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An articulated-arm type manipulator can be operated effectively in
a restricted space due to its flexibility and it can be attractive for
a wide range of in-vessel maintenance such as viewing, inspection and
limiter handling in fusion experimental reactors. 1In case of the in-
vessel maintenance using a flexible manipulator, it is quite essential
to develop an autonomous control method for compensating a deflection
of manipulator so as to minimize the maintenance time with high precision.
For this purpose, a new position control method using a combination
of neural network predictor with a rigid inverse kinematics is being
developed. The key features of this method are to simplify a kinematics
modeling of flexible manipulator, to enable quick position compensation
in stead of ordinary large matrix compensation, and to be applicable
to a wide variety of manipulator characteristics. A sub-scaled model
of flexible manipulator with 4 joints has been fabricated for a benchmark
experiments of the autonomous position control. Comparing analytical
simulation with experiments using the flexible manipulator, it has

been demonstrated that the new position control method gives significant
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improvement in control performance with high precision in order of a
figure. In addition, further optimization can be possible by adding
other non-linear predictors such as radial basis function and fuzzy
modeling.

This paper describes the details of a sub-scaled flexible manipulator
and a neural network position control system as well as results of

analytical simulation and benchmark experiments.

Keywords=: Fusion Experimental Reactors, In-vessel Maintenance,

Articulated-arm, Autonomous Position Control, Neural Network
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1. INTRODUCTION

The Japan Atomic Energy Research Institute (JAERI) has been conducting technology
development aiming at realization of fusion experimental reactor{1,2]. Since the core of fusion
reactor will be highly activated due to D-T operation, assembly and maintenance of all reactor
components will have to be totally conducted by remote handling technology. In particular, the
plasma facing components such as divertor, first wall and limiters are categorized into
scheduled maintenance components due to their severe operating conditions and thus reliable
and quick remote maintenance operation are highly required.

An articulated-arm type manipulator can be operated effectively in a restricted space due to
its flexibility and it can be attractive for a wide ran ge of in-vessel maintenance operations such
as viewing, inspection and handling of limiters. In this case, however, a manipulator with a
arm length of at least 6 m and a degree of freedom of 8 axes is required so as to access all of in-
vessel region. Hence, an advanced control method is inevitably required to compensate a
position error caused by deflection and torsion of manipulator itself since manipulator becomes
rather flexible and less stiffness.

For this purpose, a new position control method using a combination of neural
network[3] predictor with a rigid inverse kinematics is proposed for the in-vessel maintenance
using such flexible manipulator. In this method, a neural network can predict a modeling error
between a target value and a kinematics model according to a learned relation from
representative points in the manipulator working space. Based on this prediction, the target
position values are modified so as to reduce the total position control error using inverse
kinematics. The key features of this method are summarized as follows.

(1) A simplified modeling of manipulator kinematics without a detailed model representing
manipulator characteristics

(2) Quick and precise position compensation compared with ordinary method based on large
matrix compensation

(3) Easy modification for variety of manipulator configuration

In order to verify the feasibility of this autonomous position control method, a sub-scaled
model of flexible manipulator for simulating in-vessel maintenance has been fabricated and
benchmark experiments have been conducted together with analytical simulation. As a result, it
has been demonstrated that the new position control method based on neural network indicates
significant improvement in control performance. In addition, further optimization can be
possible by adding other non-linear predictors such as radial basis function and fuzzy modeling.

This paper describes the details of a sub-scaled flexible manipulator and a neural network
position control system as well as results of analytical simulation and benchmark experiments.
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2. A SUB-SCALED FLEXIBLE MANIPULATOR

Figure 1 shows typical schematic view of an in-vessel manipulator for handling limiter.
According to the overall machine layout of ITER (International Thermonuclear Experimental
Reactor), 2 minimum arm length and a degree of freedom of the manipulator are to be 6 m and
8 axes, respectively. In order to simulate those conditions and investigate the controllability
based on neural network, a sub-scaled model of flexible manipulator has been fabricated. The
key features of this sub-scaled manipulator are as follows.

(1) The size of manipulator is roughly 1/5 of the actual manipulator and the maximum
deflection at the tip is defined to be 20 mm at a payload of 5 kg.

