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ITER vacuum vessel (VV) is a safety component confining radioactive materials such as tritium and
activated dust. An independent V'V support structure with multiple flexible plates located at the bottom of
VV lower port is proposed. This independent concept has two advantages: (1) thermal load due to the
temperature deference between V'V and the lower temperature components such as TF coil becomes lower
and (2) the other components such as TF coil is categorized as a non-safety component because of its
independence from VV. Stress analyses have been performed to assess the integrity of the VV support
structure using a precisely modeled VV structure.  As a result, (1) the maximum displacement of the VV
corresponding to the relative displacement between VV and TF coil is found to be 15 mm, much less than
the current design value of 100 mm, and (2) the stresses ot the whole VV system including VV support are
estimated to be less than the allowable ones defined by ASME Section III Subsection NF, respectively.
Based on these assessments, the feasibility of the proposed independent V'V support has been verified as a

V'V support.

Keywords: ITER, Vacuum Vessel, Flexible Plates, Independent Support Structure, Safety Component, Stress

Analysis
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1. Introduction

The International Thermonuclear Experimental Reactor (ITER) is a Deuterium and Tritium burning
tokamak facility developed under the international collaboration of Japan, Eurbpean Union, the Russian
Federation, the United State of America, the People’s Republic of China and Republic of Korea, aiming at
scientific and technological demonstration of fusion energy”.  The major structure of the ITER is composed
of three types of superconducting coils (poloidal field coil (PF coil), toroidal field coil (TF coil) and central
solenoid coil (CS coil)) and a vacuum vessel (VV), as shown in Fig. 1, which are operated at quite different
temperatures of 4 K and 150 °C, respectively. Support structures, such as gravity supports for TF coil and V'V,
must be flexible in the radial direction to accommodate the deformation caused by the temperature difference
between initial assembly and operating conditions, while keeping high rigidity in the vertical and toroidal
direction in order to withstand the whole dead weight of the tokamak and the seismic force, etc. Based on
these viewpoints, multiple plates are adopted as the flexible support structures of the major ITER components
such as TF coil and VV, as shown in Fig, 2.

In the current design of the ITER, the support structure of the VV is mounted on the TF coils, as
shown in Figs. 1 and 2, in order to minimize the relative displacement between TF coil and VV under the
horizontal loads such as seismic load”.  The design has two critical issues, i.e., (1) one is that a large load on
the support structure is caused by the relative thermal displacement due to large difference of operating
temperatures between TF coil and VV, and (2) the other is that the TF coil will be categorized as a safety
component, because the supporting structure of the VV, which is a safety component confining radioactive
materials such as tritium and activated dust, is directly connected to the TF coil.  In particular, the latter issue
gives a large impact on the schedule and procurement for ITER construction, so that it is necessary to change
the category of the TF coil as a non-safety component.

The present paper therefore proposes a design of the VV support structure, which is independent
from the TF coil. Stress analyses are performed in order to verify the feasibility of the new independent VV

support structure from the TF coil.
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2. Basic Concept of VV Support Structure

The VV support structure of ITER is not a simple support, but it must satisfy several requirements.
Therefore, the support structure must be designed with considering these requirements. Necessary features
of the support structure are as follows:

(a)to accept displacement due to the temperature difference between initial assembly (room

temperature) and operating condition (150 °C),

(b) to sustain loads caused by its own gravity, earthquake and electromagnetic force

(c) to resist radiation induced by the fusion reaction, and

(d) to reduce the relative displacement between the V'V and the superconducting magnet.

First of all, mechanical system of the support structure must be decided. Considering the requirement (é)
and (b), the following systems are possible to adopt: |

- support with sliding pad and damper

- multiple flexible plates
Regarding the former system, the sliding pad can accept thermal displacement. The damper does not
prevent thermal expansion because the movement is very slow. On the other hand, the damper resists
seismic and electromagnetic loads which are implied rapidly. However, this system is rather complicated
and unreliable so periodical inspection is needed. In addition, the oil needed for the damper will be harden
by radiation so it does not satisfy the requirement (c). Thus, this report selected fhe latter system: multiple
flexible plates. The reference design of the ITER also adopts this concept.

The flexible plate can be bent easily by the out-of-plane loads while it sustains the in-plane ones.
The vacuum vessel is axisymmetric so the thermal deformation is in the radial direction. Therefore, the
support composed of multiple flexible plates located perpendicular to the radial direction can accept thermal
expansion while it resists the gravitation, earthquake and electromagnetic force.

