鉱さいたい積場の措置に係る安全性評価

(核燃料サイクル開発機構 役務報告書)

2002年2月

三菱マテリアル株式会社

本資料は、核燃料サイクル開発機構の開発業務を進めるために作成されたものです。し たがって、その利用は限られた範囲としており、その取扱いには十分な注意を払ってく ださい。この資料の全部又は一部を複写・複製・転載あるいは引用する場合、特別の許 可を必要としますので、下記にお問い合わせください。 〒319-1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課 Inquiries about copyright and reproduction should be addressed to : Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan

2002年2月

鉱さいたい積場の措置に係る安全性評価

生瀬博之*

要 旨

(1) 取得すべきデータの抽出

鉱さいたい積場の措置の安全性を検討するため、地形、水理地質条件及び環境条件 を踏まえ、評価シナリオや評価モデルを検討するとともに、影響が大きいと考えられ るパラメータの変動の影響を検討した。その結果、浸透水量、地下水の流速や流量、 各媒体の分配係数等のパラメータが被ばく線量に影響し、下流側の居住者に対しては 地山の分配係数や流速が大きく影響する。また、施設内の地下水流動も被ばく線量に 影響することから、今後、評価パラメータを取得、整備するとともに、地下水流動系 も検討することが必要である。

(2) 水理地質環境の調査

鉱さいたい積場の D 孔 (グリッド M7 地点) で調査を行なった。鉱さいの下に旧表 土があり、その下は強風化花崗岩から新鮮花崗岩に急激に変化し、風化花崗岩は存在 しなかった。鉱さいの透水係数は 2 点測定し (2.6×10⁻⁷m/s, 1.0×10⁻⁶m/s)、シル ト分が不規則に分布していると考えられることから、対数平均として 5.1×10⁻⁷ m/s と した。また、強風化花崗岩の透水係数は 4.2×10⁻⁶ m/s、新鮮花崗岩の透水係数は 1.9 ×10⁻⁹ m/s であった。

(3) 室内試験

サイクル機構殿から提供された鉱さい試料について、U、Th、Ra の溶出率及び分配 係数を測定した。なお、地下水試料もサイクル機構殿から提供いただいた。

溶出率は、U、Th、Ra でそれぞれ 0.016、1.1×10⁻⁴ 未満、5.6×10⁻³ と評価された。 分配係数は固液比 1.0g/10ml とし、大気雰囲気で7日間浸漬させて測定した。その結 果、U:0.27 m³/kg、Th:22 m³/kg、Ra:0.32 m³/kg と評価された。

本報告書は、三菱マテリアル株式会社が核燃料サイクル開発機構の契約により実施した業務成果に関するものである。 機構担当部課室:人形峠環境技術センター 環境保全技術開発部 環境計画室 *三菱マテリアル株式会社 原燃サイクル事業センター

i

Feb. 2002

Safety Assessment for the Action to Deposit of Uranium Mill Tailing Hiroyuki Ikuse*

Abstract

1. Investigation of Parameter to be taken related to the mill tailing yard

In order to assess means to the mill tailing yard, we conduct investigation of scenarios, calculation model, and influence of parameter variation, based on the condition of the yard. Exposure is influenced by variety of parameters, such as infiltration rate, water velocity, flow rate of groundwater, distribution coefficient of mill-tailing and ground, etc., especially flow rate and distribution coefficient of ground to resident in downstream of mill-tailing. As exposure is also influenced by groundwater condition, it is necessary that parameters for safety analysis are to be taken and that groundwater condition are to be investigated for the precision of the safety of means to the mill tailing yard.

2. Investigation of Site Parameter

Investigation at Grid M-7 point (D Hole) in the mill tailing yard is conducted. There is buried soil under mill tailing zone, and fresh granite is located just under strongly weathered granite. There is not normal weathered granite between those two kinds of granite.

Hydraulic conductivity (K) of two samples of mill tailing is measured $(2.6 \times 10^{-7} \text{ m/s})$ and $1.0 \times 10^{-6} \text{ m/s}$), and the average is assessed logarithmically to be $5.1 \times 10^{-7} \text{ m/s}$ because of the heterogeneity of silt in the mill tailing yard. K of strongly weathered granite is $4.2 \times 10^{-6} \text{ m/s}$, and that of fresh granite is $1.9 \times 10^{-9} \text{ m/s}$.

3. Laboratory Experiment

Elution rate and distribution coefficient (Kd) of Uranium, Thorium, and Radium to mill tailing is measured. Mill tailing and groundwater is extracted in the JNC Ningyo Toge Environmental Engineering Center.

Elution rate of U is 0.016, that of Th is less than 1.1×10^{-4} , and that of Ra is 5.6×10^{-3} . For Kd measurement, solid-liquid ratio is 1.0g/10ml and duration of immersion is 7days under aerial condition. Kd of U is 0.27 m³/kg, that of Th is 22 m³/kg, and that of Ra is 0.40 m³/kg.

This Work was performed by Mitsubishi Materials Corporation under contract with Japan Nuclear Cycle Development Institute.

JNC Liaison : Ningyo Toge Environmental Engineering Center, Japan Nuclear Cycle Development Institute (JNC)

^{*} Nuclear fuel Cycle Technology Center, Mitsubishi Materials Corporation

はじめに

1. 耵	导すべきデータの抽出	. 1 -1
1.1	検討対象パラメータの抽出	. 1 - 1
1.2	評価手法の予察的設定	1 -11
1.3	パラメータスタディ	1 -37
1.4	まとめ1	-147

2.水理地質環境の調査 2-1 2.1 調査方法 2-1 2.2 調査結果 2-19 2.3 水理地質環境のまとめと課題 2-27

3	.室内	試験	3-1
	3.1	試料の特性	3-1
	3.2	溶出率測定試験	3 - 3
	3.3	分配係数測定試験	3-5
	3.4	まとめ	3-8

おわりに

卷末資料集

添付資料

参考資料

表 目 次

表	1.1-1	鉱さい等の特性(統計処理結果)1-6
表	1.1-2	鉱さい等のX線回折定量分析結果1-7
表	1.3-1	鉱さいたい積場に関するパラメータ1-37
表	1.3-2	鉱さいたい積場の初期濃度1-38
表	1.3-3	鉱さいたい積物の分配係数及び溶解度(Kd:実験値)1-38
表	1.3-4	鉱さいたい積物の分配係数及び溶解度(Kd:文献値)1-38
表	1.3 - 5	地山及び土壌に関するパラメータ1-39
表	1.3 - 6	地山及び土壌の分配係数 1-39
表	1.3 - 7	生物圏に関するパラメータ1-40
表	1.3 - 8	ラドンに関連するパラメータ1-41
表	1.3 - 9	核種に依存するパラメータ1-41
表	1.3 - 10	パラメータの変動範囲1-43
表	1.3 - 11	試算結果 1-104
表	1.3-12	試算結果1-146
表	2.1-1	調查数量表2-6
表	2.1-2	主な使用機械一覧表2-6
表	2.1-3	コア観察要素表2-7
表	2.1-4	ボーリングコア観察による岩級区分表 2-8
表	2.2-1	現位置透水試験結果一覧表2-22
表	2.2-2	採水に関する整理事項2-22
表	2.2-3	室内土質試験結果一覧表 2-23
表	2.2-4	三軸透水試験結果一覧表 2-23
表		
	2.3-1	調査地点の地質のまとめ2-29
	2.3-1	調査地点の地質のまとめ 2-29

表	3.1 - 2	比放射能值	3-8	3
表	3.1 - 3	鉱さい試料の比表面積	3-3	3

表	3.2-1	鉱さい試料の溶出率測定結果	3-	5
表	3.3-1	地下水試料の分析結果	3-	5
表	3.3 - 2	鉱さい試料の分配係数測定結果	3 -	$\cdot 7$

図	目	次	

図	1.1-1	人形峠環境技術センター全景1-2
义	1.1-2	人形峠環境技術センター周辺地形図1-3
义	1.1-3	鉱さいたい積場の概要1-3
义	1.1-4	鉱さいたい積場平面図1-4
図	1.1-5	鉱さいたい積場断面図1-5
図	1.1 - 6	鉱さいたい積物の圧密状況1-5
図	1.1 -7	鉱さいたい積場に関連する地質の透水係数1-9
义	1.2-1	鉱さいたい積場の概要1-11
义	1.2-2	鉱さいたい積物の圧密状況1-12
义	1.2-3	鉱さいたい積場の安定化措置方法の概念図・横断面1-13
义	1.2-4	鉱さいたい積場の安定化措置方法の概念図-縦断面1-13
図	1.2-5	鉱さいたい積場からの核種放出モデル(たい積物内鉛直下向き流れ)… 1-17
义	1.2-6	鉱さいたい積場からの核種放出モデル(たい積物内水平方向流れ) 1-18
义	1.2-7	鉱さいたい積場付近における評価地点 1-21
図	1.2-8	鉱さいたい積場の評価シナリオ(鉱さいたい積場ダム下流の谷におけるシ
	ナリ	リオ)
図	1.2 - 9	鉱さいたい積場の評価シナリオ(河川流入後のシナリオ) 1-25
図	1.3-1	鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄与
	(1	Kd:実験値)1-47
义	1.3 - 2	鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄与
	(1	Kd:実験値)1-47
义	1.3-3	鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与
	(1	Kd:実験値)1-48
义	1.3 - 4	坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与
	$(\mathbf{I}$	Kd:実験値)1-48
义	1.3-5	下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:実験値)1-49
义	1.3 - 6	下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:実験
	値)	

図 1.3-7 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd:実験値) 1-50 図 1.3-8 鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄与

(Kd:文献值)......1-51

図 1.3-9 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄与

(Kd:文献值)1-51

- 図 1.3-12 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:文献値) 1-53
- 図 1.3-14 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd: 文献値) 1-54
- 図 1.3-16 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄
 - 与(Kd:実験值) 1-55
- 図 1.3-18 坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与 (Kd:実験値) 1-56
- 図 1.3-19 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:実験値) 1-57
- 図 1.3-20 下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:実験
 - 值)......1-57
- 図 1.3-21 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd:実験値) 1-58
- 図 1.3-23 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄
 - 与(Kd:文献值) 1-59
- 図 1.3-24 鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与

	(K	d:文献值) 1-60
义	1 . 3 - 25	坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与
	(K	d:文献值) 1-60
図	1.3 - 26	下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:文献値)1-61
汊	1.3 - 27	下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:文献
	値)	
义	1.3-28	各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd:文献値) 1-62
図	1.3-29	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 1-64
汊	1.3-30	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-64
図	1.3-31	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-65
図	1.3-32	坑水処理施設周辺及び下流での居住者の被ばく(Kd:実験値)1-65
义	1.3-33	下流の集落部での居住者の被ばく(Kd:実験値) 1-66
义	1.3-34	下流の集落部での建設作業者の被ばく(Kd:実験値)1-66
図	1.3-35	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-67
図	1.3-36	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-67
义	1.3-37	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 1-68
义	1.3-38	坑水処理施設周辺及び下流での居住者の被ばく(Kd:文献値) 1-68
义	1.3-39	下流の集落部での居住者の被ばく(Kd:文献値) 1-69
义	1.3-40	下流の集落部での建設作業者の被ばく(Kd:文献値)1-69
义	1.3-41	鉱さいの分配係数の変動が被ばく線量に与える影響1-70
义	1.3-42	各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍. 1-71
义	1.3-43	各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10倍 1-71
义	1.3-44	各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍. 1-72
义	1.3-45	各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10倍 1-72
义	1.3-46	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)1-74
义	1.3-47	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-74
図	1.3-48	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-75
义	1.3-49	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)… 1-75
义	1.3-50	下流の集落部での居住者の被ばく(Kd:実験値) 1-76
汊	1.3-51	下流の集落部での建設作業者の被ばく(Kd:実験値)1-76

义	1.3-52	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-77
汊	1.3-53	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-77
义	1.3-54	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 1-78
义	1.3-55	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 1-78
义	1.3-56	下流の集落部での居住者の被ばく(Kd:文献値) 1-79
汊	1.3-57	下流の集落部での建設作業者の被ばく(Kd:文献値) 1-79
汊	1.3-58	鉱さいの浸透水量の変動が被ばく線量に与える影響1-80
汊	1.3-59	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-81
义	1.3-60	各評価地点での被ばく経路毎の被ばく線量ピーク値;浸透水量16.1 m/y1-81
义	1.3-61	各評価地点での被ばく経路毎の被ばく線量ピーク値1-82
义	1.3-62	各評価地点での被ばく経路毎の被ばく線量ピーク値;浸透水量16.1 m/y1-82
义	1.3 - 63	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 1-85
汊	1.3-64	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-85
汊	1.3-65	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-86
汊	1.3-66	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)… 1-86
汊	1.3-67	下流の集落部での居住者の被ばく(Kd:実験値) 1-87
义	1.3-68	下流の集落部での建設作業者の被ばく(Kd:実験値)1-87
义	1.3-69	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-88
义	1.3-70	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-88
义	1.3-71	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 1-89
汊	1.3-72	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 1-89
义	1.3-73	下流の集落部での居住者の被ばく(Kd:文献値) 1-90
汊	1.3-74	下流の集落部での建設作業者の被ばく(Kd:文献値)1-90
义	1.3-75	地山の分配係数の変動が被ばく線量に与える影響1-91
义	1.3-76	地山の分配係数の変動が被ばく線量に与える影響1-91
义	1.3-77	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1倍 1-92
义	1.3-78	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10倍 1-92
义	1.3-79	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1倍 1-93
义	1.3-80	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10倍 1-93
义	1.3-81	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 1-95

义	1.3-82	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-95
図	1.3-83	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-96
叉	1.3-84	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)1-96
叉	1.3-85	下流の集落部での居住者の被ばく(Kd:実験値) 1-97
叉	1.3-86	下流の集落部での建設作業者の被ばく(Kd:実験値)1-97
叉	1.3-87	鉱さいたい積場ダムの下流の谷での林業従事者の被ばく(Kd:文献値) 1-98
叉	1.3-88	鉱さいたい積場ダムの下流の谷での建設作業者の被ばく(Kd:文献値) 1-98
叉	1.3-89	鉱さいたい積場ダムの下流の谷での居住者の被ばく(Kd:文献値)1-99
叉	1.3 - 90	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値)1-99
叉	1.3-91	下流の集落部での居住者の被ばく(Kd:文献値) 1-100
叉	1.3-92	下流の集落部での建設作業者の被ばく(Kd:文献値)1-100
叉	1.3 - 93	地山の地下水流速の変動が被ばく線量に与える影響1-101
叉	1.3-94	地山の地下水流速の変動が被ばく線量に与える影響1-101
叉	1.3-95	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-102
叉	1.3-96	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-102
叉	1.3-97	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-103
叉	1.3-98	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-103
叉	1.3-99	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)1-106
叉	1.3-100	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値)1-106
図	1.3-101	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-107
叉	1.3-102	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値) 1-107
図	1.3-103	下流の集落部での居住者の被ばく(Kd:実験値) 1-108
叉	1.3-104	下流の集落部での建設作業者の被ばく(Kd:実験値)1-108
叉	1.3-105	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-109
叉	1.3-106	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-109
叉	1.3-107	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)1-110
叉	1.3-108	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値).1-110
汊	1.3-109	下流の集落部での居住者の被ばく(Kd:文献値) 1-111
汊	1.3-110	下流の集落部での建設作業者の被ばく(Kd:文献値) 1-111
汊	1.3-111	鉱さいの分配係数の変動が被ばく線量に与える影響1-112

Х

図 1.3-112 各評価地点での被ばく経路毎の被ばく線量ピーク値: 鉱さい Kd0.1 倍 1-113 各評価地点での被ばく経路毎の被ばく線量ピーク値: 鉱さい Kd10 倍1-113 図 1.3-113 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍1-114 図 1.3-114 各評価地点での被ばく経路毎の被ばく線量ピーク値; 鉱さい Kd10 倍 1-114 図 1.3-115 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 1-116 図 1.3-116 図 1.3-117 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-116 図 1.3-118 |鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値).....1-117 図 1.3-119 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値).1-117 下流の集落部での居住者の被ばく(Kd:実験値)1-118 図 1.3-120 図 1.3-121 下流の集落部での建設作業者の被ばく(Kd:実験値)......1-118 図 1.3-122 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-119 図 1.3-123 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-119 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)… 1-120 図 1.3-124 図 1.3-125 「坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 1-120 図 1.3-126 下流の集落部での居住者の被ばく(Kd:文献値)1-121 下流の集落部での建設作業者の被ばく(Kd:文献値)1-121 図 1.3-127 図 1.3-129 図 1.3-130 各評価地点での被ばく経路毎の被ばく線量ピーク値 1-124 図 1.3-131 各評価地点での被ばく経路毎の被ばく線量ピーク値 1-124 図 1.3-132 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)1-127 図 1.3-133 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 1-127 図 1.3-134 図 1.3-135 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-128 図 1.3-136 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値) 1-128 図 1.3-137 下流の集落部での居住者の被ばく(Kd:実験値)......1-129 図 1.3-138 下流の集落部での建設作業者の被ばく(Kd:実験値) 1-129 図 1.3-139 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-130 図 1.3-140 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-130 図 1.3-141 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)… 1-131

xi

义	1.3-142	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 1-131
义	1.3-143	下流の集落部での居住者の被ばく(Kd:文献値) 1-132
义	1.3-144	下流の集落部での建設作業者の被ばく(Kd:文献値)1-132
义	1.3-145	地山の分配係数の変動が被ばく線量に与える影響1-133
义	1.3-146	地山の分配係数の変動が被ばく線量に与える影響1-133
図	1.3-147	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1 倍 1-134
义	1.3-148	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍. 1-134
図	1.3-149	各評価地点での被ばく経路毎の被ばく線量ピーク値 ; 地山 Kd0.1 倍 1-135
図	1.3-150	各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍.1-135
义	1.3-151	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)1-137
义	1.3-152	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値)1-137
図	1.3-153	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 1-138
図	1.3-154	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値) 1-138
図	1.3-155	下流の集落部での居住者の被ばく(Kd:実験値) 1-139
図	1.3-156	下流の集落部での建設作業者の被ばく(Kd:実験値)1-139
図	1.3-157	鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 1-140
図	1.3-158	鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 1-140
図	1.3-159	鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 1-141
図	1.3-160	坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 1-141
図	1.3-161	下流の集落部での居住者の被ばく(Kd:文献値) 1-142
义	1.3-162	下流の集落部での建設作業者の被ばく(Kd:文献値)1-142
図	1.3-163	地山の地下水流速の変動が被ばく線量に与える影響1-143
図	1.3-164	地山の地下水流速の変動が被ばく線量に与える影響1-143
図	1.3-165	各評価地点での被ばく経路毎の被ばく線量ピーク値1-144
図	1.3-166	各評価地点での被ばく経路毎の被ばく線量ピーク値1-144
図	1.3-167	各評価地点での被ばく経路毎の被ばく線量ピーク値 1-145
図	1.3-168	各評価地点での被ばく経路毎の被ばく線量ピーク値1-145

义	2.1-1	調查位置図	2	-9)
汊	2.1-2	ボーリングマシンの概要	2 - 1	1()

义	2.1-3	クローラの全体図2-10
义	2.1-4	掘削手順実績2-11
义	2.1-5	ストレーナの仕様2-12
义	2.1-6	観測孔構造図2-13
义	2.1-7	RQD の求め方2-14
义	2.1-8	現場透水試験(ケーシング法)概要図 2-15
义	2.1-9	低圧岩盤透水試験の概要 2-16
义	2.1-10	試料押し出し機2-17
义	2.1-11	三軸透水試験装置の概要図2-17
义	2.1-12	室内三軸透水試験の作業フロー2-18
义	2.2-1	概略柱状図2-24
义	2.2-2	現位置透水試験結果2-25
义	2.2-3	拘束圧と透水係数の関係 2-26

図	3.1-1	試料採取位置	置図		 3-1	L
図	3.1 - 2	鉱さい試料	(D 孔、	深度 1.2m)	 3 -2	2

はじめに

昭和 31 年の地質調査所の調査によるウラン鉱床の露頭の発見以来、人形峠地区及びその周辺地域において、ウラン鉱床の探鉱、製錬活動が勢力的に行われた後、露天採掘とヒープリーチング法による低品位鉱石の処理、捨石たい積場や鉱さいたい積場、坑水処理施設などの鉱山施設の維持管理が中心的な活動となり、平成 10 年のサイクル機構発足時に、ウラン資源関係の業務は主たる業務から外され、一定期間後であっても鉱山(鉱さい、捨石)の跡措置を着実に行うことを附則条項に盛り込まれた。

ウラン鉱山の跡措置については、サイクル機構の中長期事業計画に基づき、安全確保を 大前提に鉱業活動を終了した鉱山として跡措置を確実に行うため、現在措置計画の策定が 進められている。

一方、国際的には、ICRP 等が天然放射線源及び長寿命の放射線源に対する放射線防護 の考え方を示し、その考え方を踏まえて、ウラン鉱山廃棄物処分の安全要件や技術基準の 検討が IAEA においても進められており、サイクル機構としても、国際機関の検討動向 を十分に注視する必要がある。

鉱さいの措置においては、濃度は高くないが天然放射線源である長半減期のウランを含み、鉱さいが大量に存在することを考慮する必要がある。

本業務では、安全な跡措置に資することを目的として、鉱さいの安全性を検討するとと もに、鉱さい及び鉱さいたい積場の地質水理環境条件をボーリング掘削によって調査し、 鉱さいに対する放射性核種の収着特性を把握する。

1. 取得すべきデータの抽出

鉱さいたい積場は鉱業法,鉱山保安法の傘下で管理されるものであり,30年以上にわた り安全に屋外で今も管理を継続している。しかし,ウランやその子孫核種を有意に含んで いる。本章では,鉱さいたい積場の措置について,たい積場周辺の環境条件やたい積場に 対する管理方針をもとに,放射性廃棄物の処分における安全性の評価手法を踏まえて,放 射性としての観点からたい積場の安全性を検討する。

1.1 検討対象パラメータの抽出

鉱さいたい積場の措置に関する安全性を評価するには、評価シナリオを検討し、モデル を設定してパラメータを選定し、試算する必要があるが、シナリオ、モデルの検討は次項 以下で行い、必要なパラメータはシナリオやモデルによる。

ここでは、たい積場の周辺の地形情報を簡単に整理するとともに、例えば炉規法下において放射性廃棄物のすそ切りについて既に確立された政令濃度上限値を算出する評価手法 1を念頭に、たい積場の環境条件やたい積物の特性を整理する。

1.1.1 地形条件

鉱さいたい積場は人形峠環境技術センターの敷地内に存在し,周辺の状況²は図 1.1-1 に示すように,センター自身は県境の南側の岡山県側に位置し,北から南に向かって傾斜 しているだけでなく,センターの東西方向からも傾斜になっている谷状になっており,東, 北,西側からほぼ南に向かって標高は低くなる。周辺の国土地理院発行の5万分の1地形 図を図 1.1-2^{3,4} に示す。センター構内にはほぼ南北方向に池河川が流れ,たい積場近傍の 地下水はこの池河川に流れ込むと推定される。

鉱さいたい積場の概要を図 1.1-3 に, 平面図, 断面図を図 1.1-4 及び図 1.1-5 にそれぞれ 示す²。

たい積場の認可面積は 25,228 m²であるが,たい積場を矩形に簡略化すると図 1.1.4 よ り約 100m×200m 程度と見積もられる。また,図 1.1-5 より,たい積場の断面は比較的緩 やかな勾配であるが,たい積場の上流側,及び下流側は勾配が大きい。たい積場内の鉱さ いは,鉱石の化学処理によって発生するいわゆる鉱さい(廃砂,廃泥)以外に,中和沈殿 物,坑水処理施設からのろ過砂や沈殿物もたい積している²。鉱さい等は,圧密されている 層と圧密されていない層があるが,いずれも湿潤した状態又は水面下にある(図 1.1-6 参

照2)。鉱さい等の認可たい積量は 39,922 m³であるが,図 1.1-4 の各断面(大文字のアルファベット間の断面)の状況をもとにした検討4によれば約 34,000 m³である(添付 1-1 参照)。

文献2では、「(センター周辺では、)火山や高地温勾配地域はなく、潜在活断層の存在 を示すような群発地震も認められない。ただし、周辺地域では鳥取県西部地震のように比 較的大きな地震が発生した事例があるが、センター周辺に活断層は認められない。」とし ている。なお、活断層を「最近数十万年間に概ね千年から数万年の間隔で繰り返し活動し、 その痕跡が地形に現れ、今後も活動を繰り返すと考えられる断層」と定義している。

図 1.1-1 人形峠環境技術センター全景

坑排水処理に伴う沈殿物、ろ過砂を堆積中

図1.1-5 鉱さいたい積場断面図

図1.1-6 鉱さい堆積物の圧密状況

1.1.2 鉱さい等の特性

先に述べたように、たい積場に存在するたい積物は、いわゆる鉱さい(廃砂,廃泥)以 外に、中和沈殿物、坑水処理施設からのろ過砂や沈殿物が含まれている。また、たい積場 の水面下にないエリアでは雑草が生い茂ったその上にたい積物を定置したので、浅い深度 で植物がサンドイッチ状に挟まれているエリアも存在すると考えられる。

たい積場内 22 点の上層(圧密されていない層)と下層(圧密されている層)の計 44 試 料に対する含水比,密度,粒度試験,及び化学分析の統計処理データを表 1.1-1に,X 線回折の定量分析結果を表 1.1-2に示す4。鉱さい以外の物質もたい積されていることか ら,非常にばらつきが多い。

		平均	最大	最小	標準偏差	信頼区間(95%)
含水比	%	142.9	672.9	19.8	118.9	36.1
密度	g/cm ³	2.646	2.942	2.374	0.123	0.037
粒度試験	歴分	0.2	4.0	0.0	0.7	0.2
	砂分	27.8	92.1	1.0	23.1	7.0
	シルト分	36.5	65.2	5.2	12.3	3.7
	粘土分	35.5	65.8	0.1	15.6	4.7
U	mg/kg	511	1800	66	424	129
Th	mg/kg	15.1	110.0	2.4	18.7	5.7
Ra	mg/kg	8.4	43.2	0.2	9.1	2.8
Si	mg/kg	214568	340000	10000	74254	22575
Al	mg/kg	44045	98000	7000	22814	6936
Ca	mg/kg	21686	45000	770	12904	3923
Fe	mg/kg	35636	140000	11000	22365	6800
K	mg/kg	2212	6000	88	1357	412
Na	mg/kg	589	2300	36	403	122
S	mg/kg	9784	58000	0	12570	3822
Mg	mg/kg	2751	5300	380	1287	391
Mn	mg/kg	865	7700	94	1192	362
Р	mg/kg	1315	3600	120	974	296
Ti	mg/kg	917	2500	250	504	153
Ba	mg/kg	256.3	1200.0	3.8	277.1	84.2
As	mg/kg	173.8	680.0	6.9	191.9	58.3
Pb	mg/kg	14.3	42.0	2.1	8.3	2.5
Cu	mg/kg	18.8	61.0	1.6	11.3	3.4
\mathbf{Cr}	mg/kg	42.5	540.0	0	92.0	28.0
Zn	mg/kg	12.4	820	27	131	40
Ni	mg/kg	33	130	3	25.5	8
V	mg/kg	64	170	. 13	27	8
F	mg/kg	120	590	16	101	31

表 1.1-1 鉱さい等の特性(統計処理結果)

									(%)
\sum		物名	石英	斜長石	7ル別長石	石膏	雲母鉱物類	キブサイト	合計
新料名 人族			quartz	plagioclase	K-feldspar	gypsum	mica minerals	zibbsite	
探取地点			3.34 Å	3. 19 Å	3.24 Å	7.56Å	10Å	4. 82 Å	
1	R12	上層	7. 0	11.8	7.7	32. 0	0. 4	_	58.9
2		下層	10.0	32. 9	12. 9	30, 2	0.5	—	86.4
3	012	上層	0. 7	0, 7	—	82. 1	-	_	83. 4
4	013	下層	35.8	24. 8	33. 1		0.3		94. 0
5	D12	上層	7.8	14.9	5. 1	30. 3	0.4		58.6
6		下層	22.6	27.9	21.3	6.4	0.3	-	78.6
7	ro	上層	34.0	34. 2	29. 4	-	0.4	_	97.9
8		下層	14.8	4.3	5. 7		0.9	3.8	29.4
9	E10	上層	14.2	19.4	19.7	8. 8	0.5		62.6
10	r IU	下層	9.6	16.5	12. 7	20, 5	0.4		59.7
11	E10	上層	12.6	18.8	15. 7	18. 1	0.7		65.9
12	FIZ	下層	16.8	4.2		3. 9	0, 8	1.7	27.3
13	r i a	上層	0.8	1.3	-	93. 7	-		95.7
14	ГІ 4	下層	15. 7	35. 2	26. 4	12. 6	0. 3		90. 2
15	E16	上層	36.8	23. 8	22. 3	_	-		82. 8
16	F 10	下層	15.7	20, 6	20. 3	5.6	0, 4	-	62.5
17	110	上層	7. 9	14. 9	8.0	33. 3	0.4	-	64, 5
18		下層	9.1	20. 1	7.4	17.0	0.4		54.0
19	1110	上層	4.2	11.3	30, 9	32.0	0. 3	-	78.7
20	П 12	下層	21. 8	5.3	8.6		0.7	2.7	39.1
21	114.4	上層	0, 6	0. 7		85, 5	-		86.7
22	л 14	下層	17.6	4.2	1.9	0, 6	1.2	0.9	26.3
23	11 C	上層	2. 1	4.4	1.8	68.4	0. 2	1	76.8
24	010	下層	5, 1	10. 4	3. 7	26. 3	0.3		45.9
25	10	上層	5.0	9.7	7.4	40.4	0.3	_	62.9
26	10	下層	14. 2	24.6	13.4	11.7	0, 3	·	64.3
27	10	上層	. 18. 1	25. 9	27. 1	6. 7	0, 3	_	78.2
28	00	下層	. 16.6	20. 4	25. 2	7. 2	0, 3		69.7
29	110	上層	10.5	34. 3	14. 7	16.6	0, 3		76.5
30	010	下層	15. 1	18. 5	11.4	10.6	0, 3		55.9
31	110	上層	9.5	17. 7	12. 3	18.7	0.4	—	58.6
32	ΨIZ	下層	17. 7	5.5	2.8	3. 2	0.6	0.8	30. 5
33	10	下國	20.9	48. 1	32.0	16. 1	0.4		117.4
34	LO	下層	9.8	7.0	10.3	13.8	0.8	0.4	42.1
35	1.10	上層	14.3	20. 6	14.0	13.4	0, 3	_	62.5
36	LIU	下層	23.8	7. 1	11.2		0.9	1.8	44. 8
37	NKA	上層	18.6	24. 6	18.0	7.3	0.4		68.9
38		下層	12.0	6. 1	12.0	9.4	0.7	0.6	40.9
39	MO	上層	12.6	17.4	8.3	10. 3	0.8	1.0	50.4
40	- N8	下層	29. 2	21. 0	58.5	5.1	0.3		114. 1
41	דמ	上層	19. 2	37. 1	23. 4	_	0.5	0.8	81.0
42	r <i>i</i>	下層	14. 5	15. 7	50.6		0.7	0.5	82.0
43	רם	上層	33. 2	28. 2	23. 3	_	0.5	0.2	85.4
44	π/	下層	11.9	25. 3			0.6	0.3	38. 1

表 1.1-2 鉱さい等の X 線回折定量分析結果

.