(2) The degree of freedom of manipulator is 4 axes: 2 axes can be replaced so as to
investigate the controllability under different joint characteristics.

Figure 2 shows an overall assembly of the sub-scaled manipulator which can be operated on

the surface of a vertical plate simulating first wall arrangement. The major parameters of the

manipulator are summarized in Table 1 and the design outline is described in the following

paragraphs.
2-1. Measurement and control system of the manipulator

The sub-scaled ménipulator is composed of 4 joints and an end-effector: the total length
of manipulator arm is around 1.6 m, as shown in Fig. 3. For measuring the tip position of
the manipulator, a CCD camera is attached at the end-effector and can view at least two of
representative holes set on the vertical plate so as to find out the absolute position of the tip: a
number of holes with diameter of 5 mm and 50-mm pitch are allocated on the vertical plate
surface on which the manipulator is working. An image processor analyzes the absolute center
position of the two representative holes detected on a CRT screen. A personal compuler is
used as data processing system to compute position and posture of the tip from the measured
representative holes and to provide necessary commands to a robot controller for position
control of the manipulator based on the measured position information. A robot controller is
designed both to transmit the manipulator position information based on each joint angle to the
personal computer and to operate the manipulator according to the commands provided by the
personal computer as well as ordinary control function.

The manipulator is controiled by the robot controller in assistance with commands from
the personal computer. The basic procedures of the position compensating control are as
follows.

(1) To calculate actual position and inclination of the tip from the position data of the
representative holes: the position date is characterized in the image processor and
transmitted through GP-IB interface to the personal computer.

—_2 —
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Table 1 Specification of the manipulator system

Ttem Sgiﬁcation

61 : first arm revolution
Degree of freedom 87 : first arm translation
63 : second arm revolution
04 : third arm revolution

01 : over +180 degree
Range of movement 67 : stroke of 650 mm
03 : +60~-180 degree
B4 : £120 degree

01 : 10 °*/sec

Velocity 87 : 50 mm/sec

03 : 10 *fsec

64 : 20 *fsec

Lj: 800 mm

Arm length L3 : 400 mm

L3 : 400 mm

offset £, : 100 mm
offset ¢, : 85 mm

Payload 5 kgf

Weight 30 kgf

Constitution of drive 01 : DC motor + planetary gear + harmonic
drive gear

67 : DC motor + harmonic drive gear + rack
& pinion
03 : DC motor + timing belt + harmonic drive

gear
84 : DC motor + timing belt + harmonic drive

gear

Design value of tip deflection max : 20 mm (most extension to horizontal
direction)
a factor of elastic deformation is harmonic

drive and arm
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(2) To evaluate a relative deflection between the tip position estimated by the rigid mode]
using joint angle data measured in the robot controller and the actual tip position specified
by the viewing system.

(3) To learn the position compensation relation based on the evaluated deflection according to
neural network algorithm.

(4) To predict a deflection of the tip from the learned position compensation relation, to
generate the joint angle date for compensating the deflection and to transmit the joint angle

data to the robot controller as a control command.
2-2. Kinematics of the manipulator in rigid model

In principle, a tip position can be analytically obtained from angle position of each joint
by solving kinematics in a numerical model of a manipulator and hence a joint angle can be
obtained by solving the inverse kinematics when a tip position is given.

The sub-scaled manipulator is composed of 4 joints and 3 arms as shown in Fig. 3.
When the sub-scaled manipulator is assumed to be & rigid model, numerical modei of the sub-
scaled manipulator is specified and kinematics and inverse kinematics are defined as follows.
{1)Coordinates of each joint

Xo» Yo 7, :Base coordinates

X, Y. Zn:6ncoordinates

where, %, , ¥, Z, correspond to the manipulator axis, perpendicular to the
manipulator axis in thé same working plane and perpendicular to the working plane of the

manipulator. 8, indicates rotation around joints.

(2) Link parameter of the manipulator
According to the structural design of the manipulator, the characteristics matrix of the

manipulator is given as shown in Table 2.

