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Thermal hydraulic experiments measuring critical heat flux (CHF) and pressure
drop of an annular tube with twisted fins, “annular swirl tube”, has been performed to
examine its applicability to the ITER divertor cooling structure. The annular swirl
tube consists of two concentric circular tubes, the outer and inner tubes. The outer
tube with outer and inner diameters (OD and ID) of 21 mm and 15 mm is made of
Cu-alloy that is CuCrZr and one of candidate materials of the ITER divertor cooling
tube. The inner tube with OD of 11 mm and ID of 9 mm is made of stainless steal. It
has an external swirl fin with twist ratio (y) of three to enhance its heat transfer
performance. In this tube, cooling water flows inside of the inner tube first, and then
returns into an annulus between the outer and inner tubes with a swirl flow at an
end-return of the cooling tube.

The CHF experiments show that no degradation of CHF of the annular swirl tube in
comparison with the conventional swirl tube whose dimensions are similar to those of
the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is
required to remove the incident heat flux of 28MW/m?, the ITER design value.
Applicability of the JAERI’s correlation for the heat transfer to the annular swirl tube is
also demonstrated by comparing the experimental results with those of the numerical
analyses.

The friction factor correlation for the annular flow with the twisted fins is also
proposed for the hydrodynamic design of the ITER vertical target. The least pressure
drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the
same as that of ID of the outer cooling tube.

These results show that thermal-hydraulic performance of the annular swirl tube is
promising in application to the cooling structure for the ITER vertical target.

Keywords:  ITER, Divertor, Annular Swirl Tube, Critical Heat Flux,
Heat Transfer, Pressure Drop, End-return
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1. Introduction

The vertical target of the ITER divertor has to be designed for high heat fluxes up to
20 MW/m? for 10's. In the reference design of the ITER divertor, CFC monoblocks
with a swirl cooling tube and pressurized water flow are adopted to handle such high
heat flux conditions. In this design, abundance of small tubes and space at the lower
end of the vertical target are required for the water manifold with a complicated
geometry [1]. To eliminate these requirements and to develop the alternative concept
for the vertical target cooling system, an annular flow concept of the CFC monoblock
with concentric feed and return is proposed. Within this concept the coolant feed and
return is located at one end of the vertical target as shown in Fig. 1-1.

The annular cooling tube consists of two concentric tubes, an outer tube and an
inner tube. The outer tube is brazed to the CFC monoblock armour tiles. The inner
tube has external twisted fins to enhance heat transfer. In this cooling tube, i annular
swirl tubei, coolant flows inside the inner tube first and then returns via the annulus
between the outer and inner tubes with a swirl flow. However, experimental data on
the annular swirl flow such pressure drop and critical heat flux (CHF) under
ITER-relevant conditions have not been reported enough comparing with the other
cooling structures [2], which are indispensable to design the components with the
annular flow concept.

In the present study, thermal-hydraulic characteristics of the annular swirl tube are
investigated in order to compare with those of the conventional swirl tube. For this
purpose, two kinds of experiments using the annular swirl tube are carried out: one is
pressure drop experiment on the annular section and the end-return of the cooling tube.
At the end-return, the water flow changes its direction 180 degrees and large pressure
drop is expected. Therefore, we provided several shapes of the end-return geometry
and experiments were carried out to minimize the pressure drop at the end-return. As a
result, experimental correlation to predict the pressure drop of the annular swirl tube is
proposed. The other is heating experiments on the annular swirl tube to investigate the
heat removal characteristics and CHF limit under ITER-relevant one-sided heating
condition. These results are compared with the existing correlations for heat transfer

coefficients and CHF to examine their applicability to the annular swirl tube.
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2. [Experiments

2.1. Experimental facility

Experiments have been carried out using the Particle Beam Engineering Facility
(PBEF) in JAERI. PBEF can generate the intense hydrogen ion beams up to 1.5 MW
for durations for 0.01 to 1000 sec. It consists of a vacuum chamber, an ion source, a
high voltage power supply system, a test bed, a cooling water system, a vacuum
pumping system, a control system, and a data acquisition system as shown in Fig. 2-1.
The vacuum chamber has many installation ports for measuring equipments and data
acquisition systems. Major dimensions of the vacuum chamber are 4 m in height, 3.5
m in width and 7 m in length. The ion source is mounted as a heat source at the top of
the vacuum chamber and consists of a source plasma generator and an acceleration grid
system. At the source plasma generator, hydrogen source plasma is produced by arc
discharge process using tungsten filaments. Only hydrogen ions are stably extracted
by the acceleration grid system at beam energies raging from 16 to 50 keV with the
beam current up to 30A.