.

1.1.3 環境条件

鉱さいたい積場周辺の地質条件及び水理条件(透水性)については、文献2に纏められているので、以下に引用する。

人形峠鉱山に属する鉱さいたい積場周辺は・・・,花崗岩を基盤とし、その表面 5~6m は 風化花崗岩(マサ状)で、その下には乳白色の新鮮な花崗岩類が分布している。これを被覆し て強風化した砂岩、礫岩(人形峠層)が分布し、さらにその上におよそ 1m の河床たい積物が たい積している。これは物理探査で認められた左岸側の低速度帯に相当する。また、右岸側及 び上流側では第三紀層が現たい積面のレベルに分布しており、右岸側にウラン鉱床が胚胎され ていることから、たい積場の右岸及び上流側にかけて第三紀層が厚く分布していると考えられ る。かん止堤下流では基盤の花崗岩の上に河床たい積物及びローム層が分布し、新第三紀層は 存在していない。なお、鉱さいたい積場の堤体はコンクリート重力式で基盤花崗岩に直に建設 されている。

.

センター構内に分布する岩石については、注入法及び回復法等による透水試験を実施している。(図 4.3-1→本報告書では図 1.1-2)。・・・露天採掘場跡地内の捨石、泥岩、礫岩、風 化花崗岩及び花崗岩の透水係数は、・・・・一般的に示されている泥岩: 10⁻⁴~10⁻⁸ m/s オ ーダー、結晶質岩(花崗岩に相当): 10⁻⁶~10⁻¹⁰ m/s オーダーと同程度であり、・・・。

鉱さいたい積場のかん止堤下流側では湧水が観測されており、その流量は平均的には 47m³/d 程度である。この湧水は、鉱さいたい積場内の貯留水を起源とするかん止堤からの 浸透水に加え、かん止堤両岸からの雨水起源の浸透水が混合したものと考えられる。

上記のように、鉱さいたい積場周辺の地質条件は既に把握されているが、今回、たい積 場内でボーリング調査を実施したので、先取りして概要を以下に示す(詳細は2章参照)。

地表部分から, 鉱さい, 旧表土(有機質な粘性土からなり, 上部には植物根が認められる), 強風化花崗岩(非常に軟質で, 指圧で容易に崩壊), 新鮮花崗岩(粗粒な花崗岩)の 順に存在し, 各々の透水性は以下のとおりである(図 1.1-2に合わせて書き込んだ)。

・鉱さい:5×10⁻⁷ m/s

- ・風化花崗岩:4×10.6 m/s
- ・新鮮花崗岩: 2×10.9 m/s

図 4.3-1 たい積場に係る透水係数

図 1.1-2 鉱さいたい積場に関連する地質の透水係数

1.1.4 その他の条件

文献1を踏まえると、地下水移行に関する評価を行なうにあたっては、前項までに整理 した項目以外に必要となる項目がある。その中から、情報として存在する項目を整理した。 たい積場での降雨量は、文献4に整理(それ以前に取得)されており、その値は2300 mm/y となっている。ちなみに、理科年表5における「鳥取」の降雨量は2000 mm/y である。

たい積場を含む周辺の地下水が流れ込むと想定される池河川の流量については、5.8~ 63 m³/s という実測値があるが、ここでは保守的に資料³をもとに、当該河川に地下水が流 れ込む流域面積を概略推定し、降雨量(2300 mm/y)のうちの約1/3 が河川に流出するも のとして、河川流量を推定した。その結果、当該河川に流入する流域面積を6×10⁶ m² と 概算できることから、当該河川流量は約5×10⁶ m³/y と算定される。一方、国土交通省か ら一級河川の流量がデータベースとして公開されており⁶、最小値のオーダが1 E6 m³/y で ある。一級河川の流域面積のデータはないが、池河川の推定流量が我が国の多くの河川の データを網羅している流量と桁で異ならないことから、推定した流量が大きくは異ならな い値と考える。

地下水移行関係のパラメータのうち、河川までの距離は図 1.1-5 より約 150m と想定さ

れ,流速を決める動水勾配については,同じく図 1.1-5 より,鉱さいたい積場領域で平均 0.05 (=10/200),たい積場下流端から河川までは平均 0.27 (=40/150)と想定できる。

1.2 評価手法の予察的設定

本報告書巻末に添付した参考資料1において述べた,低レベル放射性固体廃棄物の処分 に関するシナリオやモデルを参考に,「人形峠環境技術センターにおける鉱山跡の措置に 関する基本計画²」で述べられている鉱山跡等の管理の現状,地質環境,対象廃棄物の特徴 及び物量,措置の基本的考え方等を踏まえ,鉱さいたい積場の評価手法を予察的に設定す る。起こり得るシナリオの抽出やモデルを設定するために,鉱さいたい積場に想定される 措置方策を勘案する。

1.2.1 鉱さいたい積場からの核種放出モデルの作成

(1) 措置方策の概要

鉱さいたい積場からの核種放出モデルを作成するために,現在鉱さいたい積場がど のように管理され,措置方法が考えられているかを述べる。

鉱さいたい積場の概要を図 1.2-1に示す²。たい積場の許可たい積量は約40000 m³, 堤体は幅約64 m,高さ約11 m でコンクリート重力式のかん止堤である。現在たい積 場の維持管理は鉱山保安法に基づいて行われており、山腹水路の管理、鉱さいたい積 場内の水位管理、貯留水の処理を行っている。

鉱さいたい積場は広い範囲にわたり湿潤した状態,もしくは水面下にある。また, ある程度の深さ以深の鉱さいは圧密が進んでいることが分かっている。したがって, たい積物中で透水係数等が異なることが考え得る。鉱さいの圧密状況を図 1.2-2に 示す²。

図 1.2-1 鉱さいたい積場の概要

図 1.2-2 鉱さいたい積物の圧密状況

鉱さいたい積場の措置は、鉱山保安規則の放射線障害の防止の考え方を基本に行われる。鉱業廃棄物については覆土、植栽などを基本として管理を軽減化する措置を行うことができるが、ここで扱うのは核原料物質鉱山からの鉱さいであるため、鉱山保 安規則の放射線障害の防止の考え方を基本に、国内の他の鉱石問題の取り扱い事例や 国外の措置事例、ウラン鉱山廃棄物措置に関わるガイドラインなどを参考に、措置の 考え方を構築することとされている。

人形峠環境技術センターに関わる鉱さいたい積場の措置においては,将来,現状の 放射線管理を極力軽減することを前提としている。鉱さいに含まれるウランの半減期 は長く,減衰による放射性核種濃度の低減は期待できないが,含まれるウランは濃縮 や照射を行っていないものであり,含有率は0.01 wt%未満のものである。現在も掘り 出した場所及びその周辺において屋外で安全に管理されており,また,その量は全体 で 30,000 m³ 強と膨大であることから基本的には発生した場所での措置を行い,安全 をより確かなものとする計画である。ただし,措置終了後も損壊などにより公害・危 害の恐れのある場合,その対策を行う手立てを継続することが前提とされている。

措置においては国内の他の金属鉱山や海外のウラン鉱山の事例より,たい積場の構 造安定化,たい積場からの溶出量低減,たい積場からの溶出成分の流出抑制,放射線 の遮へい及びラドンの散逸抑制,動植物の侵入及び毛管上昇の抑制などの機能の向上 が求められる。

これまで述べたことを考慮した鉱さいの埋設形態としては、海外事例に見られる覆 土・植栽といった形態等を参考に、素掘り埋設等が考えられている。措置概念の一例 を図 1.2-3、図 1.2-4に示す²。

図 1.2-3 鉱さいたい積場の安定化措置方法の概念図-横断面 (基本ケース:上部遮水層のみの場合)

図 1.2-4 鉱さいたい積場の安定化措置方法の概念図-縦断面

(基本ケース:上部遮水層のみの場合)

鉱さいは天然の状態から選鉱,粗精錬の過程で化学プロセスを経てウランを抽出し ているため、ウラン量は元々の鉱石と比べ低くなっているが、ラジウム等の子孫核種 が残存しており、化学的物理的な状況も異なるため、これらを考慮する必要がある。 また、ダム貯留水やダム下流側でのラジウム濃度やその他の有害化学物質の濃度が十 分法令値を満足するものであることや、圧密による安定化が期待できることから、現 在のたい積場を整形し,脱水を促す排水層や鉱さいへの雨水浸入を抑制するための透 水層・遮水層,ラドンバリア層,表土の浸食を防止する層及び植栽,ダム安定化のた めの押さえ盛土,必要に応じて鉱さいの固化などの工学的対策を施し,適切な安定性 を確保することによりその機能を向上させる方式で措置することが考えられている。 また,上流側からの遮水性を向上させるために連続地中壁などの設置についても検討 されている。

(2) モデルの検討

前項の鉱さいたい積場への跡措置(措置方策)を踏まえ,ここでは,評価で想定す べきたい積場内での地下水の流況(モデル),及びたい積場へ流入する地下水の流況 (モデル)を検討する。

たい積場内の地下水の流れに影響する措置は,降雨の浸透を低減するために鉱さい の上部に設置する遮水層や山腹水路であり,その他に,地下水の流入を低減する上流 遮水壁,たい積場内の地下水を積極的に排水する下部排水層も場合によっては想定さ れる。また,もともと設置していた堰堤の状況によっては地下水の流れに影響する場 合がある。これらの措置を施し,措置が機能すれば,侵入が低減されて流出を促進さ れるため,たい積場に侵入する地下水はほとんどない。

しかし,たい積場跡地への管理は,モニタリングや設備維持の能動的な管理を行な わず,記録の保存やマーカの設置等制度的管理を基本に(介入の概念も導入して)安 全を確保することとしていることから,遠い将来的において地表部以外に設置した措 置が機能し続けることを期待することは困難であり,少なくとも評価においては,措 置が機能しなくなる状況を仮定することになる。なお,たい積場の地形は緩やかな傾 斜地で,覆土層が崩れないように覆土設計・施工をし,さらに崩壊しないだけの覆土 管理は継続されると考える。

(i) たい積場内の地下水の流れ

措置の機能がある程度保たれている期間は、たい積場(鉱さい部)への降雨や地下 水の浸透・流入は少なく、鉱さい部分は不飽和状態が維持されると考えられる。その ため、たい積場領域への降雨のうち、鉱さい領域に僅かに浸透する地下水は不飽和層 を鉛直下向きに流れると想定される。

一方,機能がほとんど低下し,自由に降雨が浸透したり地下水が上流側(側方)か ら流入してくると,たい積場は比較的緩やかな地形であることから鉱さい部は地下水 で飽和状態になると想定される。飽和状態での地下水の流れについて,垂直方向の媒 体(鉱さい部とその下の風化花崗岩部)の透水性が同程度であれば流向は地形に沿う が,下部の風化花崗岩部の透水性が大きい場合には,地形の影響よりも,透水性の差 によりポテンシャルの低い下方向に流れが卓越するものと想定される。なお,これは, 次項での流入水量と堰堤の機能にも影響される。

以上,たい積場の地下水流況は以下が想定される:

①不飽和層で、鉛直下向きの流れ

②飽和層で, 鉱さい部と風化花崗岩部の透水性により以下を想定;

▶ 鉱さい部に較べて風化花崗岩部の透水性が大きくない場合:地形に沿ったほぼ 水平方向の流れ

▶ 鉱さい部に較べて風化花崗岩部の透水性が大きい場合:ほぼ鉛直下向きの流れ (ii) たい積場に流入する地下水の流れ

措置がほぼ期待どおり機能している期間は、上部からの鉱さい部への降雨や地下水 の流入はほとんどないが、図 1.2-3に示すように、たい積場底部の形状及び下部排 水層の設置状況によっては、上流側及び側方部から僅かに流入し、底部の地山と接し ている鉱さい部を部分的に舐めて流下する。

上部の遮水層の機能が低下(停止)した後は、たい積場上部からの水の浸透が起こ る。ただし、まだ山腹水路の機能が低下していない場合は、たい積場より標高が高い 部分からの表流水の流入はないので、たい積場領域への降雨のみが地下(鉱さい部) への浸入の対象となる。

山腹水路の機能も低下した場合には,標高の高い領域への降雨も表流水として移行 して地表から鉱さい部への浸透に寄与するし,地下水上流側の遮水壁の機能も低下し た場合には、地下経由で鉱さい部に流入する。すなわち,遮水壁や山腹水路の機能が 低下した場合は、たい積場領域だけでなく、上流側(標高の高い領域)への降雨によ る流入も起こる。なお、この場合、鉱さい部に流入する流量と底部排水層の機能やも ともと存在した堰堤の状況により、地下水の移行経路が異なる。つまり、下部排水層 の機能が低下していなければ地下水は排水層を経由するが、排水層の機能が低下した 後は(i)項で記載したように、鉱さい部と底部の風化花崗岩の透水性の大小により

卓越する移行パターンが想定できるが, 堰堤の遮水機能が期待される場合で流入水量 が流出水量を超える場合は, 堰堤の上部を越流することも想定される。

最終的に全ての人工的な措置の機能が低下した後は、周辺の地形等により地表及び 地下から鉱さい部に浸透、流入し、鉱さい部やその周辺の地質の透水性及び地形によ り下流側に移行していく。

以上, 措置の機能の低下に応じて, 鉱さい部への水の浸入は次のように纏められる:

- ① 措置の機能が低下するまで;流入はほとんどないが、上流側及び側方部から僅かに流入し、底部の鉱さい部を部分的に舐めて流下
- ② 上部遮水層の機能低下後;たい積場上部からの降雨が浸透
- ③ 山腹水路, 遮水壁の機能低下後; 周囲への降雨も一部流入, 排水層経由で流下
- ④ さらに下部排水層の機能低下後;鉱さい部又は下部の地山経由で流下,ただし, 堰堤の遮水機能が期待される場合で流入水量が流出水量を超える場合は堰堤の 上部を越流
- ⑤ 全ての措置の機能低下後;地形や媒体の透水性に応じて鉱さい部に浸透,流入し,下流側に流出
- (3) 鉱さいたい積場からの核種放出モデルの設定

前項までの検討から、ここでは鉱さいたい積場からの核種放出のモデルを設定する。 措置が有効な期間は、たい積場内を避けて流れる地下水が多いため、ここでは措置が ある程度有効でなくなった上記⑤の状態を想定し、以下の放出モデルを設定した。

- (i) 鉱さいたい積物内を鉛直下向きに流れ,排水設備又は地山風化帯から流出 するモデル
- (ii) 鉱さいたい積場内を水平方向へ流れ,排水設備又は地山風化帯から流出す るモデル

なお, 措置が有効でなくなる状況によっては, 鉱さいたい積物の上面を流れる表流 水により核種が放出するモデルも想定されるが, ここでは一様に人工物が有効に機能 しなくなることとした。両モデルについて以下に示す。

解析には,弊社開発の崩壊連鎖を考慮した1次元核種移行解析コード FRONT92 を 用いた。このコードでは,崩壊や核種移行に伴って変化する同位体組成比を考慮した 溶解度モデルも扱うことができる7。

(i) 鉱さいたい積物内を鉛直下向きに流れ、排水設備又は地山風化帯から流出するモデル 鉱さいたい積物と比べて、地山風化帯の透水性が高く、また地下水面が鉱さいたい 積物の下面よりも低い場合、たい積場に浸透した水はたい積物中よりも地山部分を通 ろうとすると考えられる。この場合、たい積場に浸透した水は斜面に沿った方向より も短い鉛直下向きに流れる。あるいはたい積物内が不飽和である場合、浸透してきた 降雨がたい積物内を鉛直下向きに流れる。その後、底部の排水設備あるいは地山風化 帯を旧地形面に沿って流れていく。

浸出した核種を含む地下水は池河川に流入し、さらにその下流の河川まで流下する。 たい積物内を鉛直下向きに流れてたい積場外へ核種が放出するモデルの概念図を図 1.2-5に示す。

図 1.2-5 鉱さいたい積場からの核種放出モデル(たい積物内鉛直下向き流れ)

(ii) 鉱さいたい積場内を水平方向へ流れ、排水設備又は地山風化帯から流出するモデル

鉱さいたい積物とその下にある地山風化帯で、鉱さいの方が透水性が高く、かつ地 下水面がたい積物底面よりも高い場合、または、たい積物の方が透水性が低い場合で も、たい積層下部に圧密された層があり、その部分の透水性が地山風化帯よりも高く なっている場合、たい積場へ浸透した水は地山まで浸透せずに、たい積物内を斜面に 沿って流れると考えられる。しかし本報告書2章の結果より、鉱さいの透水係数のほ うが地山の透水係数よりも小さく、また透水係数測定を行った地点において、特に圧 密層の存在による透水性の低下は認められないという結果が得られた。しかし、今回 の調査は鉱さいたい積場の一箇所においてなされたものであり、その結果だけで鉱さ い内の水の流れを決定することは困難である。したがって、本検討ではたい積層内を 水平に流れるモデルについても考慮する。

地下水に溶出した核種はたい積物内を水平に移行し,ダム付近で地山風化帯もしく は排水設備に流れ込み,たい積場の外へ流出する。流出した核種を含む地下水は,池 河川に流入し,さらにその下流にある河川まで流下する。

鉱さいたい積場内を水平方向へ流れてたい積場外へ核種が放出するモデルの概念図 を図 1.2-6に示す。

図 1.2-6 鉱さいたい積場からの核種放出モデル(たい積物内水平方向流れ)

1.2.2 被ばく評価シナリオの選定

鉱さいたい積場は、谷をダムでせき止めた約 200 m×100 m 余りの領域である。たい積 場内は湿地状をなしており、葦が覆い茂っているため水面が見えるのはダム付近のわずか な領域のみである。たい積場の周囲には山腹水路が設置されており、後背地からの表流水 は遮断されている。したがって、鉱さいたい積場は主に、その領域に直接降った雨水によ って涵養されているとした。鉱さい部へ浸透した水以外の表流水の成分も含めて自由な流 出はなく、全て鉱さいたい積場に貯水される。現在は、定期的にダムからポンプによって 下流の坑水処理施設へ移送され、処理と濃度の測定が行われた後、河川に放流されている。 なお、現在は地下の遮水壁などの措置は施されていないため、後背地からの地下水は、相 対的に低地となる鉱さいたい積場内へ流入している可能性がある。また、鉱さいたい積場 内の水の一部は、地下水としてダムより下流側へ至っている可能性も考えられる。ただし、 下流で湧水などは観測されないとともに、ダムからの浸出水量は 47 m³/d と報告されてい る⁸。このような地下水の流れについては、地質調査、水文調査、地下水流動解析を行った 後判断されるべきである。

現在は、水は坑水処理施設を経由して排水されており、この地点より下流における河川 水の利用において有意な影響を生じることはない。また、鉱さいたい積場、坑水処理施設 ともに周辺監視区域内であるため一般の居住者は存在せず、立ち入りや地表の利用は管理 されている。鉱さいたい積場については、今後の対策によって、たい積場へ浸入する雨水 量や地下水量の低減を行い、管理の労力低減に努めることとされており、遮水壁や鉱さい たい積場上の遮水層が十分機能すれば、排水処理の必要がなくなる可能性もある。

放射性廃棄物処分場においては、同様の管理が数百年間継続されるが、その後は管理が 機能しなくなったものとして安全評価が行われる。この期間は、極めて濃度が低い放射性 廃棄物の場合には、処分場跡地においていかなる行為がなされても人へ影響が及ばない程 度の十分低い値にまで放射性核種濃度が減衰する期間を意味するが、それ以外の場合には、 将来の管理に対する不確実性を反映したものである。すなわち、過去の人類の経験を踏ま えて、数百年以上経過した後には、社会の変化や災害、騒乱などによって管理や記録が散 逸し、その効力が失われる可能性があり、そのような状況下においても処分場の安全性が 確保されていることを評価によって確認しておく、という意味である。つまり、制度上は

永久に管理¹を続けるとしていても,数百年以後に,その制度が失われる可能性を考慮し たものである。

ウラン及びその子孫核種は半減期が極めて長く、その影響が長期間に渡って残存するた め、ここで試算する鉱さいたい積場の安全評価は、長期間経過後に管理が失われた後を念 頭に行うこととした。ただし、長期間経過後であっても、法の立場上制度的受動的管理や、 何らかの記録、記憶が、相当程度の期間残されると考えられるため、鉱さいたい積場跡地 上での居住や、大規模な掘り返しシナリオは起こらないものとして今回の検討の対象外と した。

鉱さいたい積場付近で被ばくが起きる可能性のある場所を次の3ヶ所に分類した。想定 した各評価地点のおおよその位置を図 1.2-7に示す。

(1) 鉱さいたい積場ダム下流の谷

(2) 現在の坑水処理施設周辺及びその下流

(3) 下流の集落部

これらの場所は、(1)から(3)になるに従って、河川による希釈などによって存在す る放射性核種濃度は低下する。その一方で、地形などの要因から、(1)、(2)では起こり うるシナリオが制限されるのに対して、(3)では、主に河川水に起因する多様なシナリオ が想定される。したがって、一概に(1)の方が(2)、(3)よりも評価される被ばく線量 が低いとは言えない。

¹⁾事業者の行う管理については、トレンチ型処分で数十年、ピット型処分に約300年経過後に、国による確認を受けた後終了することができるが(原子炉廃棄物の場合)、国などによる制度的受動的管理は、その後も継続する。長期間に渡ってどのような管理を継続するか、記録をどのように保存するかについては、現在検討が進められている。

図 1.2-7 鉱さいたい積場付近における評価地点

(1) 鉱さいたい積場ダム下流の谷

ここでは鉱さいたい積場から坑水処理施設脇の池河川までの領域について検討する。 この領域は狭い谷あいの僅かな平地である。鉱さいたい積場に対しては、今後、底部 排水層などを設置することが検討されている。これらが機能している期間中は、鉱さ いたい積場からの浸出水はほとんどないものと考えられる。長期間経過し、これらの 対策工の機能が失われた場合には、徐々に雨水の浸透が起こり、ダムを越流した表流 水やダム下部からの地下水の形で、下流側に水が浸出する可能性がある。

この領域は狭い谷地形であり,居住,農耕,牧畜には適さないと考えられる。また, 現在既に,この領域より数10 m 北側に道路が建設されていることから,将来とも, 道路建設などの大規模な工事が行われる可能性も考え難い。ただし,林業などの作業 者の立ち入りは考えられる。また,恒常的な食料源となる量の淡水魚は生息しないと 考えられる。 以上で述べてきたように、この領域において合理的に考えられる土地利用はほとん どないが、念のため、この領域において居住が行われた場合について評価を行う。こ の場合の評価シナリオは、居住に伴う地下水の飲用、農作物、ダストの摂取、住居建 設工事に伴う外部被ばく、ダスト吸入などである。

また,この領域は鉱さいたい積場に続く谷中であるため,たい積場から放出された ラドンが,谷に沿った下降気流によってあまり拡散せずに住居に到達する可能性があ るため,ラドンガスによる影響を検討する必要がある。

(2) 現在の坑水処理施設周辺及びその下流

ここで検討する領域は,現在はサイクル機構の敷地内であり,造成された平地が点 在する。現在,この領域に居住者はおらず,敷地外の周辺にも居住者はいない。

長期間経過後,種々の対策工が劣化したとすると,この地域を流れる池河川(沢) に鉱さいたい積場を通過した水が流入すると考えられる。この領域には造成された平 地が存在することから,将来居住が起こる可能性がある。その居住者が河川水(沢水) を利用することにより被ばくが起こる。河川水の利用として主に考えられるのは,飲 用,農耕,牧畜などである。なお,河川は小規模であり,定常的に淡水魚の供給源と なることは困難であると考えられる。

この領域に流れる地下水は後背地からのものであり、鉱さいたい積場からのものではない。したがって、井戸水飲用などは被ばく経路にならないと考えられる。

また,この領域は鉱さいたい積場から離れており、ラドンは容易に拡散し、その影響は小さいものと考えられる。

(3) 下流の集落部

ここでは,現在のサイクル機構人形峠環境技術センターから下った位置に存在する 集落について検討する。坑水処理施設近傍を流れる池河川は,この領域に存在する吉 井川に流入する。この領域での被ばく経路は,この河川水からのものとなると考えら れる。

この領域は平地であり,居住,農耕,牧畜を営むことが可能であり,様々な建設工 事なども行われる。河川の規模から,淡水魚の供給も可能であると考えられる。

この領域においても地下水を利用することは可能であるが、その地下水は、後背地

から流入してきたものであり, 捨石たい積場を通過した水ではない。したがって地下 水を利用することによる被ばくは起こらない。

また,この領域は開けた平地であり、ラドンは容易に散逸するものと考えられる。 ・ 以上において検討したシナリオをまとめて図 1.2-8,図 1.2-9に示す。

1.2.3 被ばく評価モデルの選定

前項で選定した被ばく評価シナリオにおいて,鉱さいたい積場から放出した核種により それぞれの評価対象者が被ばくするモデルを選定する。前項で分けた各領域についてそれ ぞれ示す。

(1) 鉱さいたい積場ダム下流の谷

この領域は、鉱さいたい積場から池河川までの谷部で、池河川までの距離は150m 程度である。たい積場を通過してきた地下水がこの領域を流れている。この地下水の 利用、地下水の流れる土壌上の活動により被ばくが起こると考えられる。

この領域は狭い谷地形であり、居住、農耕、牧畜には適さず、また、道路建設など の大規模な工事が行われる可能性も考え難い。ただし、林業などの作業者の立ち入り は考えられる。林業従事者の作業時間は農業従事者に準じて 500 時間と考えるが、こ の領域の面積から、作業を全て領域内において行うことは考えにくい。そこで林業従 事者の作業時間のうち、評価領域内での作業時間割合を 0.1 と考え、被ばく時間を 50 時間とした。考えられる林業従事者の被ばく経路は土壌からの外部被ばく、作業中に 舞い上がった粉塵を吸入することによる被ばく、土壌のついた手などをなめることに よる汚染物質の摂取による被ばくである。また、この領域は鉱さいたい積場に続く谷 中であるため、たい積場から発生したラドンガスがあまり拡散せずに到達すると考え られる。また、領域内の土壌からもラドンガスが発生すると考えられる。したがって、 ラドンガスを吸入することによる被ばくを考える必要がある。

この領域はたい積場よりも下流の領域であるため,覆土などの措置は施されないと 考えられる。したがって土壌の希釈は無いものと考える。また,遮へい係数³⁰は保守 的に 1.0 と設定した。林業作業者の呼吸率及び空気中汚染物質濃度は農業従事者に準 ずるものとし、土壌摂取量は、IAEA⁹の示す、大人が1時間の屋外活動の際に摂取す る土壌の量を使用した。なお、地下水中の核種濃度には、評価領域内の濃度を平均し た値を用いた。

たい積場からは Ra-226 からの Rn-222 (ラドン) と Th-222 からの Rn-218 (トロン)が放出される。Rn-218 は半減期が短く、ごく近傍でしか影響をおよぼさないのでここでは除外し、ラドンの影響のみを考慮する。なお、たい積場からのラドンの影

響を考える際,たい積場には覆土等の措置が施されていないものとした。ラドンバリ アが有効である場合,ラドンガスはバリア中を拡散している間に崩壊し,その影響は ほとんどないと考えられる。また長期間経過後,たい積場に施した措置の効果が失わ れてたい積場内へ地下水や表流水の浸透が起こった場合,たい積場及び覆土は飽和状 態となると考えられ、ラドンは拡散しにくくなり,地表面へ到達するまでにその影響 はなくなると考えられる。しかし,本検討においては、ラドンバリアを施していない 場合のラドンガスの影響について評価することとする。敷地内の風速は代表的な値で ある 1.0 m/s とした。また,たい積場の大きさから,大気の混合高さは保守的に 2.0 m とした。

上記の条件をもとに、たい積場から到達するラドンガスは、たい積場で発生したラ ドンガスの10分の1が到達するものとして評価した。ラドンガスの移行は、パフモ デルを使うと集落までには容易に散逸し、集落に到達する濃度は極めて低くなる。し かし、大気の状態が安定している夜間などにおいては、谷部に乱れの少ない緩やかな 下降気流が生じる場合があることが知られており、そのような場合にはたい積場のラ ドンがあまり散逸せずに集落に到達することがある。これらを踏まえて、ここでは、 たい積場上のラドン濃度の10分の1の濃度で集落に到達するものとした。