Table 2 Link parameter of the manipulator

[ ;-1 o1 d; -9

1 ] 0° 0 01+90°
2 mj 90° £y (69) 180°
3 my 90° 0 93+90°
4 /s 0° 0 04

5 fa 0° 0 0°




where,
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aj.1 : a distance between Z,., and 7, along X,
0.1 : an angle between 7, and 7, around X,
d; : a distance between X, and X, along Z,
9; : an angle between ¥, and ¥, around Z,

(3) Kinematics of the manipulator
A general kinematics is given by “ and thus kinematics of the manipulator is

represented as follows.

i-k

cos b,

sin@. .cosa,_,

sinf, sinq,

0

—sin @, - 0 a;
cosf, cosa,, —sing,, -sing, .d
cos@, .sin@,_, cosq@,_;, cosc_,-d,

0 0 1

By substituting the link parameter of the manipulator for the above equation, following
equation is given as a numerical model of the manipulator to analyze the tip position from the

angle data of each joint.

)
T

0
gr_ 5721
I
57

0
sF a1

where,

2!‘ 12
2r 2
gr 32
gr 42

0
sT13

0
sTo3
0

T3

0
sTa3

0
shia

0
524
0
5734

0
shaq

o 0. _
sFi=stn = COS(91 +6;+ 94)

o, =—sin{6, + 0, + 8,)

S = sin(Bl +6,+ 94)
O, =1£,-cos(6, + 8, +8,)+ £, -cos(8, +0;)— (m —m,)-snb, +£,-cos,
%, =0, -sin(6, + 8, +8,)+ £, -sin(6, + 6;) + (m, —m,)-cos 6, +£, -sin 6,

0. _0. _0. _0, _0_ _0_ _0_ _0_ _
sT137 5V 3™ 5 =5 =5 = s =T =5V = 0

o _o, _
sT53=5 s = 1

(4) Inverse kinematics of the manipulator

When the tip position/posture of the manipulator is given to be (x,v,¢), an inverse

kinematics of the manipulator is also obtained from the above correlation, as follows.
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x=1,-cos(8, +6,+6,)+{,-cos(8, + 6;) + £, - cos 6, — (m, —m,)-sin 6,
y=¢,-sin(8,+ 6, +6,)+ ¢, -sin(, + 6,) + £, -sin 6, +(m, — m; )-cos 6,
cos¢ =cos(9l +0,+ 6'4) , sing =sir11(91 +6,+8,)

2-3. Mechanical characteristics of the manipulator

As mentioned previously, the sub-scaled manipulator is composed of 4 joints, 3 arms and

an end-effector: the weight distribution of each part of the manipulator is listed in Table 3.

Table 3 Weight of each part of manipuiator

First axis 11 kg ]l;:cond arm 4.81 kg
Second axis 1.4 kg Third arm 0.19 kg
Third axis 4.25kg Forth arm 0.15 kg
Forth axis 2.66 kg End effector 431 kg
|| Total weight 29.27 kg

In order to investigate the controllability for position compensation, mechanical
characteristics such as deflection, the angle of deflection, the play of joints and natural
frequency have been measured prior to the analytical simulation and benchmark experiments.

(1) Deflection and backlash measurement

For the measurement of deflection, the angle of deflection and the play of joints, static
loads up to * 5 kg are applied to each part of the manipulator: the loading points (P1 ~ P13) are
indicated in Fig. 3. The measured characteristics are summarized in Table 4 and 5. From
those results, it has been confirmed that the maximum deflection of the manipulator tip is
approximately 20 mm under 5-kg loading as expected in the structural design. The spring
constants of the major parts such as harmonic drive and linear motion guide are different in
positive and negative loading. In particular, the spring constant of harmonic drive in positive
loading is much smaller than that in negative loading: this is due to a balance of dead weight
canceling/accelerating by the applied loads and stiffness. The backlashes of joints are ranging
from 104 to 10-3 rad,

(2) Natural frequency
The natural frequency of the manipulator is measured by hitting the position of end-

effector as a function of payload (0.2 ~ 5 kg) and No.2 arm length (160 ~ 800 mm): this
corresponds to a total arm length from 960 to 1600 mm. In this experiment, acceleration

— 6 —
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sensors are set on the tip and the manipulator arm is positioned in the horizontal posture. The
experimental results are shown in Table 6. The natural frequency of the manipulator is
ranging from 9.93~12.41 Hz in case of a payload of 0.2 kg and 3.60~3.86 Hz at 5-kg
payload.