In the present experiment, a test sample is set into the vacuum chamber as shown in
Fig. 2-1 to form a horizontal flow. The center of the test sample corresponded to the
center of the ion beam. At the bottom of the test bed, an actively cooled ion dump is
installed to handle the intense ion Beam at steady state because an area of the intense ion
beams is much wider than the test sample. It consists of an array of copper swirl and
smooth tubes with an external fin. The water-cooling system consists of de-ionized
water-cooling loops and a heat exchanger loop. Circulating conditions of the cooling
water for the test section are as follows: pressure up to 2.0 MPa; flow rate up to 3000
£/min; and, inlet temperature of the test sample from 25 to 35 °C. On the top of the
test bed, a movable multichannel calorimeter is used to measure magnitude of the
incident heat flux and its profile. The heated surface of the test sample is observed
with two charge-coupled device (CCD) color cameras and an Infrared (IR) camera, and
a two-color pyrometer located at the top and upper part of the vacuum chamber. The
data acquisition system with the sampling speed of 10 Hz is used to record the various
signals from thermocouples, flow meter, pressure gages and beam operation system

such as acceleration voltage and current during the experiment.
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2.2. Test samples

Detailed specifications of the annular swirl tube are shown in Fig. 2-2. The
annular swirl tube consists of two concentric tubes; an outer tube made of CuCrZr and
an inner tube made of stainless steel. In this test sample, the water flows into the
inside of the inner tube at first; at an end-return, a nozzle distributes the water into the
annular gap between the outer and inner tubes. The water returns in the annular gap to
the outlet of the tube with a swirl flow. Dimensions of the outer tube are 21mm in
outside diameter (OD) and 15mm in inside diameter (ID), and those of the inner tube
are 1lmm OD and 9 mm ID. The inner tube has twisted fins on its external surface to
enhance heat transfer characteristics. The twist ratio (y) defined as a ratio of pitch of
180° rotation of the fin to ID of the outer tube is three as shown in Fig. 2-3. The
twisted fins are made with direct milling from a thick SS tube. Pressure taps at the
inlet and outlet sections of the mock-up are used for the pressure drop experiment. To
measure the outer tube wall temperature, three K-type sheathed thermocouples with an
outer diameter of 0.5 mm are brazed into the tube material at the center with an interval
of 10mm. Each thermocouple is located 0.2 mm below the heated surface and is
installed into the material from the rear part of the test section. As shown in Fig. 2-4,
six different types of plugs for the end-return are prepared to find the suitable shape of
the end-return providing the least pressure drop.

Thermal performance of the present annular swirl tube is compared with that of a
conventional swirl tube with a twisted tape experimentally. Its tube dimensions are
similar to those of the outer tube of the annular swirl tube, that is, 21 mm in OD and 15
mm in ID. The twist ratio (y) of the swirl tape to the inner diameter is three and its

thickness is 0.2 mm.

2.3. Experimental procedure

For each test, thermal hydraulic conditions (i.e., pressure at the middle of the test
sample and inlet volumetric flow rate) and parameters that control the ion beam (mainly,
pulse duration, acceleration voltage and current) are selected. Pressure and volumetric
flow rate are adjusted by means of inlet and outlet valves by remote control. The

cooling water conditions are as follows; local pressures at the center of test sample are
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raging from 0.96 to 1.06 MPa. The volumetric flow rates are varied from 11.0 to 65.5
Imin. The inlet temperatures are set from 26 to 33 °C. The pulse durations are
chosen to make the test sample reach the thermally steady state condition. It is judged
by the wall temperature data measured with the thermocouples. The incident heat
fluxes to the surface of the test sample are measured with the movable multichannel
calorimeter and also the cross-check of those values is performed by water calorimeter
calculation after experiments as mentioned detailed later.

Prior to the heating experiments, pressure drop of the annular swirl tube is measured
at ambient temperature.  First, the pressure drops in the inner smooth and outer annular
tubes are measured separately by using an extension tube instead of the end-return.
Then pressure drop at the end-return is estimated by subtracting the estimated pressure
drops at the other section of the test sample from the measured total pressure drop of the
test sample. The pressure drops in the other sections including the inlet and outlet
tubes are calculated by using the existing correlations of friction factor and pressure
drop for the smooth and annular tube. Details of the correlations are described in the
following subsection, 2.4.

