図書室

公開資料

JNC TJ7430 2001-002

# 土岐花崗岩中の割れ目を対象とした ジョイントせん断試験

(核燃料サイクル開発機構 契約業務報告書)

2001年3月

# 株式会社 大林組

本資料の全部または一部を複写・複製・転載する場合は,下記にお問い合わせ下さい。 〒319 - 1194 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課

Inquiries about copyright and reproduction should be addressed to:

Technical Cooperation Section,

Technology Management Division,

Japan Nuclear Cycle Development Institute

4-49 Muramatsu, Naka-gun, Ibaragi 319-1194,

Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2001

公開資料 JNC TJ7430 2001-002 2001年3月

### 土岐花崗岩中の割れ目を対象としたジョイントせん断試験

畑 浩二\*、丸山 誠\*、鳥井原 誠\*

#### 【要 旨】

地下深部の岩盤内に空洞を構築する場合、空洞周辺の岩盤は力学的・水理学的に影響を受け、空洞内や岩盤内にさまざまな不安定現象をもたらすことがこれまでに数多 く経験されている。したがって、対象岩盤の強度変形特性を事前に把握しておくこと が重要になる。特に、き裂性岩盤が対象になる場合には、割れ目の強度変形特性や幾 何学的分布特性の把握が必要不可欠になる。

本研究の目的は、岩体内に無数に存在する割れ目から、力学的な観点で影響が大き いと考えられる代表的なジョイントを抽出し、その強度変形特性ならびに幾何学特性 を評価することである。対象とする岩盤は土岐花崗岩を母岩とするき裂性岩盤である。 そこで、MIU-1孔、MIU-2孔およびMIU-3孔から割れ目試料を選定し室 内試験を実施した。割れ目は、分布位置、角度、形状および介在物有無の4つのパラ メータから5つのカテゴリーに分類した。

その結果、5つのカテゴリー分類に合わせて、割れ目面における垂直剛性 K<sub>n</sub>、せん 断剛性 K<sub>s</sub>、圧縮強度 JCS、粗さ係数 JRC および残留強度 ø<sub>r</sub>が求められた。また、これ らの物性から個別要素解析に必要なバートンーバンディスの破壊基準を決定した。

本報告書は、株式会社大林組が核燃料サイクル開発機構との契約により実施した研究成果である。

契約番号:12C1018

サイクル機構担当グループおよび担当者:東濃地科学センター 地質環境特性研究グル ープ グループリーダー 武田精悦

i

\*:株式会社大林組 技術研究所 地盤岩盤研究室

PUBLIC JNC TJ7430 2001-002 March, 2001

# Shear test of Jointed rock in Toki granite

K.Hata\*, M.Maruyama\*, M.Toriihara\*

## [ Abstract ]

When constructing an underground rock cavern at great depth, rock mass around the cavern is mechanically and hydrologically influenced by excavation. It was also experienced that various engineering instability of the cavern was observed. Therefore, it is important to estimate the state of stress and deformation in the surrounding rock mass. Especially, in the case of discontinuous rock, it is necessary to understand the geological conditions and properties of joints around rock cavern.

The purpose of this study is to select the representative joint that is influenced upon stress and deformation of the cavern, and to evaluate the properties of joints. The rock mass consists of Toki granite, which is fractured rock mass. Physical and mechanical tests were conducted using jointed core samples from MIU-1, MIU-2 and MIU-3 borehole. Joints are classified into 5 categories with location, angle, shape and filling.

As the result of this study, joint vertical stiffness( $K_n$ ), joint shear stiffness( $K_s$ ), joint compressive strength(JCS), joint roughness coefficient(JRC) and joint residual friction angle( $\phi_r$ ) with 5 categories are estimated. And Barton-Bandis's model are estimated from these joint properties.

This work performed by Obayashi Corporation under contact with Japan Nuclear Cycle Development Institute.

\* : Obayashi Corporation, Technical Research Institute

Agreement No. : 12C1018

JNC Liaison : Tono Geoscience Center, Geoscience Research Group, Group Leader, Seietsu Takeda

# 土岐花崗岩中の割れ目を対象としたジョイントせん断試験

# 担当者一覧表

- 実施責任者: 鳥井原 誠
- 実施担当者: 丸山 誠
- 研究業務担当者: 畑 浩二

# 土岐花崗岩中の割れ目を対象としたジョイントせん断試験

## 目 次

|                                                    | 頁  |
|----------------------------------------------------|----|
| 1. はじめに                                            | 1  |
| 2. 試験装置                                            | 2  |
| 2.1 ラフネス測定装置                                       | 2  |
| 2.2 点載荷試験装置                                        | 2  |
| 2.3 ジョイントせん断試験装置                                   | 2  |
| 2.4 ティルト試験装置                                       | 2  |
| 3. 試料採取位置と分類                                       | 6  |
| 4. 試験方法                                            | 10 |
| 4.1 ジョイントを含む岩石試料による試験                              | 10 |
| 4.1.1 ラフネス測定                                       | 10 |
| 4.1.2 点載荷試験                                        | 10 |
| 4.1.3 垂直載荷試験                                       | 10 |
| 4.1.4 せん断試験                                        | 10 |
| 4.1.5 ティルト試験                                       | 11 |
| 4.2 新鮮岩石試料による試験                                    | 11 |
| 4.2.1 密度測定                                         | 11 |
| 4.2.2 点載荷試験                                        | 11 |
| 4.2.3 ティルト試験                                       | 11 |
| 5. 試験結果と考察                                         | 14 |
| 5.1 ジョイントを含む右右試科による試験                              | 14 |
| 5.1.1 フフネス測定                                       | 14 |
| 5.1.2 只軟何試験                                        | 10 |
| 5.1.3 世 但 取何                                       | 10 |
| 5.1.4 せん別試験                                        | 10 |
| 5.1.5 フ 1 ル ト 武 映<br>Γ ο エ # # 単 丁 計 料 / Γ ト Ζ 計 除 | 10 |
| 0.2 利鮮石口 武件による 武歌                                  | 10 |
| 5.4.1 笛及侧足<br>5.9.9 占載荷試驗                          | 19 |
| 5.2.2 点戦何 武 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (  | 19 |
| し.2.5 ノイルド政会                                       | 38 |
| 0. よこの<br>7. 条老立部                                  | 40 |
| 7. ②与入版<br>关士咨判                                    | 41 |
| る<br>A 垂直・せん断試験結果                                  |    |
| R ラフネス測定結果                                         |    |
| C 採取コア写直・ジョイント而写直(試験前後)                            |    |
|                                                    |    |

D. 試験装置・試験方法写真E. ジョイントデータ (CD-ROM)

1. はじめに

日本列島は環太平洋造山帯に含まれることから、急峻な地形形状とともに非常に 複雑な地質構造を有していることが一つの大きな特徴になっている。大局的にはフォ ッサ・マグナや中央構造線のような地質構造線によって細分化され、構造線で囲まれ た構造区では沈降、堆積、隆起、削剥、変成などの影響を受けている。一方、局所的 には褶曲、せん断、貫入、風化などの影響を受け、大陸の安定した地質と比較してき わめて不連続性の強い地盤となっていることが多い。このような地質条件の中にトン ネルや立坑のような空洞を施工する場合、断層、節理、き裂などの不連続面を避け健 全な岩盤部分を選んで構築することは困難である。したがって、より合理的な設計・ 施工を行うためには、岩盤物性や不連続面の情報(強度変形特性や幾何学条件)なら びに応力再配分に伴うゆるみ域を精度良く把握することが重要になる。特に、土岐花 崗岩のような一般に硬岩に分類される岩盤では、岩体内に内在する無数の不連続面の 分布特性やその力学特性が岩盤としての強度変形特性に支配的な影響を及ぼすこと から、不連続面の強度変形特性や幾何学的条件を把握することが極めて重要である。

本件は、岩体内に無数に存在する割れ目(以下、ジョイントと称する)から、力 学的な観点で影響が大きいと考えられる代表的なジョイントを抽出し、その強度変形 特性ならびに幾何学特性を評価することを目的とする。

1

ジョイント面の凹凸の程度、強度変形特性および物理学的特性を把握するため、 ラフネス測定装置、点載荷試験装置(シュミットハンマー)、ジョイントせん断試験 装置およびティルト試験装置を用いる。以下に装置の仕様および機能を示す。

#### 2.1 ラフネス測定装置<sup>1)</sup>

ジョイント面の凹凸を乱すことなく、高分解能で三次元形状を測定するためレ ーザ変位計とロケーティングボードを組み合せた測定装置を用いる。この装置は、 ロケーティングボードに固定した試料を x-y 面(水平面)上で精度良く移動させ、 ジョイント面の凹凸状態を示す z(鉛直方向)方向の距離をレーザ変位計で測定す る仕組みになっている。ロケーティングボードの x-y 面移動、z 方向の距離測定 はパソコンで制御記録する。装置の概要を図-2.1 に示す。

#### 2.2 点載荷試験装置

ジョイント面には軟質の変質鉱物が堆積していることもあるため、点載荷試験 装置として軽量コンクリート用シュミットハンマーを用いる。装置の概要を図-2.2に示す。

#### 2.3 ジョイントせん断試験装置

ジョイント面に所定の鉛直荷重を作用させた状態でせん断させるため、上下方 向と水平方向に油圧ジャッキを装備している。垂直荷重、せん断荷重ともに精度 の高い値を取得するため圧力計を組み込んでいる。垂直荷重、せん断荷重に伴う ジョイントの開口変位は試料に取り付ける渦電流式変位計で、ジョイントのせん 断変位は載荷箱に取り付ける高感度変位計で測定する。垂直荷重、せん断荷重、 開口変位およびせん断変位はパソコンで記録する。装置の概要を図-2.3に示す。

#### 2.4 ティルト試験装置

試料の摩擦角度を簡易的に測定するため、2枚の板の片端を蝶番で上下回転で きるように固定した装置である。対象試料を上板に載せ、蝶番の反対端の上昇角 度を角度計で記録する。装置の概要を図-2.4 に示す。

以上、使用する試験装置の仕様一覧を表-2.1に示す。

2



図-2.1 ラフネス測定装置



図-2.2 点載荷試験装置(軽量コンクリート用シュミットハンマー)