Table 4 Maximum deflection and a play of joint

Maximum deflection
Measuring point Positive load Negative load Looseness

(mm/kg) _ (mm/kg) (mm)
Py 0.15/4.5 -0.072/-4.9 0.06
Py 0.11/4.5 -0.067/-4.9 0.03
P3 0.12/4.5 -0.072/-4.9 0.03
Py 1.46/4.4 -1.05/-5.1 0.28
Ps 1.63/4.4 -1.21/-5.1 0.28
Pg 1.60/4.6 -1.25/-5.3 0.35
P 1.88/4.6 -1.47/-5.3 0.35
Pg 4.44/4.6 -4,25/-5.3 0.58
Py 3.73/4.3 : -3.33/-4.7 0.53
Pio 4.96/4.3 -4.56/-4.7 0.64
Pig 5.80/4.3 -5.47/-4.7 0.53
Pys 17.5/5.1 -14.9/-4.8 2.22
P13 17.5/4.8 -16.9/-4.6 2.08
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Table 5 Backlash and spring constants

Spring constant Spring constant Backlash
(gsitive area) (negative area)
H.D.* of 1st axis 1.62x104 rad/kg-m | 9.73x10% rad/kg-m | 5.6x10* rad.
L.M.** of 2nd axis 3.26x104 rad/kg-m | 2.57x10*4 rad/kg-m | 3.8x10 rad.
Deflection of 2nd arm 0.176 mm/kg-m 0.132 mm/kg-m
Deflected angle of 2nd arm 1.57x10-4 radfkg-m 1.47x10 rad/kg-m
H.D. of 3rd axis 7.48x104 rad/kg-m | 5.43x10% rad/kg-m | 5.7x10 rad.
Deflection of 3rd arm 0.73 mm/kg-m (.68 mm/kg-m
Deflected angle of 3rd arm | 2.83x10-3 rad/kg-m _ | 3.04x1073 rad/kg-m
H.D. of 4th axis 4.70x10°3 rad/kg-m | 4.30x103 rad/kg-m | 1.4x 10-3 rad.
Deflection of 4th arm 6.70 mm/kg-m 6.58 mm/kg-m
Deflected angle of 4th arm | 1.54x10-2 rad/kg-m | 1.74x1072 rad/kg-m

* Harmonic Drive
*% 1 jiner Motion Guide

Table 6 Natural frequency of manipulator

No. Payload Posture of manipulator Natural
frequency
(kg) 01 (deg.) | O2(mm) | 63 (deg.) | 64 (deg.) (Hz)
1 0.2 0.0 160.0 0.0 0.0 12.4]
2 0.2 0.0 400.0 0.0 0.0 11.85
3 0.2 0.0 800.0 0.0 0.0 9.93
4 5.0 0.0 160.0 0.0 0.0 3.86
5 5.0 0.0 400.0 0.0 0.0 3.77
6 5.0 0.0 800.0 0.0 0.0 3.60

3. CONTROL SYSTEM FOR POSITION COMPENSATION

3-1. Qutline of position compensation

In general, an actual manipulator behaves in a different manner from expectation of the
rigid model due to fabrication errors such as the play of joints, misalignment, deflection and

torsion of manipulator. Accordingly, it is essential to develop a control method for

“8_
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Table 5 Backlash and spring constants

Spring constant Spring constant Backlash
(positive area) (negative area)
H.D.* of 1st axis 1.62x104 rad/kg-m | 9.73x10-4 rad/kg-m [ 5.6x10# rad.
L.M.* of 2nd axis 3.26x10% rad/kg-m | 2.57x104rad/kg-m | 3.8x104 rad.
Deflection of 2nd arm 0.176 mm/kg-m 0.132 mm/kg-m
Deflected angle of 2nd arm 1.57x104 rad/kg-m | 1.47x10 rad/kg-m
H.D. of 3rd axis 7.48x104 rad/kg-m | 5.43x10% rad/kg-m | 5.7x10°4 rad.
Deflection of 3rd arm 0.73 mm/kg-m 0.68 mm/kg-m
Deflected angle of 3rd arm | 2.83x10-3 rad/kg-m | 3.04x1073 rad/kg-m
H.D. of 4th axis 4.70x103 rad/kg-m | 4.30x103 rad/kg-m | 1.4x10-3 rad.
Deflection of 4th arm 6.70 mm/kg-m 6.58 mm/kg-m
Deflected angle of 4th arm 1.54x102 rad/kg-m | 1.74x102 rad/kg-m

