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ABSTRACT

During Heisei-14, Golder Associates provided support for JNC Tono at the MIU
Underground Rock Laboratory and the Aspé Block Scale Continuation Project.

Major activities for the Block Scale Continuation project during H-14 included
evaluation of the connectivity of the TRUE-BS rock block. Major analyses were
carried out to analyze flow dimension based on hydraulic tests, to evaluate the updated
microstructural model, and to understand transport pathways.

- Hydrostructural Analysis: During H-14, Golder Associates carried out extensive
analysis of the fracture connectivity within the TRUE-BS rock block, using fractional
dimension analysis with hydraulic interference measurements. These analyses
provided crucial insights into the geometry of transport pathways within fracture
networks.

- Transport Modeling: Golder developed and implemented a detailed microstructural
model for fractures which make up the TRUE rock block. This model considers the
individual properties of each immobile zone, including breccia, gouge, cataclasite,
mylonite, and altered granite. During H-14, simulations were carried out for each of
the major TRUE-BS transport experiments, using the updated microstructural model.
Results were compared against those obtained using the calibrated micro-structural
model of H-12.

- Hydraulic Interference Modeling: Each of hydraulic experiments was studied in
detail to determine possible transport pathway properties. Simulations were carried
out based on these pathways to assess possible breakthrough times.

Major activities for the MIU Laboratory concentrated on development of
hydrostructural models for the MIU and Shin-MIU sites. The FlowDim fractional
dimension hydraulic test interpretation system was used to carry out a unified analysis
of the MIU-4 experiment. In addition to the long term pumping test analysis as the
MIU hydrostructural synthesis, Golder carried out analyses of hydraulic tests in
borehole DH-2 to support development of preliminary FracMan discrete fracture
network models for the Shi-Yu-u Chi site.




B

Yk 14 FE. ERRBEETERT MIU) ZHE, XN INCABMET 3 Ay = —
7 > @ HRL(Hard Rock Laboratory)DEBEILFEIFFETdH 5. T AR TRUE Block Scale
Continuation(BAF. TRUE-BS) 7O =% NIBOAIEXEEML /-,

ROy MO SR 14 EEDOEERERIT. TRUE-BS Bk Egst 1cpE 3
B3 TH > 2. TRUE-BS 7OV 7 FOWEZDOERBERS N, ENEL 7= fhT
EEOERH DI, KIEABRICE D ST AREEN. BEHFOM/MESETTILOVER.
RUBFRBORE TH > 7.

KEHEMNT © TRUE-BS BAN DA OSSN 2 /K N TR I BT 2 IR

- © TCERHERIA LU TR EIT RS . YEETICX D, 8RRy KT —

7 N DBITRBEOEMFHMERICET 2 BEEABENE SN,

MEBITOETIAL . TRUE-BS AAZHRKT 2RO HM/INESE D TT)IL
EEFIMEFEDHEREETR> 2. ZREFIICBNTIE. A, WELtL. Ay S
Y1 b, vrOFA b, BEERED SRS ERBE O/ OBENEZ B I NG, &6
B2V, EE/s TRUE-BS IC B 2 EABITRBRE RFOM/IMEEETINEHANTI 23 L
—hL., ZORREUBEEOER 12 EEMMEETTN 2FAL TERSNERE L
w7, ,

KEBETHRBROETIAL : TRUE-BS 702/ R TEEX NI 2B AT RRER D FF
P2 KB FHRBRICE DWW THS M U, E2 WO S 2BIFRKEIH 5 M
9 57=DIZ FracMan % i W) T/KERTF3RBR O TG 217755 7=,

o, MAHY A b2FOMUGEICBETSEEE LT, AEEFIMERS NI,

MIU-4 RERODFIR : /KERERBRARHT O — N FlowDim 2 FH U C MIU-4 380 B 0 JE R BOK
LN EBL 2. FRBREIC. WNOOKXIT. EKEBREKT. BRGRKS RUUKIEILE
R ARHE N,

MIU KBRS 2R AL : RBIKABEMINTT 5 2 LIk > T EBEAMICBT
LRREWEORMAFROEEICHET 2BEORBE TN SN,

BEZERT R BT 2808 € T IVIERR  IFFAT O #8972 FracMan IC & 2 8Z%R v
b=« EFINOEREET S0, DH-2 FHOKEAROBHZEEML 7=,



TABLE OF CONTENTS

1. INTRODUCTION ......ootiiitiiiititiriinieneenietesisessessssssssssesssssssssessssssssssesssessssesssssassaesessssases e 1

2. ASPO BLOCK SCALE CONTINUATION SUPPORT ..........oo.cceeevrermermmsnnsssssnseseeesemsesssssns 2

21 Task 1.1: Hydrostructural ANalYSis.........ooceevecerivecireiereerenseseesee s seesessesessseseseosenes 2

22 Task 1.2 Transport MOdEling.........cccccevveiiinenieirennineeeseeeeseeeeseeeve et see e s e eses e s ses 5

23 Task 1.3: Hydraulic Interference Modeling...........cocueeeviecinreieveneneicceeeceseeeeseeseenens 11

3. TASK 2: MIU AND SHI YU-U CHI SITE CHARACTERISATION SUPPORT............. 15

3.1 Task 2.1: MIU-4 Test Interpretation SUPPOIL .......ccueevereereeinreervermenieneiieeneesseseessessesessens 15

32 Task 2.2: MIU Hydrostructural Synthesis.............. e s bbb 19

3.2.1 Long-Term Pumping Test — Observation Wells...........c.ccceeuerreverereererrrersessnnnens 20

33 Task 2.3: Shi Yu-u Chi Initial Model SUPPOIt........ccccvereerereererreierereeeeeeereee e 23

4. CONCLUSIONS ......ootiiiitiensietsieeessesesissesssesstssissssssssesssesesesssssesessssssssssssssssssassssosasesnes 28

5. REFERENCES ...ttt st ss s s srsssesesesessassessssssssssbasessssassons 29

LIST OF TABLES

Table 1-1. HeiSei-14 TasK SUMMALY ...ovvoveeeeeeeeeeees oo eeesseseseeeeeeseseesseesssssssseeesseseeeeeeeeooeeeeeeeseoeeeons 1

Table 1-2. Heisei-14 DeliVErables.......ccoeuruererireeierirteneeiereresnnee e ereseesessesses st eseesessesseessiesssensssensen 1

Table 2-1. Properties of 100-m Scale Geological Structure Type 1 (Fault) ..........cceeerereereeienrereeerceirnnenen. 7

Table 2-2. Properties of 100-m Scale Geological Structure Type 2 (Non-fault) ......c.ccccovveverererinrerinnnnn. 8
Table 2-3. Calculated Kd For the Different Materials in Contact With the Different Types of

GIOUNAWALET ..ottt ettt b s et b bbb e e e b e sbs s sbesaebesssssensonesesseneenn 8

Table 2-4. Simulations of Hydraulic Interference for Potential TRUE-BSC Pathways................c..u....... 13

Table 2-5. Proposed Remediation of KI0023B (after Andersson, 2003)........c..oeveemveereirreienneineeneensnenens 14

Table 3-1. FlowDim Analysis for MIU Hydraulic TeStS......c.ecverevrrreriveereimireresieieeceereseseeesesssnsnsessens 16

Table 3-2. Hydraulic Properties From FlowDim Analyses of MIU-4 Tests (rws only; sws if no rws)..... 19

Table 3-3. Hydraulic Properties and Flow Dimensions for LPT Interference Tests .......ccovvruvirennnirninnne, 23

Table 3-4. Summary 0f DH-2 ANAIYSES ......cccerumrerenriiiiiiiiinresnreienseisieseeeresssessissensenesesseessesessesssseess 25



LIST OF

Figure 2-1.

Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.

Figure 3-2..

Figure 3-3.

Figure 3-4.

Figure 3-5.
‘Figure 3-6.

LIST OF

FIGURES
Rate Normalized Derivatives for Selected Source Zones From TRUE-BS Tracer Testing

............................................................................................................................................... 4
Updated Microstructural MOdel.............cooeveiiniininiiniiniiiiicineteseeee e e et e e e 7
Predictive Simulation, Tracer TeSt C-1 .........ccoeeevevieeeeirereieeireeeeiireeesssereeseeesesessssssassssesssses 10
Predictive Simulation, Tracer Test G2 et ee e r s e e s sttt et et e r e 10
Predictive Simulation, TTACET TESt C-3 .......coeevteereririseeeresrreeseesssssssessssessessesssssssssessessesssses 1
Borehole and Instrumentation Geometry at the TRUE Block Scale Site .............cueevvvvennnee 12
Example Hydraulic Interference Simulation, Sink in KIQ023B:P6..............ccccoevvvveereerreennene 14
Example of FIOWDIm ANalYSiS.......cceceeeirirereercsiineenerseeneenienieniieseenseessessesseesssesssesassessesens 17
MIU-4 Analysis SUMMATY .........cccovermiriiieientiieintccienretetese e sre e eebeeesesaeseresennes 19
Pressure Interference in the Hanging Wall of the Tsukiyoshi Fault From the LPT Experiment

............................................................................................................................................. 22
Pressure Interference in the Foot Wall of the Tsukiyoshi Fault From the LPT Experiment... 22
Example of Partial Pressure RECOVETY........cocveveerremreeniiriiinininieiee e creseesseesesessesovseessns 26
Derivative plots for DH-2 Well tESES.....c..cvrriiiriiririrnenieenieniesenieeece s enesseesnseseesesesesennns 26

APPENDICES

Appendix A TRUE Block Scale Hydrostructural Analysis
Appendix B TRUE-Block Transport Modelling ‘
Appendix C  TRUE Block Scale Hydraulic Interference Analysis
Appendix D MIU-4 Flow Dimension Analysis

Appendix E Long Term Pump Test Analysis

Appendix F Shi Yu-u Chi Analysis



1. INTRODUCTION

During fiscal year H-14, Golder Associates assisted JNC Tono with hydrogeologic analyses and

simulations for the MIU Underground Rock Laboratory and the Aspé Block Scale Continuation

experiments. Support for the MIU Underground Rock Laboratory focused on data analysis and

hydrostructural model synthesis for the MIU and Shi Yu-u Chi sites. Asp6 Block Scale

Continuation efforts focused on understanding of geometry and properties of transport pathways.

H-14 tasks are summarized in Table 1-1. H-14 Deliverables are summarized in

Table 1-2. Deliverables provided as Appendices to this report are indicated with the

corresponding Appendix number.

Table 1-1. Heisei-14 Task Summary

Table 1-2. Heisei-14 Deliverables

Task [Title
1 Aspo Block Scale Continuation Support
2 MIU AND Shi Yu-u Chi Site Characterization Support

Task Date Appendix
11 Hydrostructural Analysis Sept 30, 2002 A
1.2 Transport Modeling Oct 30, 2002 B
1.3 Hydraulic Interference Modeling Oct 30, 2002 C
21 MIU-4 Test Interpretation Support Sept 30, 2002 D
2.2 MIU Hydrostructural Synthesis Oct 30, 2002 E
23 Shi Yu-u Chi Initial Model Slippon Oct 30, 2002 F




2. ASPO BLOCK SCALE CONTINUATION SUPPORT

During H-14, Golder Associates supported JINC/Tono participation in the Aspo Block Scale
Continuation Project. The purpose of the Block Scale Continuation Project is to enhance
understanding of flow and transport processes in fractured rock at the 50 to 200 m scale, the key
scale for repository safety assessment within the INC Heisei-12 framework. JNC has
participated in the TRUE Block Scale since 1998, and has played a key role in hydrostructural
model development, experimental design, test interpretation, and numerical modeling. During

H-14, Golder Associates carried out the following three tasks for the TRUE Block Scale project:

¢ Task 1.1: Hydrostructural Analysis
* Task 1.2: Transport Modeling

* Task 1.3: Hydraulic Interference Modeling

2.1 Task 1.1: Hydrostructural Analysis

Within the TRUE Block Scale Project (1997-2001), Golder Associates assisted JNC in
developing much of the hydrostructural model which provided the framework for understanding
of the rock block studied in the project. During H-14, Golder Associates assisted INC in
carrying out additional hydrostructural analyses as needed to apply the hydrostructural model for _

TRUE Continuation project experiments.

The question of flow geometry has important implications for the movement of tracers in the
TRUE Block Scale volume. How many pathways participate in transport and how much surface
area do those pathways provide for fracture-rock interaction?. Is the flow élong pipe-like
channels that would produce geometrically linear flow in hydraulic tests? Is the flow confined to
two-dimensional planar features, such as the major features of the TRUE Block hydrostructural
model? Is there a three-dimensional network of fractures providing the major portion of flow

along the pathways of the tracer testing?

The flow geometry question can be answered in part by careful attention to the geometric
information that can be derived from the pressure data produced during the testing. So far in the
TRUE Block Scale project, the well test analysis has focused on methods that assume two-
dimensional flow, as in the build-up tests for the KIO025F02 borehole (e.g. Adams, et al, 1999).



The hydrostructural model development (Hermanson and Doe, 2000) looked at geometry mainly
from the pseudo-steady drawdowns at the end of the tests and interference data during drilling

!
and did not use geometric information in the transient data.

A comprehensi\;e look at transient data from the standpoint of flow dimension has not previously
been undertaken for the longer-term pumping data that were obtained during the tracer phase of
the TRUE Block Scale project. During H-14, Golder evaluated a sufficient portion of these data
to define the flow geometries of the major conductors that were important for the tracer testing,
specifically Structure #20 and connecting features, such as Structures #21, #13, and #22. In
addition to these analyses, Golder carried out transient type curve analysis of the buildup data
from KI0025F02 (Adams, et al, 1999). These tests are short-term (30-minute) tests that do not
provide the same distance of coverage as the later tracer tests, but they do give some information
oh other important structures that in the TRUE Block Scale volume that were not part of the

tracer testing, such Structures #19, #6, #7, and #10.

Details of this analysis are provided in Appendix A. An example fractional dimension analysis

is illustrated in Figure 2-1.
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Figure 2-1. Rate Normalized Derivatives for Selected Source Zones From TRUE-BS Tracer
Testing Phase

Conclusions from this analysis were as follows:

1. All of the intervals ultimately see constant pressure boundaries or higher dimension
flow regions indicating that all of the structures have connection to the larger flow

systems of the 'laboratory.

2. For Structure #20 the distance to these boundaries is between 100-m and 250-m, the

uncertainty being dictated by the range of diffusivity values.

3. The region of Structure #20 around KI0025F03 and adjacent holes has a lower
diffusivity than more distance regions of the structure around KI0025F and KA2563.
This lower diffusivity may indicate a higher porosity region Structure #20 in the core

experiment area.



4. The region of most interest for tracer testing lies within a portion of Structure #20 that

is characterized by Dimension 2 flow or lower.
5. Spherical flow may appear in the later portions of tests for Structures #6, #7, and #10.

6. Geometric analyses using pressure derivatives are a useful tool for corroborating the

hydrostructural models

Based on these analyses, the following recommendations were made:

1. As part of future work on the TRUE Block Scale volume, additional long pumping tests
should be performed using other structures as sources, particularly if those structures

might be the focus of future tracer testing.

2. Modeling work to include matching of transient well-test data would provide an
additional check of the numerical models, particularly with respect to the bdundary
connections, as the boundary connections my be a key part of the observed pressure

derivatives.

3. Pressure derivative data analysis with a view to the hydrostructural model should be an

on-going activity in the iterative characterization of block-scale volumes.

2.2 Task 1.2 Transport Modeling

JNC is responsible for discrete fracture network and channel network transport simulation during
the Block Scale Continuation Project. During H-14, Golder develbped and implemented a
detailed microstructural model for fractures which make up the TRUE rock block. This model
considers the individual properties of each immobile zone, including breccja, gouge, cataclasite,
mylonite, and altered granite. During H-14, simulations were carried out for each of the rﬁajor
TRUE-BS transport experiments, using the updated microstructural model. Results were

compared against those obtained using the calibrated micro-structural model of H-12.

In the TRUE-BS rock block, transport pathways are defined by fractures, faults, and fracture

intersections. The key transport processes are:

¢ advection,



* sorption on mineral surfaces,
» diffusion/sorption in geological materials,
+ diffusion into stagnant pore volumes, and

* immobilization due to precipitation and incorporation in mineral lattices.

These processes are of different importance in experiments and in safety assessment. Although
advection and sorption on mineral surfaces are primary processes in experiments, matrix sorption

and matrix diffusion are the primary processes of concern for repository performance assessment.

The updated microstructural model for the fractures of the TRUE-BS rock block are described in

~ Figure 2-2, and Tables 2-1 through 2-3.
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Figure 2-2. Updated Microstructural Model

Table 2-1. Properties of 100-m Scale Geological Structure Type 1 (Fault)

Subparallel fracture with
mineral coating (lype 2)

AN

———— Altered zone

Rock type Extent (cm) P"(';:S)“y Format(i_")“ factor
Intact wall rock - 0.3 7.3E-5
Altered zone 20 0.6 2.2E4
Cataclasite/Mylonite d 2 1 4.9E-4
Fault gouge d, 0.5 20 5.6E-2
Fracture coating d. 0.05 5 6.2E-3




Table 2-2. Properties of 100-m Scale Geological Structure Type 2 (Non-fault)

Rock type Extent (cm) Po(r‘;:s)ity Format(i.o)n factor
Intact wall rock - 0.3 7.3E-5
Altered zone 10 0.6 2.2E-4
Fracture coating d, 0.05 5 6.2E-3

Table 2-3. Calculated Kd For the Different Materials in Contact With the Different Types of
Groundwater

TRUE Block Scale groundwater:

Fracture Fault Gouge | Cataclasite | Altered ! Intact
Coating | Zone | wall rock
CEC=30 CEC=90 CEC=8.5 | CEC=11 | CEC=5.7
neq/g ueq/g ueaq/g I nea/g 1 neq/g
o} c K Ky Ka Ka Ky Kq
(mg/) (M) (m%kg) (m°/kg) (m°/kg) (m%kg) (m°/kg)
Na’ 2065 9.0E-2 01% 3.7E-5 11E-4 1.1E-5 1.4E-5 7.1E-6
Mg?®* 42 1.7E-3 118 2.5E-3 7.8E-3 7.4E-4 9.7E-4 4.9E-4
y 8 2.1E-4 66° 9.4E-4 2.9E-3 2.7E-4 3.6E-4 1.8E-4
Ca® 1485 3.7E-2 1 2.3E-4 7.1E-4 6.7E-5 8.8E-5 4 4E-5
Rb* 0.03 3.5E-7 2.00E+03* | 5.2E-3 1.6E-2 1.5E-3 2.0E-3 1.0E-3
sr* 24 2.7E-4 1A 2.3E-4 7.1E-4 6.7E-5 8.8E-5 4.4E-5
Cs' 0.002 1.8E-8 2.00E+05" | 5.2E-2 1.6E-1 1.5E-2 2.0E-2 1.0E-2
Ba® 0.06 4.3E-7 20" 4.6E-3 1.4E-2 1.3E-3 1.8E-3 8.8E-4
Fresh groundwater: _
Fracture Fault Gouge | Cataclasite | Altered | Intact
Coating i Zone 1 wall rock
CEC=30 CEC=90 CEC=85 | CEC=11 | CEC=57
neq/g ueq/g ueq/q ! neq/g | neq/g
(o] (o} K Ky Ky Ka Ky Ky
(mg/) (M) (m°/kg) (m°/kg) (m°/kg) (m°/kg) (m°/kg)
Na* 21.1 9.2E-4 0.1% 1.9E-4 5.9E-4 5.6E-5 7.3E-5 3.7E-5
Mg* 3.2 1.3E-4 118 6.9E-2 2.1E-1 2.0E-2 2.6E-2 1.3E-2
K* 17 4.4E-5 66° 4.9E-3 1.5E-2 1.4E-3 1.9E-3 9.5E-4
Cca®* 345 8.6E-4 - 1 6.2E-3 1.9E-2 1.8E-3 2.4E-3 1.2E-3
Rb* 0.03 3.4E-7 2.00E+03" | 2.7E-2 8.4E-2 7.9E-3 1.0E-2 5.2E-3
sr* 0.6 6.4E-6 1A 6.2E-3 1.9E-2 1.8E-3 2.4E-3 1.2E-3
Cs* 0.002 1.8E-8 2.00E+05* | 2.7E-1 8.4E-1 7.9E-2 1.0E-1 5.2E-2
Ba® 0.06 4.3E-7 20" 1.2E-1 3.8E-1 3.6E-2 4.8E-2 2.4E-2
Brine groundwater:
. Fracture Fault Gouge | Cataclasite | Altered ! Intact
Coating Zone | wall rock
CEC=30 CEC=90 CEC=85 CEC=11 | CEC=57
peqa/g neq/g ueq/g i neq/g | neq/g
C C K Kq Ky K Ky K
(mg) (M) (m°/kg) (m%kg) (m°/ka) (m%/ka) (m%kg)
Na* 8500 3.6E-1 0.1% 1.2E-5 3.8E-5 3.5E-6 4.7E-6 2.3E-6
Mg* 2.1 8.7E-5 118 2.8E-4 8.6E-4 8.1E-5 1.1E-4 5.3E-5
K* 46 1.2E-3 66° 3.1E-4 9.7E-4 9.1E-5 1.2E-4 6.0E-5
Cca* 19300 4 8E-1 1 2.5E-5 7.8E-5 7.3E-6 9.7E-6 4.8E-6
Rb* 0.03 3.4E-7 2.00E+03" | 1.7E-3 5.3E-3 5.0E-4 6.6E-4 3.3E-4
st 313 3.6E-3 14 2.5E-5 7.8E-5 7.3E-6 9.7E-6 4.8E-6
Cs' 0.002 1.8E-8 2.00E+05* | 1.7E-2 5.3E-2 5.0E-3 6.6E-3 3.3E-3
Ba®* 0.06 4.3E-7 20* 5.0E-4 1.6E-3 1.5E-4 1.9E-4 9.7E-5

A Value from TRUE-1 investigation of altered Aspé diorite, sampled at KXTT2 15.1m-(Byegard et al. 1998)
B Value from investigation of Finnsjon granodiorite (Byegard et al. 1995)



Most transport simulations for the TRUE-BS project were carried out using calibrated transport
properties. While this was useful for deriving effective transport properties for the fractures

tested, it did not demonstrate understanding of the transport pathways.

Simulations carried out during H14 were true predictive simulations. The transport properties
used were taken directly from the microstructural model of Dershowitz et al. (2003). No

conditioning or calibration of transport properties was carried out.

Three sets of transport experiments were simulated, representing the TRUE-Block Scale Phase C
experiments C1, C2, and C3. Test C-3 was a radially converging tracer test since the induced
flow rate in the injection section was significantly higher than the pressure of essential passive
tracer injection. Tests C-1 and C-2 were unequal strength dipole tracer tests, since a slight
excess pressure was applied at the injection locations. Example simulation results from tests C-1,
C-2, and C-3 using the updated microstructﬁral model are provided in Figure 2-3, Figure 2-4, and

Figure 2-5.
Conclusions from these simulations are as follows:

1. The geologically based micro-structural model makes a significant improvement in the

ability to predict both sorbing and non-sorbing tracers

2. While calibrated immobile zone parameters are able to produce better matches than those
obtained by direct application of the microstructural model, the microstructural model

provides improved understanding of the underlying mechanisms of solute retention

3. In general, the microstructural model provides greater retention than was observed
experimentally. This is in stark contrast to the need to increase retention parameters in

the calibrated models.