In the CHF testing, the flow rate of the cooling water is decreased step by step to
reach burnout under the fixed heat flux condition. The burnout phenomenon is
detected by means of the thermocouples inserted into the outer tube material and the IR
camera, that is, after reaching steady-state temperature, temperature excursion is
detected with either the thermocouples or the IR camera when the burnout phenomenon
occurred. The ion beam is stopped by a safety trigger connecting the thermocouples or
by the occurrence of the temperature excursion on the tube surface in order to avoid
melting of the tube material. The trigger value set from 500 to 600 °C is effective to

catch the burnout and to prevent the test sample from water leakage.

2.4. Pressure drop correlation for data analyses

Pressure drop in each section of the annular swirl tube is measured at first, that is,
the inner smooth and outer swirl annulus tubes. Then the pressure drop at the
end-return is estimated by subtracting the pressure drop estimated at the other section of
the mock-up from the experimental results. The pressure drops in the other sections

including the inlet and outlet tubes are calculated by following correlations.
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The pressure drop caused by friction loss in the inner smooth tube section is

calculated by the following Darcy-Weisbach equation,

1, L
AP==-A—pU?, 2-1
> DHp ax (2-1)

where, AP is the pressure drop in a length L of the pipe, Dy is the hydraulic
diameter of tube, p is the density of water, and U, is the average axial velocity.

The friction factor A is given by

A=0.3164Re;)” for 2000 < Rey < 10°, (2-2)

A=0.0032+0221Re;?*" for  Rey > 10°, (2-3)

where, Rey is Reynolds number based on Dy and U,;.

The pressure drop at an abrupt expansion of the flow path is given by

AP={%,DU|2, ;:f(l“Al/Az)z’ (2-4)

where, U, is the average axial flow velocity before the abrupt expansion, 4; and
A, are cross-sectional areas before and after the abrupt expansion, £ is the loss
coefficient for the abrupt expansion and shows unity in the present study.

The pressure drop at an abrupt contraction of flow path is given by
1
AP=¢=pUs, ¢ =(d/4.-1), (2-5)

where, U, is the axial flow velocity after the abrupt contraction of flow path, 4,
and A are cross-sectional areas before and after the abrupt contraction, £ is the

contraction factor given by Table 2-1.

Table 2-1 loss factor at an abrupt contraction of flow path

Ay/A, | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A/A; |0.61 |0.62 |0.63 |0.65 |0.67 |0.70 [0.73 {0.77 [0.84 1.0

£ 0.41 (038 [0.34 [0.29 |0.24 [0.18 |0.14 |0.089|0.036{0.0
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The pressure drop in the annular tube section with the twisted fins is calculated by

1.,L 2
AP=—A—=*pU_°, 2-6
2" D, PUsw (2-6)
where, U, is the average swirl flow velocity of the coolant. The relationship

between the swirl flow velocity, U, and axial flow velocity, U, is
U,, =U, 1+ 7%/4T} . (2-7)
The corrected length of the flow path with the twisted fins, L;,, is expressed as

L, =L\1+7°/4T?, (2-8)

where, Ty is defined as the twist ratio (y) of the inner diameter of the outside
tube and a 180° rotation of the twisted fins (= 3).

The friction factor has been obtained from the pressure drop experiments performed
by CEA on the mock-up of annular flow called AF1 [3, 4]; the local friction factor A can
be expressed by

A=0.225Re, 2>, (2-9)
where Rey s is Reynolds number based on Dy and U, is expressed by

ReH,sw = pDHUsw/ﬂ * (2—10)

2.5. Measurement of heat flux profile

The incident heat flux and its profile are measured with the multichannel
calorimeter located on the test bed. The multichannel calorimeter consisted of two
dimensional array of small copper chips which have a surface area § = 2.7 cm’ and a
volume v = 1.4 cm® as shown in Fig. 2-5. A thermocouple is bonded on the rear side
of each copper chip to measure its temperature in adiabatic condition. To minimize
heat conduction loss from the chip, we supported each copper chip adiabatically by
using a stainless steal bolt. The incident heat flux is calculated from the temperature
rise of the copper chip using the following equation,

g=2pc, 22280 @-11)

S 7,-T,
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where, g, p and C, are the incident heat flux, density and specific heat of copper,
respectively. Moreover, ATy and AT are the temperature rises during the ion beam
irradiation with the durations of 7; and 7. In the present study, 7 and 7 are set to 40
and 80 ms.