* Harmonic Drive
**  Liner Motion Guide

Table 6 Natural frequency of manipulator

No. Payload Posture of manipulator Natural
frequency
(kg) 61 (deg) | 6 (mm) | 63 (deg) | O4(deg) (Hz)
1 0.2 0.0 160.0 0.0 0.0 12.41
2 0.2 0.0 400.0 0.0 0.0 11.85
3 0.2 0.0 800.0 0.0 0.0 9.93
4 5.0 0.0 160.0 0.0 0.0 3.86
5 5.0 0.0 400.0 0.0 0.0 3.77
6 5.0 0.0 800.0 0.0 0.0 3.60

3. CONTROL SYSTEM FOR POSITION COMPENSATION

3-1. Outline of position compensalion

In general, an actual manipulator behaves in a different manner from expectation of the
rigid model due to fabrication errors such as the play of joints, misalignment, deflection and
torsion of manipulator. Accordingly, it is essential to develop a control method for

wﬁ8_
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compensating such deflection and torsion caused by the dead weight of manipulator, resulting
in accurate and quick in-vessel maintenance using a flexible manipulator.

In order to compensate a position error theoretically, it is required to establish a detailed
numerical kinematics model representing the flexible manipulator characteristics and to analyze
an inverse kinematics of the detailed model. However, it is hard to establish such numerical
model with non-rigid functions in an actual flexible manipulator. Even if such a numerical
model is defined, it is impractical to solve analytically the complex inverse Kinematics using
large and high speed computer system with wasting an enormous time.

An approximate prediction has been proposed as a practical method in stead of the above
numerical method so as to compensate the deflection with a reasonable precision. In this
method, the basic procedures are as follows.

(1) A deflection of manipulator is modeled as non-linear characteristics.

(2) A target position of manipulator is renewed according to the predicted deflection from the
non-linear model.

(3) Joint angles of manipulator are obtained from an inverse kinematics of the rigid model so
as to move the manipulator to the renewed position.

There are several possible modeling methods to predict a non-linear deflection. A neural
network is a candidate method with attractive features such as simplicity for high dimensional
system and adaptability to interface variation, although it has disadvantages in learning duty and
difficulty of analyses on internal process. The following paragraphs describe a position

compensating control system based on a neural network for predicting a deflection.

3-2. Control algorithm for position compensation

Figure 4 shows a typical block diagram of position compensating control based on a
neural network. A nominal value of joint angle ( 8,) is calculated from a inverse kinematics of

the rigid model in order to satisfy a target value (X, ) of the tip position/posture. A detlection (
A,, ) of manipulator is estimated from a neural network predictor when a manipulator is moved
along the nominal angle ( 6,) calculated. Based on the predicted deflection value( A, ) and the
following equation, a final position/posture (x") of the tip is renewed so as to minimize an
error between a target value and actual value. A final joint angle (8" ) of manipulator can be

obtained again from an inverse kinematics of the rigid model according to the final

position/posture (x").

X' =x,~4,(6,)
Since this compensating procedure is iterative, the accuracy of position/posture control is
improved with increase in iteration within the following constraints.
(1) An angle of displacement vectors between actual manipulator and rigid model is less than
60 degree if the both displacement vectors are the same order of magnitude.

_9_
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(2) A displacement vector of actual manipulator is less than 2 times of rigid model
displacement if the both displacement vector is oriented in the same direction.

4. ANALYTICAL SIMULATION

4-1. Simulation scheme

In order to verify the basic feasibility of a neural network control for position
compensation, an analytical simulation based on the design features of the sub-scaled
manipulator has been conducted. Since the manipulator is composed of 4 joints and 3 arms
supported by the first joint, the deflection of the manipulator arm can be estimated from a
numerical model with a beam and canti-lever type support.

