2H6</td>
<td>⑥</td>
<td>30</td>
<td>51</td>
<td>2.7</td>
<td>1</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4+</td>
<td>⑦</td>
<td>56</td>
<td>28</td>
<td>1.5</td>
<td>1</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>⑧</td>
<td>18</td>
<td>3,602</td>
<td>18.5</td>
<td>197</td>
<td>3,602</td>
<td>18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>⑨</td>
<td>32</td>
<td>197</td>
<td>3,602</td>
<td>18.5</td>
<td>197</td>
<td>3,602</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,602</td>
<td>18.5</td>
<td>197</td>
<td>3,602</td>
<td>18.5</td>
<td>197</td>
<td>3,602</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Total

Weigt Flow	kg/h	64,843	39,479	158,701	39,479	35,939	35,939	32,848	615,718	645,567
Temp	°C	68	71	102	310	49	49	29	29	310
Press	MPa	1.69	1.69	0.14	1.59	1.52	1.52	2.14	0.14	-

図 3-1. 水素製造現行商用プロセスフローシート(2/2)
Table 3-1 水素製造用プロセス 経済評価データ（1/2）

<table>
<thead>
<tr>
<th>原料・用役消費量</th>
<th>1時間あたり消費量</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4 fuel CH4</td>
<td>82,193 Nm³</td>
</tr>
<tr>
<td>sum</td>
<td>131,118 Nm³</td>
</tr>
<tr>
<td>Catalyst, adsorbent</td>
<td>50,822 yen</td>
</tr>
<tr>
<td>Misc. chemicals, utilities</td>
<td>14,521 yen</td>
</tr>
<tr>
<td>Reformer steam</td>
<td>284 ton</td>
</tr>
<tr>
<td>Byproducts</td>
<td></td>
</tr>
<tr>
<td>HP steam</td>
<td>-284 ton</td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>6,739 m³</td>
</tr>
<tr>
<td>Steam</td>
<td>70 ton</td>
</tr>
<tr>
<td>Process water</td>
<td>294 m³</td>
</tr>
<tr>
<td>Electricity</td>
<td>10,472 kwh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機器リスト</th>
<th>m²</th>
<th>Mcal/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101 Natural Gas Reformer</td>
<td>223,478</td>
<td></td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>1,928</td>
<td>55,429 *</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>3,948</td>
<td>45,351 *</td>
</tr>
<tr>
<td>E-103 Air preheater</td>
<td>3,725</td>
<td>23,935 *</td>
</tr>
<tr>
<td>E-104 Heat recovery boiler</td>
<td>660</td>
<td>118,417</td>
</tr>
<tr>
<td>E-105 Absorber feed cooler</td>
<td>1,895</td>
<td>49,130</td>
</tr>
<tr>
<td>E-106 Bollor feed heater</td>
<td>548</td>
<td>32,754</td>
</tr>
<tr>
<td>E-107 Demin. Water heater</td>
<td>362</td>
<td>22,712</td>
</tr>
<tr>
<td>E-201 CO2 stripper reboiler-1</td>
<td>1,838</td>
<td>45,351</td>
</tr>
<tr>
<td>E-202 CO2 stripper reboiler-2</td>
<td>1,551</td>
<td>35,273</td>
</tr>
<tr>
<td>E-203 Lean amine cooler</td>
<td>3,279</td>
<td>23,491</td>
</tr>
<tr>
<td>E-204 Amine Interchanger-1</td>
<td>6,597</td>
<td>20,156</td>
</tr>
<tr>
<td>E-205 Amine Interchanger-11</td>
<td>5,481</td>
<td>18,896</td>
</tr>
<tr>
<td>E-206 Absorber Intercooler</td>
<td>1,663</td>
<td>62,888</td>
</tr>
<tr>
<td>E-207 Stripper condenser</td>
<td>1,056</td>
<td>60,466</td>
</tr>
<tr>
<td>E-301 Methanator preheater-1</td>
<td>1,228</td>
<td>17,637</td>
</tr>
<tr>
<td>E-302 Methanator preheater-2</td>
<td>1,74</td>
<td>6,566</td>
</tr>
<tr>
<td>E-303 H2 product cooler</td>
<td>655</td>
<td>13,857</td>
</tr>
<tr>
<td>Total</td>
<td>85,220</td>
<td>659,813</td>
</tr>
</tbody>
</table>

K-101 Air blower	3,080
K-102 Flue gas extractor	2,482
M-101 H2S adsorbent	15.6 m³
M-102 H3S adsorbent	15.6 m³
M-103 Flue gas stack	37 m, 3 m
C-201 Amine absorber	21 dia.
C-202 Amine stripper	18 dia.
C-301 High temp CO shift	9 dia.
C-302 Low temp CO shift	9 dia.
C-303 Methanator	3 dia.
T-201 Amin storage	341 m³
V-101 Steam drum	242 m³
V-201 Reflux drum	61 m³
V-202 Condensate-I	114 m³
V-203 Condensate-II	95 m³
V-204 Flash vessel	189 m³
Table 3-1 水素製造用プロセス 経済評価データ（2/2）

<table>
<thead>
<tr>
<th>建設費 億円</th>
<th>Total</th>
<th>Reforming</th>
<th>CO2 Separation</th>
<th>CO Shift and Methanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery limits equipment, fob</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>17.9</td>
<td></td>
<td>3.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Vessels and tanks</td>
<td>4.6</td>
<td>0.9</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Exchangers</td>
<td>19.7</td>
<td>9.8</td>
<td>7.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Furnaces</td>
<td>48.1</td>
<td>48.1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Compressors</td>
<td>7.3</td>
<td>7.3</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Miscellaneous equipment</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Pumps</td>
<td>2.1</td>
<td>0.5</td>
<td>1.6</td>
<td>*</td>
</tr>
<tr>
<td>Total</td>
<td>100.2</td>
<td>57.2</td>
<td>16.7</td>
<td>16.4</td>
</tr>
<tr>
<td>Battery limits equipment Installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency, 20%</td>
<td>177.2</td>
<td>123.7</td>
<td>38.6</td>
<td>16.8</td>
</tr>
<tr>
<td>BATTERY LIMITS INVESTMENT</td>
<td>35.4</td>
<td>24.7</td>
<td>7.3</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Off-sites, Installed				
Cooling tower	11.4	4.1	6.4	0.9
Process water treatment	0.4	0.4		
Steam generation	6.8		6.8	
Utilities and storage	18.6	4.5	13.2	0.9
General service facilities	39.1			
Waste treatment	9.8			
Total	67.5			
Contingency, 20%	13.5			
OFF-SITES INVESTMENT	81.0			

TOTAL FIXED CAPITAL: 233.6

注: * 核熱利用により変更のあるもの
<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Consumption /kg·H₂ /hour</th>
<th>Raw materials</th>
<th>Consumption /kg·H₂ /hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas feed</td>
<td>2.98</td>
<td>Natural gas fuel</td>
<td>21.4</td>
</tr>
<tr>
<td>Na3</td>
<td>82.193</td>
<td>Na3</td>
<td>1.759</td>
</tr>
<tr>
<td>Natural gas fuel</td>
<td>1.78</td>
<td>Natural gas fuel</td>
<td>1.78</td>
</tr>
<tr>
<td>Na3</td>
<td>48.925</td>
<td>Catalysts adsol</td>
<td>1.8</td>
</tr>
<tr>
<td>Yen</td>
<td>50.822</td>
<td>Catalysts adsol</td>
<td>51</td>
</tr>
<tr>
<td>Misc. Chem. util</td>
<td>0.5</td>
<td>Misc. Chem. util</td>
<td>0.5</td>
</tr>
<tr>
<td>Yen</td>
<td>14.521</td>
<td>Reformer steam</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reformer steam</td>
<td>10.32</td>
</tr>
</tbody>
</table>

Byproducts		Byproducts	
HP steam	ton	HP steam	ton
	-10.32		-10.32

Utilities		Utilities	
Cooling water	m³	Cooling water	m³
Steam	kg	Steam	kg
Process water	m³	Process water	m³
Electricity	kwh	Electricity	kwh

Investment		Fixed Cost	
Battery limits	212.6 億円	Total Investment	293.6 億円
Off-sites	81.0	(10% of Total Investment)	29.4
Total fixed cap.	293.6		

ROI: 8% of Total Investment

HP Sales

23.5 10.8

300.8 138.3 Yen/kg

12.4 Yen/Nm³
3. 2 核熱を用いたメタンからの水素製造プロセス（水蒸気改質法）

3.2.1 フローシート

3. 1 項に示した商圧のフローシートに基づき、以下に示す考え方により核熱を用いる場合のフローシートを設定した。

(1) Fuel CH₄を核熱に置き換える

通常のReformerは、CH₄燃焼によって下記のように熱を与えている。核熱利用のReformerは熱交換器形態となり、Heの950 → 800℃(平均温度875℃)の熱を利用して、通常と同じ反応生成物を得られるものとした。

<table>
<thead>
<tr>
<th>排ガス℃</th>
<th>Mcal/h</th>
<th>受熱側℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101 Reformer</td>
<td>947</td>
<td>223,509</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>674</td>
<td>55,429</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>439</td>
<td>45,351</td>
</tr>
<tr>
<td></td>
<td></td>
<td>324,289</td>
</tr>
</tbody>
</table>

(説明)

通常のReformer Furnaceは、排ガス温度が947℃であり、炉内ではこれ以上である。CH₄はReformerに入って急速に昇温し、871℃になり、この温度で、反応熱を吸収しほと反応が進行する。必要な熱は給湯されて、温度が保たれる。

核熱利用のReformerにおいては、CH₄は徐々に昇温して、最後の出口で871℃に達する。反応温度は通常のReformerよりも低く経過するので、同じ反応生成物を得るには反応管容積は大きくなる可能性があるが、無視して触媒量は同じものとした。

(2) CH₄燃焼用空気を送る系統、排ガスを排気する系統は不要である。

不要になる機器は、

E-103 Air preheater
K-101 Air blower
K-102 Flue gas extractor
M-103 Flue gas stack

である。また、これらに使う電力(6,562kW)は不用である。

(4) E-101、E-102の伝熱量は不変であるが、加熱側がHeとなり、加熱側、受熱側の温度差が変わるので、伝熱面積は変わる。

3.2.2 物質収支・熱収支

He所要量と温度降下をTable 3-3に示す。Heは、Reformerを800℃で出て、引き続きE-101、E-102で熱を供給し、732℃となる。さらにH₂Processで消費するスチーム(70ton/h)
の発生に使うとすると、戻り温度は704°Cとなる。
一方、高濃度ガス炉へのHe戻り温度は350°Cに設定されており、商用プロセスのプロセス条件での核熱利用を想定した場合、この732°C(又は704°C)から350°Cの領域の熱を利用できない。以下の経済評価では、この領域の熱は使わないものとして検討を行う。

通常のH₃ Processでは、Reformerの反応温度が高いので、CH₄の反応が十分進行し、97%の製品水素が得られている。
核熱の利用をあげるためにはReformerの反応温度を低くすると、反応生成物が変わり、通常とは別のプロセス構成となる。特に、CH₄の反応が不十分で、H₂の中にCH₄が残留するため、所定のH₂濃度97%を得るために、CH₄をH₂から分離してReformerにリサイクルするユニットが加えられることになる。

Table 3-3 He の温度降下

<table>
<thead>
<tr>
<th>H₂ Process に核熱利用の場合</th>
<th>Duty</th>
<th>He</th>
<th>He温度</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/h</td>
<td>kgmol/h</td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>F-101 Reformer</td>
<td>223,509</td>
<td>299,810</td>
<td>950</td>
<td>800</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>55,429</td>
<td>299,810</td>
<td>800</td>
<td>763</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>45,351</td>
<td>299,810</td>
<td>763</td>
<td>732</td>
</tr>
<tr>
<td>Excess</td>
<td>324,289</td>
<td>299,810</td>
<td>732</td>
<td>350</td>
</tr>
<tr>
<td>ratio</td>
<td>569,745</td>
<td>299,810</td>
<td>732</td>
<td>350</td>
</tr>
</tbody>
</table>

