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In the engineering design of a negative ion source for the ITER-NBI system, one
of the most important issues is thermo-mechanical design of acceleration grids, since
excessive heat loading onto the acceleration grid could cause melting, thermal fatigue, and
thermal deformation followed by beam distortion. In the present paper, thermo-mechanical
characteristics of the acceleration grid were analyzed using a three-dimensional finite
element code, ABAQUS, to evaluate mechanical reliability of the acceleration grid and the
beam distortion. Numerical simulation indicated that the highest temperature would be
about 300 °C, and that maximum von Mises equivalent stress would be about 150 MPa for
a heat loading of 1.5 MW; thus, no melting on the acceleration grid would occur, while
local plastic deformation would happen. To avoid the plastic deformation, it would be
necessary to decrease the heat loading to less than 1 MW. Numerical simulation also
indicated that maximum aperture-axis displacement due to the thermal deformation would
be about 0.7 mm for the heat loading of 1.5 MW. From thin lens theory of beam optics,
beamlet deflection angle by the aperture-axis displacement was estimated to be about 2

mrad, which is within the requirement of the engineering design of the ITER-NBI system.

Keywords: ITER, NBI, Acceleration Grid, Heat Loading, Numerical Simulation,
Thermal Deformation, Thin Lens Theory, Deflection Angle
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1. Introduction

In nuclear fusion research, neutral beam injection (NBI) has been a successful
scheme to heat magnetically confined plasmas.”*® It is also a promising candidate to drive
plasma current as well as to heat a plasma in International Thermonuclear Experimental
Reactor (ITER). The ITER-NBI system is designed to deliver 50 MW of 1MeV D° with
three injector modules.” Each module contains a single negative ion source, which
generates IMeV D" beams of 40 A for a duration longer than 1000 sec.”® The negative ion
source consists of a plasma generator, an extractor, and an accelerator, as shown in Fig. 1.1.
Negative ions produced in the plasma generator are extracted with the extractor, and then
accelerated up to 1 MeV in the accelerator.

During’:f‘iﬁe acceleration of the negative ions, some electrons are stripped from D’
by collision with residual gas of D,. Acceleration of the stripped electron not only reduces
acceleration system efficiency, but also results in heat loading onto acceleration grids. In
the engineering design of the negative ion source for the ITER-NBI system, one of the most
important issues is the heat loading onto the acceleration grids. According to a three-
dimensional stripping loss calculation,® first acceleration grid (A1G) will be subjected to a
heat loading as high as 1.5 MW. The heat loading could cause serious problems, such as
melting and thermal deformation of the grid, leading to water leaks and beam distortion. It
is, therefore, necessary to evaluate thermo-mechanical characteristics of the acceleration
grid for the engineering design of the ITER negative ion source.

The purpose of the present study is to evaluate both mechanical reliability of the
acceleration grid and beam distortion due to thermal deformation. For the purpose, we
analyze the acceleration grid using a three-dimensional finite element code, ABAQUS. In
numerical simulation, we use two kinds of computational models: “local model” and “one-
half model”. Using the “local model”, we calculate a part of the acceleration grid in detail
to evaluate the mechanical reliability. Using the “one-half model” that is one half of a
single segment of the acceleration grid, we calculate the thermal deformation of the
acceleration grid to estimate aperture-axis displacement followed by the beam distortion. In
the one-half model analysis, a unique method for modeling aperture regions of the grid is
proposed; the method deals with the aperture regions as a material with homogeneous
stiffness.

In the present paper, after a brief description of the negative ion source for the
ITER-NBI system, temperature and stress distributions are calculated accurately using the
local model. Then, the thermal deformation of the whole acceleration grid is estimated

using the one-half model. On the basis of obtained results, beamlet deflection due to the
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thermal deformation is evaluated from thin lens theory of beam optics.

2. Negative lon Source for the ITER-NBI System

The negative ion source for the ITER-NBI system is designed to produce 1 MeV,
40 A, D" ion beams with a current density of 20 mA/cm® for longer than 1000 sec. The
negative ion source consists of a cesium-seeded-volume-production-type plasma generator,
a multi-aperture extractor, and a multi-aperture multi-grid (MAMuG) accelerator.

The accelerator is composed of five grids forming five-acceleration stages. Each
acceleration grid is divided into five segments, whose dimensions are 756 mm long, 337.5
mm wide, and 20 mm thick, as shown in Fig. 2.1. A schematic drawing of the single
segment is shown in Fig. 2.2. The segment is composed of five sub-segments. The sub-
segment has 52 apertures of 16 mm in diameter. Between every row of acceleration
apertures, there exist rectangular channels for cooling water and permanent magnets.