林業従事者の被ばく線量は次式により計算した。

$$H_{for} = C_u \cdot Kd \cdot \left\{ \frac{T_1}{8760} \cdot \left(S_{for} \cdot DF_{EXT} + A_{for} \cdot CD_{for} \cdot DF_{INH} \right) + T_1 \cdot Q_{soil} \cdot DF_{ING} \right\}$$

Hfor : 林業従事者の被ばく線量(Sv/y)

Cu : 地下水中の核種 i の放射能濃度(Bq/m³)

Kd : 核種iの分配係数(m³/kg)

T1 : 林業従事者が領域内に立ち入る時間(h)

 $T_1 = T_{for} \cdot f_{ent}$

Tfor :林業従事者の作業時間(h/y)

fent : 作業中領域内へ立ち入る割合(-)

Sfor : 遮へい係数(-)

Afor : 林業従事者の呼吸率 (m³/y)

²⁾ ここでの遮へい係数は、遮へい物のない状況で活動する時間割合を意味する。

CDfor : 汚染粉塵空気中質量濃度(kg/m³)

Q_{soil} : 土壤摂取量(kg/h)

DFEXT : 外部被ばく線量換算係数((Sv/y)/(Bq/kg))

DFINH :吸入摂取被ばく線量換算係数(Sv/Bq)

DF_{ING} : 摂取被ばく線量換算係数(Sv/Bq)

また, ラドンガスの吸入による被ばくは, たい積場から流れてくるものと, 評価領 域の土壌から発生するものを足し合わせたものになる。たい積場から到達するラドン ガスによる被ばくは次式により計算した。

$$H_{Rn} = H_{Rn,m} + H_{Rn,s}$$

HRn : ラドンガスによる被ばく線量(Sv/y)

H_{Rn,m} :たい積場から到達したラドンガスによる被ばく線量(Sv/y)
 H_{Rn,s} :土壌から発生したラドンガスによる被ばく線量(Sv/y)

 $H_{Rn,m} = 0.1 \cdot k \cdot T \cdot f_o \cdot C_{Rn,m}$

0.1 :たい積場から評価地点ヘラドンガスが到達する割合(-)

k : 換算係数((Sv/h)/(Bq/m³))

- T : 被ばく時間 (h/y)
- fo : 屋外での平衡ファクタ(-)

C_{Rn,m}:たい積場から発生するラドン濃度(Bq/m³)

$$C_{Rn,m} = \frac{L_{mt}}{h \cdot u_{wind}} \cdot J_{mt}$$

L_{mt} : たい積場長さ(m)

uwind : 風速 (m/s)

J_{mt} : たい積場からのラドンの散逸率(Bq/(m²·s))

$$J_{mt} = \sqrt{\frac{D_{mt}}{\lambda_{Rn}}} \cdot \lambda_{Rn} \cdot \rho_{mt} \cdot F_{mt} \cdot C_{Ra,m}$$

D_{mt} : 鉱さい中の拡散係数(m²/s)

λ_{Rn} : ラドンの崩壊定数(1/s)

1-28

 : 鉱さいの見かけ密度(kg/m³) $\rho_{\rm mt}$ F_{mt} : 散逸能(-) C_{Ra.m}: 鉱さい中の Ra-226 濃度(Bg/kg) $H_{Rn,s} = k \cdot T \cdot f_o \cdot C_{Rn,s}$ C_{Rn.s} : 土壌から発生するラドン濃度 (Bg/m³) $C_{Rn,s} = \frac{L_s}{h \cdot u_{mind}} \cdot J_s$:評価領域の長さ(m) L_s Js : 土壤からのラドンの散逸率(Bq/(m²·s)) $J_{s} = \sqrt{\frac{D_{s}}{\lambda_{p..}}} \cdot \lambda_{Rn} \cdot \rho_{s} \cdot F_{s} \cdot C_{Ra,s}$ D_s :土壤中の拡散係数(m²/s) ρ_s : 土壤の見かけ密度(kg/m³) F_s : 散逸能(-) $C_{Ra,s}$: 土壌の Ra-226 濃度(Bg/kg) $C_{Ra,s} = C_{Ra,u} \cdot Kd_{Ra}$:地下水中の Ra-226 の放射能濃度(Bq/m³) CRa.u KdRa : Ra-226 の分配係数 (m³/kg)

この領域において合理的に考えられる土地利用はほとんどないが, 念のため, この 領域において居住及び建設作業が行われた場合についても考える。

居住者の被ばくは土壌からの外部被ばく、ダスト吸入による被ばく、農作業中に土 壌のついた手などをなめることなどによる汚染土壌の摂取、農作物及び畜産物の摂取 による被ばく、ラドンガスを吸入することによる被ばくである。なお、地下水は希釈 されずに利用されるものとする。建設作業者の被ばくは土壌からの外部被ばく、ダス ト吸入による被ばく、汚染土壌の摂取による被ばく、ラドンガスを吸入することによ る被ばくである。建設作業者の被ばく線量は、上述した林業従事者の被ばく線量と同 様に求められる。また、居住者の被ばく線量の計算式、及びパラメータの設定は次項 にて述べる。 (2) 現在の坑水処理施設周辺及びその下流

たい積場から浸出した核種を含む地下水は下流の池河川に流入する。その河川水を 利用することにより,居住者が被ばくする。

居住者は保守的に自耕自給により栽培した農作物および畜産物を摂取するとする。 また、河川水を飲用する。ここで考えられる被ばく経路は、居住中及び農作業中の土 壞からの外部被ばく、農作業中に土壌のついた手などをなめることなどによる汚染土 壌の摂取、農作物及び畜産物の摂取による被ばく、居住中及び農作業中のダスト吸入 による被ばく、土壌から発生するラドンガスを吸入することによる被ばくである。灌 漑土壌の核種濃度は、畑作を行った場合の灌漑水量 1.2 m³/(m²·y)を用いて計算し、客 土はないものとして汚染土壌の希釈はないものとした。また、土壌有効体積は六ヶ所 低レベル放射性廃棄物埋設¹⁰の評価に使用した値、0.15 m³/m²を用いた。

外部被ばくは,居住中における土壌からの被ばくと,農作業中の灌漑土壌からの被 ばくを足し合わせた。計算式を以下に示す。

 $H_{ext} = H_{ext,res} + H_{ext,ag}$

H_{ext}: 居住者の外部被ばく線量(Sv/y)

Hext,res : 居住中の外部被ばく線量 (Sv/y)

Hext,ag : 農作業中の外部被ばく線量 (Sv/y)

$$H_{ext,res} = C_r \cdot Kd \cdot \frac{T_{reg}}{8760} \cdot S_{reg} \cdot DF_{EXT}$$

Cr : 河川中の核種 i の放射能濃度(Bq/m³)

Kd : 核種iの分配係数(m³/kg)

Tres : 居住時間(h/y)

Sres : 居住時の遮へい係数(-)

DFEXT : 外部被ばく線量換算係数((Sv/y)/(Bq/kg))

$$H_{ext,ag} = \frac{C_r \cdot Q_{ir1}}{V_s \cdot \rho_s (1 - \varepsilon_s) \cdot \lambda + \frac{R_{ir}}{Kd}} \cdot \frac{T_{ag}}{8760} \cdot S_{ag} \cdot DF_{EXT}$$
Qir1 : 畑作での灌漑水量 (m³/(m²·y))
V_s : 土壌有効体積 (m³/m²)
 ρ_s : 土壌の密度 (kg/m³)

1 - 30

ε_s : 土壌の空隙率(-)

- λ :核種iの崩壊定数(1/s)
- Rir : 灌溉水浸透水量(m³/(m²·y))
- T_{ag} : 農作業時間(h/y)
- Sag : 農作業時の遮へい係数(-)

吸入被ばくは,居住中における粉塵吸入による被ばくと,農作業中における粉塵吸 入による被ばくを足し合わせた。計算式を以下に示す。

H_{inh} = H_{inh,res} + H_{inh,ag} H_{inh} :居住者の吸入被ばく線量(Sv/y) H_{inh,res} :居住中の吸入被ばく線量(Sv/y)

H_{inh,ag} : 農作業中の吸入被ばく線量 (Sv/y)

$$H_{inh,res} = C_r \cdot Kd \cdot \frac{T_{res}}{8760} \cdot A_{res} \cdot CD_{res} \cdot DF_{INH}$$

Ares :居住者の呼吸率(m³/y)

CDres :居住時の汚染粉塵空気中質量濃度(kg/m³)

DFINH :吸入摂取被ばく線量換算係数(Sv/Bq)

$$H_{inh,ag} = \frac{C_r \cdot Q_{ir1}}{V_s \cdot \rho_s (1 - \varepsilon_s) \cdot \lambda + \frac{R_{ir}}{Kd}} \cdot \frac{T_{ag}}{8760} \cdot A_{ag} \cdot CD_{ag} \cdot DF_{INH}$$

$$A_{ag} \qquad : 農作業者の呼吸率 (m3/y)$$

CD_{ag} : 農作業時の汚染粉塵空気中質量濃度(kg/m³)

居住者の農作物及び畜産物の摂取は,自耕自給であることから市場希釈はないもの とする。また,経根吸収係数は保守的に 1.0 とした。農作物は採取後すぐに摂取され るとし,その間の減衰はないものとする。家畜が核種を摂取する経路は,河川水を飼 料水とし摂取すること,河川水を利用して栽培した飼料を摂取することによる。なお, 飼料の移行係数は農作物の移行係数を用いた。また,河川水の飲用の際,希釈はない ものとした。

経口摂取被ばく線量は次式により求めた。

 $H_{ing} = H_{soil} + H_{cr} + H_{an} + H_{dr}$

$\mathrm{H}_{\mathrm{ing}}$:居住者の経口摂取被ばく線量(Sv/y)
${ m H}_{ m soil}$:土壌摂取による被ばく線量(Sv/y)
${ m H}_{ m cr}$: 農作物摂取による被ばく線量(Sv/y)
\mathbf{H}_{an}	:畜産物摂取による被ばく線量(Sv/y)
H_{dr}	:河川水飲用による被ばく線量(Sv/y)

土壌の摂取による被ばく

$$H_{soil} = \frac{C_r \cdot Q_{ir1}}{V_s \cdot \rho_s (1 - \varepsilon_s) \cdot \lambda + \frac{R_{ir}}{Kd}} \cdot T_{ag} \cdot Q_{soil} \cdot DF_{ING}$$

$$Q_{soil} : \pm \frac{1}{2} \times \frac{1}{2} \times$$

DF_{ING} : 摂取被ばく線量換算係数 (Sv/Bq)

農作物の摂取による被ばく

$$H_{cr} = \frac{C_r}{V_s \cdot \rho_s (1 - \varepsilon_s) \cdot \lambda + \frac{R_{ir}}{Kd}} \cdot (Q_{ir1} \cdot Q_v + Q_{ir2} \cdot Q_r) \cdot B_{cr} \cdot K_{cr} \cdot F_{cr} \cdot DF_{ING}$$

$$Q_{ir2} : 稲作での灌漑水量 (m3/(m2 \cdot y))$$

$$Q_v : 畑作での作物の摂取量 (kg/y)$$

$$Q_r : 米の摂取量 (kg/y)$$

$$B_{cr} : 農作物の移行係数 ((Bq/kg)/(Bq/kg))$$

$$K_{cr} : 農作物の経根吸収係数 (-)$$

$$F_{cr} : 農作物の市場希釈係数 (-)$$

畜産物の摂取による被ばく

$$H_{an} = C_r \cdot \left(\frac{Q_{aw}}{1000} + \frac{Q_{ir1}}{V_s \cdot \rho_s (1 - \varepsilon_s) \cdot \lambda + \frac{R_{ir}}{Kd}} \cdot B_{cr} \cdot Q_{ac} \right) \cdot B_{an} \cdot Q_{an} \cdot F_{an} \cdot DF_{ING}$$

Qaw :家畜の家畜用水摂取量(1/day)

Qac :家畜の飼料摂取量(kg/day)

Qan : 畜産物の摂取量(kg/y)

Ban : 畜産物の移行係数(day/kg)

Fan : 畜産物の市場希釈係数(-)

河川水の飲用による被ばく

$$H_{dr} = C_s \cdot Q_w \cdot DF_{ING}$$

Qw :河川水の摂取量 (m³/y)

また, 土壌から発生したラドンガスの吸入による被ばくは以下の式により計算した。 発生したラドンガスは, 屋内にいる間吸入するものとした。

 $H_{res} = H_{ext} + H_{inh} + H_{ing} + H_{Rn}$

(3) 下流の集落部

この領域での被ばくは、池河川がその下流の吉井川に流入し、その河川水を利用す ることにより起こる。この領域は開けた平野部であり、居住者以外にも様々な建設作 業者の被ばくも考慮する必要がある。

居住者の被ばくは、土壌からの外部被ばく、ダストを吸入することによる被ばく、 土壌の摂取による被ばく、汚染土壌で栽培した農作物や畜産物の摂取による被ばく、 河川水を飲用することによる被ばくが考えられる。また、河川の規模から、ここでは 淡水魚を摂取することによる被ばくも考慮する必要がある。

この領域においても、灌漑土壌の核種濃度は畑作を行った場合の灌漑水量 1.2 m³/(m²·y)を用いて計算した。また、客土はないものとし、汚染土壌の希釈は起こらないものとした。居住者の外部被ばく及び吸入被ばくは、前項(2)に示した計算式を用いて計算した。

農作物, 畜産物及び淡水魚は, 自耕自給とし市場希釈はないものとする。また, 河 川水も希釈されずに飲用されるとする。経口摂取被ばくは次式により計算した。

$$H_{ing} = H_{soil} + H_{cr} + H_{an} + H_{fi} + H_{dr}$$

$\mathrm{H}_{\mathrm{soil}}$:土壌摂取による被ばく線量(Sv/y)
$H_{\rm cr}$:農作物摂取による被ばく線量(Sv/y)
H_{an}	: 畜産物摂取による被ばく線量(Sv/y)
${ m H_{fi}}$:淡水魚摂取による被ばく線量(Sv/y)
$\mathbf{H}_{\mathbf{dr}}$:河川水飲用による被ばく線量(Sv/y)

土壌,農作物,畜産物の摂取及び河川水の飲用による被ばくは,前項(2)に示した計算式を用いて計算した。淡水魚を摂取することによる被ばくは以下の式により計算した。

$$H_{fi} = C_r \cdot \frac{B_{fi}}{1000} \cdot Q_{fi} \cdot F_{fi} \cdot DF_{ING}$$

Hfi :淡水魚摂取による被ばく線量(Sv/y)

Cr : 河川中の核種 i の放射能濃度 (Bq/m³)

1-34

- Bn : 淡水魚の移行係数((Bq/g)/(Bq/ml))
- Q_{fi} :淡水魚の摂取量(kg/y)
- F_{fi}:淡水魚の市場希釈係数(-)
- DF_{ING} : 摂取被ばく線量換算係数(Sv/Bq)

次に建設作業者の被ばくは、作業中の河川岸土壌からの外部被ばく、作業中に舞い 上がった粉塵を吸入することによる被ばく、作業中に汚染した手などをなめることな どによる土壌の摂取による被ばくが考えられる。河川岸の土壌の核種濃度は河川水の 濃度と土壌の分配係数から計算する。土壌の分配係数は地山の分配係数と同様の値を 用いた。汚染土壌の希釈はないものとする。建設作業者の遮へい係数は保守的に 1.0 とした。

建設作業者の被ばく線量は以下の式により計算した。

$$H_{bui} = C_r \cdot Kd \cdot \left\{ \frac{T_{bui}}{8760} \cdot \left(S_{bui} \cdot DF_{EXT} + A_{bui} \cdot CD_{bui} \cdot DF_{INH} \right) + T_{bui} \cdot Q_{soil} \cdot DF_{ING} \right\}$$

Hbui : 建設作業者の被ばく線量(Sv/y)

- Cr : 河川中の核種 i の放射能濃度(Bq/m³)
- Kd :核種iの分配係数(m³/kg)
- Tbui : 建設作業者の被ばく時間(h/y)
- Sbui : 遮へい係数(-)
- Abui : 建設作業者の呼吸率 (m³/y)

CDbui : 汚染粉塵空気中質量濃度(kg/m³)

- Q_{soil} : 土壤摂取量(kg/h)
- DFEXT :外部被ばく線量換算係数((Sv/y)/(Bq/kg))
- DFINH :吸入摂取被ばく線量換算係数(Sv/Bq)
- DF_{ING} : 摂取被ばく線量換算係数 (Sv/Bq)

居住者,建設作業者ともにラドンガスの吸入による被ばくが考えられる。この領域 は開けた平野部であることから,たい積場からのラドンガスは途中で散逸し,この領 域まで到達することは考え難く、したがって、ここでは汚染土壌から発生するラドン ガスの影響のみを考える。

居住者のラドンガス吸入は屋内に滞在する間中起こるとした。被ばく線量は前項 (2)で示した式により計算した。

建設作業者のラドンガス吸入は作業時間中起こるとし,その被ばく線量は次式により求めた。なお評価領域の長さは 200 m とした。

 $H_{Rn} = k \cdot T \cdot f_{n} \cdot C_{Rn}$ k : 換算係数((Sv/h)/(Bq/m³)) T : 被ばく時間 (h/y) fo : 屋外での平衡ファクタ(-) C_{Rn} : 土壌から発生するラドン濃度 (Bg/m³) $C_{Rn} = \frac{L_s}{h \cdot u} \cdot J_s$ L_s :評価領域の長さ(m) h :混合高さ(m) :風速(m/s) Uwind J_s : 土壌からのラドンの散逸率 (Bg/(m²·s)) $J_s = \sqrt{\frac{D_s}{\lambda_{Ru}}} \cdot \lambda_{Ru} \cdot \rho_s \cdot F_s \cdot C_{Ra}$ D_s : 土壌中の拡散係数 (m²/s) λ_{Rn} : ラドンの崩壊定数 (1/s) ρ_s : 土壌の見かけ密度 (kg/m³) Fs : 散逸能(-) : 土壌の Ra-226 濃度(Bo/kg) C_{Ra} $C_{Ra} = C_{Ra,r} \cdot Kd_{Ra}$ C_{Ra.r}:河川中の Ra-226 の放射能濃度(Bg/m³) KdRa : Ra-226 の分配係数 (m³/kg)

- 1.3 パラメータスタディ
- 1.3.1 評価に使用するパラメータの整理

鉱さいたい積場の措置の評価に用いた,たい積場の条件,生物圏に関連するパラメー タ,換算係数や移行係数などの核種や元素に依存するパラメータを表 1.3-1~表 1. 3-9に示す。パラメータは,本検討で取得した値以外に,措置に関する基本計画²にお ける値,政令濃度上限値の評価^{1,11}に用いた値,サイクル機構の 2000 年レポート¹², TRU レポート¹³の値を参考に設定した。

鉱さいの分配係数には本作業で取得した値を用いた。取得できなかった元素の分配係 数としては、鉱さいと捨石の分配係数に大きな違いはないと考え、2000 年レポートの 生物圏における土壌の分配係数の値を用いた。また溶解度の値は、本報告書2章の水質 測定結果より還元雰囲気であると考え、2000 年レポート降水系還元性地下水での値を 用いた。このデータセットを以後「実験値」と呼ぶ。また、酸化性のデータセットとし て、2000 年レポートの降水系酸化性地下水の分配係数、溶解度を用いた場合も検討し た。このデータセットを以後「文献値」と呼ぶ。

パラメータ		単位	値	備考	
堆積場形状	面積	m×m	2.0E+04	200L×100W「措置計画」地図より	
	高さ	m	1.7	施設面積及び廃棄物量より算出	
廃棄物量		m^3	3.3E+04	「措置計画」より	
地表面から堆積物最	上面までの深さ	m	0	覆土なし	
真密度		kg/m ³	2.7E+03	風化花崗岩相当	
見かけ密度		kg/m ³	1.5E+03	素掘り処分相当	
空隙率			0.44	真密度及び見かけ密度より算出	
浸透水量		m/y	1.61	サイクル機構資料より	
透水係数		m/s	2.6E-07	本報告書p.2-27	
動水勾配		_	0.05	「措置計画」断面図より	
地下水流速(ダルシー流速)		m/y	4.10E-01	透水係数と動水勾配より計算	
実効拡散係数(鉱さい)		m²/y	2.78E-02	自由水中の拡散係数より算出	
分散長	水平方向	m	10.0	施設長さより設定	
	鉛直方向	m	1.0	施設高さより設定	
降雨量		m/y	2.3	サイクル機構資料より	

表 1.3-1 鉱さいたい積場に関するパラメータ

核種	単位	値	備考
U-238	Bq/g	2.97E+00	
U-234	Bq/g	3.01E+00	
Th-230	Bq/g	1.62E+01	
Ra-226	Bq/g	1.62E+01	
Pb-210	Bq/g	1.62E+01	「措置計画」より
U-235	Bq/g	1.40E-01	夜次鉱さいたい
Pa-231	Bq/g	7.70E-01	積場の値を使用
Ac-227	Bq/g	7.70E-01	
Th-232	Bq/g	$8.80 ext{E-02}$	
Ra-228	Bq/g	8.80E-02	
Th-228	Bq/g	8.80E-02	

表 1.3-2 鉱さいたい積場の初期濃度

表 1.3-3 鉱さいたい積物の分配係数及び溶解度(Kd:実験値)

	分配係数	溶解度	
元素	m ³ /kg	mol/m ³	備考
U	2.70E-01	8.0E-06	本報告書p.3-6
Pa	5.40E-01	2.0E-05	2000年レポート
Th	2.20E+01	5.0E-03	本報告書p.3-6
Ac	4.50E-01	2.0E-04	2000年レポート
Ra	4.00E-01	1.0E-09	本報告書p.3-6
Pb	2.70E-01	2.0E-03	2000年レポート

※溶解度に関しては2000年レポートより 降水系還元性地下水の値を用いた。

表 1.3-4 鉱さいたい積物の分配係数及び溶解度(Kd:文献値)

	分配係数	溶解度	
元素	m ³ /kg	mol/m ³	備考
U	5.00E-03	5.0E+00	
Pa	5.00E-03	2.0E-05	
Th	1.00E+00	5.0E-03	
Ac	5.00E+00	2.0E-04	2000年レポート
Ra	5.00E-01	1.0E-09	
Pb	1.00E-01	2.0E-03	

パラメータ	単位	値	備考
真密度	kg/m ³	2.7E+03	風化花崗岩
空隙率	-	0.45	「措置計画」より
透水係数	m/s	4.0E-06	本報告書p.2-22
動水勾配	1	0.27	参考資料2より
地下水流速(ダルシー流速)	m/y	3.41E+01	透水係数と動水勾配より計算
実効拡散係数	m²/y	3.15E-03	地下水ハンドブック
分散長	m	1.0	
帯水層厚さ	m	10.0	
河川までの距離	m	150	参考資料2より

表 1.3-5 地山及び土壌に関するパラメータ

表 1.3-6 地山及び土壌の分配係数

元素	単位	値	備考
U	m ³ /kg	3.3E-02	
Pa	m ³ /kg	5.4E-01	
Th	m³/kg	3.0E+00	
Ac	m ³ /kg	4.5E-01	2000年レポート
Ra	m ³ /kg	4.9E-01	
Pb	m ³ /kg	2.7E-01	
Po	m ³ /kg	1.5E-01	

地山中の地下水での溶解度制限はないとした

.

.

表 1.3-7 生物圏に関するパラメータ

パラメータ		単位	値	備考
被ばく時間	居住者	h	8760	政令ピット処分に準ずる
	建設作業者	h	500	政令ピット処分に準ずる
	農作業者	h	500	政令ピット処分に準ずる
林業従事者		h	500	農業従事者に準ずる
林業従事者が作業中語 ち入る割合	平価領域へ立	_	0.1	
呼吸率	居住者	m^3/v	8.51E+03	政令ピット処分に準ずる
	建設作業者	m^3/v	1.04E+04	政令ピット処分に進ずる
	農作業者	m^3/v	1.04E+04	政令ピット机分に進ずる
	林業従事者	m^3/v	1.04E+04	世業従事者に進ずる
	<u> </u>	kg/m ³	6 0F 00	成末の予告に干する
· 進 庄	冲江泊	kg/m	5 OF 07	政府によりる
减反	建议作未有	Rg/m	5.0E-07	
	<u> </u>	kg/m°	5.0E-07	<u> 政令ヒット処分に準する</u>
Note: 1	林業従事者	kg/m°	5.0E-07	農業従事者に準ずる
巡へい係数	居住省	-	0.2	<u> </u>
	建設作業有		1.0	保守的に設定
	展1F米有 林業従事考		1.0	体寸印に改足
経相吸収係数	小米化学伯	_	1.0	成余优争省に牛りる 政令ピット机分に進ずス
土壤摂取量		kg/h	1.0E-05	IAEA ss 111-p-1.1
<u>游</u> 海水量	水田	$m^{3}/(m^{2}*v)$	2.4	TRIJ廃棄物机分に進ずる
) (L2 1707 J - 200		$m^{3}/(m^{2}*v)$	1 2	TRII 廃棄物机公に進ずる
	が	$m^{3}/(m^{2}*v)$	1.2	TRII皮室施加ムに生する
上版词承业具	24日	$m^{3}/(m^{2}*r)$	1.2	TRUR来初処力に平りる
上坡反迈小里	小田	m /(m y)	0.4	INU廃棄物処分に準9る
t take standat the state	郑	$m^{-7}(m^{-1}y)$	0.4	TRU廃棄物処分に準する
主要有効体積	rt- th	m ^o /m ⁻	0.15	<u> 六ケ所・廃衆物埋設事業許可申請書</u>
家畜の河川水飲用軍	約十- 		30	政令ヒット処分に準9る あるピット加へに進ずる
	-1-1 IV	L/d	15	政市にツト処方に半りる
	窮	L/d	0.5	政令ピット机分に進ずる
飼料摂取量	肉牛	kg-dry/d	7.2	政令ピット処分に準ずる
	乳牛	kg-dry/d	16.1	政令ピット処分に準ずる
	豚	kg-dry/d	2.4	政令ピット処分に準ずる
	鶏	kg-dry/d	0.07	政令ピット処分に準ずる
市場希釈率	1 the select		1.0	自耕自給とする
摂取重	午約	kg/y	<u>2</u>	政令ビット処分に準する 昨会ピート加入に進まる
	廊	kg/y	G A	政令ヒット処分に準する
	<u> </u>	kg/y	8	政市 L ツト処力 に 平りる 両会 ピット 加 分 に 准ず ス
	4.到	L/v	110	政事に少下処力に生する
	*	kg/v	71	政令ピット処分に進ずる
	果樹	kg/y	22	政令ピット処分に準ずる
	葉菜	kg/y	12	政令ピット処分に準ずる
	非葉菜	kg/y	45	政令ピット処分に準ずる
	淡水魚	kg/y	30	政令ピット処分に準ずる
人の河川水飲用量		m³/y	0.73	政令ピット処分に準ずる
農作物が摂取されるま	こ での時間	h	0	
池河川流量		m ³ /y	4.6E+06	地図より流入するエリアを換算
吉井川流量		m ³ /y	6.4E+07	地図より流入するエリアを換算

パラメータ		単位	値	備考	
換算係数	換算係数		1.0E-09	UNSCEAR1993	
平衡ファクタ	平衡ファクタ 屋外		- 0.6 NIRS*)		
	屋内	_	0.4	UNSCEAR1993	
大気の混合高さ		m	2.0 保守的に設定		
風速	風速		1.0	代表的な風速	
拡散係数	鉱さい中	m²/s	1.14E-06	5e-7(m²/s)/0.44(-)	
	土壤中	m²/s	1.11E-06	5e-7(m²/s)/0.45(-)	
散逸能		—	0.2	UNSCEAR1993	
家屋のSV比		m^2/m^3	0.4	UNSCEAR1993	
換気率		1/h	1	UNSCEAR1993	

表 1.3-8 ラドンに関連するパラメータ

....

*) 放射線医学総合研究所「ラドン濃度測定・線量評価最終報告書14」

表 ↓.3・9 核種に依存りるハフメー	ータ
---------------------	----

ł	線量換算係数				*1) 線量換算係数で考慮
	外部被ばく ^{*1)}	経口摂取	吸入摂取	半減期	している短半減期の
核種	(Sv/y)/(Bq/kg)	Sv/Bq	Sv/Bq	у	子孫核種
U-238	2.2E-07	4.4E-08	5.7E-06	4.5E+09	Th-234,Pa-234m,Pa-234
U-234	1.0E-09	4.9E-08	6.8E-06	2.5E+05	
Th-230	1.3E-09	2.1E-07	2.8E-05	7.5E+04	
Ra-226	5.0E-06	2.8E-07	1.2E-05	1.6E+03	Rn-222,Po-218,At-218,
					Pb-214,Bi-214,Po-214
Pb-210	4.4E-08	6.8E-07	1.1E-06	2.2E+01	Bi-210,Po-210
Po-210	0.0E+00	2.4 E-07	2.2E-06	3.8E-01	
U-235	4.7E-07	4.6E-08	6.1E-06	7.0E+08	Th-231
Pa-231	1.0E-07	7.1E-07	8.9E-05	3.3E+04	
Ac-227	1.3E-06	1.1E-06	6.3E-04	2.2E+01	Th-227,Fr-223,Ra-223,
					Rn-219,Po-215,Pb-211,
					Bi-211,Po-211,Tl-207
Th-232	7.7E-10	2.2E-07	2.9 E - 05	1.4E+10	
Ra-228	2.7E-06	6.7E-07	1.7E-06	5.8E+00	Ac-228
Th-228	1.0E-05	7.0E-08	3.2E-05	1.9E+00	Ra-224,Rn-220,Po-216,
					Pb-212,Bi-212,Tl-208
	ANISNコード	ICRP	ICRP	Table of	
	より算出 ^{‡2)}	Pub.68	Pub.68	Isotopes	

*2) 無限平板 密度1.5g/cm³ 客土なし 地表から高さ1mにおける線量

.