図-2.3 ジョイントせん断試験装置



蝶番

図-2.4 ティルト試験装置

# 表-2.1 試験装置の仕様一覧

| 装置名称         |                          | メーカー<br>(開発元) | 形式            | 仕様                                |
|--------------|--------------------------|---------------|---------------|-----------------------------------|
| ラフネス         | ロケーティ<br>ングボード           | NSK           | XY-HS0020-902 | 稼動範囲:200mm<br>位置決め精度:0.03mm       |
| 測定装置         | レーザ変位<br>計               | キーエンス         | LB-1010       | 測定範囲:10mm<br>分解能:1/500mm          |
| 点載荷試<br>験装置  | : シュミット<br>ハンマー<br>シュミット |               | LR 型          | 衝撃エネルギー:0.735N·m<br>測定範囲:10~60MPa |
|              | シェアボッ<br>クス              | ロックテスト        | PHI - 10      | 最大垂直荷重:98kN<br>最大せん断荷重:147kN      |
| ジョイン         | 圧力計                      | 東京測器          | PW-500        | 測定範囲:49MPa<br>分解能:0.1MPa          |
| トせん断<br>試験装置 | 渦電流式変<br>位計              | キーエンス         | AH-614        | 測定範囲:5mm<br>分解能:1/500mm           |
|              | 高感度変位<br>計               | 東京測器          | CDP-10        | 測定範囲:10mm<br>分解能:1/1000mm         |
| ティルト試験装置     |                          | 大林組           |               | <br>  分解能:1°                      |

試験に供した岩石試料は、岐阜県瑞浪市の正馬様洞用地内でボーリングされた3 地点(MIU-1孔、MIU-2孔、MIU-3孔)の1000mコアから選定した。ボ ーリング地点は表層から約90m は凝灰質砂岩やシルト岩などの堆積岩に覆われてい るが、それ以深は基盤岩である花崗岩が分布している。ボーリングコアの直径は63mm である。MIU-1孔、MIU-2孔、MIU-3孔の位置関係を図-3.1に示す。

吉田ら<sup>11</sup>は、正馬様深層ボーリングAN-1号孔から採取したボーリングコアを基 に東濃地域に分布する花崗岩のジョイント性状を解析している。調査・観察項目は、 深度、柱状図、ジョイントの深度、ジョイントの形態、ジョイントの連続性、ジョイ ントの表面構造、条線の有無、ジョイントの充填鉱物、ジョイントの充填幅、変質度、 変質幅、ジョイントの角度の12項目である。解析の結果、ジョイント・破砕帯の形 態とジョイントの充填鉱物の種類と産状を基準に、深度 500m までは3つのセグメン トに分けることが可能であることを示した。一方、釜石鉱山 250m レベル抗道におい て、ジョイントのせん断試験<sup>20</sup>が実施されている。そこでは、せん断試験用の試料選 定方法について詳細に検討している。ジョイントについての検討項目は、群(走向傾 斜)、充填物の種類、変質程度、開口幅、充填物の幅、面の粗さ、面の条線およびせ ん断変位量、形状、端形状の9項目である。詳細検討の結果、釜石鉱山におけるせん 断試験に際してのジョイント分類の指標は、群(走向傾斜)、充填物の種類、変質の 程度、充填物の幅、面の粗さの5項目が重要であるとしている。

吉田らの研究成果や釜石鉱山において得られた知見を勘案し、土岐花崗岩中のジ ョイントを対象にしたせん断試験においては、ボーリング孔、ジョイントの角度、ジ ョイントの形状および介在物の有無の4つのパラメータに着目し、試験用試料を選定 することとした。なお、コアのジョイントを無作為に抽出しても抽出したジョイント の方向が決定できないため、サンプリングするジョイントは BTV 観察結果から方向と 深度が同定できるものに限定した。以下に、4つのパラメータの詳細を示す。

- (1) ボーリング孔: MIU-1孔、MIU-2孔、MIU-3孔を対象にする。
- (2) ジョイントの角度:高角度、低角度の2種類を対象にする。
- (3) ジョイントの形状:形状は平滑(P)、不規則(I)、波状(C)およびステ ップ状(S)の4種類に分類できるが、ここでは BTV 画 像データより識別されているPとCの2種類を対象にす る。

6

(4) 介在物の有無 : 有、無の2種類を対象にする。

以上の条件を勘案するとともに、表-3.1に示すサンプリング試料の相関関係をも とに、大きく5つのカテゴリー(①、②、③、④、⑤)に分類した。さらに、同一カ テゴリーの中でもボーリング孔や深度やジョイントの分類による違いが生じる可能 性が想定されることから、④のカテゴリーを2つ(④<sub>1</sub>、④<sub>0</sub>)、⑤のカテゴリーを3 つ(⑤<sub>1</sub>、⑤<sub>1</sub>、⑤<sub>1</sub>)に細分化した。そして、このカテゴリーに合わせて、せん断試 験用試料として25試料、新鮮岩石試料としてせん断試験用試料近傍から8試料を選 定した。選定した試料の一覧を表-3.2に示す。なお、MIU-1孔、MIU-2孔、 MIU-3孔において BTV で確認できたジョイントの分布深度、走向傾斜、区分、形 状等の情報を巻末資料E(CD-ROM 保存)に添付する。



図-3.1 MIU-1孔、MIU-2孔、MIU-3孔の位置関係

MIU-1(割れ目数:2991) MIU-2(割れ目数:4009) MIU-3(割れ目数:4498) 明瞭割れ目、ヘアークラックは全体の85%を 明瞭割れ目、 ヘアークラックは全体の87%を 明瞭割れ目、 ヘアークラックは全体の82%を 割れ目区分 占める 占める 占める。 開口割れ目は全体の3%である 開口割れ目は少ない。 開口割れ目は全体の2%である。 割れ目形状 Cタイプが多い。 割れ目が変色している(褐色化)。 Pタイプが多い。 割れ目の変色は少ない。 Pタイフが多い。 変色 割れ目の変色は少ない 介在物 割れ目に介在物が存在する(全体8%)。 割れ目に介在物が存在する(全体8%)。 割れ目に介在物が存在する(全体10%)。 浅部(87),中間部(117) 浅部(291) 浅部(87),中間部(105),深部(214) 沙部 No. 359 (N3W25E) No. 788(EW61;No. 787より) No. 643(N32E24SE) MIU-1-0-300m No. 971 (N47E11NW) MIU- 2:0-400m 介在物の影響 MIU-3:0-300m No. 1415(N20E21W) 1451 (N73W29S) No. - **P9イ ②明瞭割**れ目またはヘオ+クラック - P9イ ズー 介在着 ②明瞭第れ目またはヘブー ダー介在無・ **-27**-27-(2)明瞭割は目前たは、まそクラジターアタイ · 介在無 (低時間名語) 28、712-1905 (低角割れ目) 中間部 、(低角側れ名) :1】新料 ૢૺૺ૽૱ No. 1830(N37E23SE) 深度316.32m(N79E24S) No. 1541(N86W:No. 1540より) MIU-1:300-700m No. 2084(N81W2S) MIU-2:400-700m No. 2105(変色)(N81E12\$) 割れ目形状の影響 MIU-3:300-700m ③明瞭割れ目またはヘアークラックーCタイ③明瞭割れ目またはヘアークラックーCタイ ③明瞭割れ目またはヘアークラックーCタイ ブー 介在無 一介在無 一介在無 (低角割れ目) (低価割け)目) 1試料 ・)試料 (低 毎零(わ 日) ·111計書 No. 1714(N48E26SE) No. 2297(N12E29W)→(案測N12E No. 1894 (N85W17N) No. 1084(N56E:No. 1085より) 45W) 深度および割れ目傾斜の影 深度および割れ目 簒 傾斜の影響 ④明瞭割れ目またはヘアークラックーPタイ プー介在無 (高角割れ目) :1 試料 No. 1608(EW65S) No. 1153(N88W52S) No. 1547 (EW55N) 介在物 介在物の影響 ⑤明瞭割れ目またはヘアークヨックーPタイ プー介在有 (高角割れ目) :2 補充(中間部,深部の 試料 No. 2269(介在物有に変更)(N75W55 高角割れ目、Pタイプ、介在物有) No. 1832(N75E66S) N) No. 1960(MIU-1の代用:明, 高角 |深度509.14(BTV無)(N5E49₩:No. 22 MIU-2試料代用(MIU-2:No. 1960) 介在物有) 06より) ④明瞭割れ目またはヘアークラック- Pタイ ブ. 介在無 (高角割れ目) :1 深部 計制 No. 2204 (N57W64NE) No. 4306(N46E63SE) No. 4373(N78E61S) MIU-1:700m-MIU-2:700m-介在物の影響 介在物 MIU- 3:700m-採取不可 ⑤明瞭割れ目またはヘアークラックーPタイ ブー介在有 (高角割れ目) :採 取試料なし 採取不可 採取不可

## 表-3.1 サンプリング試料の相関

表-3.2 各種試験に供した試料一覧

|                   | No. | 分類      | ジョイ<br>ントの<br>角度                        | ジョイ<br>ントの<br>形状 | 介在物<br>の有無 | ボ<br>孔 | - リング<br>No. | 深度(m)  | 走向・傾斜    | BTV画像<br>No. |
|-------------------|-----|---------|-----------------------------------------|------------------|------------|--------|--------------|--------|----------|--------------|
| `                 | 1   |         |                                         |                  |            |        | MTH 3        | 112.82 | N3W25E   | 359          |
|                   | 2   |         | IT AL                                   | D                | Åur        |        | MIU-1        | 291.53 | N47E11NW | 971          |
|                   | 3   | Û       | 低用                                      | P                | ***        |        | MIU-2        | 163.62 | EW61S    | 788          |
|                   | 4   |         |                                         |                  |            |        | MIU-3        | 143.32 | N32E24SE | 643          |
|                   | 5   |         |                                         |                  |            |        | MIU-1        | 316.32 | N79E24S  | 無            |
|                   | 6   |         |                                         |                  |            |        | MIU-2        | 307.94 | N86W10S  | 1540         |
|                   | 7   | 2       | 低角                                      | P                | 無          |        |              | 415.50 | N37E23SE | 1830         |
|                   | 8   | 1       |                                         | 1                |            |        | MIU-3        | 464.60 | N81₩2S   | 2084         |
|                   | 9   | 1       |                                         |                  |            |        |              | 472.31 | N81E12S  | 2105         |
|                   | 10  |         |                                         | 1                |            |        | MIU-1        | 313.30 | N56E     | 1084         |
|                   | 11  |         | ΠЬ                                      |                  | ám         |        | MIU-2        | 388.51 | N85W17N  | 1894         |
| ジョイ               | 12  |         | 低角                                      |                  |            |        | MIU-3        | 397.85 | N48E26SE | 1714         |
| ントを<br>含む岩<br>石試料 | 13  | 1       |                                         |                  |            |        |              | 537.15 | N12E45W  | 2297         |
|                   | 14  | †       | 古在                                      | Р                | P 無        |        | MTILI        | 331.36 | N88W52S  | 1153         |
|                   | 15  |         |                                         |                  |            | M10-1  | 589.28       | EW55N  | 1547     |              |
|                   | 16  | 4 (4) I | 尚円                                      |                  |            |        | MILLO        | 971.86 | N46E63SE | 4306         |
|                   | 17  |         |                                         | E                |            |        | M1U-3        | 984.72 | N78E61S  | 4373         |
|                   | 18  |         |                                         | Р                | 無          | -      | MIU-1        | 846.18 | N57W64NE | 2204         |
|                   | 19  |         | 尚円                                      |                  |            |        | MIU-3        | 322.76 | EW65S    | 1608         |
|                   | 20  |         |                                         |                  |            |        | MIU-l        | 679.50 | N75E66S  | 1832         |
|                   | 21  |         | 一局円                                     |                  | 1]         |        | MIU-2        | 430.72 | N63E56N  | 1960         |
|                   | 22  |         | - <u>-</u>                              |                  |            |        | MTIL 2       | 509.14 | N5E49W   | 無            |
|                   | 23  |         | 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | r                | 1]         |        | M10-3        | 527.25 | N75W55N  | 2269         |
|                   | 24  |         | IT.A.                                   | П                | +          |        | พาย ว        | 276.34 | N20E21W  | 1415         |
|                   | 25  |         | 低用                                      | r                | 1]         |        | MIU-2        | 290.32 | N73W29S  | 1451         |
|                   | 26  | 1       |                                         | <u> </u>         | -          |        | MIU-3        | 281.54 |          |              |
| 2                 | 27  | 2       | -                                       | <u> </u>         | -          |        | MIU-3        | 415.66 |          | -            |
|                   | 28  | 3       |                                         |                  | _          |        | MIU-1        | 313.49 | _        |              |
| 新鮮岩               | 29  | (4) I   |                                         |                  | _          |        | MIU-1        | 331.74 | _        | —            |
| 石試料               | 30  | 4       |                                         |                  |            |        | MIU-3        | 509.36 |          |              |
|                   | 31  | 51      | _                                       | - 1              | -          |        | MIU-2        | 678.94 |          |              |
|                   | 32  | 5.      |                                         | -                | —          |        | MIU-3        | 509.14 | _        | —            |
|                   | 33  | 5 (5)m  | -                                       |                  |            |        | MIU-2        | 276.34 | _        | -            |