In this simulation, a working space and a target position of the manipulator tip is assumed
as shown in Fig. 5 and the No.2 arm length is fixed to be 600 mm. In such a situation, a
number of joint angle data is selected at random and an error between the predicted tip position
and the estimated tip position from the rigid model is calculated so that compensating relation
between joint angle and error of the tip position is learned based on a neural network . The

detailed simulation processes are described below.

(1) To specify a target position/posture data : x, = (x,,¥,,9,)-

(2) To calculate the corresponding joint angle from inverse kinematics of rigid model : 6,

(3) To predict a deflection( A,(8,,)) and a tip position by neural network (X,(6,,))

(4) To renew the target position/posture : X, = X, = 4,(8,)

(5) To calculate a joint angle (6,,) for the renewed target from inverse kinematics of rigid
model.

(6) To calculate a tip position xl(Bﬂ) when a joint angle is (le)-

where,

A,(6,,) :apredictive deflection at nominal joint angle 6,,.

x,(8,,) :atip position of actual model at nominal joint angle 6, .
X, : a renewed target position/posture for compensating control.
x,(8,)  :atip position of actual model at a renewed joint angle (6,,).

4-2. Simulation results

(1) Sensitivity on prediction error

In a neural network, the prediction precision will depend on the number of data set and
unit of the network layer. In order to clarify such dependency and to optimize the neural
network conditions, the fitting precision is investigated as a function of the number of data set

and unit of the neural network layer.



JAERI-Tech 94-022

(2) A displacement vector of actual manipulator is less than 2 times of rigid model
displacement if the both displacement vector is oriented in the same direction.

4. ANALYTICAL SIMULATION

4-1. Simulation scheme

In order to verify the basic feasibility of a neural network control for position
compensation, an analytical simulation based on the design features of the sub-scaled
manipulator has been conducted. Since the manipulator is composed of 4 joints and 3 arms
supported by the first joint, the deflection of the manipulator arm can be estimated from a
numerical model with a beam and canti-lever type support.

In this simulation, a working space and a target position of the manipulator tip is assumed
as shown in Fig. 5 and the No.2 arm length is fixed to be 600 mm. In such a situation, a
number of joint angle data is selected at random and an error between the predicted tip position
and the estimated tip position from the rigid model is calculated so that compensating relation
between joint angle and error of the tip position is learned based on a neural network . The

detailed simulation processes are described below.

(1) To specify a target position/posture data : X, =(x,,7,,0,)-

(2) To calculate the corresponding joint angle from inverse kinematics of rigid model : 8,

(3) To predict a deflection( A, (8,,)) and a tip position by neural network (X4(0))

(4) To renew the target position/posture : X, =x, — 4y(8,,)

(5) To calculate a joint angle ( Gd]) for the renewed target from inverse kinematics of rigid
model.

(6) To calculate a tip position xl(Gdl) when a joint angle is ( GJI).

where,

A,(8,,) :apredictive deflection at nominal joint angle 6,,.

x,(6,,) :atip position of actual model at nominal joint angle 6,,.
X, - a renewed target position/posture for compensating control.
xl( Bdl) : a tip position of actual model at a renewed joint angle (Bdl).

4-2. Simulation results

(1) Sensitivity on prediction error

In a neural network, the prediction precision will depend on the number of data set and
unit of the network layer. In order to clarify such dependency and to optimize the neural
network conditions, the fitting precision is investigated as a function of the number of data set

and unit of the neural network layer.
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Table 7 shows the dependency of fitting precision on the number of unit. In this
analysis, the number of unit is varied from 5 to 15 and total number of data set is fixed to be
50. From this aﬁalysis, a minimum number of the unit is selected to be 10. Based on this, a
prediction ability is investigated with a variety of the number of data set ranging from 30 to 30.
The results are shown in Table 8 and it is concluded that at least 40 pair of data set is required
to predict a deflection within a precision in a range of 1 mm.

Table 7 Dependency of fitting precision on number of unit

Number of unit 5 10 15
under 0.04 0.05

* Normalized error

under 0.07

Fitting precision”

Table 8 Dependency of prediction ability on number of data set

Number of leaming data 30 40 50
Maximum X (mm) 3.46 1.72 1.66
prediction Y (mm) 2.30 1.51 0.97
error ¢ (deg.) 0.046 0.030 0.032
(2) Compensation ability

According to the neural network predictor defined from the above sensitivity study, a
simulation on position compensation control of the manipulator tip is carried out. In this
simulation, the target tip positions are fixed at the positions shown in Fig. 5 (b) and the target
tip angle is specified to be O degree for all cases.