1.3.2 影響が大きいと思われるパラメータ類の抽出

鉱さいたい積場から放出する核種による被ばく線量へ,大きな影響を及ぼす可能性の あるパラメータを予備的に抽出する。前項において挙げた基本ケースのパラメータのう ち,たい積場の規模や廃棄物量は変動しない。また,生物圏に関するパラメータや,換 算係数などは大きく変動することは考え難い。したがって,これらのパラメータが変動 することにより被ばく線量へ大きな影響を与える可能性は低い。

たい積場へ措置を施し、その措置が有効である場合と効果が失われた場合を考えたと き、大きく変化するであると考えられるのはたい積場への浸透水量、地下水流速などの 水理パラメータである。また、地下水の性質に影響を受ける分配係数も変動する可能性 がある。

したがって、本検討では、たい積場の浸透水量、及び流速、地山の地下水流速、たい 積場の分配係数、地山の分配係数が影響を及ぼすパラメータであるとして、次項におい てパラメータスタディを行うこととする。 1.3.3 パラメータスタディ

前項において抽出したパラメータが被ばく線量へどのような影響を及ぼすのかを検 討する。各パラメータの変動範囲を表 1.3-10に示した。

- たい積場への浸透水量
 - ・ 基本ケースの値は降雨量の7割が浸透するとして設定
 - ・ たい積場への措置が有効である場合(基本ケースより一桁小さい値)
 - ・ 谷であるたい積場へ周辺からの地下水が浸透する場合(基本ケースの 10 倍の値;保守的)
- たい積場内の地下水流速
 - ・ 基本ケースの値は、透水係数と動水勾配より計算
 - ・ 浸透水量とたい積場の規模を考慮すると基本ケースの二桁以上大きな値
 となるため、 10~100 倍の範囲で変動
- ③ 地山の地下水流速
 - ・ 基本ケースの値は透水係数と動水勾配より計算
 - ・地山は強風化花崗岩であると考え、その透水係数の取り得る幅を 10-5~
 10-7 m/s と想定し、0.1~10 倍の変動幅を設定
- ④ たい積場の分配係数,地山の分配係数
 - ・ 基本ケースの 0.1~10 倍で変動

ここでは、パラメータ個々の影響をみるため、パラメータ間の相関は考慮していない。 検討は、2通りの核種の放出モデル及び各評価地点ごとに行った。

パラメータ	基本ケース	変動範囲
浸透水量[m/y]	1.61	$0.16{\sim}16.1$
たい積場の地下水流速[m/y]	0.41	0.41~41
地山の地下水流速[m/y]	34.1	$3.41 \sim 341$
たい積場の分配係数[m ³ /kg]	表1.3-3,4参照	0.1~10倍
地山の分配係数[m ³ /kg]	表1.3-6参照	0.1~10倍

表 1.3-10 パラメータの変動範囲

(1) 基本ケースの被ばく線量

各評価地点での基本ケースの被ばく線量を以下に示す。核種がたい積物内を鉛直下 向きに流れ,たい積場外へ放出するモデルで,鉱さいの分配係数に実験値を用いた場 合の結果を図 1.3-1~図 1.3-6に,文献値を用いた場合の結果を図 1.3-8~図 1.3-13に示す。また,核種がたい積物内を水平方向へ流れ,たい積場外へ放出する モデルで,鉱さいの分配係数に実験値を用いた場合の結果を図 1.3-15~図 1.3-20 に,文献値を用いた場合の結果を図 1.3-22~図 1.3-27に示す。また,各評価地点 での被ばく経路毎の被ばく線量ピーク値をまとめたグラフを図 1.3-7,図 1.3-14, 図 1.3-21,図 1.3-28に示す。10⁻⁹ Sv/y を超えない被ばく経路はグラフ中に表れ ていない。

各核種のピークの現れる時間は移行媒体の分配係数の大きさによる。半減期が短い 核種の場合には、親核種と放射平衡になっており、ピークの出現時間は親核種の分配 係数による。すなわち Pb-210, Po-210 は Ra-226 と, Ac-227 は Pa-231 と, Ra-228, Th-228 は Th-232 と放射平衡になっており、被ばく線量のピークの位置はそれぞれ同 じになっている。したがって線量のグラフに複数の山が存在する。

鉱さいの分配係数に実験値を用いた場合,Uは溶解度の制限を受けているため,分 配係数が小さいにもかかわらず長期間に渡り一定の値で評価地点に存在する。U自身 による被ばくの影響は比較的小さいが,その子孫核種であるTh-230やPa-231は図 1. 3-1などに見られるように,移行あるいは減衰したあともUの崩壊により生じた核種 が存在する。子孫核種の中には評価対象者に有意な影響を与える核種があるため,U の初期濃度が比較的低いからといって,その影響が小さいと言い切ることはできない。 鉱さいの分配係数に文献値を用いた場合にはUが溶解度により制限されないので,U のピークが出現する。

鉱さいの分配係数に文献値を用いた場合,各核種のピークの現れる時間は地山の分 配係数によっている。たい積場からの放出は鉱さいの分配係数によるが,その後地山 中での核種移行は地山の分配係数による。したがって,UとPaの鉱さいの分配係数 は同じ値であるが,ピークの現れる時間はUの方が早くなっている。

鉱さいたい積場ダム下流の谷での被ばくでは、いずれの評価対象者においても、鉱 さいたい積場から発生するラドンガスの影響が大きくなっている。たい積場から発生 するラドンガスの影響を除いた場合、たい積場ダム下流の谷での林業従事者及び建設

1-44

作業者の被ばくに影響を及ぼすのは Ra-226 である。Ra-226 の半減期は 1.6×10³年 であり、もともとある Ra-226 による影響は長くは続かない。しかし、分配係数の大 きい Th-230 は Ra-226 の後からピークが出てくるので、もともとある Ra-226 からの 線量が低くなってからも Th-230 から崩壊した Ra-226 による被ばくの影響がある。

居住者の被ばくでは,評価地点であるダム下流の谷から発生するラドンガスによる 影響が大きくなっている。これは,屋外でのラドン濃度より屋内のラドン濃度のほう が高くなるためである。ラドンガス以外で大きな影響を及ぼすのは Ra-226 である。

鉱さいの分配係数に文献値を用いた場合,核種が鉛直に流れて放出するモデルでは 図 1.3-10のように U-234, U-238,水平方向へ流れるモデルでは図 1.3-24のよう に Pa-231 も影響を及ぼしている。

核種が水平方向へ流れてから放出するモデルを用いた場合,Uによる被ばく線量が 一定になっている部分が出現するが、これは鉱さいたい積場中の地下水の流速が遅く、 核種の放出がゆっくりであり、かつ、半減期が長く減衰しないためであると考えられ る。

坑水処理施設周辺及び下流での居住者の被ばくに大きな影響を及ぼすのは評価地点 の坑水処理施設周辺及び下流の土壌から発生するラドンガス,次いで Ra-226, Pa-231 となっている。また,ピーク値から見ればその影響は大きくはないが,ピークが現れ るよりも早い時間に U-234, U-238 による影響が現れている。前述したように,ここ でも Ra-226 は,親核種である Th-230 から崩壊した核種による影響によりピークが 二つ現れている。

下流の集落部での居住者の被ばくに大きな影響を及ぼすのは、Pb-210, Rn-222, Ac-227, U-234, U-238 である。ここでは淡水魚の摂取による内部被ばくを考慮して いるため、Pb-210 が主要核種となっている。また、建設作業者の被ばくに影響を及ぼ すのは、Ra-226, Rn-222, U-238, Ac-227 である。建設作業者において主要な被ば く経路は外部被ばくであるため、Ra-226 が被ばくの主要核種となる。

なお,ここでのラドンガスの評価結果はバックグラウンドに追加される分について 行ったものである。ICRP の放射線防護上の規制に対する考えは,行為の結果,バッ クグラウンドに追加される線量を規制するというものである¹⁵。

たい積場の下流やさらにその下流の集落部の土壌からのラドンガスの影響について

は、実際の土壌から放出するラドンガスと、灌漑土壌から放出するラドンガスによる ものであるが、ここではバックグラウンドに対する追加分である灌漑土壌からのラド ンガスの影響についてのみ評価している。一方、鉱さいたい積場から放出するラドン ガスによる被ばくは、本来バックグラウンドとなる天然の土壌からのラドンガスは鉱 さいに遮られ地表に到達しない。したがって、実際に人の被ばくに影響を与えるのは、 鉱さいからのラドンガスのみである。しかしここではバックグラウンド分を差し引い ていない。ちなみに、ラドン濃度の国内平均は屋外で 5.4 Bq/m³、屋内で 15.5 Bq/m³ である¹⁴。また、三朝温泉地区の屋外ラドン濃度は、温泉の存在しない地区で 13 Bq/m³、 存在する地区で 40 Bq/m³ という値になっている¹⁶。本検討では、鉱さいたい積場から 発生するラドンガス濃度は 4.5×10² Bq/m³ 程度という結果が得られた。

鉱さいたい積場ダム下流の谷での居住者の被ばくにおいて、その全被ばく線量のピ ーク値は1mSv/yを超える。この評価地点はサイクル機構の敷地内であり管理が継続 されるため居住シナリオ、建設シナリオに関しては予備的に検討を行ったものである。 したがって、そのピーク値が1mSv/yを超えたからといって、直ちにたい積場の安全 性が損なわれるというわけではない。しかしシナリオの設定の際にも述べたように、 長期間経過した後に管理が失われた場合のことを考慮すべきである。

図 1.3-1 鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄与

(Kd:実験値)

図 1.3-2 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄与

(Kd:実験値)

図 1.3-3 鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与

(Kd:実験値)

図 1.3-4 坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与(Kd:

実験値)

図 1.3-5 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:実験値)

図 1.3-6 下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:実験値)

図 1.3-7 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd:実験値)

図 1.3-8 鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄与

(Kd: 文献値)

図 1.3-9 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄与

(Kd: 文献值)

図 1.3-10 鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与

(Kd: 文献值)

図 1.3-11 坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与

(Kd: 文献值)

図 1.3-12 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:文献値)

図 1.3-13 下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:実験値)

図 1.3-14 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd: 文献値)

図 1.3-15 鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄

与(Kd:実験値)

図 1.3-16 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄 与(Kd:実験値)

図 1.3-17 鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与

(Kd:実験値)

図 1.3-18 坑水処理施設周辺及び下流での居住者の被ばく線量への各核種の寄与

(Kd:実験値)

図 1.3-19 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:実験値)

図 1.3-20 下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:実験値)

図 1.3-21 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd:実験値)

図 1.3-22 鉱さいたい積場ダム下流の谷での林業従事者の被ばく線量への各核種の寄 与(Kd:文献値)

図 1.3-23 鉱さいたい積場ダム下流の谷での建設作業者の被ばく線量への各核種の寄

与(Kd:文献值)

図 1.3-24 鉱さいたい積場ダム下流の谷での居住者の被ばく線量への各核種の寄与

(Kd:文献值)

(Kd: 文献值)

図 1.3-26 下流の集落部での居住者の被ばく線量への各核種の寄与(Kd:文献値)

図 1.3-27 下流の集落部での建設作業者の被ばく線量への各核種の寄与(Kd:文献値)

١

図 1.3-28 各評価地点での被ばく線量ピーク値(被ばく経路毎, Kd: 文献値)

(2) たい積物内を鉛直下向きに流れ、たい積場外へ核種が放出するモデルの場合

核種がたい積物内を鉛直下向きに流れ,たい積場外へ放出するモデルを用いて,抽 出したパラメータを変動させ,各評価地点における評価対象者の被ばく線量にどのよ うな影響を与えるかを検討する。検討は各パラメータごとに行った。また,各試算結 果を表 1.3-11にまとめて項の最後に示す。表はラドンガスによる影響を含めた場合, 除いた場合それぞれのピーク値と被ばくに影響を及ぼす主要核種についてまとめた。

(i) 鉱さいたい積場の分配係数の影響

試算結果を図 1.3-29~図 1.3-40に示す。また、坑水処理施設周辺及び下流での 居住者の被ばくのピーク値の、鉱さいの分配係数変化に伴う変化を示したグラフを図 1.3-41に示す。他の評価地点においても分配係数の変動が被ばく線量に与える影響 の傾向は同様であるので、ここでは代表的なシナリオとして坑水処理施設周辺及び下 流での居住者の被ばくについてのグラフを示した。また、それぞれのパラメータの値 を用いた際の、各評価地点での被ばく経路毎の被ばく線量ピーク値のグラフを図 1. 3-42~図 1.3-45に示す。10-9 Sv/yを超えない被ばく経路はグラフ中に表れていな い。なお、基本ケースについては前で示してあるのでここでは割愛する。

図 1.3-29~図 1.3-31, 図 1.3-35~図 1.3-37より,たい積場ダム下流の谷 では、たい積場から到達したラドンガスの影響を大きく受けている。たい積場より発 生するラドンガスは鉱さい中の Ra-226 濃度に比例するため、鉱さいの分配係数の変 動に影響されない。

図 1.3-41より, 鉱さいの分配係数に実験値を用いた場合, 分配係数が大きくなる と被ばく線量は小さくなる。溶解度以下であれば鉱さいから地下水中へ放出する核種 濃度は分配係数の大きさに反比例する。したがって, たい積場から核種が放出する速 度は分配係数が大きいほど遅くなり, 被ばく線量のピークは低く, 裾が広がった形に なる。また, 鉱さいの分配係数に文献値を用いた場合, 分配係数が基本ケースの 10 倍になった場合に被ばく線量が小さくなるが, 基本ケースと 0.1 倍の場合はほとんど 線量に違いはない。鉱さいの分配係数はある程度値が小さくなると, その変動は被ば く線量の変化に影響を与えないといえる。

本調査で取得した分配係数の変動を考慮しても、地下水が河川に流入するまでの谷 部での居住者の被ばく線量は1 mSv/y を超える結果となった。

図 1.3-29 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-30 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-31 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-32 坑水処理施設周辺及び下流での居住者の被ばく(Kd:実験値)

図 1.3-33 下流の集落部での居住者の被ばく(Kd:実験値)鉱さいたい積場の分配係数の影響

図 1.3-34 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-35 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値)

鉱さいたい積場の分配係数の影響

図 1.3-36 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値)

図 1.3-37 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-38 坑水処理施設周辺及び下流での居住者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-39 下流の集落部での居住者の被ばく(Kd:文献値)鉱さいたい積場の分配係数の影響

図 1.3-40 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-41 鉱さいの分配係数の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-42 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍

(Kd:実験値)

図 1.3-43 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10 倍 (Kd:実験値)

図 1.3-44 各評価地点での被ばく経路毎の被ばく線量ピーク値; 鉱さい Kd0.1 倍

(Kd: 文献値)

図 1.3-45 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10 倍

(Kd: 文献値)

(ii) 鉱さいの浸透水量の影響

試算結果を図 1.3-46~図 1.3-57に示す。また、坑水処理施設周辺及び下流での 居住者の被ばくのピーク値の、浸透水量変化に伴う変化を示したグラフを図 1.3-58 に示す。他の評価地点においても浸透水量の変動が被ばく線量に与える影響の傾向は 同様であるので、ここでは代表的なシナリオとして坑水処理施設周辺及び下流での居 住者の被ばくについてのグラフを示した。また、それぞれのパラメータの値を用いた 際の、各評価地点での被ばく経路毎の被ばく線量ピーク値のグラフを図 1.3-59~図 1.3-62に示す。10⁻⁹ Sv/y を超えない被ばく経路はグラフ中に表れていない。なお、 基本ケースについては前で示してあるのでここでは割愛する。

分配係数に実験値を用いた場合,浸透水量が大きいほうがたい積場からの核種の放 出が早くなり値が大きくなる。したがって評価地点への核種の流出が短時間に完了し, その影響は比較的短時間のうちに小さくなる。一方,浸透水量が小さい場合(すなわ ち措置が有効である場合),ピーク値は低いがその影響は長く続く。措置が有効であ る場合,浸透水量は小さくなるが,その効力によっては核種が長い間影響を及ぼすこ とになる。分配係数に文献値を用いた場合,浸透水量が0.16 m/yの場合に被ばく線量 は小さくなるが,1.61 m/y及び16.1 m/yの場合には線量にほとんど違いは見られな い。したがって,鉱さいの浸透水量は基本ケースよりも小さい値において,その変動 は被ばく線量に影響を与える。有効な措置方法を考える上で,どのように,どの程度 浸透水量を抑えるかが重要であると言える。

本調査で取得した分配係数を使用した場合,浸透水量によっては前項と同様に河川 流入前の谷部での居住者の被ばく線量が1 mSv/y を超える結果となった。

図 1.3-46 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

鉱さいの浸透水量の影響

図 1.3-48 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値)

図 1.3-49 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)

図 1.3-50 下流の集落部での居住者の被ばく(Kd:実験値)

鉱さいの浸透水量の影響

図 1.3-51 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-52 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値)

図 1.3-53 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 鉱さいの浸透水量の影響

図 1.3-54 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)

図 1.3-55 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値)

図 1.3-56 下流の集落部での居住者の被ばく(Kd:文献値) 鉱さいの浸透水量の影響

図 1.3-57 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-58 鉱さいの浸透水量の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-159 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)

地山の地下水流速の影響

図 1.3-160 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 地山の地下水流速の影響

図 1.3-59 各評価地点での被ばく経路毎の被ばく線量ピーク値; 措置有効(浸透水量 0.16 m/y, Kd:実験値)

図 1.3-60 各評価地点での被ばく経路毎の被ばく線量ピーク値;浸透水量 16.1 m/y

(Kd:実験値)

図 1.3-61 各評価地点での被ばく経路毎の被ばく線量ピーク値;措置有効(浸透水量 0.16 m/y, Kd:文献値)

図 1.3-62 各評価地点での被ばく経路毎の被ばく線量ピーク値;浸透水量 16.1 m/y

(Kd: 文献值)

(iii) 地山の分配係数の影響

試算結果を図 1.3-63~図 1.3-74に示す。また、坑水処理施設周辺及び下流での 居住者の被ばく線量のピーク値の、地山の分配係数変化に伴う変化を示したグラフを 図 1.3-75に、下流の集落部での居住者の被ばく線量のピーク値の変化を図 1.3-76 に示す。他の評価地点における、地山の分配係数の変動が被ばく線量に与える影響の 傾向は、坑水処理施設周辺及び下流での居住者の被ばくと同様である。また、それぞ れのパラメータの値を用いた際の、各評価地点での被ばく経路毎の被ばく線量ピーク 値のグラフを図 1.3-77~図 1.3-80に示す。10-9 Sv/y を超えない被ばく経路はグ ラフ中に表れていない。なお、基本ケースについては前で示してあるのでここでは割 愛する。

ここでの検討で被ばく線量に影響を与えるのは、たい積場から放出した核種が地山 の地下水中をどのように移行されるかということである。よって、鉱さいの分配係数 に実験値を用いた場合と文献値を用いた場合とで、地山の分配係数の変化に伴う被ば く線量の変化の傾向はあまり異ならない。

地山の分配係数が大きいと地下水中の核種の移行は遅延される。したがってピーク の現れる時間は地山の分配係数が大きいほど遅くなる。これはどの評価対象者に対し ても同じ傾向である。

下流の集落部での居住者の被ばくの場合には、分配係数が大きくなるほどピーク値 は小さくなる。分配係数が0.1 倍のときには Rn-222 による影響はあまり大きくない。 また、10 倍の時には、Pb-210 よりも Ra-226 の影響のほうが大きく、Ac-227 よりも Pa-231 の影響のほうが大きくなっている。Pb-210 や Ac-227 が最も影響を及ぼす被 ばく経路は内部被ばくの中の淡水魚の摂取や、河川水の飲用による被ばくであり、被 ばく線量は小さくなる。Ra-226 や Pa-231 は農作物の摂取による被ばくなど、土壌の 核種濃度に依存する被ばくにおいて影響を及ぼしている。ただし、土壌の核種濃度は 地山の分配係数に比例するが、河川水中の核種濃度は分配係数が大きくなると低くな るので、両方の要因を加味すると、地山の分配係数によってピーク値にほとんど差は ないと考えられる。しかし、分配係数が大きい場合、遅延効果が高く、核種の移行速 度は遅い。よって、評価地点に到達するまでに核種が減衰するため、分配係数が大き い場合にピーク値は小さくなっている。ただ、減衰によるピーク値の低下は Pb-210、

1 - 83

Ac-227, Ra-226, Pa-231 のいずれにおいても起こるので,分配係数が大きくなると 相対的に Ra-226 や Pa-231 の影響が大きくなる。

下流の集落部での居住者以外の評価対象者においては基本ケースのピーク値が最も 高く、それよりやや低い値になるのが 0.1 倍、最も低い値となるのが 10 倍のときで ある。これは上でも述べたように、外部被ばく、ダスト吸入被ばく、及び農作物の摂 取による被ばくなど、土壌の核種濃度に依存する被ばくが主な被ばく経路となってい るためである。土壌の核種濃度は地山の分配係数に比例するが、河川水中の核種濃度 は分配係数が大きくなると低くなるので、両方の要因を加味すると、地山の分配係数 によってピーク値にほとんど差はないと考えられる。しかし、分配係数が大きい場合、 遅延効果により核種の移行速度は遅く、評価地点に到達するまでに核種が減衰する。 したがって、分配係数が 0.1 倍及び基本ケースの場合はピーク値にほとんど差は無く、 分配係数が大きい場合にピーク値は小さくなっている。

地山の分配係数が変動しても谷部での居住者の被ばく線量は1 mSv/yを超える結果 となった。

図 1.3-63 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

地山の分配係数の影響

図 1.3-64 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 地山の分配係数の影響

図 1.3-65 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値)

地山の分配係数の影響

図 1.3-66 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)

図 1.3-67 下流の集落部での居住者の被ばく(Kd:実験値)地山の分配係数の影響

図 1.3-68 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-69 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 地山の分配係数の影響

図 1.3-70 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値)

図 1.3-71 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 地山の分配係数の影響

w.,

図 1.3-72 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値)

図 1.3-73 下流の集落部での居住者の被ばく(Kd:文献値) 地山の分配係数の影響

図 1.3-74 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-75 地山の分配係数の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-76 地山の分配係数の変動が被ばく線量に与える影響 (下流の集落部での居住者の被ばく)

図 1.3-77 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1 倍

(Kd:実験値)

図 1.3-78 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍

(Kd:実験値)

図 1.3-79 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1 倍

(Kd: 文献值)

図 1.3-80 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍 (Kd:文献値)

(iv) 地山の地下水流速の影響

試算結果を図 1.3-81~図 1.3-92に示す。また,鉱さいダム下流の谷での居住者 の被ばく線量のピーク値の,地山の地下水流速の変動に伴う変化を示したグラフを図 1.3-93に示す。この評価地点の林業従事者及び建設作業者の被ばく線量の変化の傾 向は居住者の場合と同様である。坑水処理施設周辺及び下流での居住者の被ばくのピ ーク値の,地山の地下水流速の変動に伴う変化を示したグラフを図 1.3-94に示す。 下流の集落部での居住者及び建設作業者の被ばくにおいても、地山の地下水流速の変 動が被ばく線量に与える影響の傾向は同様である。また、それぞれのパラメータの値 を用いた際の、各評価地点での被ばく経路毎の被ばく線量ピーク値のグラフを図 1. 3-95~図 1.3-98に示す。10-9 Sv/y を超えない被ばく経路はグラフ中に表れていな い。なお、基本ケースについては前で示してあるのでここでは割愛する。

地山の地下水流速が速くなると評価地点への核種の到達もそれだけ早くなり、ピークの立ち上がりも早くなる。また、たい積場からの放出はたい積場の分配係数による ので、核種ごとにたい積場から放出するのにかかる時間は異なる。流速が速い場合、 核種は地下水に放出するとすぐに運ばれるため地下水中での核種の分布は鉱さいの 分配係数によって広範囲に渡る。一方地下水流速が遅い場合、放出した核種は放出点 からの移行が遅く、核種の分布は広がり難い。よってピークの値は、地下水流速が遅 いほど高くなるはずである。しかし、流速が遅くなるとその分評価地点への核種の到 達が遅くなり、移行している間に核種は減衰し、ピーク値は低くなる。したがって図 1.3-93に見られるように、鉱さいたい積場ダム下流の谷では地下水流速が341 m/y、 34.1 m/y と遅くなるほどピーク値は高くなるが、3.41 m/y の時にはピーク値は低くな る。河川の核種濃度は、流速が早いほど高くなるため、図 1.3-94に見られるように ダムより先の評価地点においては流速が速くなるほどピーク値は高くなっている。

地山の流速に関わらず、谷部での居住者の被ばく線量は1 mSv/y を超える。坑水処 理施設周辺での居住者の被ばく線量も、流速によっては1 mSv/y を超える結果となった。

1-94

図 1.3-81 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

地山の地下水流速の影響

図 1.3-82 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 地山の地下水流速の影響

図 1.3-83 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) ・地山の地下水流速の影響

図 1.3-84 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)

図 1.3-85 下流の集落部での居住者の被ばく(Kd:実験値)地山の地下水流速の影響

図 1.3-86 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-87 鉱さいたい積場ダムの下流の谷での林業従事者の被ばく(Kd:文献値)

図 1.3-88 鉱さいたい積場ダムの下流の谷での建設作業者の被ばく(Kd:文献値)

図 1.3-89 鉱さいたい積場ダムの下流の谷での居住者の被ばく(Kd:文献値)

図 1.3-90 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 地山の地下水流速の影響

1-99

図 1.3-91 下流の集落部での居住者の被ばく(Kd:文献値)

地山の地下水流速の影響

図 1.3-92 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-93 地山の地下水流速の変動が被ばく線量に与える影響 (鉱さいたい積場ダム下流の谷での居住者の被ばく)

図 1.3-94 地山の地下水流速の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-95 各評価地点での被ばく経路毎の被ばく線量ピーク値 ;地山地下水流速 3.41 m/y(Kd:実験値)

図 1.3-96 各評価地点での被ばく経路毎の被ばく線量ピーク値 ;地山地下水流速 341 m/y(Kd:実験値)

図 1.3-97 各評価地点での被ばく経路毎の被ばく線量ピーク値

;地山地下水流速 3.41 m/y(Kd:文献值)

図 1.3-98 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山地下水流速 341 m/y(Kd:文献値)

表 1.3-11 試算結果

(たい積物内を鉛直下向きに流れ、たい積場外へ核種が放出するモデル)

	1						坑水処理施設周辺及び	下淬小爆发动	
				1251111117-34111111111111111111111111111111		昆住来	鼠住来	民住妻	建設作業者
BAD	けさいの			177.545146.947.98	XE621F3%19	Ro-222 Ra-226	Ro-222 Ro-226 Pa-231	Ph-210 Ro-222 Ac-227	2262 17 28 19 Dev 106 Dev 100
影響	分配係数	パラメータ	パラメータの変動	Ra-226.Ro-222	Ra-226. Rn-222	Pa-231*1)	U-234.L-238*2)	U-234.U-238*3)	U-238.Ac-227
Ro	Kd·塞隆储	紡さいたい積場の	0.1倍	9 05F-05	9 05E-04	547F-02	3 84F-04	5 16E-05	4 18F-07
		分配係数	基本ケース	6.60E-05	6.60E04	3 79E-02	2.18E-04	2.94E-05	2.36E-07
			10倍	3.67E-05	3 67E-04	1.60E-02	5.52E-05	7.845~06	5.935-08
		紡さいたい積場	描置在劲(0.16m/v)	2.81E-05	2 81E-04	1 096-02	4 87E-05	6.61E-06	5 28E-08
		浸入水量	基本ケース(161m/v)	6 60E-05	6 60F-04	3 795-02	2 185-04	2.94F-05	2 365-07
			16 lm/v	9465-05	9465-04	580F-02	3 91E-04	5 26F-05	4 285-07
		地山分配係数	0.1傍	3.44E-05	344E-04	2 67E-02	1.56E-04	7.15E-05	8.00E-08
			基本ケース	6.60F-05	6 60E-04	3 79E-02	2 18E-04	2 945-05	2.365-07
			10倍	3.00E-05	3.00E-04	1 26E-02	3.99E-05	3.16E-06	5.13E-08
		地山地下水流速	0.1倍(3.41m/v)	3.04E-05	3.04E-04	1.63E-02	5.39E-06	6.83E~07	6 32E-09
			基本ケース(34.1m/v)	6 60F-05	6.60E-04	3 79E-02	2 18E-04	2.94E-05	2 36E-07
			10倍(341m/v)	4.16F-05	4 16F-04	1 94F-02	1 175-03	1 73E-04	1 235-06
	Kd:文献值	なさいたい 猿根の	01倍	897F-05	8 975-04	540E-02	3.86E-04	5 195-05	4 20E-07
		分配係数	あなケーース	8915-05	8 91 E-04	5356-02	3.815-04	5 125-05	4 135-07
			10倍	683E-05	6 835-04	3.91E-02	2705-04	3 62E-05	2 94E-07
		鉱さいたい積場 浸入水量	掛滞本が(0.16m/\))	6455-05	6455-04	3 63E-02	2.102 04	3.415-05	2.04E 07
			<u>構成ないのいか</u>	9015-05	8015-04	5255-02	2,040,04	5 125-05	A 13E-07
			16 1m/y	0.512 05	9.055-04	5455-02	3.915-04	5.755-05	4.132 07
		地山分配係数	n 14#	4 57E-05	4 576-04	4 005-02	2 82 5-04	1.67E-04	1 525-07
			北大ケーフ	9.915-05	9015-04	5256-02	2.020 04	5 125-05	4 195~07
			<u> </u>	3.315-05	2 225-04	1375-02	4.695-05	3 705-06	7 125-09
		地山地下水流速	01倍(341m/v)	346E-05	3 465-04	1.070 02	6.47E=06	8 185-07	7,120 00
			基本方=== ス/34 1 = 6.6	9.915-05	9.015-04	5 255-02	3.815-04	5 125-05	A 13E-07
			10倍(341m/y)	4785-05	4 78E-04	2395-02	1.56E-03	2.81E-04	1.61E-06
80	Kd·寒降值	紅さいたい猿垠の	01位	5 605-05	5 805-04	2 475-02	1.675-04	3.605-05	1.015-07
含まない		分配係数	第一次 かんしょう	3.002-00	3 785-04	1 595-02	9.465-05	2.05E-05	1 705-07
			20座	1355-05	1355-04	6 025-03	2.635-05	6 115-06	4 265-08
		鉱さいたい積場 浸入水量	掛置右効/016m/い)	8645-06	9 64E-05	3 625-03	2.002 05	4.655-06	3.805-08
			基本ケー7/161m/い	2765-05	2755-04	1 695-02	9.465-05	2.055-05	1 705-07
			16 1m/v	5.70E 00	5.018-04	2655-02	1705-04	2.002.00	2075-07
		地山分配係数	01倍	1 145-05	1145-04	1795-02	1 185-04	6 89E-05	5 92F-08
			就太ケーマ	3 765-05	3765-04	1585-02	0465-05	2.05E-05	1 70E-07
			10倍	1.645-05	1 645-04	2 835-03	1.015-05	1.01E-06	4 53E-08
		地山地下水流速	01條(341m/v)	1.695-05	1.645-04	8 30E-03	2315-06	4 62E-07	4.00E-00
			基本ケーマ(341m/)	3765-05	2 785-04	1.58E-02	9.465-05	2.055-05	1 705-07
			10倍(341m/y)	1 705-05	1705-04	7725-02	5.67E-04	1 295-04	9.085-07
	メイマ計値	対さいたい汚退の	10旧(04110 y/	5.525-05	F 52E-04	2 205-02	1.695-04	2.625-05	3.000 07
	(U, XIN III)	分配係数	ダイトローフ ジェイロー	5.020 00	E 405-04	2 405-02	1.050 04	2.575-05	2 075-07
			26年1月	3.430.05	0.430, 04	1.575.02	1.050-04	1 0.572-05	2.570-07
		鉱さいたい積場 浸入水量	地帯本がの16~~~	3.540-05	3.842-04	1.375-02	1.172-04	2.332-03	1 005-07
			11個個内の(0.10079)	5.030-05	5,03E=04	1,446-02	1.102-04	2.302-03	2.076-07
			16 Jm/y	BESE AF	5 595-04	2.402-02	1.002-04	3.07E**00	2.370~07
		地山分配係数	0 1/#	2 025-05	2 025-04	2.230-02	2 265-04	1 645-04	
			メオケーフ	5.020-00	5 405-04	2 405-02	1 655-04	1.040-04	2.075-07
				1765-05	1765 04	2.400702	1.005704	1 0,07E=00	£.97E-07
			01000	1.700-05	1000-04	2.900-03	1.1/2-00	1.18E**00 E EDE AT	5.235-00
			0.11音(3.4(m/y) 進士なニフ(241	5 ADE-05	5 ADE 04	0.931-03	2./DE-Ub	2.575-05	3.030-09
			$\frac{38}{10}\frac{47}{10}\frac{-10}$	2220-05	20485-04	2.400-02	1.002-04	3.07E-03	1.975-07
	E		101#(341m/y)	2,320-03	SALE UA	SECOND CONTRACTOR	9.795-04	Z.39E-04	1.306-00