MIU-1号孔、MIU-2号孔およびMIU-3号孔から選定した試料を利用し て、ジョイント面の凹凸の程度、強度変形特性および物理学的特性を把握する。それ ぞれ対象となる試験は、ラフネス測定、点載荷試験、垂直載荷試験、せん断試験およ びティルト試験である。また、選定したジョイント周辺における新鮮な岩石を用いて、 密度測定、点載荷試験およびティルト試験もあわせて実施した。以下に試験方法につ いて詳述する。

#### 4.1 ジョイントを含む岩石試料による試験

4.1.1 ラフネス測定

図-2.1 に示すレーザ式変位計を備えたラフネス測定装置を用いて、ジョイン ト上下面の三次元凹凸形状を測定する。測定間隔は 0.5mm ピッチとする。また、 ジョイント面は楕円形状をしているが、測定範囲は図-4.1に示すような長方形エ リアとなる。また、トレッシングペーパーでジョイント面の形状を写し取り、ジ ョイント面の接触面積を求めた。

4.1.2 点載荷試験

図-2.2 に示す軽量コンクリート用シュミットハンマーを用いて、ジョイント上 下面の反発度を測定する。測定は 10 回行い、その平均値をもって反発度とする。 軽量コンクリート用シュミットハンマーを使用するとはいえ、ジョイント面に衝撃 圧を作用させるため、試験は4.1.5 のティルト試験完了後に行う。

4.1.3 垂直載荷試験

早強性モルタルでジョイントを含む供試体の両端面を載荷冶具用に加工成形し た後、図-2.3に示すジョイントせん断試験装置を用いてジョイント面に垂直荷重 を3回繰返し作用させ、ジョイント部の垂直荷重—垂直変位を測定する。垂直荷 重レベルは、コア採取深度の土被り圧相当とする。ただし、試験装置の関係から 最大垂直荷重は 98kN である。

4.1.4 せん断試験

垂直載荷試験に引き続き、ジョイント面にせん断荷重を作用させ、ジョイント 部のせん断荷重—せん断変位を測定する。ジョイント面はダイレーション(凸凹を 乗り上げる)でせん断すると仮定し、自重圧(試料重量+モルタル+載荷治具)に よる垂直荷重一定条件の下でせん断荷重を作用させる。せん断荷重の作用方向は、 図-4.2 に示すように採取試料のジョイント面(楕円形)の長軸方向で、地中方向 とする。試験は、ピーク強度後の残留応力状態の推移もあわせて測定する。

4.1.5 ティルト試験

図-2.4 に示すティルト試験装置を用いて、せん断破後のジョイントが滑り始め る傾斜角度を測定する。なお、測定は 10 回行い、その平均値をもって傾斜角度と する。

#### 4.2 新鮮岩石試料による試験

4.2.1 密度測定

新鮮岩石コアから直径 30mm、細長比1:2の円柱供試体を整形し、密度を測定 する。

4.2.2 点載荷試験

ジョイント供試体と同様に、図-2.2 に示す軽量コンクリート用シュミットハン マーを用いて、新鮮岩石コア切断面の反発度を測定する。なお、測定は10回行い、 その平均値をもって反発度とする。

4.2.3 ティルト試験

ジョイント供試体と同様に、図-2.4 に示すティルト試験装置を用いて、新鮮岩 石コアの側面同士が滑り始める傾斜角度を測定する。なお、測定は 10 回行い、そ の平均値をもって傾斜角度とする。岩石コア側面を利用したティルト試験方法の概 要を図-4.3 に示す。

以上、ジョイントを含む岩石試料による試験と新鮮岩石試料による試験の作業手順を図-4.4 に示す。

11



図-4.1 ラフネス測定における測定エリア



地中方向





基礎摩擦角 ø b

図-4.3 新鮮岩石のティルト試験方法



図-4.4 試験フロー

ジョイントを含む岩石試料について実施したラフネス測定、点載荷試験、垂直載荷 試験、せん断試験およびティルト試験結果と、新鮮岩石試料についておこなった密度 測定、点載荷試験およびティルト試験結果について詳述する。

5.1 ジョイントを含む岩石試料による試験

5.1.1 ラフネス測定

ジョイント面は上下2面あることから、便宜上地表側を上面、地中側を下面と 称する。上面と下面は完全に接触していない場合には、凹凸形状も同一にはなら ない。ラフネス測定結果の一例として、No.1 試料(MIU-11, 深度: 112.82m、 走向・傾斜:N3W25E)のせん断試験前後の凹凸形状を図-5.1に示す。この試料は、 ジョイント角度が低角、ジョイント形状がP(平滑)、介在物が無い条件に相当す る。ジョイント面の凹凸はデジタルデータして取得済みであることから、せん断 試験後の凹凸の変化(ジョイント面に対して垂直方向の変位)を試算した。図-5.2 にせん断試験前の上下面の凹凸値を元にしたせん断試験後の凹凸の変化値を 示す。上下面ともに、部分的には 0.5mm を越えるジョイント部の変化が認められ るが、ほとんどの領域は0.2mm以下の変化しか生じていない。一方、図-5.3にせ ん断試験後のジョイント面の写真を示す。図中赤丸で示す部分に粒子破砕後の状 況が判別できる。図-5.2と図-5.3において、凹凸面の変化状況には十分な整合 性を得られず、ラフネスの定量的な変化把握には至らなかった。デジタルデータ を用いた変化状況の測定では、せん断試験前後において全く同じ状況(ラフネス 測定装置への供試体設置)でラフネス測定を行う必要があり、設置誤差が影響を 及ぼす可能性がある。しかし、本業務で実施したラフネス測定はジョイントのラ フネス状況をワイヤーフレームやレンダリングモデルで視覚的に表わすほか、せ ん断試験による破壊状況の定量的な把握が行える利点を有していることから、今 後有効な測定方法になるものと考えられる。

ラフネス測定では、図-4.1 に示すようにジョイント面内の長方形エリアを測 定対象にしているため、楕円形状をしたジョイント面全域の面積を測定すること はできない。そこで、トレッシングペーパーで楕円形状を写し取り接触面積を求 める。全25試料について、接触面積(上面:A<sub>A</sub>、下面:A<sub>B</sub>)をまとめたものが表 -5.1である。ただし、この場合の接触面積は楕円面積である。

ところで、ラフネス測定の結果から長方形エリアにおける接触面積の試算を行

14

ってみる。この場合の接触面積は、先のトレッシングペーパーで写し取った楕円 形状面積ではなく、ラフネスを加味した面積となる。面積計算は、木梨ら<sup>3)</sup>が提案 した四角形メッシュによる計算法を利用する。No.1 試料(MIU-11, 深度: 112.82m、走向・傾斜:N3W25E)におけるラフネス測定領域の平面積は 20cm<sup>2</sup>であ る。ラフネス測定は基本的に x-y 測定間隔を 0.5mm としている。この場合のラフ ネスの表面積は、上面が 21.64cm<sup>2</sup>、下面が 21.32cm<sup>2</sup>となった。すなわち、凹凸が 存在するため平面積より約 15%も表面積は大きくなっていることがわかった。一 方、x-y 測定間隔の影響を把握するため、測定間隔を 0.5mm~10.0mm に変化させ 表面積を求めた。測定結果を図-5.4 に示す。測定間隔によって測定領域の平面積 が異なることから、ラフネス測定で算定した表面積を測定領域の平面積で除し正 規化して表わした。その結果、x-y 測定間隔を広げれば広げるほどジョイント表 面積は小さく換算されることがわかり、5mm を越えると測定間隔の影響はあまり生 じないが、測定間隔 0.5mm の場合と比較して7%も低下することがわかった。した がって、ラフネス測定データからジョイントの接触面積を求める場合には、注意 を要することが明らかになった。

5.1.2 点載荷試験

シュミットハンマーによる点載荷によって、反発度 R<sub>i</sub>が求められる。すると、 ジョイント面の圧縮強度 JCS は(1)式によって求めることができる。

 $\log_{10} JCS = 0.00088 \rho R_i + 1.01$ (1)

ここで、のは密度で新鮮岩石試料から求める。

ジョイント面は上面と下面の2面あるため、反発度も2値存在する。上面の反 発度を $R_{jA}$ 、下面の反発度を $R_{jB}$ とする。ラフネス測定結果の一例として示した No.1 試料(MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)において点載荷試験 をおこなったところ、 $R_{jA}=22.3$ 、 $R_{jB}=27.5$ となった。(1)式から、JCS<sub>A</sub>=32.6MPa、 JCS<sub>B</sub>=42.7MPaとなり、平均的には JCS<sub>mean</sub>=37.6MPa を得た。