Table 9 shows the simulation results as a function of number of learning data set. It is
found from Table 9 that a deflection between the target position and the actual trip position of
the manipulator can be significantly decreased by using the neural network predictor and the
prediction precision is increased with increase in the number of learmning data set: in case of the
learning data set of 40, the deflection of the tip position and angle against the target values can
be compensated within an accuracy of 1 mm and 10-2 degree, respectively.
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Table 9 Simulation results of position/posture compensation

Rigid model Neural network simulation
Target simulation Number of Number of Number of
position without learning data set learning data set learning data set
compensation [ (30) (40) (50)
1 9.93 0.846 0.373 0.338
2.00 -0.117 5.48x104 -2.52x1072
2 18.2 3.87 0.940 1.13
2.51 -0.135 -2.45x10-3 -4.64x10-3
3 15.5 3.68 0.756 0.770
2.40 -0.118 9.92x-104 2.34x10-2
4 153 3.52 0.547 0.553
2.41 -0.104 -3.61x104 -1.71x102
5 20.0 3.47 0.690 0.176
2.61 -0.151 -1.66x10°2 -2.37x10°2

Upper value: position precision (mm), Lower value: angle precision (deg.)

5. BENCHMARK EXPERIMENTS

In order to validate the simulation results, benchmark experiments using the sub-scaled
manipulator are conducted with the same conditions as those of the simulation. In the
benchmark experiments, two region, A and B, are selected as the working space of the
manipulator tip as shown in Fig. 6. In the region A, the manipulator arms have to be
extended with horizontal posture, so that a higher deflection of the tip is expected more than the
case of the region B.

Table 10 shows the benchmark experiment results obtained in each working space,
together with target positions and angles of the manipulator tip. In Table 10, the rigid model
control indicates the results without compensation by the neural network predictor and the
manipulator is just moved along the joint angles obtained from inverse kinematics of the rigid
model. In case of the neural network control, those tip positions and angles obtained from the
rigid model are compensated with the neural network predictor. As a result, it has been
demonstrated that the neural network predictor gives significant improvement on the
position/posture control of a flexible manipulator, as expected in the simulation. By comparing
the neural network control with the rigid model control, the control precision of the tip position

and angle is increased in order of a figure.
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Table 9 Simulation results of position/posture compensation

Rigid model Neural network simulation
Target simulation Number of Number of Number of
position without leaming data set learning data set learning data set
compensation | (30) (40) (50)
1 9.93 0.846 0.373 0.338
2.00 -0.117 5.48x104 -2,52x10°2
2 18.2 3.87 0.940 1.13
2.51 -0.135 -2.45%x10-3 -4.64x1073
3 15.5 3.68 0.756 0.770
2.40 0.118 9.92%104 2.34x10-2
4 15.3 3.52 0.547 0.553
2.41 -0.104 -3.61x104 -1.71x10°2
5 20.0 3.47 0.690 0.176
2.61 -0.151 -1.66x1072 -2.37x10°2

Upper value: position precision (mm), Lower value: angle precision (deg.)

5. BENCHMARK EXPERIMENTS

In order to validate the simulation results, benchmark experiments using the sub-scaled
manipulator are conducted with the same conditions as those of the simulation. In the
benchmark experiments, two region, A and B, are selected as the working space of the
manipulator tip as shown in Fig. 6. In the region A, the manipulator arms have to be
extended with horizontal posture, so that a higher deflection of the tip is expected more than the
case of the region B.

Table 10 shows the benchmark experiment results obtained in each working space,
together with target positions and angles of the manipulator tip. In Table 10, the rigid model
control indicates the results without compensation by the neural network predictor and the
manipulator is just moved along the joint angles obtained from inverse kinematics of the rigid
model. In case of the neural network control, those tip positions and angles obtained from the
rigid model are compensated with the neural network predictor. As a result, it has been
demonstrated that the neural network predictor gives significant improvement on the
position/posture control of a flexible manipulator, as expected in the simulation. By comparing
the neural network control with the rigid model control, the control precision of the tip position

and angle is increased in order of a figure.
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Table 10 Benchmark experiment results on position control

Working Target position/angle Rigid model control Neural network control

space No. | Xmm | Youm | 0deg. | Xmm | Ymm | Odeg. | Xmm | Ymm | Odeg.