Figure 2-6 shows the typical incident heat flux profiles as a function of position of
the test sample under different acceleration voltages (Vacc) and ion beam currents (lacc)
conditions. These profiles show almost Gaussian profiles in the direction parallel to a
water flow.

Comparison of the experimental temperature rise of the cooling water in the test
sample with calorimetric calculation at the experimental heat flux condition is shown in
Fig. 2-7 to check the results of the heat flux measurements. In this figure, a horizontal
axis represents the temperature rise of the cooling water measured by the thermocouples
located at the inlet and outlet of the test sample. A vertical axis represents those of
calorimetric calculation based on the measured heat flux profile in the flow direction.
In this calculation, we assume that the heat flux distribution crosswise the flow direction
is flat because changes of the heat flux profiles are very small within the width of the
test sample (= 21 mm) as shown in Fig. 2-6. The experimental and calculated results
are in good agreement with a difference within + 10% difference for all heat flux

profiles which are applied to the CHF testing.
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Figure 2-6 Typical heat flux profile at the test sample position.
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Figure 2-7 Typical heat flux profile at the test sample position.
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3. Results and discussion

3.1. Pressure drop experiments

To confirm the capability of the pressure drop estimation in each flow section of the
mock-up with the correlations mentioned in Sec. 2.4, the pressure drops in the inner
smooth and outer annular tubes are measured separately. The measured pressure drops
in both cases are compared with results estimated by the correlations. Figure 3-1
shows the results of the pressure drop experiments in the inner smooth tube section.
Dashed, solid and dotted lines show the pressure drops estimated with the correlations
(2-1)-(2-5) and correspond to the inlet, inner smooth, and outlet tube sections,
respectively. The inlet and outlet sections have the expansion and contraction of the
flow path as shown in Fig, 2-2.  Solid circles represent the experimental results for the
whole test section. The sum of calculated pressure drops is in good agreement with the
experimental ones. This shows that the present method for estimation of the pressure
drop is appropriate not only in the inner smooth tube section but also in the inlet and
outlet sections of the test sample.

Figure 3-2 shows the pressure drops in the outer annular section with twisted fins.
The same method as Fig 3-1 is used to estimate the pressure drops in the inlet and outlet
tube sections. To estimate the pressure drop in the annular section, the equations
(2-6)-(2-10) are applied. The sums of the calculated pressure drops are over-estimated
compared with the experimental ones. These differences might be depended on the
ability to predict the pressure drop, especially, the friction factor in the annular section.
In order to estimate the pressure drop at the end-return, a new correlation must be made
for this experiment. For this purpose, the friction factor is estimated based on the
pressure drop data in the annular section, which is obtained by subtracting the inlet and
outlet tube sections from the experimental results shown in Fig. 3-2. The friction
factors estimated in the annular section are plotted in Fig. 3-3. Based on these data, a
new correlation of the friction factor for the annulus with the twisted fin is derived using
the following equation of which the equation form is the same as CEAis one, and it is

expressed by,

A=00725Re>!? (3-1)

H,sw
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Applying this correlation, the experimental and calculated pressure drops in whole
section of the annular swirl tube mock-up with the end-return are compared in Fig. 3-4.
Finally the pressure drops at the end-return are estimated in Fig. 3-5 as functions of the
volumetric flow rate and the average axial flow velocity in the annular section. In the
low flow rate region (< 30 I/min), the pressure drop at the end-return provided by each
end plug shows almost the same value. In higher flow rate region, however, the
pressure drop provided by the Type-5 end-plug is the least value among all test data.
The Type-5 end-plug has a semi-spherical shape with a radius of 7.5 mm, which is the
same as the radius of the outside tube. The pressure drop in case of Type-5 end-plug is
estimated about 0.09 MPa at the velocity of 10 m/sec, which accounts for about 17% of
the total pressure drop of the test sample as shown in Fig. 3-4.