*1) 鉱さいの分配係数が文献値の場合にはU-234,U-238も主要核種となる。また、地山の分配係数が基本ケースの0,1倍になっている場合にはPb-210も主要核種となる。 *2) 地山の分配係数が基本ケースの0.1倍になっている場合にはPb-210も主要核種となる。 *3) 地山の分配係数が基本ケースの0.1倍になっている場合にはRn-222の影響は大きくない。また、10倍になっている場合にはPb-210,Ac-227の影響が大きくない代わりにRa-226,Pa-213が主要核種となっている。 ※表中の網掛けは起こる可能性の低いシナリオ

(3) たい積物内を水平方向へ流れ、たい積場外へ核種が放出するモデルの場合

核種がたい積物内を水平方向に流れ,たい積場外へ放出するモデルを用いて,抽出 したパラメータを変動させ,各評価地点における評価対象者の被ばく線量にどのよう な影響を与えるかを検討する。前項と同様に検討は各パラメータごとに行った。また, 各試算結果を表にまとめて項の最後に示す。表はラドンガスによる影響を含めた場合, 除いた場合それぞれのピーク値と被ばくに影響を及ぼす主要核種についてまとめた。

(i) 鉱さいたい積場の分配係数の影響

試算結果を図 1.3-99~図 1.3-110に示す。また,坑水処理施設周辺及び下流で の居住者の被ばくのピーク値の,鉱さいの分配係数変化に伴う変化を示したグラフを 図 1.3-111に示す。他の評価地点においても分配係数の変動が被ばく線量に与える 影響の傾向は同様であるので,ここでは代表的なシナリオとして坑水処理施設周辺及 び下流での居住者の被ばくについてのグラフを示した。

また,それぞれのパラメータの値を用いた際の,各評価地点での被ばく経路毎の被 ばく線量ピーク値のグラフを図 1.3-112~図 1.3-115に示す。10⁻⁹ Sv/y を超えな い被ばく経路はグラフ中に表れていない。なお,基本ケースについては前で示してあ るのでここでは割愛する。

たい積場ダム下流の谷では、たい積場から到達するラドンガスの影響が大きく現れている。たい積場より発生するラドンガスは鉱さい中の Ra-226 濃度に比例するため、 鉱さいの分配係数の変動に影響を受けない。

図 1.3-111より,たい積場の分配係数が大きくなるとピークの現れる時間はほと んど変わらないが被ばく線量は小さくなる。溶解度以下であれば鉱さいから地下水中 へ放出する核種濃度は分配係数の大きさに反比例する。したがって,たい積場から核 種が放出する速度は分配係数が大きいほど遅くなり,低濃度で長時間に渡り放出しつ づけるため,被ばく線量のピークは低く,線量の大きさが一定になる傾向にある。

本調査で取得した分配係数の変動を考慮しても,谷部での居住者の被ばく線量は 1 mSv/y を超える結果となった。

図 1.3-99 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-100 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-101 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値)

鉱さいたい積場の分配係数の影響

図 1.3-102 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-103 下流の集落部での居住者の被ばく(Kd:実験値)鉱さいたい積場の分配係数の影響

図 1.3-104 下流の集落部での建設作業者の被ばく(Kd:実験値) 鉱さいたい積場の分配係数の影響

図 1.3-105 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-106 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-107 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-108 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 鉱さいたい積場の分配係数の影響

図 1.3-109 下流の集落部での居住者の被ばく(Kd:文献値)鉱さいたい積場の分配係数の影響

図 1.3-110 下流の集落部での建設作業者の被ばく(Kd:文献値)鉱さいたい積場の分配係数の影響

図 1.3-111 鉱さいの分配係数の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-112 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍

(Kd:実験值)

図 1.3-113 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10 倍

(Kd:実験値)

図 1.3-114 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd0.1 倍

(Kd: 文献值)

図 1.3-115 各評価地点での被ばく経路毎の被ばく線量ピーク値;鉱さい Kd10 倍

(Kd: 文献值)

(ii) 鉱さい中の地下水の流速の影響

試算結果を図 1.3-116~図 1.3-127に示す。また,坑水処理施設周辺及び下流 での居住者の被ばくのピーク値の,地下水流速変化に伴う変化を示したグラフを図 1.3-128に示す。他の評価地点においても地下水流速の変動が被ばく線量に与える影 響の傾向は同様であるので,ここでは代表的なシナリオとして坑水処理施設周辺及び 下流での居住者の被ばくについてのグラフを示した。また,それぞれのパラメータの 値を用いた際の,各評価地点での被ばく経路毎の被ばく線量ピーク値のグラフを図 1.3-129~図 1.3-132に示す。10.9 Sv/yを超えない被ばく経路はグラフ中に表れて いない。なお,基本ケースについては前で示してあるのでここでは割愛する。

鉱さいたい積場中の地下水流速を変動させた場合,ピークの立ち上がりは流速によ らずほとんど同じである。地下水流速が大きくなると,比較的短い時間でたい積場か ら核種が放出するので,ピークの値は大きくなり,短時間でその影響は小さくなる。 一方,地下水流速が小さい場合,ピーク値は低いがその影響は長く続く。

谷部での居住者や建設作業者の被ばく線量は1mSv/yを超える結果になった。

図 1.3-116 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

鉱さい中の地下水の流速の影響

図 1.3-117 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 鉱さい中の地下水の流速の影響

図 1.3-118 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 鉱さい中の地下水の流速の影響

図 1.3-119 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値) 鉱さい中の地下水の流速の影響

図 1.3-120 下流の集落部での居住者の被ばく(Kd:実験値)鉱さい中の地下水の流速の影響

図 1.3-121 下流の集落部での建設作業者の被ばく(Kd:実験値)鉱さい中の地下水の流速の影響

図 1.3-122 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値)

鉱さい中の地下水の流速の影響

図 1.3-123 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 鉱さい中の地下水の流速の影響

図 1.3-124 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)

鉱さい中の地下水の流速の影響

図 1.3-125 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 鉱さい中の地下水の流速の影響

図 1.3-126 下流の集落部での居住者の被ばく(Kd:文献値) 鉱さい中の地下水の流速の影響

図 1.3-127 下流の集落部での建設作業者の被ばく(Kd:文献値) 鉱さい中の地下水の流速の影響

図 1.3-128 鉱さいの地下水流速の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-129 各評価地点での被ばく経路毎の被ばく線量ピーク値

; 鉱さい地下水流速 4.1 m/y(Kd:実験値)

図 1.3-130 各評価地点での被ばく経路毎の被ばく線量ピーク値; 鉱さい地下水流速 41 m/y(Kd:実験値)

図 1.3-131 各評価地点での被ばく経路毎の被ばく線量ピーク値 ; 鉱さい地下水流速 4.1 m/y(Kd: 文献値)

図 1.3-132 各評価地点での被ばく経路毎の被ばく線量ピーク値; 鉱さい地下水流速 41 m/y(Kd:文献値)

(iii) 地山の分配係数の影響

試算結果を図 1.3-133~図 1.3-144に示す。また,坑水処理施設周辺及び下流 での居住者の被ばく線量のピーク値の,地山の分配係数変化に伴う変化を示したグラ フを図 1.3-145に,下流の集落部での居住者の被ばく線量のピーク値の変化を図 1. 3-146に示す。他の評価地点における,地山の分配係数の変動が被ばく線量に与える 影響の傾向は,坑水処理施設周辺及び下流での居住者の被ばくと同様である。また, それぞれのパラメータの値を用いた際の,各評価地点での被ばく経路毎の被ばく線量 ピーク値のグラフを図 1.3-147~図 1.3-150に示す。10-9 Sv/yを超えない被ばく 経路はグラフ中に表れていない。なお,基本ケースについては前で示してあるのでこ こでは割愛する。

地山の分配係数が大きいと地下水中の核種の移行は遅延され,ピークの現れる時間 は遅くなる。この傾向はどの評価対象者に対しても見られる。

ここではたい積場からの核種の放出モデルとして、たい積物内を水平方向へ流れ出 る場合を考えている。たい積物中の地下水流速は 0.41 m/y と遅く、したがってたい積 場からの核種の放出には時間がかかる。また、たい積場からの核種の放出の仕方は地 山の分配係数を変動させても変わらない。地下水中にゆっくり放出した核種は、地下 水によってすぐに運ばれていくため、濃度一定の時間が存在する。地山の分配係数が 大きいと核種は拡散されるので、濃度が一定である時間は分配係数が大きいほど短く なる。

下流の集落部での居住者以外の評価対象者においては、外部被ばく、ダスト吸入被 ばく、及び農作物の摂取による被ばくなど、土壌の核種濃度に依存する被ばくが主な 被ばく経路となっているため、分配係数が大きいほど被ばく線量は大きくなる。しか し分配係数が大きい場合、遅延効果により評価地点に到達するまでに核種が減衰する。 したがって、分配係数が基本ケースの場合と 10 倍の場合でピーク値にほとんど差は 無く、分配係数が小さい場合にピーク値は小さくなっている。

下流の集落部での居住者の被ばくの場合には、分配係数が基本ケースの 10 倍のと きにピーク値は小さくなる。分配係数が 0.1 倍のときには Rn-222 による影響はあま り大きくない。また、10 倍の時には、Pb-210 よりも Ra-226 の影響のほうが大きく、 Ac-227 よりも Pa-231 の影響のほうが大きくなっている。これはその核種による主要 な被ばく経路が、河川水の核種濃度に依存する淡水魚の摂取や河川水の飲用による被 ばくであるか,土壌の核種濃度に依存する農作物の摂取などによる被ばくであるかの 違いによる。分配係数が大きい場合,遅延効果が高く,核種の移行速度は遅い。よっ て,評価地点に到達するまでに核種が減衰するため,分配係数が大きい場合にピーク 値は小さくなっている。減衰によるピーク値の低下はPb-210, Ac-227, Ra-226, Pa-231 のいずれにおいても起こるので,分配係数が大きくなると相対的に Ra-226 や Pa-231 の影響が大きくなる。

鉱さいの分配係数の値に関わらず,谷部での居住者の被ばく線量は1mSv/yを超える結果となった。

図 1.3-133 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

地山の分配係数の影響

図 1.3-134 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 地山の分配係数の影響

図 1.3-135 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値) 地山の分配係数の影響

図 1.3-136 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)

図 1.3-137 下流の集落部での居住者の被ばく(Kd:実験値)地山の分配係数の影響

図 1.3-138 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-139 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値)

図 1.3-140 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 地山の分配係数の影響

図 1.3-141 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:文献値)

地山の分配係数の影響

図 1.3-142 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:文献値) 地山の分配係数の影響

図 1.3-143 下流の集落部での居住者の被ばく(Kd:文献値) 地山の分配係数の影響

図 1.3-144 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-145 地山の分配係数の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-146 地山の分配係数の変動が被ばく線量に与える影響 (下流の集落部での居住者の被ばく)

図 1.3-147 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1 倍

(Kd:実験値)

図 1.3-148 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍

(Kd:実験値)

図 1.3-149 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd0.1 倍

(Kd: 文献値)

図 1.3-150 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山 Kd10 倍

(Kd: 文献值)

(iv) 地山の地下水流速の影響

試算結果を図 1.3-151~図 1.3-162に示す。また、鉱さいダム下流の谷での居 住者の被ばく線量のピーク値の、地山の地下水流速の変動に伴う変化を示したグラフ を図 1.3-163に示す。この評価地点の林業従事者及び建設作業者の被ばく線量の変 化の傾向は居住者の場合と同様である。坑水処理施設周辺及び下流での居住者の被ば くのピーク値の、地山の地下水流速の変動に伴う変化を示したグラフを図 1.3-164 に示す。下流の集落部での居住者及び建設作業者の被ばくにおいても、地山の地下水 流速の変動が被ばく線量に与える影響の傾向は同様である。また、それぞれのパラメ ータの値を用いた際の、各評価地点での被ばく経路毎の被ばく線量ピーク値のグラフ を図 1.3-165~図 1.3-168に示す。10-9 Sv/y を超えない被ばく経路はグラフ中に 表れていない。なお、基本ケースについては前で示してあるのでここでは割愛する。

地山の地下水流速が速くなると評価地点への核種の到達もそれだけ早くなり,ピー クの立ち上がりも早くなる。また,たい積場からの放出はたい積場の分配係数による ので,核種ごとにたい積場から放出するのにかかる時間は異なる。流速が速い場合, 核種は地下水に放出するとすぐに運ばれるため地下水中での核種の分布は鉱さいの 分配係数によって広範囲に渡る。一方地下水流速が遅い場合,放出した核種は放出点 からの移行が遅く,核種の分布は広がり難い。よって地下水中の核種濃度は,地下水 流速が遅いほど高くなる。しかし,流速が遅くなると評価地点への核種の到達が遅く なるので,移行している間に核種は減衰し,ピーク値は低くなる。図 1.3-163より, 鉱さいたい積場ダム下流の谷ではたい積場からのラドンガスの影響によりピーク値 にほとんど差はないが,地下水流速が遅いほど高くなるという傾向が見られる。

一方,河川の核種濃度はたい積場からの核種放出速度によるので,地山の流速はほ とんど影響しないと考えられる。しかし,地山の地下水流速が遅い場合,評価地点に 到達するまでに核種が崩壊するため,図 1.3-164に見られるようにダムより先の評 価地点においては流速が遅くなるほどピーク値は低くなっている。

地山の流速が変動しても、谷部の居住者の被ばく線量が1mSv/yを超える結果となった。

図 1.3-151 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:実験値)

地山の地下水流速の影響

図 1.3-152 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:実験値) 地山の地下水流速の影響

図 1.3-153 鉱さいたい積場ダム下流の谷での居住者の被ばく(Kd:実験値)

経過時間(y)

図 1.3-154 坑水処理施設周辺及びその下流での居住者の被ばく(Kd:実験値)

地山の地下水流速の影響

図 1.3-155 下流の集落部での居住者の被ばく(Kd:実験値)

地山の地下水流速の影響

図 1.3-156 下流の集落部での建設作業者の被ばく(Kd:実験値)

図 1.3-157 鉱さいたい積場ダム下流の谷での林業従事者の被ばく(Kd:文献値)

図 1.3-158 鉱さいたい積場ダム下流の谷での建設作業者の被ばく(Kd:文献値) 地山の地下水流速の影響

図 1.3-161 下流の集落部での居住者の被ばく(Kd:文献値) 地山の地下水流速の影響

図 1.3-162 下流の集落部での建設作業者の被ばく(Kd:文献値)

図 1.3-163 地山の地下水流速の変動が被ばく線量に与える影響 (鉱さいたい積場ダム下流の谷での居住者の被ばく)

図 1.3-164 地山の地下水流速の変動が被ばく線量に与える影響 (坑水処理施設周辺及び下流での居住者の被ばく)

図 1.3-165 各評価地点での被ばく経路毎の被ばく線量ピーク値 ;地山地下水流速 3.41 m/y(Kd:実験値)

図 1.3-166 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山地下水流速 341 m/y(Kd:実験値)

図 1.3-167 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山地下水流速 3.41 m/y(Kd:文献値)

図 1.3-168 各評価地点での被ばく経路毎の被ばく線量ピーク値;地山地下水流速 341 m/y(Kd:文献値)

表 1.3-12 試算結果

(たい積物内を水平方向に流れ、たい積場外へ核種が放出するモデル)

				たい積増ダム下流の谷		抗水処理施設周辺及び その下流 下流の集落部			
				林業従事者	建設作業者	居住者	居住者	居住者	建設作業者
Rnの	鉱さいの			Ra-226	Ra-226	Rn-222,Ra-226	231,U-234	Pb-210,Rn-222,Ac-227	Ra-226.Rn-222
影響	分配係数	パラメータ	パラメータの変動	Rn-222*1)	Rn-222*1)	Pa-231*2>	U-238* ³⁾	U-234,U-238*4)	U-238, Ac-227
Rn	Kd:実験値	鉱さいたい積場の	0.1倍	2.05E-05	2.05E-04	4 07E-03	7.57E-06	1,24E-06	8.11E-09
含む		分配係数	基本ケース	2.02E-05	2.02E-04	3.64E03	1.19E-06	1.82E-07	1.26E-09
			10倍	2.01E-05	2.01E-04	3.55E-03	2.64E-07	3.80E-08	2.79E-10
		鉱さいたい積場	基本ケース(0.41m/y)	2.02E-05	2.02E-04	3.64E-03	1.19E-06	1.82E-07	1.26E-09
		地下水流速	10倍(4.1m/y)	2.21E-05	2.21E-04	521E-03	1.19E-05	1.82E-06	1.27E-08
			100倍(41m/y)	4.23E-05	4.23E04	2.07E-02	1.03E-04	1.40E-05	1,12E-07
		地山分配係数	0.1倍	2.02E-05	2.02E-04	3.598-03	3,94E-07	1.81E-07	2.02E-10
			基本ケース	2.02E-05	2.02E-04	3.64E+03	1.19E~06	1.82E-07	1.26E-09
			10倍	2.01E-05	2.015-04	3.55E-03	1.01E-06	8.24E-08	1.45E-09
		地山地下水流速	0,1倍(3.41m/y)	2.01E-05	2.01E-04	3 598-03	1.42E-07	2.20E-08	1.58E-10
ł			基本ケース(34,1m/y)	2.02E-05	2.02E-04	3 64E-03	1.19E-06	1.82E-07	1.26E-09
1			10倍(341m/y)	2.02E-05	2.02E-04	3,55E-03	1,90E~06	2.89E07	2.02E-09
1	Kd:文献値	鉱さいたい猜場の	0.1倍	3.24E-05	3.24E-04	1356-02	1.14E-04	1.52E-05	1.25E-07
		分配係数	基本ケース	2 38E-05	2 3BE-04	6 39F-03	2.22E-05	5.61E-06	2.18F-08
			10倍	2.03E-05	2 03E-04	3 86E-03	3.39E-06	7.01E-07	3.43E-09
		鉱さいたい積場	基本ケース(0.41m/v)	2.38E-05	2 38E-04	6 39E-03	2.22E-05	5.61E-06	2.18F-08
		地下水流速	10倍(4.1m/v)	3.53E-05	3 53E-04	1 53E-02	1 27F-04	1 775-05	1.395-07
			100倍(41m/v)	1.23E-04	1 235-03	7.63E-02	6.55F-04	8.82F-05	7.09E-07
		地山分配係数	0.1傍	2065-05	2 08E-04	4 43F-03	6.84E-06	5.60E-06	2 99E-09
			基本ケース	2 385-05	2 38E-04	6 39E-03	2 22E-05	5.61E-06	2 18E-08
			10倍	2 275-05	2 275-04	6 09E-03	2 07E-05	1 88E-05	2 20E-08
		地山地下水流速	0 1倍(3 41m/v)	2.465-05	2465-04	8 03E-03	3 20E-06	7.37E-07	2.84E-09
			基本ケース(34.1m/v)	2.38E-05	2 38E-04	6 39E-03	2 22E-05	5.61E-06	2 18F-08
			10倍(341m/v)	2.06E-05	2 06F-04	3 91 E-03	2 98E-05	7.24E-06	2 99F-08
Rn	Kd·軍臻值	鉱さいナーい積場の	01倍	1.03E-06	1035-05	520F-04	4 26E-06	9975-07	6 29E-09
含まない		分配係数	基本ケース	2 205-07	2 205-08	1015-04	4.10E 00	1 41E-07	9.53E-10
			10倍	6 685-08	8 68E-07	2 885-05	1 246~07	2 805-08	2 04E-10
		鉱さいたい猜爆	基本ケース(0.41m/v)	2 20E-07	2 202-08	1015-04	6 12E-07	1 41E-07	9.53E-10
		地下水流速	<u>10倍(4.1m/v)</u>	2215-06	2 21E-05	1016-03	6.12E-07	1.41E-06	9.55E-09
			100倍(41m人)	1.89F-05	1 895-04	8 665-03	4.50E-05	1.412 00	8 046-08
		地山分配係数	0.1倍	2 945-08	2 945-07	5155-05	3016-07	1 745-07	1 52E-10
			基本ケース	2 205-07	2 205-06	1016-04	6 12E-07	1.41E-07	9.53E-10
			10傍	4.835-07	4 836-08	1675-04	6 765-07	6 19E-08	1 11E-09
		地山地下水流速	0.1倍(3.41m/v)	5 25E-07	5 256-06	2745-04	9 24 5-08	2 205-08	1 21E-10
			基本ケース(341m/v)	2 205-07	2 205-08	1015-04	6 125-07	1 41E-07	9.53E-10
			10倍(341m/v)	2945-08	2945-07	1455-05	9.645-07	2 225-07	1.52E-09
	KA·文獻值	紋さいたい矮場の	10,百亿 11.0 77	1 105-05	1105-04	4 676-02	4 045-05	1 215-05	0.025-00
		分配係数	以上に 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3.875-06	2 875-05	2725-03	2 13 5~05	5.54E-05	2145-08
		73 80 1/544	10使	5.65E-07	5.655-08	2 725-04	2.100.00	5.04C 00	2.140 00
		なさいたい透過	あたーマ(041の人)	3.975-06	2 975-05	2 725-07	2.020-00	5.54E-06	2 145-09
		地下水売速	第一〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇	1385-05	1285-04	£.12C=U3	2.13E-00 6.70E-06	1745-06	1.016-07
	1	NO T NUMBER	160磅(41m/y)	8055-05	A 055-04	2175-03	2 945-04	<u> </u>	5.00E-07
		他们分配函数	0.14条	4095-07	A 055-04	9010-04	2.04C-04 6.67C-06	5.10E-03	2 975-00
		100-17 Mb (75 94	<u>がら</u> 基本ケーフ	9.302-07	4 00C=00	0.010=04	0,025-00	5,09E-00 6,64E-06	2.075-09
			<u>ww./一へ</u> 10位	5025-06	5.01 C=03	2.720-03	2.132-00	1.705.00	2.140-08
		桃山地下水苏湾	0.144/2.41m.6.	5,03E-06	6 00C-00	2 200-03	1.302-00	1.795-00	2.140-08
		PERMIE L'ANNUE	<u>9.1月(9.41077)</u> 其実ケーロフ(941	2075-00	2 070-00	3 000703	3.0/2-00	1.28E-07	2.776-09
	1			4985-07	100-010-00	2.722-03	2.135-00	0.04E-00 7.00E-08	2.145~08

*1) 鉱さいの分配係数が文献値の場合にはAc-227も主要核種となる。 *2) 地山の分配係数が基本ケースの0.1倍になっている場合にはRn-222の次に大きな影響を及ぼすのはPb-210である。 *3) 地山の分配係数が基本ケースの0.1倍になっている場合にはPb-210も主要核種となる。 *4) 地山の分配係数が基本ケースの0.1倍になっている場合にはRn-222の影響は大きくない。また、10倍になっている場合にはPb-210,Ac-227の影響が大きくない代わりにRa-226,Pa-213が主要核種となっている。 ※表中の網掛けは起こる可能性の低いシナリオ

1.4 まとめ

鉱さいたい積場の安全評価において、影響が大きいと考えられるパラメータの抽出、変 動の影響を検討した。

今回検討したパラメータはシナリオ,モデルによってはいずれも被ばく線量に大きな影響を与える可能性があるといえる。特に,鉱さいたい積場の安全評価を行う上で最も起こ りうると考えられる河川水利用シナリオにおいては,地山の分配係数,地山の地下水流速 の変動の影響が大きい。

鉱さいたい積場の分配係数,たい積場中の水の流れはピーク値とテールに影響を与える。 地山の分配係数及び地下水流速はピークの立ち上がりとピーク値に影響を与える。

核種がたい積物内を鉛直方向へ流れ,たい積場から放出するモデルを考えた場合に,鉱 さいの分配係数の変動及び浸透水量の変動による被ばく線量の変化の傾向が,鉱さいたい 積場の分配係数に本役務で取得した実験値を用いた場合と文献値を用いた場合で異なって いた。図 1.3-41,図 1.3-58に示したように,文献値を用いた場合にはパラメータを変 動させても被ばく線量のピーク値に大きな変化が見られなかった。実験値を用いた場合と 文献値を用いた場合で大きく異なる要素は,表 1.3-3と表 1.3-4の比較より,Uの溶解 度,U,Pa,Th,Acの分配係数である。これらの要素は移行媒体や地下水の性質によっ て異なるため,評価対象領域の地質条件,水質条件を整備する事が必要である。

また,放出モデルの違いにより,評価地点への核種の到達時間やピークの値に違いが出 た。本調査の結果からは,透水係数の値などから核種はたい積物内を鉛直方向へ流れると 考えられるが,措置の仕方によっては放出の仕方が変化することも考えられる。措置の優 先度を決定する上で,核種の放出形態を検討することは重要であり,そのために鉱さい部 やその周辺の水理地質環境データをもとに、地下水解析を行っていく必要がある。

さらに、今回の検討ではラドンガスの影響は、ラドンバリアに関する措置が有効でなく なったとして評価しているため、有意な影響を及ぼすという結果になった。この影響が、 措置を施すことによりどの程度低減されるかを検討するためには、ラドンの挙動に関する パラメータの整備も必要である。

1章の参考文献

- 1) 原子力安全委員会:低レベル放射性固体廃棄物の陸地処分の安全規制に関する基準値 について(第3次中間報告),平成12年9月14日
- 2) 核燃料サイクル開発機構 人形峠環境技術センター:人形峠環境技術センターにおけ る鉱山跡の措置に関する基本計画,2001年4月
- 3) 国土地理院の地図
- 4) サイクル機構資料
- 5) 理科年表
- 6) <u>http://wdb-kk.river.or.jp/zenkoku/</u> (又は、国土交通省河川局編集,雨量年表流量年 表,日本河川協会発行)
- 7) 日本原子力学会:1990年日本原子力学会年会要旨集(第II分冊),日本原子力学会, p.197,1990
- 8)長沼 政喜,滝 富弘,滝本 定男,牧田 彰典:夜次鉱滓堆積場への流入水の水質・水量調査結果(その2), JNC, TN6420 2000-004, 2000
- 9) IAEA : APPLICATION OF EXEMPTION PRINCIPLES TO THE RECYCLE AND REUSE OF MATERIALS FROM NUCLEAR FACILITIES, IAEA, safety series No.111-P-1.1, 1992
- 10) 日本原燃株式会社: 六ヶ所低レベル放射性廃棄物埋設センター 廃棄物埋設事業許可申請書,昭和63年4月(一部補正:平成元年10月,平成2年2月,平成2年9月)
- 11) 原子力安全委員会 放射性廃棄物安全基準専門部会:低レベル放射性固体廃棄物の陸 地処分の安全規制に関する基準値について(第2次中間報告),原子力安全委員会,1992
- 12) 核燃料サイクル開発機構:わが国における高レベル放射性廃棄物地層処分の技術的信頼性 –地層処分研究開発第2次取りまとめ– 分冊3 地層処分システムの安全評価, JNC TN 1400 99-023, 1999
- 13) 共同作業チーム (JNC, 電気事業連合会): TRU 廃棄物処分概念検討書, JNC TY 1400 2000-001 (TRU TR-2000-01), 2000
- 14) 放射線医学総合研究所 ラドン濃度測定・線量評価委員会:ラドン濃度測定・線量評価 最終報告書,放射線医学総合研究所,NIRS-R-34, 1998
- 15) ICRP : Protection of the Public in Situations of Prolonged Radiation Exposure, ICRP, Vol. 29, 1999
- 16) H. Morinaga, M. Mifune, K. Furuno: Radioactive of Water and Air in Misasa Spa Japan, Radiation Protection Dosimetry, vol. 7, p. 295-297, 1984