全25試料について、シュミットハンマーによる反発度から JCS を求めた結果 をまとめたものが表-5.2である。表中、JCS<sub>A</sub>は上面、JCS<sub>B</sub>は下面のジョイントの 圧縮強度であり、JCS<sub>mean</sub>は上面と下面との平均値である。この結果を分類ごとにま とめたものが図-5.5である。図は、各分類中の JCS<sub>A</sub>、JCS<sub>B</sub>および JCS<sub>mean</sub>を平均し て、分類の代表値とした。この結果から、JCS は約 40MPa~55MPa の範囲に分布し ていることがわかった。各分類の JCS<sub>mean</sub> に着目すると、分類②が最も大きい値を 示した。一方、最も小さな値を示したのは④<sub>I</sub>であり、同じ④の分類でありながら ④<sub>I</sub>と比較すると約 20%もの開きがあった。同様に、⑤<sub>I</sub>と⑤<sub>I</sub>は大きな違いはない が、⑤<sub>I</sub>も約 20%下回る値となった。

#### 5.1.3 垂直載荷

No.1 試料(MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)を用いた場 合の繰返し載荷に伴う垂直荷重-垂直変位の関係を図-5.6 に示す。載荷重は試料 採取深度と密度を勘案して約 3MPaとした。図中、実線と点線で試料対角の位置の 変形挙動を示す。一点斜線でこれらの平均値を示した。実線と点線では、その変 形挙動は大きく異なる。実線では、処女載荷で初期間隙が閉塞される方向に変位 は進展するが、除荷に伴い噛み合わせが変化し変位が増長したものと解釈できる。 一方、対角の位置の処女載荷における変位(点線)は実線方向の挙動に影響を受け、 相対的に開口する方向に挙動し始めるが、ある程度載荷重があがると閉塞する方 向に挙動することになる。除荷後は実線方向の変形挙動の影響を受け、相対的に 当初の開口幅が増長する方向に挙動する。その後、繰返し載荷によって開口幅が 閉塞する変形挙動を呈することになった。ジョイントの左右対角の位置における 変位挙動が異なる要因として、局所的なジョイントの噛み合わせや局所的な粒子 の破砕が影響しているものと考えられる。

図-5.6 に示したように、垂直荷重-垂直変位曲線は下に凸型の非線形性を呈 するのが一般的である。ジョイントの開閉挙動の相違により非線形性の程度が異 なるが、繰返し載荷の回数を多くすることによって、この非線形性は徐々に小さ くなっていく。そこで、繰返し3回目の載荷曲線から垂直剛性 K<sub>n</sub>を求めることと した。繰返し3回目といえども荷重変位曲線には非線形性が認められるが、ここ では載荷時の始点と終点(土被り圧相当)を結ぶ割線を垂直剛性 K<sub>n</sub>と定めた。す ると、No.1 試料の垂直剛性 K<sub>n</sub>は 95.6MPa/mm となった。

全25試料について、垂直剛性 K<sub>n</sub>を求めた結果をまとめたものが表-5.3 である。

#### 5.1.4 せん断試験

No.1 試料(MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)を用いた場合のせん断荷重-せん断変位の関係を図-5.7に示す。また、その際のせん断変位 -ダイレーション変位の関係を図-5.8に示す。図-5.7において、最大せん断強度  $\tau_{max}$  は約 0.143MPa となり、ピークを迎えた後は徐々にせん断力は低下し、残留強度  $\tau_r$  は約 0.081MPa となった。また、せん断剛性 K<sub>s</sub>は、せん断荷重-せん断変 位曲線においてピーク強度に到達する以前の直線部分の勾配として求めることから、No.1 試料のせん断剛性 K<sub>s</sub>は 0.383MPa/mm となった。

一方、図-5.8 中、実線と点線で試料対角の位置におけるダイレーション挙動 を示す。一点斜線でこれらの平均値を示した。実線と点線において、せん断変位 の増加に伴いダイレーションが漸次増加する傾向は同様であるが、その増加量は 異なることがわかる。これは、前節の垂直載荷試験(図-5.6参照)で論じた垂直 変位挙動の対角位置における相違と同様の要因によって、ダイレーションの変形 挙動も相違が生じていることが考えられる。すなわち、局所的なジョイントの喃 み合わせや局所的な粒子の破砕がダイレーション挙動に影響を及ぼしていること が考えられる。図-5.3 に試験後のジョイント面の写真を示す。図中、赤丸で示し た箇所では部分的に粒子が破砕されていることが確認できた。このように、ジョ イント全面が均等に破断するのではなく、局所的な粒子破壊が生じることからジ ョイントの対角位置における変位挙動は不均等になるものと考えられる。

ジョイント面の粗さ係数 JRC は(2)式によって求めることができる。

$$JRC = \frac{\tan^{-1} \left( \frac{\tau_{max}}{\sigma_n} \right) - \phi_r}{\log_{10} \frac{JCS}{\sigma_n}}$$
(2)

ここで、 $\tau_{max}$ は最大せん断強度、 $\sigma_{n}$ は垂直荷重、 $\phi_{r}$ は残留摩擦角、JCS は前節 (1)式から求められるジョイント面の強度である。 $\phi_{r}$ は後述の(5)式から求められる。したがって No.1 試料におけるジョイント面の粗さ係数は JRC=15.63 となった。

全25試料について、JRCを求めた結果をまとめたものが表-5.3である。表中 には、参考までにせん断荷重-せん断変位曲線のタイプを示した。せん断荷重-せん断変位曲線は、大別して3種類の挙動を示した。Type-1は、ピークを迎えた 後は漸次せん断力が低下し、残留強度を呈するものである。このタイプでは、ジ ョイントの噛み合わせが切断された後はせん断力に対する抵抗力が落ち、その後 せん断力が徐々に低下し残留強度に至ることからせん断荷重-せん断変位曲線は 上に凸型の形状を呈するものである。ジョイント形状が平滑であったり、介在物 が存在しない場合はこのタイプのせん断荷重-せん断変位曲線を得た。Type-2 は 明瞭なピークを迎えることなく、徐々にせん断力が増加するものである。このタ イプでは、ジョイントの噛み合わせが切断されにくいことが起因し、このような 形状を呈することになるものと考えられる。特に、⑤の試料では介在物を有して いたことが起因し、せん断荷重-せん断変位曲線はこのタイプを呈したものと考 えられる。一方、Type-3 はピークを迎えた後はせん断力が一定となるものである。 このタイプは Type-1 に含まれると考えられるが、ピーク強度があまり明瞭ではな い。ジョイントの噛み合わせ状況等に起因しているものと考えられる。今回の試 験では2 試料について確認された。Type-2 と Type-3 については、便宜上試験範囲 (せん断変位 5mm)の中でせん断力の最大値を最大せん断強度 τ<sub>max</sub>、最小値を残 留強度 τ<sub>-</sub>とした。

5.1.5 ティルト試験

No.1 試料(MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)を用いた場 合の傾斜角は55.5 °となった。ジョイント面の粗さ係数 JRC は(3)式によっても 求めることができる。

$$JRC = \frac{\alpha - \phi_r}{\log_{10} \frac{JCS}{\sigma_{no}}}$$
(3)

ここで、 $\alpha$ は傾斜角である。 $\phi_r$ 、JCS は (2)式の場合と同様である。本試験は、 せん断試験後にせん断用治具ならびにモルタルモールドを取去り実施したため、  $\sigma_{no}$ は試料のみの重量となる。したがって、No.1 試料におけるジョイント面の粗 さ係数 JRC は 7.40 となった。また、傾斜角度の増加に伴いジョイント下面に作用 する自重は小さくなることから、傾斜角により垂直抗力( $\sigma_{no}$ ·cos  $\alpha$ )を求め(3) 式から JRC を算定すると 7.03 となった。いずれの場合も、(2)式で求めた JRC の 半分程度になった。

全25試料について、傾斜角とJRCを求めた結果をまとめたものが表-5.4 で ある。全ての試料について、ティルト試験で求めたJRCの方が半分以下になった。 場合によっては、No.22試料などは1/30程度まで小さくなり、明確な違いのある ことが判明した。せん断試験では、試料重量とモルタルモールドと載荷治具の合 計重量がジョイント面に作用するため、ある程度の拘束が発生し、局所的な粒子 破壊の伴うせん断破壊が発生する。しかし、ティルト試験では、試料重量のみの 負荷となり、拘束が小さいことから粒子破壊による滑りは生じない、さらに、傾 斜角が大きくなると純粋な滑りよりはむしろ、傾斜下端の回転の影響が見られる ようになることからティルト試験からの JRC 算定には疑問が残る。以上の理由から、ティルト試験による JRC は参考値として扱う。

#### 5.2 新鮮岩石試料による試験

#### 5.2.1 密度測定

精度高く密度を求めるため、新鮮岩石コアから直径 30mm、細長比1:2の円柱 供試体を整形し密度測定に用いた。また、参考のため、整形した供試体を用いて 圧縮試験を実施し、一軸圧縮強度を求めた。対象花崗岩の密度は 25.6kN/m<sup>3</sup>前後で あった。一軸圧縮強度は、No.29 試料(④<sub>1</sub>)が 84.29MPa となった以外は、130MPa とほぼ同じ強度を有している結果を得た。得られた結果を表-5.5 に示す。

5.2.2 点載荷試験

シュミットハンマーによる点載荷によって、新鮮岩石切断面の反発度 R が求め られる。すると、新鮮岩石の圧縮強度 σ<sub>c</sub>は(4)式によって求めることができる。

$$\log_{10}\sigma_{\rm c} = 0.00088 \ \rho \ \rm R + 1.01 \tag{4}$$

ここで、*p*は密度である。

得られた結果を表-5.5 に示す。前節において圧縮試験から得られた一軸圧縮 強度と比較すると、④<sub>I</sub>を除いてほぼ同程度の強度が得られた。④<sub>I</sub>に関しては、 107.48MPaとなり、圧縮試験からの値 84.29MPaと 30%もかけ離れた結果となった。 5.2.3 ティルト試験

新鮮岩石のティルト試験から傾斜角(基礎摩擦角  $\phi_b$ )が得られる。すると、ジョイントの残留摩擦角  $\phi_r$ は(5)式によって求めることができる。

$$\phi_{\rm r} = (\phi_{\rm b} - 20) + 20 \frac{R_{\rm j}}{R} \tag{5}$$

ここで、R<sub>i</sub>はジョイント面の反発度、R は新鮮岩石の反発度である。

得られた結果を表-5.6 に示す。 $\phi_b$ は 31.7~35.0 の範囲に分布しており、試料の違いによる変動は少ない。また、 $\phi_r$ も 32.2~35.6 の範囲に分布しており、試料の違いによる変動は少ない結果となった。