Steam use for downstream units
70 ton/h
42,000
299,810
732
704
28

3.2.3 プロセス区分と各区分の用役消費、建設費
通常プロセスの表を変更するかたちで、プロセスの原料・用役消費量をTable 3-4 に示す。
※印が変更点である。※印に付した番号により、以下説明する。
(1) fuel CH₄はゼロになり、代わりに核熱He 324 Gcal/h を使い、732°Cで返す。H₂Processの場合、エネルギーも原料であると考えられるので、核熱も原料の欄に掲げた。
(2) CH₄燃焼がないので、燃焼用の空気と排気の送風機(K-101, K-102)と排ガススラーク(M-103)を用いるリスから削除し、電力消費を差し引いた。
(3) Reformer は Furnace タイプから、熱交換器タイプになる。熱量は不変、触媒量も不変である。そこで、容量、全体重量を同じになると仮定し、反応管に関する建設費は不変とした。炉の部分は熱交換器タイプとなり簡略化され、建設費は半減するとした。核熱He配管は高温大口径で、プロセス機器類に匹敵するサイズである。この費用として4.5
億円を見込み加算した。
(4) 燃焼排ガスからの熱回収は、核熱Heとの熱交換に変わる。伝熱係数がよくなり、温度差も大きいので、熱交換器m²は小さくなった。応じて建設費も小さくなる。
(5) CH₄燃焼がなくなったので Compressor 使わない。
(6) 「その他機器」には、煙突と Feed CH₄ の H₂S Absorber があり、このうち煙突が不用になった。
(7) 機器コスト集計は、上記に伴い変わる。
(8) 機器コストに掛ける係数を同じとした。
(9) 係数 20%を同じとした。
(10) 総集計した。

3.2.4 経済諸元と経済計算
経済計算に用いる数値を経済諸元にまとめ、これに単価を掛けて、H₂のコストを算出した。
評価結果を Table 3-5 に示す。ここで核熱 He のコストを 2.50 円/Mcal とした。このコストは 600MW の高温ガス炉ガスタービン発電システムの建設コスト、燃料コスト(6)に基づいて、減価償却 16 年として求めたものである。これを用い、ROI（利益率）= 8% とすると、H₂のコストは 11.1 Yen/Nm³となった。一般商用プロセスの H₂ のコストは 12.4 Yen/ Nm³であるから、約 1 割減のコスト水準である。また、核熱を利用するケースで水素純度を 99.99%にする場合の検討を 3.3 で行った。
Table 3-4 核熱利用水素製造プロセス 経済評価データ(1/2)

<table>
<thead>
<tr>
<th>原料・用役消費量</th>
<th>1時間あたり消費量</th>
<th>核熱利用により変更のあるもの</th>
</tr>
</thead>
<tbody>
<tr>
<td>製品</td>
<td>H2</td>
<td>308,853 Nm3</td>
</tr>
<tr>
<td>Raw materials</td>
<td>CH4</td>
<td>feed CH4</td>
</tr>
<tr>
<td></td>
<td>fuel CH4</td>
<td>0 Nm3</td>
</tr>
<tr>
<td>sum</td>
<td>82,193 Nm3</td>
<td></td>
</tr>
<tr>
<td>核熱Ho</td>
<td>324,289 Mcal</td>
<td></td>
</tr>
<tr>
<td>Catalysts, adsorbent</td>
<td>50,822 yen</td>
<td></td>
</tr>
<tr>
<td>Misc. chemicals, utilities</td>
<td>14,521 yen</td>
<td></td>
</tr>
<tr>
<td>Reformer steam</td>
<td>284 ton</td>
<td></td>
</tr>
<tr>
<td>Byproducts</td>
<td>HP steam</td>
<td>-284 ton</td>
</tr>
<tr>
<td>Utilities</td>
<td>Cooling water</td>
<td>8,739 m3</td>
</tr>
<tr>
<td></td>
<td>Steam</td>
<td>70 ton</td>
</tr>
<tr>
<td></td>
<td>Process water</td>
<td>294 m3</td>
</tr>
<tr>
<td></td>
<td>Electricity</td>
<td>3,910 kwh</td>
</tr>
<tr>
<td></td>
<td>Calculation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>通算</td>
<td>10,472</td>
</tr>
<tr>
<td></td>
<td>修正</td>
<td>-6,562</td>
</tr>
<tr>
<td></td>
<td>税負</td>
<td>3,910</td>
</tr>
</tbody>
</table>

機器リスト

<table>
<thead>
<tr>
<th>F-101</th>
<th>Natural Gas Reformer</th>
<th>Mcal/h</th>
<th>223,478</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2</td>
<td>Mcal/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-101</td>
<td>Feed preheater</td>
<td>753</td>
<td>55,429</td>
</tr>
<tr>
<td>E-102</td>
<td>Steam superheater</td>
<td>620</td>
<td>45,351</td>
</tr>
<tr>
<td>E-103</td>
<td>Air preheater</td>
<td>*</td>
<td>(4)</td>
</tr>
<tr>
<td>E-104</td>
<td>Heat recovery boiler</td>
<td>660</td>
<td>118,417</td>
</tr>
<tr>
<td>E-105</td>
<td>Absorber feed cooler</td>
<td>1,895</td>
<td>49,130</td>
</tr>
<tr>
<td>E-106</td>
<td>Boiler feed heater</td>
<td>548</td>
<td>32,754</td>
</tr>
<tr>
<td>E-107</td>
<td>Demin. Water heater</td>
<td>352</td>
<td>22,172</td>
</tr>
<tr>
<td>小計</td>
<td></td>
<td>4,838</td>
<td>12,466</td>
</tr>
<tr>
<td>E-201</td>
<td>CO2 stripper rebolier-1</td>
<td>1,839</td>
<td>45,551</td>
</tr>
<tr>
<td>E-202</td>
<td>CO2 stripper rebolier-2</td>
<td>1,551</td>
<td>35,273</td>
</tr>
<tr>
<td>E-203</td>
<td>Lean amine cooler</td>
<td>2,379</td>
<td>23,431</td>
</tr>
<tr>
<td>E-204</td>
<td>Amine interchanger-I</td>
<td>6,587</td>
<td>20,156</td>
</tr>
<tr>
<td>E-205</td>
<td>Amine interchanger-II</td>
<td>5,481</td>
<td>18,896</td>
</tr>
<tr>
<td>E-206</td>
<td>Absorber Intercooler</td>
<td>1,663</td>
<td>62,888</td>
</tr>
<tr>
<td>E-207</td>
<td>Stripper condenser</td>
<td>1,068</td>
<td>60,468</td>
</tr>
<tr>
<td>E-301</td>
<td>Methanator preheater-1</td>
<td>1,226</td>
<td>17,637</td>
</tr>
<tr>
<td>E-302</td>
<td>Methanator preheater-2</td>
<td>174</td>
<td>8,566</td>
</tr>
<tr>
<td>E-303</td>
<td>H2 product cooler</td>
<td>855</td>
<td>13,857</td>
</tr>
<tr>
<td>M-101</td>
<td>H2S adsorber</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>M-102</td>
<td>H3S adsorber</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>C-201</td>
<td>Amine absorber</td>
<td>21</td>
<td>3.6</td>
</tr>
<tr>
<td>C-202</td>
<td>Amine stripper</td>
<td>18</td>
<td>6.6</td>
</tr>
<tr>
<td>C-301</td>
<td>High temp CO shift</td>
<td>9</td>
<td>6.2</td>
</tr>
<tr>
<td>C-302</td>
<td>Low temp CO shift</td>
<td>9</td>
<td>5.8</td>
</tr>
<tr>
<td>C-303</td>
<td>Methanator</td>
<td>8</td>
<td>3.4</td>
</tr>
<tr>
<td>T-201</td>
<td>Amine storage</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>V-101</td>
<td>Steam drum</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>V-201</td>
<td>Reflux drum</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>V-202</td>
<td>Condensate-I</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>V-203</td>
<td>Condensate-II</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>V-204</td>
<td>Flash vessel</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>建設費</td>
<td>億円</td>
<td>通常</td>
<td>修正</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Reforming</td>
<td>CO2 Separation</td>
</tr>
<tr>
<td>Battery limits equipment, fob</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>17.9</td>
<td>3.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Vessels and tanks</td>
<td>4.6</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Exchangers</td>
<td>13.7</td>
<td>3.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Reformer</td>
<td>45.4</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td>Compressors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous equipment</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>2.1</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>83.9</td>
<td>50.9</td>
<td>16.7</td>
</tr>
<tr>
<td>Battery limits equipment installed</td>
<td>150.0</td>
<td>93.7</td>
<td>36.6</td>
</tr>
<tr>
<td>Contingency, 20%</td>
<td>285.4</td>
<td>18.7</td>
<td>7.3</td>
</tr>
<tr>
<td>BATTERY LIMITS INVESTMENT</td>
<td>176.6</td>
<td>112.4</td>
<td>44.0</td>
</tr>
<tr>
<td>Off-sites, installed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling tower</td>
<td>11.4</td>
<td>4.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Process water treatment</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Steam generation</td>
<td>8.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Utilities and storage</td>
<td>18.6</td>
<td>4.5</td>
<td>13.2</td>
</tr>
<tr>
<td>General service facilities</td>
<td>39.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste treatment</td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>67.5</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Contingency, 20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-SITES INVESTMENT</td>
<td>81.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL FIXED CAPITAL</td>
<td>257.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料</td>
<td>Consumption</td>
<td>単位</td>
<td>7884 h/y</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>Natural gas feed</td>
<td>2.98</td>
<td>Nm³</td>
<td>82,193</td>
</tr>
<tr>
<td>* 核熱 He</td>
<td>11.77</td>
<td>Mcal</td>
<td>324,289</td>
</tr>
<tr>
<td>Catalysts, adsol</td>
<td>1.8</td>
<td>Yen</td>
<td>50,822</td>
</tr>
<tr>
<td>Misc. Chem. util</td>
<td>0.5</td>
<td>Yen</td>
<td>14,521</td>
</tr>
<tr>
<td>Reformer steam</td>
<td>10.32</td>
<td>ton</td>
<td>284</td>
</tr>
</tbody>
</table>

Byproducts				Byproducts					
HP steam	-10.32		-284	HP steam	-10.32	-284	-1	-53.8	-24.8

Utilities				Utilities						
Cooling water	0.32	m³	8,739	Cooling water	9.5	0.32	8,739	83	6.5	3.0
Steam	2.55	kg	70,274	Steam	2.0	2.55	70,274	141	11.1	5.1
Process water	0.01	m³	294	Process water	234.0	0.01	294	69	5.4	2.5
* Electricity	0.14	kwh	3,910	Electricity	9.0	0.38	3,910	35	2.8	1.3

<table>
<thead>
<tr>
<th>Investment</th>
<th></th>
<th></th>
<th></th>
<th>Fixed Cost</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Battery limits</td>
<td>176.6億円</td>
<td></td>
<td></td>
<td>Total Investment</td>
<td>257.6億円</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-sites</td>
<td>81.0</td>
<td></td>
<td></td>
<td>(10% of Total investment)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fixed cap</td>
<td>257.6</td>
<td></td>
<td></td>
<td>ROI 8% of Total Investment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HF Sales

<table>
<thead>
<tr>
<th>ROI</th>
<th>8% of Total Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HF Sales</td>
</tr>
<tr>
<td>270.9</td>
<td>124.6 Yen/kg</td>
</tr>
<tr>
<td>11.1</td>
<td>Yen/Nm³</td>
</tr>
</tbody>
</table>
3.3 高純度水素ガスの製造

これまで記述した商用水素製造システムで生産される水素は、純度が97.2%H₂である。燃料電池車に使用する水素は純度99.99%以上もののが要求される。そこで、3.1及び3.2に述べた商用プロセス及び核熱利用プロセスで生産した水素を、PSA（Pressure Swing Absorber）で処理することにより99.99%H₂を得る。これまでのシステムにPSAを追加して(5)、経済諸元・経済計算にまとめた。

(1) PSA装置の計算

H₂の回収率 65%(11)
CH₄の回収率 0.26%(11)
建設費 フィードガスあたり、1.32万円/(Nm³/h)(11)
これらを商用水素プロセスに適用して、PSA装置の建設費42億円を得た。

(2) 残余H₂の利用

製品99.99%H₂の量は、97.2%H₂の場合の65%量である。残る35%は、Fuel Gas (H₂93%)として、商用の高純度水素製造プラントではReformerの燃料に利用する。その量は、丁度CH₄Fuelが不用になる量である。

3.3.1 水素製造商用プロセスにおける経済計算

商用水素プロセスの経済諸元・経済計算の表にPSAを組み入れた(印)結果をTable 3-6に示す。製品H₂の量(65%)、Natural Gas Fuel(0)、建設費(42億円)に変化が見られる。その結果、H₂の価格は14.3 Yen/Nm³となった。97.2%H₂の場合は、12.4 Yen/Nm³であったから、増分は、+1.9 Yen/Nm³である。