- 2. 水理地質環境の調査
- 2.1 調査方法
- 2.1.1 ボーリング調査
- (1) 調査内容及び数量

鉱さいたい積場の水理地質環境を把握するためボーリング調査を行い,ボーリング 孔を利用した孔内水理試験,コア試料を用いた土質試験及び室内透水試験を行った。 実施項目及び実施数量は表 2.1-1 に示すとおりである。

(2) 掘削位置

ボーリング掘削位置は、監督員と協議の上,鉱さいたい積場のグリッド座標M7の 位置で実施した。ボーリング位置を図 2.1-1 に示す。

(3) ボーリング機械の運搬及び仮設

ボーリング機械の搬入については、地盤状況に応じて搬入路を仮設し、クローラー 運搬などによって行った。

ボーリング足場は、掘削位置が湿地であったため湿地用足場を仮設した。なお、足 場は安全かつ能率的に行えるように組み、資材類を安全かつ使いやすい位置に配置で きるステージを構築した。

図 2.1-2 にボーリング機械の概念図を、図 2.1-3 にクローラーの全体図を示す。また,主な使用機械を表 2.1-2 に示す。

(4) 掘削方法

以下に掘削方法を記す。また、掘削手順及び保孔の概要を図 2.1-4 に示す。

- ① 掘削は原則としてオールコアとし、掘削孔径は土砂部を86mm、風化岩及び新鮮 岩を66mmとした。掘削にあたっては、コア採取率を常に100%とするように努 め、地表に近い土砂部ではシングルコアチューブ、風化岩ではメタルクラウン装着 の軟岩用ダブルコアチューブ、風化岩~新鮮岩ではダイヤビット装着のコアパック ダブルコアチューブを使用して行った。
- ② 孔壁の保護及び塩ビ管挿入のため拡孔を行い、最終孔径は鉱さい部で φ 140mm、 風化花崗岩及び新鮮花崗岩部で φ 116mm とした。

- ③ 掘削用水は原則として清水を用いることとした。掘削用水の取水は、人形峠環境 技術センター内の指定場所から確保した。
- ④ 掘削に用いた水は、垂れ流しをせず循環させ、スライム等は指定箇所以外には流 出しないようにした(鉱さいたい積場内に排出)。
- (5) ボーリング掘り止め深度

ボーリング掘止めの深度は、花崗岩の新鮮岩を 5m 確認することを基本とし監督員 と協議の上決定した。なお、監督員との打合せにより堀止め深度が決定した後、監督 員の立会いのもとで検尺を行った。

(6) 拡孔及び保孔と観測孔仕上げ

拡孔の手順を図 2.1-4 に、ストレーナの仕様を図 2.1-5 に、観測孔の構造を図 2.1-6 に示す。

(i) 拡孔及び保孔

ボーリング孔は、原位置透水試験後、拡孔、孔内洗浄及び孔壁保護等を行い、塩ビ 管を挿入して基盤(新鮮花崗岩)の水位観測孔として使用できるようにした。

- (ii) 観測孔仕上げ
 - ① 水位の観測対象区間を新鮮花崗岩部分(5m 区間)とし、下部の4m区間にストレーナ加工を施した塩ビ管を挿入し、上部の1m区間には遮水ゾーンを設けて、上位の地下水が流入しないようにした。遮水ゾーンは、塩ビ管と地山との間に50cm厚程度のベントナイトを充填し、上下を20~30cm厚の細砂で挟んだ構造とした。その他の区間には珪砂を充填した。
 - ② 塩ビ管挿入後、孔口周辺をセメントで固定した。セメント固定部の直下には、セメント流下を避けるため、厚さ10cm程度の細砂ゾーンを設けた。
 - ③ 挿入した塩ビ管は、VP65(呼び径 65mm、外径 76mm、内径 67mm, 肉厚 4.5 mm、長さ 4m)を使用した。
- (7) コアの採取と収納
- ボーリングコアは極力採取することとし、採取深度に従いコア箱に収納した。コア 採取ができない部分はスライムを採取して、ビニール袋に入れてコア箱の該当深度に

収納した。

- ② コア箱には、件名、収納深度区間等を明記し、1 箱毎に湿潤状態でカラー写真撮影 を行った。特に重要な部分は接写撮影した。
- ③ 鉱さい部において、三軸透水試験用の不撹乱試料の採取を行った。採取はシンウォ ールサンプラーを用いて約 90cm 長の不撹乱コアを取得した。
- (8) コアの観察と柱状図の作成

採取したボーリングコアは、壊さないように肉眼観察を行った。

ボーリング柱状図は、(財)日本建設情報センター(JACIC)の「ボーリング柱状 図作成要領(案)」に基づき作成した。表 2.1-3~4 に JACIC のボーリングコア観察要 領を示す。また, RQD の測定方法を図 2.1-6 に示す。

2.1.2 原位置透水試験

(1) 試験位置及び方法

花崗岩の透水性を把握するために現位置において透水試験を実施した。風化花崗岩 部分ではケーシング法により、新鮮岩部分では低圧岩盤透水試験により透水試験を実 施した。

ケーシング法による透水試験の概要を図 2.1-8 に、低圧岩盤透水試験の概要を図 2.1-9 に示す。

なお、ケーシング法による透水試験については、地盤工学会基準(JGS 1314-1995) 「ボーリング孔を利用した透水試験方法」に、低圧岩盤透水試験ついては、基本的に 地盤工学会基準(JGS 1322-1995)「定圧注水による岩盤の透水試験方法」に準じて実 施した。

(2) 試験数量

測定は、風化花崗岩中でケーシング法を2点、新鮮花崗岩中で低圧岩盤透水試験を 1点、合計3箇所において実施した。具体的な試験箇所は監督員と協議の上決定した。

2.1.3 採水

水質分析に供するため採水を行った。採水は、掘削後に孔内洗浄し、孔内の体積程度の

孔内水を汲み上げた後と、翌日の作業開始時に行った。

2.1.4 室内土質試験

鉱さいの透水特性を把握する目的で、シンウォールサンプラーによって採取された不撹 乱鉱さい試料を用いて室内透水試験を実施した。試験は、鉱滓の埋没深度の違いによる透 水性の差違の程度を把握するため、三軸透水試験にて行った。また、鉱さいの基本的な物 理特性を把握する目的で土の物理試験も併せて実施した

(1) 室内三軸透水試験

(i) 不撹乱試料の観察及び試験位置の選定

シンウォールサンプラーによって採取された不撹乱鉱滓試料を図 2.1-10 に示す試 料押出し機によって試料を押出し、鉱さい試料の不均質性等を把握する目的で観察を 行った。観察の結果、シルトの薄層を挟む部分が鉱さいを代表する層相であると判断 し、室内透水試験及び物理試験を実施した。

なお、後述するように試料は概ね砂分から構成されており、砂質試料で変水位の透 水試験を行うと、スタンドパイプからの水の流入による土粒子の乱れや共試体側面か らのパイピングにより、本来の透水性より大きな値が測定される場合がある。そこで、 砂を主体とする試料を用いて定水位法による試験を行い、変水位法での試験の妥当性 のチェックを行った。以降、前者を試料1、後者を試料2と呼称する。

(ii) 三軸透水試験

不撹乱試料を直径 5cm、高さ 10cm にトリミング法によって整形し三軸セルにセットし、所定の圧力で圧密した後、スタンドパイプから下部ペディスタルを通して供試体に通水し、上部キャップから越流水槽に排水させる方法で透水試験を実施した。また、圧密圧力と透水係数との関係を把握する目的で、1供試体に対して圧密圧力を3 種類に変化させて実施した。本試験で用いる三軸透水試験装置の概要図を図 2.1-11 に、 作業のフローを図 2.1-12 に示す。

(iii) 試験条件

(a) 試験数量:2供試体

(1試料は定水位試験用)

(b) 透水方法: 変水位法

:定水位法(JISA 1218 土の透水試験方法に準拠)

(c) 圧密圧力: 40kN/cm²(有効土かぶり圧)

80 kN/cm²(有効土かぶりE×2)

120 kN/cm²(有効土かぶりE×3)

- (d) スタンドパイプの高さ:1m(9.81kPa相当)
- (iv) 解析

試験結果より得られる水位変化(h₁/h₂)~経過時間の関係から、次式を用いて透水 係数を求める。

ここに、

k_T: T℃における透水係数(cm/s)
a:スタンドパイプの断面積(cm²)
L:供試体の長さ(cm)
A:供試体の断面積(cm²)
t₂-t₁:測定時間(s)
h₁:時刻t₁における水位差(cm)
h₂:時刻t₂における水位差(cm)

(2) 物理試験

鉱さいの基本的な物理特性を把握する目的で透水試験を実施した試料を用いて土 の物理試験を実施した。下記に試験工種及び基準と実施数量を示す。

1	土粒子の密度試験	(JIS A 1202)	 2 試料
2	土の含水比試験	(JIS A 1203)	 2 試料
3	土の粒度試験	(JIS A 1204)	 2 試料
4	土の液性限界試験	(JIS A 1205)	 2 試料
5	土の塑性限界試験	(JIS A 1206)	 2 試料

ただし、土の液性限界試験及び土の塑性限界試験は,試料が砂質で試料整形が困難 なため試験を中止した。

	内容	数量	摘要
ボーリング調査			
運搬	クローラー	<u>177.3m</u>	林道170m,_湿地7.3m
[パイプ足場	1式	湿地
	ϕ 86mm	4.80m	鉱さい
	ϕ 66mm	18.20m	<u>風化花崗岩:12.90m,新鮮花崗岩5.30m</u>
	計	23. 00m	オールコア
	ϕ 116mm	23.00m	
観測孔仕上げ		23. 00m	下部4mはストレーナ設置
孔内試験			
現場透水試験		<u>2回_</u>	風化花崗岩対象
低圧岩盤透水試験		1回	新鮮花崗岩対象
試料採取			
不撹乱試料	シンウォール サンプリング	2回	鉱さい、埋没腐植土
11000000000000000000000000000000000000	ベーラ採水		
室内試験			
土質物理試験		2式	粒度試験,密度試験,含水比試験,液性 限界.塑性限界
三軸透水試験		2供試体	変水位法. 定水位法

表 2.1-1 調査数量表

表 2.1-2 主な使用機械一覧表

	機械名	製造会社名	型式	性能	台数
機械ボーリング	試錐機	東邦地下工機	D2-G-58	掘削深度 MAX 200m	1台
	試 錐 ポンプ	東邦地下工機	BG-3B	吐出量 MAX 54 ヒス/min 吐出圧 MAX 15 kg/cm ²	1台
	揚 水 ポンプ	ヤンマー	スターF	吐出量 MAX 56兆/min 吐出圧 MAX 35kg/cm ²	1台
	エンジン	ヤンマー	NFD-12	MAX 12PS	1台
	その他	コアチューブ、 工具類	ロッド、足切	易パイプ、ケーシングパイプ、各種	1式
小運搬	クローラー 六興		800S	積載量650kg、幅80cm、 荷台長120cm、全長170cm	1台

表 2.1-3 コア観察要素表

コア硬軟区分

記号	硬軟区分
А	極硬、ハンマーで容易に割れない。
В	硬、ハンマーで金属音。
С	中硬、ハンマーで容易に割れる。
D	軟、ハンマーで容易に砕ける。
E	極軟、マサ状、粘土状。

コア風化区分

記号	風化の程度
α	非常に新鮮である。造岩鉱物の変質は全くない。
β	新鮮である。有色鉱物の周辺に赤褐色化がある。長石の変質はない。
γ	弱風化している。有色鉱物の酸化汚染がある。長石の部分的な変質(白色化)がある。
δ	風化している。有色鉱物が黄金色あるいは周辺が褐色粘土化している。長石の大部分が 変質している。
8	強風化している。石英および一部の長石を除きほとんど変質し原岩組織は失われている。

コア割れ目状態区分

記号	割れ目状態区分				
а	密着している、あるいは分離しているが割れ目沿いの風化・変質は認められない。				
b	割れ目沿いの風化・変質は認められるが、岩片はほとんど風化・変質していない。				
с	割れ目沿いの岩片に風化・変質が認められ軟質となっている。				
d	割れ目として認識できない角礫状、砂状、粘土状コア。				

コア形状区分

記号	コア形状		
Ι		長さ50cm以上の棒状コア。	
П		長さが50~15cmの棒状コア。	
Ш	BENCY	長さが15~5cmの棒状~片状コア。	
IV	1222252558722587	長さが5cm以下の棒状~片状コアでかつコアの外周の一部が認められるもの。	
V	20000000000000000000000000000000000000	主として角礫状のもの。	
VI		主として砂状のもの。	
VII		主として粘土状のもの。	
VIII		コアの採取ができないもの。スライムも含む。(記事欄に理由を書く)	

変質区分

記号	変質区分	変質状況
1	非変質	肉眼的に変質鉱物の存在力が認められない。
2	弱変質	原岩組織を完全に残し、変質程度(脱色)が低いもの。あるいは非変質の割合 が高いもの。(肉眼で50%以上)
3	中変質	肉眼で変質が進んでいると判定できるが、原岩組織を明らかに残し、原岩判定 が容易なもの。または非変質部を残すもの及び網状変質部。
4	強変質	構成鉱物、岩片等が変質鉱物で完全置換され、原岩組織を全く〜殆ど残さない もの。

※「ボーリング柱状図作成要領(案)」解説書、(財)日本建設情報総合センター(1986)より

区分	色 調	硬軟の程度	風化の程度	割れ目の状態	コアの形状
B以上	暗灰	極硬 D・Bで80cm/h以下 (A)	非常に新鮮 未風化 (α)	亀裂は密着してい る (a)	概ね30cm以上 (I~Ⅱ)
СН	暗灰	硬 ハンマーで金属音 (B)	新鮮である 層理面に沿って変 色 (β)	亀裂は一部開口 (a)~(b)	概ね15cm以上 (Ⅲ)
СМ	暗灰 黒灰	硬~中硬 ハンマーで濁音 (B)~(C)	弱風化している 層理面に沿って風 化 (γ)	 亀裂に沿う風化あり、一部粘土を挟むへアークラック 発達(c) 	概ね5~15cmの短柱 状 (Ⅲ)
CL	黄灰 暗灰	軟~中硬 ハンマーで軽く割 れる (C) ~ (D)	岩芯まで風化し、 ハンマーで崩せる (δ)	亀裂沿いの風化が著しい岩片状コア(d)	概ね5cm以下の岩片 状〜細礫状 (IV)
D	黄褐 暗灰	極軟M・Cで無水掘 削可能 (E)	黄灰色化し指先で 壊すことができる (ε)	亀裂として認識で きない礫状、砂 状、粘土状 (d)	土砂状コア (V)~(VII)

表 2.1-4 ボーリングコア観察による岩級区分表

※「ボーリング柱状図作成要領(案)」解説書、(財)日本建設情報総合センター(1986)より

図 2.1-1 調査位置図

図 2.1-2 ボーリングマシンの概要

図 2.1-3 クローラの全体図

図 2.1-4 掘削手順実績

塩ビ管(VP65) 内径 ; 67mm 外径 ; 76mm	塩ビ管内 表面積 A=6.7×π×395 =8.314.2(cm2)
スリット 幅 ; 3mm 長さ ; 200mm 18 列	開口部 面積 a=0.3×20×4×18 =432(cm2)
	開口率 a/A×100=5.1%

図 2.1-5 ストレーナの仕様

図 2.1-7 RQDの求め方

[回復法]

図 2.1-8 現場透水試験(ケーシング法)概要図

図 2.1-9 低圧岩盤透水試験の概要

図 2.1-10 試料押し出し機

図 2.1-11 三軸透水試験装置の概要図

図 2.1-12 室内三軸透水試験の作業フロー

2.2 調査結果

2.2.1 ボーリング調査結果

調査地点の地質構成は上位から, 鉱さい、旧表土及び花崗岩からなる。図 2.2-1 に概略 柱状図を、以下にボーリングで得られた地質及び岩級について示す。

E孔の地質概要

①0.00~3.20m 鉱さい

0.00m から 0.45m は、ヨシの根を非常多く含む砂混じり粘土, 0.45m から 3.20m は、 比較的淘汰のよい細砂からなり、1.20m 付近まで植物根が認められる。

②3.20~4.88m 旧表土(粘性土)

主に、黒色を呈す有機質な粘性土からなる。上部の 3.20m から 3.50m 付近には植物根が認められる。

<u>③4.88~17.55m 強風化花崗岩(D級)</u>

黄褐〜褐色を呈し、強い風化を受けて非常に軟質となっており、指圧で容易に崩せる。 鉱物はほとんど変質している。所々に酸化鉱物の被膜が認められる。

深度 15m 付近からわずかに硬くなっている。

④17.55~17.70m 風化花崗岩(CL級)

岩片状を呈す花崗岩である。岩片自体は堅硬である。

⑤17.70~23.00m 新鮮花崗岩(CM~B級)

17.70mから18.70mまでは柱状〜短柱状コアを呈する(CM級)。割れ目面は淡黄灰色を帯び、一部酸化物の付着が認められる。 18.70mから23.00mは、柱状〜長柱状コア主体である(CH〜B級)。新鮮であり、鉱物の径は2~5mm程度(max;2cm程度)と比較的粗粒な花崗岩である。

2-19

2.2.2 原位置透水試験結果

原位置透水試験は、強風化(花崗岩)部の深度 6.00~7.00m 及び深度 16.00~17.00m においてケーシング法(変水位・回復法)を、新鮮(花崗岩)部の深度 19.00~23.00m において低圧岩盤透水試験を実施した。

表 2.2-1 及び図 2.2-2 に今回の調査で得られた透水試験結果を示す。

強風化部の透水係数は、概ね4×10⁻⁶m/s程度であった。強風化部の岩質は、非常に軟質 であり、鉱物はほぼ変質している。

新鮮岩部の透水係数は、概ね2×10⁻⁹m/s 程度であった。新鮮岩部の岩質は、強風化部との境界付近にやや割れ目が認められるものの、全体には割れ目が少なくなっている。

2.2.3 採水結果

深度 4.00~5.00m 区間から、ベーラー採水器によって採水を実施した。

なお、採水直前に測定した水質データを含め、表 2.2-2 に採水の概要を整理して示す。

2.2.4 室内土質試験結果

室内土質試験の結果を表 2.2-3 に示す。また、データシートを巻末資料集に添付した。

(1) 一般項目

試料1及び試料2ともに湿潤密度,土粒子の密度,含水比等に大きな差はなく物理 特性としてはシルト層の挟みの有無にかかわらず同一とみなせる。どちらも含水比が 32%もあり水分を多量に含んでいる。

(2) 粒度分布

粒度分布は砂分が70%以上を占めており, 試料1,2共に鉱さいは砂分が主体となっているといえる。ただし, 試料1ではシルト分が試料2より10%ほど多くなっており,これの影響で淘汰度の指標である均等係数も試料1が大きく相対的に「淘汰不良」 側にシフトしている。

(3) コンシステンシー特性

試料1,2共に、コンシステンシー特性試験のための試料整形(試験皿への均等厚)

での張り付け及びヒモ状整形)が不可能であった。これは、上述した粒度試験結果から試料が砂分主体であることと整合する。

(4) 室内三軸透水試験

試料1,2ともにいずれの拘束圧においても圧密の早い段階(数秒間)で体積が収縮し,3分を経過するとほとんど体積変化が認められない。このような体積変化パタ ーンは砂試料特有であり、粒度試験結果と整合する。

室内三軸透水試験の結果を表 2.2-4 に, 拘束圧と透水係数の関係を図 2.2-3 に示す。 試料1(変水位法), 試料2(定水位法) 共に拘束圧の差による透水係数の変化はほ とんど認められない。これは, 対象試料が砂分主体であるため粘性土に比較して圧密 効果が小さいことと関連している。

一方, 試料1で行った変水位法による透水係数よりも試料2で行った定水位法の透水係数のほうがわずかに大きくなっている。これは試験法による差というよりもシルト分の含有量によるものと考えられる。

孔名	試験区間	地質	試験方法	透水係数 (m/s)
	6.00∼7.00m	強風化花崗 岩	ケーシング法 (変水位・回復法)	4. 0×10^{-6}
E	16.00~17.00m	強風化花崗 岩	ケーシング法 (変水位・回復法)	4. 4×10^{-6}
	19.00~23.00m	新鮮花崗岩	低圧岩盤透水試験	1.9×10^{-9}

表 2.2-1 現位置透水試験結果一覧表

表 2.2-2 採水に関する整理事項

採水試料

試料 No.	採取量	日時	採取位置	
No.1		H12 11 0		
No.2		1113.11.9 $16 \cdot 00$		
No.3		10.00		
No.4	(久1リツ)		$4.00 \sim 5.00$	
No.5	(11° I FR)	H12 11 10	(旧表土)	
No.6		$9 \cdot 00$		
No.7		3.00		
No.8				

水質測定結果(H13.11.9、採水前に測定)

pН	6.78
EC	0.172 mS/cm
DO	9.00 mg/ ^j ^y
	Г 18.62 %а Л
	∠ 89.0 %r J
ORP	50 mV

			試料 1	試料 2
			(深度 2.46~2.58)	(深度 2.34~2.46)
			シルト薄層を挟む部分	砂主体の部分
	湿潤密度 ρ_{t}	(g/cm ³)	1.794	1.799
<u> </u>	乾燥密度 ρ_d	(g/cm ³)	1.350	1.347
4.7	土粒子の密度 ρ_s	(g/cm ³)	2.688	2.654
般	自然含水比 Wn	(%)	32.9	33.6
	間隙比 e		0.991	0.970
	飽和度 S _r	(%)	89.2	91.9
	礫分 2~75mm	(%)	0.0	0.0
	砂分 75µm~2mm	n (%)	77.0	87.5
粒	シルト分 5~75µ	m (%)	16.0	7.6
	粘土分 5µm 未満	(%)	7.0	4.9
度	均等係数 Uc		12.07	4.15
	曲率係数 Uc´		2.57	1.15
コンシス	液性限界 wL	(%)	NP	NP
テンシー	塑性限界 wp	(%)	NP	NP
	塑性指数 I _p		NP	NP
透	40kN $/$ m ²	(m/s)	$2.61 \times 10^{-7} (\text{m/s})$	1.07×10⁻6 (m∕s)
水	$80 \text{kN} / \text{m}^2$	(m/s)	$2.45 imes 10^{-7} (m imes s)$	9.01×10⁻7 (m∕s)
係	120kN/m^2	(m/s)	$2.37 \times 10^{-7} (\text{m/s})$	$9.29 \times 10^{-7} (\text{m/s})$
数	平均值		2.48×10⁻7 (m∕s)	$9.67 \times 10^{-7} \text{ (m/s)}$

表 2.2-3 室内土質試験結果一覧表

NP : non-plastic

拘束圧	試料1	試料 2
(kN/cm2)	(m/s)	(m/s)
40	$2.61 imes 10^{-7}$	$1.07 imes 10^{-6}$
80	$2.45 imes 10^{-7}$	$9.01 imes 10^{-7}$
120	$2.37 imes 10^{-7}$	$9.29 imes 10^{-7}$

表 2.2-4 三軸透水試験結果一覧表

図 2.2-1 概略柱状図

図 2.2-2 現位置透水試験結果

図 2.2-3 拘束圧と透水係数の関係

2.3 水理地質環境のまとめと課題

2.3.1 まとめ

調査地点の地質は、表 2.3-1 のようにまとめられる。

これらの地質のうち、花崗岩は強風化花崗岩から新鮮岩へと急激に変化しており、風化 花崗岩及び CL 級の岩盤がほとんど欠如している。風化花崗岩(ハンマーの軽打で鉱物粒 に砕ける)が欠如しているのは、沢地形であり風化部の厚さが尾根部と比べて薄いことに よると思われる。一方、CL 級の岩盤を欠いて風化岩から新鮮岩に変化する状況は露天採 掘場跡地周辺で実施された調査結果と一致している。また、調査前に想定されていなかった 旧表土(黒色を呈す粘性土で、いわゆる黒ボクの可能性がある。)が認められた。

鉱さいの透水係数は 2.6×10⁻⁷ m/s(シルトを挟む部分)と 1.0×10⁻⁶ m/s(砂主体部)で あり、砂主体部は既往調査結果による露天採掘場跡地の廃滓(6.75×10⁻⁶ m/s)と同じオー ダーである。鉱さい中のシルト分は不規則に分布していると推定される。したがって、試 料数の少ない現段階での評価値としては、対数平均値の 5.1×10⁻⁷ m/s を用いることが妥当 である。

強風化花崗岩の透水係数は 4.2×10⁻⁶ m/s であり, 既往調査結果による強風化花崗岩の最 大値(1.34×10⁻⁶ m/s)に近い値となっている。既往調査における強風化花崗岩の透水係 数の平均値は 7.36×10⁻⁷m/s であり, 平均値と比較すると約1オーダー高い値となってい る。

新鮮花崗岩の透水係数は 1.9×10⁻⁹ m/s であり、既往調査結果の新鮮花崗岩の透水係数の 平均値(1.07×10⁻⁸ m/s)よりも1オーダー小さい値となっている。

表土は、動植物の攪乱などにより間隙が多く、透水性が高いと考えられる。しかし、旧 表土は、鉱さいで覆土されて水で飽和されていること、また若干圧密されている可能性が あることなどから、透水性が低くなっている可能性がある。

2.3.2 今後の課題

今回,沢地形にもかかわらず旧表土が確認された。今回の調査結果で鉱さいと強風化花 崗岩の透水係数に大きなコントラストが認められないことから,旧表土の透水性をどのよ うに評価するかによって,解析モデルの考え方も異なってくる。したがって,旧表土の連 続性及び透水性を把握することが必要である。

また、鉱さいたい積場およびその周辺の地下水流動場を精度良く評価するためには、上

2 - 27

に述べた旧表土の性状の把握はもちろん,尾根部と沢部での地質構成の差異(特に風化花 崗岩の連続性)を把握する必要がある。さらに,透水係数のデータを蓄積し評価に耐えう る値を得ることが重要である。これらを実現するためには,ボーリングを主体として物理 探査の手法を加味した合理的な調査により水理地質構造の精度を向上させることが望まし い。また,地下水流動解析の境界条件(水位等)の把握や鉱さいたい積場への地下水の流入 と流出を定量するために水文学的手法も有効である。以下に,必要と思われる調査手法と その概要を記す。

(1) ボーリング調査

鉱さいたい積場およびその周辺においてボーリング調査を行い,旧表土,風化花崗 岩の連続性を把握し,解析モデルに反映させる。

(2) 物理探查

ボーリングによる点データを補い,水理地質モデルの精度向上をはかるため物理探 査を実施する。ただし、当該地点は軟弱な鉱さいが表層を覆っており一部は湛水池と なっている。このような場所では反射法地震探査での起振や比抵抗探査の側線展開が 難しいため,鉛直法による比抵抗あるいは電磁探査が望ましいと考えられる。ただし、 旧表土をこれらの手法で識別することは困難であることが予想され、事前にボーリン グ試料等を用いた旧表土の電気的性質の把握が必要である。

(3) 水文学的調查

鉱さいたい積場の安全性を評価する上で、現状の水収支等の水文データの取得が有 効と考えられる。取得すべきデータとしては、

- 旧地形図(による検討)
- ② 鉱さいたい積場への水の流入量と流出量
- ③ 既存井戸を利用した地下水位分布の把握
- ④ 既存井戸および湧水の水質分析

などが挙げられる。特に②については、鉱さいたい積場上流部およびたい積場内の湧 水箇所での継続的な流量調査が有効である。

地質名	色	層厚 (m)	コア写真	透水性 (m/s)	岩相
鉱さい	暗灰	3.2		5×10^{-7}	淘汰のよい細砂を主体とす る。表層の約50cm程度はヨシ の根を非常多く含んでいる。
旧表土	黒	1.7		_	主に、黒色を呈す有機質な粘 性土からなる。上部には植物根 が認められる。
強風化 花崗岩	黄褐	12.8		4×10^{-6}	強い風化を受けて非常に軟質 となっており、指圧で容易に 崩せる。鉱物はほとんど変質 している。所々に酸化鉱物の 被膜が認められる。風化花崗 岩は、非常に薄い。
新鮮花崗岩	灰	_		2×10 ⁻⁹	比較的粗粒な花崗岩であり、 上部の強風化花崗岩から急激 に変化する。

表 2.3-1 調査地点の地質のまとめ

※透水性;今回の調査で得られた値。 周辺のデータを加え更に精度を高める必要があると考えられる。

3. 室内試験

鉱さいたい積場に係る安全評価を行なうために必要となる主要核種(ウラン、トリウム、 ラジウム)の溶出率及び分配係数の測定を行った。以下に、測定結果について項目ごとに 記述した。

3.1 試料の特性

3.1.1 鉱さい試料

試験対象の試料はサイクル機構殿より提供された。試料は、敷地内の鉱さいたい積場の D 孔 (グリッド M7 地点)から採取された試料である(図 3.1-1参照)。試料は、試験に 供するため、110℃で乾燥後、粒子の大きな礫のみを乳鉢で粗粉砕し、ふるい(8.6 mesh) を用いて粒径 2mm 以下に調整した。試料の外観を図 3.1-2に示す。

図 3.1-1 試料採取位置図

図 3.1-2 鉱さい試料 (D 孔、深度 1.2m)