To compare the pressure drop of the annular section with that of the conventional
swirl tube, Fig. 3-6 shows the pressure drop per unit length of each tube as a function of
the average axial flow velocity. As a reference of the pressure drop of the
conventional swirl tube, the results are compared with the correlation proposed by

Manglik and Bergles for the conventional swirl tube [5],

L75 1.25
0.791 4 r+2-28,/d 2.752
e = ! +— 3-2
ffmmng Re®? (”_4(5;/‘1) ( ”_45‘/‘{ J ( TR1.29} (3-2)
AP 2pU2
_A';_ = f;"anning d (3'3)

where, franning, &, d and AP/Ax are the fanning friction factor, thickness of twisted tape,
inner diameter of empty tube and pressure drop per unit length, respectively. For the
conventional swirl tube, the experimental and estimated pressure drops agree well. This
indicates the validation of the pressure drop measurement of the conventional swirl tube.
The pressure drops in the annular section in the whole axial flow velocity range are
larger than those of the conventional swirl tube. Typically, the pressure drop in the
annular section at 10 m/sec is about 1.9 times larger than that of the swirl tube. One of
some reasons for this is the smaller hydraulic diameter of the annular swirl tube, Dy =
3.54 mm, than those of the conventional swirl tube, Dy = 8.97 mm.

From the engineering viewpoint, pumping power to supply the specified cooling
water is one of the important parameters in the design of adequate cooling systems.

Figure 3-7 shows the pumping power per unit length as a function of the axial flow
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velocity. The pumping power is defined as the product of the pressure drop pér unit
length and the volumetric flow rate. The pumping powers to circulate the cooling
water in the annular section and the conventional swirl tube under the same axial
velocity condition are almost the same value although the pressure drop in the annular
section with the twisted fin is a little larger than those of the conventional swirl tube.
This reason is that the smaller volumetric flow rate in the annular swirl tube is required
to obtain the specified axial flow velocity in comparison with those of the conventional
swirl tube. The cross-section of the annular section is 46% of that of the present

conventional swirl tube.
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Figure 3-4 Pressure drop in whole section of mock-up including end-return.

Here, the volumetric flow rate can be expressed by using the axial flow
velocity. For instance, 80 1/min corresponds to 17.2 m/s as can be seen in this
figure.
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Figure 3-5: Pressure drop at the end-return section.

Here, the volumetric flow rate can be expressed by using the axial flow
velocity. For instance, 80 1/min corresponds to 17.2 m/s as can be seen in this
figure.
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3.2. Critical heat flux experiments

Tables 3-1 and 3-2, and Tables 3-3 and 3-4 summarize the experimental conditions
and heating test results on the annular swirl tube and the conventional swirl tube,
respectively. These tables include incident heat flux (IHF), time to reach burnout
(Tumout), Volumetric flow rate (V), axial flow velocity (Uax), inlet and local pressure,
(Pin and Pjoca), inlet and local temperature of cooling water (Ti; and Tioca), measured and
calculated temperature rises of cooling water (Dt_exp and Dt_wtr), local saturation
temperature of cooling water at P, (Tsat), local subcooling (Tewp = Tsar-Tiocat), and
mean wall temperatures measured with thermocouples at the steady state during heating
test (TC-1, TC-2, and TC-3).

In general, CHF is defined at the inner wall of the cooling tube. However, the
incident critical heat flux (ICHF), which is defined at the outer surface of the test
sample, is considered here because of the one-sided-heating conditions. Figure 3-8
shows the typical temperature responses measured with thermocouple inserted into the
top of the test sample for different axial positions. After reaching steady-state
temperature within 5 sec from the start of the heating, wall temperature rapidly
increased within several seconds due to an occurrence of burnout. Because the test
sample is exposed to relatively wide ion beams, the CHF event is caught by the
thermocouples, TC-1, TC-2 and TC-3 in turn.  They are located at 10 mm downstream
from the center of the test sample, the center, and 10 mm upstream from the center,
respectively. This may result from a rapid spread of dryout on the inner wall of the
tube from downstream to upstream of the coolant.

Figure 3-9 shows ICHF for the annular swirl tube as a function of the axial flow
velocity at the annular section. At heat fluxes of 5 and 10 MW/m’, the burnout did not
occur in a low axial velocity region as 2.5 m/sec. ICHFs of the annular swirl tube are
compared with those of the conventional swirl tube that has the same tube geometry as
the outer tube of the annular swirl tube and the same twist ratio of the swirl tape. For
both cooling tubes, ICHF increased with increasing the axial flow velocity. From
these results, we can conclude that there is no degradation of ICHF for the annular swirl
tube in comparison with the swirl tube at the experimental axial flow velocity range.
This might result from the centrifugal or acceleration force due to the twisted motion of

the cooling water by the twisted fin that has the same effect as the swirl tape inside the
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swirl tube on enhancement of CHF, although small gap exists b« ween the inner wall of
the outer tube and the twisted fin in the annular swirl tube.