3.3.2 核熱利用水素製造プロセスにおける経済計算

前項と同様に、核熱利用の経済諸元・経済計算の表にPSAを組み入れた(印)結果をTable 3-7に示す。Fuel Gas(H₂93%)は使わないので、副生品として外販する(2.5 Yen/Gcal、CH₄Fuelと同じ)。その結果H₂価格は13.3 Yen/Nm³となった。97.2%H₂の場合は、11.1 Yen/Nm³であったから、増分は、+2.1 Yen/Nm³である。
Table 3-6 水素製造専用プロセス 製品水素純度 99.99%の場合の経済性評価結果

経済諸元	Operation	7884 h/y	経済計算	H2
+	141.225 ton/y			
+	200,624 Nm3/h			

<p>| Raw materials | Consumption | Raw materials | Cost | Consumption | 10^3 ¥/h | 億円/年 | Yen/kg-H2 |</p>
<table>
<thead>
<tr>
<th>単位</th>
<th>/kg-H2</th>
<th>/hour</th>
<th>単位</th>
<th>種目</th>
<th>/kg-H2</th>
<th>/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas feed</td>
<td>Nm3</td>
<td>4.59</td>
<td>82,193</td>
<td>Natural gas feed</td>
<td>Nm³</td>
<td>21.4</td>
</tr>
<tr>
<td>+</td>
<td>Natural gas fuel</td>
<td>Nm3</td>
<td>0.00</td>
<td>0</td>
<td>Natural gas fuel</td>
<td>Nm³</td>
</tr>
<tr>
<td>Catalysts, adsorbent</td>
<td>Yen</td>
<td>2.84</td>
<td>50,822</td>
<td>Catalysts, adsorbent</td>
<td>Yen</td>
<td>2.84</td>
</tr>
<tr>
<td>Misc. chem, utilities</td>
<td>Yen</td>
<td>0.81</td>
<td>14,521</td>
<td>Misc. chem, utilities</td>
<td>Yen</td>
<td>0.81</td>
</tr>
<tr>
<td>Reformer steam</td>
<td>ton</td>
<td>15.88</td>
<td>284</td>
<td>Reformer steam</td>
<td>ton</td>
<td>2.0</td>
</tr>
<tr>
<td>Byproducts</td>
<td>HP steam</td>
<td>ton</td>
<td>-15.88</td>
<td>-284</td>
<td>Byproducts</td>
<td>HP steam</td>
</tr>
<tr>
<td>Utilities</td>
<td>Cooling water</td>
<td>m³</td>
<td>0.49</td>
<td>8,739</td>
<td>Cooling water</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td>Train</td>
<td>kg</td>
<td>3.92</td>
<td>70,274</td>
<td>Steam</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Process water</td>
<td>m³</td>
<td>0.02</td>
<td>294</td>
<td>Process water</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td>Electricity</td>
<td>kwh</td>
<td>0.58</td>
<td>10,472</td>
<td>Electricity</td>
<td>kwh</td>
</tr>
</tbody>
</table>

Investment + Battery limits 254.6 億円
Off-sites 81.0
Total fixed capital 335.6

Fixed Costs
Total Investment 335.6 億円
10 % of Total Investment 33.5 23.7
198.9 140.8

ROI 8 % of Total Investment
H2 Sales 225.7 159.8 Yen/kg
14.3 Yen/Nm³
Table 3-7 核熱利用水素製造プロセス 製品水素純度 99.99%の場合の経済性評価結果

<table>
<thead>
<tr>
<th>経済諸元</th>
<th>経済計算</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 311.35 MMLb/y</td>
<td>141,225 ton/y</td>
</tr>
<tr>
<td>+ 17,913 kg/h</td>
<td>+ 200,624 Nm3/h</td>
</tr>
<tr>
<td>7884 h/y</td>
<td></td>
</tr>
<tr>
<td>Raw materials</td>
<td>Consumption</td>
</tr>
<tr>
<td>単位</td>
<td>/kg-H₂</td>
</tr>
<tr>
<td>Natural gas feed</td>
<td>Nm³</td>
</tr>
<tr>
<td>* 核熱He</td>
<td>Mkcal</td>
</tr>
<tr>
<td>Catalysts, adsorbent</td>
<td>Yen</td>
</tr>
<tr>
<td>Misc. chem, utilities</td>
<td>Yen</td>
</tr>
<tr>
<td>Reformer steam</td>
<td>ton</td>
</tr>
<tr>
<td>Mkal</td>
<td></td>
</tr>
<tr>
<td>Byproducts</td>
<td></td>
</tr>
<tr>
<td>HP steam</td>
<td>ton</td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>m³</td>
</tr>
<tr>
<td>Steam</td>
<td>kg</td>
</tr>
<tr>
<td>Process water</td>
<td>m³</td>
</tr>
<tr>
<td>* Electricity</td>
<td>kwh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investment

* Battery limits	218.6 億円
Off-sites	81.0
* Total fixed capital	299.6

Fixed Costs

Total Investment	299.6 億円	
10% /年 of Total Investment	30.0	21.2
ROI 8% of Total Investment	24.0	17.0
H₂ Sales	209.8	148.6 Yen/kg
13.3 Yen/Nm³		
4. DME製造プロセスの経済評価

4.1 項では商業規模で実証されている間接法DMEプロセス（CH₄からMethanolを作り、これの脱水によってDMEを製造する）について検討する。代表的なMethanol Processを選び、これにDME製造の情報を付加して、間接法プロセス経済性の検討に必要な数値を整理する。次に、これを基盤にして4.2項においてフェロメートとして核熱を利用する場合について検討する。更に、直接法DMEプロセスについての検討を4.3項で行う。

4.1 現行商用DMEプロセス

4.1.1 フローシート

図4.1(1/3)〜(3/3)にフローシートを示す。原料CH₄はReformerでH₂、CO、CO₂になり、一旦冷却してH₂Oを凝縮分離してから、105kg/cm²に昇圧し、メタノール合成反応器(250℃レベル)に入る。ここで、H₂、CO、CO₂とH₂OからCH₃OHが合成される。メタノール合成反応器では大量の循環ガスが回っている。出口ガスを冷却してメタノールを分離後、大部分を循環し、一部のガスはタービンを介して動力回収しつつ降圧し、Reformerの燃料に利用する。メタノールは蒸留により精製する。軽質分（C-301塔）、水（C-302塔）、重質アルコール分（C-303、C-304塔）を分離する。

メタノールは常圧下、200℃レベルの反応で67％がDMEに転換する。DMEは蒸留して製品となる。未反応のメタノールは反応器にリサイクルする。製品DMEは、純度98％である。

製品DMEの組成

<table>
<thead>
<tr>
<th></th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃OH</td>
<td>0.5</td>
</tr>
<tr>
<td>DME</td>
<td>98.2</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.1.2 物質収支・熱収支

物質収支を図4.1(1/3)〜(3/3)に示す。規模は、DME58万トン/年である。中間製品のメタノールは82万トン/年規模である。これは、Reformerの規模として、先のH₂ Processとほぼ同じである。Reformerの熱源は、メタノール合成後の排ガスが大部分(87%)で、これにCH₄ fuelを追加する。Reformerの燃料ガスの組成と発熱量は以下の通りである。

Reformerの燃料ガスの組成と発熱量

<table>
<thead>
<tr>
<th></th>
<th>合成排ガス</th>
<th>CH₄ fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>kgmol/h</td>
<td>554</td>
</tr>
<tr>
<td>H₂</td>
<td>kgmol/h</td>
<td>3,311</td>
</tr>
<tr>
<td>発熱量</td>
<td>Mcal/h</td>
<td>297,388</td>
</tr>
</tbody>
</table>

—26—
熱源の 67% は Reformer で消費され、927℃の排ガスとなり、次に示すように順次熱を回収して 225℃の排ガスとして大気放出される。

<table>
<thead>
<tr>
<th></th>
<th>℃</th>
<th>Mcal/h</th>
<th>割合(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101 Reformer</td>
<td>927</td>
<td>235,519</td>
<td>67</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>676</td>
<td>43,588</td>
<td>13</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>519</td>
<td>26,203</td>
<td>7</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
<td>410</td>
<td>17,637</td>
<td>5</td>
</tr>
<tr>
<td>E-104 Air preheater</td>
<td>225</td>
<td>28,974</td>
<td>8</td>
</tr>
</tbody>
</table>

351,921 100

ここで回収したスチームは、メタノール合成におけるガス昇圧動力とガス循環動力に使用される。

4.1.3 プロセス区分と、各区分の用役消費、建設費

プロセスの原料・用役消費量(1時間あたり)を Table 4-1 に示す。また同表には、機器リスト、及び建設費内訳を示す。*を付したものは、核熱利用によって変化するものである。

4.1.4 経済諸元と経済計算

経済計算に用いる数値を経済諸元にまとめ、これに単価等を掛けて、DMEのコストを算出した(Table 4-2参照)。DMEコストは 46.8 円/kg となった。これは 1000 kcal あたり 6.8 円にあたる。原料メタンは 21.4 円/Nm³ で、1000 kcal あたり 2.5 円であるから、2.7 倍のコストということになる。プラント建設費(565 億円)がコストに大きく影響する。
Methanol Synthesis Section

<table>
<thead>
<tr>
<th>Stream No</th>
<th>Service</th>
<th>HP Steam</th>
<th>Condensate</th>
<th>Reformed Gas</th>
<th>Recycle Gas</th>
<th>Converter Feed</th>
<th>Converter Prod</th>
<th>Water Feed</th>
<th>Off Gas</th>
<th>Grude Methanol</th>
<th>Off Gas</th>
<th>Val Gas to P-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kmol/h</td>
</tr>
<tr>
<td>CH4</td>
<td></td>
<td>154.1</td>
<td>2.7</td>
<td>10.97</td>
<td>13.3</td>
<td>6.24</td>
<td>12.9</td>
<td>5.18</td>
<td>12.8</td>
<td>11.51</td>
<td>13.1</td>
<td>554</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>1.16</td>
<td>1.5</td>
<td>1.169</td>
<td>1.5</td>
<td>1.158</td>
<td>1.5</td>
<td>1.169</td>
<td>1.5</td>
<td>1.158</td>
<td>1.5</td>
<td>554</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>2.23</td>
<td>1.6</td>
<td>1.309</td>
<td>1.6</td>
<td>1.043</td>
<td>1.6</td>
<td>1.289</td>
<td>1.6</td>
<td>1.375</td>
<td>1.6</td>
<td>66</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>10.057</td>
<td>1.4</td>
<td>6.623</td>
<td>2.2</td>
<td>1.24</td>
<td>0.6</td>
<td>0.6</td>
<td>0.587</td>
<td>0.7</td>
<td>0.7</td>
<td>3311</td>
</tr>
<tr>
<td>N2+H2O</td>
<td></td>
<td>20.2</td>
<td>0.2</td>
<td>20.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>22.07</td>
</tr>
<tr>
<td>CH3OH</td>
<td></td>
<td>225.3</td>
<td>0.3</td>
<td>124.2</td>
<td>0.2</td>
<td>199.1</td>
<td>0.2</td>
<td>3494</td>
<td>4.0</td>
<td>3353</td>
<td>81.6</td>
<td>14</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td>1.166</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>1.166</td>
<td>0.002</td>
<td>0.002</td>
<td>1.166</td>
<td>21.002</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12.727</td>
<td>7.002</td>
<td>14.919</td>
<td>100.0</td>
<td>79.811</td>
<td>100.0</td>
<td>100.0</td>
<td>82.892</td>
<td>100.0</td>
<td>200.0</td>
<td>4051</td>
</tr>
<tr>
<td>Weight %</td>
<td></td>
<td>229.956</td>
<td>129.079</td>
<td>188.440</td>
<td>418.233</td>
<td>510.084</td>
<td>253.834</td>
<td>593.344</td>
<td>3133.8</td>
<td>21538</td>
<td>123172</td>
<td>21538</td>
</tr>
<tr>
<td>Temp.</td>
<td></td>
<td>333.7</td>
<td>121.7</td>
<td>132.7</td>
<td>247.1</td>
<td>271</td>
<td>27</td>
<td>538</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press.</td>
<td></td>
<td>7.59</td>
<td>10.4</td>
<td>10.4</td>
<td>10.4</td>
<td>10.4</td>
<td>0.48</td>
<td>7.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CH3OH 製造量 819,192 ton/y
2,494 ton/d