Sorbing Tracer Test C1: Br-82
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Figure 2-3. Predictive Simulation, Tracer Test C-1

Sorbing Tracer Test cé: Re-186

110%

100%

90%

80% .

70%

50%

Percent Cumulative Recovery

40%

30%

20% -

_ 0 Re-186 Measured Recovery
—Task 6C Parameters

——TRUE BS Calibrated Model -- Lab Kd

100

200

300

T T T T

400 500 600 700 800 9200 1000
Elapsed Time (hours)

Figure 2-4. Predictive Simulation, Tracer Test C-2



Sorbing Tracer Test C3: Sr-85
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Figure 2-5. Predictive Simulation, Tracer Test C-3

2.3 Task 1.3: Hydraulic Interference Modeling

The TRUE-BS Continuation project intends to carry out tracer tests within the TRUE-BS rock

mass to evaluate:
* the transport properties of longer pathways,

» the properties of smaller “background” fractures on transport

* hydraulic connectivity or compartmentalisation of the rock mass.

During H-14, Golder Associates carried out simulations of hydraulic interference to evaluate the
properties and potential suitability of different transport pathways for this testing. In particular,
the simulations were carried out to evaluate the implications of problems with the current TRUE-
BS instrumentation, and potentials for improvement to that instrumentation. The TRUE-BS

borehole array is illustrated in Figure 2-6.

All major tracer tests carried out so far have utilized borehole KI0023B. In particular, the is the

borehole used for the Phase C tracer tests C1, C2, and C3 simulated in the current study.



KI0023B is used as a sink because the current packer installation includes a short-circuit between
structures #6 and #20 in section P7 of the borehole. The flow between structures #20 and #6
within packer interval P7 is 0.2 1/min, as measured by tracer dilution technique. This is one of

the largest flows measured on the site, and indicates that P7 is serving as a significant conductor.

As a result of the presence of this conductor provided by packer interval KI0023B:P7 a number
of alternative sinks in boreholes KIO025F, -F02, -F03, KA2563A and KIO025F risk losing tracer
mass to this artificial sink. It is also impossible to use structure #20 in KI0023B as a source

(injection section).

KA3600F

not measured

pressure

pressure meast
and tracer injection

K10023B

0 20 40 6‘0 80 100m
GEOSIGMA AB, PA, 011108

K10025F02
KI0025F

Figure 2-6. Borehole and Instrumentation Geometry at the TRUE Block Scale Site

The packer interval KI0023B:P6 works as a sink despite the short circuit in KIO023B:P7 because
pumping from P6 provides an even lower head than that seen in P7. As a result, P6 has been

tested extensively already, and is not very interesting as a sink for future tracer testing.

Golder Associates, together with GeoSigma and Conterra AB have evaluated the potential sink
and source intervals for future testing. The intervals simulated during H-14 are listed in Table

2-4. The notation used for Table 2-4 is as follows. “f’ indicates tests carried out to evaluate



longer network pathways. “b” indicates simulations carried out to evaluate background fracture
effects. Where simulations are/designated “R’;, simulations were carried out using both the
current and the remediated borehole configurations. The proposed remediated packer geometry
is specified in Table 2-5. An example distance drawdown plot from these simulations is

provided in Figure 2-7.

Table 2-4. Simulations of Hydraulic Interference for Potential TRUE-BSC Pathways

Sim. |Sink Struct # | Source Struct # E::;:a(nm) Objective
f4 KI0023B:P6 20/21 KI0025F:R2 19 110 Long distance,
Q=2.0 l/min network
5 KIO025F:R2 19 KA2563A:51 19 115 Long distance,
fSR Q=3.5 l/min single structure
f10 KI0025F02:P5 20 KA2563A4:51 19 51 : Long distance,
flIOR | Q=2.51/min network
f11 KI0025F02:P5 20 KI0025F:R2 19 96 Long distance,
Q=2.5 l/min network
f15 KIG025F03:P5 20 KA2563A4:51 19 50 Long distance,
f15R | Q=2.6 /min network
b2 KI0023B:P4 13 KI0025F03:P4 | 21 17 Background
b2R Q=0.5 l/min fracture
network??
b4 KI0023B:P6 20/21 KI0025F03:? Background
b4R Q=2.0 /min fractures or
network
b8 KI0025F03:P5 20 KI0023B: P4 21 18 Background
b8R Q=2.6 I/min . fracture
- network??
b13 KI0025F03:P6 KI0025F02:P7 |23 10 Background
Q=0.8 I/min fracture
network??
bi8 KI0025F02:P5 20 KI0025F03:P3 |13 20 Background
Q=2.5 /min fracture
network??
b23 KI0025F02:P5 KI0023B:P5 ? 20 Background
b23R | Q=2.51/min : ) fracture
network??
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Figure 2-7. Example Hydraulic Interference Simulation, Sink in KI0023B:P6

Table 2-5. Proposed Remediation of KI0023B (after Andersson, 2003)

O1d Sec. Interval (m) Struct Bh length Flov.v* New Sec Interval (m)
(m) (I/min)
P1 113.7-200.7 #10 169-171 16.00 R1 113.7-200.7
#? 141-146 2.00
P2 111.3-112.7 #19 112 2.85 R2 111.3-200.7
P3 87.2-110.3 #7 87-88 0.02 R3 87.2-110.3
P4 84.8-86.2 #13 85.6 0.80 R4 77.0-86.0
P5 73.0-83.8 #? 75-76 0.02 R5 73.0-76.0
#? 72-75 0.30
P6 71.0-72.0 #21 71.1 2.00 R6 71.0-72.0
P7 43.5-70.0 #20 69.8 2.00 R7 66.0-70.0
#? 51-56 0.07 56.0-65.0 Blind
#? 46-50 0.64 R8 46.0-55.0
#6 44.2 1.00
P8 41.5-42.5 #7 422 40
P9 4.5-40.5 #7 31-32 2.00 R9 4.5-45.0
#5 8 5.00




3. TASK 2: MIU AND SHI YU-U CHI SITE CHARACTERISATION SUPPORT

During H-14, Golder assisted JNC in interpretation of hydraulic experiments at the MIU and Shi

Yu-u Chi Sites. The following three subtasks were carried out:

* Task 2.1: MIU-4 Test Interpretation Support
* Task 2.2: MIU Hydrostructural Synthesis

* Task 2.3: Shi Yu-u Chi Initial Model Support

3.1 Task 2.1: MIU-4 Test Interpretation Support

Golder Associates carried out extensive FlowDim fractional dimension analysis to evaluate the

results of the MIU-4 h'yd.raulic tests and borehole characterization.

The FlowDim hydrogeologic analyses were carried out to derive reliable estimates for the
transmissivity and freshwater head using an appropriate flow model. In addition to providing
recommended parameter values, the analyses generally aim to determine confidence limits for

derived parameters as an indication of the degree of uncertainty.

Prior to the start of the analyses, the borehole history and the starting input parameters were
defined for each of the MIU boreholes, including the duration of the borehole history. For
intervals that have no evidence for heterogeneity, the borehole history was assumed to start at the
time when the contractor drilling through the midpoint of the interval. If there is evidence for a
water-conducting feature within the interval, the borehole history was assumed to start at the
time of drilling through this feature. The next step was to discretize the history period in

accordance with the documented activities.

The geometrical and fluid properties were fixed in all FlowDim analyses. The handling of the
other parameters varies between analysis method. Table 3-1 summarizes the treatment of
storativity, skin, wellbore storage, and flow dimension in the MIU-4 FlowDim analyses.
Interpretation of the data with the different techniques allows for cross checking of input

parameters against matched parameters.



Table 3-1, FlowDim Analysis for MIU Hydraulic Tests

Parameter ' FLOWDIM Analytical Analysis
Storativity Matched parameter but reliabsi]l(iit: (cz;ig))ends on accuracy of assumed
Skin o Assumed Parameter (0")
Wellbore storage Input parameter
Flow dimension" Radial Cylindrical
Comments:

1) Typically assumed to be 0 unless the early time data is relatively free of noise and
then this parameter is determined from type curves

The flow geometry is assumed to be radial cylindrical unless otherwise suggested by
examination of the pressure derivative data

The relevant test phases were examined on normalized plots to check for consistency of
-formation response throughout the test. In cases where near-wellbore properties have changed, a
single set of parameters does not provide a good match to the entire test sequence. In these cases,
certain parameters are allowed to change between phases when simulating the entire test
sequence. In addition, injection phases can reduce the near wellbore properties with the injection
of particles into the formation. If the normalized plots confirm this response, the injection phase

analysis is deemphasized.

After review of the normalized plots, the individual phases of testing were evaluated in log-log
and semi-log coordinates. Viewing the parameters derived in the individual phase to the entire

test sequence provided a confirmation for parameter reliability.
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Figure 3-1. Example of FlowDim Analysis

Figure 3-2 presents a summary plot of the pressure derivative curves for the eleven MIU-4 tests.
The derivatives are normalized with respect to pumping rate to allow direct comparison of the
results. The pressure scale also has been recalculated to provide transmissivity values. The

combined rate normalization and transmissivity calculation involves the following relationship:
T=0 / (47 td%) . The common plotting of a number of test records allows a ready comparison

of transmissivity values. Furthermore, similarities of derivative shape can indicate whether

different tests are affecting the same or different conducting features.

For each MIU-4 test, there were several flow and pumping phases. The FlowDim analyses
reported in Appendix D primarily study the rws or sws (recovery from pumping or slug) phases.

These phases have the longest records and the highest quality, being least disturbed by pumping

rate variations.




Table 3-2 summarizes the results of the FlowDim analyses for these pumping periods. Analyses
used composite type curves assuming inner and outer regions with different properties. Table 3-
2 gives. both the inner and outer zone transmissivities and flow dimensions. The dimensionless
radius appears in the table as well, but it is very unreliable value because it depends on storativity,

which cannot be separated from skin effects for sources zone tests.
The pressure derivative curves for the MIU-4 tests fall into several groups which are as follows:

1. Tests 1 (Mizunami Group, 60-68m), 2 (Mizunami Group, 72-74m), and 9 (Tsukiyoshi

Fault Core, 670-677m) are lower transmissivity intervals with dimensions of 2 or less.

2. Tests 3 (Weathered Granite, 83-117m), 4 (WCF in Toki Granite, 314-316m), 7 (Upper
Highly Fractured Domain, 183-254m), 8 (Hangingwall, More Fractured Zone754-790m),
10 (Hangingwall, Sparsely Fractured, 690-753m), 11 (Lower Sparsely Fractured Domain,
500-562m), and 12 (Lower Sparsely Fractured Domain, 361-424m). These tests all have
a dimension of two or slightly greater. They appear to have local regions with low

transmissivity and connect with higher transmissivity regions within the first minute of

and 3x10° m?%s.

3. Test 6 (Hanging wall, 584-647) has an anomalously high 'apparent transmissivity which

decreases with distance to about the same level as the group 2 tests.



MiU-4 Well Tests
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Figure 3-2. MIU-4 Analysis Summary

Table 3-2. Hydraulic Properties From FlowDim Analyses of MIU-4 Tests (rws only; sws if no rws)

- Dimensionless
Test top bottom | phase Tl nl mObl.hty Composite T2 n2
ratio
Boundary
m m m?/s m’/s _
1 60 68 SWS 2.8E-09 2 3.3 25 8.5E-10 2
2 72 77 ws 3.4E-07 2 1.5 115 2.3E-07 2
3 83 118 ws 1.3E-05 2 2.7 1.30E+12 4.8E-06 2
4 183 254 ws 1.0E-07 2 05 8.6 2.0E-07 2
6 315 317 WS 6.3E-06 2 0.3 5000 2.1E-05 2
7 362 434 ws 3.4E-07 2 1.9 6.5 ' 1.8E-07 3
8 500 563 ws 3.8E-07 2 5.6 19 6.8E-08 3
9 584 647 ws 1.3E-05 2 0.01 20 1.3E-03 2
110 670 677 SWS 5.7E-07 2 0.017 25 3.4E-05 1,
11 691 753 SWS 5.9E-07 2 0.1 57 5.9E-06 1.9
12 755 790 ws 8.5E-07 2 0.9 35 9.4E-07 24

3.2 Task 2.2: MIU Hydrostructural Synthesis

During H-14, Golder Associates assisted JNC in synthesizing hydraulic, geochemical,

geophysical, and geological information to support the MIU site hydrostructural model. This



analysis focused on interpretation of transient hydraulic responses (and lack of responses) during
the LPT experiments. The long term pumping test at the MIU was performed at the end of 2001
and early in 2002. The test used two source zones, one in the hanging wall of the Tsukiyoshi

Fault and one in the foot wall.

The interpretation of the source zone data is complicated by pressure history effects that arise
from cross flow in MIU-2, the source hole, when the MP monitoring casing was being replaced
by packers for testing. The foot wall of the Tsukiyoshi fault has considerably higher heads than
the hanging wall, and connecting the two hydro-stratigraphic units through MIU-2 results in
significant cross flow between the two units. The pressure effects of this cross flow are not
dissipated before the LPT testing. Furthermore, additional cross flow period occurred when the
packers were moved for the second, hanging wall, test. The drawdowns and pressure build-ups

due to cross flow exceed those that could be achieved by the pumping test.

The analysis of the LPT data required filtering out of the background effects. This was done by
the testing contractor, but the results were not consistent among the separately analyzed phases
of the tests. Based on a review of the LPT data in Tono during October, 2002, Golder Assdciates
proposed to reconciling the discrepancies between the results of separate phases by analyzing the
test as single phase with multiple steps. Interpret II, a standard petroleum analysis package, has
this capability. The effective pumping rate between the hanging wall and the hangingwall is not
known precisely, but it can be estimated from flow logs that were run while the packers were
removed from the hole. Also, the rate during packer removal can be treated as a variable and

determined from an optimized match to the data.

3.2.1 " Long-Term Pumping Test — Qbservation wells

JNC-Tono supplied Golder Associates with the pressure interference data for the LPT
experiments. The data cover four observation sections in MIU-1 for the hanging wall test and
four sections in MIU-3 for the héngingwall test. As discussed above, the data have superposed

- trends from the cross flow during packer removal in MIU-2. The contractor-supplied data from
JNC include data corrected for the background trend. Golder Associates analyzed these
corrected data using FlowDim. The FlowDim analysis results are summarized in Table 3-2 and

Figures 3-3 and 3-4.



Hanging wall tests (Figure 3-3) are best fit using dimension-2 type curves. The transmissivity
values range from 1.0x10> m?/s to 1.8x10'5 m?/s. Storativity values range from 5.9x107 to
1.2x10™. These values define diffusivity as havixig a range from 0.14 to 0.31 m%/s. The
diffusivity values are relatively low for major conducting zones, when compared with similar
conductors in the Aspé TRUE Block Scale Experiment (which are in a range from 4 to 38 m?/s).
Given the high transmissivity of the fault hanging wall, the low diffusivity would appear to be
the result of very high storage, hence one might expect that the fault zone has a large porosity as

compared with other typical fracture zones.

The foot wall tests (Figure 3-4) differ from the hanging wall tests in both dimension and
diffusivity. The dimension of the responses in the foot wall aré: 1.25 with one observation (MIU
3-6) having a dimension of 1.6. These data suggest that conductive features in the foot wall has
a linear geometry with some leakage. In contrast, the hanging wall behaves as a generally two
dimensional (planer) feature. The diffusivity value for MIU 3-6 is similar to that of the hanging
wall (0.24 m*/s), while the other observation zones see diffusivities ranging from 1.3 to 2.8 m?/s.
Transmissivity and storativity values from the foot wall test (Table 3-2) are g\enerally about 2-3
orders of magnitilde larger than the values for the hanging wall. It should be noted, however,
that for a given magnitude of pumping, the transmissivity is larger for a smaller dimension

match.



MIU 1 Response to LPT Hanging Wall Test
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Table 3-3. Hydraulic Properties and Flow Dimensions for LPT Interference Tests

Source Observation [T, m%*s |S, - E,ZZIffuswny, rll)lmensmn
MIU-2 Foot MIU3-5 1.10E-03 |4.60E-03 |0.24 1.6
Wall MIU3-6 7.20E-02 i2.70E-02 {2.67 1.25
MIU3-7 7.22E-02 [2.60E-02 |2.78 . |1.25
MIU3-8 6.90E-02 |5.20E-02 (1.33 1.25
MIU-2 - [MIU1-6 1.70E-05 |7.90E-05 (0.22 . 2
Hanging Wall |MIU1-7 1.40E-05 |1.00E-04 |0.14 2
MIU1-8 1.80E-05 |5.90E-05 |0.31 2
MIU1-9 1.50E-05 |1.20E-04 |0.13 2

3.3 Task 2.3: Shi Yu-u Chi Initial Model Support

During H-14, Golder assisted JNC in development of an initial discrete fracture network (DFN)
model localized to the Shi Yu-u Chi site. Golder’s support focused on analysis of DH-2, which

is the key to hydrostructural analysis in the Shi Yu-u Chi area.

The DH-2 boreholé testing is the primary source for data to understand the hydrostructural
framework for the Shi Yu-u Chi Site: DH-2 has produced some results that are inconsistent with
normal hydrologic testing concepts. “The two major anomalies are (1) periods of preésure'
recovery during constant-rate pumping tests, and (2) major discrepancies between production

. and recovery behaviors. The cause of pressure recoveries may be related to increased
conductivity during the test. Increase in conductivity can be the result of changes to skin,
possibly from erosion of fracture-filling materials. Another rock-based cause for recovery is ex-
solution of gas, as gas-bearing water has a lower viscosity than single-phase water, resulting in a
higher hydraulic conductivity due to reduced viscosity. A third possible cause of recovery

during the test can be some equipment leakage (i.e., the permeability of equipment goes up).

The second discrepancy results from the virtually instant recovery from the tests. Despite
pumping drawdowns that develop gradually, the recovery is almost instantaneous. Part of this
rapid recovery can be caused by the shutting-in of the test interval during recovery. However,
this only removes that portion of recovery that comes from well-bore storage and skin effects.
The instant recovery almost suggests that the aquifer or fractures were not drawn down at all,

and the production was coming from equipment leakage.



The data from the testing of borehole DH-2 exhibit two severe well testing anomalies. These

arc:

* Partial recovery of the pressure during the pumping period

* Very rapid recovery at the end of the test

During most of the well tests in DH-2, the pressure began to recover during the pumping phase
of the test. Most often, such a pressure recovery is caused by decreases in the flow rate. The |

main remedy involves using an analysis approach that incorporates the variable flow rates.

In the DH-2 tests, however, rate controls were in place such that the flow rate should have been
constant, and the tests exhibited partial recovery anyway. The only cause for such partial
recoveries is a éhange in the mobility, that is the conductivity, of the tested materials during the
test. Such changes may be increases in the hydraulic conductivity of the rock, development of
leaks in the equipment, or development of leaks along the borehole wall. The rapid recovery of
the major part of the DH-2 well tests indicates that the permeabilities were changing during the

test.

Figure 3-5 shows and example of this behavior. Thirteen of the nineteen intervals showed some
partial recovery, and most the remaining intervals showed a leveling of the pressure drawdown
before resuming an increased drawdown rate. Table 1 summarizes the effect in terms of the time
at which the recovery begins to occur and the amount of recover expressed as a percent of the

pressure drawdown at the time the recovery began.

A qualitative examination of the data indicate that the onset of recovery is an inverse function of
the transmissivity of the interval, since the recovery begins earlier in more transmissive zones.
The amount of recovery varies from none to 15% with most recoveries in the range of a few

percent.

FlowDim type curve derivative analysis is particularly useful for understanding flow geometrics.
The results of FlowDim analysis of the DH-2 tests are summarized in Table 3-4. Figure 3-6

provides the derivative curves for all the DH-2 tests.



Analysis of FlowDim results indicates the following:

1. All tests show evidence of a constant pressure-boundary.

2. Assuming a storage of 1 x 10”, the boundary lies at a radius of a few tens of meters for

all tests.

3. No tests show stabilization to two-dimensional flow, though some tests can be matched

using type curves with skin and storage.

4. Most tests can be matched with linear flow.

5. The boundary effects appear at a range of times between 0.1 and 2.5 hours. This is

significantly earlier than the onset of the partial recoveries.

6. The time of the onset of boundary effects is a clear function of the transmissivity.

Table 3-4. Summary of DH-2 Analyses

Recovery During Pumping Boundary Analysis Properties
Derivative Distance, m
Test Onset Time, h Percent Onset Time, h Dimension kPa/(l/m) (S=1E-5) T, m%s

DH2-1 none - 0.18 1 1.4 15.5 9.3E-06
DH2-2 39 2% 0.88 1 40 20.3 3.2E-07
DH2-3 1.9 0.14% 0.14 -1 27 31.2 4.8E-06
DH2-4 2 0.4% 0.18 1 2.0 40.5 6.5E-06
DH2-5a 32 3% 0.18 1 8.8 19.6 1.5E-06
DH2-5b 1.5 15%

DH2-6 10 2% 1.0 1.0 72 16.1 1.8E-07
DH2-7 unclear 0.125 1 0.56 64.6 2.3E-05
DH2-8 step test 0.097 2 0.74 49.5 1.8E-05
DH2-9 2 1% 0.10 1or2 2.0 30.6 6.5E-06
DH2-10 4.5 1% 0.8 1or2 2.5 77.4 5.2E-06| .
DH2-11 2 1% 0.13 1 3.2 27.6 4.1E-06
DH2-12 4 0.32% 1.2 1 36 25.0 3.6E-07
DH2-13 11 3% 25 1 110 20.6 1.2E-07
DH2-15 none 0.056 2? 0.26 63.5 5.0E-05
DH2-16 1.5 3% 0.044 1 0.26 56.3 5.0E-05
DH2-17 none 0.044 1.5 0.26 56.3 5.0E-05
DH2-18 none 0.12 15 28 28.3 4.6E-06
DH2-19 6 1% 0.17 1o0r2 42 8.7 3.1E-07

Note: Transmissivity based on cylindrical flow conversion of derivative. Linear flow. values will be larger.




Drawdown in DH2-13
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Figure 3-6. Derivative plots for DH-2 well tests




Analysis of DH-2 has provided significant insights into the hydrologic behavior of the Shi Yu-u

Chi site. The analysis presented in this report raises the following issues:

1. Has the later time pressure recovery during pumping been understood yet? That
recovery happens later in the test than these derivatives show, but it still needs an
explanation. Before publishing it would be good to make sure that whatever is
causing the pressure recovery is not affecting the earlier time data that appear in the

derivative plots.

2. The linear flow can be caused by fracture intersection zones (FIZ), but it can also be
caused by lots of other things. We have analysed similar well tests from granitic
reservoirs in southeast Asia. Our analysis of these tests indicated that many different

geometries could create this behavior.

3. The key thing is to use knowledge of geology to decide which of the many
possibilities are reasonable. One interesting geological hypotheses is that these tests
are all seeing a major subvertical conductor at a distance of 50-100m from the

borehole. Does this idea make any geological sense?

4. Some additional information on storage is very important to get the diffusivities.
Knowledge of diffusivity will make it possible to more definitively estimate the
_ length scales for the boundary effects. Diffusivity also facilitates derivation of
permeability from the testing. Keep in mind that the linear flow equations are
different from cylindrical flow, and the log-log 1/2 slope lines give the product of K

and Ss. 2-D flow solutions provide transmissivity (m%/s).