Comparing ICHF as a function of the pumping power that is needed to supply the
required cooling water is important from viewpoint of global performance of cooling
tubes. Using the pumping power data showed in Fig, 3-7, Fig. 3-10 shows repotted
ICHF data by a pumping power that is required to supply the specified cooling water for
a test section with 1 m in length. For the annular swirl tube, the pumping power is
only estimated in the outer annular section with the twisted fins. The ICHF
performance increases with the pumping power in both cooling tubes. From the
viewpoint of the pumping power, it is found that they have almost the same ICHF
performance, although the pressure drop in the annular section with the twisted fin is
larger than those of the conventional swirl tube. From this result, it is evident that the
volumetric flow rate required to obtain the specified ICHF for the annular swirl tube is

smaller than those for the conventional swirl tube.

3.3. Thermal analyses with FEM and comparison of CHF correlations

In the previous section, we can confirm experimentally the heat removal limitation,
that is, ICHF for the annular swirl tube is almost similar to those of the conventional
swirl tube. In this section, the heat transfer performance for the annular swirl tube is
discussed through examination of the applicability of heat transfer correlations of
JAERI [6] first. For this purpose, the wall temperatures measured with the
thermocouples are compared with the numerical results using ABAQUS code [7] with
the finite element method (FEM). In addition, applicability of existing correlations for
CHEF to the results of the annular swirl tube is examined, which is important factor from
the viewpoint of design study of the high heat flux components using the annular swirl
tube.

The heat transfer correlations used in the present analyses are follows [6],

For forced convection regime for swirl tube;
Nu, = 0.023Re%? Pr®*x(2.18/T°% )x (u/ s, *, (34)
For sub-cooled nucleate boiling regime;

T =25.72xq" [exp(p/8.6), (3-5)

wall

-T,

sat
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where, Nu; is Nusselt number (= # Dy / &) for the swirl tube, which is the Dittus-Boelter
correlation multiplied by Gambilis swirl factor [8] and wall viscosity factor. In
addition, h, k, Pr, and /.y are the heat transfer coefficient, thermal conductivity and
Prandt! number of water at the bulk water temperature, and the viscosity of water at the
wall temperature. Hydraulic diameters Dy are 3.54 mm for the annular swirl tube and
15 mm for the conventional swirl tube. Bulk temperature rises at the center of the test
samples as summarized in Tables 3-1 to 34 are estimated from the input power profiles
and the flow rate and they are taken into estimating the heat transfer coefficients. The
typical heat transfer coefficients temperatures are shown as a function of the inner wall
temperature in Fig. 3-11.

Using these heat transfer coefficients, the heat conduction analyses in the outer tube
are performed in a two-dimensional FEM model. Boundary conditions are shown in Fig.
3-12. For the annular swirl tube, only the outer tube is taken into analyses because the
inner tube contributes as only a turbulence promoter, and no heat sink for the outer tube.
Tables 3-5 and 3-6 summarize the results of numerical results for the annular swirl and
the conventional swirl tubes. These include IHF, Uax, wall temperature at the
thermocouple position (TC) and the inner wall (Tyay), wall heat flux (WHF), heat
transfer coefficient, and peaking factor of WHF to IHF.

Figure3-13 shows the comparison of numerical results with experimental ones for
the annular swirl tube. In the present experiments, until the burnout phenomenon
occurred at the given heat flux condition, the axial flow velocity decreased step by step
from a high velocity to a low velocity region, that is, from right to left in this figure.
The axial velocities represent 2.4, 3.7, 5.8 7.4 and 9.7 m/s at the heat flux conditions of
20, 25, 30 and 35 MW/m’ at the burnout. The analytical results are in good agreement
with the experimental ones in the whole experimental conditions, which indicate that
the correlation for heat transfer coefficient is applicable enough to predict the thermal
performance of the annular swirl tube.

At low heat flux condition, i.e., at 5 MW/m? for the annular swirl tube, the wall
temperature increased monotonously with the decreasing of the axial flow velocity.
On such thermal-hydraulic conditions, the forced convective heat transfer is dominant
and the heat transfer coefficient is proportional to the axial flow velocity. In a higher

heat flux condition of more than 25 MW/m?, the wall temperature depends slightly on
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the axial flow velocity. In these conditions, the nucleate boiling is dominant in the
heat transfer, in which heat removal mechanism has little dependence on the flow
velocity of the coolant. In the intermediate heat flux conditions from 10 to 20 MW/m?,
the wall temperatures approaches a constant value with decreasing of the flow velocity.
In these thermal-hydraulic conditions, the dominant heat transfer mechanism varies
from the forced convection at the higher flow velocity region to the nucleate boiling at
the lower flow velocity region.