3. Mechanical Reliability of the Acceleration Grid

3.1 Computational model

Figures 3.1 and 3.2 show the “local model” adopted in view of symmetry. The
geometry of the local model is the same as that of the acceleration grid for the ITER-NBI
system. The dimensions of the local model are 378 mm long, 11 mm wide and 20 mm thick.
Figure 3.3 is a close-up view of the local model. Cooling water flows through a rectangular
channel of 4.5 mm high and 3.5 mm wide. Beneath the cooling channel, there is a room for
inserted permanent magnets, whose dimensions are 11 mm high and 3.5 mm wide. The
material of the acceleration grid is oxygen-free-high-conductivity copper (OFHC-Cu).

In section 3, steady-state temperature distribution is calculated using material data
of Tables 3.1 and 3.2. Subsequently, elastic thermal stress distribution is evaluated based on

the obtained temperature distribution.

Table 3.1 Density and specific heat of OFHC-Cu

Density [ kg/m’] 8780.0
Specific heat [ J/(kg - K) ] 425.0
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Table 3.2 Thermal conductivity of OFHC-Cu

Temperature [ °C ] Thermal conductivity [ W/(m - K) ]
0.0 399.4
27.0 398.0
327.0 383.0
527.0 371.0

3.2 Cooling conditions in thermal analysis

Figure 3.4 shows the temperature rise of cooling water as a function of axial flow
velocity at various heat-loading conditions. Heat loading onto a single acceleration grid was
assumed to range from 0.5 MW to 2 MW,

We assumed an axial flow velocity of 10 m/sec as a cooling condition, since
temperature rise of the cooling water is required to be less than 40 °C, which is an ITER
design criterion. The flow velocity of 10 m/sec corresponds to 660 liter/min per a single

U]

acceleration grid. Using empirical equation, ” a heat transfer coefficient was estimated to be

59,000 W/(m’ - K).
3.3 Thermal analysis using local model

Figures 3.5 - 3.7 show finite element mesh and coordinate system of the local
model. Coolant flow direction is parallel to z-axis and perpendicular to x-axis. Beam axis is
parallel to y-axis.

In the thermal analysis, initial temperature of the grid was assumed to be 30 °C.
Boundary conditions are shown in Fig. 3.8. Temperature rise of the cooling water along
flow direction in the local model should be half magnitude of the real one, since length of
the local model is half of that of the ITER acceleration grid. If inlet-water temperature is 40
°C and a heat loading is 1.5 MW, bulk temperature of cooling water through the
acceleration grid increases from 40 °C to 73.2 °C. Thus, in the present analysis, bulk
temperature of the local model was assumed to increase linearly from 56.6 °C to 73.2 °C.

The heat flux was assumed to concentrate on the surface around apertures, as
shown in Fig. 3.9. The heated region is divided into two parts: i.e., region A and region B.
The ratio of area of the regions is 10.8 % : 89.2 %. In the analysis, the ratio of the heat flux
on each region was varied; three kinds of heat flux distributions, case 1, case 2, and case 3

were examined.

i) Case 1 : The ratio of the heat flux is 50 % : 50 %
For the heat loading of 1.5 MW, heat flux on the region A is 2,227 W/cm’ and that

_3_
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on the region B is 271 W/cm’,

ii) Case 2 : The ratio of the heat flux is 100 % : 0 %.
For the heat loading of 1.5 MW, heat flux on the region A is 4,454 W/cm’ and that
on the region B is 0 W/cm’.

iii) Case 3 : The ratio of the heat flux is 10.8 % : 89.2 %.
For the heat loading of 1.5 MW, heat flux on the region A and the region B is 483
W/em?.

From the viewpoint of prevention of melting, the assumption of case 2 is most
severe; on the other hand, the assumption of case 3 is most mild.

Figures 3.10 - 3.12 show temperature distributions of case 1 for the heat loading of
1.5 MW. Temperature distributions of case 2 and case 3 are shown in Figs. 3.13 and 3.14,
respectively. Figure 3.15 shows the highest temperature as a function of the ratio of the heat
flux on the region A. For the heat loading of 1.5 MW, maximum temperature is below
melting point of OFHC-Cu (1084.5 °C).