以上、ジョイントを含む岩石試料と新鮮岩石試料による試験をおこなった結果、 得られた結果を一覧にしたものが表-5.7である。示したデータは、ラフネス最小面 積、垂直剛性 K<sub>n</sub>、せん断剛性 K<sub>n</sub>、ジョイント面圧縮強度 JCS、ジョイント面粗さ係数 JRC の5パラメータである。このうち、K<sub>n</sub>、K<sub>s</sub>、JCS、および JRC の4パラメータが試 料分類された5つのカテゴリーといかなる関係があるかを調べた。図-5.9~5.12 に それぞれのパラメータの測定範囲と平均値を分類毎に示した。測定範囲は最大値と最 小値の範囲を棒線で、平均値は棒線の右側に突起で表した。なお、図-5.12 に示す JRC はせん断試験から得られた結果を示している。

分類カテゴリーが同じである①と②について、K<sub>s</sub>は①が大きくなるが、それ以外のK<sub>n</sub>、JCS、およびJRC は逆に②より小さくなり、差異が認められる。すなわち、同 ーカテゴリーの試料であっても、サンプリング位置による違いが生じたことが判明した。③のカテゴリーは②と比較してジョイント形状が波状(C)の場合である。K<sub>s</sub> には明瞭な相違は認められないが、K<sub>n</sub>、JCS、およびJRC はいずれも明瞭な相違が認 められた。一方、④と⑤はジョイント角度が高角のカテゴリーに分類(ただし、⑤<sub>II</sub> は低角に分類)される。これらの場合、④<sub>I</sub>と④<sub>I</sub>ではK<sub>n</sub>とJCS は大きく異なる。ま た、⑤の中では⑤<sub>I</sub>と⑤<sub>I</sub>はほぼ同程度のパラメータを有しているが、⑤<sub>I</sub>は全てのパ ラメータで相違が確認できた。ジョイント角度が低角であるという条件が影響してい るものと考えられる。

次いで、ボーリング孔別および深度区分別で、K<sub>n</sub>、K<sub>s</sub>、JCS、および JRC の4パラ メータがいかなる関係にあるかを調べた。図-5.13~5.14 にそれぞれのパラメータ の測定範囲と平均値をボーリング孔別および深度区分別に示した。図の表示方法は、 先のカテゴリー分類との相関関係と同じである。また、JRC はせん断試験から得られ た結果を示している。なお、深度区分としては表-3.1 に示すような浅部、中間部お よび深部の3つの領域に分けて考える。浅部、中間部および深部の深度範囲は以下の 通りである。

(1) 浅部

M I U - 1 孔: 0~300m M I U - 2 孔: 0~400m M I U - 3 孔: 0~300m

(2) 中間部

M I U - 1  $\frac{7}{4}$  : 300 ~ 700m M I U - 2  $\frac{7}{4}$  : 400 ~ 700m M I U - 3  $\frac{7}{4}$  : 300 ~ 700m

(3) 深部

MIU-1孔:700m~

MIU-2孔:700m~

MIU-3孔:700m~

ボーリング孔別で整理された結果から、 $K_n \ge K_s$ ではMIU-2孔が最も大きくな るなど同様な傾向が認められた。また、JCSに関しては平均値および最大値ともにM IU-1孔、MIU-2孔、MIU-3孔の順に大きくなっており、明確な差違が認 められた。しかし、JRCに関しては平均値の変動幅が小さく、差違を認めるには至ら なかった。一方、深度区分別で整理された結果から、 $K_n$ に関しては中間部がもっとも 小さい結果になった。 $K_s \ge JCS$ に関しては、深くなればなるほど小さくなる傾向にあ ること判明した。しかし、JRCに関してはボーリング孔別の結果と同様に、差違を認 めるには至らなかった。

Barton-Bandis による破壊条件式は(6)式で示される。式中、JRC、JCS および $\phi_r$ が必要となる。本試験で得られた結果について、5つの分類カテゴリーで想定されるJRC、JCS および $\phi_r$ を表-5.8 に示す。

$$\tau = \sigma_{\rm n} \tan \left( \rm{JRClog}_{10} \frac{\rm{JCS}}{\sigma_{\rm n}} + \phi_{\rm r} \right)$$
(6)









下面







下面



表-5.1 ジョイントの接触面積

| N   | 八业工 | ボーリング孔 | 深度     |          | 接触面積 A(cm <sup>2</sup> ) |                |       |  |
|-----|-----|--------|--------|----------|--------------------------|----------------|-------|--|
| No. | 分類  | No.    | (m)    | 正円・傾斜    | A <sub>A</sub>           | A <sub>B</sub> | 最小    |  |
| 1   |     | MTII 1 | 112.82 | N3W25E   | 32.70                    | 33.39          | 32.70 |  |
| 2   | 1   | MIU-1  | 291.53 | N47E11NW | 32.40                    | 31.85          | 31.85 |  |
| 3   |     | MIU-2  | 163.62 | EW61S    | 31.85                    | 31.55          | 31.55 |  |
| 4   |     | MIU-3  | 143.32 | N32E24SE | 31.84                    | 31.64          | 31.64 |  |
| 5   |     | MIU-1  | 316.32 | N79E24S  | 36.34                    | 36.57          | 36.34 |  |
| 6   |     | MIU-2  | 307.94 | N86W10S  | 31.26                    | 31.11          | 31.11 |  |
| 7   | 2   |        | 415.50 | N37E23SE | 29.74                    | 29.78          | 29.74 |  |
| 8   |     | MIU-3  | 464.60 | N81W2S   | 29.31                    | 29.26          | 29.26 |  |
| 9   |     |        | 472.31 | N81E12S  | 29.59                    | 29.21          | 29.21 |  |
| 10  |     | MIU-1  | 313.30 | N56E     | 31.66                    | 31.60          | 31.60 |  |
| 11  | 3   | MIU-2  | 388.51 | N85W17N  | 33.59                    | 33.34          | 33.34 |  |
| 12  |     | MTU 2  | 397.85 | N48E26SE | 30.02                    | 30.02          | 30.02 |  |
| 13  |     | M10-3  | 537.15 | N12E45W  | 39.36                    | 39.96          | 39.36 |  |
| 14  |     | MTIL 1 | 331.36 | N88W52S  | 46.93                    | 46.76          | 46.76 |  |
| 15  |     | MILU-1 | 589.28 | EW55N    | 45.87                    | 45.20          | 45.20 |  |
| 16  |     | MTH 2  | 971.86 | N46E63SE | 59.14                    | 65.73          | 59.14 |  |
| 17  |     | MIU-3  | 984.72 | N78E61S  | 56.94                    | 54.18          | 54.18 |  |
| 18  |     | MIU-1  | 846.18 | N57W64NE | 71.48                    | 72.17          | 71.48 |  |
| 19  |     | MIU-3  | 322.76 | EW65S    | 42.45                    | 42.78          | 42.45 |  |
| 20  |     | MIU-1  | 679.50 | N75E66S  | 69.48                    | 71.29          | 69.48 |  |
| 21  |     | MIU-2  | 430.72 | N63E56N  | 56.48                    | 55.29          | 55.29 |  |
| 22  |     | MTIL 2 | 509.14 | N5E49W   | 44.25                    | 41.35          | 41.35 |  |
| 23  |     | C-OTW  | 527.25 | N75₩55N  | 47.31                    | 47.79          | 47.31 |  |
| 24  |     | MTIL 9 | 276.34 | N20E21W  | 32.90                    | 33.44          | 32.90 |  |
| 25  |     | MILU-Z | 290.32 | N73W29S  | 37.38                    | 36.86          | 36.86 |  |



図-5.3 せん断試験後のジョイント面



図-5.4 x-y測定間隔とジョイント表面積の関係

表-5.2 点載荷試験による反発度と JCS

|     |                | 反発度 R <sub>j</sub>               |                 | 密度。        | JCS  |                  |                            |  |
|-----|----------------|----------------------------------|-----------------|------------|------|------------------|----------------------------|--|
| No. | 分類             | R <sub>ja</sub>                  | R <sub>jB</sub> | $(kN/m^3)$ | JCSA | JCS <sub>B</sub> | 平均值<br>JCS <sub>mean</sub> |  |
| 1   |                | 22.3                             | 27.5            |            | 32.6 | 42.7             | 37.6                       |  |
| 2   | 1              | 29.1                             | 35.0            | 05 69      | 46.4 | 63.0             | 54.7                       |  |
| 3   |                | 37.7                             | 26.5            | 20.00      | 72.5 | 40.5             | 56.5                       |  |
| 4   |                | 35.6                             | 27.3            |            | 65.0 | 42.2             | 53.6                       |  |
| 5   |                | 26.5                             | 26.2            |            | 40.3 | 39.7             | 40.0                       |  |
| 6   |                | 31.6                             | 32.5            |            | 52.5 | 55.0             | 53.8                       |  |
| 7   | 2              | 29.5                             | 35.3            | 25.55      | 47.1 | 63.6             | 55.4                       |  |
| 8   |                | 35.1                             | 34.9            |            | 63.0 | 62.3             | 62.7                       |  |
| 9   | -              | 38.7                             | 31.0            |            | 75.9 | 50.9             | 63.4                       |  |
| 10  |                | 23.2                             | 24.7            | 25.71      | 34.3 | 37.1             | 35.7                       |  |
| 11  | 3              | 30.7                             | 36.2            |            | 50.7 | 67.5             | 59.1                       |  |
| 12  |                | 40.1                             | 31.5            |            | 82.7 | 52.8             | 67.7                       |  |
| 13  |                | 24.4                             | 25.6            | ·          | 36.5 | 38.8             | 37.7                       |  |
| 14  |                | 30.6                             | 28.9            |            | 50.4 | 46.1             | 48.3                       |  |
| 15  |                | 15.8                             | 18.8            | 95 79      | 23.3 | 27.3             | 25.3                       |  |
| 16  |                | 28.8                             | 25.2            |            | 45.9 | 38.1             | 42.0                       |  |
| 17  |                | 29.7                             | 24.8            |            | 48.1 | 37.3             | 42.7                       |  |
| 18  |                | 30.5                             | 32.4            | 25.68      | 50.0 | 55.2             | 52.6                       |  |
| 19  |                | 30.9                             | 28.7            | 20.00      | 51.1 | 45.6             | 48.3                       |  |
| 20  | G              | 30.2                             | 34.8            | 25 76      | 49.5 | 62.9             | 56.2                       |  |
| 21  |                | <sup>(5)</sup> <sub>1</sub> 29.6 |                 | 23.70      | 48.0 | 41.4             | 44.7                       |  |
| 22  |                | 26.4                             | 28.1            | 25 68      | 40.4 | 44.2             | 42.3                       |  |
| 23  |                | 36.2                             | 32.1            | 20.00      | 67.3 | 54.4             | 60.8                       |  |
| 24  | (F)            | 32.1                             | 24.5            | 25 62      | 54.2 | 36.5             | 45.4                       |  |
| 25  | - <sup>5</sup> | 26.4                             | 25.8            | 23.03      | 40.3 | 39.1             | 39.7                       |  |