Figure 3-14 shows the comparison of the numerical results with experimental ones
for the conventional swirl tube. The transitions of the heat transfer regimes are also
observed like those of the annular swirl tube shown in Fig. 3-13. By comparison of
the wall temperatures of the annular swirl tube with those of the conventional swirl tube
under the given thermal-hydraulic conditions, they are almost coincident. Therefore,
we can conclude that there is no degradation of the heat removal performance of the
annular swirl tube compared with those of the conventional swirl tube.

Using numerical results, wall critical heat flux (WCHF) at the burnout can be
determined. Maximum wall heat flux appeared at the top of the inner wall and the
peaking factor of WCHF/ICHF increases from 1.28 to 1.36 according to the incident
heat flux. These values are necessary to compare the present experiments with the
correlated values. Because the CHF correlations can usually predict WCHE, although it
cannot predict ICHF. In the present study, WCHFs are compared with the following
two CHF correlations; one is Tong-75 correlation, which is originally developed for the
light-water fission reactor [9]. This correlation has been extensively used to estimate
WCHF and also applied in the design analysis of ITER divertor [2]. The other is one
proposed by Boscary et al. to predicting WCHF for smooth and swirl tubes based on
dimension analyses of CHF phenomena under one-sided heating conditions [10].
These tow correlations are formulated in term of Boiling number as follows, ‘

In TONG-75 correlation;

1.8
Bo, = 0.23 f{l + 0.00216(%} Re)’ J,,], (3-6)
In Boscary, et alis correlation;
_ 1 2 ~YT p -4 -1/4 1/10
Bo, = Z—Sexp(me EcV"Re;/t RV (- X, )] (3-7)
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Using above correlation, WCHF are estimated as follow,

WCHF = p,U_Ah, Bo, . (3-8)
where,
f=8Re, (D, /D,)"”, (39)
Cc (T, -T,
Ja= _p_L_ p( sat Iocal) , (3-10)
pg Ahv
c(r, -T,
X oo _Collu i) w "’“”), G-11)
2
Be, =— 0% (3-12)
Cp (T sat Tlocal )
Rd = %, (3-13)
g

Here, fis the friction factor, P is the local pressure of coolant, P, is the critical pressure,
22.1 MPa, Ja is the Jakob number, X;,» is the mass enthalpic quality, Ec,w is the Eckert
number based on swirl velocity, Rd is the density ratio of liquid at Tiecal, o and p, are
the water and vapor densities at T, Rey is Reynolds number based on hydraulic
diameter of tube and axial flow velocity, Rey s, is Reynolds number based on hydraulic
diameter and swirl flow velocity, Ak, is latent heat of vaporization of water, D, is
reference diameter (=12.7 10'3), and C, is specific heat of water at Tjocar.

Figures 3-15 and 3-16 and Figs. 3-17 and 3-18 show the ratio of the experimental
WCHEFs to estimated values by the correlations by Tong and Boscary et al. as functions
of axial flow velocity and local subcooling, Tsub (= TsarTiocal). According to these
correlations, WCHF is dependent on the flow velocity and local subcooling. From
these results, both correlations could predict well the experimental results within an
error of + 20% error margin in the present experimental range. These results show the
applicability of these correlations to predict WCHF for the conventional swirl tube as

well as the annular swirl tube.
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Figure 3-8 Typical temperature response at the burnout
(Heat flux = 20 MW/m?, Axial velocity, U,y = 3.8 m/sec).
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Figure 3-9 ICHF for annular swirl tube with twisted fins in comparison
with conventional swirl tube.
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Figure 3-10 ICHF of test samples on pumping power.
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Figure 3-11 Typical heat transfer éoefficients at several axial flow
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Figure 3-12 Finite element model and boundary conditions for heat
conduction analyses of annular swirl tube and conventional swirl tube.
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Figure 3-15 WCHF comparison between experiments and estimation by
Tong-75 correlation as a function of axial flow velocity.
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Figure 3-16 WCHF comparison between experiments and estimation by
- Tong-75 correlation as a function of local subcooling, S;,b=Tsat-Liocal-



JAERI-Tech = 2003-084

_ | W Annular swirl tube T
£ [ & Conventional swirl tube|
LIJ 1 .5 o e rmmrmmemmmmmemmemmemmemmremeAmammemmo oo mmesesaseaesanste s M
| %:
g ' AR = 20%
~ 1 -... ....... 'ii. —:t_.:. .;........... ...-is ..................... _.