図 4-1 (2/4) DME製造商用プロセスフローシート

Methanol Synthesis Section
Table 4-1 DME製造用プロセス 経済評価データ（1/3）

<table>
<thead>
<tr>
<th>原料・用役消費量 1時間あたり</th>
<th>CH3OH Section</th>
<th>DME Section</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 feed</td>
<td>82,987</td>
<td>82,987</td>
<td>165,974</td>
</tr>
<tr>
<td>CH4 fuel</td>
<td>5,016</td>
<td>5,016</td>
<td>10,032</td>
</tr>
<tr>
<td>sum</td>
<td>88,003</td>
<td>88,003</td>
<td>176,006</td>
</tr>
<tr>
<td>Active carbon</td>
<td>1 kg</td>
<td></td>
<td>1 kg</td>
</tr>
<tr>
<td>Reforming catalyst</td>
<td>7 kg</td>
<td></td>
<td>7 kg</td>
</tr>
<tr>
<td>Methanol catalyst</td>
<td>14 kg</td>
<td></td>
<td>14 kg</td>
</tr>
<tr>
<td>用役</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>11,353</td>
<td>2,662</td>
<td>14,015 m3</td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>48</td>
<td>48 ton</td>
</tr>
<tr>
<td>Process water</td>
<td>118</td>
<td></td>
<td>118 m3</td>
</tr>
<tr>
<td>Electricity</td>
<td>6,430</td>
<td>4,135</td>
<td>10,565 kw</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機器リスト CH3OH Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-201 Methanol converter</td>
</tr>
<tr>
<td>K-101 Air blower</td>
</tr>
<tr>
<td>K-102 Flue gas extractor</td>
</tr>
<tr>
<td>K-201 Syngas compressor</td>
</tr>
<tr>
<td>K-202 Recycle gas compressor</td>
</tr>
<tr>
<td>K-203 Liquid turbine drive</td>
</tr>
<tr>
<td>K-204 Gas turbine</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
</tr>
<tr>
<td>E-104 Air preheater</td>
</tr>
<tr>
<td>E-105 Reformed gas steam exchanger</td>
</tr>
<tr>
<td>E-106 Saturator water heater</td>
</tr>
<tr>
<td>E-107 Feed water deaerator</td>
</tr>
<tr>
<td>E-108 Fuel preheater</td>
</tr>
<tr>
<td>E-109 Natural gas feed heater</td>
</tr>
<tr>
<td>E-110 Reformed gas cooler</td>
</tr>
<tr>
<td>E-201 Turbine condenser</td>
</tr>
<tr>
<td>E-202 Converter feed preheater</td>
</tr>
<tr>
<td>E-203 Direct fed interchanger</td>
</tr>
<tr>
<td>E-204 Converter/wtr exchanger-2</td>
</tr>
<tr>
<td>E-205 Converter/wtr exchanger-1</td>
</tr>
<tr>
<td>E-206 Turbine interstage heater</td>
</tr>
<tr>
<td>E-207 Converter product cooler</td>
</tr>
<tr>
<td>E-208 Reaction start-up heater</td>
</tr>
<tr>
<td>E-301 Methanol crude puf exchanger</td>
</tr>
<tr>
<td>E-302 Light ends condenser</td>
</tr>
<tr>
<td>E-303 Light ends reboiler</td>
</tr>
<tr>
<td>E-304 Finishing reboiler</td>
</tr>
<tr>
<td>E-305 Recovery reboiler</td>
</tr>
<tr>
<td>E-306 Refining reboiler</td>
</tr>
<tr>
<td>E-307 Finishing condenser</td>
</tr>
<tr>
<td>E-308 Recovery condenser</td>
</tr>
</tbody>
</table>

-32-
Table 4-1 DME製造商用プロセス 経済評価データ（2/3）

<table>
<thead>
<tr>
<th>機器リスト（続）</th>
<th>CH3OH Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101</td>
<td>Natural gas reforming furnace</td>
</tr>
<tr>
<td>T-351</td>
<td>Crude methanol storage</td>
</tr>
<tr>
<td>T-352</td>
<td>Higher alcohols storage</td>
</tr>
<tr>
<td>T-353</td>
<td>Methanol, DME storage</td>
</tr>
<tr>
<td>V-101</td>
<td>Boiler feed vessel</td>
</tr>
<tr>
<td>V-102</td>
<td>Steam drum</td>
</tr>
<tr>
<td>V-103</td>
<td>Condensate drum-1</td>
</tr>
<tr>
<td>V-104</td>
<td>Condensate drum-2</td>
</tr>
<tr>
<td>V-106</td>
<td>Condensate drum-3</td>
</tr>
<tr>
<td>V-105</td>
<td>Condensate drum-4</td>
</tr>
<tr>
<td>V-201</td>
<td>Crude methanol separator</td>
</tr>
<tr>
<td>V-202</td>
<td>Crude methanol surge</td>
</tr>
<tr>
<td>V-301</td>
<td>Light ends reflux drum</td>
</tr>
<tr>
<td>V-302</td>
<td>Refining reflux drum</td>
</tr>
<tr>
<td>V-303</td>
<td>Finishing reflux drum</td>
</tr>
<tr>
<td>V-304</td>
<td>Recovery reflux drum</td>
</tr>
</tbody>
</table>

DME Section

<table>
<thead>
<tr>
<th>Pumps</th>
<th>100 section</th>
<th>300 section</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 section</td>
<td>940</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DME Section</th>
<th>No</th>
<th>height, m</th>
<th>dia, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-101</td>
<td>Methanol converter</td>
<td>9</td>
<td>8.2</td>
</tr>
<tr>
<td>K-201</td>
<td>DME blower</td>
<td></td>
<td>2,492</td>
</tr>
<tr>
<td>E-101</td>
<td>Exchanger</td>
<td>2,892</td>
<td>27,369</td>
</tr>
<tr>
<td>E-102</td>
<td>Steam heater</td>
<td>304</td>
<td>3,921</td>
</tr>
<tr>
<td>E-201</td>
<td>Cooler</td>
<td>4</td>
<td>235</td>
</tr>
<tr>
<td>E-202</td>
<td>Cooler</td>
<td>62</td>
<td>6,431</td>
</tr>
<tr>
<td>E-203</td>
<td>Exchanger</td>
<td>405</td>
<td>4,862</td>
</tr>
<tr>
<td>E-204</td>
<td>Reboiler</td>
<td>839</td>
<td>22,978</td>
</tr>
<tr>
<td>E-205</td>
<td>Condenser</td>
<td>969</td>
<td>22,742</td>
</tr>
</tbody>
</table>

T-201	Methanol recovery tank	283		
V-201	Knockout drum	18		
C-201	Methanol absorber	12	2.4	
C-202	Methanol stripper	15	3.6	

<table>
<thead>
<tr>
<th>Pumps</th>
<th>100 section</th>
<th>200 section</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 section</td>
<td>58</td>
<td>182</td>
</tr>
<tr>
<td>建設費 億円</td>
<td>CH3OH Section</td>
<td>DME Section</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>CH4</td>
<td>CH3OH</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Reforming</td>
</tr>
<tr>
<td>Battery limits equipment, fob</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Reactors</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>17</td>
<td>6.6</td>
</tr>
<tr>
<td>Vessels and tanks</td>
<td>7</td>
<td>5.0</td>
</tr>
<tr>
<td>Exchangers</td>
<td>65</td>
<td>15.7</td>
</tr>
<tr>
<td>Furnaces</td>
<td>44</td>
<td>44.3</td>
</tr>
<tr>
<td>Compressors</td>
<td>29</td>
<td>7.0</td>
</tr>
<tr>
<td>Miscellaneous equipment</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Pumps</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
<td>81.4</td>
</tr>
</tbody>
</table>

Battery limits equipment installed

| Contingency, 20% | 62 | 28.0 | 26.8 | 6.0 | | |
| BATTERY LIMITS INVESTMENT | 414 | 173.9 | 161.2 | 35.9 | 25.9 | 16.9 |

Off-sites, installed

Cooling tower	17	0.3	10.6	3.3	3.1	
Process water treatment	0	0.4				
Steam generation	15	7.5	1.2	6.8		
Tankage	16	15.9				
Utilities and storage	49	8.1	10.6	19.2	1.2	9.8
General service facilities	69					
Waste treatment	7					
Total	126					
Contingency, 20%	25					

OFF-SITES INVESTMENT | 151 | | | | | |

TOTAL FIXED CAPITAL | 565 | | | | | |
Table 4-2 DME製造専用プロセス 経済評価結果

経済諸元	Operation	7884 h/y	経済計算
DME	580,375 ton/y		
	73,614 kg/h		
CH3OH（中間製品）	825,080 ton/y		
	104,652 kg/h		

<table>
<thead>
<tr>
<th>原料</th>
<th>Consumption</th>
<th></th>
<th>原料</th>
<th>Cost</th>
<th>Consumption</th>
<th>103㎥/h</th>
<th>億円/年</th>
<th>Yen/kg-DME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>單位/kg-DME</td>
<td>/hour</td>
<td></td>
<td>單位/kg-DME</td>
<td>/hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 feed</td>
<td>Nm3</td>
<td>1.13</td>
<td>82.987</td>
<td>CH4 feed</td>
<td>Nm3</td>
<td>21.4</td>
<td>1.13</td>
<td>82.987</td>
</tr>
<tr>
<td>CH4 fuel</td>
<td>Nm3</td>
<td>0.07</td>
<td>5.016</td>
<td>CH4 fuel</td>
<td>Nm3</td>
<td>21.4</td>
<td>0.07</td>
<td>5.016</td>
</tr>
<tr>
<td>Active carbon</td>
<td>kg</td>
<td>0.00001</td>
<td>1</td>
<td>Active carbon</td>
<td>kg</td>
<td>896</td>
<td>0.00001</td>
<td>1</td>
</tr>
<tr>
<td>Reforming catalyst</td>
<td>kg</td>
<td>0.00010</td>
<td>7</td>
<td>Reforming catalyst</td>
<td>kg</td>
<td>1.054</td>
<td>0.00010</td>
<td>7</td>
</tr>
<tr>
<td>Methanol catalyst</td>
<td>kg</td>
<td>0.00018</td>
<td>14</td>
<td>Methanol catalyst</td>
<td>kg</td>
<td>2.318</td>
<td>0.00018</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>用役</th>
<th></th>
<th></th>
<th>用役</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>m3</td>
<td>0.19</td>
<td>14.015</td>
<td>Cooling water</td>
<td>m3</td>
</tr>
<tr>
<td>Steam</td>
<td>kg</td>
<td>0.66</td>
<td>48.844</td>
<td>Steam</td>
<td>kg</td>
</tr>
<tr>
<td>Process water</td>
<td>m3</td>
<td>0.002</td>
<td>118</td>
<td>Process water</td>
<td>m3</td>
</tr>
<tr>
<td>Electricity</td>
<td>kwh</td>
<td>0.14</td>
<td>10,565</td>
<td>Electricity</td>
<td>kwh</td>
</tr>
</tbody>
</table>

Investment

<table>
<thead>
<tr>
<th>Battery limits</th>
<th>414億円</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-sites</td>
<td>151</td>
</tr>
<tr>
<td>Total fixed cap.</td>
<td>565</td>
</tr>
</tbody>
</table>

Fixed Costs

Total Investment | 565億円 (10%年 of Total investment) |

<table>
<thead>
<tr>
<th>ROI</th>
<th>8% of Total Investment</th>
<th>DME Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6,923 kcal/kg</td>
<td>6.8 Yen/Mcal</td>
<td></td>
</tr>
</tbody>
</table>
4.2 核熱を利用するDME製造プロセス（間接法）

4.2.1 フローシート
(1) Reformer は通常の炉形式から、核熱系利用、熱交換形式に変わる。炉形式では CH₄ とプロセス排ガスを燃料にして、下記のように熱を与えているので、これを核熱系に変える。CH₄ fuel は不用になり、プロセス排ガスは余るので燃料ガスとして外販する。
Reformer では、核熱系の 950 → 800°C（平均温度 875°C）の熱を利用して、通常と同じ反応生成物を得られる、とした。

<table>
<thead>
<tr>
<th>装置名</th>
<th>排ガス°C</th>
<th>Mcal/h</th>
<th>受熱側 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101 Reformer</td>
<td>927</td>
<td>235,519</td>
<td>538 → 871</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>676</td>
<td>43,588</td>
<td>264 → 538</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>519</td>
<td>26,203</td>
<td>266 → 482</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
<td>410</td>
<td>17,637</td>
<td>266</td>
</tr>
<tr>
<td>E-104</td>
<td>322,946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 燃焼用空気を送る系統、排ガスを排気する系統は不用である。不用になる機器は、
E-104 Air preheater
K-101 Air blower
K-102 Flue gas extractor
M-103 Flue gas stack
である。これらに使う電力(6,182kW)は不用である。