The magnitude of heat loading was changed for the heat flux distribution of case 1.
Figures 3.16 and 3.17 show temperature distributions for the heat loading of 1 MW and 2
MW, respectively. The highest temperature as a function of heat loading is shown in Fig.

3.18. The highest temperature increases in proportion to heat loading.

3.4 Elastic thermal stress analysis using local model

Based on the obtained temperature distribution, elastic thermal stress distribution
and deformation of the local model were calculated. The reference temperature of the local
model, which is used to evaluate thermal stress, was assumed to be 30 °C. Boundary
conditions are shown in Fig. 3.19. Mechanical properties of OFHC-Cu are summarized in
Table 3.3.

Figure 3.20 shows finite element mesh of the local model, indicating node points
and their displacement. Thermal deformation compared with the original is shown in Figs.

3.21 and 3.22. Note that the deformation is enlarged by a factor of 40 and 30, respectively.

Table 3.3 Mechanical properties of OFHC-Cu

Temperature | Elastic Modulus | Poisson’s ratio | Coefficient of Thermal Expansion
[°C] [ GPa] [ -10°/K]
20.0 82.4 0.33 154
100.0 78.5 0.33 15.9
200.0 73.5 0.33 16.6
400.0 68.6 0.33 18.3
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Maximum displacement of about 1 mm occurs at central part of the segment of the
acceleration grid.

Figure 3.23 shows displacement of the central part, node 54922, in the y and z
directions as a function of the ratio of the heat flux on the region A. The central-part
displacement in the z direction is relatively independent of the heat flux distribution, while
the displacement in the y direction is dependent on the heat flux distribution.

Figure 3.24 is a plot of the displacement as a function of heat loading, when the
heat flux distribution is case 1. As can be seen from the figure, the displacement in both y
and z directions increases linearly with heat loading. Figures 3.25 - 3.27 show von Mises
equivalent stress distributions for the heat loading of 1.5 MW, when the heat flux
distribution is case 1. Figures 3.28 and 3.29 are close-up views of von Mises equivalent
stress distributions for the heat flux distribution of case 2 and case 3. Maximum von Mises
equivalent stress as a function of the ratio of the heat flux on the region A is shown in Fig.
3.30. Maximum von Mises equivalent stress changes with heat flux distribution. Figure
3.31 shows yield stress of annealed OFHC-Cu as a function of temperature. ® ® For the
heat loading of 1.5 MW, maximum von Mises equivalent stress exceeds the yield-stress
level of the annealed OFHC-Cu.

The magnitude of heat loading was changed for the heat flux distribution of case 1.
Figures 3.32 and 3.33 show von Mises equivalent stress distribution for the heat loading of
1 MW and 2 MW. Figure 3.34 shows maximum von Mises equivalent stress as a function
of heat loading. The figure indicates that maximum von Mises equivalent stress increases
with heat loading, exceeding the yield-stress level for the heat loading higher than 1 MW.
Figures 3.35 - 3.40 show the stress components for the heat loading of 1.5 MW. These

results indicate that thermal stress around apertures in the z direction is most severe.

3.5 Discussion

The thermal analysis indicated that the heat loading of even 1.5 MW would not
cause localized melting of OFHC-Cu. However, elastic thermal stress analysis indicated
that maximum von Mises equivalent stress would exceed the yield-stress level even at the
heat loading of 1 MW. Cyclic stress higher than the yield stress eventually leads to low-
cycle fatigue, resulting in failure. To avoid the failure, it is required to decrease the heat
loading to less than 1 MW per an acceleration grid.

In the analysis, three types of heat flux distribution were examined; and then the
von Mises equivalent stress distribution as well as temperature distribution proved to
change greatly with the heat flux distribution. For more accurate analysis, it is desirable to
measure the heat flux distribution onto the acceleration grid experimentally. For instance, it

_5.._
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can be measured experimentally by passing a thermal probe around an aperture of the grid

in a couple of radial directions.

4. Beam Distortion due to Thermal Deformation

4.1 Computational model

The geometry of the acceleration grid is too complicated to analyze whole region
of the acceleration grid accurately, so that we use a relatively large computational model of
“one-half model”. While the local model is just a part of the acceleration grid, the one-half
model is one half of a single segment of the acceleration grid. Using the one-half model, we
evaluate the thermal deformation of the segment, which may result in the beam distortion.