Secondly, it must be decided whether the VV is supported independently ornot.  From the point of
requirement (d), the VV support structure had better to be supported from the magnet because the relative
displacement is expected to be reduced if they move together. However, from the viewpoint of safety, it is
not favorable because not only the VV but also the magnet must be categorized as safety component it they
are mechanically connected. In this case, the required reliability becomes higher and the design of the
magnet becomes more complex.  Therefore, this report selected the independent support structure.

The third point is the location of the support system.  Below the bottom of the main vessel, there are
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structures called “Intercoil Structure” connecting the TF coils together and PF coil (PF-5), as shown in Fig.3.
If the support structure is located there, it will interfere with the Intercoil Structure.  Therefore, the VV must
be supported at the outer place. The vacuum vessel has ducts called “port” at the upper, equatorial and
lower positions.  There are 9 or 18 lower ports (number depends on the version of design) and the supports
can be located at the bottom of them.
As a result, this report proposes the independent support system with multiple flexible plates located at the
bottom of V'V lower port, for the VV support structure.  The respective VV supports consist of an assembly
of 20 flexible plates, whose dimensions are 2000 mm in length, 1250 mm in width and 32 mm in thickness,
and a support leg connected at the bottom of the lower port by welding. The material of the plate is a
stainless steel (SUS-316L(N)-IG, a kind of SUS-316 with higher strength) specified by ITER Project”. The
flexible plate assembly is connected between the support leg and cryostat ring by the Inconel-718 bolts with a
diameter of 90 mm, as shown in Fig.3. |

According to the design change of the VV support located at the lower port, the reinforcements of
lower port will be necessary for vertical and horizontal loads, mainly at the joint between lower port and VV
sector. The reinforcements are designed taking into account the interference between the reinforcements and

the other components such as TF coils with deferent temperature, as shown in Fig. 4.
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3. Applied Standard and Load Condition

For the ITER VV support structure, ASME Section III Subsection NF, “Rules Construction Nuclear
Power Plant Components-Subsection Supports™ is selected. The loads for the VV support are combination
of dead weight, thermal load, electromagnetic (EM) load and seismic load. The EM load is peculiar to the
tokamak device. When the plasma current vanishes by some reasons, an induced current flows on the
surface of the VV.  The current in the magnetic field induces the EM force, which is applied on the VV.
There are two patterns of the vanishment of the plasma current, which do not happen in the same time. One is
a Centered Disruption (CD): the plasma discharges at the center of the VV.  The other is a Vertical
Displacement Event (VDE): the plasma moves downward until the bottom of the VV and then its current
vanishes. The VDE is considered as a load condition in the following analysis because the VDE is generally
more serious for the VV support due to larger total load thah that of the CD. In addition, the Troidal Field Coil
Fast Discharge (TFCFD) has to be considered for analysis, because the TFCFD may happen in the same time
with the VDE.

Table 1 shows the actual load conditions in the structural analysis performed in this paper. Dead
weight is estimated to be 90 MN that includes the all weight of VV and port components. Thermal load is
produced by the temperature rise of VV in the plasma and baking operations. In the plasma operation,
temperatures of the VV support are assumed to be 20°C at the lower flange of the flexible palates and 100°C
at the bottom surface of the VV lower port, respectively. During baking operation, temperature of lower
port will be changed to 140°C from 100°C for plasma operation. Bending stress of the flexible plates due to
thermal displacement of the V'V is classified to the primary stress according to the ASME Sec. III Subsection
NF.

Inthe ITER, the VDE is categorized into three types by magnitude of loads: VDE I, [l and IIl. EM
loads of VDE I and VDE II are 60 % and 75 % of that of VDE IIL, respectively”. The EM loads of VDE III
are 72 MN and 25 MN in the vertical and horizontal direction, respectively”. The seismic load of off-
normal operation (S1) is detined as the static load of 0.6 G (54 MN) in vertical and horizontal direction
because the ITER reference design assumes 0.2 G of dynamic load” and the value is multiplied by the
dynamic amplification factor 3. This factor was decided by the result of the dynamic analysis”. The

seismic load of normal operation (S0) is assumed to be 1/3 of that of S1,0.2 G (18 MN)”.
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4. Stress Analysis of VV Support

4.1 Analysis condition

Stress analyses have been performed to assess the integrity of the VV support. Table 1 shows
possible load combinations for normal and off-normal operations. Among them, the most severe
combinations are selected for analyses for normal operation (case 1) and off-normal operation (case 2),

respectively.