4. CONCLUSIONS

During Heisei-14, Golder Associates developed and documented substantial advances in
radioactive waste management technology for INC. The major accomplishments of H-14

include:

* Analysis of flow and transport pathways and processes at the Aspo TRUE-BS rock block.-

* Assistance in interpretation of Large Scale Pumping Test LPT-1, and hydraulic test
MIU-4

* Support for development of the hydrostructural model for the Shi Yu-u Chi area based on

DH-2 hydraulic test interpretations.
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1. INTRODUCTION

This report presents analysis of well tests in the TRUE Block Scale volume. The main purpose
of these interpretations is to provide information on the geometry of the conducting features
intersected by the borehole. The analyses focus on the longer term tests that were performed as

part of the tracer testing progrém including the pre-tests and the A series tests.

The question of flow geometry has important implications for the movement of tracers in the
TRUE Block Scale volume. How many pathways participate in transport and how much surface
area do those pathways provide for fracture-rock interaction? Is the flow along pipe-like
channels that would produce geometrically linear flow in hydraulic tests? Is the flow confined to
two-dimensional planar features, such as the major features of the TRUE Block hydrostructural
model? Is there a three-dimensional network of fractures providing the major portion of flow

along the pathways of the tracer testing?

The flow. geometry question can be answered in part by carefﬁl attention to the geometric
information that can be derived from the pressure data produced during the testing. So far in the
TRUE Block Scale project, the well test analysis has focused on methods that assume two-
dimensional flow, as in the build-up tests for the KIO025F02 borehole (e.g. Adams, et al, 1999).
The hydrostructural model development (Hermanson and Doe, 2000) looked at geometry mainly
from the pseudo-steady drawdowns at the end of the tests and interference data during drilling

and did not use geometric information in the transient data.

A comprehensive look at transient data from the standpoint of flow dimension has not previously
been undertaken for the longer-term pumping data that were obtained during the tracer phase of
the TRUE Block Scale project. The work presented in this report looks at a sufficient portion of
these data to define the flow geometries of the major conductors that were important for the
tracer testing, specifically Structure #20 and connecting features, such as Structures #21, #13,
and #22. In addition to these analyses, this report also presents a new plotting of the buildup data
from KI0025F02 (Adams, et al, 1999). These tests are short-term (30-minute) tests that do not
provide the same distance of coverage as the later tracer tests, but they do give some information
on other important structures that in the TRUE Block Scale volume that were not part of the

tracer testing, such Structures #19, #6, #7, and #10.
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1.1 Flow Dimension -

The classic two-dimensional approach assumes that the conducting feature is a tabular-shaped
conductor oriented perpendicular the wellbore axis. The interpretations presented here use a
generalized dimension approach (Barker, 1988), which makes no assumptions of the conductor
geometry. Thus the interpretations provide information on the geometry of the conducting

feature as well as its conducting properties.

Barker (1988) introduced the generalized radial flow approach to the hydrologic literature.
Essentially it defined the dimension of a conductor as the power at which the conducting area
grows with radial distance from the purﬁping well, assuming homogeneous hydraulic properties.
If the properties are not homogeneous, the dimension reflects the power growth of the product of
area and hydraulic conductivity or conductance. The fractional dimension approach is described

in detail in Doe and Geier (1991) and is summarized here.

The dimension, n, is one plus the exponent of area growth. For classical two-dimensional
aquifers the conducing area grows with the first power of radius. Linear flow geometries, such
as a vertical hydraulic fracture or a channel have areas that do not grow with distance, i.e., the
power exponent is zero. Spherical flow occurs when the area grows at power of radius squared.
Fractional dimensions arise when the area grows by a non-integer power. Such as case may arise
from a variety of geomefries, but a general explanation involves conducting geometries that are
not space-filling or involve 1eakage. Consider, for example, a two-dimensional planar conductor.
If the space is uniformly conductive or if a heterogeneous pattern uniformly fills the two-
‘dimensional space, the conductor will have a dimension of 2. If the conductive pattern does not
fill the space, the conductor may have a dimension somewhat less than 2. Indeed dimensions of
1.7-1.8 are common for planar features. Leakage over the conductor surface may lead to a

dimension somewhat greater than 2.

The dimension of the conductor is readily recognizable from the shape of the well test curve.
For constant rate tests, the slope of the build-up or drawdown curve in logarithmic plots will be
equal to 1-n/2 for dimensions less than 2. Thus a linear flow conductor will have a characteristic

Y slope. A éonducto_r with a dimension of 1.5 will yield a curve with a slope of %.



1.2 Pressure Derivative Analysis ' ' ‘

The pressure derivative curves provide even clearer indications of dimension. Bourdet originally
proposed the derivative curve as a means of identifying the time at which the semi-log
approximation of the Theis or Exponential Integral curve becomes valid. Recognizing that n=2
flow has this semi-log reiationship, Bourdet reasoned that a log plot of pressure change versus
log time should have a zero slope, and this zero slope would be more diagnostic than a semilog
straight iiﬂe. This pressure derivative plot has advantages in dealing with generalized or
fractional dimension flow, because a pressure derivative curve will approach a slope of 1-n/2 for
all dimensions including those between 2 and 3. Thus the combination of log plots and

derivative plots provides a strong basis for diagnosing dimension. .



2. APPROACH
2.1 Data Sources and Preparation

The report describes generalized dimension analysis of:

* Source zones in KI0O025F02 using short buildup tests, and

* Source zones in and near Structure #20 that were run as part of the tracer testing program.

;I‘he KI10025F02 short-term build-up tests (Adams, et. al., 1999) provide a derivative plot for each
of the major conducting structures in the TRUE Block-Scale volume. These test were relatively
short (about half an hour), and they were conducting with the entire hole open except for the
packer-isolated flow interval. By contrast the tracer Pre-tests, which were run to select tracer
"injection and collection locations, ran for up to several months, and provide a deeper look into

hydraulic property variations with distance from the source borehole.

In addition to the source hole data, a selection of observation hole results from the Phase A
tracer tests were also analyzed. The selection came from the A-5 tests which used KI0025F03:P5
as a source in Structure #20. Observation results characterize connectivity between sources and
observation points. Particularly important is the use of observation responses to calculate
hydraulic diffusivity, n, which coﬁtrols the speed of propagation of pressure disturbances in the
flow system. Diffusivity, which is the ratio of transmiSsivity (or hydraulic conductivity) to
storativity (or specific storage), is essential to defining the scale of investigation for the well test

data.

The pressure data were extracted from the Aspo data base, and imported into FlowDim, a well-
test analysis code described in further detail below. FlowDim provides type-curve matching
analyses and also outputs préssure and derivative curves that are adjusted for buildup
superposition effects, initial time and pressure uncertainty, and noise in the derivative data. The
exported data were normalized with respect to rate using an Excel spreadsheet. The resulting
pressure derivative data were converted to equivalent two-dimensional transmissivity and plotted

with respect to time and distance from the pumping source.
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The conversion of the pressure scale takes advantage of the use of the pressure derivative’s
relationship to transmissivity. Transmissivity is commonly calculated using the semi-log slope
of the pressure data versus time. The pressure derivative is identically the semi-log slope, and

one therefore estimate transmissivity as,

T-_P8
d
4pt p/dt

where ¢ d% defines the pressure derivative, and pressure and time in compatible units for the

transmissivity.

The rescaling of time uses the equation for radius of investigation (Streltsova, 1988) which
relates the distance of pressure propagation to the diffusivity, n, and time , or r = 2,/n¢t . This

scaling requires a knowledge of the diffusivity of pressure propagation, which is estimated from
observation well responses. Typical diffusivity in major conductors ranges from about 1 to 20
m?/s. As diffusivity is the ratio of transmissivity to storativity, high diffusivity values can result
from either high conducting properties or low storative properties. Conversely, a highly
conductive feature can have a lower diffusivity if it is also associated with a relatively large
amount of porosity. Note also that this porosity need only to be connected to the flow path and

therefore may not be entirely within the conductive flow path.

Because of the lack of constant-rate conditions, we focused on pressure recovery data for the

current analysis.

2.2 Type Curve Matching Using FlowDim

Well test records provide information on the both the geometry and the hydraulic properties of
the test interval. The analyses involve comparing the pressure or flow data to idealized

dimensionless pressure against dimensionless time type curves.

FlowDim is a Golder Associates code for analyzing well tests. The code include both single hole
and cross hole capabilities, as well as the ability to match cylindrical and generalized

dimensional flow. The user may specify constant pressure, constant rate, or pressure recovery
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conditions. The code can also match composite dimension systems, that is, systems where the
dimension changes with radial distance. FlowDim analyzes pressure recovery data by calculating
type curves based on the superposition of a simplified pressure and flow history. For the current
analysis, we assumed constant rate for the withdrawal. Uraiet (1980) showed that this was

acceptable assumption for analyzing the preSsure recovery from constant pressure tests.

FlowDim can be set for either hydrologic or petroleum units, however, the code calculates
storage properties rather than skin. Hydrologic well test approaches generally ignore skin and
calculate storativity from the time offset of the data, while petroleum approaches assume storage

properties based on the porosity and fluid compressibilities and calculate the borehole skin.

Borehole skin is usually viewed as a drilling damage effect, where positive skin indicate
permeability reduction by processes like mud invasion and negative skin indicates permeability
~ enhancements by such processes as acidization. Skin may also arise from the natural
heterogeneities of the conducting feature. A positive skin, for example, can reflect a low
permeability zone immediately around the borehole, while a negative skin may indicate locally
high permeability. Skin is therefore a useful concept for separating the average hydraulic

properties from the local conditions near the borehole.

It is not possible to simultaneously calculate the storativity and the skin effect from a single-hole
test. To obtain one property one must assume the other. For the analyses in this report we
calculated skin (assuming storativity) and storativity (assuming no skin effect). We report
storativity values based on an assumption of zero skin. Extremely low storage values often
indicate the presence of a strong positive skin effect, while extremely high storage values may
indicate the opposite. For the purpose of estimating skin we assumed that the hydraulic
diffusivity was equal to 1, that is, the transmissivity and storativity are equal. Based on this

assumption we then calculate a skin effect using the formula below.

The type curve match fits the pressure or flow data by translating the data along both the

pressure (or flow) axis and the time axis. The transmissivity comes from the pressure axis match.
The time axis match provides measures of skin, storativity, and well bore storage. Figure 1
shows a set of constant rate type curves. The well bore storage is indicated by the logarithmic

unit slope portion of the beginning of the type curve. The well bore storage reflects the total
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compressibility of the borehole, the water in the borehole, and the test equipment. Well bore
storage can also be calculated independently from the arithmetic slope and beginning of the well
test. The family of type curves provides either storativity matches or skin matches according to

the formulae below.

The dimension of the well test, as mentioned above, influences the logarithmic slope of the late
time portion of a test in a preésure—time plot (for dimensions less than two) and in the derivative
plot (for all dimensions). For source wells, FlowDim generates a separate family of type curves
for each desired dimension. For observation wells, FlowDim calculates a single family of type

curves that covers all dimensions.

Figuré 1 shows a set of FlowDim type curves. The curves in Figure 1 are for dimension two flow,
and a similar set of curves can be created for any other dimension. These type curves are similar
to the familiar Theis type curves with the addition of wellbore storage and skin effects. The
curves also plot the type curve using the ratio of dimensionless time and dimensionless wellbore
storage rather than dimensionless time on the x-axis. Each curve represents a different value of
dimensionless wellbore storage and skin, Cp e”, where e is the base of natural logarithm, s is the

skin factor, C is the wellbore storage, and Cp is defined as:
C, =C/2x5r]

where S is the storativity and r,, is the wellbore radius. The values of Cpe®™ shown in Figure 1

are .03, 0.1, 0.3, 3, 10, 100, 10°, 10*, 10, 2x10°%, 10'°, 10*°, 10%, and 10%.

FlowDim determines wellbore storage from the time match. Given this value and assuming the
skin is zero, the storativity is calculated directly from the Cpe® parameter of the best-matching

curve and the definition of dimensionless wellbore storage.

The Cpe® curve-match value also allows us to calculate skin if we assume storativity. In this

case skin is

5 =0.5In[(Cpe™ )pspier / Cp]



where CDesta,c;, comes from the parameter of the best-fitting type curve, and Cj, is calculated
either from the time match or using a C value calculated from the straight-line, early data in an

arithmetic plot of the pressure build-up. .
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Figure 1. FlowDim Type Curves for Dimension-2 Flow
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3. ANALYSES
3.1 Pumping Sources During the Tracer Test Phase

The best data for flow geometry analysis was obtained during the tracer testing phase és this
phase of field work produced the longest pumping durations and hence provides information
over the largest distance scales of any hydraulic testing in the block. Many tests were repeated
on the same intervals during the Phase A, Phase B, and Phase C tests. For example, the Phase B
and C tests only used the KI0023B:P6 sink, which had been tested previously during the Pre-
tests (PT tests) and the Phase A tests. Although hydraulic properties can chahge with pumping,
most of these changes are negligible or occur very close to the well, hence this study focused on

only one longer term test for each pumping interval.

The source zone analyses look at a two basic plots — rate normalized derivative plots and

transmissivity-distance plots.

Rate-normalized plots provide derivative data for all the selected source zones in a common plot.
Pressure and derivative data are normalized to the rates to.allow a direct comparison. The rate
normalized plot allows a comparison of several tests. Similar behaviors can indicate that
different tests are influencing the same feature. Conversely, different or inconsistent behaviors

between tests can suggest that the tests are influencing separate conducting features.

The transmissivity-distance plot converts the derivative to an equivalent two-dimensional
transmissivity on one axis and converts the time to distance using the radius of investigation
formula discussed in Section 2. There are several words of caution with regards to this plot.
First, composite behaviors, that is systems where the properties or geometries change with
distance, influence the derivative behavior. For example, consider a composite system with a
step change in transmissivity at some radius. If both shells of the composite are two-dimensional,
i.e. cylindrical flow, this system will produce a pressure derivative with two flat portions, earlier
for the inner shell and later for the outer shell, each portion having its own constant derivative
value reflecting that shell’s transmissivity. Separating these two flat portions is a transition
period that reflects the composite boundary, and this transition period can last for a log cycle of
time or longer depending on the transmissivity contrast. The transition period appears to be a

change in property over some distance in the transmissivity-distance plot, however, it may in



reality reflect a step change in values. Hence, it is best to treat the transition portions of the plot
qualitatively and reserve quantitative interpretation for the time-distance periods where the

derivative is stabilized to a particular shell’s properties.

Figure 2 shows the normalized derivative curves for the source zones. The results come from the

following tests:

- KI0025F02:P5Structure #20 Pre-Test 3
KI0023B:P4 Structure #13 Pre-Test 1
KI0025F03:P5Structure #20 Test A-1 and A-5
KI0025F03:P4 Structure #21 Test A-2
KI0023B:P6 Structure #21 Test A-4

Derivative plots can be analysed by understanding that the transmissivity varies inversely with
the derivative value, such that tests with higher derivative values have lower transmissivities.
Changes in the derivative to higher or lower values indicate property changes to lower and

higher transmissivities respectively.

Figure 2 clearly shows similarity of the derivative curves for Structure #20 zones. After a early
drop in the derivative reflecting skin effects, each Structure #20 zone has a derivative that
indicates a flow dimension between 1.5 and 2. The plot also shows that the important source
zone, KI0023B:P6, that is usually assumed to be a Structure #21 intersection, clearly behaves as
though it is part of Structure #20. After about 10 minutes, the derivative values steady fall |
indicating an increase in conductance. This falling derivative does not reach a stable slope — a
negative half slope would indicate spherical flow. Rather, the concave downward form of the
derivative suggests a constant pressure boundary or a transition to a higher conductivity region.
After about ten hours, this transition region appears to stabilize, however, the derivative in this
region is noisy and the tests do not run long enough to clearly show that dimension of the

ultimate system that Structure #20 appears to connect with.

Figure 2 also shows derivative curves for Structure #13 and Structure #21 source zones. These
zones have lower transmissivity than the Structure #20 zones. The two zones have very similar

derivatives, both having a flat derivative at a value of about 2x10” Pa-s/m° , which relates to a
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transmissivity of about 5x10° m*/s. Both derivatives have the same drop with time indicating
transitions, to regions that are more conducting. The curves are similar but offset in time
suggesting that KIO025F03:P4 intersects the two-dimensional flow region and sees the higher '
conductance region before KIO023B:P4. This indicates that KID025F03:P4 is closer to the
higher conductivity region. In short, these two intervals appear to be seeing the same conductive
geometry but from different points in the system. Curiously, the derivative values in these two
intervals do not drop to the same level as those in the Structure #20 zones. If there was an
ultimate connection of the Structure #13 and #21 zones to the same high conductivity region as

the Structure #20 zones, the derivative values would be expected to converge.

The second plot for the source zones is shown in Figure 3. This is the transmissivity-distance
plot. Itis also in log-log coordinates, and is essentially a mirror image of the derivative plots.
The plots give distance assuming a constant diffusivity of 5 m?/s, which is an approximate value
derived from the interference responses from KI0025F03 to KI0023B and KI025F02. The
diffusivity values to more distance points, KIOOZSF and KA2563A are larger, as discussed below,
hence the distance values are likely to be underestimates. The uncertainty in diffusivity is not as
severe as one might initially think, because distance scales as the square root of diffusivity.
Hence, for example, a factor of nine uncertainty in diffusivity translates into a factor of three

uncertainty in distance.

The transmissivity distance plot shows that the transition period from the local transmissivity of
Structure #20 to the feature or system that is acting as a constant pressure boundary occurs at
about 100 meters. If we use a higher diffusivity, such as that derived from the more distance
interference tests (about 30 m?/s) the distance to the boundary increase to about 250 meters. One
way to assess the appropriate distance is to look for geologic features lying between 100 and 300

meters, and see if there are good candidates for this boundary.

The source zone tests do not indicate a clear spherical flow since there is no clear stabilization to
a particular derivative slope. However, the derivative behavior, after about 10 minutes, does
indicate possible higher dimension flow albeit with spatially varying properties. Nonétheless, a

very important point in this analysis is that the tracer injection points, and hence the tracer
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pathways are all less than 100-m in length, hence the flow dimension that is relevant to tracer

test interpretation is a dimension of two or less.

3.2 Pressure Interference Results

Pressure interference data were analyzed for the A5 tracer test. The focus was primarily on
Structure #20 zones, but nearby pathways were also included. The pressure responses are plotted

in Figure 4.

There are a few key features to the interference responses. First, the Structure #20 intervals,
including KI0023B:P6 show an obvious similarity of behavior. This indicates that these are
potentially part of a common flow feature. By comparison, other nearby zones that are plotted
clearly have different and delayed responses, and appear to parts of different, though possibly
connected, conductors. If the fracture network were one single spherical flow system, all .
interference responses should be similar with distance regardless of structure and should have
slopes appropriate to spherical behavior. The structures are clearly having a dominating effect

on the interference responses.

Another key point is the variation of diffusivity within Structure #20. The diffusivity values for

the interference responses are given below.

Observation Zone  Diffusivity, 1, m*/s

KIO025F 34.8
KI0025F02 4.7
KA2563A : 38.6
KI0023B:P6 1.6
0025F02-6 12.5
0025F02-3 1.5
0023B:P4 2.7

Of key note is the relative lower diffusivity values for the closest interference points (KI0025F02
and KI0023B) of 4.7 and 1.5 m*/s respectively and the higher diffusivity vélues for KIO025F
and KA2563 (35 and 39 m?/s respectively). There could be a decrease in transmissivity between ’
the source and the further observation points, but one does not see this in the form of the
derivative. Rather, the lower diffusivity values could reflect higher storage and higher porosity

near the core of the TRUE Block Scale tracer activities. This also indicates that Structure #20
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has lower porosity further away. This suggestion could be corroborated by reviewing the

. geologic descriptions of these intervals and comparing the degree of alteration and damage.

33 Flow Dimension Behaviors in Other Structures

Long term transient tests have only been performed for the design and execution of tracer tests.
Hence the selection of source zones has emphasized Structure #20 and nearby structures. There
are no longer term tests on other Structures, such as Structures #5, #6, #7, #19, or #10. These
data are not critical to the tracer testing, however, they are of interest to the overall |
hydrostructural model or to any future work in the TRUE Block Scale volume that would use

these structures.

The buildup testing in KI0025F02 (Adams, et al, 1999) provides a look at these other structures.
The tests are not ideal for this purpose as the durations are relatively short and KI0025F02 was
open during the testing except for the pumping interval, such that there is a possibility that the

borehole itself was acting as a constant pressure boundary.

Figure 5 shows the normalized derivative plots for KID025F02 hydraulic testing. For this plot
the derivative is given as equivalent two-dimensional transmissivity for direct reading of

hydraulic properties.

Figure 5 shows a breakthrough to higher conductance regions in all tests. The transmissivity of
the higher conductance region is not the same for each test. It is therefore unclear whether they

are all connecting to the same ultimate boundary.

The later time behavior may be interpretable as spherical flow for some tests. Structures #6, #7,
 and #10 clearly have later time behaviors with the distinctive negative half-slope of spherical
flow. For Structures #6 and #7, the proximity to the Structure #5 and other related structures
might be a hypothesis worth consideriﬁg for the spherical flow effect. In this case, Structure #5
may be part of a thick high conductivity zone, and spherical flow may be a partial penetration

effect of the conductors connecting Structures #6 and #7 to that region.

Conspicuous in the derivative is also the lack of closed boundary behaviors. All of the pressure

derivatives ultimately see constant pressure boundaries or possibly higher-dimension, spherical
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flow. There is no evidence in the data that there are closed compartments, however, there may

be a degree of isolation of the structures from one another.

Structures #19 and #20 have clear two-dimensional flow regions, as do Structure #23 and
possibly #22. Again, the plotting of these derivatives as transmissivity provides a quantification

of their flow properties.
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Transmissivity-Distance Plot for TRUE Block Scale Source Zones
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Test A5 (KI0025F03:P5 Source) Interference Derivatives
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Pressure Derivatives for Short-Term Build-up Tests in KIO025F02
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4. SUMMARY AND CONCLUSIONS

This report has presented generalized dimension analyses of pressure derivative plots for

hydraulic tests in the TRUE Block Scale volume. These plots allows the following conclusions:

* All of the intervals ultimately see constant pressure boundaries or higher dimension flow
regions indicating that all of the structures have connection to the larger flow systems of

the laboratory.

* For Structure #20 the distance to these boundaries is between 100-m and 250-m, the

uncertainty being dictated by the range of diffusivity values.

* The region of Structure #20 around KI0025F03 and adjacent holes has a lower diffusivity
than more distance regions of the structure around KI0025F and KA2563. This lower
diffusivity may indicate a higher porosity region Structure #20 in the core experiment

arca.

* The region of most interest for tracer testing lies within a portion of Structure #20 that is

characterized by Dimension 2 flow or lower.
* Spherical flow may appear in the later portions of tests for Structures #6, #7, and #10.

* Geometric analyses using pressure derivatives are a useful tool for corroborating the

hydrostructural models

Based on these analyses, we can make the following recommendations.

. As part of future work on the TRUE Block Scale volume, additional long pumping tests
should be performed using other structures as sources, particularly if those structures

might be the focus of future tracer testing.