図-5.5 JCSとジョイント分類との関係



図-5.6 垂直荷重一垂直变位関係







図-5.8 ダイレーション挙動

| 衣=3.3 亜圓戦何わよいてん研試験による亜圓剛住、てん研剛住わよい | 表- | -5.3 | 垂直載荷および | びせん断試験によ | る垂直剛性、 | せん断剛性およ | :びJI | RC |
|------------------------------------|----|------|---------|----------|--------|---------|------|----|
|------------------------------------|----|------|---------|----------|--------|---------|------|----|

|     |                    | 垂直載荷<br>試験                      | せん断試験                            |                                       |                              |                             |                  |                     |  |
|-----|--------------------|---------------------------------|----------------------------------|---------------------------------------|------------------------------|-----------------------------|------------------|---------------------|--|
| No. | 分類                 | 垂直剛性<br>K <sub>n</sub> (MPa/mm) | せん断剛性<br>K <sub>s</sub> (MPa/mm) | 最大せん断<br>強度<br><sub>て max</sub> (MPa) | 残留強度<br>τ <sub>r</sub> (MPa) | 垂直圧<br>σ <sub>n</sub> (MPa) | JRC <sub>s</sub> | 荷重-変<br>位曲線の<br>タイプ |  |
| 1   |                    | 95.6                            | 0.383                            | 0.143                                 | 0.081                        | 0.070                       | 15.63            | 1                   |  |
| 2   |                    | 667.2                           | 0.221                            | 0.116                                 | 0.066                        | 0.072                       | 11.88            | 2                   |  |
| 3   |                    | 235.1                           | 21.571                           | 0.151                                 | 0.078                        | 0.073                       | 13.90            | 1                   |  |
| 4   | 1                  | 133.6                           | 2.605                            | 0.123                                 | 0.084                        | 0.073                       | 12.37            | 3                   |  |
| 5   |                    | 236.9                           | 0.565                            | 0.146                                 | 0.073                        | 0.063                       | 15.43            | 1                   |  |
| 6   | 1                  | 313.0                           | 0.342                            | 0.125                                 | 0.074                        | 0.074                       | 11.73            | 1                   |  |
| 7   | 2                  | 310.1                           | 0.429                            | 0.119                                 | 0.077                        | 0.077                       | 10.89            | 1                   |  |
| 8   |                    | 337.8                           | 6.864                            | 0.302                                 | 0.163                        | 0.078                       | 16.70            | 1                   |  |
| 9   | 1                  | 500.9                           | 2.097                            | 0.616                                 | 0.127                        | 0.079                       | 19.20            | 1                   |  |
| 10  |                    | 130.6                           | 8.357                            | 0.134                                 | 0.078                        | 0.072                       | 14.54            | 1                   |  |
| 11  | ] _                | 159.6                           | 1.028                            | 0.248                                 | 0.201                        | 0.068                       | 16.33            | 2                   |  |
| 12  | 1 3                | 70.4                            | 1.066                            | 0.100                                 | 0.071                        | 0.076                       | 8.48             | 2                   |  |
| 13  | 1                  | 414.9                           | 1.100                            | 0.103                                 | 0.063                        | 0.058                       | 13.37            | 1                   |  |
| 14  |                    | 86.2                            | 12.250                           | 0.196                                 | 0.128                        | 0.049                       | 16.67            | 1                   |  |
| 15  |                    | 151.7                           | 0.469                            | 0.078                                 | 0.059                        | 0.051                       | 13.43            | 3                   |  |
| 16  | ] <sup>(⊈)</sup> I | 197.5                           | 0.187                            | 0.054                                 | 0.027                        | 0.039                       | 9.61             | 1                   |  |
| 17  | 1                  | 226.1                           | 0.285                            | 0.091                                 | 0.052                        | 0.043                       | 13.27            | 1                   |  |
| 18  |                    | 334.4                           | 1.553                            | 0.119                                 | 0.044                        | 0.032                       | 14.34            | 1                   |  |
| 19  |                    | 283.8                           | 3.000                            | 0.210                                 | 0.066                        | 0.054                       | 16.11            | 1                   |  |
| 20  | ß                  | 74.9                            | 0.144                            | 0.053                                 | 0.036                        | 0.033                       | 8.81             | 2                   |  |
| 21  |                    | 168.7                           | 1.242                            | 0.091                                 | 0.059                        | 0.042                       | 12.32            | 1                   |  |
| 22  | 6                  | 33.1                            | 0.813                            | 0.081                                 | 0.051                        | 0.056                       | 9.79             | 2                   |  |
| 23  |                    | 197.7                           | 1.019                            | 0.149                                 | 0.108                        | 0.049                       | 13.41            | 2                   |  |
| 24  | 6_                 | 709.8                           | 0.163                            | 0.113                                 | 0.070                        | 0.070                       | 12.43            | 2                   |  |
| 25  |                    | 59.0                            | 6.400                            | 0.120                                 | 0.067                        | 0.062                       | 14.36            | 2                   |  |

せん断荷重ーせん断変位の挙動タイプ





Type-1

Type-2

Type-3

|     |                  |                                        |          |                  | 傾斜角に。                                  | にる補正             |
|-----|------------------|----------------------------------------|----------|------------------|----------------------------------------|------------------|
| No. | 分類               | 傾斜角 試料重量<br>α(°) σ <sub>no</sub> (MPa) |          | JRC <sub>T</sub> | 垂直抗力<br>σ <sub>no</sub> ·cosα<br>(MPa) | JRC <sub>T</sub> |
| 1   |                  | 55.5                                   | 0.000891 | 7.40             | 0.000505                               | 7.03             |
| 2   |                  | 51.8                                   | 0.001063 | 5.89             | 0.000658                               | 5.64             |
| 3   | U                | 54.0                                   | 0.001090 | 6.35             | 0.000641                               | 6.05             |
| 4   |                  | 55.4                                   | 0.001052 | 6.71             | 0.000598                               | 6.38             |
| 5   |                  | 60.1                                   | 0.001063 | 8.02             | 0.000530                               | 7.52             |
| 6   |                  | 45.9                                   | 0.001027 | 4.26             | 0.000715                               | 4.12             |
| 7   | 2                | 50.9                                   | 0.001035 | 5.28             | 0.000653                               | 5.06             |
| 8   |                  | 55.3                                   | 0.001068 | 5.93             | 0.000608                               | 5.64             |
| 9   |                  | 47.2                                   | 0.001120 | 4.26             | 0.000762                               | 4.11             |
| 10  | 0                | 52.4                                   | 0.000606 | 6.24             | 0.000370                               | 5.98             |
| 11  |                  | 48.7                                   | 0.001003 | 4.60             | 0.000662                               | 4.44             |
| 12  |                  | 39.3                                   | 0.001064 | 2.40             | 0.000824                               | 2.35             |
| 13  |                  | 50.5                                   | 0.001047 | 6.02             | 0.000666                               | 5.77             |
| 14  |                  | 69.7                                   | 0.001041 | 9.34             | 0.000362                               | 8.50             |
| 15  |                  | 46.4                                   | 0.000723 | 5.66             | 0.000499                               | 5.47             |
| 16  |                  | 53.6                                   | 0.000815 | 6.09             | 0.000484                               | 5.81             |
| 17  |                  | 63.0                                   | 0.000750 | 7.99             | 0.000341                               | 7.45             |
| 18  |                  | 69.4                                   | 0.000677 | 8.30             | 0.000239                               | 7.60             |
| 19  | 4 <sup>4</sup> 1 | 64.8                                   | 0.000975 | 7.82             | 0.000415                               | 7.25             |
| 20  | Ē                | 47.6                                   | 0.000672 | 3.61             | 0.000453                               | 3.49             |
| 21  | I OI             | 46.9                                   | 0.000806 | 4.01             | 0.000551                               | 3.88             |
| 22  |                  | 28.9                                   | 0.001015 | 0.36             | 0.000889                               | 0.36             |
| 23  |                  | 39.4                                   | 0.000982 | 1.89             | 0.000759                               | 1.84             |
| 24  | E                | 47.3                                   | 0.001151 | 5.24             | 0.000781                               | 5.05             |
| 25  | - <sup>(5)</sup> | 29.5                                   | 0.001077 | 1.57             | 0.000937                               | 1.55             |

表-5.4 ティルト試験による傾斜角と JRC

| No. 分類 | 密度測               | 定試験他           | 点載在                       | ティルト試験   |                              |                |
|--------|-------------------|----------------|---------------------------|----------|------------------------------|----------------|
|        | 分類                | 密度<br>ρ(kN/m3) | 一軸圧縮強度 $\sigma_{c}$ (MPa) | 反発度<br>R | 圧縮強度<br>σ <sub>c</sub> (MPa) | 基礎摩擦角<br>∮₀(゜) |
| 26     | 1                 | 25.63          | 139.43                    | 51.5     | 148.44                       | 31.6           |
| 27     | 2                 | 25.55          | 136.69                    | 47.5     | 119.67                       | 32.3           |
| 28     | 3                 | 25.71          | 128.87                    | 46.0     | 112.39                       | 32.2           |
| 29     | (4) <sub>I</sub>  | 25.72          | 84.29                     | 45.7     | 110.75                       | 33.1           |
| 30     | (4) <sub>11</sub> | 25.68          | 139.05                    | 45.2     | 107.51                       | 34.9           |
| 31     | (5) <sub>1</sub>  | 25.76          | 124.92                    | 43.8     | 100.67                       | 35.0           |
| 32     | 5 <sub>1</sub>    | 25.68          | 126.92                    | 43.9     | 100.48                       | 34.8           |
| 33     | 51                | 25.63          | 134.70                    | 50.0     | 137.32                       | 31.9           |