(3) E-101 、E-102、E-103 の伝熱量は不変だが、加熱側が He となり、加熱側、受熱側の温度差が変わるので、伝熱面積は変わる。

4.2.2 物質収支・熱収支
He 所要量と温度降下を Table 4-3 に示す。He は 950°Cで Reformer に入り、800°Cで出て、引き続き、E-101、102、103 で熱を供給して 744°Cとなる。これを DME Process で消費するスチーム(49 ton/h)の発生に使うと仮定しても、726°Cとなる。高温ガス炉で要求する戻り温度(350°C)に合わないが、この DME Process では中低温域での熱的要求はなく、この点では核熱系利用に不適当である。
核熱利用を進めるために、Reformer の温度を低くすると、反応生成物が変わり、プロセス構成が変わってしまう。特に、CH₄ の反応が不十分で、ガス中に CH₄ 割合が残留して、後段のメタンノール合成系を CO、H₂ を希釈しつつ、いと雑に素通りすることになる。また、機器はおしなべて大きくなる。そこで、ここでは核熱は 744°C以下（または 726°C以下）では使用しないとして経済性評価を行う。
Table 4-3 He の温度降下

<table>
<thead>
<tr>
<th>DME Process に核熱利用の場合</th>
<th>Duty</th>
<th>He</th>
<th>He温度</th>
<th>out</th>
<th>deltaT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/h</td>
<td>kgmol/h</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>F-101 Reformer</td>
<td>235,519</td>
<td>315,921</td>
<td>950</td>
<td>800</td>
<td>150</td>
</tr>
<tr>
<td>E-101 Feed preheater</td>
<td>43,588</td>
<td>315,921</td>
<td>800</td>
<td>772</td>
<td>28</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>26,203</td>
<td>315,921</td>
<td>772</td>
<td>756</td>
<td>17</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
<td>17,637</td>
<td>315,921</td>
<td>756</td>
<td>744</td>
<td>11</td>
</tr>
<tr>
<td>Excess</td>
<td>322,946</td>
<td>619,131</td>
<td>744</td>
<td>350</td>
<td>394</td>
</tr>
<tr>
<td>ratio</td>
<td>1.92</td>
<td>315,921</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steam use for downstream units
48.8 ton/h 29,280 315,921 744 726 19

4.2.3 プロセス区分と各区分の用消費、建設費

通常プロセスの表を変更するかたちで、プロセス区分と各区分の用消費、建設費を Table 4-4 に示す。印が変更点である。印に付した番号により、以下、説明する。

1. fuel CH₄はゼロになり、そのかわり核熱 He 322,946 Mcal/h を使い、744℃で返す。余ったプロセス排ガスは外販する。
2. 燃焼用の空気と排気の送風機(K-101, K-102)と排ガススタック(M-103)を機器リストから削除し、電力消費を差し引いた。
3. Reformer は炉形式から熱交換形式になる。触媒量は変わらない。反応管に関わる建設費は不変とした。炉の部分は熱交換器タイプとなり簡略化され、建設費は半減するとした。
4. 核熱 He 配管は高温大口径で、プロセス機器類に匹敵するサイズである。この費用として 4.5 億円を見込み計上した。
5. 燃焼排ガスからの熱回収は、核熱 He との熱交換に変わる。伝熱係数がよくなり、温度差も大きいので、熱交換器 m²は小さくなった。応じて建設費も小さくなる。
6. 燃焼がなくなったので空気用、排気用の Compressor は使わない。
7. 「その他機器」には、煙突と Feed CH₄ の H₂S Absorber があり、このうち煙突が不用になった。
8. 機器コスト集計は、上記にともない変わる。
9. 機器コストに掛ける倍数を同じとした。
10. 係数 20%を同じとした。
11. 総集計した結果、建設費は (通常は 565 億円であるのに対し) 526 億円となった。

4.2.4 経済諸元と経済計算

経済計算に用いる数値を経済諸元にまとめ、これに単価を掛けて、DME のコストを算出
した。結果をTable 4-5に示す。核熱Heのコストは2.5 円/Mcal, CH₄は2.5 円/Mcal (21.4 円/Nm³), 副生品プロセス排ガスも2.5 円/Mcal, ROI = 8% とおいて、核熱利用により生産されるDMEのコストは45.6 Yen/kg となった。商用システムで生産される通常のDMEコストは46.8 円/kg であるから、核熱利用の方が約3%減である。
Table 4-4 核熱利用DME製造プロセス 経済評価データ (1/3)

<table>
<thead>
<tr>
<th>原料・用役消費量</th>
<th>1時間あたり</th>
<th>CH3OH Section</th>
<th>DME Section</th>
<th>合計</th>
<th>計算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 feed</td>
<td>82,987</td>
<td>82,987 Nm3</td>
<td>* (1)</td>
<td>950→744C</td>
<td></td>
</tr>
<tr>
<td>CH4 fuel</td>
<td>0 Nm3</td>
<td>0 Nm3</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核熱He</td>
<td>322,946</td>
<td>322,946 Mcal</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active carbon</td>
<td>1 kg</td>
<td></td>
<td>* (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reforming catalyst</td>
<td>7</td>
<td>7 kg</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol catalyst</td>
<td>14</td>
<td>14 kg</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byproduct</td>
<td>Off gas fuel</td>
<td>-297,388 Mcal</td>
<td>* (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用役</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>11,353</td>
<td>2,662</td>
<td>14,015 m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>46</td>
<td>49 ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process water</td>
<td>118</td>
<td>118 m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>240</td>
<td>4,135</td>
<td>4,375 kw</td>
<td>* (2)</td>
<td>6,430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6,189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基準リスト</th>
<th>CH3OH Section</th>
<th>m3</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-201 Methanol converter</td>
<td>276</td>
<td>kw</td>
<td></td>
</tr>
<tr>
<td>K-201 Syngas compressor</td>
<td>33,557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-202 Recycle gas compressor</td>
<td>7,504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-203 Liquid turbine drive</td>
<td>-283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-204 Gas turbine</td>
<td>5,667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-101 Food preheater</td>
<td>586</td>
<td>43,588</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>344</td>
<td>26,203</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
<td>121</td>
<td>17,637</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-104 Air preheater</td>
<td>26,874</td>
<td>* (4)</td>
<td>4,738</td>
</tr>
<tr>
<td>E-105 Reformed gas steam exchanger</td>
<td>390</td>
<td>101,788</td>
<td></td>
</tr>
<tr>
<td>E-106 Saturator water heater</td>
<td>2,917</td>
<td>24,187</td>
<td></td>
</tr>
<tr>
<td>E-107 Feed water deaerator</td>
<td>2,806</td>
<td>40,312</td>
<td></td>
</tr>
<tr>
<td>E-108 Fuel preheater</td>
<td>595</td>
<td>1,764</td>
<td>595</td>
</tr>
<tr>
<td>E-109 Natural gas feed heater</td>
<td>316</td>
<td>2,016</td>
<td>318</td>
</tr>
<tr>
<td>E-110 Reformed gas cooler</td>
<td>632</td>
<td>4,535</td>
<td>632</td>
</tr>
<tr>
<td>E-201 Turbine condenser</td>
<td>7,154</td>
<td>62,484</td>
<td></td>
</tr>
<tr>
<td>E-202 Converter feed preheater</td>
<td>6,039</td>
<td>57,193</td>
<td></td>
</tr>
<tr>
<td>E-203 Direct feed interchanger</td>
<td>5,667</td>
<td>42,332</td>
<td></td>
</tr>
<tr>
<td>E-204 Converter/wtr exchanger-2</td>
<td>2,787</td>
<td>13,857</td>
<td></td>
</tr>
<tr>
<td>E-205 Converter/wtr exchanger-1</td>
<td>1,672</td>
<td>20,156</td>
<td></td>
</tr>
<tr>
<td>E-206 Turbine interstage heater</td>
<td>864</td>
<td>5,039</td>
<td></td>
</tr>
<tr>
<td>E-207 Converter product cooler</td>
<td>7,051</td>
<td>68,267</td>
<td></td>
</tr>
<tr>
<td>E-208 Reaction start-up heater</td>
<td>1,301</td>
<td>6,818</td>
<td></td>
</tr>
<tr>
<td>E-301 Methanol crude purf exchanger</td>
<td>344</td>
<td>1,386</td>
<td></td>
</tr>
<tr>
<td>E-302 Light ends condenser</td>
<td>195</td>
<td>8,062</td>
<td></td>
</tr>
<tr>
<td>E-303 Light ends reboiler</td>
<td>344</td>
<td>11,338</td>
<td></td>
</tr>
<tr>
<td>E-304 Finishing reboiler</td>
<td>3,068</td>
<td>41,572</td>
<td></td>
</tr>
<tr>
<td>E-305 Recovery reboiler</td>
<td>30</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>E-306 Refining reboiler</td>
<td>855</td>
<td>62,232</td>
<td></td>
</tr>
<tr>
<td>E-307 Finishing condenser</td>
<td>1,635</td>
<td>44,343</td>
<td></td>
</tr>
<tr>
<td>E-308 Recovery condenser</td>
<td>19</td>
<td>504</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>原料消費量</th>
<th>1時間あたり</th>
<th>CH3OH Section</th>
<th>DME Section</th>
<th>合計</th>
<th>計算値</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 feed</td>
<td>82,987</td>
<td>82,987 Nm3</td>
<td>* (1)</td>
<td>950→744C</td>
<td></td>
</tr>
<tr>
<td>CH4 fuel</td>
<td>0 Nm3</td>
<td>0 Nm3</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>核熱He</td>
<td>322,946</td>
<td>322,946 Mcal</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active carbon</td>
<td>1 kg</td>
<td></td>
<td>* (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reforming catalyst</td>
<td>7</td>
<td>7 kg</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol catalyst</td>
<td>14</td>
<td>14 kg</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byproduct</td>
<td>Off gas fuel</td>
<td>-297,388 Mcal</td>
<td>* (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用役</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td>11,353</td>
<td>2,662</td>
<td>14,015 m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td>0</td>
<td>46</td>
<td>49 ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process water</td>
<td>118</td>
<td>118 m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>240</td>
<td>4,135</td>
<td>4,375 kw</td>
<td>* (2)</td>
<td>6,430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-6,189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基準リスト</th>
<th>CH3OH Section</th>
<th>m3</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-201 Methanol converter</td>
<td>276</td>
<td>kw</td>
<td></td>
</tr>
<tr>
<td>K-201 Syngas compressor</td>
<td>33,557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-202 Recycle gas compressor</td>
<td>7,504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-203 Liquid turbine drive</td>
<td>-283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-204 Gas turbine</td>
<td>5,667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-101 Food preheater</td>
<td>586</td>
<td>43,588</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-102 Steam superheater</td>
<td>344</td>
<td>26,203</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-103 Flue gas boiler</td>
<td>121</td>
<td>17,637</td>
<td>* (4)</td>
</tr>
<tr>
<td>E-104 Air preheater</td>
<td>26,874</td>
<td>* (4)</td>
<td>4,738</td>
</tr>
<tr>
<td>E-105 Reformed gas steam exchanger</td>
<td>390</td>
<td>101,788</td>
<td></td>
</tr>
<tr>
<td>E-106 Saturator water heater</td>
<td>2,917</td>
<td>24,187</td>
<td></td>
</tr>
<tr>
<td>E-107 Feed water deaerator</td>
<td>2,806</td>
<td>40,312</td>
<td></td>
</tr>
<tr>
<td>E-108 Fuel preheater</td>
<td>595</td>
<td>1,764</td>
<td>595</td>
</tr>
<tr>
<td>E-109 Natural gas feed heater</td>
<td>316</td>
<td>2,016</td>
<td>318</td>
</tr>
<tr>
<td>E-110 Reformed gas cooler</td>
<td>632</td>
<td>4,535</td>
<td>632</td>
</tr>
<tr>
<td>E-201 Turbine condenser</td>
<td>7,154</td>
<td>62,484</td>
<td></td>
</tr>
<tr>
<td>E-202 Converter feed preheater</td>
<td>6,039</td>
<td>57,193</td>
<td></td>
</tr>
<tr>
<td>E-203 Direct feed interchanger</td>
<td>5,667</td>
<td>42,332</td>
<td></td>
</tr>
<tr>
<td>E-204 Converter/wtr exchanger-2</td>
<td>2,787</td>
<td>13,857</td>
<td></td>
</tr>
<tr>
<td>E-205 Converter/wtr exchanger-1</td>
<td>1,672</td>
<td>20,156</td>
<td></td>
</tr>
<tr>
<td>E-206 Turbine interstage heater</td>
<td>864</td>
<td>5,039</td>
<td></td>
</tr>
<tr>
<td>E-207 Converter product cooler</td>
<td>7,051</td>
<td>68,267</td>
<td></td>
</tr>
<tr>
<td>E-208 Reaction start-up heater</td>
<td>1,301</td>
<td>6,818</td>
<td></td>
</tr>
<tr>
<td>E-301 Methanol crude purf exchanger</td>
<td>344</td>
<td>1,386</td>
<td></td>
</tr>
<tr>
<td>E-302 Light ends condenser</td>
<td>195</td>
<td>8,062</td>
<td></td>
</tr>
<tr>
<td>E-303 Light ends reboiler</td>
<td>344</td>
<td>11,338</td>
<td></td>
</tr>
<tr>
<td>E-304 Finishing reboiler</td>
<td>3,068</td>
<td>41,572</td>
<td></td>
</tr>
<tr>
<td>E-305 Recovery reboiler</td>
<td>30</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>E-306 Refining reboiler</td>
<td>855</td>
<td>62,232</td>
<td></td>
</tr>
<tr>
<td>E-307 Finishing condenser</td>
<td>1,635</td>
<td>44,343</td>
<td></td>
</tr>
<tr>
<td>E-308 Recovery condenser</td>
<td>19</td>
<td>504</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-4 核熱利用DME製造プロセス 経済評価データ (2/3)