1 1450 | -150 -45 | 1444.1 [ -161.6 | -46.2 }1450.4 | -150.8 | -44.9

A 2 | 1550 0 22 |1545.8| -15.5 | -24.0 | 1550.4| -1.1 | -22.0

3 | 1550 | 150 -6 |1448.5] 1339 | -9.8 15513 ] 1483 | -6.3

4 | 1000 | -500 | -100 |1002.1]-505.1 | -99.0 ]1000.0|-500.5 | -99.9

B 5 1150 | -350 =70 | 1147.3 ] -355.0 | -70.3 ]1149.5 | -350.5 | -70.0

6 | 1300 | 200 | -61 [1295.8]-207.1] -61.7 11299.8|-200.5 | -61.1

6. CONCLUSIONS

A sub-scaled model of flexible manipulator has been fabricated in order to develop an
autonomous position-posture control method required for the in-vessel maintenance such as
viewing, inspection and limiter handling in fusion experimental reactors. The design
parameters of the manipulator are chosen from the current ITER design concept and the
mechanical characteristics such as deflection and natural frequency have been measured.

A new position control method using a combination of neural network predictor with a
rigid inverse kinematics has been proposed so as to simplify a kinematics modeling, to enable
quick position compensation in stead of ordinary large matrix compensation, and to be
applicable to a wide variety of manipulator characteristics. Through analytical simulation and
benchmark experiments using the flexible manipulator, it has been concluded that the new
position control method gives significant improvement in control performance with high
precision in order of a figure. In addition, further optimization can be possible by adding other
non-linear predictors such as radial basis function and fuzzy modeling.

As a whole, the basic feasibility of the neural network control has been quantitatively
demonstrated and the control precision for compensating a deflection of a flexible manipulator
has been qualified. Further optimization and qualification are being planned including a mock-

up test of a 1/1-scaled manipulator.
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Table 10 Benchmark experiment results on position control

Working Target position/angle Rigid model control Neural network control

space No | Xmm | Yrnm | 6deg. | Xmm | Yo | Odeg. | Xmm | Y | Odeg.

1 1450 | -150 -45 [1444.1|-161.6 { -46.2 | 1450.4 ]| -150.8 | -44.9

A 2 | 1550 0 -22 | 1545.8| -15.5 | -24.0 | 15504 | -1.1 | -22.0

3 | 1550 | 150 -6 1448.5] 133.9 | 9.8 |1551.3] 148.3 | -6.3

4 | 1000 | -500 { -100 |1002.1-505.1 ] -99.0 | 1000.0 | -500.5 | -99.9

B 5 1150 [ -350 -70 | 1147.3 {-355.0 | -70.3 | 1149.5 | -350.5 | -70.0

6 { 1300 | 200 | -61 [1295.8|-207.1 | -61.7 [1299.8 |-200.5 | -61.1

6. CONCLUSIONS

A sub-scaled model of flexible manipulator has been fabricated in order to develop an
autonomous position-posture control method required for the in-vessel maintenance such as
viewing, inspection and limiter handling in fusion experimental reactors. The design
parameters of the manipulator are chosen from the current ITER design concept and the
mechanical characteristics such as deflection and natural frequency have been measured.

A new position control method using a combination of neural network predictor with a
rigid inverse kinematics has been proposed so as to simplify a kinematics modeling, to enable
quick position compensation in stead of ordinary large matrix compensation, and to be
applicable to a wide variety of manipulator characteristics. Through analytical simulation and
benchmark experiments using the flexible manipulator, it has been concluded that the new
position control method gives significant improvement in control performance with high
precision in order of a figure. In addition, further optimization can be possible by adding other
non-linear predictors such as radial basis function and fuzzy modeling.

As a whole, the basic feasibility of the neural network control has been quantitatively
demonstrated and the control precision for compensating a deflection of a flexible manipulator
has been qualified. Further optimization and qualification are being planned including a mock-
up test of a 1/1-scaled manipulator.
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