Figure 4.1 shows the one-half model whose dimensions are 756 mm long, 168.75
mm wide and 20 mm thick. Figure 4.2 shows detailed structure of the one-half model.
Cooling water flows through seven cooling channels, which are 4.5 mm high and 3.5 mm
wide. To reduce computational loading, channels for permanent magnets were ignored in
the one-half model. Finite element mesh of the one-half model is shown in Fig. 4.3 with
coordinate system. Similar to the local model analysis, coolant flow direction is parallel to
z-axis and perpendicular to x-axis. Beam axis is parallel to y-axis.

Figure 4.4 shows “four-aperture part”, which is a basic unit of aperture region. In
the one-half model, aperture regions were simplified; they were supposed to be made of a
homogeneous material that has equivalent stiffness of the aperture region.

In section 4, steady-state thermal analysis of the one-half model is first performed
to obtain temperature distribution. Secondly, the mechanical properties of the “four-
aperture part” are evaluated using its original geometry by three-dimensional simulation.
Next, thermal deformation of the grid is calculated based on the obtained temperature
distribution and the evaluated mechanical properties of the “four-aperture part”. Finally,

beamlet deflection due to the thermal deformation is evaluated using thin lens theory.

4.2 Thermal analysis using one-half model

In the thermal analysis, thermal properties of the four-aperture part were assumed
to be those of OFHC-Cu. Initial temperature of the model was assumed to be 30 °C. Figure
4.5 shows boundary conditions in the thermal analysis. Coolant bulk temperature was
assumed to increase linearly from 40 °C in inlet to 73.2 °C in outlet. Heat transfer
coefficient was assumed to be 59,000 W/(m’ - K). Uniform heat flux was assumed to be

_6_
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injected on rectangular areas corresponding to the surfaces of the four-aperture part. The
dimensions of the rectangular area are 80 mm long and 18.5 mm wide. The heat flux of
3.12 MW/m’ corresponds to the total heat loading of 1.5 MW. Figures 4.6 and 4.7 show the
temperature distributions for the heat loading of 1.5 MW. Temperature of almost all the

acceleration grid is higher than 60 °C, and temperature near outlet is about 90 °C.

4.3 Mechanical properties of “four-aperture part”

To evaluate the mechanical properties of the four-aperture part as a unit, shown in
Fig. 4.4, three-dimensional elastic simulations were performed. Figure 4.8 shows the finite
element mesh of the four-aperture part with coordinate system. The four-aperture part is 80
mm long, 18.5 mm wide and 20 mm thick. Boundary conditions for elastic stress analysis
are shown in Figs. 4.9, 4.11, and 4.13. Pressure of 100 MPa was assumed in each case. For
example, in Fig. 4.9, the pressure was applied on the y’z’ plane at x’=80 mm along x’-axis.

Figures 4.10, 4.12, and 4.14 show deformations of the four-aperture part,
indicating elastic modulus in each direction. Poisson’s ratio in each direction was also
calculated from each displacement of the model. Evaluated equivalent elastic modulus and

poisson’s ratio of the four-aperture part are summarized in Tables 4.1 and 4.2.

Table 4.1 Evaluated elastic modulus of the four-aperture part

Temperature | Elastic Modulus x’-x’ Elastic Modulus y’-y’ | Elastic Modulus z’-z’
[°C] [ GPa] [ GPa ] [ GPa ]
50.0 19.7 23.9 81.0
100.0 19.1 23.2 78.7
200.0 17.9 21.7 73.5
300.0 17.3 223 71.2
Table 4.2 Evaluated poisson’s ratio of the four-aperture part
Temperature | Poisson’s ratio x’-y’ Poisson’s ratio x’-z’ Poisson’s ratio y’-z’
[°C]
50.0 0.098 0.131 0.199
100.0 0.098 0.131 0.199
200.0 0.098 0.131 0.200
300.0 0.098 0.131 0.213
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Shear modulus

Figures 4.15, 4.17, and 4.19 show boundary conditions to evaluate shear modulus
in each direction, indicating representative nodes whose displacement is checked. Shear
stress of 1 MPa was assumed on a plane in each simulation.

Figures 4.16, 4.18, and 4.20 show both original and deformed mesh with the
displacement of the checked nodes. From the displacement, the shear modulus was
calculated in each direction. Evaluated shear modulus is summarized in Table 4.3.

4. 4 Elastic thermal stress analysis using one-half model

To evaluate the thermal deformation as a whole segment of the acceleration grid,
elastic thermal stress analysis was performed based on the obtained temperature
distribution and evaluated mechanical properties of the four-aperture part. The reference
temperature was assumed to be 30 °C. Figure 4.21 shows the one-half model, indicating
boundary conditions for the elastic thermal stress analysis.