* Modeling work to include matching of transient well-test data would provide an
additional check of the numerical models, particularly with respect to the boundary
connections, as the boundary connections may strongly influence the observed pressure

derivatives.

* Pressure derivative data analysis with a view to the hydrostructural model should be an -

on-going activity in the iterative characterization of block-scale volumes.
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1. INTRODUCTION

JNC is responsible for discrete fracture network and channel network transport simulation within
the Block Scale Continuation Project. During H-14, Golder implemented a detailed ~
microstructural model for fractures which make up the TRUE-BS rock block. This model
considers the individual properties of each immobile zone, including breccia, gouge, cataclasite,
fnylonite, and altered granite. During H-14, Golder carried out simulations for the major TRUE¥
BS transport experiments, using the updated microstructural model. Results were compared

against those obtained using the calibrated micro-structural model of H-12.

In the TRUE-BS rock block, transport pathwasls are defined by fractures, faults, and fracture
intersections. The key transport processes are:

e advection

* sorption on mineral surfaces,

» diffusion/sorption in geological materials,

* diffusion into stagnant pore volumes and

* immobilization due to precipitation and incorporation in mineral lattices:

These processes are of different importance in experiments and in safety assessment. Although
advection and sorption on mineral surfaces are primary processes in experiments, matrix sorption

and matrix diffusion are the primary processes of concern for repository performance assessment.
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2. MICROSTRUCTURAL AND HYDROSTRUCTURAL MODELS

‘The updated microstructural model for the fréctures of the TRUE-BS rock block was developed
by Dershowitz et al. (2002). The model is illustrated in Figure 2-1 and Figure 2-2, and Tables 2-
1 through 2-3.

Type 1 feature

A
™~
Unaltered Myloniteand  Open fracture with
granite cataclasite coating and fault gouge

/

Minor splay

Subparalle} fracture with
fractures

mineral coating (type 2}

[————— Altered zone

5¢cm

Figure 2-1. Updated Microstructural Model, Shear Fracture (after Dershowitz et al., 2003)
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Type 2 feature

/——_%
Unaltered. Open fracture with
.granite ' mineral coating

Minor splay

Subparallel fracture
fractures

o

AN

———_— Altered zone

|
dc

5cm

Figure 2-2. Updated Microstructural Model, Non-Shear Fracture (after Dershowitz et al., 2003) -
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Table 2-1. Properties of 100-m Scale Geological Structure Type 1 (Fault)

Porosity Formation factor-
Rock type Extent (cm)
(%) -)
Intact wall rock - 0.3 7.3E-5
Altered zone 20 0.6 - 2.2E-4
Cataclasite/Mylonite d 2 1 4 9E-4
Fault gouge d, 0.5 20 ' 5.6E-2
Fracture coating d, 0.05 5 6.2E-3

Table 2-2. Properties of 100-m Scale Geological Structure Type 2 (Non-fault)

Porosity Formation factor
Rock type Extent (cm)
(%) -)
Intact wall rock . . - 0.3 L 7.3E-5
Altered zone 10 0.6 : 2.2E-4
Fracture coating d. 0.05 5 : 6.2E-3
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Table 2-3. Kd for the different materials in contact with the different types of groundwater

TRUE Block Scale groundwater:

Fracture Fault Gouge Cataclasite . Altered Zone | Intact
Coating | | wall rock
CEC=30 peq/g | CEC=90 peq/g | CEC=8.5 | CEC=11 peq/g | CEC=5.7
neq/g f | peq/g
c C K, K, Ky Ky K, Ky
(mg/1) M) (m’/kg) (m’/kg) (m’/kg) (m’/kg) (m’/kg)
Na* 2065 9.0E-2 0.1 3.7E-5 1.1E-4 1.1E-5 1.4E-5 7.1E-6
Mg™. 42 1.7E-3 11° 2.5E-3 7.8E-3 7.4E-4 9.7E-4 49E-4
K* 8 -2.1E-4 66° 9.4E-4 2.9E-3 2.7E-4 3.6E-4 1.8E-4
Ca* 1485 3.7E-2 1 2.3E-4 7.1E-4 6.7E-S 8.8E-5 44E-5
Rb* 0.03 35E-7  2.00E+03* | 52E-3 1.6E-2 . 1.5E-3 2.0E-3 1.0E-3
S 24 2.7E-4 1 23E-4 7.1E-4 6.7E-5 8.8E-5 4.4E-5
Cs* 0.002 1.8E-8  2.00E+05* | 5.2E-2 1.6E-1 1.5E-2 2.0E-2 1.0E-2
Ba™ 0.06 4.3E-7 20° 4.6E-3 1.4E-2 1.3E-3 1.8E-3 8.8E-4
Fresh groundwater: ‘ '
‘ Fracture Fault Gouge Cataclasite . Altered Zone | Intact.wall
Coating | rock
CEC=30 peq/g | CEC=90 neq/g | CEC=8.5 ! CEC=11 peq/g CEC=5.7
Ceq/g : | neq/g
C C Kc Kd ) Kd Kd Kd Kd
(mg/l) M) (m’/kg) _(m’/kg) (m’/kg) (m’/kg) (m’/kg)
Na* 21.1 9.2E-4 014 1.9E-4 5.9E-4 5.6E-5 7.3E-5 3.7E-5
Mg 3.2 1.3E-4 118 6.9E-2 2.1E-1 2.0E-2 2.6E-2 1.3E-2
K* 1.7 4.4E-5 668 4.9E-3 1.5E-2 1.4E-3 1.9E-3 9.5E-4
Ca™ 345 8.6E-4 1 6.2E-3 1.9E-2 1.8E-3 2.4E-3 1.2E-3
Rb* 0.03 34E-7  2.00E+03* | 2.7E-2 8.4E-2 7.9E-3 1.0E-2 5.2E-3
S 0.6 6.4E-6 1* | 6.2E-3 1.9E-2 1.8E-3 24E-3 1.2E-3
Cs* 0.002 1.8E-8  2.00E+05* | 2.7E-1 8.4E-1 7.9E-2 1.0E-1 5.2E-2
Ba™ 0.06 4.3E-7 20" 1.2E-1 3.8E-1 3.6E-2 4.8E-2 2.4E-2
Brine groundwater: '
Fracture Fault Gouge Cataclasite | Altered Zone Intact wall
Coating I rock
CEC=30 peq/g | CEC=90 peq/g @ CEC=8.5 i CEC=11 peq/g | CEC=5.7
ueq/g | neq/g.
C c K. Ky Ky K, Ky Ky
(mg/1) M) ‘ (m’/kg) . (m’/kg) (m’/kg) (m’/kg) (m’/kg)
Na* 8500 3.6E-1 0.1% 1.2E-5 3.8E-5 3.5E-6 4.7E-6 2.3E-6
Mg™ 2.1 8.7E-5 11° 2.8E-4 8.6E-4 8.1E-5 1.1E-4 5.3E-5
K* 46 1.2E-3 66° 3.1E-4 9.7E-4 9.1E-5 1.2E-4 6.0E-5
Ca™ 19300 4.8E-1 1 2.5E-5 7.8E-5 7.3E-6 9.7E-6 4.8E-6
Rb* 0.03 34E-7  2.00E+03* | 1.7E-3 5.3E-3 5.0E-4 6.6E-4 3.3E4
Sc** 313 3.6E-3 14 2.5E-5 7.8E-5 7.3E-6 9.7E-6 4.8E-6
Cs* 0.002 1.8E-8  2.00E+05" : 1.7E-2 5.3E-2 5.0E-3 . 6.6E-3 3.3E-3
Ba™* 0.06 4.3E-7 20" 5.0E-4 1.6E-3 1.5E-4 1.9E-4 9.7E-5

A: Value from TRUE-1 investigation of altered Aspb diorite, sampled at KXTT2 15.1m (Byegird et al. 1998)
B: Value from investigation of Finnsjon granodiorite (Byegird et al. 1995)

The deterministic structures of the TRUE-BS hydrostructural model are illustrated in Figure 2-3.

The hydraulic parameters of those structures are provided in Table 2-4.



Figure 2-3. TRUE-BS Hydrostructural Franiework, Deterministic Structures (after Dershowitz et

al,, 2003)

Table 2-4. Deterministic Structures, TRUE-BS Hydrostructural Model

Transmissivity .. Transport Geologic
Structure ID (m2/s) Storativity Apertu::e (m) StructuregType
5 4.020E-07 3.170E-04 2.917E-04 1
6 1.910E-07 2.185E-04 2.010E-04 2
7 9.760E-08 1.562E-04 1.437E-04 2
10 2.980E-08 8.631E-05 7.941E-05 1
13 1.380E-08 5.874E-05 5.404E-05 1
19 1.020E-07 1.597E-04 1.469E-04 1
20 1.430E-07 1.891E-04 1.740E-04 1
21 6.020E-08 1.227E-04 1.129E-04 2
22 2.190E-08 7.399E-05 6.807E-05 2
23 1.660E-07 2.037E-04 1.874E-04 2
24 8.510E-08 1.459E-04 1.342E-04 2
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3. TRANSPORT SIMULATIONS

Most transport simulations for the TRUE-BS project were carried out using calibrated transport
properties. While this was useful for deriving effective transport properties for the fractures

tested, it did not demonstrate understanding of the transport pathways.

Simulations carried out during H-14 were true predictive simulations. The transport properties
used were taken directly from the microstructural model of Dershowitz et al. (2003). No

conditioning or calibration of transport properties was carried out.

Three sets of transport experiments were simulated, representing the TRUE-Block Scale Phase C

experiments C1, C2, and C3.

3.1 Tracer Tests

Tracer tests performed at the TRUE Block Scale site are summarized in Tables 3-1 through 3-4,
based on Andersson et al. (2002). Phase C tracer tests included injections of radioactive sorbing

tracers in three different source locations (Andersson et al, 2001c).

Test C-3 was a radially converging tracer test since the induced flow rate in the injection section
was significantly higher than the pressure of essential passive tracer injection. Tests C-1 and C-2
were unequal strength dipole tracer tests, since a slight excess pressure was applied at the

injection locations.
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Table 3-1. Tracer Test Geometry (after Andersson et al., 2002)

Test Flow path Struc-  Flow ‘ Inj. flow  Pump flow Tracer Distance
# tures geometry  (ml/min)  (ml/min)
C-1 KIO025F03:P5S—~ 20,21 Forced 45 1950 “Br, “Na*, 14 (16)
KI0023B:P6 injection K, YCa™, -
86Rb+’ 134CS+,
, Uranine
C-2  KI0025F03:P7— 23,20, Forced 10 1950 '%Re0y, 17 (97)
KI0023B:P6 21 injection “TCa*,
) 131Ba2+, 137CS+
Naphtionate
C-3 KIO025F02:P3 - 21 Passive 1.8 1950 HTO, ®Na*, 33 (33)
KI0023B:P6 injection 5sr*, ¥RbY,
133Ba2+
C-4 KIO025F03:P5 - 20,21 Forced 45 1950 “Br, P, 14 (16)
KI0023B:P6 - injection YCa™,
131Ba2+
54Mn2+:

2 2
57C0-+, GSZn-+

Table 3-2. Tracer Injection Dafa For Test C-1 (after Andersson et al., 2002)

Borehole  Section Inj. rate Inj. rate Tracer tin Maxinj.  Total Inj.
section Volume  flow meter  dil.curve conc. amount
(ml) (ml/min) (ml/min) (Bgkg) (MBq)
KIOOF03: 7214 45 25 *Br 353h  1.82110" 138
P5
*Na* 150h . 2.14-10° 156
2K 124h 27910 229
YCa®* 4.5d 1.6410° 10.7
Rb* -  18.7d  2.12:10° 133
Bicst 21y 6.21-10°  7.79

Table 3-3. Tracer Injection Data For Test C-2 (after Andersson et al., 2002)

Borehole Section  Inj. rate flow Inj. rate Tracer tin(d) Maxinj. Total Inj.
section Volume meter dil.curve conc. amount
(ml) (ml/min) (ml/min) (Bg/kg)  (MBq)
KIOOF03:P7 4978 10 8.5 "Re0,” 3.8d 3.80-107 171
Ca®  4.5d 1.4510° 56.4
BBa®*  11.5d  5.74-10° 257
Ycst 4.46:10° 235
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Table 3-4. Tracer Injection Data For Test C-3 (after Andersson et al., 2002)

Borehole Section Inj. rate Inj. rate Tracer ty2 (d) Max inj. Total Inj.

section Volume flow meter  dil.curve conc. amount
(ml) (ml/min) (ml/min) (Bgkg) (MBq)
KIOOF02:P3 8424 - 1.8 HTO . 123y 2.12:10" 244

“Na* 2.6y 2.68:10° 21.6
B2 64.9d  2.7410° 22.1
BRb* 86.2d  5.12:10° 45.9
Ba* 105y 26110 0.55

3.2 Simulations

Simulations of tracer tests C-1, C-2, and C-3 were carried out using FracMan/PA Works
. (Dershowitz et al., 2002), with the Laplace Transform Galerkin transport solution. This solution
discretized the fractures as pipes, and directly applied all of the immobile zone transport

properties based on the microstructural model as described in Chapter 2 above.
The parameters used in the simulations are summarized in Tables 3-5, 3-6, and 3-7.

Simulation results are provided in Figures 3-1 through 3-30. In general, the simulations carried
out with the updated microstructural model indicate greater retention than was observed in the
measured breakthrough curves. However, the results as predictive simulations are surprisingly

good. This provides initial indications of the usefulness of the microstructural model.
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" Table 3-5. Parameters for C-1 Tracer Simulations

i Process
Task 6C Discrimination
(3] Calibration Parameters Parameters reference Calibration Parameters Parameters reference
Fracture on Structure 20  Transmissivity 1.43E-07 Task 6C report Transmissivity 9.60E-07 true bs DFN
Fracture Aperture (m) 1.89E-04 Task 6C report Fracture Aperture (m) 1.96E-03 true bs DFN
Transpot Aperture {m) 2.36E-05 Task 6C report * 2.36E-03 Transpot Aperture (m) 5.88E-04°  DFN calibration
Pipe Width (m) -- MAX 01 max 10cm 041 Pipe Width (m) -- MAX 0.4 max 10cm
Pipe Area {m?) 2.36E-06 e width 2.36E-04 Pipe Area (m") 5.88E-05  ejwidth
Advective velacity (m/yr) 6816.3 phaseCrep Advective velocity {mfyr) 18000 calibraiton to initial breakthrou
Advective velocity as
calcuiated freom 1/5000 of
‘ the pumping rate {m/yr} 91596.75 15000
Path Length (m) 17.9 from geometry Path Length (m) 17.9 from geometry
Dispersion {m) 1.79 max 10% Dispersion {m) 15 max 10% 8.4%
Fracture Coating Thickness {m) 0.0005 Task 6C report
Porosity (%) 5.0% Task 6C report
Pipe Area 0.179 Viag/thickness
Fault Gouge-
C ylonite T (m) 0.025 Task 6C report Breccla Thickness (m} 0.003 0.003m to 0.0001m
(immobile zone) Porosity (%) 4.8% Task 6C report Porosity (%} 5.50% 40% - 5%
Pipe Area 0.17184  V,g4thickness Pipe Area 0.1969 Vyag/thickness
Tortuosity 0.09526 Task 6C report
Altered Rock Thickness {m) 0.2 Task 6C report Altered Rock Thickness {m) 0.02 0.02m to 0.005m
Porosity {%) 1.0% Task 6C report Porosity (%) 2% 2% - 0.5%
Pipe Area 0.0358 V,og/thickness Pipe Area 0.0716 V.sfthickness
intact Rock Thickness (m) 10 Intact Rock  Thickness (m) 10
Porosity (%) 0.3% Task 6C report Porosity (%) 0.10% <0.5%
Pipe Area 0.01074  V,u4/thickness Pipe Area 0.00358  V,u/thickness
Retardation Factor R = 1+Kd*{density/n) Br Kd, Task 6C report R = 1+Kd*(density/n) Br Kd, Process Discrimination St
Fracture Coating 1 0 Breccia 1 0
Fault Gouge/Cataclasite 1 o Altered Zone 1 o
Altered Zone 1 [} fntact wall rock 1 )
Intact wall rock 1 0 R
Na* Kd, Process Dis Lab Kd
Na* Kd, Task 6C report Breccia 2.2 2.38BE-05 1.40E-06
Fracture Coating 3.0 3.70E-05 Altered Zone 43 2.38E-05 i
Fault Gouge/Cataclasite 28 3.08E-05 Intact wall rock 66.6 2.38E-05
Altered Zone 4.9 1.40E-05 H#REF!
Intact wall rock 7.5 7.10E-06 K* Kd, Process Dis Lab Kd
Breccia 23.0 4.40E-04 2.00E-04
K Kd, Task 6C report Altered Zone 61.6 4.40E-04
Fracture Coating 52.8 9.40E-04 Intact wall rock 1213.2 4.40E-04
Fault Gouge/Cataclasite 46.7 7.96E-04
Altered Zone 100.2 3.60E-04 #REF! ca? Kd, Process Dls Lab Kd
Intact wall rock 166.3 1.80E-04 Breccia 88 1.56E-04 5.20E-06
- Altered Zone 225 1.56€-04
Cca® Kd, Task 6C report fntact wall rock 4308 1.56E-04
Fracture Coating 13.7 2.30E-04
Fault Gouge/Cataclasite 12.2 1.96E-04 RAb* Kd, Task 6C rej Lab Kd
Altered Zone 252 8.80E-05 Breccia 121.2 2.40E-03 4.00E-04
Intact wall rock 41.4 4.40E-05 Altered Zone 331.6 2.40E-03
intact wall rock 6613.0 2.40E-03
Rb* Kd, Task 8C report
Fracture Coating 287.5 5.20E-03 Cs* - Kd, Task 6C reg Lab Kd
Fault Gouge/Cataclasite 253.5 4.40E-03 Breccia 1413 2.80E-03 8.00E-04
Altered Zone 552.0 2.00E-03 Altered Zone 386.7 2.80E-03
Intact wall rock 919.3 1.00E-03 Intact walt rock 7715.0 2.80E-03
Cs* Kd, Task 6C report *
Fracture Coating 2866.2 5.20E-02
Fault Gouge/Cataclasite 2526.4 4.40E-02
Altered Zone 5511.0 2.00E-02
Intact wall rock 9184.3 1.00E-02
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Table 3-6. Parameters for C-2 Tracer Simulations

Process
Task 6C Dlscrimination
c2 Calibration Parameters Parameters reference Calibration P P .
Fracture on Structure 23 Transmissivity T.66E-07 Task 6C report Transmissivity 6.78E-09 true bs DFN
Fracture Aperture (m) 2.04E-04 Task 6C report Fracture Aperture (m) 1.65E-04 true bs DFN
Transpot Apertura (m) 2.55E-05 Task 6C report 2.55E-04 Transpot Aperture (m) 4.94E-05 DFN calibration
Pipe Width {m) - MAX [18] max 10cm 0.1 Pipe Width (m) -- MAX 0.19 max 10cm
Pipe Area (m‘) 2.54644E-06 efwidth 2.54644E-05 Pipe Area (m”) 9.39E-06  efwidih
Advectiva velocity (m/yr) phaseCrep Advactive velocity (m/yr) 28000.0 calibraiton to initial breakthro
Advective velocity as
calculated freom 1/5000 of
- the pumping rate {m/yr) 85014.70 14878
Path Length (m) 6.1 from geometry Path Length (m) 6.1 from geometry
Total Path Length 68.8 from geometry Total Path Length 68.6 from geometry
Dispersion (m) 59 usa process disc. value Dispersion {m) 59 max 10% 8.6%
Fracture Coating Thickness {m) 0.0005 Task 6C raport
Porosity (%) 5.0% Task 6C report
Pipe Aroa 0.0613 V.sg/thickness
Fault Gouge-
C Thick (m) 0.025 Task 6C report Breccla Thickness (m) 0.003 0.003m to 0.0001m
(immobile zone) Porosity (%) 4.8% Task 6C report Porosity (%) 5.50% 40% - 5%
Pipe Area 0.058848  V,uyfthickness Pipe Area 0.128117  Vg/thickness
Tortuosity 0.09526 )
Altered Rock Thicknass (m) 0.2 Task 6C report Altered Rock Thickness (m) 0.02 0.02m to 0.005m
. Porosity (%) 1.0% Task 6C report Porosity (%) 0.5% 2% - 0.5%
Pipe Area 0.01226  Vigofthickness Pipa Area 0.011647  V,ug/thickness
Intact Rock Thickness (m) 10 Task 6C report Intact Aock  Thickness {m) 10
Porosity (%) 0.3% Task 6C report Porosity {%) . 0.01% <0.5%
Pipe Area 0.003678  Viug/thickness Pipe Area 0.00023294  V,u/thickness ,
Fracture on Structure 22  Transmissivity Z10E-08  Task 6C report Transmissivity 6.78E-09 true bs DFN
Fracturs Aperture {m) 7.40E-05  Task 6C report * Fracture Aperture (m) 1.65E-04 true bs DFN
Transpot Apertura (m) 9.25E-06  Task 6C report 9.25E-05 Transpot Aperture (m) 4.94E-05 DFN calibration
Pipe Width (m) - MAX 0.1 max 10cm 0.1 Pipe Width (m) -- MAX 0.1 max 10cm
Pipe Area (m*) 9.24816E-07 e *width 9.24916E-06 Pipe Area (m") 4.04E-06  opwidth
Advective velocity (m/yr) phaseCrep Advective velocity {m/fyr) 28000.0 calibraiton to initiat breakthrc
Advective velocity as
calculated freom 1/5000 of
the pumping rate (m/yr) 234059.36 40960
Path Length (m) 29.2 from geometry Path Length (m) 29.2 from geometry
Dispersion {m) 58 usa process disc. value Dispersion (m) 59 max 10%
Fracture Coating Thickness (m) 0.0005 Task 6C report
Porosity {%) 5.0% Task 6C report
ripa Area 0.2923 Vyag/thickness B
Fault Gouge- Thickness (m) 0.025 Task 6C report Breccla Thickness (m) 0.003 0.003m to 0.0001m
{immobile zone) Porosity (%) 4.8% Task 6C report Porosity (%) 5.50% 40% - 5%
Pipe Area 0.058848  V,ay/thickness Pipe Area 0.128117  V,ugthickness
Tortuosity 0.09526 Task 6C report
Altered Rock Thickness (m) 0.2 Task 6C roport Altered Rock Thickness {m) 0.02 0.02m to 0.605m
Porosity {%} 1.0% Task 6C report Porosity (%) 0.5% 2% - 0.5%
Pipe Area 0.05846  V,uythickness Pipe Area 0.011647  V,gg/thickness
Intact Rock Thickness (m) 10 Task 6C report Intact Rock  Thickness (m) 10
Paorosity (%) 0.3% Task 6C report Porasity (%} 0.01% <0.5%
Pipe Area 0017538 Viggthickness Pipe Area 0.00023294  V,q4/thickness
Fracture on Structure 20 Transmissivity T.43E-07 _ Task 6C report
Fracture Apertura (m} 1.89E-04 Task 6C report
Transpot Aperture {m) 2.36E-05  Task 6C report 2.36E-04
Pipe Width (m) -- MAX 01 max 10cm 0.1
Pipe Area (m*) 2.36346E-06 e *width 2.36346E-05
Advectiva velocity (m/yr) phaseCrep
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Table 3-7. Parameters for C-3 Tracer Simulations