- 3.1.2 元素組成
 - (1) 測定方法

鉱さい試料をメノウ乳鉢で粉砕し、0.1gを秤量した。過塩素酸及びフッ化水素酸を 加えて加熱溶解後、100ml に定容し、Na、K、Ca、Mg、Fe、Al、U、Th、Ra、Si の濃度を測定した。各元素(核種)の測定法は以下の通りである:

- ▶ Na、K;炎光光度法
- ➢ Ca、Mg、Fe、Al; ICP 発光法
- ▶ U、Th; ICP 質量分析法により、U-238 及び Th-232 の濃度を測定
- Ra (Ra-226); 試料 1.0g を酸溶解して 50ml に定容後、γ線スペクトメー タを用いてγ線(185.99keV、放出率 3.82%)を測定して定量
- Si; 岩石試料をアルカリ融解後、HCl 溶解し、SiO2 の沈澱量を重量法により測定して定量
- (2) 測定結果

鉱さい試料の元素組成を表 3.1-1に示す。試料中のU、Th、Ra 濃度はそれぞれ、 0.02 wt%、0.0009 wt%、2.6×10⁻⁸ wt%(9.5 Bq/g)であった。

表 3.1-1 鉱さい試料の元素組成分析結果

										(wt%)
鉱さい試料	Na	K	Ca	Mg	Fe	Al	Si	U	Th	Ra
D 孔	2.0	2.5	0.76	0.08	1.5	6.1	35.8	0.02	9×10 ⁻⁴	$2.6 imes 10^{-8}$

なお、表 3.1-2に示す U、Th の比放射能から放射能濃度を算出すると、鉱さい中の U 及び Th の放射能濃度はそれぞれ 5 Bq/g と 0.04 Bq/g と評価される。Ra-226 は 前述のように 9.5 Bq/g であった。

表 3.1-2 比放射能值

物質	濃縮度もしくは組成	半減期(年)	比放射能(Bq/g)
天然ウラン	濃縮度:0.72%	$\begin{array}{ccc} U\text{-}238 & 4.5\times10^9 \\ U\text{-}235 & 7.0\times10^8 \end{array}$	$2.6 imes 10^{4(1)}$
トリウム	$\mathrm{Th}\text{-}232:100\%$	$1.4\! imes\!10^{10}$	$4.0 imes 10^{3}$
ラジウム	Ra-226 : 100%	$1.6 imes 10^{3}$	$3.7 imes 10^{10}$

注) IAEA, Safety series No.37, 126 (1990)より

3.1.3 比表面積

粒径 2mm 以下に調整した鉱さい試料の比表面積を BET 法(N₂ガス吸着法)により測 定した。その結果を表 3.1-3に示す。土壌試料の比表面積は 9.4 m²/g であり、捨石試料 の値(22~24 m²/g)に較べて小さい値であった。

表 3.1-3 鉱さい試料の比表面積

試料	比表面積(m²/g)
D 孔	9.4

3.2 溶出率測定試験

U、Th、Ra の溶出率は、重金属等の土壌汚染について法令で定められている「土壌の 汚染に係る環境基準について」(平3環境庁告示 46 号(平成3年))^{注1}の溶出試験法に準 拠して測定した。

^{注1} 添付 3-1 に告示全文を示す。

3.2.1 測定方法

粒径 2mm 以下に調整した土壌試料 50g と蒸留水 500ml (pH6.2) とポリビンに入れ、 室温(約 20°C) にて 6 時間振とうした。振とう回数は 200 回/分、振とう幅は約 4cm と した。振とう終了後、試料液を遠心分離(3000 回転/分で 20 分間)後、上澄液を 0.45 μ m のメンブランフィルターでろ過し、ろ液中の pH、Eh (酸化還元電位)、電気伝導度、U、 Th、Ra (Ra-226) 濃度を測定した。

Eh は ORP 電極を用いて測定した。U、Th は ICP 質量分析法により、それぞれ U-238、 Th-232 の濃度を測定し、また、Ra については浸出液 50ml を採取し、 γ 線スペクトメー タを用いて γ 線(185.99keV、放出率 3.82%)を測定することにより定量した。なお、繰 り返し試験回数は3回とした。

3.2.2 測定結果

溶出試験の結果を表 3.2・1に示す。

溶出液の pH は 7.5~7.6、Eh (酸化還元電位) は 735~750 mV の範囲であった。

溶出液中のU濃度は3回の平均値で314 ng/ml、Th濃度は定量下限未満(<0.1 ng/ml) であり、Uと比較して3ケタ以上低かった。また、Ra濃度についても、すべて検出下限 未満(<5.2×10⁻⁵ng/ml)であり、Uと比較して7ケタ以上低い結果であった。

土壌中の含有量から蒸留水中に溶出した量の割合を溶出率として評価すると、U は 0.016、Th は<1.1×10⁻⁴、Ra については<2.0×10⁻³と評価された。なお、3回の繰り返 し試験において、各元素とも溶出濃度データのバラつきは非常に小さかった。

3-4

编近 雪4				雷与		溶出液濃度				溶出量①			
禄 武験 回数	рH	Eh (mv)	電気 伝導度 (µs/cm)	液量 (ml)	U (ng/ml)	Th (ng/ml)	Ra (ng/ml) (cpm/ml)	As (ng/ml)	U (ng)	Th (ng)	Ra (ng)	As (ng)	
1回目	7.6	320	740		327	<0.1	$<\!$	12.2	$1.6 imes10^5$	<50	$<\!$	6100	
2回目	7.6	330	750	500	313	< 0.1	$<\!$	11.7	$1.6 imes10^5$	<50	$<\!$	5850	
3回目	7.5	340	735		303	<0.1	$<\!$	11.8	$1.5 imes 10^5$	<50	$<\!$	5900	
平均	7.6	330	742	500	314	< 0.1	$<\!$	11.9	$1.6 imes10^5$	<50	$<\!$	5950	

表 3.2-1 鉱さい試料の溶出率測定結果

 田相島	固相	中含有濃度	Ē	固相	目中含有量(2)	溶出率 (①/②)			
 回作里 (g)	U (ng/g)	Th (ng/g)	Ra (ng/g)	U (ng)	Th (ng)	Ra (ng)	U	Th	Ra	
							$1.6 imes 10^{-2}$	<1.1×10 ⁻⁴	<2.0×10 ⁻³	
 50	$2.0 imes10^5$	$9.0 imes10^3$	0.26	$1.0 imes 10^7$	$4.5 imes 10^5$	13.0	$1.6 imes 10^{-2}$	<1.1×10 ⁻⁴	<2.0×10 ⁻³	
							$1.5 imes 10^{-2}$	<1.1×10 ⁻⁴	<2.0×10 ⁻³	
 50	$2.0 imes10^5$	$9.0 imes 10^{3}$	0.26	1.0×10^{7}	$4.5 imes 10^5$	13.0	$1.6 imes 10^{-2}$	<1.1×10 ⁻⁴	<2.0×10 ⁻³	

3.3 分配係数測定試験

鉱さい試料に対し、トレーサ溶液を用いて U、Th、Ra の分配係数を測定した。

3.3.1 試験試料

(1) 地下水試料

サイクル機構殿より提供された鉱さいたい積場の D 孔における地下水を使用した。 地下水は浮遊物を除去するため、あらかじめ定量用ろ紙(5A)を用いてろ過した後、 試験に使用した。ろ過後の地下水試料の特性を表 3.3-1に示す。U 及び Th は ICP 質量分析法により測定した。Ra (Ra-226) については、試料 50ml を採取し、γ線ス ペクトメータを用いてγ線 (185.99keV、放出率 3.82%)を測定して定量した。

試料	pН	Eh(mV)	EC (μ S/cm)	U(ng/ml)	Th(ng/ml)	Ra(ng/ml)
D 孔地下水	6.7	410	490	< 0.1	< 0.1	$< 5.2 \times 10^{-5}$

表 3.3-1 地下水試料の分析結果

(2) トレーサ溶液

U、Th、Raのトレーサ溶液は、以下の方法によりそれぞれ個別に調整した。(i) U

劣化ウラン組成の U₃O₈ 0.28g を濃硝酸 10 ml に加熱溶解し、蒸留水に 1000 ml に 定容する。さらに 100 倍希釈して約 3×10⁻⁵ mol/L (=約1×10⁻⁵ N、24ppm)の溶液 を作成した。

(ii) Th

ThO₂ 0.26g を濃硝酸 10ml に加熱溶解し、蒸留水に 1000 ml に定容する。さらに 100 倍希釈して約 1×10⁻⁵ mol/L (23ppm)の溶液を作成した。

(iii) Ra (Ra-226)

日本アイソトープ協会より購入した Ra-226 溶液を蒸留水で希釈し、約 50 kBq/ml (約 6.1×10-6mol/L、1.4ppm)の濃度に調整した。

3.3.2 測定方法

分配係数は大気雰囲気で測定を行った。

地下水試料 10ml に U、Th、Ra (Ra-226) のトレーサ溶液をそれぞれ単独で 0.1ml 加 え、試験溶液とした。試験溶液に鉱さい試料 1.0g を入れて軽く攪拌後、20℃の恒温槽内 で7日間静置した。その後、孔径 0.45 μ mのメンブランフィルターを用いてろ過を行い、 ろ液を回収して pH、Eh (酸化還元電位)、電気伝導度及び各トレーサ濃度を測定した。 Eh は ORP 電極を用いて測定した。U、Th は ICP 質量分析法により、それぞれ U-238、 Th-232の濃度を測定した。また、Ra (Ra-226) 濃度は放射平衡後、液体シンチレーショ ンカウンタで全放射能量を測定することにより定量した。

なお、繰り返し試験回数は3回(ブランク試験は1回)とした。pH、Eh 電気伝導度に ついては各条件につき1件の測定を行った。

分配係数の評価式を以下に示す。試験容器内壁への吸着による影響を排除するため、土 壊試料を入れないブランク試験を並行して実施し、分配係数の評価では7日後のブランク 試料の濃度を初期濃度として評価することとした。

$Kd = 固相中の元素濃度/液相中の元素濃度 = {(Co-C) / C} × (V/S)$

Kd:分配係数(m³/kg)

Co: ブランク試料の液相中の元素濃度

C:試験後の液相中の元素濃度

V:溶液の体積 (m³)

S: 固相の質量(kg)

3.3.3 測定結果

鉱さい試料の分配係数測定結果を表 3.3-2に示す。

U、Th、Raの分配係数は3回の平均値でそれぞれ0.27 m³/kg、22 m³/kg、0.32 m³/kg と評価され、捨石試料とほぼ同じ結果が得られた。なお、3回の繰り返し試験では、各元 素ともほぼ一致する結果であった。

元素について比較した場合では、分配係数は Th>>Ra \geq U の順であり、Th は数十 m^{3}/kg のオーダであったのに対し、U と Raはこれより2ケタ低い1 m^{3}/kg 以下(数百ml/g)のオーダであった。

試		繰返し		Eh	電気伝導度	試験後濃度	ブランク濃度	分配係数
料	武科	試験数	рН	(mV)	(µS/cm)	(cps/ml)	(cps/ml)	(m³/kg)
		1回目	8.0	370	690	9.3		0.26
	U	2回目				8.8	254	0.28
		3回目				9.0	_01	0.27
鉱		平均	8.0	370	690	9.0		0.27
払		1回目	7.3	360	710	0.25		11
	Th	2回目				0.10	278	28
試		3回目				0.10		28
料		平均	7.3	360	710	0.15		22
		1回目	7.8	320	620	4.5^{*}		0.39
	Ra	2回目				3.4*	181*	0.52
	(Ra-226)	3回目				6.1*		0.29
		平均	7.8	320	620	14.4*		0.32

表 3.3-2 鉱さい試料の分配係数測定結果

注) *: Ra のみ濃度の単位は (cps/ml)

3.4 まとめ

鉱さいたい積場の D 孔(深度 1.2m)の鉱さい試料について、U、Th、Ra(Ra-226)の溶出率及び分配係数を測定した。

溶出率の測定は、重金属等の土壌汚染について法令で定められている溶出試験法(環境 庁告示 46 号法(平成3年))に準拠し大気雰囲気にて行った。その結果、溶出率(鉱さい 中の含有量から蒸留水中に溶出した量の割合)は、U、Th、Ra でそれぞれ 0.016、1.1× 10⁻⁴未満、5.6×10⁻³と評価され、U>Ra>Th の順に溶出率は大きい傾向を示した。

おわりに

ウラン鉱山の跡措置については、サイクル機構の中長期事業計画に基づき、安全確保を 大前提に鉱業活動を終了した鉱山として跡措置を確実に行うため、現在措置計画の策定が 進められている。一方、国際的には、ICRP 等が天然放射線源及び長寿命の放射線源に対 する放射線防護の考え方を示し、合わせて IAEA においても安全要件や技術基準の検討 が進められている。

鉱さいたい積場の措置においては、濃度は高くないが天然放射線源である長半減期のウ ランを含み、鉱さいが大量に存在することを考慮する必要がある。

本業務では、安全な跡措置に資することを目的として、鉱さいの安全性を検討するとともに、鉱さい及び鉱さいたい積場の地質水理環境条件をボーリング掘削によって調査し、鉱さいに対する主要核種の溶出率や収着特性を把握した。

今後、さらに地質水理環境データを取得するとともに、安全性の解析に必要な核種依存 データを整備し、安全性の評価結果の精度を上げる必要があると考えられる。

水理地質環境の調査

卷末資料集

柱状図

ボーリング柱状図

()

事業・工事名

ボ	— IJ	リング	グ名				Е					調査位置	田田	日山県	苫田河	郎	上斎原	〔村	155	0	夜≯	欠鉱	さい	たい	積均	島(M '	7)	ッ <u>ー</u> 北	下110.	ž					
発	注	機	関	-		20 20	核	燃	料	サイ	ウ	ル開発機	構			調	査期間	引平	成 1	3年	11	月 5	日~	13	年 1	<u></u> 1月 2	· / 27日	東	約	Z					
調	査	業者	昏 名		(閉ダ~ 電	イヤ = 話(0	48.	サル	·夕: 4-	ント 5 2 0	65)	主任技師		高野	仁	現山	t t	易	北尾	. 3	秀夫	1		ア	北尾	秀		ボー	リンク	ĵ z	Ц	本	喜	兵典	
FL		標	高	717.4	123m	角	180 上	ĥ	1 00°	方	27	北 0°	地般	水平。	使田	討	進机	と し し し し し し し し し し し し し し し し し し し				蛐	正	<u>百</u> 東 非	『製	D 2	- G -	<u>貢</u> -58	tt 者型	ī					
総	掘	進	長	23.	00m	度	F,	Þ	0°	向	西	180° 南	血 勾 配	鉛 (1)	機種	I	ンジン		ヤン	7 -	- 製	N F	7 D -	1 2 컬	빈 기	ペン	プ		東邦	製	В	G –	3 B	型	
一起	ij.	檀	- <u>7715</u>	村	世	岳	7重	-	क्रा	ाज्य	715		=7	50		 T	フア打	面或	зш		.1,									.					
下		高	床度	社	石 種 日	E	便	7	割れ目の	Jæ(変		司				コノ採 一一 (最大コ	、 、) ア長 Cm	おおいた	升内水位(一)	((N	ル (F [] () ()	ジオ - Q1 : ルミ : 換身	ン 積	関準貫展度) 「たってした」	入 図)試	験	原位置試験(室内試験(掘掘進速度	近こアチュー	1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	犬 送水圧 (兄 送水量
(m) ((m)	(m)	図	区分	調	軟	形状	状態	化	質		事				R Q [8 [%]	分	測定月起:		0	10	N	値	20		°		」 月 日 日	(四)時)	孔壁保護	kN rj		1 1 / 分 分
min	7	716.97	0.45	Λ /		暗褐						0.00~0.45m 砲 常多く含む。	視じり	粘土。ヨシ	の根を非			- (1	00)	-12	-	0	10		1	30	40								
ا سايسايسار	1 2 3 7	14.22	3 20		鉱さい	灰~淡黄灰						0.45~3.20m 比 なる。灰色から激 1.20m付近まで枯	;較的海 {黄灰在 植物根;	匐汰のよい 色を呈す。 が認められ	>細砂から いる。			(1	00)					-								140 / 5 MC	0 1 200	0	無水/ 0
minalunten	4	12.54	4.88		旧表土	黒						3.20~4.88m 主 粘土からなる。 上部の3.20から3 認められる。	に、黒 3.50m个	色を呈す	有機質な 植物根が			(1)	00)											1)	L	2			0
استيسا مساسيا	6 7			+++								5.80~17.55m 引 黄褐~褐色を呈 常に軟質となって せる。 鉱物はほとんど変	歯風化し、強い し、強い こいる。 変質。	花崗岩 い風化を弓 指圧で容	受けて非 三易に崩				00) 00) 								透7	水試験	 :(変水(<u>③</u> 立法)	1200				
<u>սիստիստիստիստի</u>	8 9 10			+++ ++++ ++++++++++++++++++++++++++++								5.05m;酸化鉱物 mm、傾斜5°程度 第10cmは、酸化 化。 3.55m;酸化鉱物 mm、傾斜5°程度	被膜 霰。酸 により 履 被 膜 鬱	とめられる。 化鉱物被加 周辺よりや とめられる。	。幅約 莫から上 や褐色			(10															0 ≀ 50	D	hantandarate
<u>Himimul</u> 1	.1			+++ +++++++++++++++++++++++++++++++++	強風化花崗岩	黄褐~褐	E	VI	d	£	4]	0.33m;酸化鉱物 ~4mm、倾斜10*	匆被膜 程度。	認められる	5。幅約2			(10 (10)0) - D 10) -											11 10	900	16 ケ DMC ・		1	20
international production of the second secon	.5 .6 7						a.				1	5m付近よりわず	かに硬	5くなってい	<i>ک</i> ھ			(1)0 (1)0 (1)0 (1)0	0 0 0								透水	<武焱((変水位	2法)	1000		100 <i>l</i> 150 100 100		20 20 20 20 20 20 20 20 20 20 20 20 20 2
	8	99 <u>.87</u>	17:55	+++	風化花 崗岩	灰	С	IV	с	γ	1 1	7.55~17.70m)	風化花	崗岩。岩)	片状呈	-		(10	CE												600	_	100 100 150		1111
1	6	98.72	18.70	+++++++++++++++++++++++++++++++++++++++			B∼ C	m k	o∼c	β~ γ	花花	主状~短柱状コフ 特び、一部酸化物	ア。割れ	1目面は淡 着が認めら	後黄灰色 られる。		e 19 [60]	(10	CM																1.1.1
2	0	96.62	- <u>20.80</u>	+ + + + + + + + + + + (++ + + + + + +	花崗岩	灰	в	Ш	b	β.	1第62元	8.70~23.00m 初 所鮮であり、鉱物 nax;2cm程度)とり in 1m付近より下部に つている。	住状~は の径は れ れ 割れ	長柱状コン 2~5mm 粗粒な花 し 目が非常	ア主体。 呈度 崗岩であ に少なく	-	54	(10) (10) (10) (94)	90сн 9								低E	E 岩盤	透水討	Liù	1000	6 D B	400 2 600 150	2 1 2.5	
2 2	2 369	- 94.42	23.00	++ ++ ++ ++ ++ ++ ++ ++			A	I ? П		α } β						-	- 410	(10) [98] 	» В											11 13 11	1150		600 1 700	1.5 ≀ 2	
2	4																																		
																													5						

調査名 鉱さいたい積場の措置に係る安全性評価 ボーリング調査

ボーリングNo.

透水試験データシート

現場透水試験結果一覧図

低圧岩盤透水試験記録

件名 個	広さいたい 西 19.00 ~	積場の措	置に係	る安全性評	月 名		D	把 # 4 00	孔口標高		C. C
測定深度	19.00 ~	22 00		all second s	1.1.1.1.1.1.1	1	0	畑 進 円 -90	(EL.)	717.42	m
FT BB + 75 - 25-		23.00	m ±	也 - 「「	層 鳥取花	崗岩紫	<u>آ</u>	岩相	花崗岩		
区间標高 (EL.) 6	698.4 ~	694.4	m J	ā. //	と新鮮		· · ·	岩級区分	СН		
試 験 区間長	4. 00	m	孔	径	66.0	mm	パッカー種類	シンク ルエアーハ ッカー	孔内水位 (GL-)	0.0	m
试 験 年月日	H13. 11	1:19	センサー	一深度	17.67	m	測定計器高	1.00 m	平衡水位 (GL-)	0.0	m
口元圧力 有	有 効		- 	(+) =	3/ 1		平均	m当し	年 孙	[添水/	6 %h
kN/m²	主入圧力 kN/m ²	: 7 1 1	#7 2	7注入重 0	m /min 4	5	注入量 cm ³ /min	注入量 cm ³ /min/m	透水量 cm ³ /sec	K	17.5X
0.0	9.51	0.0	1.1	1.1	0.0	1.1	0.7	017	0.01	2165	00
20.6	30.11	2.2	2. 2	2.2	2.2	2.2	2.2	0.55	0.04	2.105	-09
40.2	49.72	3.3	3. 3	2.2	3. 3	3.3	3.1	0.77	0.05	1.025	-09
59.8	69.34	5.5	4.4	3.3	4.4	4.4	4.4	1.10	0.07	1.095	-09
79.4	88.95	6.6	6.6	4.4	4.4	6.6	5.7	1.43	0.10	2015	-09
99.1	108.56	6. 6	6.6	6.6	6.6	6.6	6.6	1.65	0.11	1 905-	-09
78.5	87.97	4.4	3. 3	3. 3	4.4	4.4	4.0	0.99	0.07	1 40F-	-09
59.8	69.34	2.2	2. 2	3.3	2. 2	3. 3	2.6	0.66	0.04	1.19E-	-09
40.2	49.72	2.2	1.1	2.2	1.1	2. 2	1.8	0.44	0.03	1.10E-	-09
20.6	30.11	1.1	1.1	0.0	1.1	• 1.1	0.9	0.22	0.01	9.12E-	-10
0.0	9.51	0.0	0. 0	0.0	0.0	0.0	0.0	0.00	0.00	0.00E+	-00
				-			-			-	
										à ă	
	1	1									

K:透水係数 (cm/sec) Q:透水量 (cm³/sec) L:試験部分の長さ (cm) r:試験孔の半径 (cm) H:全水頭(cm) 地下水+計器高-損失水頭

株式会社 ダイヤコンサルタント

室内土質試験データシート

土 質 試 験 結 果 一 覧 表 (基礎地盤)

調査件名 鉱さいたい積場の措置に係る安全性評価

整理年月日 13年12月 日

整理担当者 中島 雅之

	試 料 番 号	1	2				
	(深 さ)	(2.46∼2.58 m)	(2.34~2.46 m)	0			
	湿潤密度 ptg/cm ³	1.794	1.799				
	乾燥密度 pdg/cm3	1.350	1.347				
_	土粒子の密度 P _s g/cm ³	2.688	2.654				
	自然含水比 w _n %	32.9	33.6				
	間隙比e	0.991	0.970	4-1-0-05			
投	飽 和 度 S _r %	89.2	91.9				
	礫 分 2~/5mm %	0.0	0.0				
5	砂 分 75 µm~2mm %	77.0	87.5				
-	シルト分 5~75µm %	16.0	7.6				
	粘 土 分 5 µm未満 %	7.0	4.9				
	均等係数 <i>U</i> c	12.07	4.15				
Ē	曲 率 係 数 U c'	2.57	1.15			· · · · · · · · · · · · · · · · · · ·	
				·····			
-	· · · · · · · · · · · · · · · · · · ·	NID	ND				
	版性限升WL 70		NP				
	望住限升 Wp 70		NP			·····	
ş	22 11 18 9X 1p	NI	Nr				
	分類名						
ı آ	分類記号						
-	一軸圧縮強さ q., kN/m ²					í	
e i							
à							
	試験条件						
Ξ	c kN/m ²				*******		
h	全 応 力 φ 度						
Ξ	c'kN/m ²						
à	有 郊 応 刀 φ'度						
	2						
_ [圧 縮 指 数 C _c						
= [圧密降伏応力 $p_{c} k N / m^{2}$						
L N							
_							
	透水係数 k15 cm/s						
	圧密圧力 σ'c						
	40 kN/m ²	2.61E-5	1.07E-4				
	80 kN/m ²	2.45E-5	9.01E-5				
	120 kN/m ²	2.37E-5	9.29E-5				

特記事項

[1kN/m²≒0.0102kgf/cm²]

JIS	А	120
JGS	Т	14

土の液性限界・塑性限界試験(測定)

調査件名 鉱さいたい積場の措置に係る安全性評価

5

1

試験年月日

試 験 者 小泉 和広

特記事項

JIS	А	1202	+	兆	子	D	宓	由	計	睎	(洞山	(宗)		
JGS	Т	111	 	<u>ТТ</u> .	1	~	Ш	反	пЦ	耐火	(00	E/		

調査件名 鉱さいたい積場の措置に係る安全性評価 試験年月日 13年12月 日

試 験 者 小泉 和広

試料番号	(深 さ)	1	(2.46~2.58)	n)	2 ((2.34~2.46 1	n)
ピクノメ	- タ - No.	178	179	180	181	182	183
(試料+蒸留水+ビ	クノメーター)の質量 m _b g	187.268	185.446	194.675	186.220	193.682	191.104
加。をはかったと	きの内容物の温度 T ℃	21	21	21	21	21	21
T℃における	蒸留水の密度 Q _w (T) g/cm ³	0.9980	0.9980	0.9980	0.9980	0.9980	0.9980
温度T℃の蒸留水 (蒸留水+ピクノ)	を満たしたときの m ¹⁾ メーター) 質量 m ^a g	177.156	175.329	184.564	176.190	183. 410	180.842
영국의 문	容 器 No.	109	110	111	112	113	114
試料の	(炉乾燥試料+容器) 質量 g	110.937	113.328	114.370	110.403	110.939	111.776
炉筋 慢質	容器質量g	94.848	97.239	98.291	94.323	94.474	95.337
	m _s g	16.089	16.089	16.079	16.080	16.465	16.439
土粒子の	の密度 P _s g/cm ³	2.686	2.689	2.689	2.653	2.653	2.656
平 均	值		2.688			2.654	N
试 料 番 号	(深 さ)						1
ピクノメ	- タ ー No.						× 4
(試料+蒸留水+ビ	クノメーター)の質量 m _b g						
nbをはかったとき	きの内容物の温度 T ℃	1					
℃における	蒸留水の密度 A _e (T)g/cm ³						
温度T℃の蒸留水: [蒸留水+ピクノン	を満たしたときの m n g メーター)質量 m a g		7 (¹⁷			R. M.	
م الطر ه	容器No.						
試料の	(炉乾燥試料+容器) 質量 g						
炉乾燥質量	容器質量g						
	m _s g						
上粒子の)密度 P _s g/cm ³			S		e.	
P 均	值				N.		
武料番号	(深さ)						
ミクノメ	- タ - No.						
試料+蒸留水+ビク	7ノメーター)の質量 m _b g						-
しをはかったとき	きの内容物の温度 T ℃						
℃における	蒸留水の密度 Q _e (T)g/cm ³						
1度1 Cの蒸留水 蒸留水+ピクノメ	を満たしたときの ¹¹ g (ーター) 質量 ¹¹ a g						
the state	容 器 No.						
武 科 の	(炉乾燥試料+容器) 質量 g	/					
炉乾燥質量	容器質量g		,				
	m _s g	-					
- 粉子の		-					

特記事項

1) ピクノメーターの検定結果から求める。

 $\rho_{s} = \frac{m_{s}}{m_{s} + \langle m_{a} - m_{b} \rangle} \rho_{w}(T)$

JIS	А	1203
JGS	Т	121

調査件名 鉱さいたい積場の措置に係る安全性評価

土の含水比試験

試験年月日 13年12月 日

				武灵	百 小永 和业	4
試料番号(深さ)		1 (2.46~2.58 m)			2(2.34~2.46 m)	
容 器 No.	_ 1	2	3	4	5	6
m _a g	19.93	19.43	18.20	18.50	19.60	19.25
m _b g	15.19	14.81	13.85	13.93	14.74	14.52
m _c g	0.00	0.00	0.00	0.00	0.00	0.00
w %	31.2	31.2	31.4	32.8	33.0	32.6
平均值 w %		31.3			32.8	
特記事項						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an an an ann ann an Annaicheann Aireann An Annaicheann Annaicheann Aireann			· ·		
試料番号(深さ)		1. B. 19			and the second se	
容 器 No.		Section 1. August				
m _a g						
m _b g						
m _c g						
w %				2		· · · · · · · · · · · · · · · · · · ·
平均值w %				and the second second		
特記事項			y		2 42	
201				e		
試料番号(深さ)						
容 器 No.					Charles I.	
m _a g						
m _b g						
m _c g						
w %		- 92				
平均值 w %	in the second		2 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1			
特記事項	15 E 19 5 47 Hor					
試料番号(深さ)	(na ina na mana ang sanahan na sa sa Ang sanahan na sa		i i i i i i i i i i i i i i i i i i i	
容 器 No.			a. A roans	ssio e e e o		
m _a g			**********************			
m _b g						
m _c g						
w %						
平均值 w %	가지 생각 다			and the state of the		
特記事項						1
		THE PERSON I				
試料番号(深さ)						
容 器 No.					State State State	
m _a g						
m _h g						
m _c g						
w %						
平均值w %	han har and har	I				
, . , , , , , , , , , , , , , , , , , ,						

 $w = \frac{m_a - m_b}{m_b - m_c} \times 100 \qquad \begin{array}{l} m_a: (i \mbox{i} \mbox{l} + \mbox{s} \mbox{l} \mbo$

(社) 地盤工学会 2221 不許複製

SN. 62B64647

J	ΙS	А	1	2	0	4
J	GS	Т		1	3	1

の 粒 度 試 験 (粒径加積曲線)

調査件名 鉱さいたい積場の措置に係る安全性評価

土

試験年月日 13年12月 日

.