表-5.5 新鮮岩石試料による試験結果一覧
| N   | 分類 | 基礎摩擦角              | 反発度  | 反発度                | 残留摩擦角           |
|-----|----|--------------------|------|--------------------|-----------------|
| No. |    | ¢ <sub>b</sub> (°) | R    | R <sub>jmean</sub> | $\phi_r(\circ)$ |
| 1   |    |                    |      | 24.9               | 21.3            |
| 2   |    | 31.6               | 51.5 | 32.1               | 24.0            |
| 3   | Û  |                    |      | 32.1               | 24.1            |
| 4   |    |                    |      | 31.5               | 23.8            |
| 5   |    | 32.3               | 47.5 | 26.4               | 23.4            |
| 6   | 2  |                    |      | 32.1               | 25.8            |
| 7   |    |                    |      | 32.4               | 25.9            |
| 8   |    |                    |      | 35.0               | 27.0            |
| 9   |    |                    |      | 34.9               | 27.0            |
| 10  | 3  | 32.2               | 46.0 | 24.0               | 22.6            |
| 11  |    |                    |      | 33.5               | 26.7            |
| 12  |    |                    |      | 35.8               | 27.8            |
| 13  |    |                    |      | 25.0               | 23.1            |
| 14  |    | 33.1               | 45.7 | 29.8               | 26.1            |
| 15  |    |                    |      | 17.3               | 20.7            |
| 16  |    |                    |      | 27.0               | 24.9            |
| 17  |    |                    |      | 27.3               | 25.0            |
| 18  |    | 34.9               | 45.2 | 31.5               | 28.8            |
| 19  |    |                    |      | 29.8               | 28.1            |
| 20  |    | 35.0               | 43.8 | 32.5               | 29.8            |
| 21  |    |                    |      | 28.2               | 27.9            |
| 22  |    | 34.8               | 43.9 | 27.3               | 27.2            |
| 23  |    |                    |      | 34.2               | 30.4            |
| 24  | 6  | 31.9               | 50.0 | 28.3               | 23.2            |
| 25  |    |                    |      | 26.1               | 22.3            |

表-5.6 残留摩擦角の換算

表-5.7 各種試験により得られた結果一覧

| No. 分<br>類 | 分                  | ボーリ<br>ング孔<br>No.     | 深度<br>(m) | ラフ<br>走向・ス最<br>傾斜 面和<br>(cm | ラフネ<br>ス最小  | フネ<br>最小<br>面積<br>cm <sup>2</sup> )<br>垂直剛性<br>K <sub>n</sub><br>(MPa/mm) | せん断<br>剛性<br>K <sub>s</sub><br>(MPa/mm) | ジョイン<br>ト面圧縮<br>強度<br>JCS(MPa) | ジョイント面<br>粗さ係数 |                  |
|------------|--------------------|-----------------------|-----------|-----------------------------|-------------|---------------------------------------------------------------------------|-----------------------------------------|--------------------------------|----------------|------------------|
|            | 類                  |                       |           |                             | 面積<br>(cm²) |                                                                           |                                         |                                | JRCs           | JRC <sub>T</sub> |
| 1          | - ① -              | MTIT 1                | 112.82    | N3W25E                      | 32.70       | 95.6                                                                      | 0.383                                   | 37.6                           | 15.63          | 7.40             |
| 2          |                    | MIU-I                 | 291.53    | N47E11NW                    | 31.85       | 667.2                                                                     | 0.221                                   | 54.7                           | 11.88          | 5.89             |
| 3          |                    | MIU-2                 | 163.62    | EW61S                       | 31.55       | 235.1                                                                     | 21.571                                  | 56.5                           | 13.90          | 6.35             |
| 4          |                    | MIU-3                 | 143.32    | N32E24SE                    | 31.64       | 133.6                                                                     | 2.605                                   | 53.6                           | 12.37          | 6.71             |
| 5          |                    | MIU-1                 | 316.32    | N79E24S                     | 36.34       | 236.9                                                                     | 0.565                                   | 40.0                           | 15.43          | 8.02             |
| 6          |                    | MIU-2                 | 307.94    | N86W10S                     | 31.11       | 313.0                                                                     | 0.342                                   | 53.8                           | 11.73          | 4.26             |
| 7          |                    |                       | 415.50    | N37E23SE                    | 29.74       | 310.1                                                                     | 0.429                                   | 55.4                           | 10.89          | 5.28             |
| 8          |                    | MIU-3                 | 464.60    | N81W2S                      | 29.26       | 337.8                                                                     | 6.864                                   | 62.7                           | 16.70          | 5.93             |
| 9          |                    |                       | 472.31    | N81E12S                     | 29.21       | 500.9                                                                     | 2.097                                   | 63.4                           | 19.20          | 4.26             |
| 10         | - 3                | MIU-1<br>MIU-2        | 313.30    | N56E                        | 31.60       | 130.6                                                                     | 8.357                                   | 35.7                           | 14.54          | 6.24             |
| 11         |                    |                       | 388.51    | N85W17N                     | 33.34       | 159.6                                                                     | 1.028                                   | 59.1                           | 16.33          | 4.60             |
| 12         |                    | MIU-3                 | 397.85    | N48E26SE                    | 30.02       | 70.4                                                                      | 1.066                                   | 67.7                           | 8.48           | 2.40             |
| 13         |                    |                       | 537.15    | N12E45W                     | 39.36       | 414.9                                                                     | 1.100                                   | 37.7                           | 13.37          | 6.02             |
| 14         | (4) I              | MIU-1                 | 331.36    | N88W52S                     | 46.76       | 86.2                                                                      | 12.250                                  | 48.3                           | 16.67          | 9.34             |
| 15         |                    |                       | 589.28    | EW55N                       | 45.20       | 151.7                                                                     | 0.469                                   | 25.3                           | 13.43          | 5.66             |
| 16         |                    | MIU-3                 | 971.86    | N46E63SE                    | 59.14       | 197.5                                                                     | 0.187                                   | 42.0                           | 9.61           | 6.09             |
| 17         |                    |                       | 984.72    | N78E61S                     | 54.18       | 226.1                                                                     | 0.285                                   | 42.7                           | 13.27          | 7.99             |
| 18         | 3<br>) ④ π         | MIU-1                 | 846.18    | N57W64NE                    | 71.48       | 334.4                                                                     | 1.553                                   | 52.6                           | 14.34          | 8.30             |
| 19         |                    | MIU-3                 | 322.76    | EW65S                       | 42.45       | 283.8                                                                     | 3.000                                   | 48.3                           | 16.11          | 7.82             |
| 20         | )<br>5 I           | MIU-1                 | 679.50    | N75E66S                     | 69.48       | 74.9                                                                      | 0.144                                   | 56.2                           | 8.81           | 3.61             |
| 21         |                    | MIU-2                 | 430.72    | N63E56N                     | 55.29       | 168.7                                                                     | 1.242                                   | 44.7                           | 12.32          | 4.01             |
| 22         | 2<br>23 <b>5</b> 1 | D <sub>II</sub> MIU-3 | 509.14    | N5E49W                      | 41.35       | 33.1                                                                      | 0.813                                   | 42.3                           | 9.79           | 0.36             |
| 23         |                    |                       | 527.25    | N75W55N                     | 47.31       | 197.7                                                                     | 1.019                                   | 60.8                           | 13.41          | 1.89             |
| 24         | 5 m MI             | MIU-2                 | 276.34    | N20E21W                     | 32.90       | 709.8                                                                     | 0.163                                   | 45.4                           | 12.43          | 5.24             |
| 25         |                    |                       | 290.32    | N73W29S                     | 36.86       | 59.0                                                                      | 6.400                                   | 39.7                           | 14.36          | 1.57             |







図-5.10 せん断剛性 K<sub>s</sub>と分類の関係



図-5.11 ジョイント面強度 JCS と分類の関係



図-5.12 ジョイント面の粗さ係数 JRC と分類の関係



図-5.13 ボーリング孔別における K<sub>n</sub>、K<sub>s</sub>、JCS、および JRC の関係



図-5.14 深度区分別における K<sub>n</sub>、K<sub>s</sub>、JCS、および JRC の関係

| - |                | · · · · · · · · · · · · · · · · · · · |                        |                             |
|---|----------------|---------------------------------------|------------------------|-----------------------------|
|   | No.            | ジョイント面の<br>圧縮強度<br>JCS(MPa)           | ジョイント面の<br>粗さ係数<br>JRC | 残留摩擦角<br>∳ <sub>r</sub> (°) |
|   | 1              | 50.6                                  | 13.45                  | 23.3                        |
|   | 2              | 55.1                                  | 14.79                  | 25.8                        |
|   | 3              | 50.1                                  | 13.18                  | 25.1                        |
|   | 4 <sub>1</sub> | 39.6                                  | 13.25                  | 24.2                        |
|   | 4 <sub>1</sub> | 50.5                                  | 15.23                  | 28.5                        |
|   | 5 <sub>1</sub> | 50.5                                  | 10.57                  | 28.9                        |
|   | 5∎             | 51.6                                  | 11.60                  | 28.8                        |
|   | 5∎             | 42.6                                  | 13.40                  | 22.8                        |

表-5.8 各分類における Barton-Bandis モデルのパラメータ

Barton - Bandis 
$$\mathcal{FF}\mathcal{W}$$
:  $\tau = \sigma_{n} \tan\left( \operatorname{JRClog}_{10} \frac{\operatorname{JCS}}{\sigma_{n}} + \phi_{r} \right)$ 

•

岐阜県瑞浪市の正馬様洞用地内でボーリングされた3地点(MIU-1孔、MI U-2孔、MIU-3孔)の1000mコアのうち、ジョイントを含む試料を用いてジョ イントの強度変形特性と幾何学特性を評価した。試験に供した試料は、ボーリング孔、 ジョイントの角度、ジョイントの形状および介在物の有無の4つのパラメータに着目 し、大きく5つのカテゴリー(①、②、③、④<sub>1</sub>、④<sub>1</sub>、⑤<sub>1</sub>、⑤<sub>1</sub>、⑤<sub>1</sub>)に分類した。 ジョイントを含む試料は25体、ジョイントを含まない新鮮な試料は8体である。ジ ョイントを含む試料に対しては、ラフネス測定、点載荷試験、垂直載荷試験、せん断 試験およびティルト試験を実施した。一方、ジョイントを含まない新鮮な試料に対し ては、密度測定、点載荷試験およびティルト試験を実施した。その結果、ジョイント の各試験からは、接触面積 A、垂直剛性 K<sub>n</sub>、せん断剛性 K<sub>s</sub>、強度 JCS、粗さ係数 JRC および残留摩擦角  $\phi_r$ が求められた。一方、新鮮岩石による試験からは、密度  $\rho$ 、一 軸圧縮強度  $\sigma_c$ および基礎摩擦角  $\phi_b$ が求められた。

得られた結果と試料分類(5つのカテゴリー)を比較すると、それぞれの分類に よって、各物性値の相違が明らかになった。例えば、分類カテゴリーが同じである① と②について、K<sub>s</sub>は①が大きくなるが、それ以外のK<sub>n</sub>、JCS、およびJRC は逆に②よ り小さくなるなどの特徴抽出ができた。また、ボーリング孔別および深度区分別によ って測定結果を整理したところ、定数(K<sub>n</sub>、K<sub>s</sub>、JCS、JRC)によっては有意な相関性 のあることが判明した。以上、ジョイントの力学定数が算定できたことから、UDEC 等の個別要素法を用いて対象岩盤内のジョイントや構造物の挙動解析を実施するに 際し、必要となる破壊条件式の一つである Barton-Bandis モデルの力学定数として JCS、JRC および  $\phi_r$ を決定した。なお、これらの定数は、上述の試料分類に対応して 決定した。