Process
Task 6C Discrimination
C3 Calibration F Paremeters reference Cali Parameters Parameters reference
Fracture on Structure 21 Transmissivity 6.02E-08  Task 6C report Transmissivity 8.10E-07  true bs DFN
Fracture Aperture {m) 1.23E-04  Task 6C report Fracture Aperture (m) 1.80E-03  true bs DFN
Transpot Aperture (m) 1.53E-05  Task 6C report 8.53E-04 Transpot Aperture (m) 5.40E-04 OFN calibration
Pipe Width {m) -- MAX 0.1 max 10cm 0.1 Pipe Width (m) -- MAX 0.1 max 10cm
Pipe Area (m*) 1.53E-08 e width 8.53E-05 Pipe Area (m’) 5.40E-05  ejwidth
Advective velocity (mfyr) phaseCrep N Advective velocity (m/yr) 1385 calibraiton to initia) breakthrough time
Advective velocity as
calculated freom 1/5000 ot
the pumping rate (m/ir) 137056.59 2600
Path Length (m) 329 from geometry Path Length (m) 329 from geometry
Disperslon (m) 3 max 10% Dispersion {m) 2 max 10% 6.1%
Fracture Coating Thickness (m) 0.0005 Task 6C report
Porosity (%) 5.0% Task 6C report
Pipe Area 0.329 V,ag/thickness
Fault Gouge-
Ci Thi (m) 0.025 Task 6C report Breccla Thickness (m) 0.003 0.003m to 0.0001m
(immabile zone) Porosity {%) 4.8% - Task 6C report Porosity (%) 17.00% 40% - 5%
Pipe Area 0.31584 V,ag/thickness Pipe Area 1.1186 V,eufthickness
0.09526  Task 6C report . L
Altered Rock Thickness (m} 0.2 Task 6C report Altered Rock  Thickness (m) 0.02 0.02m to 0.005m
Porosity (%) 1.0% Task 6C report Porosity (%) 0.20% 2% - 0.5%
Pipe Area 00658  Viagthickness Pipe Area 001316 Vyaylthickness
Intact Rock Thickness (m) 10 Task 6C report Intact Rock Thickness (m) 10
Porosity (%) 0.3% Task 6C report Porosity (%) 0.08% <0.5%
Pipe Area 0.01974  V,gofthickness Pipe Area 0.005264  V,cgfthickness
Retardation Factor R = 1+Kd*(density/n) Br Kd, Task 6C report R = 1+Kd*(density/n) HTO Kd, Process Discrimination Study Calibr
Fracture Coating 1 [} Breccia 1 [}
Fault Gouge/Cataciasite 1 [} Altered Zone 1 0
Altered Zone 1 [} intact wall rock 1 ]
Intact wall rock 1 0
Na* Kd, Process [ Lab Kd Kd Muttiplie
Na* Kd, Task 6C report Breccia 22 7.14E-05 1.40E-06 51
Fracture Coating 3.0 3.70E-05 Altered Zone 99.4 7.14E-05
Fault Gouge/Cataclasite 28 3.08E-05 Intact wall rock 246.9 7.14E-05
Altered Zone 49 1.40E-05
Intact wall rock 75 7.10E-06 st Kd, Process [ Lab Kd Kd Muitiplie
Breccia 1.7 4.70E-04 4.70E-06 100
SRt Kd, Task 6C report Altered Zone #VALUE! 4.70E-04
Fracture Coating 13.7 2.30E-04 Intact wall rock 17908.5 4.70E-04
Fault Gouge/Cataclasite 12.2 1.96E-04
Altered Zone 25.2 8.80E-05 Ab* Kd, Process [ Lab Kd Kd Multiplie
fntact wall rock 414 4.40E-05 Breccla 1.0 2.40E-02 4.00E-04 60
. Altered Zone 8337.5 2.40E-02
Rb* Kd, Task 6C report Intact wall rock 13225.0 2.40E-02
Fracture Coating 2875 5.20E-03
Fault Gouge/Cataclasite 2535 4.40E-03 Ba®* Kd, Process [ Lab Kd Kd Multlplie
Altered Zone 552.0 2.00E-03 Breccia 1.0 3.00E-03 2.00E-04 15
Intact walt rock 919.3 1.00E-03 Altered Zone 1.0 3.00E-03
Intact wall rock 1.0 3.00E-03
Cs* Kd, Task 6C report )
Fracture Coating 254.5 4.60E-03
Fault Gouge/Cataclasite 221.4 3.84E-03
Altered Zone 496.8 1.80E-03
Intact wall rock 809.1 8.80E-04
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Sorbing Tracer Test C1: Br-82
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Figure 3-1. Test C1, Breakthrough of Br-82
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Figure 3-2. Test C1, Cumulative Recovery of Br-82
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Sorbing Tracer Test C1: Na-24
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Figure 3-3. Test C1, Breakthrough of Na-24
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Figure 3-4. Test C1, Cumulative Recovery of Na-24
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Sorbing Tracer Test C1: K-42
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Figure 3-5. Test C1, Breakthrough of K-42
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Figure 3-6. Test C1, Cumulative Recovery of K-42
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Sorbing Tracer Test C1: Ca-47
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Figure 3-7. Test C1, Breakthrough of Ca-47
Sorbing Tracer Test C1: Ca-47 ‘
ge32y

100%

90%

80%

70%

60%

50%

40% -

Percent Cumulative Recovery

30%

a Ca-47 Measured Recovery
—Task 6C Parameters
——TRUE BS Calibrated Mode! -- Lab Kd
—o—TRUE BS Calibrated Model -- Modified Kd

50

100

150

200 250

Elapsed Time (hours)

Figure 3-8. Test C1, Cumulative Recovery of Ca-47
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Sorbing Tracer Test C1: Rb-86
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Figure 3-9. Test C1, Breakthrough of Rb-86
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Figure 3-10. Test C1, Cumulative Recovery of Rb-86
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Sorbing Tracer Test C1: Cs-134
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Figure 3-11. Test C1, Breakthrough of Cs-134
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Figure 3-12. Test C1, Cumulative Recovery of Cs-134
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Sorbing Tracer Test C2: Re-186
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Figure 3-13. Test C2, Breakthrough of Re-186
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Figure 3-14. Test C2, Cumulative Recovery of Re-186
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Sorbing Tracer Test C2: Ca-47
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Figure 3-15. Test C2, Breakthrough of Ca-47
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Figure 3-16. Test C2, Cumulative Recovery of Ca-47
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Sorbing Tracer Test C2: Ba-131
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Figure 3-17. Test C2, Breakthrough:of Ba-131
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Figure 3-18. Test C2, Cumulative Recovery of Ba-131
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Sorbing Tracer Test C2: Cs-137
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Figure 3-19. Test C2, Breakthrough of Cs-137
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Figure 3-20. Test C2, Cumulative Recovery of Cs-137
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Sorbing Tracer Test C3: HTO
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Figure 3-21. Test C3, Breakthrough of HTO
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Figure 3-22. Test C3, Cumulative Recovery of HTO
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Sorbing Tracer Test C3: Na-22
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Figure 3-23. Test C3, Breakthrough of Na-22
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Figure 3-24. Test C3, Cumulative Recovery of Na-22
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Sorbing Tracer Test C3: Sr-85
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Figure 3-25. Test C3, Breakthrough of Sr-85
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Figure 3-26. Test C3, Cumulative Recovery of Sr-85
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Sorbing Tracer Test C3: Rb-83
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Figure 3-27. Test C3, Breakthrough of Rb-83
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Sorbing Tracer Test C3: Ba-133
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Figure 3-29. Test C3, Breakthrough of Ba-133
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Figure 3-30. Test C3, Cumulative Recovery of Ba-133
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4. CONCLUSIONS

During H-14, simulations were carried out for the major TRUE-BS transport experiments C-1,
C-2, and C-3 using an updated microstructural model. Results were compared against those
obtained using the calibrated model of H-12. The updated microstructural model generally
predicted somewhat greater retention than was observed in situ. However, the magnitude of
retention was comparable to that obtained through the calibrated transport simulations of H-12.
This indicates that detailed microstructural model analysis does have the potenti‘al to support

predictive transport analysis in fractured rock.
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1. INTRODUCTION

This ieport describes DFN flow simulations and analyses carried out by Golder Associates
during H-14 to support the TRUE-BS Continuation project. The TRUE-BS Continuation project
is currently planning the H-15 experimental program to address longer fracture network
pathways and background fractures. The simulations and analyses described in this report
support evaluation of the feasibility of specific experimental configurations, considering the
connectivity of the rock mass. Connectivity considerations include the hydrostructural model,

channeling, and compartmentalization.

The simulations described in this report provide insight for the pathways being considered for
additional tracer testing during the TRUE BS Continuation project. Simulations were carried out

based on these pathways to assess hydraulic connectivity.
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2. HYDROSTRUCTURAL MODEL

This chapter describes the updated TRUE-BS hydrostructural model used for the hydraulic
interference simulations. The model is described in detail in Dershowitz et al. (2003). The model
is based primarily on the TRUE-Block Scale hydrostructural model (Andersson et al., 2002).
The model combines generally north-west trending deterministic structures with background
fractures. Background fractures included in this model are defined according to a radius
distribution based on a lognormal distribution with mean 2 m and standard deviation 2 m. This
is smaller than that assumed in previous analyses (Dershowitz et al., 2002) in order to represent
the lack of hydraulic continuity (compartmentalization) in the rock mass indicated by

groundwater geochemistry measurements.

Figure 2-1 provides a visualization for the deterministic 100 m scale structures in the updated
TRUE-BS hydrostructural model, colored by transmissivity. Figure 2-2 presents a horizontal

slice through the model at the 450 masl.
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Figure 2-1. Deterministic 100 M Scale Structures Coloured According to Transmissivity

Figure 2-3 and Figure 2-4 provide visualisations of the background fractures coloured by set and

transmissivity, respectively.
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Figure 2-2. Horizontal Section (Trace Map) Through the Deterministic 100 M Structures of the
200 M Model At Z= —450 Masl

Figure 2-3. Background Fractures Coloured By Set, Shallow Set (Blue), NNW (Yellow)
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3.  HYDRAULIC INTERFERENCE ANALYSIS

The TRUE-BS Continuation project intends to carry out tracer tests within the TRUE-BS rock

mass to evaluate:

 transport properties of longer pathways,
» properties of smaller “background” fractures on transport

* hydraulic connectivity or compartmentalization of the rock mass.

Golder Associates simulations of hydraulic interference were carried out to evaluate the
properties and potential suitability of different transport pathways for this testing. In particular,
the simulations were carried out to evaluate the implications of problems with the current TRUE-
BS instrumentation, and potentials for improvement to that instrumentation. The TRUE-BS

borehole array is illustrated in Figure 3-1

~ All major tracer tests carried out in the TRUE-BS rock mass sb far have utilized borehole
KI0023B. In particular, this is the borehole used for the Phase C tracer tests C1, C2, and C3.
KI0023B is used as a sink because the current packer installation includes a short-circuit between
structures #6 and #20 in section P7 of the borehole. The flow between structures #20 and #6
‘within packer interval P7 is 0.2 I/min, as measured by tracer dilution technique. This is one of

the largest flows measured on the site, and indicates that P7 is serving as a significant conductor.

As a result of the presence of the conductor provided by packer interval KIO023B:P7 a number
- of alternative sinks in boreholes KI0025F, -F02, -F03, KA2563A and KIO025F risk losing tracer
mass to this artificial sink. It is also not possible to use structure #20 in KIO023B as a source due

to the flow in KI0Q023B:P7.
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Figure 3-1. Borehole And Instrumentation Geometry at the TRUE Block Scale Site

The packer interval KI0023B:P6 works as a sink despite the short circuit in KI0023B:P7 because
pumping from P6 provides an even lower head than that seen in P7. As a result, P6 has been

tested extensively already, and is not very interesting as a sink for future tracer testing.

Golder Associates, together with GeoSigma and Conterra AB evaluated potential sink and source

intervals for future testing. Table 3-1 and Table 3-2 list these possible source and sink intervals.

The intervals highlighted in green or blue are those for which FracMan interference and transport
simulations have been carried out. In Table 3-1 and Table 3-2, italics indicate tests that are
analysed both with and without remediation of KI0023B:P7, since the short circuit is expected to

influence the testing.

Six of the sinks listed in Table 3-1 could also be used for testingv background fracture transport
pathways, and therefore also appear in Table 3-2. Table 3-3 describes the possible re-

instrumentation of KI0023B used in the simulations for alternative sink instrumentation.



Table 3-1. Possible Sinks for Longer Distance Transport Pathways

Sink Struct # | Source Struct # | Length (m) | Objective Comment
fl | KA2563A:54 20 KI0025F:R4 20 57 Long distance,
Q=1.8 I/min single structure
f2 | KI0023B:P2 19 KI0025F:R2 19 84 Long distance, Need re-instrumentation
(Q=2.01/min??) single structure | of KI0023B, flow lines
blocked?
3 KI0025F:R1 VA 97 Long distance, Need re-instrumentation
' m network of KIO025F and KI0023B
I L] . ‘ l]
KA25634:83 - |13 119 Long distance,
network
7 KI0023B:P2 19 84 Long distance, Ki10023B should be
single structure | optimized (shorter
section), flow lines
blocked
8 KI0023B:P1 10 75 Long distance, Need re-instrumentation
' network of KI0023B
9 KI0025F03:P1 | 19 Long distance, Need re-instrumentation
single structure of KI0025F03
KIO025F02 r;‘_rg 2( L] L]
_n Q=2.5 l/ mi _ .
f12 KI0025F03:P1 |19 52 Long distance, Need re-instrumentation
single structure of K10025F03
f13 | KI0O025F02:P6 22 See comments Same source sections as
Q=2.5 l/min for KI0025F02:P5
f14 | KI0025F03:P4 21 KA2563A:81 19 50 Long distance,
'Q=1.2 /min network
k13 [KI0025F03:P bd [ 1] []
0=2.6 I/mi )
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Table 3-2. Possible Sinks for Background Fracture Transport Pathways

Sink Struct # | Source Struct# | Length (m) | Objective Comment
bl KA2563A:54 |20 Ki10023B:? ? 15-20 Background Optimization of
Q=1.8 I/min fractures or network | KI0023B needed
b2 Kxooszﬁjv [ v L] L]
Q=0.5 ¥/mi
b3 KI0025F03:P3 |13 Background
fracture?
b4 1(1002313:}:? Ro2l [ Ki0025F03:9 Background fractured | Optimization OH
0=2.0 /mi or networl KI0025F03 neede
bS KI0025F03:P4 |21 KI10023B:P4 21 17 Background fracture
Q=1.2 l/min network??
b6 KI0023B:P5 ? 17-20 Background fracture | Optimization of
' network?? KI0023B needed
b7 KI0025F02:P3 | 1321 . (16 Background fracture
network??
by [KI0025F03 dﬁ kd L]
- Q=2.6 I/mi
b9 KI0023B:P5 2 15-20 Background fracture | Optimization of
network?? KI10023B needed
b10 KI0025F02:P6 |22 12 Background fracture :
network??
b1l KI0025F02:P7 |23 17 Background fracture
network??
b12 | KI0025F03:P6 |22 KI0025F02:P6 |22 10 Background fracture | Section progressively
Q=0.8 I/min clogged during
= - = m Phases A and B
RN |
bl4 Ki10023B:? ? 12-15 Background fracture | Optimization of
network?? KI0023B needed
bl4 | KI0025F03:P7 |23 KI0025F02:P7 |23 9 Background fracture
b15 KI0025F02:P6 |22 8 Background fracture
network??
b17 KI10023B:? ? 10-15 Background fracture | Optimization of
_ﬂ ! network?? KI10023B needed
b19 KI0025F03:P4 |21 17 Background fracture
network??
b20 KI0025F03:P6 |22 17 Background fracture
network??
b21 KI0025F03:P7 |23 21 Background fracture
network??
b22 Ki0023B:P4 13 22 Background fracture
network??
b23 LIl L |
b24 [ KIO025F02:P6 |22 KI0025F03:P6 |22 10 Background
Q=2.5I/min fracture ?
b25 KIG025F03:P7 |23 15 Background fracture
network??
b26 KI0023B:? ? 18-22 Background fracture | Optimization of
network?? KI0023B needed
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Table 3-3. Old and Tentative New Instrumentation of Borehole K10023B

Old Sec. Interval (m) Struct | Bh length Flow* New Sec | Interval (m)
(m) (I/min)

P1 113.7-200.7 #10 169-171 16.00 R1 113.7-200.7
#? 141-146 2.00

P2 111.3-112.7 #19 112 2.85 R2 111.3-200.7

P3 87.2-110.3 #? 87-88 0.02 R3 87.2-110.3

P4 84.8-86.2 #13 85.6 080" R4 77.0-86.0

P5 73.0-83.8 #? 75-76 0.02 RS 73.0-76.0
#7 72-75 0.30

P6 71.0-72.0 #21 71.1 2.00 R6 71.0-72.0

P7 43.5-70.0 #20 69.8 2.00 R7 66.0-70.0
#7 51-56 0.07 56.0-65.0 Blind
#? 46-50 0.64 R8 46.0-55.0
#6 442 1.00

P8 41.5-42.5 #7 42.2 40

P9 4.5-40.5 #? 31-32 2.00 R9 4.5-45.0
#5 8 5.00

*Flow from open borehole (drawdown 4000 kPa) from double packer flow log (5 m sections) combined with hydraulic tests

and measurements during drilling.

Simulations were carried out for all of the sink intervals indicated in green and blue in Table 3-1
and Table 3-2. For tests indicated in blue, the current packer configuration of KI0023B:P7 and

the installation described in Table 3-3 was used. An example of the simulation results is

provided in Figure 3-2.
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0001 0.01 0.1 1 10 100
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Figure 3-2. Simulation of Hydraulic Interference, KI0023B:P6 Sink, Not Remediated
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4. SUMMARY

The analyses presenting in this report demonstrate that:

* There are a number of attractive pumping sections for both longer distance tracer testing,

and tracer testing involving background fractures

* Many of these intervals require re-instrumentation of KI0023B, in order to eliminate the

short circuit in interval P7.

C-11



5. REFERENCES

Andersson, P., J. Byegird, T. Doe, J. Hermanson, P. Meier, E.-L. Tullborg, and A. Winberg, 2002.
“TRUE Block Scale Project Final Report — 1. Characterisation and model development”,
Swedish Nuclear Fuel and Waste Management Company (SKB), Technical Report TR-02-13.
SKB, Stockholm :

Dershowitz, W., A. Winberg, J. Hermanson, J. Byegird, E.L. Tullborg, P. Andersson, z;pd M. Mazurek,
2003. A Semi-synthetic Model of Block Scale Conductive Structures at the Aspd Hard Rock
Laboratory. SKB, Stockholm.

Dershowitz, W., M. Uchida, and K. Klise, 2002. Predictive Simulation and Evaluation, TRUE Block
Scale Project. SKB, Stockholm.

C-12



APPENDIX D

GENERALIZED DIMENSION ANALYSIS
OF MIU-4 HYDRAULIC TESTS



MIU
UNDERGROUND ROCK LABORATORY

TECHNICAL NOTE

GENERALIZED DIMENSION ANALYSIS
~ OF MIU-4 HYDRAULIC TESTS

Version 1.0

THOMAS DOE

CRISTIAN ENACHESCU

D-2



TABLE OF CONTENTS

1. INTRODUCTION.......ooevirricerncnnenn ettt ettt st st e a s s ettt et et b e et ee e e ne ettt ane 1

2. TYPE CURVE ANALYSIS ...ttt setcetserssssssesesesessssssesas s sessesssnesessssenes 1

3. CONCLUSIONS ....oiitiitiiitccsisesesetsssseses st ssesesssstssesessetssssastssessnsassssessesessssassesssenes 1

LIST OF TABLES

Table 2-1. FlowDim Analysis of MIU-4 ............ccoovrrrrncciniiricnnnee, Frrstrrsrsasesesresansaesasaseseniesseaas 1

Table 2-2. Summary Hydraulic Properties From FlowDim Analyses of MIU-4 Tests (rws only; sws if no
TWS) coreinteesuiinee it eseetssts st ests st s sesstas bt st s s s e s s et e s ssesseastasssaas e bt st e s e s e s e easebesaa e teesbae b aannt sreensneernerrnns 1

LIST OF FIGURES

Figure 2-1. Pressure Derivative Analysis, MIU-4...............oeuvrveereneesseresssessssesssssesessasessessessesesseeseeens 1

LIST OF APPENDICES

Appendix A Flow Dim Analysis Report MIU4-01

Appendix B Flow Dim Analysis Report MIU4-02

Appendix C  Flow Dim Analysis Report MIU4-03

Appendix D Flow Dim Analysis Report MIU4-04

Appendix E  Flow Dim Analysis Report MIU4-06

Appendix F Flow Dim Analysis Report MIU4-07

Appendix G Flow Dim Analysis Report MIU4-08

Appendix H  Flow Dim Analysis Report MIU4-09

Appendix 1 Flow Dim Analysis Report MIU4-10

Appendix J Flow Dim Analysis Report MIU4-11

Appendix K Flow Dim Analysis Report MIU4-12



1. INTRODUCTION

As part of the H-14 activities Golder Associates carried out FlowDim type curve analysis of
eleven single hole tests from the MIU-4 borehole. The data sheets for the FlowDim analyses are

provided as Appendices to this report.
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2. TYPE CURVE ANALYSIS

FlowDim analysis resuits are provided in Table 2-1. Type curve analysis was carried out to
match both time and derivative data. Figure 2-1 presents a summary of the pressure derivative
curves. The derivatives are normalized with respect to pumping rate to allow direct comparison
‘of the results. The pressure scale also has been recalculated to provide transmissivity values.

The combined rate normalization and transmissivity calculation involves the following
relationship: T = Q/ (4 tdp q t) . The common plotting of a number of test records allows a

ready comparison of transmissivity values. Furthermore, similarities of derivative shape can

indicate if different tests are affecting the same or different conducting features.

For each MIU-4 test, there were several flow and pumping phases. FlowDim analysis ;')lotsA for
all phases are provided as appendices. The rws or sws (recovery from pumping or slug) phases
were selected as the most representative. These phases have the longest records and the highest

quality, being least disturbed by pumping rate variations.

The selected rws and sws results are summarized in Table 2-2. Where the test analyses used

~ composite type curves (inner and outer regions with different properties), Table 2-2 gives both
the inner and outer zone transmissivities and flow dimensions. The dimensionless radius appears
in the table as well, but it is unreliable because it depends on storativity, which cannot be

separated from skin effects for source zone tests.
The pressure derivative curves for the MIU-4 tests fall into several groups which are as follows:

1. Tests 1 (Mizunami Group, 60-68m), 2 (Mizunami Group, 72-74m), and 9 (Tsukiyoshi

Fault Core, 670-677m) are lower transmissivity intervals with dimensions of 2 or less.

2. Tests 3 (Weathered Granite, 83-117m), 4 (WCF in Toki Granite, 314-316m), 7 (Upper
Highly Fractured Domain, 183-254m), 8 (Footwall, More Fractured Zone754-790m), 10
(Footwall, Sparsely Fractﬂged, 690-753m), 11 (Lower Sparsely Fractured Domain, 500-
562m), and 12 (Lower Sparsely Fractured Domain, 361-424m). These tests all have a
dimension of two or slightly greater. They appear to have local regions with low

transmissivity and connect with higher transmissivity regions within the first minute of
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test. The records indicate stabilization into features with transmissivities between 2x107°

and 3x107> m%s.