4.2 Analysis model

A VV model composed of 180-degree torus with ports and VV supports has been used for the stress
analysis of the VV support, as shown in Fig. 5. The detail of the VV support model is also shown in Fig. 6.
The VV is composed of a double walled-structure, i.e., the inner and outer VV walls, port walls and rib
structure for reinforce between the inner and outer walls are precisely modeled in the analysis model. Inthe
analysis model, the VV wall, port wall and VV support flange are modeled by shell elements. The
reinforcements of the V'V support are modeled by solid elements in order to calculate the stress distribution in
detail. In addition, the connection bolts of the VV support are modeled by beam elements to estimate the
stress of the bolts. The vertical and horizontal loads are treated as the body forces of VV and ports. A
symmetric boundary condition is applied on the nodes at the edges of the model in the toroidal direction,

while the nodes at the lower edges of VV supports are fixed in the all directions.

4.3 Analysis results

(1) Outline of analysis results

Analysis results for the respective load combinations for normal and off-normal operations (case 1
and 2) are shown in Figs. 7~14 and are summarized in Table 2.  The detailed results of the severer condition
of case 2 are described below.

For case 2, the maximum displacement of the VV corresponding to the relative displacement
between VV and TF coils, which is the most important for the assessment of the proposed independent VV
support, is found to be 15 mm, much less than the current design clearance of 100 mm at the upper port

perpendicular to the horizontal force as shown in Fig. 15. The displacement of the independent V'V support is
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therefore confirmed to not be an issue because there is enough clearance of 85 mm between the VV and TF
coils.

The maximum Tresca stress of 426 MPa appears at the bottom edge of the innermost flexible plate as
shown in Fig, 16. Due to the large maximum stress, detailed stress assessment is performed below for the
verification of the feasibility of the flexible plates, based on the ASME Sec. III Subsection NF

(2) Stress assessment of the VV support

Using the analysis result of the flexible plate, shown in Figs. 17 and 18, the stress on the cross section
at the lower edge of the innermost plate is categorized into a primary membrane stress (P,,), a primary
bending stress (Py) and a peak stress, as shown in Table 2. The stress of the plate is not uniform in the cross
section because the bending moment is loaded on the plate. The Py, of the plate is estimated to be 49 MPa
as the average stress in the cross section, based on the Subsection NF. The Py, is also estimated to be 151 MPa
as the variable component of stress distribution along the width direction of the plate, based on the Subsection
NF. The estimated P,,, of 49 MPa and the P, +P, of 200 MPa are within the allowable ones of 176 MPa and
264 MPa, respectively, and evaluation of peak stresses in the support is not required by the Subsection NF, so
that the feasibility of the flexible plate of the V'V support has been verified based on this Subsection.

(3) Stress Assessment of bolt

Results of the analysis show that the maximum tensile loads of connection bolts made of Inconel-718
for VV support are 1.235 MN for normal operation and 2.748 MN for off-normal operation, respectively.
Table 3 shows the estimated loads and stresses of the bolt, according to the variation of the pre-tensions. All of
the bolt stresses are within the allowable ones defined in ASME Sec III NF, for both normal and off-normal

operations.
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5. Conclusion

ITER VV is a safety component confining radioactive materials such as tritium and activated dust.
The VV support structure is the independent support system with multiple flexible plates located at the bottom
of VV lower port. This independent concept from TF coil has two advantages comparing to the current
design directly connected between VV and TF coil: thermal load due to the temperature deference between
VV and TF coil becomes lower and the TF coil is categorized as a non-safety component because of its
independence from VV.  Stress Analyses have been performed for the VV support structure using a precisely

modeled VV structure.  The results are summarized as follows:

1. Maximum displacement of the VV corresponding to the relative displacement between VV and TF coil is
found to be 15 mm, much less than the current design value of 100 mm at the upper port perpendicular to
the horizontal force. The displacement of the independent VV support is therefore confirmed to not be an

issue.

2. Stress assessment is performed for the flexible plate where the Tresca stress becomes maximum according
to the analysis result, so that the estimated stresses are less than the allowable value defined in ASME Sec.
[IINF.

3. The stresses of the connection bolt of the independent VV support are also estimated within the allowable
ones defined in ASME Sec. [II NF.

Based on the above results, the feasibility of the proposed VV support concept has been verified as a VV
support. More detailed seismic analysis of the whole system will be performed to obtain the more exact

relative displacement between VV and TF coil as a future study.
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