Figure 4.22 shows thermal deformation exaggerated by a factor of 100. Figure
4.23 shows node points and their displacement for the heat loading of 1.5 MW. The corner
of aperture region approximately corresponds to positions of node 14669 and node 17063.
The maximum aperture-axis displacement in the z direction is approximately 0.7 mm,
occurring around the node 14669, and that in the x direction is about 0.135 mm, occurring
around the node 17063. Figure 4.24 shows the maximum displacement in the x and z
directions as a function of heat loading. The maximum displacement increases with heat

loading.
4.5 Discussion
Thermal deformation in an acceleration grid causes aperture-axis displacement,

leading to beamlet deflection. As shown in Fig. 4.23, the maximum displacement occurs

around the corner of aperture area, so that beamlets passing through around the corner of

Table 4.3 Evaluated shear modulus of the four-aperture part

Temperature [ °C ] | Shear Modulus x’-y’ | Shear Modulus x’-z’ | Shear Modulus y’-z’
[ MPa] [ MPa ] [ MPa]
50.0 26.7 31.2 69.4
100.0 25.9 30.2 67.3
200.0 24.2 28.3 63.0
300.0 23.4 27.4 60.9
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aperture area are most deflected.
In accordance with thin lens theory of beam optics, deflection angle of a beamlet

# is given as follows:

Es

— (4-1)
4V

0 =

where @ is deflection angle of a beamlet [ rad ],
E is electric field [ V/m ],
0 is aperture-axis displacement [ m ],

V is beam energy [ eV ].

We assumed that first acceleration grid (A1G) would be subjected to the heat
loading ranging from 1 MW to 2 MW. Gap length and the maximum voltage between an
extractor and the first acceleration grid (A1G) is 85 mm and 200 kV, respectively; electric
field E is 200X 10*/85X 10® V/m. Table 5.1 shows maximum deflection angle calculated
from the thin lens theory. For the heat loading of 1.5 MW, the maximum deflection angle
was estimated to be about 2 mrad. The maximum deflection angle of 2 mrad is acceptable
for the ITER-NBI system, since allowable alignment of each beamlet is less than 2 mrad in
the engineering design of the ITER-NBI system. ”

5. Summary

In the engineering design of the ITER-NBI system, the influence of heat loading
onto the acceleration grids is one of the most important issues. Then, we evaluated
mechanical reliability and thermal deformation of the acceleration grid using numerical
simulation. The simulation indicated that no melting on the acceleration grid would occur
for the heat loading of 1.5 MW, while local plastic deformation would happen around
apertures for the heat loading higher than about 1 MW. It would, therefore, be necessary to
reduce the heat loading onto the acceleration grid to less than 1 MW so as to avoid the

plastic deformation. The simulation also indicated that maximum aperture-axis

Table 5.1 Maximum deflection angle evaluated from thin lens theory

Heat loading [MW] Maximum displacement {[mm] Deflection angle [mrad]
1.0 0.50 1.5
1.5 0.70 2.1
2.0 0.91 2.7
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displacement would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens
theory of beam optics, maximum beamlet deflection angle due to the aperture-axis
displacement was evaluated to be about 2 mrad. It is within the requirement of the

engineering design of the ITER-NBI system.
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Figure 2.1 Cross sectional view of the ITER accelerator. An acceleration grid consists of

whose dimensions are 756 mm long and 337.5 mm wide.

five segments
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One-half model

Figure 2.2 A single segment of the ITER acceleration grid. The segment consists of five

sub-segments, which have 52 apertures. Two types of computational models were

adopted to calculate thermo-mechanical characteristics.

Figure 3.1 Local model from a front view. Precise temperature and stress distributions

of the acceleration grid were calculated.
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Enlargement

Figure 3.2 Local model from an end view. Precise temperature and stress distributions
of the acceleration grid were calculated.

Figure 3.3 A close-up view of the local model.
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Figure 3.4 Temperature rise of cooling water as a function of axial flow velocity.

Dimensions of cooling channel are 4.5 mm high and 3.5 mm wide.
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Figure 3.5 Finite element mesh of the local model from a front view.

Figure 3.6 Finite element mesh of the local model from an end view.