<table>
<thead>
<tr>
<th>機器リスト(続)</th>
<th>CH3OH Section</th>
<th>Mcal/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-101</td>
<td>Natural Gas Reformer</td>
<td>235,519 * (3)</td>
</tr>
<tr>
<td>T-351</td>
<td>Crude methanol storage</td>
<td>7,571 m3</td>
</tr>
<tr>
<td>T-352</td>
<td>Higher alcohols storage</td>
<td>212</td>
</tr>
<tr>
<td>T-353</td>
<td>Methanol, DME storage</td>
<td>37,853 m3</td>
</tr>
<tr>
<td>V-101</td>
<td>Steam drum</td>
<td>246</td>
</tr>
<tr>
<td>V-102</td>
<td>Condensate drum-1</td>
<td>23</td>
</tr>
<tr>
<td>V-103</td>
<td>Condensate drum-2</td>
<td>45</td>
</tr>
<tr>
<td>V-104</td>
<td>Condensate drum-3</td>
<td>4</td>
</tr>
<tr>
<td>V-105</td>
<td>Condensate drum-4</td>
<td>25</td>
</tr>
<tr>
<td>V-108</td>
<td>Boiler feed vessel</td>
<td>227</td>
</tr>
<tr>
<td>V-201</td>
<td>Crude methanol separator</td>
<td>38</td>
</tr>
<tr>
<td>V-202</td>
<td>Crude methanol surge</td>
<td>159</td>
</tr>
<tr>
<td>V-301</td>
<td>Light ends reflux drum</td>
<td>19</td>
</tr>
<tr>
<td>V-302</td>
<td>Refining reflux drum</td>
<td>95</td>
</tr>
<tr>
<td>V-303</td>
<td>Finishing reflux drum</td>
<td>95</td>
</tr>
<tr>
<td>V-304</td>
<td>Recovery reflux drum</td>
<td>2</td>
</tr>
<tr>
<td>C-101</td>
<td>Feed saturator</td>
<td>24.4 height, m 4.3 dia, m</td>
</tr>
<tr>
<td>C-201</td>
<td>Purge gas scrubber</td>
<td>9.1 height, m 2.1 dia, m</td>
</tr>
<tr>
<td>C-301</td>
<td>Light ends column</td>
<td>16.8 height, m 1.8 dia, m</td>
</tr>
<tr>
<td>C-302</td>
<td>Methanol refining column</td>
<td>38.1 height, m 5.5 dia, m</td>
</tr>
<tr>
<td>C-303</td>
<td>Methanol finishing column</td>
<td>39.6 height, m 4.3 dia, m</td>
</tr>
<tr>
<td>C-304</td>
<td>Methanol recovery column</td>
<td>5.1 height, m 0.5 dia, m</td>
</tr>
<tr>
<td>M-101</td>
<td>Hydrogen sulfide adsorber</td>
<td>15.6</td>
</tr>
<tr>
<td>M-102</td>
<td>Hydrogen sulfide adsorber</td>
<td>15.6</td>
</tr>
<tr>
<td>Pumps</td>
<td>100 section</td>
<td>940 kW</td>
</tr>
<tr>
<td></td>
<td>300 section</td>
<td>80 kW</td>
</tr>
</tbody>
</table>

DME Section

<table>
<thead>
<tr>
<th>No</th>
<th>height, m</th>
<th>dia, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-101 Methanol converter</td>
<td>9</td>
<td>8.2</td>
</tr>
<tr>
<td>K-201 DME blower</td>
<td></td>
<td>3,482</td>
</tr>
<tr>
<td>E-101 Exchanger</td>
<td></td>
<td>2,892</td>
</tr>
<tr>
<td>E-102 Steam heater</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>E-201 Cooler</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>E-202 Cooler</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>E-203 Exchanger</td>
<td></td>
<td>405</td>
</tr>
<tr>
<td>E-204 Reboiler</td>
<td></td>
<td>839</td>
</tr>
<tr>
<td>E-205 Condenser</td>
<td></td>
<td>969</td>
</tr>
<tr>
<td>T-201 Methanol recovery tank</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>V-201 Knockout drum</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>C-201 Methanol absorber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-202 Methanol stripper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>100 section</td>
<td>58 kW</td>
</tr>
<tr>
<td></td>
<td>200 section</td>
<td>182 kW</td>
</tr>
</tbody>
</table>
Table 4-4 核熱利用DME製造プロセス 経済評価データ (3/3)

<table>
<thead>
<tr>
<th></th>
<th>建設費 億円</th>
<th>CH3OH Section</th>
<th>DME Section</th>
<th>Reforming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>CH3OH</td>
<td>CH3OH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Reforming</td>
<td>Synthesis</td>
</tr>
<tr>
<td>Battery limits equipment, fob</td>
<td>*</td>
<td>10</td>
<td>*</td>
<td>6.3</td>
</tr>
<tr>
<td>Reactors</td>
<td></td>
<td>17</td>
<td>6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Columns</td>
<td></td>
<td>7</td>
<td>5.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Vessels and tanks</td>
<td></td>
<td>57</td>
<td>7.2</td>
<td>41.0</td>
</tr>
<tr>
<td>Exchangers</td>
<td></td>
<td>42</td>
<td>42.1</td>
<td></td>
</tr>
<tr>
<td>Reformer</td>
<td></td>
<td>22</td>
<td>0.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Compressors</td>
<td></td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous equipment</td>
<td></td>
<td>3</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td>159</td>
<td>63.4</td>
<td>68.7</td>
</tr>
<tr>
<td>Battery limits equipment installed</td>
<td>*</td>
<td>320</td>
<td>113.0</td>
<td>134.3</td>
</tr>
<tr>
<td>Contingency, 20%</td>
<td></td>
<td>55</td>
<td>22.6</td>
<td>26.9</td>
</tr>
<tr>
<td>BATTERY LIMITS INVESTMENT</td>
<td></td>
<td>375</td>
<td>135.5</td>
<td>161.2</td>
</tr>
<tr>
<td>Off-sites, installed</td>
<td></td>
<td>17</td>
<td>0.3</td>
<td>10.6</td>
</tr>
<tr>
<td>Cooling tower</td>
<td></td>
<td>0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Process water treatment</td>
<td></td>
<td>15</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Steam generation</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tankage</td>
<td></td>
<td>49</td>
<td>8.1</td>
<td>10.6</td>
</tr>
<tr>
<td>Utilities and storage</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General service facilities</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste treatment</td>
<td></td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency, 20%</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-SITES INVESTMENT</td>
<td></td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL FIXED CAPITAL</td>
<td></td>
<td>526</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-5 核熱利用DMEA製造プロセス 経済性評価結果

<table>
<thead>
<tr>
<th>原料</th>
<th>Consumption</th>
<th>Cost</th>
<th>経済計算</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 feed</td>
<td>Nm³</td>
<td>1.13</td>
<td>82,987</td>
</tr>
<tr>
<td>* 核熱He</td>
<td>Mcal</td>
<td>4.39</td>
<td>322,946</td>
</tr>
<tr>
<td>Active carbon</td>
<td>kg</td>
<td>0.00001</td>
<td>1</td>
</tr>
<tr>
<td>Reforming catalyst</td>
<td>kg</td>
<td>0.00010</td>
<td>7</td>
</tr>
<tr>
<td>Methanol catalyst</td>
<td>kg</td>
<td>0.00018</td>
<td>14</td>
</tr>
<tr>
<td>Byproducts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off gas fuel</td>
<td>Mcal</td>
<td>-4.04</td>
<td>-297,388</td>
</tr>
<tr>
<td>Coolig water</td>
<td>m³</td>
<td>0.19</td>
<td>14,015</td>
</tr>
<tr>
<td>Steam</td>
<td>kg</td>
<td>0.66</td>
<td>48,844</td>
</tr>
<tr>
<td>Process water</td>
<td>m³</td>
<td>0.002</td>
<td>118</td>
</tr>
<tr>
<td>Electricity</td>
<td>kwh</td>
<td>0.06</td>
<td>4,375</td>
</tr>
<tr>
<td>Investment</td>
<td>Battery limits</td>
<td>375億円</td>
<td></td>
</tr>
<tr>
<td>Off-sites</td>
<td></td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Total fixed cap.</td>
<td>526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Costs</td>
<td>Total Investment</td>
<td>526億円</td>
<td>56.5 9.7</td>
</tr>
<tr>
<td>(10%年 of Total investment)</td>
<td></td>
<td></td>
<td>222.2 38.3</td>
</tr>
<tr>
<td>ROI</td>
<td>8% of Total Investment</td>
<td>42.1 7.3</td>
<td></td>
</tr>
<tr>
<td>DME Sales</td>
<td>6,923 kcal/kg</td>
<td>6.6 Yen/Mcal</td>
<td></td>
</tr>
</tbody>
</table>
4.3 直接法DME製造プロセス

2.2 項で説明したように、DMEの合成プロセスには、メタノールから脱水法によりDMEを製造する技術（間接法）と合成ガス（水素とCO）から直接DMEを製造する直接法に大別される。

メタノール脱水法（間接法）は、既に、商用プロセスとして確立されているので、4.1 項及び4.2 項で、間接法及びその核熱利用プロセスの経済性評価を行った。

しかし、直接法に関しては、現在、開発中であり、未だ商用プラントは存在していない。また、直接法は後述するように、原料合成ガスの製造に、核熱利用の対象となる水蒸気改質法が現時点では適用されず、酸素を使用する自己改質法が使用されている。従って、この項では、直接法によるDME製造技術の内容と開発の現状、更には、合成ガス製造技術に将来における核熱利用の可能性の見込みについて報告する。

4.3.1 DME合成技術（直接法）の概要

直接法によるDME合成技術は、現在、開発中のプロセスの主なものは、デンマークのトプソ（TOPSOE）法、米国のエアプロダクツ（AIR PRODUCTS）法と日本のNKK法がある。トプソ法は固定床反応器方式を採用し、後二者はスラリー床反応器方式を採用している。前二法については、詳細な技術内容が公表されていないので、ここでは、主にNKK法について報告する。

(1) NKK法の開発状況

1989年から東京大学と共同開発に着手し、当初50kg/日のベンチプラントによる試験で成果を得た。その後、1997年から5年計画で、通産省の補助金により5ton/日の試験プラントを北海道釧路市の太平洋炭鉱内に建設し、連続運転に成功した。現在はNEDOから受託した「環境負荷低減燃料調換技術開発」事業に基づいて、商用プラントの開発を開始している。当面は100ton/日規模の実証プラントの概念設計を行なっている。

(2) DME直接合成反応

合成ガスから直接DMEを合成する反応では、下記に示すように3分子の一酸化炭素と3分子の水素が反応し、DMEと二酸化炭素が1分子づつ生成する。反応条件は、圧力3MPaから7MPa程度、温度は250℃から280℃で、平衡転化率は合成ガスの組成で水素とCOの比率がH2/CO=1の時に最大となる。