3. Test 6 (Hanging wall, 584-647) has an anomalously high apparent transmissivity which

decreases with distance to about the same level as the group 2 tests.

MIU-4 Well Tests

Time, h
0.00001 0.0001 0.001 0.01 0.1 1 10 100
1.E-10 : . . - - :
1.£-09{
1.E-08 -
—o—Test 1 (60-68)
. 1.E-07 - o Test2(72-74)
e ——Test 3 (83-117)
E 06 A Test4 (314-316)
§‘ = o’ —o—Test 6 (584-647)
a —e—Test 7 (183-254)
L 1051 —o—Test 8 (754-790)
g —o—Test 9 (670-677)
Lo . ——Test 10 (690-753)
1.E-04 o Test 11 (500-562)
-0 Test2 (361-424)
1.E-03 -
1.E-02 -
1.E-01

Figure 2-1. Pressure Derivative Analysis, MIU-4
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Table 2-1. FlowDim Analysis of MIU-4

test no top mabh bottom m: phase T1 mob ratio rd1 T2 Notes
1 68.45 78.02 pwt 4.40E-09 10 6.8 4.40E-10
Mizunami Group pw2 5.30E-09| ¢ 57 4.9 9.30E-10
pw3 3.40E-09 7 2.9 4.86E-10
Sws 2.80E-09 3.3 25 8.48E-10 Also matches with perfect n=1.5
2 82.5 88.6 swi1 4.40E-07| . 2 10 2.20E-07
Mizunami Group sws1 6.60E-07 21 43 3.14E-07
sw2 7.30E-07 18 140 4.06E-07
sws2 9.70E-07 1.7 36 5.71E-07
™w 2.20E-07 1.6 98 1.38E-07
. ws 3.40E-07 15 115 2.27E-07 ood -2d
3 95.02 134.47 swi 1.20E-06
Weathered Granite sws1 2.30E-06 S=1.7e-23; Good 2d with big skin
sw2 9.00E-07|
sws2 8.20E-06| :
W 1.70E-06
™ws 1.30E-05 2.7 1.30E+12 4.81E-06
7 183.2 254.2 pw 1.10E-06 0.2 5.10E+01 5.50E-06
Upper Highly Frac Domain wi 4.70E-07
w2 9.10E-07
™ws 1.00E-07 05 8.6 2.00E-07 7 n>2?
4 315 317 swi 5.80E-06
WCEF in Sparse Frac Domain sw2 1.30E-05
sws2 3.40E-05] .
pw 7.50E-07 24.3 100 3.09E-08
™w 5.20E-06 0.3 860 1.73E-05
ws 6.30E-06 0.3 5000 2.10E-05 D flow? or 2, 2-D steps?
12 361.6 424.1 pw 1.50E-05 100 450 1.50E-07
Lower Sparsely Frac Domaln  sw 3.10E-07 0.1 10 3.10E-06
. SWS 3.10E-07 0.03 3600 1.03E-05
w 9.90E-07 0.24 494 4.13E-06
ws 3.40E-07 1.9 . 6.5 1.79E-07 i Best cirve
11 500.3 562.8 pw1 . 1.80E-05 7 516 2.57E-06
Lower Sparsely Frac Domain  pw2 1.40E-05 25 180 5.60E-07
sw 3.00E-07 0.1 5 3.00E-06
SWS 7.00E-07 5.6 86 1.25E-07
™wi 2.80E-06
™w2 6.10E-06
w3 3.30E-06
ws 3.80E-07} - 5.6 19 6.79E-08 f Best curve
6 584 647.1 sw2 5.50E-06 0.1 154 5.50E-05
Hanging Wall sws2 4.80E-06 0.01 20 4.80E-04 Big skin
sw3 2.40E-05
™w 5.60E-05
™ws 1.30E-05 0.01 20 1.30E-03
669.5 677 pw 9.30E-07 08 33 1.16E-06
Tsukiyoshi Fault Core pw2 4.50E-07 15 11.2 3.00E-07| %
sw 2.40E-07 52 22 4.62E-08
sws - 5.70E-07 0.017 25 3.35E-05
690.5 753 pwi 7.80E-07| : 16 81 4.88E-08
Footwall: Sparsely Fractured pw2 7.00E-07 x 71 117 9.86E-08/.
SW 1.30E-07|" 2.6 4.3 5.00E-08 ore like big skin
SWS 5.90E-07 0.1 57 5.90E-06 Best curve
754.5 790.1 pw 1.17E-05 10 50 1.17E-06
Footwall more fractured ™w 1.38E-05
rws 8.50E-07| ., 09 - 35 9.44E-07
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Table 2-2. Summary Hydraulic Properties From FlowDim Analyses of MIU-4 Tests (rws only; sws
if no rws)

‘ ... | Dimensionless
Test top | bottom | phase T1 nl mobl.hty Composite T2 n2
ratio :
. Boundary
m m m'/s - m’/s

1 60" 68 sws | 2.8E-09 | 2 3.3 25 8.5E-10 | 2
2 72 77 ws | 34E-07 | 2 1.5 115 23E-07 | 2
3 83 118 rws | 1.3E-05 | 2 2.7 1.30E+12 4.8E-06 | 2
4 183 254 rws | 1.0E-07 | 2 0.5 8.6 2.0E-07 | 2
6 315 317 ws | 6.3E-06 | 2 0.3 5000 2.1E-05 2
7 362 434 ws | 3.4E-07 | 2 1.9 6.5 1.8E-07 | 3
8 500 563 rws | 3.8E-07 | 2 5.6 19 6.8E-08 | 3
9 .| 584 647 rws | 1.3E-05 | "2 0.01 ' 20 1.3E-03 | 2
10 670 677 sws | 5.7E-07 | 2 0.017 25 3.4E-05 1
11 691 753 sws | 59E-07 | 2 0.1 57 5.9E-06 | 1.9
12 755 790 rws | 8.5E-07 | 2 0.9 35 . 94E-07 | 24
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3. CONCLUSIONS

Analysis of the MIU-4 test has provided insight concerning the hydraulic properties of the
various formations at the MIU site. These analysis have supported development of the MIU

hydrogeologic DFN model.
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Appendix A: Flow Dim Analysis Report MIU4-01

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MIU 4
interval name T1 (59.70 - 68.25)
Event name PW1

Date

Input file name pw1.REC
WELL PARAMETERS

Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 8.55E+00
TESTPARAMETERS ’

Initial slug pressure (p0) [kPa] : 2.99E+02
Static formation pressure (pi) [kPa] : 4.10E+02
Test duration (tt) [h] . 1.98E+01
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity . (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity ' (n) [ : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 5.87E-16
Transmissivity (Th) [m2/s] : 4.43E-09
Storage (S) [m/Pa] : 1.44E-07
Storativity (Sh) [ : 1.41E-03
Skin - (s) [ : 0.00E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00 .
Dimensionles discontinuity radius (rd1) [ : 6.78E+00
Mobility ratio {(sg) [ : 1.00E+01
Time match (™M) [1/h] : 3.14E+00
Pressure match (PM) [1/kPa] : 8.84E+00

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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"TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name Tokishi
Well name MIU 4
Interval name T1 (59.70 - 68.25)
Event name PW2
Date
Input file name pw2.REC
WELL PARAMETERS
Well depth [mbrp] : 1.00E+0Q0
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 4.80E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 8.55E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 3.11E+02
Static formation pressure (pi) [kPa] : 4.07E+02
Test duration (tt) {h] : 9.40E+00
FLUID AND FORMATION PARAMETERS

- [kg/m3
Density (@ 1 : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (c¢t) [1/Pa] : 2.00E-09
Porosity (n} [-] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 6.95E-16
Transmissivity (Th) [m2/s] : 5.25E-09
Storage (S) [m/Pa] : 7.99E-08
Storativity (Sh) [] : 7.83E-04
Skin (s) [] : 0.00E+00
inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 4.90E+00
Mobility ratio (sg) [] : 5.67E+00
Time match (TM)  [1/h]  : 1.05E+01
(PM

Pressure match ) [1/kPa] : 1.05E+01

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name Tokishi
Well name MIU 4
Interval name T1 (59.70 - 68.25)
Event name PW3
Date
Input file name pw3.REC
WELL PARAMETERS _ ,
Well depth [mbrp] : 1.00E+00
Reference point elevation [masl} : 0.00E+00
Wellbore radius (rw) {m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 8.55E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 3.05E+02
Static formation pressure (pi) [kPa] : 4.07E+02
Test duration (tt) [h] : 1.67E+01
FLUID AND FORMATION PARAMETERS '
Density ' (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03-
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (N [m3] : 5.10E-16
Transmissivity (Thy  [m2/s] : 3.85E-09
Storage (S) [m/Pa] : 2.66E-07
Storativity (Sh) [ : 2.61E-03
Skin (s) - [ : 0.00E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [] : 2.00E+00
Dimensionles discontinuity radius (rd1) [-] : 2.88E+00
Mobility ratio (sg9) [-] : 6.97E+00
Time match (TM) [1/h] : 1.47E+00
(PM) [1/kPa]

Pressure match

: 7.67E+00

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MIU 4
Interval name T1 (59.70 - 68.25)
Event name SWS

Date

Input file name sws.REC
WELL PARAMETERS

Well depth _ [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 4.80E-02
Interval length (h) [m] : 8.55E+00
TESTPARAMETERS

Production/Injection time (tP) [h] : 2.47E+00
Flow rate (@ [Vmin] 1 1.49E-03
Test duration (tt) [h] : 2.30E+00
FLUID AND FORMATION PARAMETERS

Viscosity ' (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) {] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions - Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS

Transmissibility (M [m3] 1 3.64E-16
Transmissivity (Th) [m2/s] : 2.74E-09
Storage (S) [m/Pa] : 1.45E-10
Storativity (Sh) [ : 1.43E-06
Wellbore storage coefficient (C)y [m3/Pa] : 2.10E-10
Inner shell flow dimension (n1) [} : 2.00E+00
Outer shell flow dimension (n2) [-] : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 2.52E+01
Mobility ratio (s9) [ : 3.25E+00
Time match (TM)  [1/h] : 3.00E+01
Pressure match (PM) [1/kPa] : 7.07E-02

FlowDim V2.14b-Copyright (¢} Golder Associates 1994
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Appendix B: Flow Dim Analysis Report MIU4-02

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name Tokishi
Well name MiU 4
Interval name T2 (72.00 - 77.44)
Event name SW1 -
Date ,
input file name swi.REC
WELL PARAMETERS
Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length (h) [m] : 5.44E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 4.28E+02
Static formation pressure (pi) [kPa] : 4.93E+02
Test duration (tt) [h] 1 2.78E+00
FLUID AND FORMATION PARAMETERS
Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [-] : 1.00E-02
MODEL ASSUMPTIONS
Flow model ‘Composite
Boundary conditions Slug/Pulse
Well type Source -
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 5.77E-14
Transmissivity (Th) [m2/s] : 4.35E-07
Storage (S) [m/Pa] : 4.50E-07
Storativity (Sh) [] : 4.41E-03
Skin (s) [-] : 3.00E+00
Inner shell flow dimension (n1) [-] : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ > 1.00E+01
Mobility ratio (sg) [] : 2.00E+00
Time match (TM) [1/h] : 9.86E+01
(PM) [1/kPa] : 2.04E+00

Pressure match

FlowDim V2.14b-Copyright (¢) Golder Associates 1894
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Pressure match

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name Tokishi
Well name MIU 4
Interval name T2 (72.00 - 77.44)
Event name SWS1
Date
Input file name sws1.REC
WELL PARAMETERS
Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 5.44E+00
TESTPARAMETERS
Production/Injection time (tP) - [h] : 2.82E+00
Flow rate (@ [l/min] : 1.05E-01
Test duration {t) - [h] : 2.35E+00
- FLUID AND FORMATION PARAMETERS ‘
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (M [m3] : 8.79E-14
Transmissivity (Th) [m2/s] : 6.64E-07
Storage (S) [m/Pa] : 9.72E-09
Storativity (Sh) [ 1 9.54E-05
Wellbore storage coefficient (C) [m3/Pa] : 2.20E-10
Inner shell flow dimension (n1) [-] : 2.00E+00
Outer shell flow dimension (n2) {1 : 2.00E+00
Dimensionles discontinuity radius (rd1) [-1 : 4.25E+01
Mobility ratio (sq) [ : 2.07E+00
Time match (TM)  [1/h] : 6.96E+03
(PM) [1/kPa] : 2.44E-01

FlowDim V2.14b-Copyright (¢) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MIU 4
Interval name T2 (72.00 - 77.44)
Event name Swa

Date

Input file name sw2.REC
WELL PARAMETERS :
Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) fm] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
interval length (h) [m] : 5.44E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 2.91E+02
Static formation pressure (pi) [kPa] : 4.85E+02
Test duration (tt) (h] : 1.33E+00
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity {n) [ : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS .

Transmissibility M [m3] : 9.65E-14
Transmissivity (Th)y [m2/s] : 7.28E-07
Storage ~(8) [m/Pa] : 4.37E-09
Storativity (Sh) [-1 : 4.28E-05
Skin (s) [] : 5.00E-01
Inner shell flow dimension (n1) [1 : 2.00E+00
Outer shell flow dimension (n2) -1 .: 2.00E+00
Dimensionles discontinuity radius (rd1) [-1 1 1.42E+02
Mobility ratio (sg) [ : 1.80E+00
Time match (TM) [1/h] : 2.66E+04
Pressure match (PM) [1/kPa] : 3.41E+00

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MIU 4
Interval name T2 (72.00 - 77.44)
Event name SW&2
Date

Input file name sws2.REC
WELL PARAMETERS

Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 5.44E+00
TESTPARAMETERS

Production/Injection time {tP) [h] : 1.3199
Flow rate Q) [l/min] : 5.94E-01
Test duration {tt) [h] : 1.25E+00
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility _{ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS ,
Flow model ) Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS

Transmissibility (M [m3] : 1.29E-13
Transmissivity (Th) [m2/s] : 9.73E-07
Storage (8) [m/Pa] : 1.49E-08
Storativity (Sh) (-1 : 1.46E-04
Wellbore storage coefficient (C) [m3/Pa] : 3.37E-10
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) 1 : 2.00E+00
Dimensionles discontinuity radius (rd1) [-1 : 3.55E+01
Mobility ratio (sg) [ : 1.70E+00
Time match (TM) [1/h] : 6.66E+03
Pressure match (PM) ‘[1/kPa] : 6.29E-02

FlowDim V2.14b-Copyright {c) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION _

Site name Tokishi
Well name MIU 4
Interval name T2 (72.00 - 77.44)
Event name RwW

Date

Input file name rw.REC
WELL PARAMETERS

Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 5.44E+00
TESTPARAMETERS

Flow rate (@) [Vmin] : 3.46E-01
Test duration (tt) [h] : 5.28E+01
FLUID AND FORMATION PARAMETERS

Viscosity ’ (#) [Pas] : 1.30E-03
Total compressibility (cy [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS '

Transmissibility M {m3] : 2.857E-14
Transmissivity (Th) [m2/s] : 2.16E-07
Storage (8) [m/Pa] : 1.36E-07
Storativity (Sh) [-] : 1.33E-03
Wellbore storage coefficient (C) [m3/Pa] : 3.07E-07
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [1 : 9.80E+01
Mobility ratio (sg) [ : 1.93E-01
Time match (TM) . [1/h]. : 1.62E+00
Pressure match (PM) [1/kPa] : 2.39E-02
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TEST ANALYSIS REPORT 13.09.2002

IDENTIFICATION

Site name : : Tokishi
Well name ' : MU 4
Interval name 1 T2(72.00 - 77.44)
Event name : RWS
Date :

Input file name . rws.REC
WELL PARAMETERS _

Well depth . [mbrp] : 1.00E+00
Reference point elevation . [masl] : 0.00E+00
Wellbore radius : (rw) [m] : 6.00E-02
Interval length ' (h) [m] 1 5.44E+00
TESTPARAMETERS

Production/Injection time _ (tP) [h] : 5.53E+01
Flow rate (9 [V/min] : 3.46E-01
Test duration (tt) [h] : 6.55E+01
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity ‘ (n) [] : 1.00E-02
MODEL ASSUMPTIONS , . ‘
Flow model :  Composite
Boundary conditions : : Constant rate
Well type _ ¢ Source
Superposition type 1 Buildup
TEST RESULTS

Transmissibility (M [m3] : 4.49E-14
Transmissivity (Th) [m2/s] : 3.39E-07
Storage _ (S) [m/Pa] : 3.29E-09
Storativity (Sh) [1 1 3.22E-05
Wellbore storage coefficient (C) [m3/Pa] : 2.23E-10
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [-1 : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 1.15E+02
Mobility ratio : (s9) [] : 1.54E+00
Time match (T™M)  [1/h] : 3.50E+03

Pressure match (PM) [1/kPa] : 3.76E-02
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Appendix C: Flow Dim Analysis Report MIU4-03

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MIU 4
Interval name T3 (83.03 - 117.84)
Event name SwWi

Date :

Input file name swi1.REC
WELL PARAMETERS

Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius - (rw) [m] : 6.00E-02
Tubing radius (ru) [m}] : 3.92E-02
Interval length (h) [m] : 3.48E+01
TESTPARAMETERS ’

Initial slug pressure {e10)] [kPa] : 3.18E+02
Static formation pressure (pi) [kPa] : 5.93E+02
Test duration (tt) [h] : 3.34E-01
FLUID AND FORMATION PARAMETERS

Density (d [kg/m3] : 1.00E+03
Viscosity (#®) [Pas] : 1.30E-03
Total compressibility {ct) [1/Pa] : 2.00E-09
Porosity (n) [-] : 1.00E-02
MODEL ASSUMPTIONS

Flow model DP-PSS
Boundary conditions Slug/Pulse
Well type Source .
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 1.61E-13
Transmissivity (Th) [m2/s] : 1.21E-06
Storage (S) [m/Pa] : 2.18E-09
Storativity (Sh) (-1 : 213E-05
Skin (s) [] : 0.00E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Lambda (La) [] : 1.35E-04
Omega (Om) [ : 7.01E-01
Time match (TM)  [1/h] : 5.68E+04
Pressure match (PM) [1/kPa] : 5.68E+00
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION .

Site name Tokishi
Well name MIU 4
Interval name T3 (83.03 - 117.84)
Event name SWSH
Date

Input file name - swsi1.REC
WELL PARAMETERS .

Well depth [mbrp] : 1.00E+00
Reference point elevation ' [masl] : 0.00E+00
Wellbore radius (rw) (m] : 6.00E-02
Interval length ' (h) [m] : 3.48E+01
TESTPARAMETERS

Production/Injection time (tP) [h] : 3.15E-01
Flow rate (@ [/min] : 7.67E-01
Test duration (tt) [h] : 3.06E-01
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS

Transmissibility (M [m3] : 3.02E-13
Transmissivity (Th) [m2/s] : 2.28E-06
Storage - (S) [m/Pa] : 1.66E-23
Storativity (Sh) {1 : 1.63E-19
Wellbore storage coefficient (C) [m3/Pa] : 3.66E-10
Inner shell flow dimension . (n1) [1 : 2.00E+00
Time match (TM) [1/h] : 1.44E+04
Pressure match (PM) [1/kPa] : 1.15E-01
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13.09.2002

TEST ANALYSIS REPORT
IDENTIFICATION
Site name Tokishi
Well name MIU 4
Interval name T3 (83.03 - 117.84)
Event name Sw2 ‘
Date
Input file name sw2.REC
WELL PARAMETERS -
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length (h) [m] : 3.48E+01
" TESTPARAMETERS '
Initial slug pressure (P0) [kPa] : 3.49E+02
Static formation pressure ' (pi) [kPa] : 5.91E+02
Test duration . (tt) [h] : 3.58E-01
FLUID AND FORMATION PARAMETERS
Density ’ (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
‘Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS ~
Flow model Homogeneous
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (1) [m3] : 1.19E-13
Transmissivity (Th) [m2/s] : 8.95E-07
Storage (S) [m/Pa} : 2.18E-09
Storativity (Sh) [ 1 2.13E-05
Skin - , (s) [] : 0.00E+00
Inner shell flow dimension (n1) [] : 1.84E+00
Time match ' (TM) [1/h]  : 6.27E+04
Pressure match ' (PM) [1/kPa] : 8.00E+00

FlowDim V2.14b-Copyright (c) Golder Associates 1994

D-31




650
6007 > vvvvvaAAAA &—-0-9_ -6 S 4-0-0-6 & & & & & &
5504 ¢
*
500 - *
>
|
3
450+ | |
> &
|
>
g 4007 ¢
-
@
g
3 350
=
E -
— 300
No03-SW-SWS2
250 ; T T T
-1 4 9 14 19 24
Elapsed Time [h]
Fig. 1: CARTESIAN plot
. ) Elapsedtire [n] \
10, 10 10, 10, 1] 10,
10 L
Tokishi /MIU4 FlowDim Version2.14
T3 (8303 - 117.84 /SW2 (¢} Gdder Asscciates
10° / a . ) 1
10
g
3
10" | 3
FLOW MODEL : Horrogeneous 108
BOUNDARY CONDITIONS: Sug/pulse 7
WELL TYPE : Source T 1.9%E-06 m25 a8
SUPERPOSITION TYPE : No superposifon S  3.13E05 - 4
PWOT TYPE : Peres, Reyrolds s 0.00E+00
ni 1.84E400
10" 10? 10° 10 10° 10°
o

Fig. 2: Log-Log plot

D-32



TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MiU 4
Interval name T3 (83.03-117.84)
Event name SW§S2
Date

Input file name sws2.REC
WELL PARAMETERS .

Well depth [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] 1 3.48E+01
TESTPARAMETERS .