— 16
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Figure 3.7 A close-up view of the finite element mesh of the local model.
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56 6 °c

h : 59,000 W/(m2K)

( velocity Is 10 m/sec §
Figure 3.8 Boundary conditions for the thermal analysis. Heat flux was assumed to be

injected around apertures.
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Figure 3.9 Heat loading was distributed on both region A and region B.
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Fi’gure 3.10 Temperature distribution from a front view for the heat loading of 1.5 MW.
The heat flux distribution of case 1 was assumed.
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Figure 3.11 Temperature distribution from an end view for the heat loading of 1.5 MW.

The heat flux distribution of case 1 was assumed.



JAERI-Tech 99-052

VALUE
+6. 720401

Yi.00me oz

+1. a56+02
s1sontoz
+2. asKt02
5 TR

$2. 918402

Figure 3.12 A close-up view of temperature distribution for the heat loading of 1.5 MW.

The heat flux distribution of case 1 was assumed.
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Figure 3.13 A close-up view of temperature distribution for the heat loading of 1.5 MW.

The heat flux distribution of case 2 was assumed.
e 957 °C :
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Figure 3.14 A close-up view of temperature distribution for the heat loading of 1.5 MW.

The heat flux distribution of case 3 was assumed.
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Figure 3.15 Highest temperature as a function of the ratio of the heat flux on the region
A. Heat loading was assumed to be 1.5 MW.
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Figure 3.16 A close-up view of temperature distribution for the heat loading of 1 MW.
The heat flux distribution of case 1 was assumed.
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Figure 3.17 A close-up view of temperature distribution for the heat loading of 2 MW.

The heat flux distribution of case 1 was assumed.
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Local model 980310
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Figure 3.18 Highest temperature versus heat loading. The heat flux distribution of case

1 was assumed.
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One side of the acceleration grid Is restrained
with bolts, while the other side Is free.

Origin: (11,0,378)
Displacement of orlgin is constrained.
(Ux=Uy=Uz=0)

Displacement of allnodes on this surface (x=11)
toward x direction is constrained from symmetry

Displacement of alinodes on this surface (z=0)
toward z direction is same from symmetry.

Figure 3.19 Boundary conditions for the elastic thermal stress analysis. The

displacement of origin was constrained (Ux = Uy = Uz = 0).

Node 58283
displacemert { 0, 0.369, 0.024)

Node 56807
displacement ( 0, 0.768, -0.162)

Node 55331
displacement ( 0, 0.943,-0337)

Node 57136
displacement ( 0, 0.630,-0.112)

Node 56069
displacement ( 0, 0.869, -0239)

Node 55660
displacement ( 0, 0.898, -0292)

Node 54922
displacement ( 0, 0.971, -0391)

Figure 3.20 Node points and their displacement for the heat loading of 1.5 MW. The

heat flux distribution of case 1 was assumed.
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/Deformed mesh

0.391 mm

Original mesh

Figure 3.21 Thermal deformation, enlarged by a factor of 40, for the heat loading of 1.5

MW. The heat flux distribution of case 1 was assumed.

Original mesh

from an end view.

k4

Figure 3.22 Thermal deformation, enlarged by a factor of 30
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Figure 3.23 Displacement of central part as a function of the ratio of the heat flux on the
region A. Heat loading was assumed to be 1.5 MW.



JAERI-Tech 99-052

1.5 Heat flux proflle 50%-50% Local moldgl 980319

n_llll ‘,I']']l‘l —

i Uy (Node 54922) ]

i m Uz (Node 54922) o ’
S ]
S 1L _
Sl R [ ] i
E B 4
Q I ]
£ : ]
S | o |
8 -
8- 0.5_— i 5
o) [ - ]
I u i
0".1..|....|.,..|..l.|...,|:

0 0.5 1 1.5 2 2.5

Heat loading [ MW ]

Figure 3.24 Displacement of central part as a function of heat loading. The heat flux

distribution of case 1 was assumed.
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+1. 358408