3CO + 3H2 → CH₃OCH₃ + CO₂

(3) DME生産のプロセスフロー

図4.2に天然ガスを原料としたDME生産のプロセスフローを示した。天然ガスは酸素、水蒸気とDME合成反応系からリサイクルされる炭酸ガスと共に、合成ガス発生改質炉（Autothermal Reformer）に供給され改質されて、モル比率H₂/CO=1の合成ガスとなる。
合成ガスはスラリー床反応器に入りDMEに転換される。副生する炭酸ガス、メタノール、水は蒸留で製品DMEから分離される。メタノールはDME反応器にリサイクルされて、DMEに転換される。全反応は以下のよう総括して示される。

\[2\text{CH}_4 + \text{O}_2 + \text{CO}_2 \rightarrow 3\text{CO} + 3\text{H}_2 + \text{H}_2\text{O} \downarrow \]

\[\text{CH}_4 + 0.601\text{O}_2 \rightarrow 0.435\text{DME} + 0.621\text{H}_2\text{O} \]

製品DMEの純度は99.5%、不純物はメタノール0.2%、水分が0.3%含まれているのが通常の値である。

図 4.2 天然ガスからDME生産フロー

(4) 間接法との比較
DMEの直接合成法と商用システムの間接法との比較は、残念ながら、公表されていない。

これは、直接法が未だ開発中の技術であるためであり、両者の比較は難しい。直接法の経済性については、NKKなどが文献で報告している例があるが、いずれも、海外の天然ガス田でDMEを製造して、日本に輸送する値格について検討しているものである。従って、商用設備である間接法と同一レベルでの比較例はない。正確な公表値ではないが、推算値として、トップロット法が約10%、NKK法で約20%間接法に比較してコストが低減するとの報告がある。

4.3.2 中国・四川省DME製造プロジェクト
NEDOは平成12年に、中国・四川省の天然ガスを原料にしてDMEを製造し、それを発電や交通燃料、LPG代替燃料として利用するプロジェクトについてのフィージビリティス
タディを行った。ここではその報告書から要點を引用する。

(1) 生産量及び基本条件

DME製造プラントの製造能力：500トン/日（年間16万5千トン）
なお、この数値は、四川省におけるLPガス消費量に見合う量である。
原料条件：天然ガス メタン93.9%、供給圧力 2 MPa
製品DME純度：99 mol%

(2) 製造設備系統図

図4-3に設備系統図を示す。採用プロセスはNKK法である。

図4-3 四川省天然ガスプロジェクト 製造設備系統図(12)

(3) 経済性評価

プラント建設費：110億円
但し、中国国内での機器購入、建設edia費を考慮している。
原油天然ガス価格：9.04円/m³ 中国国内における現状価格
製品販売価格：24.6円/kg
税後総資本内訳別収益率（ROI）：11.2%
但し、環境特別税等を含めた場合の税後自己資本内部収益率（ROE）：33.5%

以上の結果からDME製造は経済性に優れたプロジェクトであるとの結論をつけてい
4.3.3 合成ガス製造技術の開発と核熱利用の可能性

(1) 合成ガス製造技術

合成ガス製造技術には、改質剤として水蒸気や炭酸ガスを用い、触媒の充填された外熱式多管反応管「リフォーマーチューブ」により改質を行う水蒸気改質法や炭酸ガス・水蒸気改質法、また、酸素を改質剤として用いる酸化改質法（部分酸化法、オートサーマルリフォーミング法等）があり、既に工業的に水素、メタノール、アンモニア製造などに用いられている。これらを分類整理すると以下のとおりである。

<table>
<thead>
<tr>
<th>プロセス</th>
<th>使用原料</th>
<th>改質剤</th>
<th>利用目的（主製品）</th>
</tr>
</thead>
<tbody>
<tr>
<td>水蒸気改質法</td>
<td>天然ガスナフサ</td>
<td>水蒸気</td>
<td>水素、メタノール、アンモニア</td>
</tr>
<tr>
<td>炭酸ガス/水蒸気改質法</td>
<td>天然ガス</td>
<td>水蒸気・炭酸ガス</td>
<td>メタノール、FT合成（DME）</td>
</tr>
<tr>
<td>自己熱改質法 (Autothermal Reforming)</td>
<td>天然ガスナフサ</td>
<td>酸素、水蒸気 (炭酸ガス)</td>
<td>メタノール、DME、FT合成</td>
</tr>
<tr>
<td>部分酸化法 (Partial Oxidation)</td>
<td>天然ガスナフサ、石油残渣油、コークス、石炭、廃棄物</td>
<td>酸素、水蒸気</td>
<td>水素、メタノール、アンモニア、DME、FT合成</td>
</tr>
</tbody>
</table>

注）FT合成：合成ガスを原料にして合成燃料油（炭化水素）を合成する反応。古くは南アフリカのサソールで石炭からの合成ガスから大規模の燃料油の生産を行なった。
合成ガス製造に関する主な反応式を示すと以下のとおりである。

①水蒸気改質反応 \[\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2 \]
②炭酸ガス改質反応 \[\text{CH}_4 + \text{CO}_2 = 2\text{CO} + 2\text{H}_2 \]
③自己熱改質反応 \[2\text{CH}_4 + \text{O}_2 + \text{CO}_2 \rightarrow 3\text{CO} + 3\text{H}_2 + \text{H}_2\text{O} \]
（但し、DME製造の目的での例）
④部分酸化反応 \[\text{CH}_4 + \frac{1}{2}\text{O}_2 = \text{CO} + 2\text{H}_2 \]

(2) 技術開発の現状

前項で説明した4タイプの合成ガス製造技術は、既に工芸的に利用され（炭酸ガス改質法は一部）、メタノール、FT合成、アンモニア合成などで実用化されているが、この中で天然ガスの炭酸ガス・水蒸気改質法の開発が注目されている。この方式では、原料に添加する炭酸ガスと水蒸気量をコントロールすることにより、メタノール合成、FT合成、DME製造の原料となる水素とCOのモル比率がH₂:CO=1～2の合成ガスを直接合成することが可能となる。
既にメタノール合成などの製造では、水蒸気改質法において、炭酸ガスの一部をリサイクルす
することによって、H_2/CO モル比率を小さくすることが実施されている。しかし一般には、炭酸ガスリサイクル量を増やすと触媒上への炭素の析出が多くなり、触媒劣化の要因となる。従って通常は、自己熱改質法または部分酸化法を使って、H_2/CO 比率をコントロールしているのが、高価な酸素を多量に使用しなくてはならない問題がある。

しかし、最近、炭酸ガス/水蒸気改質法において、炭素の析出を抑制する触媒の開発が進んでおり、その代表的な開発中の新プロセスとして、第１に、デンマークの TOPSOE 社の SPARG プロセスがある。これは既に米国でオキソ合成用（化学品合成用でモル比率 $\text{H}_2/\text{CO}=2.7 \sim 1.8$）に適用された。第２としては、日本の石油公団が中心になって開発を進めており、GTL（GAS TO LIQUID）プロセス用の合成ガス製造プロセスがあげられる。これにより、炭酸ガスを含む中規模の天然ガス田向けに開発が行われているもので、原料ガスにメタン、炭酸ガス、水蒸気を混合し、反応圧力 2.1Mpa、反応温度（触媒出口）850℃の条件で、PT 合成で経済的な液体燃料を合成するのに適したモル比率 $\text{H}_2/\text{CO}=2.0$ の合成ガスを直接製造することができる。平成 14 年度から北海道の勇払ガス田で、燃料油生産量で約 10BPSD 規模のパイロットプラントでの性能試験を実施している。なお、この触媒開発は千代田化工建設が担当している。

(3) 核燃料利用の可能性

前述のように、DME 直接合成法のための原料合成ガスは、モル比率 $\text{H}_2/\text{CO}=1.0$ と低い値が必要なために、原料が天然ガスの場合でも、酸素を使用する合成ガス製造技術を採用せざるを得ないのが現状である。従って、核燃料利用の対象になる外熱式多管反応管は使用されていない。しかし、技術開発の現状の項で説明したことによれば、最近では炭酸ガス/水蒸気改質法の触媒開発が進み、GTL 用で、モル比率 $\text{H}_2/\text{CO}=2.0$ の合成ガスの直接製造が可能になりつつある。この場合は、外熱式反応管が使用されるので、ヘリウムによる熱交換器型リフターによる核燃料利用が可能となる。GTL プラントは、最近世界的に注目されている新燃料油の生産技術であり、今後の 15～20 年間の間に 15～30 基の GTL プラントが建設されると予測する向きもあり、核燃料利用の対象として検討する価値があるかもしれない。

問題の DME に関しては、GTL により更に厳しい低 H_2/CO 比率（$=1.0$）の合成ガスが原料となるので、現時点では、この条件に適合する触媒は開発されていない。千代田化工建設の関係者からの情報では、現在、DME 原燃料用の合成ガス製造については、触媒開発を検討中とのことである。従って近い将来、炭酸ガス/水蒸気改質技術により DME 直接合成法の合成ガスの製造が可能となり、更に、核燃料利用の可能性も出てくると予測できる。
5. CO₂削減効果

3章及び4章での検討結果に基づき、プロセスヒートとして核熱を用いた場合のCO₂削減効果をTable 5-1に示す。

プラント内（Inside）ではReformer熱源の変更（燃焼→核熱）によるCO₂削減効果が、プラント外（Outside）においては、電力・スチーム使用量の低下にともなうCO₂削減効果（電力・スチーム製造時のCO₂が減少）がある。

DME Processの場合は、核熱利用で余ったOffgasを外販するが、その組成はH₂に富み（H₂82%）、CH₄fuelと比べてCO₂発生が少ない。これも外部（Outside）のCO₂削減効果である。

プラント建設費が異なることによるCO₂削減効果は小さいと考え、ここでは考慮していない。

Table 5-1 核熱利用によるCO₂削減効果まとめ

<table>
<thead>
<tr>
<th></th>
<th>CO₂削減効果 Nm³/h</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reformer</td>
<td>44,762</td>
<td>Fuel gas → 核熱</td>
</tr>
<tr>
<td>Outside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電力</td>
<td>1,641</td>
<td>商用 核熱 差 Rate</td>
</tr>
<tr>
<td>スチーム</td>
<td>0</td>
<td>10,472 3,910 6,562 kw 0.25 Nm³/h/kw</td>
</tr>
<tr>
<td>合計</td>
<td>46,403 Nm³/h</td>
<td>72 万トン/年</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CO₂削減効果 Nm³/h</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reformer</td>
<td>20,408</td>
<td>Fuel gas → 核熱</td>
</tr>
<tr>
<td>Outside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off gas quality</td>
<td>19,580</td>
<td>H₂ rich fuel gas</td>
</tr>
<tr>
<td>電力</td>
<td>1,547</td>
<td>商用 核熱 差 Rate</td>
</tr>
<tr>
<td>スチーム</td>
<td>0</td>
<td>10,565 4,375 6,189 kw 0.25 Nm³/h/kw</td>
</tr>
<tr>
<td>合計</td>
<td>41,535 Nm³/h</td>
<td>64 万トン/年</td>
</tr>
</tbody>
</table>
6. 商用プロセスとの比較評価

6.1 核熱利用の効果

H₂ Process, DME Process について、商用と核熱利用の違いを Table 6-1 に示す。表に示した水素コストの結果は純度 99.99% の水素のコストである。DME のコスト差は小さいが、いずれにおいても核熱利用が有利である。H₂ Process では、建設費が安くなること、燃料ガスが核熱に切り替わること、が主なコスト削減要因である。DME Process では建設費が安くなることが主である。本検討では製品生産に必要な熱のみ核熱で置き換えた場合の経済評価を行っている。そのため、原子炉系は核熱を完全には利用しておらず、核熱の戻り温度は、H₂ Process では、732℃、DME Process では、744℃と高温である。これを原子炉の所定の所定の戻り温度、350℃まで下げるには、何らかの手段、例えばこの熱を利用した熱電併給発電所の併設をするなどの手段が必要である。