今回対象となった領域は深度 1000mであり、3本のボーリングコアから試料を選 定した。この領域の広さから考えると、試料本数は十分とは言えない。事実、各分類 における測定結果には大きくばらついているものもあり、必ずしも平均値がその特性 を十分表現しているとは言い難く、あくまで選られた測定結果の範疇からその特徴を 述べたに過ぎない。試料数を増やすことによって、さらに確度が高まることは言うま でもないが、今後は原位置での変形挙動計測等と比較しながら今回得られた結果を修 正しつつ利用することが肝要と考えられる。また、せん断試験における載荷方向は精 門長軸方向でかつ上面が地中に向かう方向としたが、地山応力や構造物の規模や方向

38

性を勘案し、ジョイントのせん断方向を考慮することが重要である。さらに、ジョイ ントにおける寸法効果を解明するため、ブロックサイズによるジョイントのせん断試 験も必要と考えられる。

- 吉田英一、大澤英昭、柳沢孝一、山川 稔:深部花崗岩中の割れ目解析 一岐阜県 東濃地域に分布する花崗岩類を例にして一、応用地質、第 30 巻、第 3 号、pp.11 ~22、1989.
- 2) 佐藤稔紀、杉原弘造、松井裕哉、木梨秀雄、守屋俊文:不連続面の特性とせん断 特性との関係、資源・素材'97 秋季大会、pp. 21~24、1997.
- 3) 木梨秀雄、畑 浩二、藤原紀夫:岩盤ジョイント面の形状測定と粗さの定量化、 第47回土木学会年次学術講演会講演概要集第3部、pp.622~623、1992.
- 4)小杉昌幸、ダナー・ビック、ニコラス・バートン: JRC/JCS 指標によるジョイント 特性評価 - 不連続性岩盤挙動の予測評価の件旧(第一報)-、資源、3巻、1号、 pp.11~21、1991.
- 5) N.Barton & S.Bandis : Review of predictive capabilities of JRC-JCS model in engineering practice, Rock Joints, pp.603~610, 1990.

## 卷末資料

- A. 垂直載荷試験およびせん断試験結果
- B. ラフネス測定結果
- C. コア・ジョイント面写真
- D. 試験装置·試験方法写真
- E. ジョイントデータ (CD-ROM)

A. 垂直載荷試験およびせん断試験結果

.



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No.1 (MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線)No. 2(MIU-1孔、深度:291.53m、走向・傾斜:N47E11NW)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線)No.3(MIU-2孔、深度:163.62m、走向・傾斜:EW61S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線)No.4 (MIU-3孔、深度:143.32m、走向・傾斜:N32E24SE)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 5 (MIU-1孔、深度:316.32m、走向・傾斜:N79E24S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 6 (MIU-2孔、深度:307.94m、走向・傾斜:N86W10S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 7 (MIU-3孔、深度:415.5m、走向・傾斜:N37E23SE)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重ーダイレイション曲線) No. 8 (MIU-3孔、深度:464.6m、走向・傾斜:N81W2S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 9 (MIU-3孔、深度:472.31m、走向・傾斜:N81E12S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 10 (MIU-1孔、深度:313.3m、走向・傾斜:N56E)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 11 (MIU-2孔、深度:388.51m、走向・傾斜:N85W17N)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No.12 (MIU-3孔、深度:397.85m、走向・傾斜:N48E26SE)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No.13 (MIU-3孔、深度:537.15m、走向・傾斜:N12E45W)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 14 (MIU-1孔、深度:331.36m、走向・傾斜:N88W52S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 15 (MIU-1孔、深度:589.28m、走向・傾斜:EW55N)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 16 (MIU-3孔、深度:971.86m、走向・傾斜:N46E63SE)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 17 (MIU-3孔、深度:984.72m、走向・傾斜:N78E61S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 18 (MIU-1孔、深度:846.18m、走向・傾斜:N57W64NE)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 19 (MIU-3孔、深度:322.76m、走向・傾斜:EW65S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 20 (MIU-1孔、深度:679.5m、走向・傾斜:N75E66S)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 21 (MIU-2孔、深度:430.72m、走向・傾斜:N63E56N)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 22 (MIU-3孔、深度:509.14m、走向・傾斜:N5E49W)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



No. 23 (MIU-3孔、深度:527.25m、走向·傾斜:N75W55N)



繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重ーせん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 24 (MIU-2孔、深度:276.34m、走向・傾斜:N20E21W)


繰返し垂直載荷試験結果(垂直荷重-垂直変位曲線)



せん断試験結果(せん断荷重-せん断変位曲線)



せん断試験結果(せん断荷重-ダイレイション曲線) No. 25 (MIU-2孔、深度:290.32m、走向・傾斜:N73W29S)

## B. ラフネス測定結果









上面 下面 試験後 No.1 (MIU-1孔、深度:112.82m、走向·傾斜:N3W25E)





下面



試験前

上面 下面 試験後 No. 2 (MIU-1孔、深度: 291.53m、走向・傾斜: N47E11NW)





下面











試験後 No.3 (MIU-2孔、深度:163.62m、走向・傾斜:EW61S)

試験前



上面



下面





上面



下面

試験後 No.4 (MIU-3孔、深度:143.32m、走向・傾斜:N32E24SE)





下面







試験後 No.5 (MIU-1孔、深度:316.32m、走向・傾斜:N79E24S)



上面



下面



試験後 No.6 (MIU-2孔、深度:307.94m、走向・傾斜:N86W10S)



















下面



試験後 No. 8 (MIU−3孔、深度:464.6m、走向・傾斜:N81₩2S)







上面 下面 試験後 No.9 (MIU-3孔、深度:472.31m、走向・傾斜:N81E12S)





下面



上面 下面 試験後 No.10 (MIU-1孔、深度:313.3m、走向・傾斜:N56E)





下面











上面 試験後 No.11 (MIU-2孔、深度:388.51m、走向・傾斜:N85W17N)



上面



下面



試験後 No. 12 (MIU-3孔、深度: 397.85m、走向・傾斜: N48E28SE)













上面

下面 試験後 No.13 (MIU-3孔、深度:537.15m、走向・傾斜:N12E45W)





下面



試験後 No. 14 (MIU-1孔、深度:331.36m、走向・傾斜:N88W52S)



















下面





上面



下面 試験後 No. 16 (MIU-3孔、深度:971.86m、走向・傾斜:N46E63SE)















下面



上面



下面 試験後 No. 18 (MIU-1孔、深度:846.18m、走向・傾斜:N57W64NE)













上面 下面 試験後 No.19 (MIU-3孔、深度:322.76m、走向・傾斜:EW65S)



上面



下面



試験後 No.20 (MIU-1孔、深度:679.5m、走向・傾斜:N75E66S)





上面





試験後 No.21 (MIU-2孔、深度:430.72m、走向・傾斜:N63E56N)





下面



試験後 No. 2 2 (MIU-3孔、深度:509.14m、走向・傾斜:N5E49₩)



















下面



試験後 No.24 (MIU-2孔、深度:276.34m、走向・傾斜:NN20E21W)







下面





「 下 面

試験後 No.25 (MIU-2孔、深度:290.32m、走向・傾斜:N73W29S)

C. コア・ジョイント面写真



採取コア





ジョイント面試験後 No.1 (MIU-1孔、深度:112.82m、走向・傾斜:N3W25E)



採取コア





ジョイント面試験後 No. 2 (MIU-1孔、深度:291.53m、走向・傾斜:N47E11NW)



採取コア





ジョイント面試験後 No.3 (MIU-2孔、深度:163.62m、走向・傾斜:EW61S)



採取コア



ジョイント面試験前



ジョイント面試験後 No.4 (MIU-3孔、深度:143.32m、走向・傾斜:N32E24SE)



採取コア



ジョイント面試験前



ジョイント面試験後 No.5 (MIU-1孔、深度:316.32m、走向・傾斜:N79E24S)



採取コア





ジョイント面試験後 No.6 (MIU-2孔、深度:307.94m、走向・傾斜:N86W10S)



採取コア



ジョイント面試験前



ジョイント面試験後 No.7 (MIU-3孔、深度:415.5m、走向・傾斜:N37E23SE)



採取コア





ジョイント面試験後 No. 8 (MIU-3孔、深度:464.6m、走向・傾斜:N81W2S)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 9 (MIU-3孔、深度:472.31m、走向・傾斜:N81E12S)



採取コア



ジョイント面試験前



ジョイント面試験後 No.10 (MIU-1孔、深度:313.3m、走向・傾斜:N56E)



採取コア



ジョイント面試験前



ジョイント面試験後 No.11 (MIU-2孔、深度:388.51m、走向・傾斜:N85W17N)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 12 (MIU-3孔、深度:397.85m、走向・傾斜:N48E2**6**SE)



採取コア



ジョイント面試験前



ジョイント面試験後 No.13 (MIU-3孔、深度:537.15m、走向・傾斜:N12E45W)



採取コア





ジョイント面試験後 No. 14 (MIU-1孔、深度:331.36m、走向・傾斜:N88W52S)



採取コア





ジョイント面試験後 No.15 (MIU-1孔、深度:589.28m、走向・傾斜:EW55N)



採取コア



ジョイント面試験前



ジョイント面試験後 No.16 (MIU-3孔、深度:971.86m、走向・傾斜:N46E63SE)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 17 (MIU-3孔、深度:984.72m、走向・傾斜:N78E61S)



採取コア





ジョイント面試験後 No.18 (MIU-1孔、深度:846.18m、走向・傾斜:N57W64NE)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 19 (MIU-3孔、深度:322.76m、走向・傾斜:EW65S)



採取コア





ジョイント面試験後 No. 20 (MIU-1孔、深度:679.5m、走向・傾斜:N75E66S)


採取コア



ジョイント面試験前



ジョイント面試験後 No. 21 (MIU-2孔、深度:430.72m、走向・傾斜:N63E56N)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 22 (MIU-3孔、深度:509.14m、走向・傾斜:N5E49W)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 23 (MIU-3孔、深度:527.25m、走向・傾斜:N75W55N)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 24 (MIU-2孔、深度:276.34m、走向・傾斜: N20E21W)



採取コア



ジョイント面試験前



ジョイント面試験後 No. 25 (MIU-2孔、深度:290.32m、走向・傾斜:N73W29S)

## D. 試験装置 · 試験方法写真

.



ラフネス測定状況



割れ目を含む試料のモールド整形状況



ジョイントせん断試験装置(垂直載荷試験状況)



渦電流式変位計(割れ目変位測定)設置状況



割れ目を含む試料のティルト試験状況



割れ目を含む試料の点載荷試験状況

E. ジョイントデータ (CD-ROM)

•