Figure 3.25 Von Mises equivalent stress distribution from a front view for the heat
loading of 1.5 MW. The heat flux distribution of case 1 was assumed.
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Figure 3.26 Von Mises equivalent stress distribution from an end view for the heat

loading of 1.5 MW. The heat flux distribution of case 1 was assumed.
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Figure 3.27 A close-up view of von Mises equivalent stress distribution for the heat
loading of 1.5 MW. The heat flux distribution of case 1 was assumed.
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Figure 3.28 A close-up view of von Mises equivalent stress distribution for the heat

loading of 1.5 MW. The heat flux distribution of case 2 was assumed.
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Figure 3.29 A close-up view of von Mises equivalent stress distribution for the heat

loading of 1.5 MW. The heat flux distribution of case 3 was assumed.
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Figure 3.30 Maximum von Mises equivalent stress as a function of the ratio of the heat
flux on the region A. Heat loading was assumed to be 1.5 MW.
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Figure 3.31 Yield stress (0.2% offset) of annealed OFHC-Cu as a function of
temperature. (From reference 8)
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Figure 3.32 A close-up view of von Mises equivalent stress distribution for the heat
loading of 1 MW. The heat flux distribution of case 1 was assumed.
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Figure 3.33 A close-up view of von Mises equivalent stress distribution for the heat

loading of 2 MW. The heat flux distribution of case 1 was assumed.
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Figure 3.34 Maximum von Mises equivalent stress as a function of heat loading. The
heat flux distribution of case 1 was assumed.
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Figure 3.35 Stress component (Sxx) for the heat loading of 1.5 MW. The heat flux
distribution of case 1 was assumed.
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Figure 3.36 A close-up view of stress component (Sxx). The heat flux distribution of

case 1 was assumed.
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Figure 3.37 Stress component (Syy) for the heat loading of 1.5 MW. The heat flux

distribution of case 1 was assumed.
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Figure 3.38 A close-up view of stress component (Syy). The heat flux distribution of

case 1 was assumed.
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Figure 3.39 Stress component (Szz) for the heat loading of 1.5 MW. The heat flux

distribution of case 1 was assumed.
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Figure 3.40 A close-up view of stress component (Szz). The heat flux distribution of

case 1 was assumed.
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Cooling channel
(4.5mm high and 3.5 mm wide )

Enlargement

Figure 4.1 One-half model from a top view. One half of a single segment was selected
as a computational region. Aperture regions were supposed to be made of a
homogeneous material.
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Figure 4.2 Detailed structure of the one-half model.

Figure 4.3 Finite element mesh of the one-half model from a top view.
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Figure 4.4 Mechanical properties of “four-aperture part” were evaluated using a three-
dimensional simulation. The evaluated mechanical properties were utilized when the
thermal deformation of the one-half model is calculated.

Heat flux ; 3.12 MyWm?

{ Atea where heat flux is assuned Is 0.0481 m?)
{ Total heat lozd is 0,15 MW )

~ 4g0%
> h 59,000 Wiim?K)
( velocity is 10m/s )

Figure 4.5 Boundary conditions for thermal analysis. Uniform heat flux of 3.12 MW/m®
was assumed on the surfaces of the “four-aperture parts”.
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Figure 4.6 Temperature distribution from a top view for the heat loading of 1.5 MW.

Inlet temperature of 40 °C and outlet temperature of 73.2 °C were assumed.
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Figure 4.7 Temperature distributions from a bottom view.
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Figure 4.8 Finite element mesh of the “four-aperture part”. The dimensions are 80 mm
long, 18.5 mm wide and 20 mm high.
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Displacement of dl node on this surface Displacement of @l node on this surface
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Displacement of dl node on this surface sunPace toward X' direction is same
Y toward y* direction is same

Figure 4.9 Boundary conditions for determining elastic modulus and poisson’s ratio
along x’ direction. Pressure of 100 MPa was assumed to calculate displacement.
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80 \
< <>
-
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AY 0418
Deformed mesh

7 " 100 MPa * (80/0.418) = 19.1GPa

Figure 4.10 Calculated displacement. Deformation was enlarged by a factor of 10.
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Figure 4.11 Boundary conditions for determining elastic modulus and poisson’s ratio
along y’ direction. Pressure of 100 MPa was assumed.
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Figure 4.12 Calculated displacement. Deformation was enlarged by a factor of 50.
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Figure 4.13 Boundary conditions for determining elastic modulus and poisson’s ratio

long z’ direction. Pressure of 100 MPa was assumed.

/

Deformed mesh
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Figure 4.14 Calculated displacement. Deformation was enlarged by a factor of 100.
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\ Displacement of all node

on this surface towardx'
direction is same
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Displacement of dl node on this surface toward X, y' and Z' direction is constraned

Figure 4.15 Boundary conditions for determining shear modulus along x’-y’ direction.

Pressure of 1 MPa was assumed to calculate displacement.

o/

eformed mesh

Original mesh

@
1MPa * (80/3.092) = 25.9MPa

Figure 4.16 Calculated displacement. Deformation was enlarged by a factor of 2.
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Figure 4.17 Boundary conditions for determining shear modulus along x’-z’ direction.