Table 6-1 核熱利用の効果

水素製造プロセス
プロセス: CH₄の水蒸気改質法
装置規模 H₂製造量 309,000 Nm³/h

<table>
<thead>
<tr>
<th></th>
<th>建設費</th>
<th>製品コスト</th>
<th>ROI</th>
<th>H₂価格</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>億円</td>
<td>億円</td>
<td>Yen/kg</td>
<td>Yen/kg</td>
</tr>
<tr>
<td>商用</td>
<td>256</td>
<td>336</td>
<td>134</td>
<td>-36</td>
</tr>
<tr>
<td>核熱利用</td>
<td>219</td>
<td>300</td>
<td>179</td>
<td>-87</td>
</tr>
<tr>
<td>節減</td>
<td>36</td>
<td>0</td>
<td>-45</td>
<td>49</td>
</tr>
</tbody>
</table>

DME製造プロセス
プロセス: CH₄の水蒸気改質法
メタノール脱水法
装置規模 DME製造量 58万トン/年

<table>
<thead>
<tr>
<th></th>
<th>建設費</th>
<th>製品コスト</th>
<th>ROI</th>
<th>DME価格</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>億円</td>
<td>億円</td>
<td>Yen/kg</td>
<td>Yen/kg</td>
</tr>
<tr>
<td>商用</td>
<td>414</td>
<td>565</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>核熱利用</td>
<td>375</td>
<td>528</td>
<td>36</td>
<td>-10</td>
</tr>
<tr>
<td>節減</td>
<td>36</td>
<td>0</td>
<td>-10</td>
<td>10</td>
</tr>
</tbody>
</table>

NEDO が行った商用プラントの水蒸気改質による水素製造の水素製品価格10に比較を以下に示す。各種改質の仮定などが本評価と異なるが、製品価格はほぼ同じである。
NEDO の評価 (1998 年) 本評価

水素製造量 (Nm³/h) 200,000 200,000 309,000
設備稼働率 (%) 70% 90% 90%
設備費 (億円) 270 270 294
年経費率 21% 21% 20%
天然ガス価格 (円/nm³) 17.1 17.1 21.4
減価償却 (%) 10 10 10
利益率 (%) 5 5 8
水素製造価格 (円/Nm³) 14.1 13.1 14.3

NEDO の計算の中には固定資産税、損害保険、人件費率などが含まれている。価格の違いでは、天然ガス価格、及び利益率の差が大きいと考えられ、それらを考慮すると、2つの価格の違いは小さいと考えられる。

6.2 核熱の規模と炭酸ガス放出低減化

3章及び4章での検討結果に基づき、核熱の規模として600MW（516 Gcal/h）、及び150MW（129 Gcal/h）の2つのケースについて、H₂ Plant及びDME Plantの規模を設定し、CO₂削減効果を評価した。CO₂削減効果は規模に比例して概算した。結果をTable 6-4に示す。

検討した商用水素製造プロセスの使用熱量は約400MWであるが、600MWの高圧ガス炉の場合、使用する温度領域は商用プロセスと同じ温度領域、すなわち900－732℃とした。そのため、Table 6-4では600MWの高圧ガス炉の方が見かけ上プラント規模が小さく記述されている。核熱を有効に使用すればCO₂削減効果はさらに高まる。

Table 6-4 生産規模とCO₂削減効果

<table>
<thead>
<tr>
<th></th>
<th>H₂ Process</th>
<th>DME Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量 Nm³/h</td>
<td>プラント比率</td>
<td>CO₂削減効果</td>
</tr>
<tr>
<td>検討ベース</td>
<td>308,653</td>
<td>1</td>
</tr>
<tr>
<td>600MW</td>
<td>178,440</td>
<td>0.58</td>
</tr>
<tr>
<td>150MW</td>
<td>44,810</td>
<td>0.14</td>
</tr>
</tbody>
</table>

-50-
7. まとめ

本作業では、はじめに将来のDME（ジメチルエーテル）の需要・供給についての調査・検討を行った。これに続き、水素及びDMEの製造に関し、現行商用プロセスを用いる場合の経済性評価を解析・整理し、更にこのプロセスデータに基づき、プロセスヒートとして変換ガス炉の核熱を用いる場合の経済性について検討した。

DMEの将来性及びDME製造への核熱利用可能性についてまとめるとき以下の通りである。

① 新エネルギー源としてのDMEは、利用分野も多岐にわたり、国際的な評価も高い。
② DMEの実用化と普及のための技術開発は任意、及び海外におけるDME供給プロジェクトの実施の予定は、2006年以降といわれる。
③ DMEの製造技術における核熱利用は、現在の商用プロセスである間接法では可能であるが、開発中の直接合成法では、現時点で、酸素を使用するガス化技術が採用されている。近い将来、新しい合成ガス製造技術である炭酸ガス/水蒸気改質法の触媒が開発されれば、核熱の利用が可能となる。

次にメタンの水蒸気改質法による水素の製造、及びメタノールの脱水による間接法DME製造に関する経済性検討で得られた結果を以下に記す。なお、核熱を用いる場合の検討は、商用プロセスのプロセス条件をベースにしており、プロセスで利用できる核熱の温度範囲は水素製造で950〜732℃、DME製造で950〜744℃とした。

① 水素製造が309,000 Nm³/h の場合、純度99.99%の水素の製造価格は商用プロセスで14.3 円/ Nm³、核熱を利用した場合で13.3 円/ Nm³という評価結果となった。
② DME製造が580,000 ton/y の場合、DMEの製造価格は商用プロセスで46.8 円/ kg、核熱を利用した場合で45.6 円/ kg という評価結果となった。
③ 商用プロセスに対し、核熱利用プロセスでの価格は、水素では約7%、DMEでは約3%安価となった。この値は商用水素製造システムの熱源の一部を超熱で置き換えた場合の数値であるが、CO₂低減化効果を考慮に加えると、核熱の有効性はさらに高まると考えられる。
謝辞

本研究の遂行に当たり、貴重な助言と内容に関する討論をいただいた、日本原子力研究所核熱利用研究部、塩沢周策部長及び小川益郎次長に感謝いたします。

参考文献

(1) 「DME検討会報告書」、資源エネルギー庁、資源・燃料部、石油流通課、(2001)
(2) 「ジメチルエーテル戦略研究会報告書」、資源エネルギー庁、石炭・新エネルギー部石炭(2000)
(4) 「水素利用国際クリーンエネルギーシステム技術開発(WE-NET)第3期研究開発タスク I」、
 NEDO-WE-NET-0001，平成12年成果報告書(2001)
(5) 「DME 開発の現状と将来について」、2002LP ガス振興センターセミナー（2002）
(6) 私信、千代田化工株式会社
(7) 国富一彦、片西昌司ほか「高温ガス炉ガスタービン発電システム(GTHTR300)の設計研究」
 原子力学会和文論文、Vol.1, No.4, pp.352-360(2002)
(8) 井上、大野、「DME合成技術」、PETROTECH、Vol.24, No.4, p.319(2001)
(9) 「Japan DME Forum」,International DME Workshop 2000（2000）
(10) 「長期エネルギー技術戦略調査、天然ガス技術動向」、日本エネルギー研究所、NEDO 技術
 データベース、p.176(2000)
(11) 「新エネルギー源としてのDME、技術開発の可能性と利用分野に関する分析」、開発技術
 学会、アジア地域クリーン燃料研究会中間報告、p.13(1988)
(12) 「四川省天然ガスDMEプロジェクト」、NEDO(日本鋼管)、(2000)
(13) 志村、岡戸、「天然ガスの炭酸ガス／水蒸気改質技術」、触媒、Vol.44, No.4, p.271(2002)
(14) 五十嵐、「水蒸気改質プロセスを中心とする水素製造技術」、PETROTECH, Vol.25, No.2,
(15) 「水素利用国際クリーンエネルギーシステム技術開発(WE-NET)サブタスク3全体システム
 概念設計」、NEDO-WE-NET-9731（1998）
国際単位系（SI）と換算表

表1 SI基本単位および補助単位

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>ケルビン</td>
<td>K</td>
</tr>
<tr>
<td>物質の量</td>
<td>モル</td>
<td>mol</td>
</tr>
<tr>
<td>光度</td>
<td>キルラ</td>
<td>cd</td>
</tr>
<tr>
<td>平面角</td>
<td>ラジアン</td>
<td>rad</td>
</tr>
<tr>
<td>立体角</td>
<td>ステラジアン</td>
<td>sr</td>
</tr>
</tbody>
</table>

表2 SIと併用される単位

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>分、時、日</td>
<td>min, h, d</td>
<td></td>
</tr>
<tr>
<td>度、分、秒</td>
<td>°, ′, ″</td>
<td></td>
</tr>
<tr>
<td>リットル</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>トン</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>電子ボルト</td>
<td>eV</td>
<td></td>
</tr>
<tr>
<td>電子質量単位</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

1 eV = 1.60218 x 10^{-19} J
1 u = 1.66054 x 10^{-27} kg

表3 固有の名称をもつSI組立単位

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>周波数</td>
<td>ハertz</td>
<td>Hz</td>
</tr>
<tr>
<td>压力</td>
<td>パascal</td>
<td>Pa</td>
</tr>
<tr>
<td>エネルギー</td>
<td>ジョULE</td>
<td>J</td>
</tr>
<tr>
<td>速度</td>
<td>ウェット</td>
<td>W</td>
</tr>
<tr>
<td>電気密度</td>
<td>グラム</td>
<td>G</td>
</tr>
<tr>
<td>電気抵抗</td>
<td>オーム</td>
<td>Ω</td>
</tr>
<tr>
<td>磁場</td>
<td>ワブ</td>
<td>Wb</td>
</tr>
<tr>
<td>磁場密度</td>
<td>タュール</td>
<td>T</td>
</tr>
<tr>
<td>電気強度</td>
<td>クラック</td>
<td>C</td>
</tr>
<tr>
<td>電気光度</td>
<td>ポルト</td>
<td>V</td>
</tr>
<tr>
<td>照度</td>
<td>フォワド</td>
<td>F</td>
</tr>
<tr>
<td>放射能</td>
<td>オーム</td>
<td>Ω</td>
</tr>
<tr>
<td>吸収線量</td>
<td>ルメテイ</td>
<td>Gy</td>
</tr>
<tr>
<td>線量当量</td>
<td>シーベルト</td>
<td>Sv</td>
</tr>
</tbody>
</table>

表4 SIと共に暫定的に

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Å = 1.0 x 10^{-10} m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 bar = 1 x 10^{5} Pa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gal = 1 x 10^{-3} m/s^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Ci = 3.7 x 10^{10} Bq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 rem = 1 x 10^{-2} Sv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）
1. 表1-5は「国際単位系」の第5版。国際度量衡局1985年刊行による。ただし、1 eV および1の換算はCODATAの1986年推奨値による。
2. 表4には海里、ノット、アール、ヘクトールも含まれているが日常の単位なのでここでは略した。
3. barは、JISでは流体の圧力を表わす場合に限り表2のカテゴリに分類されている。
4. EC開発理事会指令ではbar，barnおよび「血圧の単位」mmHgを表2のカテゴリーに入れている。

换算表

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>力</td>
<td>N(=10^1 dyn)</td>
<td>kgf</td>
</tr>
<tr>
<td>1</td>
<td>0.101927</td>
<td>0.224809</td>
</tr>
<tr>
<td>9.80665</td>
<td>1</td>
<td>2.0462</td>
</tr>
<tr>
<td>4.44822</td>
<td>1</td>
<td>0.453592</td>
</tr>
</tbody>
</table>

電気

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>J(=1 erg)</td>
<td>kgf-m</td>
<td>kW-h</td>
</tr>
<tr>
<td>1</td>
<td>0.19172</td>
<td>2.7778 x 10^{-11}</td>
</tr>
<tr>
<td>9.80665</td>
<td>1</td>
<td>2.72407 x 10^{-4}</td>
</tr>
<tr>
<td>3.6 x 10^{4}</td>
<td>1</td>
<td>3.67098 x 10^{6}</td>
</tr>
<tr>
<td>4.18605</td>
<td>1</td>
<td>4.2698 x 10^{11}</td>
</tr>
<tr>
<td>1055.06</td>
<td>1</td>
<td>1.16729 x 10^{12}</td>
</tr>
<tr>
<td>1.35822</td>
<td>1</td>
<td>3.70616 x 10^{15}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bq</td>
<td>Becquerel</td>
<td>Bq</td>
</tr>
<tr>
<td>1</td>
<td>2.70270 x 10^{-11}</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{7}</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

放射能

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>クリオニウム</td>
<td>Cl</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

線量当量

<table>
<thead>
<tr>
<th>量</th>
<th>名称</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/kg</td>
<td>クリオニウム</td>
<td>C/kg</td>
</tr>
<tr>
<td>1</td>
<td>3876</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>シーベルト</td>
<td>Sr</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

（86年12月26日現在）