Production/Injection time , (tP) [h] : 4.10E-01
Flow rate (@ [Vmin] : 1.50E+00 -
Test duration - (tt) [h] 1 4.02E-01
FLUID AND FORMATION PARAMETERS ,

Viscosity ' (#) ([Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS

Transmissibility - M [m3] : 1.09E-12
Transmissivity ) (Thy [m2/s] : 8.22E-06
Storage (S) [m/Pa] : 4.57E-38
Storativity (Sh) [] : 4.48E-34
Wellbore storage coefficient (C) [m3/Pa] : 1.03E-09
Inner shell flow dimension (n1) [ : 2.01E+00
Time match (TM)  [1/h] : 1.83E+04
Pressure match (PM) [1/kPa} : 2.11E-01
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MiU 4
Interval name T3 (83.03 - 117.84)
Event name RW

Date

Input file name rw.REC
WELL PARAMETERS

Well depth : [mbrp] : 1.00E+00
Reference point elevation [masl] : 0.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 3.48E+01
TESTPARAMETERS

Flow rate (q) [V/min] : 2.19E+00
Test duration ' - (tt) [h] : 1.07E+02
FLUID AND FORMATION PARAMETERS

Viscosity , (@) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS ,

Transmissibility (M [m3] : 2.27E-13
Transmissivity (Th) [m2/s] : 1.71E-06
Storage . (S) [m/Pa] : 1.62E-09
Storativity _ (Sh) [1 > 1.59E-05
Wellbore storage coefficient (C) [m3/Pa] : 3.57E-07
Inner shell flow dimension (n1) [ : 2.02E+00
Time match (TM)  [1/h] : 1.02E+01
Pressure match (PM) [1/kPa] : 2.76E-02
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TEST ANALYSIS REPORT "13.09.2002
IDENTIFICATION

Site name Tokishi
Well name MiU4
Interval name Test3
Event name RWS -
Date XXX
Input file name rws.REC
WELL PARAMETERS ’
Well depth [mbrp} : 1.00E+00
Reference point elevation [masl] : 1.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m]. : 3.95E+01
TESTPARAMETERS

Production/Injection time (tP) [h] 1 1.09E+02
Flow rate (q) [V/min] : 3.30E+00
Test duration (tt) [h] : 4.33E+01
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct)y [t/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Buildup
TEST RESULTS

Transmissibility (M [m3] 1 1.76E-12
Transmissivity (Th) [m2/s] : 1.33E-05
Storage (S} [m/Pa] : 4.45E-28
Storativity (Sh) [-] : 4.36E-24
Wellbore storage coefficient (C) [m3/Pa] : 1.01E-09
Inner shell flow dimension (n1) [-1 : 2.00E+00
Outer shell flow dimension {n2) [-1 : 2.00E+00
Dimensionles discontinuity radius (rd1) [-1 > 1.28E+12
Mobility ratio (s9) [-1 1 2.67E+00
Time match (TM) [1/h] : 3.05E+04
Pressure match (PM) [1/kPa] : 1.55E-01
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Appendix D: Flow Dim Analysis Report MIU4-04

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 314.95 - 316.95
Event name SWi1

Date

Input file name swi1.REC
WELL PARAMETERS ' ‘
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length (h) [m] : 2.00E+00
TESTPARAMETERS *

Initial slug pressure - (p0) [kPa] : 2.42E+03
Static formation pressure (pi) ‘[kPa] : 2.48E+03
Test duration (tt) [h] : 5.76E+00
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity : , ' (#) [Pas] : 1.30E-03
Total compressibility ' (ct)y [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Slug/Pulse’
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility M [m3] : 7.63E-13
Transmissivity ‘ (Th) [m2/s] : 5.76E-06
Storage (8) [m/Pa] : 3.43E-07
Storativity (Sh) [-] : 3.37E-03
Skin (s) [ : 3.50E+00
Inner shell flow dimension (n1) [-] : 2.00E+00
Time match (TM) [1/h] : 1.71E+03
Pressure match (PM) [1/kPa] : 2.70E+01
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TEST ANALYSIS REPORT

13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 314.95 - 316.95
Event name Sw2
Date
Input file name sw2.REC
WELL PARAMETERS
Well depth : [mbrp}] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius : (rw) [m] : 6.00E-02°
Tubing radius ‘ (ru) [m] : 3.92E-02
Interval length - (h) [m] : 9.12E+00
TESTPARAMETERS
Initial slug pressure (p0)  [kPa) 1 2.42E+03
Static formation pressure (pi) [kPa] : 2.48E+03
Test duration ' (t) [h] : 2.36E-02
FLUID AND FORMATION PARAMETERS
Density ’ (d) [kg/m3] : 1.00E+03
Viscosity () [Pas] : 1.30E-03
Total compressibility : ' , (cty ~ [1/Pa] : 2.00E-09
Porosity : (n) [-] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Homogeneous
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility : (T) [m3] : 1.69E-12
Transmissivity (Th) [m2/s] : 1.27E-05
Storage ’ ' (8) [m/Pa] : 2.18E-25
Storativity (Sh) [ : 2.13€-21
Wellbore storage coefficient (C) [m3/Pa] : 4.92E-07
Inner shell flow dimension (n1) [ : 2.00E+00
Time match - (TM)  [1/h] : 5.97E+01
Pressure match (PM) [M1/kPa] : 1.00E+00
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MiU 4
Interval name 314.95 - 316.95
Event name Sws2
Date
Input file name sws2.REC
WELL PARAMETERS
Well depth (mbrp] : 2.29E+02
Reterence point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 2.00E+00
TESTPARAMETERS
Production/Injection time (tP) [h] : 1.10E-01
Flow rate (@ [V/min] : 1.19E+00
Test duration (tt) [h]  : 9.96E-02
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity. _ (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (M [m3] : 4.55E-12
Transmissivity (Thy [m2/s] : 3.43E-05
Storage (S) [m/Pa] : 9.88E-09
Storativity (Sh) [ : 9.70E-05
Wellbore storage coefficient (C) [m3/Pa] : 2.86E-09

- Inner shell flow dimension (n1) [ : 1.97E+00
Time match (TM) [1/h] : 3.70E+03
Pressure match (PM) [1/kPa] : 1.48E-01
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 314.95 - 316.95
Event name PW

Date :

Input file name pw.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 2.00E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 2.46E+03
Static formation pressure (pi) [kPa] : 2.48E+03
Test duration (tt) [h] : 1.58E+00
FLUID AND FORMATION PARAMETERS

Density (d [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility {cty [1/Pa] : 2.00E-09
Porosity (n) [-] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 9.89E-14
Transmissivity (Thy [m2/s] : 7.46E-07
Storage (S8) [m/Pa] : 1.86E-09
Storativity (Sh) [-1 : 1.82E-05
Skin (s) [] it
Inner shell flow dimension (n1) [-] : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 1.00E+02
Mobility ratio (sg) [ : 2.43E+01
Time match (TM)  [1/h] : 4.09E+04
Pressure match (PM) [1/kPa] : 1.49E+03
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
interval name 314.95 - 316.95
Event name sSw

Date

Input file name rw.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 2.00E+00
TESTPARAMETERS

Flow rate (@) [V/min] : 4.51E+00
Test duration (tt) [h} : 1.50E+02
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity . (n) [ : 1.00E-02
MODEL ASSUMPTIONS .
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (T [m3]. : 6.97E-13
Transmissivity (Thy [m2/s] : 5.26E-06
Storage (S) [m/Pa] : 2.06E-09
Storativity (Sh) [ : 2.02E-05
Wellbore storage coefficient (C) [m3/Pa] : 4.65E-07
Inner shell flow dimension (n1) (-1 1 2.00E+00
Outer shell flow dimension (n2) [ 1 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 8.62E+02
Mobility ratio (s9) [-] : 3.05E-01
Time match (TM)  [1/h] : 2.61E+01
Pressure match (PM) [1/kPa] : 4.48E-02
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Pressure match

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MiIU 4
Interval name 314.95 - 316.95
. Event name RWS
Date
Input file name rws.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
interval length (h) [m] : 2.00E+00
TESTPARAMETERS
Production/Injection time {tP) [h] : 1.54E+02
Flow rate (@) [/min] : 4.51E+00
Test duration (tt) [h] 1 2.87E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (M [m3] : 8.65E-13
Transmissivity (Th) [m2/s] : 6.53E-06
Storage (S) [m/Pa] : 2.03E-11
Storativity (Sh) [ : 1.99E-07
Wellbore storage coefficient (C) [m3/Pa] : 4.59E-09
Inner shell flow dimension (n1) [1 : 2.00E+00
Outer shell flow dimension (n2) [-1 : 2.00E+00
Dimensionles discontinuity radius (rdl) [ : 5.01E+03
Mobility ratio (sg) [] 1 2.92E-01
Time match (TM)  [1/h] : 3.28E+03
(PM) [1/kPa] : 5.56E-02
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Appendix E: Flow Dim Analysis Report MIU4-06

TEST ANALYSIS REPORT

113.09.2002
IDENTIFICATION
Site name
Well name MiU 4
Interval name 584 - 647.11
Event name Sw2
Date
input file name sw2.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (w) - [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length (h) [m] : 6.31E+01
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 4.62E+03
Static formation pressure (pi) [kPa] : 4.73E+03
Test duration (tt) [, : 1.50E-01
FLUID AND FORMATION PARAMETERS ,
Density (d [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity "~ (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility )] [m3] : 7.28E-13
Transmissivity (Th) . [m2/s] : 5.49E-06
Storage (S) [m/Pa] : 1.13E-09
Storativity (Sh) [ : 1.11E-05
Skin (s) [ : 0.00E+00
inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [-1 : 2.16E+00
Dimensionles discontinuity radius (rd1) [-] : 1.54E+02
Mobility ratio (s9) [-] : 1.03E-01
Time match (TM)  [1/h] : 4.61E+05
Pressure match (PM) [1/kPa] : 2.57E+01
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(PM) [1/kPa]

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name - 584 - 647.11
Event name SWS2
Date

Input file name sws2.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.31E+01
TESTPARAMETERS

Production/Injection time (tP) [h] : 1.50E-01
Flow rate - (@) [l/min] : 3.20E+00
Test duration (tt) [h] 1 1.05E-01
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct}y [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS

Transmissibility (M (m3] : 6.40E-13
Transmissivity (Th) [m2/s] : 4.83E-06
Storage (S) [m/Pa] : 1.19E-09
Storativity (Sh) [ : 117E-05
Wellbore storage coefficient (C) [m3/Pa] : 2.70E-10
Inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [] : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 2.00E+01
Mobility ratio (sqg) [ : 1.00E-02
Time match (TM)  [1/h] : 413E+04 -
Pressure match > 5.79E-02
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TEST ANALYSIS REPORT 13.09.2002 .
IDENTIFICATION

Site name

Well name MIU 4
Interval name 584.00 - 647.11
Event name Sw3

Date

Input file name sw3.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] 1 3.92E-02
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 4.70E+03
Static formation pressure “(pi) [kPa] : 4.73E+03
Test duration (tt) fh] : 1.46E+00
FLUID AND FORMATION PARAMETERS ,
Density (d [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M  [m3] : 3.26E-12
Transmissivity (Th) [m2/s] : 2.46E-05
Storage (S) [m/Pa] : 4.50E-09
Storativity (Sh) [] : 4.41E-05
Skin , (s) [] : 3.50E+00
Inner shell flow dimension (n1) [ : 2.00E+Q0
Time match (TM)  [1/h] : 5.58E+05
Pressure match (PM) [1/kPa} : 1.15E+02
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TEST ANALYSIS REPORT

13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 584.00 - 647.11
Event name RW
Date
Input file name rw.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00.
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.31E+01
TESTPARAMETERS
Flow rate (@ [/min] : 7.86E+00
Test duration (tt) [h] . 4.94E+01
FLUID AND FORMATION PARAMETERS
Viscosity : (%) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model : Homogeneous
Boundary conditions : Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 7.44E-12
Transmissivity (Th) [m2/s] : 5.61E-05
Storage (S) [m/Pa] : 2.67E-13
Storativity (Sh) [ : 2.62E-09
Wellbore storage coefficient (C) [m3/Pa] : 1.32E-06
Inner shell flow dimension (n1) [-1 : 1.98E+00
Time match (TM)  [1/h] ¢ 1.13E+02
Pressure match (PM) [1/kPa]

: 3.15E-01
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" TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MiU 4
Interval name 584 - 647.11
Event name RWS
Date
Input file name rws.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.31E+01
TESTPARAMETERS
Production/Injection time (tP) [h] T 5.20E+01
Flow rate (q) [//min] : 7.86E+00
Test duration (tt) [h] : 2.79E+00
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (M [m3] : 1.73E-12
Transmissivity (Th) [m2/s] : 1.30E-05
Storage (S [m/Pa] : 7.87E-09
Storativity (Sh) [] 1 7.72E-05
Wellbore storage coefficient (C) [m3/Pa] : 1.78E-09
Inner shell flow dimension (n1) -1 : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 2.00E+01
Mobility ratio (sg) [] : 1.00E-02
Time match (TM)  [1/h] : 1.69E+04
Pressure match (PM) [1/kPa] : 6.36E-02
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Appendix F: Flow Dim Analysis Report MIU4-07 ,

TEST ANALYSIS REPORT ) 13.09.2002
IDENTIFICATION
Site name :
Well name > MU 4
Interval name : 183.20 - 254.20
Event name 1 PW
Date ' » :

*_Input file name : . pw.REC
WELL PARAMETERS '
Well depth [mbrp] : 2.29E+02
Reference point elevation ' [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius " (ru) - [m] : 1.90E-03
Interval length : (h) [m] : 7.10E+01
TESTPARAMETERS '
Initial slug pressure . (p0) [kPa] : 9.92E+02
Static formation pressure (pi) [kPa] : 1.31E+03

- Test duration (tt) [h]  : 1.01E-01
FLUID AND FORMATION PARAMETERS
Density . (d) [kg/m3] ; 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity ‘ (n) [] : 1.00E-02
MODEL ASSUMPTIONS }
Flow model ‘ ' : Composite
Boundary conditions : 1 Slug/Pulse
Well type : : Source
Superposition type ' : Drawdown
TEST RESULTS ‘ : _
Transmissibility (M [m3] : 1.51E-13
Transmissivity , (Th) [m2/s] : 1.14E-06
Storage (8) [m/Pa] : 2.50E-09
Storativity (Sh) [[1° : 2.46E-05
Skin " (s) [1 : 5.00E+00
inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [ 1 2.00E+00
Dimensionles discontinuity radius (rd1) [-] : 5.14E+01
Mobility ratio . ' (sg) [] : 2.08E-01
Time match (TM) [1/h] .: 4.65E+04
Pressure match (PM) [1/kPa] : 2.2BE+03
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"TEST ANALYSIS REPORT

13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 183.20 - 254.20
Event name RwW1
Date
Input file name rwi.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 7.90E+01
TESTPARAMETERS
Flow rate (@) [V/min] : 2.50E-01
Test duration (tt) [h] : 1.39E+01
FLUID AND FORMATION PARAMETERS ‘
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS :
Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 6.1839E-14
Transmissivity (Thy [m2/s] : 4.67E-07
Storage (S) [m/Pa] : 1.37E-11
Storativity (Sh) [ : 1.35E-07
Wellbore storage coefficient (C) [m3/Pa] : 3.11E-07
Inner shell flow dimension (n1) [ : 2.00E+00
Time match (TM)  [1/h] : 3.46E+00
Pressure match (PM) [1/kPa] : 7.17E-02
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 183.20 - 254.20
Event name Rw2
Date
Input file name rw2.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00 .
Welibore radius (rw) [m] : 6.00E-02
Interval length (h) [m] 1 7.90E+01
TESTPARAMETERS
Flow rate (@) [V/min] : 8.30E-01
Test duration (tt) [h] 1 2.22E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [-] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS :
Transmissibility (M  [m3] : 1.2096E-13
Transmissivity (Th) [m2/s] : 9.13E-07
Storage (S) [m/Pa] : 1.99E-11
Storativity (Sh)y - [ : 1.95E-07
Wellbore storage coefficient (C) [m3/Pa] : 4.49E-07
Inner shell flow dimension (n1) [ : 2.00E+00
Time match (TM)  [1/h] : 4.68E+00
(PM) [1/kPa] : 4.22E-02

Pressure match
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name . 183.20 - 254.20
Event name RWS
Date

" Input file name rws.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] ! 6.00E-02
Interval length (h) [m] : 7.90E+01
TESTPARAMETERS :
Production/Injection time (tP) [h] : 3.69E+01
Flow rate (9 [i/min] : 6.07E-01
Test duration {tt) [h] : 1.42E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility - (ct) [1/Pa] : 2.00E-09
Porosity (n) [-] " 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (M) [m3] : 1.40E-14
Transmissivity (Th) [m2/s] : 1.05E-07
Storage (S) [m/Pa] : 1.83E-09
Storativity (Sh) [ : 1.80E-05
Wellbore storage coefficient (C) [m3/Pa] : 4.14E-10
Inner shell flow dimeénsion M) [ : 2.00E+00
Outer shell flow dimension - (n2) [ : 2.52E+00
Dimensionles discontinuity radius (rd1) [-] : 8.63E+00
Mobility ratio (sqg) [ : 5.06E-01
Time match (TM)  [1/h] : 5.86E+02

" Pressure match (PM) [1/kPa] : 6.67E-03
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Appendix G: Flow Dim Analysis Report MIU4-08

Pressure match (PM) [1/kPa]

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 754.50 - 790.10
Event name PW
Date
Input file name pw.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius - (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 3.56E+01
TESTPARAMETERS . ‘ v
Initial slug pressure (p0) [kPa] : 6.49E+03
Static formation pressure _ (pi) [kPa] : 6.58E+03
Test duration (tt) [h] : 1.84E+00
FLUID AND FORMATION PARAMETERS
Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility ) [m3] : 2.29E-12
Transmissivity (Th) [m2/s] : 1.73E-05
Storage (8) [m/Pa] : 3.32E-09
Storativity (Sh) [] : 3.26E-05
Skin (s) [ : 3.50E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension , (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 5.00E+01
Mobility ratio - (s9) [ : 1.00E+01
Time match (TM)  [1/h] : 5.32E+05

: 3.45E+04
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 754.50 - 790.10
Event name RW

Date

Input file name rw.REC
WELL PARAMETERS ‘

Well depth [mbrp] : 2.29E+02
Reference point elevation ‘[masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] . 3.56E+01
TESTPARAMETERS .

Flow rate (@ [/min] : 4.67E+00
Test duration (tt) ih] : 7.41E-02
FLUID AND FORMATION PARAMETERS _

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Homogeneous
Boundary conditions Constant rate
Well type , Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M) [m3] : 1.8306E-12
Transmissivity (Th) [m2/s] : 1.38E-05
Storage (S) [m/Pa] : 6.79E-09
Storativity (Sh) [] . 6.66E-05
Wellbore storage coefficient (C) [m3/Pa] : 1.54E-06
Inner shell flow dimension (n1) [ : 2.00E+00
Time match (TM)  [1/h] : 2.07E+01
Pressure match (PM) [1/kPa] : 1.14E-O1
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 754.50 - 790.10
Event name RWS

Date

Input file name rws.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point.elevation [masl}] : 2.00E+00
Wellbore radius (rw) [m] : 4.80E-02
Interval length (h) [m] : 3.56E+01
TESTPARAMETERS .
Production/Injection time (tP) [h] 1 7.12E+01
Flow rate (@ [V/min] : 4.67E+00
Test duration (tt) {h] : 1.09E+01
FLUID AND FORMATION PARAMETERS .

Viscosity () [Pas] : 1.30E-03
Total compressibility (ct) = [1/Pa] : 2.00E-09
Porosity ’ (n) [] : 1.00E-02
MODEL ASSUMPTIONS ’ .
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS :

Transmissibility ) [m3] : 1.13E-13
Transmissivity (Th) [m2/s] : 8.54E-07
Storage (S) [m/Pa] : 1.51E-10
Storativity (Sh) [-1 : 1.48E-06
Wellbore storage coefficient (C) [m3/Pa] : 2.17E-10
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [-] 1 2.42E+00
Dimensionles discontinuity radius (rd1) [ : 3.49E+01
Mobility ratio (sQ) [ . : 9.01E-01
Time match (TM)  [1/h] : 9.03E+03
Pressure match (PM) [1/kPa] ~ : 7.01E-03
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Appendix H: Flow Dim Analysis Report MIU4-09

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name

~Well name MiU 4
Interval name 669.5 - 677.00
Event name PW1
Date '
Input file name pw.REC
WELL PARAMETERS ‘
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m} : 1.90E-03
Interval length (h) [m] : 7.50E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 5.09E+03
Static formation pressure (pi) [kPa] : 5.60E+03
Test duration (tt) [h] : 4.22E-01
FLUID AND FORMATION PARAMETERS
Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) ~ [] - : 1.00E-02
MODEL ASSUMPTIONS

" Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 1.23E-13
Transmissivity (Th) [m2/s}] : 9.28E-07
Storage (S§) [m/Pa] : 1.16E-08
Storativity (Sh) [ : 1.14E-04
Skin (s) [-] : 0.00E+00
Inner shell flow dimension (n1) 1’ : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 3.28E+01
Mobility ratio ' (sg9 [ : 7.56E-01
Time match (TM)  [1/h] : 1.27E+04
Pressure match (PM) [1/kPa] : 1.85E+03
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name : 669.5-677.00
Event name ;. PW2

Date ‘

Input file name pw2.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) ~  [m] : 9.12E+00
TESTPARAMETERS ,

Initial slug pressure (p0) [kPa] : 5.41E+03
Static formation pressure (pi) [kPa] : 5.54E+03
Test duration (tt) [h] 1 1.74E-01
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS .
Flow model Composite
Boundary conditions Slug/Puise
Well type Source
Superposition type Drawdown
TEST RESULTS ,
Transmissibility (M [m3] : 6.02E-14
Transmissivity (Th) [m2/s] : 4.54E-07
Storage (S) [m/Pa] : 1.62E-08
Storativity (Sh) [ : 1.59E-04
Skin (s) [ : 1.00E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [ 1 2.00E+00
Dimensionles discontinuity radius (rd1) [] : 1.12E+01
Mobility ratio (sg) [ .. 1.58E+00
Time match (TM)  [1/h] : 2.87E+03
Pressure match (PM) [1/kPa] : 9.06E+02
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TEST ANALYSIS REPORT - 13.09.2002
IDENTIFICATION
Site name
Well name MiU 4
Interval name 669.50 - 677.00
Event name SW
Date
Input file name sw.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length’ (h) [m] : 9.12E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 5.01E+03
Static formation pressure {(pi) [kPa] : 5.60E+03
Test duration (tt) [h] : 5.13E+00
FLUID AND FORMATION PARAMETERS
Density " (d) [kg/m3] : 1.00E+03
Viscosity (##) [Pas] . : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility ) [m3] : 3.24E-14
Transmissivity (Th) [m2/s] : 2.44E-07
Storage (S8) [m/Pa] : 3.59E-08
Storativity (Sh) [l : 3.52E-04
Skin (s) [ : 3.00E+00
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [-] : 2.00E+00
Dimensionles discontinuity radius (rd1) [] : 2.20E+01
Mobility ratio (sq) [ : 5.21E+00
Time match - T™M)  [1/h] : 6.93E+02
(PM) [M/kPa] : 1.14E+00

Pressure match
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TEST ANALYSIS REPORT

13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 669.5 - 677
Event name SWS
Date ‘
Input file name sws.REC
WELL PARAMETERS '
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length - (h) [m] 1 7.50E+00
TESTPARAMETERS
Production/Injection time (tP) [h] : 5.11E+00
Flow rate (@ [i/min] : 3.66E-01
Test duration (tt) [h] : 1.38E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Buildup
TEST RESULTS )
Transmissibility (M [m3] : 7.5714E-14
Transmissivity (Th) [m2/s] : 5.71E-07
Storage (S) [m/Pa] : 2.31E-09
Storativity (Sh) [ 1 2.27E-05
Wellbore storage coefficient (C) [m3/Pa] : 1.57E-10
Inner shell flow dimension (n1) [1] : 2.00E+00
Outer shell flow dimension (n2) [ : 1.00E+00
Dimensionles discontinuity radius (rd1) [ : 2.47E+01
Mobility ratio (sq) [] : 1.73E-02
Time match (T™My  [1/h] : 8.40E+03
Pressure match (PM) [1/kPa] : 6.00E-02
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Appendix I: Flow Dim Analysis Report MIU4-10

13.09.2002

TEST ANALYSIS REPORT

IDENTIFICATION

Site name

Well name MIU 4
Interval name 690.50 - 753.00
Event name , PW1

Date

Input file name pwi.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference-point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 4.80E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 5.78E+03
Static formation pressure (pi) [kPa] : 5.97E+03
Test duration (tt) [h] : 1.70E+00
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity () [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS .
Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS :
Transmissibility M [m3] : 1.03E-13
Transmissivity (Th) [m2/s] : 7.80E-07
Storage (S) [m/Pa] : 2.68E-09
Storativity (Sh) [ : 2.62E-05
Skin (s) [] : 1.00E+00
Inner shell flow dimension (n1) [- : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 8.13E+01
Mobility ratio (sg9) [ : 1.63E+01
Time match (TM)  [1/n] : 4.64E+04
Pressure match (PM) [M/kPa] : 1.55E+03
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MiU 4
Interval name 690.50 - 753.00
Event name Sw

Date kjhoipuhoiu
input file name pw2.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] 1 6.25E+01
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 5.81E+03
Static formation pressure (pi) [kPa] : 5.97E+03
Test duration (tt) [h] : 6.41E-01
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity {(n) [-] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 9.26E-14
Transmissivity (Th) [m2/s}] : 6.99E-07
Storage (S) [m/Pa] : 2.13E-09
Storativity (Sh) [] : 2.09E-05
Skin . (s) [-] : 3.01E+00
Inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [] : 2.09E+00
Dimensionles discontinuity radius (rd1) ] : 1.17E+02
Mobility ratio (sg) [] : 7.07E+00
Time match (TM) [1/h] : 5.00E+04
Pressure match (PM) [1/kPa] : 2.09E+03
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
interval name 690.50 - 753.00
Event name Sw

Date

Input file name sw.REC
WELL PARAMETERS .