Pressure of 1 MPa was assumed to calculate displacement.
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Figure 4.18 Calculated displacement. Deformation was enlarged by a factor of 2.
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. Displacement of all node
on this surface towardz'
18.5 direction is same.

e

Displacement of all node on this surface toward x', y* and !
directionis constrained.

Figure 4.19 Boundary conditions for determining shear modulus along y’-z’ direction.

Pressure of 1 MPa was assumed to calculate displacement.

A Original mesh

Deformed mesh

18.F

1MPa * (18.57/0.275) = 67.2MPa
Figure 4.20 Calculated displacement. Displacement was enlarged by a factor of 5.
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Figure 4.21 Boundary conditions for the elastic thermal analysis. The displacement of

origin was assumed to be zero.
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Figure 4.22 Node points and their displacement for the heat loading of 1.5 MW.
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Figure 4.23 Thermal deformation from a front view enlarged by a factor of 100. Heat
51 —

loading was assumed to be 1.5 MW.
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Figure 4.24 Maximum displacement as a function of heat loading.
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4 v ? VA, :; FRIEN / ) = | bar=0.1 MPa=10°Pa 3. barid, JISTREMKDOENAEDLTE
e vy ZBE |trvozE| C 1 Gal=1cm/s? =10-*m/s AKBHE2OH 7Y —ICHEIATH
b #Hlw — A ¥ Im cd-sr s m/s 2
i A S | Im/m? 1Ci=3.7x10'°Bq °
B x | Im/m - B 4 ECHWFHAIEA T bar, barndsk
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a B A U TMIFOB ) mmHg #&20% 573
® O & B\ L 4| Gy J/kg 1 rad=1cGy=10"*Gy CRABTLS
5 B Y4 B|vy-~wnb| S J/kg Irem=1cSv=10"Sv °
# [ *
71| N(=10*dyn) kgf 1bf £ |MPa(=10 bar) kgf/cm? atm mmHg(Torr)| 1bf/in?*(psi)
1 0.101972 0.224809 1 10.1972 9.86923 7.50062 x 10° 145.038
9.80665 1 2.20462 1| 0.0980665 1 0.967841 735.559 14.2233
4.44822 0.453592 1 0.101325 1.03323 1 760 14.6959
¥ B 1Pa-s(N.s/m?)=10P(#7 X)(g/(cm:s)) 1.33322 x 107* | 1.35951 x 107° | 1.31579 x 107} t 1.93368 x 1072
I Im¥/s=10'St( X b — 2 Z) (cm?/s) 6.89476 x 107 | 7.03070 x 10" 2 | 6.80460 x 10°* 51.7149 1
x| J(=10"erg) kgf*m kW= h cal GtRH) Btu ft » Ibf eV 1 cal = 4.18605 J (:+87%)
P 8
i; 1 0.101972 | 277778 x 107" 0.238889 | 9.47813 x 107* 0.737562 6.24150 x 108 =4.184J (MILE)
| 9.80665 1 2.72407 x 107 2.34270 9.29487x 10°? 7.23301 6.12082x 10" =4.1855J (15°C)
{% 36x10° | 3.67098 x 10° 1 8.59999 x 10° 3412.13 2.65522 x 10° | 2.24694 x 10%* =4.1868 J (AR ERRK)
g;‘ 4.18605 0.426858 | 1.16279 x 10°° 1 3.96759 x 10°° 3.08747 261272x10" g | pS (LES)
® 1055.06 107.586 2.93072 x 107* 252.042 1 778.172 6.58515 x 102! =75 kgf-m/s
1.35582 0.138255 | 3.76616 x 107" 0.323890 1.28506 x 10° 1 8.46233 x 10'® =735.499 W
1.60218 x 107'? | 1.63377 x 107%°| 4.45050 x 1072°| 3.82743 x 10°%° | 151857 x 1072?| 1.18171 x 107" 1
v Bq Ci % Gy rad ;4] C/kg R 2 Sv rem
8 4 & &
1 2.70270 x 107" ) 1 100 & 1 3876 | 1 100
i1 " i’ &
3.7 x 10%° 1 0.01 1 2.58 x 1074 1 0.01 1

(86 % 12 A 26 AHE)



THERMO-MECHANICAL ANALYSIS OF AN ACCELERATION GRID FOR THE ITER-NBI SYSTEM