! I ! i

1 . - 0 o
% o ‘ 20/0.
O 0.5 oo b -
= | | f
. L Boscary et al. correlation |

) FPUTTTTT PPN P .

0 5 10 - 15
Axial flow velocity [m/sec]

Figure 3-17 WCHF comparison between.e_xpgrinients and estimation by
Boscary et al. correlation as a function of axial flow velocity.
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Figure 3-18 WCHF comparison between experiments and estimation by
Boscary et al. correlation as a function of local subcooling, Stwp=Tsat-Local. -
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4. Concluding remarks

Thermal hydraulic experiments measuring pressure drop and critical heat flux,
CHF, of the annular swirl tube are performed to examine its applicability to the ITER
divertor cooling structure. This annular tube consists of two concentric circular tubes,
the outer tube and the inner tube. The outer tube with outer and inner diameters (OD
and ID) of 21mm and 15mm is made of Cu-alloy, which is CuCrZr and one of candidate
materials of the ITER divertor cooling tube. The inner tube with OD of 11 mm and ID
of 9 mm is made of stainless steal. Its external surface has the twisted fins with twist
ratio (y) of three to enhance its heat transfer performance. In the present study, the twist
ratio is defined as a ratio of pitch of 180° rotation of the fin to ID of the outer tube. In
this cooling tube, cooling water flows inside the inner tube first; the flow direction is
changed at the end of tube, and then returns in the annulus between the outer and inner
tubes with a swirl flow to cool the heated outer tube.

The friction factor correlation for the annular section with the twisted fins is made
for the hydraulic designing of the vertical target. The least pressure drop at the
end-return is obtained by using the hemispherical end-return. Its radius is the same as
that of ID of the outer cooling tube.

The incident critical heat flux (ICHF) testing show no degradation of ICHF of the
annular swirl tube in comparison with the conventional swirl tube whose dimensions are
the same as those of the outer tube of the annular tube. A minimum axial velocity of
7.1 m/sec is required for 28 MW/m?, which is the ITER design value. Applicability of
both correlations of the heat transfer and the wall critical heat flux to the annular swirl
tube 1s also examined by comparing the experimental results with those of the numerical
analyses. It is found that the heat removal performance of the annular swirl tube can
be estimated by these correlations.

These results show that thermal-hydraulic performance of the annular swirl tube is

promising in application to the cooling structure for the ITER vertical target.
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4.44822 0453592 1 0.101325 1.03323 1 760 14,6959
¥ B 1Pars(N-s/m)=10P (K 7 X)(g/(cm-s)) 1.33322X107* | 1.35951%10° 1.31579% 107 | 193368 X107
BHE  1mY/s=10S(A b — ¥ Z)(cm?/s) 6.89476X10 * | 7.03070%10 6.80460X 102 517149 1
! J(=10" erg) kgf-m kW-h cal(Ft i i) Btu ft-1bf eV 1 cal= 4.18605] (Fl & i)
ES
A 1 0.101972 2.77778X10 7 0.238889 9.47813%10"* 0.737562 6.24150X 10" = 4.184) (BAE™)
¥
1 9.80665 1 2.72407X107° 2.34270 9.29487X 107 7.23301 6.12082x 10" = 4.1855] (15C)
ft 3.6X10° 3.67098 % 10° 1 8.59999 X 10° 3412.13 2.65522X10° 2.24694 X 10% = 4.1868] (EEEAFE)
¥
. 4.18605 0.426858 1.16279X 10™° 1 3.96759X107° 3.08747 2.61272X10" HE®E | PSULES)
B
s —4 vil
B 1055.06 107.586 2.93072X 10 252.042 1 778.172 6.58515X 10 =75 kgf-m/s
7 X 3 X 18
1.35582 0.138255 3.76616 X 10 0323890 1.28506 X 10 1 8.46233X10 735 499W
1.60218X 107" | 1.63377X107" | 4.45050X107 | 3.82743X10 * | 1.51857X1072 [ 1L18171X107% |
)i'e Bq Ci % Gy rad ;‘; Clkg R *.’3‘ Sv rem
5 £ =
gz 1 2.70270X 107" # 1 100 5 1 3876 57 1 100
£ i it E
3.7X10" 1 0.01 1 258X107* 1 0.01 1

(864 12H26 A 3 %)




Quantitative Experiments on Thermal Hydraulic Characteristics of an Annular Tube with Twisted Fins
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