试料番号		1		2		Ĩ	式	料	番	号	a haya 'a		2
(深 さ)	(2.46~	-2.58 m)	(2.34~	-2.46 m)		(深			さ)		(2.46∼2.58 m)	(2.34~2.46 m)
	粒 径 mm	通過質量百分率%	粒径mm	通過質量百分率%	粗		礫		分		%	0.0	0.0
1. L	75		75		中		礫		分		%	0.0	0.0
5	53		53		細		磼		分		%	0.0	0.0
	37.5		37.5		粗		砂		分		%	20.4	21.5
3	26.5		26.5		細		砂		分		%	56.6	66.0
	19		19		シ	N	,	ト	分		%	16.0	7.6
,	9.5		9.5		粘		±		分		%	7.0	4.9
V. [4.75		4.75		2mn	n ふ	3 W	通過	質量	百分率	£ %	100.0	100.0
. [2	100.0	2	100.0	0.42	25 mm	1.ふる	い通	過質	百分	彩 %	79.6	78.5
27	0.85	94.1	0.85	96.0	0.07	15 mm	1.3.3	い通	過質	百分	皐 %	23.0	12.5
. [0.425	79.6	0.425	78.5									
析	0.250	64.7	0.250	59.8	最	大	; ;	粒	径		mm	2	2
. [0.106	31.5	0.106	20.5	60	%	3	粒	径	D ₆₀	mm	0.2197	0. 2512
	0.075	23.0	0.075	12.5	50	%	3	粒	径	D 50	mm	0.1706	0.2009
	0.0531	20.0	0.0565	9.5	30	%	3	粒	径	D ₃₀	mm	0.1013	0,1322
347	0.0380	16.1	0.0401	8.2	10	%	3	粒	径	D ₁₀	mm	0.0182	0.0606
u [0.0242	12.2	0.0254	6.9	均	等	1	係	数	U _c		12.07	4.15
降	0.0141	8.3	0.0147	6.9	曲	率	1	係	数	Uć		2.57	1.15
	0.0100	7.0	0.0104	5.6	± 3	粒 -	子 0.) 密	度	ρ _s	g/cm ³	2.688	2.654
分	0.0071	7.0	0.0074	5.6	使用	111	こ分	散剤				ヘキサメタりん酸	ヘキサメタりん
析	0.0035	7.0	0.0037	4.4	溶液	友濃度	度, i	溶液	添加	量		10 ml	10 m2
	0.0014	7.0	0.0015	4.4									
			· 			 							
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□						þ		Ħ				
90							1						
80						X							
					1				Ħ				

(社)地盤工学会 2233 不許複製

т	00	T	10
	(T.)		19
~	~~	-	1.0

土の湿潤密度試験(A法: 寸法測定法)

調 査件名 鉱さいたい積場の措置に係る安全性評価

1

試験年月日 13年12月 日

古味 自小 茶 繒 信

試料番号(深さ)			1(2.46~2.58 m)			2 (2.34~2.46 m)	
供	試	体 No.	1		2		
共 討	試 体	の質量 mg	347.09		354.19		
	10		4.97		5.02		
供材		上部 cm	4.99		5.06		
	直	中央部 cm	4.93		4.97		
			4.97		5.01		
шų	17		4.95		5.02		
体	住	下部 cm	4.98		5.07		
体		平均值 D cm	4.97	and the second sec	5.02		
	-		9.97		9.94		
積	r ^{ia} Cr		9.96		9.95		
	さ	平均值 H cm	9.97		9.95		
	体積 $V = (\pi D^2/4) \cdot H \text{ cm}^3$		193.42		196.93		
	容 器 No.		1		3		
	m _a g		22.13		22.23		
4	m _b g		16.64		16.65		
	m _c g		0.00		0.00		
	w %		33.0		33.5		
水	容 器 No.		2		4	. 1	
-	m _a g		20.36		22.07		
	m _b g		15.33		16.51		
比	^m c g w %		0.00		0.00		
			32.8		33.7		
		平均值 w %	32.9		33.6		
显稠密度 $\rho_t = m / V$ g/cm ³			1.794		1.799		
吃燥密度 $\rho_d = \rho_1 / (1 + w/100) \text{ g/cm}^3$			1.350		1.347		
間隙比 $e = (\rho_s / \rho_d) - 1$			0.991		0.970		
包和度 $S_r = w \rho_s / (e \rho_u)$ %			89.2		91.9		
土粒子の密度 ρ _s g/cm ³			2.688			2.654	
	ν % ρ _t g/cm ³		32.9			33.6	
Ŧ			1.794			1.799	
匀		$\rho_d g/cm^3$ 1.350			1.347		
直	e		0.991			0.970	
		<i>S</i> , %	89.2			Q1 Q	
土の三軸透水試験

調査名 鉱さいたい積場の措置に係る安全性評価

位置Br.No. No.1 2.46m~2.58m

試験者

試験日

小泉 和広

13年12月 日

試料の状態	さない	0.00						レデザデザー						
供試体の作製方法	トリミ	ング法		上 省	e 4 の	排水	方法	上下端面排水						
土粒子の密度 $\rho_s g/cm^3$			2.688	スタン	ノドパイプ	の断面積	cm ²			0.31	125			
供試体	No.	1	1			2			3			4		
試 セル圧	σc kN/m ²			90			180			270				
振 本 背圧	Ub kN/m ²			50	100					150			-	
件 圧密圧力	σ 'c kN/m^2		40		80					120	1			
圧高さ	H _o cm			9.97			9.96			9.93			1980-1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1	
密直径	D ₀ cm			4.97	4.96					4.95			1	
前 間隙比	e ₀			0.991			0.980			0.964				
庄密時間	t _e min			10			10		1	10		,		
体積変化量	$\Delta V_{c} cm^{3}$			1.04			1.55			2.47				
上 軸変位量	ΔH_c cm			0.012			0.033	1.1		0.036		141		
体積	V _c cm ³			192.38			190.83		1. A.	188.36	8 I'			
密高さ	H _c cm		1 × 1	9.96	9		9.93			9.89				
直径	D _c cm			4.96			4.95		1.1.1.1	4.92				
後 炉乾燥質量	m _s g			261.17			261.17			261.17				
乾燥密度	ρ_{de} g/cm ³		1.358			I	1.369	1 . M	1.0	1.387		11		
間隙比	ec			0.980	0.964				104	0.939				
試験No.		1	2	3	1	2	3	1	2	3	1	2	3	
測定時間 t ₁ -t	2 S	3601	3063	3025	3736	4025	3781	3499	3720	4062	2		-	
透 定 水 位 差	h cm						F 10							
水透水量	Q cm ²													
水 上 「しに対する」	透水係数 k _{T cm/s}									×				
変野別なにおけ	る水位差 h ₁ cm	51.50	51.50	51.50	51.5	51.5	51.5	51.5	51.5	51.5				
武 位 アクレントナス	る水位差 h2 cm	26.57	28.86	28.72	26.42	25.27	26.57	28.15	27.43	25.99				
一日に対する	T %	2.96E-05	3.05E-05	3.11E-05	2.88E-05	2.85E-05	2.82E-05	2.80E-05	2.75E-05	2.73E-05	<u> </u>			
間に時の水価	10	21	21	21	21	21	21	21	, 21	21	· · ·			
15℃に対する添っ	リエ/15	0.859	0.859	0.859	0.859	0.859	0.859	0.859	0.859	0.859				
件 事 值 1	KINGK KIS CM/S	2.54E-05 2.62E-05 2.67E-05			2.48E-05 2.45E-05 2.43E-05			2.41E-05 2.36E-05 2.35E-05			1.			
	415 CHI/ S	1	2.61E-05 2.45E-05					1.25	2.37E-05					
0.0 0.5 1.0 1.5 √ 2.0 2.5 3.0		o A	0 <u>A</u>						>0 ∆∆ ⊐⊡	No.1 No.2 No.3				
ジ 線 3.5 線 4.0 4.5 5.0 0.01 0		0.1							10				100	
				经调时	ll t (min)									
					加工和目刊	et c (tittt)								
特記事項			Contraction of the	No. of Contemport										

土の三軸透水試験

日

調査名

位置Br.No.

鉱さいたい積場の措置に係る安全性評価

No. 1 2.34m~2.46m

13年12月 試験者

試験日

小泉 和広

試料の状態	指	乱さ	ない		庄 番	密中の	排水	方 法			上下端	面排水	· .	
十粒子の第	的度 o g/cm ³	1.95	-/14	2 654	74	バパイプ	の版面積	cm ²					<u>.</u>	
	供試体	No	1	1	~7.	1	20月回祖	cm ,		3			4	
試	ヤル圧	$a c k N/m^2$		•	40		2	80			120			
験	背圧	$\frac{100 \text{ kN/m^2}}{100 \text{ kN/m^2}}$			40	1. 		00			120			
条	日 庄 座 圧 力	$\sigma' c k N/m^2$			40			90			120			
IT	高さ	Ho cm		40			-	0.04			0.04			
座	直径	Do cm	1		5.02	5.02 5		5.00	and a second		9.94			
前	間隙比	eo en			0.02			0.057	0.817		4.99			
\	圧密時間	t, min			10			0.937			0.947			
)	体積変化量	AV cm ³	and the second		1 41	and the second s		1 00	the second		0.58	÷		
圧	軸変位量	$\Delta H.$ cm	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4	0.006	and the		0.003			0.004			
	体積	V cm ³			105 52			104 52			102.04			
密	高さ	H. cm	(a.)(a.) (100 100 11	0.04	Set of the set of	and a surgering	194.02	and the second		195.94			
	直径	D _c cm		an an share	5.00			3.94	-		9.94		1.1	
44	炉乾燥質量	m, g	-		265 11			265 11	11.		265 11			
仮	乾燥密度	all g/cm ³	1 -	1	1 356	1		1 363	4		1 367			
	間隙比	e,			0.957			0.947			0.042			
	試驗No.	15. Jacobing	1	2	3	1	2	3	1	2	3	1	2	3
	測定時間 t1-t2	S	3842	3080	3083	3736	4025	3781	3499	3720	4062			
诱	定水位差	h cm	20	20	20	20	20	20	20	20	20			
	水透水量	Q cm ³	19.05	15.05	15.05	15.45	16.65	15.55	15.65	16.15	15.95			
-	位 TCに対する	透水係数 kT em/s	1.25E-04	1.24E-04	1.23E-04	1.05E-04	1.05E-04	1.04E-04	1.14E-04	1.11E-04	1.00E-04			
小	亦 時刻t」におけ	る水位差 h」 cm		1.1				1.1						
	水 時刻1.におけ	る水位差 hg cm	1	1						i.				
試	位 T℃に対する;	透水係数 kr em/s							100	2011. 2011				
	測定時の水温	т°С	21	21	21	21	21	21	21	21	21			
験	温度補正係数	η _T /15	0.859	0.859	0.859	0.859	0.859	0.859	0.859	0.859	0.859			
) · · · ·	15℃に対する透力	k係数 k ₁₅ cm/s	1.08E-04	1.06E-04	1.06E-04	9.02E-05	9.03E-05	8.97E-05	9.78E-05	9.49E-05	8.59E-05	6		
/	代表值。	15 cm/s		1.07E-04		9.01E-05			9.29E-05					1
0.0	,		-					(h)	10.7		I			
0.0							2							
0.5			χ				-0-0)¢	+0+0	⇒++¢	No.3			
E 1.0			<u> </u>		4	4	Δ <u>ζ</u>	$\rightarrow \rightarrow$	4	A + A	No.2			
1.5	E		Ĭ				-0-q	$-\phi$	-0-0	$\phi + \phi$	No.1			
2.0														
-1								* 4. J *						
2.5														
副 3.0														
₩ 3.5			S									×		
至 4.0														
卷														
4.5														
5.0	tl		1											
0	.01	().1			1				10				100
						経過時	問 t (min)							
						100.000								

特記事項 $[1kN/m^2 \approx 0.0102 \text{ kgf/cm}^2]$

均志 正	1	2		
拘束庄	k ₁₅	k ₁₅	and the second second second	and the second
(kN/cm ²)	(cm/s)	(cm/s)	San State State	An a
40	2.61E-05	1.07E-04		
80	2.45E-05	9.01E-05		
120	2.37E-05	9.29E-05		and the

コア写真

調查名	鉱さいたい積場の措置に係る安全性評価 ボーリング調査						
孔名	D	岡山県苫	田郡上斎原村				
掘削深度	23. Om	孔内水位	GL. 0. 0m				
 孔口標高	717. 423m	掘削年月	平成13年11月				
角度	重 直	撮影月日	平成13年11月				

15

ALC: NO

23

20

ZI

現場記録写真

施工前

運搬状況

足場仮設状況

不撹乱試料採取状況

採水状況

検尺

観測孔設置状況

施工後

鉱さい量の試算

鉱さい量の試算

	一, 七, 七, 七, 七, 七, 七, 七, 七, 七, 七, 七, 七, 七,																									
	就さい 最 、、、、	V D (m)	780 70	097 50	003 00	1 01 2 10	1 393 90	1 AA9 80	698 30	900 10	1 005 10	808 90	782 80	835.60	781 20	572 60	470 40	01-011	386. 20	0 00	0, 00	0.00	0.00	0.00	13, 795. 40	33, 331, 20
	平均断面 7.7, 1.2,	1111112	78 97	99 75	90.38	101 71	132. 39	104 28	62.83	90.01	100.51	80.89	78. 28	83.56	78.13	57.26	47, 04	61.93	38.62	0.00	0.00	0.00	0.00	0.00	$\Sigma Vb =$	$/a + \Sigma Vb =$
E	斯面積 A h (m ²)	69 55	88.40	97.09	83.66	119.75	145.04	63.52	62.15	117.87	83. 14	78. 63	77. 93	89.20	67. 05	47.46	46. 62	77. 25	0.00	0.00	0.00	0.00	0.00	0.00	F	1:3
就さい	欽さい虽 Va(m ³)		604.50	670.90	1, 274, 00	1, 754, 70	2, 153, 10	2, 725, 60	3, 071. 00	2, 433, 90	1, 398.00	953.20	767.80	637.20	435.60	198.60	100.00	82.40	166.90	108.40	0.00	0.00	0.00	0. 00	19, 535, 80	
	平均断面 五a (m ²)		60.45	67.09	127.40	175.47	215.31	272.56	307.10	243.39	139.80	95. 32	76. 78	63.72	43.56	19.86	10.00	8.24	16. 69.	10.84	0. 00	0. 00	0. 00	0. 00	2 V a =	
	屿面積 Aa (m ²)	81. 23	39.67	94.50	160.30	190. 63	239.99	305.14	309. 07	177.71	101.90	88.73	64.82	62. 62	24.50	15. 22	4. 78	11. 70	21.68	0. 00	0. 00	0. 00	0. 00	0.00		
種	延回し	0. 00	10.00	10.00	10.00	. 10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10. 00	10.00	10.00	10.00	10.00	10.00	10.00	10.00		
H	点	A - A	B - B	C - C	D - D	E I E	F - F	G - G	H - H	I - 1	J - J	K - K	T - T	M – M	N - N	0 - 0	P - P	Q - Q	R - R	S I S	T - T	u - u	V - V	W - W		

参考資料 1

既存データの整理

政令濃度上限値のシナリオ

1.1 既存データの整理

鉱さいたい積場の安全評価を行うために必要なシナリオ等を設定する際,参考とするために既存の評価シナリオを調査した。政令濃度上限値評価手法^{1,2}を対象に,評価シナリオ, モデル,パラメータについて整理した。

1.1.1 政令濃度上限値のシナリオ(素掘り処分)

政令濃度上限値は,原子炉廃棄物に対する素掘り処分,コンクリートピット処分,余裕 深度処分(深度 50~100m 程度の地下利用に余裕をもった深度への処分)について制定さ れている。ここでは,たい積場の条件に近い人工バリアを持たない素掘り処分の評価シナ リオを中心にまとめた。

(1) 侵入者建設シナリオ

侵入者建設シナリオに関する概念図を図 1.1-1に示す。処分場閉鎖後,跡地で住 居建設作業を行う作業者の被ばくを考えている。掘削作業中における埋設された放射 性廃棄物からの放射線による外部被ばくと,舞い上がった放射性物質を吸入すること による内部被ばくが考えられる。

なお、処分場の管理期間は50年としている。

図 1.1-1 濃度上限値設定シナリオ(侵入者建設シナリオ)

(2) 居住シナリオ

処分場跡地における居住シナリオに関する概念図を図 1.1・2に示す。ここで考え られている被ばくは、処分場跡地に建設された住居に居住する人の、埋設された放射 性廃棄物からの放射線による外部被ばくと、住居周辺で栽培した農作物を摂取するこ とによる内部被ばくである。

処分場の管理期間は50年間としている。

図 1.1-2 濃度上限値設定シナリオ(居住シナリオ)

(3) 地下水移行シナリオ

まず,文献1より,地下水移行シナリオに関する概念図を図 1.1・3に示す。埋設処 分した放射性廃棄物から地下水に放射性核種が溶出し,地下水と共に河川に移行する。 その河川水を利用することにより被ばくする。その被ばくの内訳としては,河川水を 飲用することによる内部被ばく,河川水で飼育した家畜の摂取による内部被ばく,河 川で捕れた魚を摂取することによる内部被ばくが考えられる。ここでは河川水を利用 した農作物の栽培は考えられていない。

図 1.1-3 濃度上限値設定シナリオ(地下水移行シナリオ)

次に,余裕深度処分を対象とした文献1より,地下水移行シナリオにおいて想定し た環境条件の概念図を図 1.1-4に示す。

処分場から河川水への放射性核種の流入を想定し、その河川水を利用するシナリオ と放射性核種が吸着した河川岸を利用するシナリオの二つに大別される。河川水の利 用では、飲用による内部被ばく、河川水を灌漑水として利用し栽培した農作物の摂取 による内部被ばく、農作業中の粉塵吸入による被ばく及び土壌からの外部被ばく、河 川水を飲用した畜産物の摂取による内部被ばく、そして河川で取れた水産物の摂取に よる内部被ばくが考えられる。河川岸の利用では、河川岸での建設作業中の外部被ば く及び粉塵の吸入による被ばく、居住による外部被ばく及び吸入被ばく、農耕作業中 の外部被ばく及び粉塵の吸入による被ばく、農作物の摂取による内部被ばく、畜産物 の摂取による内部被ばくが考えられる。

なお,ここでは廃棄物処分場跡地を直接利用するシナリオについては扱われていな い代わりに,灌漑土壌を線源とする外部被ばくを考慮している。

図 1.1・4 地下水移行シナリオにおいて想定した環境条件

1.1.2 政令濃度上限値のモデル(素掘り処分)

(1) 処分場跡地での建設作業中の被ばくモデル

処分場跡地において住居を建設する作業員の被ばく線量を以下の式を用いて計算している。土壌からの外部被ばくと、作業中の粉塵吸入による被ばくを考えている。

$$H_{CON} = \frac{1}{\lambda_i} \Big[1 - \exp\left(-\lambda_i t_1\right) \Big] \cdot W \cdot C_{Wi} \cdot \Big[S_i \cdot DF_{EXT,i} + C_D \cdot \varsigma \cdot DF_{ING,i} \Big]$$

\mathbf{H}_{CON}	建設作業員の被ばく線量
λi	核種iの崩壊定数
W	放射能濃度希釈係数
$\mathbf{C}_{\mathbf{Wi}}$	廃棄物中の核種iの放射能濃度
t1	建設作業時間
\mathbf{S}_{i}	核種iに対する遮へい係数
$\mathrm{DF}_{\mathrm{EXT,i}}$	核種iの外部被ばく線量換算係数
CD	汚染粉塵空気中質量濃度
ζ	作業者の呼吸率
$\mathrm{DF}_{\mathrm{ING},\mathrm{i}}$	核種iの摂取被ばく線量換算係数

(2) 処分場跡地に居住する人の被ばくモデル

処分場跡地に建設された住居に居住する人の被ばく線量を以下の式を用いて計算し ている。土壌からの外部被ばくと,跡地で栽培した農作物を摂取することによる内部 被ばくを考えている。

$$H_{RES} = \frac{1}{\lambda_i} \Big[1 - \exp(-\lambda_i t_2) \Big] \cdot W \cdot C_{Wi} \cdot \Big[S_i \cdot DF_{EXT,i} + Q_V \cdot B_{Vi} \cdot K \cdot \exp(-\lambda_i t_3) \cdot DF_{ING,i} \Big]$$

HRES	:居住者の被ばく線量
λ_i	: 核種 i の崩壊定数
W	: 放射能濃度希釈係数
C_{Wi}	:廃棄物中の核種iの放射能濃度
t_2	:居住時間
t_3	: 農作物が採取されるまでの時間
\mathbf{S}_{i}	:核種iに対する遮へい係数

参考 1·5

$\mathrm{DF}_{\mathrm{EXT,i}}$: 核種iの外部被ばく線量換算係数
\mathbf{Q}_{V}	: 農作物の摂取量
Bvi	:核種iの農作物への移行係数
K	: 経根吸収係数
DF _{ING,i}	:核種iの摂取被ばく線量換算係数

(3) 地下水移行により汚染された河川水の利用による被ばくモデル

処分場から放出した放射性核種が地下水により河川へ移行し,その水を飲用したり 使用したりすることによる被ばく線量を,以下の式を用いて計算している。

$$H_{MIG} = rac{d_i}{\Phi} \cdot DF_{ING,i} \cdot \left[Q_W + B_{Fi} \cdot Q_F + \sum_j B_{Aij} \cdot Q_{Aj} \cdot P_{Aj}
ight]$$

HMIG : 河川水利用による被ばく線量
di : 核種 i の河川または海への流入量
 Φ : 河川流量
DF_{ING,i} : 核種 i の摂取被ばく線量換算係数
Qw : 人の河川水飲用量
BFi : 核種 i の河川魚への濃縮係数
QF : 河川魚の摂取量
BAij : 核種 i の畜産物 j への移行係数
QAj : 畜産物 j の河川水飲用量

(4) 処分場からの放射性核種の移行モデル

第3次中間報告において想定されたシナリオでの評価は,前項の被ばくモデルにより行うことができる。ここでは,処分場から河川までの放射性核種の移行モデルについて述べる。

まず処分場からの放射性核種の移行モデルを示す。分配平衡モデルを用い、処分場から天然バリアへの移行は単位時間当たりのフラックスとして放射性核種が移行するモデルとしている。以下にフラックスの式を示す。 $J(t) = \eta \cdot Q_0 \cdot \exp\left[-(\lambda + \eta)t\right]$

参考 1·6

J(t)	:時刻 t における対象核種の移行量[Bq/y]
\mathbf{Q}_0	:対象核種の初期放射能量[Bq]
λ	:対象核種の崩壊定数[1/y]
η	:対象核種の移行率[1/y]
$\eta = \frac{\nu \cdot S}{S \cdot H_D}$	$\cdot \eta_0 = \frac{\nu}{H_D} \cdot \eta_0$
ν	:処分場の地下水流入出水量[m/y]
S	: 核種移行に係る処分場の面積[m²]
H_D	: 核種移行に係る処分場の高さ[m]
ηο	:処分場における対象核種の放出係数[·]

つぎに地下水を介した放射性核種の移行モデルを示す。多孔質媒体中での一次元遅 延移行モデルを使用した。以下に式を示す。

$$R_{s} \frac{\partial C_{GW}(\mathbf{x},t)}{\partial t} = D_{x} \frac{\partial^{2} C_{GW}(\mathbf{x},t)}{\partial x^{2}} - U_{s} \frac{\partial C_{GW}(\mathbf{x},t)}{\partial x} - R_{s} \cdot \lambda \cdot C_{GW}(\mathbf{x},t)$$

$$C_{GW}(\mathbf{x},t) : 地点 \mathbf{x} で時刻 t における対象核種の地下水中濃度[Bq/m3]$$

$$U_{s} : 地下水流速[m/y]$$

$$R_{s} : 対象核種に対する地層の遅延係数[·]$$

$$R_{s} = 1 + \frac{1 - \varepsilon_{s}}{\varepsilon_{s}} \cdot Kd_{s} \cdot \rho_{s}$$

$$\varepsilon s : 地層の空隙率[·]$$

$$\rho s : 地層の空隙率[·]$$

$$\rho s : 地層の密度 (単位体積重量) [g/cm3]$$

$$Kds : 対象核種に対する地層の分配係数[mL/g]$$

$$D_{x} : x 方向の分散係数[m2/y]$$

$$D_{mx} : 流水方向の標準拡散係数[m]$$

$$D_{d} : 分子拡散係数[m2/y]$$

1.1.3 政令濃度上限値のパラメーター覧

文献2より、上述したシナリオ及びモデルから政令濃度上限値を設定する際に用いたパ ラメータを示す。パラメータは処分場に関するパラメータ、水理パラメータ、核種移行パ ラメータ、生物圏パラメータ、人の行為に関するパラメータについて整理した。

(1) 処分場に関するパラメータ

低レベル放射性固体廃棄物のトレンチ型処分場に関するパラメータを表 1.1.1に 示す。

パラメータ	単位	値	備考
処分場規模	m	500×500	
処分された放射性廃棄物 総量	m ³	2.0E+05	$1E+04m^3/y\times 20y$
処分された放射性廃棄物 の厚さ	m	5	200Lドラム, 8段俵積み相当
地表面から放射性廃棄物 最上面までの深さ	m	1.8	1.5m(埋設深さ)+0.3m(仮覆土)
の処分場容量に対する割 合	%	16	2E+05/(500×500×5)=0.16 [*]
管理期間	у	50	

表 1.1.1 処分場に関するパラメータ

* 放射性廃棄物総量2E+05を埋設施設規模(500×500m²)と処分場厚さ(5m) かけたもので割った

(2) 水理パラメータ

処分場から河川への移行に係る水理パラメータを表 1.1・2に示す。

表 1.1・2 水理パラメータ

パラメータ	単位	値	備考
土壤密度	g/cm ³	2.0	
土壤空隙率	%	30	
地下水流速	m/d	0.3	
河川までの距離	m	500	
河川流量	m ³ /y	1.E+08	
降雨量	mm/y	1600	
浸透水量	mm/y	300	地下への浸透分

(3) 核種移行パラメータ

処分場から河川への核種移行に関するパラメータを表 1.1-3に示す。

パラメータ	単位	値	備考
標準拡散係数	m	1	分散長とも呼ぶ
漏出開始年	у	0	
埋設された廃棄物の 見かけの密度	g/cm ³	2.0	
分配係数	ml/g	元素依存	
放出係数	-	元素依存	IAEA-TECDOC-401より

表 1.1.3 核種移行パラメータ

(4) 生物圏パラメータ

各シナリオで線量評価をする際に用いる生物圏に関するパラメータを表 1.1-4に 示す。ここでは生物圏における、人の行為以外のパラメータについて整理した。

パラメータ		単位	値	
家畜の河川水飲用	乳牛	and the second	75	
	肉牛		30	
	豚	en de en el ser d'al de la composition	15	
1	鶏	l/day	. 0.5	
農作物の経根吸収係数			1.0	
		(Bq/kg-農作 物)		
植物への移行係数		/(Bq/kg-±	元素依存	
淡水魚への濃縮係数		(Bq/g)/(Bq/ml)	元素依存	
牛乳への移行係数		d/1	元素依存	
畜産物への移行係数		d/kg	元素依存	

表 1.1-4 生物圏パラメータ

(5) 人の行為に関するパラメータ

各シナリオで線量評価をする際に用いる人の行為に関するパラメータを表 1.1-5 に示す。

パラメータ		単位	値	備考
人の河川水飲用量		l/y	730	ICRP標準人参考
畜産物摂取量	牛肉	a de la composición de	2	and a second of the second
يسترجد والأروان والمراجع	豚肉		5	
	鶏肉		4	and the second
	羽		8	8
	牛乳	kg/y	110	
河川魚摂取量		kg/y	30	
汚染農作物摂取量		kg/y	$130(=260\times1/2)^{*)}$	野菜、果物、穀類、果樹の果物
呼吸率	居住者		2.7E-04	
	作業者	m^{3}/s	3.3E-04	ICRP標準人参考
		1. 18	a and a starte	果樹の栽培期間を考慮
汚染農作物の摂取開始時期		У	0	処分場閉鎖後年数
建設開始時期		У	0	処分場閉鎖後の年数
年間被ばく時間	居住者		8760	365d×24h=8760
	作業者	h	500	
汚染粉塵空気中	居住シナリオ		0	And a second
質量濃度	建設シナリオー	g/cm°	5.E-10	Construction and the second second
	The CPUID of All Market and All Market	0		廃棄物層掘削容積の全掘削容積
住居規模	掘削面積(上部)	m ²	416(=26m×16m)	に対する割合は、0.32となる
	掘削面積(下部)	m^2	200(=20m×10m)	
	掘削深さ	m^2	3	
	掘削土量	m^3	900	
建十山お射能濃度の底蚕物山お射能濃		1.6	0.0512	
度に対する比率		The second	(0.16×0.32)	
		and the second second	技種デレ	territe and see the second
ガンマ線遮へい係数	居住シナリオ		核種 <u>し</u> (客土30cm)	
	and the second sec			屋内と屋外の作業時間が半々
				屋内作業は20cmのコンクリート
	建設シナリオ	-	0.5	土台で遮へいされる

表 1.1.5 人の行為に関するパラメータ

*) IAEA-TECDOC-401³より 年間摂取量の幅 0-260 kg/y 代表値 130 kg/y

1) 原子力安全委員会:低レベル放射性固体廃棄物の陸地処分の安全規制に関する基準値 について(第3次中間報告),平成12年9月14日

- 2) 原子力安全委員会 放射性廃棄物安全基準専門部会:低レベル放射性固体廃棄物の陸 地処分の安全規制に関する基準値について(第2次中間報告),原子力安全委員会,1992
- 3) IAEA : EXEMPTION OF RADIATION SOURCES AND PRACTICES FROM REGULATORY CONTROL INTERIM REPORT, IAEA, IAEA-TECDOC-401, 1987

参考資料 2

鉱さいたい積場断面図

夜次鉱さいたい積場断面図