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) (m] : 4.80E-02
Tubing radius (ru) [m] s 3.92E-02
Interval length. (h) [m] : 9.12E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 5.49E+03
Static formation pressure (pi) [kPa] : 5.97E+03
Test duration : (tt) [h] : 1.67E+00
FLUID AND FORMATION PARAMETERS

Density ' (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility {cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 1.74E-14
Transmissivity (Th)y [m2/s] : 1.32E-07
Storage (S) [m/Pa] : 1.07E-07
Storativity (Sh) [ : 1.05E-03
Skin (s) [ : 0.00E+00
Inner shell flow dimension (n1) [] : 2.00E+00
Quter shell flow dimension. (n2) -1 : 3.42E+00
Dimensionles discontinuity radius (rd1) -1 1 4.27E+00
Mobility ratio (sg) [ : 2.59E+00
Time match (TM) [1/h)  : 1.95E+02
Pressure match (PM) [1/kPa] : 6.16E-01

FlowDim V2.14b-Copyright (c) Golder Associates 1994

D-87




6000

r,on»o-o
5900 - ;
$
$
4
$
.
5800 - ;
H
*
R4
/./
5700 - o
s
K
"’
R
4
o 4
3 5600 /
[7d
(7]
c
-
]
= 5500 -
'
o,
No10-SW-SWS
5400 T T T T T T
-0.1 09 1.9 29 39 49 5.9 6.9
Elapsed Time [h]
.
Fig. 1: CARTESIAN plot
Elapsed time {h]
10, 10,2 102 10" 10, 10, 1w’
10 /MIU4 FlowDim Version 2.14b
690.50 - 753.00 / SW - {c) Golder Associates F10
e R — =
1 .A"}W
10 ///
" e, , 10
// ¢ -
//
’/// -
’,/ »
/// * .
~ e
10" N
- 1o
. . T 1.32E-07 m2/s o
.. S 1.05E-03 - 8
s 0.00E+00 3
21 nl  2.00E+00 - %
10 " FLOW MODEL : Two shell composite = n2  3.42E+00 - &
BOUNDARY CONDITIONS: Slug/pulse M1 4.27E+00 - L. :
WELL TYPE : Source brw 2.59E+00 - 10 5
SUPERPOSITION TYPE : No superposition a
PLOT TYPE : Peres, Reynolds b
10" 10 10’ 10 10 10 10°
o]

Fig. 2: Log-Log plot

D-88



TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 690.5 - 753.00
Event name SWS

Date

Input file name sws.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 1.25E+01
TESTPARAMETERS

Production/Injection time (tP) D] : 1.66E+00
Flow rate (@ [/min] : 1.17E+00
Test duration ’ (t) [h] : 4.30E+00
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Constant rate
Well type Source |
Superposition type Buildup
TEST RESULTS

Transmissibility (M [m3] : 7.7856E-14
Transmissivity (Th) [m2/s] : 5.88E-07
Storage (S) [m/Pa] : 6.62E-10
Storativity (Sh) [] : 6.49E-06
Wellbore storage coefficient (C) [m3/Pa] : 1.50E-09
Inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [] : 1.87E+00
Dimensionles discontinuity radius (rd1) [ : 5.74E+01
Mobility ratio (sq9) [ : 9.95E-02
Time match (TM) [1/h] : 9.05E+02
Pressure match : 1.92E-02

(PM) [1/kPa]
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Appendix J: Flow Dim Analysis Report MIU4-11

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 500.3 - 562.80
Event name PwW1

Date .

Input file name pw1.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS

Initial slug pressure (p0) [kPa] : 3.74E+03
Static formation pressure (pi) [kPa] : 4.12E+03
Test duration (tt) [h] : 2.83E-01
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility (M [m3] : 2.43E-12
Transmissivity (Thy [m2/s] : 1.83E-05
Storage (S) [m/Pa] : 1.22E-09
Storativity (Sh) [ : 1.19E-05
Skin (s) [] : 3.00E+01
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [] : 2.00E+00
Dimensionles discontinuity radius (rd1) [-] : 5.16E+02
Mobility ratio (sg) [] : 7.00E+00
Time match (TM)  [1/h] ;. 1.54E+06
Pressure match (PM) [1/kPa] : 3.66E+04
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MiU 4
Interval name 500.30 - 562.80
Event name Pw2
Date
Input file name pw2.REC
WELL PARAMETERS .
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl]] : 2.00E+00

"~ Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] 1 9.12E+00
TESTPARAMETERS
Initial slug pressure (p0) [kPa] : 3.84E+03
Static formation pressure (pi) [kPa] : 4.12E+03
Test duration (tt) [h] : 1.54E+00
FLUID AND FORMATION PARAMETERS
Density (d) [kg/m3] :-1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

_ Flow model ' Composite
Boundary conditions Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 1.89E-12
Transmissivity (Th)y [m2/s] : 1.42E-05
Storage (S8) [m/Pa] : 3.10E-09
Storativity (Sh) [] : 3.04E-05
Skin (s) [l : 2.30E+01
Inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [] : 1.79E+02
Mobility ratio (sq) [] 1 2.47E+01
Time match (TM)  [1/h] : 4.68E+05
Pressure match (PM) [1/kPa] : 2.84E+04

FlowDim V2.14b-Copyright {(c) Golder Associates 1994

D-93




4150
4100 { ¢
*
. 4050 1 .
.
4000 -
*
3950 .
)
o
» 4
A 3900 )
c
-
[+
=
S 3850 -
o . :
2, No11-PW2
3800 T T T 7 T 7 T T
-0.1 0.1 0.3 05 0.7 09 1.1 13 15 1.7
Elapsed Time [h]
Fig. 1: CARTESIAN plot
Elapsed time {h) N
w0 10? 107 10" 10 10,
1 /MIU4 FlowDim Version 2.14b
500.30 - 562.80 / PW2 {c) Golder Associates
o2
10
F1o°
10’ o
FLOW MODEL : Two shell composite Lt :
BOUNDARY CONDITIONS: Slug/pulse A
WELL TYPE : Source -
SUPERPOSITION TYPE : No superposition N Y10 4
PLOT TYPE : Paras, Reynolds N =
ot T 142605 m2/s 8
e S 3.04E-05 - H
¥ L s 2.30E+01 - g
10 RN nl  2.00E+00 - 3
VSEES N n2 2.00E+00 - °
: 1 1.79E+02 B a
brw  2.47E+01 - g
10
10 10 0! w0 10° 107
to

Fig. 2: Log-Log plot

D-94



TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 500.30 - 562.80
Event name SW

Date

Input file name sw.REC
WELL PARAMETERS : .
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Tubing radius (ru) [m] : 3.92E-02
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS :

Initial slug pressure (p0) [kPa] : 3.62E+03
Static formation pressure (pi) [kPa}] : 4.12E+03
Test duration : : (tt) [h] . 7.43E-01
FLUID AND FORMATION PARAMETERS

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions . Slug/Pulse
Well type Source
Superposition type Drawdown
TEST RESULTS

Transmissibility M [m3] : 4.01E-14
Transmissivity (Th) [m2/s] : 3.03E-07
Storage (S) [m/Pa] : 3.02E-08
Storativity (Sh) [] : 2.96E-04
Skin (s) [] : 0.00E+00
inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension (n2) [-1 : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 5.00E+00
Mobility ratio (sQ) [ : 1.00E-01
Time match (TM) [1/h) : 1.02E+03
Pressure match (PM) [1/kPa] :-1.42E+00
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 500.30 - 562.80
Event name SWS
Date’

Input file name sws.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point.elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.15E+01
TESTPARAMETERS

Production/Injection time (tP) [hl] : 7.38E-01
Flow rate (@ [/min] : 2.75E+00
Test duration (tt) [h] : B.53E+00
FLUID AND FORMATION PARAMETERS

Viscosity (#), [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS 1
Flow model Composite
Boundary conditions Constant rate
Well type Source '
Superposition type Buildup
TEST RESULTS

Transmissibility (M [m3] 1 9.32E-14
Transmissivity (Thy [m2/s] : 7.03E-07
Storage (S) [m/Pa] : 1.99E-09
Storativity (Sh) [-] : 1.95E-05
Wellbore storage coefficient (C) [m3/Pa] : 4.50E-10
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) [1 : 3.00E+00
Dimensionles discontinuity radius (rd1) [-1 : 8.63E+00
Mobility ratio (sg) [ : 5.57E+00
Time match (TM)  [1/h] : 3.60E+03
Pressure match (PM) [1/kPa]

: 9.82E-03
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MiIU 4
Interval name 500.30 - 562.80
Event name RW1
Date .
Input file name rwil.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.15E+01
TESTPARAMETERS ‘
Flow rate (Q [/min] : 3.50E-01
Test duration (tt) [h] : 1.24E+01
FLUID AND FORMATION PARAMETERS
Viscosity P (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS '
Flow model : Homogeneous
Boundary conditions : - Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 3.66E-13
Transmissivity (Th) [m2/s] : 2.76E-06
Storage (S) [m/Pa] : 1.56E-09
Storativity (Sh) [ : 1.53E-05
Wellbore storage coefficient (C) [m3/Pa] : 3.52E-07

- Inner shell flow dimension (n1) [ : 2.00E+00
Time match (T™M)  [1/h] : 1.81E+01
Pressure match (PM) [1/kPa] : 3.03E-01
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TEST ANALYSIS REPORT

13.09.2002

IDENTIFICATION
Site name
Well name MIU 4
Interval name 500.30 - 562.80
Event name Rw2
Date :
Input file name : w2.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [m asl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.15E+01

- TESTPARAMETERS
Flow rate (q) [V/min] : 5.00E-01
Test duration (tt) )} : 4.41E+00
FLUID AND FORMATION PARAMETERS '
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS »
Flow model ’ Homogeneous
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS .
Transmissibility (M [m3] : 8.03E-13
Transmissivity (Th) [m2/s] : 6.06E-06
Storage (S [m/Pa] : 4.14E-09
Storativity (Sh) [] : 4.06E-05
Wellbore storage coefficient (C) [m3/Pa] : 9.35E-07
Inner shell flow dimension (n1) [] : 2.00E+00
Time match (TM)  [1/h] : 1.49E+01
Pressure match (PM) [1/kPa] : 4.66E-01
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TEST ANALYSIS REPORT

13.09.2002

IDENTIFICATION
Site name
Well name MIU 4
Interval name 500.30 - 562.80
Event name RW3
Date
Input file name rw3.REC

- WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
‘Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.15E+01
TESTPARAMETERS
Flow rate (q) [V/min] : 2.00E+00
Test duration (tt) {h] : 2.48E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) [ : .1.00E-02
MODEL ASSUMPTIONS ' .
Flow model Homogeneous
Boundary conditions Constant rate
Well type _ Source
Superposition type Drawdown
TEST RESULTS
Transmissibility (M [m3] : 4.30E-13
Transmissivity (Th) [m2/s] : 3.25E-06
Storage (S) [m/Pa] : 9.78E-14
Storativity (Sh) [ : 9.59E-10
Wellbore storage coefficient (C) [m3/Pa] : 4.42E-07
Inner shell flow dimension (n1) [] : 2.00E+00
Time match (TM) [1/h] : 1.69E+01
Pressure match (PM) [1/kPa] : 6.24E-02
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION
Site name
Well name MIU 4
Interval name 500.30 - 562.80
Event name RWS
Date .
input file name rws.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.15E+01
TESTPARAMETERS

" Production/Injection time (tP) [h] : 4.55E+01
Flow rate () [V/min] : 1.34E+00
Test duration (t) [h) : 1.21E+01
FLUID AND FORMATION PARAMETERS
Viscosity ) (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Agarwal
TEST RESULTS
Transmissibility (T) [m3] : 497E-14
Transmissivity (Th) [m2/s] : 3.75E-07
Storage (S [m/Pa] : 1.00E-09
Storativity (Sh) [] : 9.81E-06
Wellbore storage coefficient (C) [m3/Pa] : 2.26E-10
Inner shell flow dimension (n1) [-] : 2.00E+00
Outer shell flow dimension (n2) [ : 3.00E+00
Dimensionles discontinuity radius (rd1) [ : 1.01E+01
Mobility ratio (sg) [ : 5.59E+00
Time match (TM)  [1/h] : 3.83E+03
Pressure match (PM) [1/kPa] : 1.08E-02
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| Appendix K: Flow Dim Analysis Report MIU4-12

TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name : test

Well name 12

Interval name 361.60 - 424.10
Event name PW

Date

Input file name pw.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00 °
Wellbore radius (rw) {m] : 6.00E-02
Tubing radius (ru) [m] : 1.90E-03
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS '
Initial slug pressure (p0) [kPa] : 2.65E+03
Static formation pressure (pi) [kPa] : 2.92E+03
Test duration (tt) fh] : 4.82E-01
FLUID AND FORMATION PARAMETERS :

Density (d) [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Slug/Pulse
Well type ' Source
Superposition type Drawdown
TEST RESULTS '
Transmissibility (m [m3] : 1.93E-12
Transmissivity (Th) [m2/s] : 1.46E-05
Storage (S) [m/Pa] : 9.53E-10
Storativity (Sh) {- : 9.35E-06
Skin (s) [-] : 2.70E+01
Inner shell flow dimension (n1) [-] : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [] : 4.52E+02
Mobility ratio (sq9) [ : 1.00E+02
Time match (TM)  [1/h] : 1.56E+06
Pressure match (PM) [1/kPa] : 2.91E+04
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TEST ANALYSIS REPORT 13.09.2002

IDENTIFICATION

Site name :

Well name : MIU4
Interval name : 361.60-424.10
Event name : SW

Date . :

Input file name : sw.REC
WELL PARAMETERS '

Well depth ) [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] . 4.80E-02
Tubing radius (ru) [m] 1 3.92E-02
Interval length (h) [m] : 9.12E+00
TESTPARAMETERS ,
Initial slug pressure (PO) [kPa] : 2.42E+03
Static formation pressure (pi) [kPa] : 2.92E+03
Test duration (tt) [h]  : 8.54E-01
FLUID AND FORMATION PARAMETERS

Density _ (d [kg/m3] : 1.00E+03
Viscosity (#) [Pas] : 1.30E-03
Total compressibility : (ct) [1/Pa] : 2.00E-09
Porosity (n) (-] : 1.00E-02
MODEL ASSUMPTIONS

Flow model : Composite
Boundary conditions : Slug/Pulse
Well type : Source
Superposition type : Drawdown
TEST RESULTS ‘

Transmissibility (M [m3]- : 4.10E-14
Transmissivity (Th) [m2/s] : 3.09E-07
Storage - (S) [m/Pa] : 7.78E-09
Storativity (Sh) [ : 7.64E-05
Skin (s) [ : 0.00E+00
Inner shell flow dimension (n1) [] : 2.00E+00
Outer shell flow dimension ‘ (n2) [-] : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 1.00E+01
Mobility ratio (s9) [-1 : 1.00E-01
Time match - (TM)  [1/h] : 6.33E+03
Pressure match _ (PM) [1/kPa] : 1.45E+00
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MIU 4
Interval name 361.60 - 424.10
Event name SWS

Date

Input file name sws.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius {rw) [m] : 6.00E-02
Interval length’ (h) [m] . 6.25E+01
TESTPARAMETERS

Production/Injection time ) [h] : 8.48E-01
Flow rate - (q) [V/min] : 2.23E+00
Test duration (tt) [h] : 5.14E+00
FLUID AND FORMATION PARAMETERS )

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (cty [1/Pa] : 2.00E-09
Porosity (n) {-] : 1.00E-02
MODEL ASSUMPTIONS

Flow model Compdsite
Boundary conditions Constant rate
Well type Source
Superposition type Buildup
TEST RESULTS

Transmissibility (M [m3] : 4.16E-14
Transmissivity (Th) [m2/s] : 3.14E-07
Storage (8) [m/Pa] : 2.09E-12
Storativity (Sh) [] : 2.05E-08
Wellbore storage coefficient (C) [m3/Pa] : 7.13E-10
Inner shell flow dimension (n1) [ : 2.54E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 3.58E+03
Mobility ratio (sg) [] : 3.25E-02
Time match (TM)  [1/h] : 1.53E+03
Pressure match (PM) [1/kPa] : 8.17E-03

FlowDim V2.14b-Copyright {(c) Golder Associates 1994
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TEST ANALYSIS REPORT

13.09.2002
IDENTIFICATION
Site name
Well name, MIU 4
Interval name 361.60 - 424.10
Event name RwW
Date
Input file name rw.REC
WELL PARAMETERS
Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Wellbore radius (rw) [m] : 6.00E-02
Interval length (h) [m] : 6.25E+01
TESTPARAMETERS
Flow rate (@ [/min] : 1.62E+00
Test duration (tt) h] : 3.87E+01
FLUID AND FORMATION PARAMETERS
Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct) [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS
Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Drawdown
TEST RESULTS
Transmissibility - ) [m3] : 1.3162E-13
Transmissivity (Th) [m2/s] : 9.93E-07
Storage (8) [m/Pa] : 1.40E-09
Storativity (Sh) [ : 1.37E-05
Wellbore storage coefficient (C) [m3/Pa] : 3.16E-07
Inner shell flow dimension (n1)’ [ : 2.00E+00
Outer shell flow dimension (n2) [ : 2.00E+00
Dimensionles discontinuity radius (rd1) [ : 4.94E+02
Mobility ratio (s9) [ : 2.40E-01
Time match ™M) [i/h]-  : 7.24E+00
Pressure match : 2.36E-02

(PM) [1/kPa]

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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TEST ANALYSIS REPORT 13.09.2002
IDENTIFICATION

Site name

Well name MiU 4
interval name 361.60 - 424.10
Event name RWS
Date

Input file name rws.REC
WELL PARAMETERS

Well depth [mbrp] : 2.29E+02
Reference point elevation [masl] : 2.00E+00
Welibore radius (rw) {m] : 6.00E-02
Interval length (h) [m] : 6.25E+01
TESTPARAMETERS

Production/Injection time (tP) [h] : 4.20E+01
Flow rate (g) [/min] : 1.62E+00
Test duration t - [h) : 5.97E+00
FLUID AND FORMATION PARAMETERS

Viscosity (#) [Pas] : 1.30E-03
Total compressibility (ct)y [1/Pa] : 2.00E-09
Porosity (n) [ : 1.00E-02
MODEL ASSUMPTIONS

Flow model Composite
Boundary conditions Constant rate
Well type Source
Superposition type Buildup
TEST RESULTS

Transmissibility (M [m3] . 4.44E-14
Transmissivity (Th) ([m2/s] : 3.35E-07
Storage (S) [m/Pa] : 1.83E-09
Storativity (Sh) [ : 1.80E-05
Wellbore storage coefficient (C) [m3/Pa] : 4.14E-10
Inner shell flow dimension (n1) [ : 2.00E+00
Outer shell flow dimension (n2) i1 : 3.00E+00
Dimensionles discontinuity radius (rd1) [ : 6.51E+00
Mobility ratio (sg) - [ : 1.90E+00
Time match (TM) [1/h] : 1.87E+03
Pressure match (PM) [1/kPa] : 7.98E-03

FlowDim V2.14b-Copyright (c) Golder Associates 1994
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1.  INTRODUCTION

This report provides a summary of Golder Associates support for the data analysis and

conceptual model development for the Mizunami underground research laboratory.

During Heisei-14, these activities have included support to hydrostructural model development .

through review and analysis of the Long Term Pumping Test (LPT) results.

E-1



2. LONG-TERM PUMPING TEST — SOURCE WELL

The long term pumping test at the MIU was performed at the end of 2001 and early in 2002. The
test used two source zones, one in the hanging wall of the Tsukiyoshi Fault and one in the foot

wall.

The interpretation of the source zone data is complicated by pressure history effects that arise
from cross flow in MIU-2, the source hole, when the MP monitoring casing was being replace by
packers for testing. The foot wall of the Tsukiyoshi fault has considerabiy higher heads than the
hanging wall, and connecting the two hydro-stratigraphic units through MIU-2 caused significant
cross flow between the two units. The pressure effects of this cross flow are not dissipated
before the LPT testing. Additional cross flow occurred when the packers were moved for the
second, hénging wall, test. The drawdowns and pressure build-ups due to cross flow exceed

those that could be achieved by the pumping test.

The analysis of the LPT data required filtering of the background effects. This was done by the
testiné contractor, but the results are not consistent among the separately analyzed phases of the
tests. Based on a review of the LPT data in Tono during October, 2002, Golder Associates
proposed reconciling the 'discrepancies between the results of separate phases by analyzing the
test as single phase with multiple steps. Interpret 11, a standard petroleum analysi§ package, has
this capability. The effective pumping rate between the hanging wall and the footwall is not
know precisely, but it can be estimated from flow logs that were run while the packers were
removed from the hole. Also, the rate during packer removal can be treated as a variable and

determined from an optimized match to the data.

Once the approximate hydraulic properties are determined from the Interpret II match, a more
detailed flow model using FracMan can be used to match the data using more complicated

hydro-structural conditions with the inferred rate history from the Interpret I match.



3. LONG-TERM PUMPING TEST — OBSERVATION WELLS

JNC-Tono supblied Golder Associates with the pressure interference data for the LPT-

experiments. The data cover four observation sections in MIU-1 for the hanging wall test and

four sections in MIU-3 for the footwall test. As discussed above, thé data have superposed

trends from the cross flow during packer removal in MIU-2. The contractor-supplied.data from

JNC include data that corrected for the background trend. Golder Associates analyzed these

corrected data using FlowDim. The FlowDim analysis results are given in Table 1 and Figures
1 and 2.

There are significant differences between the responses to the hanging wall and the foot wall test.
The hanging wall tests are best fit using dimension-2 type curves. The transmissivity values
range from 1.0x 10° m%s to 1.8x10™ m%/s. Storativity values range from 5.9x 107 to 1.2x10™.
These values define diffusivity as having a range from 0.14 to 0.31 m?/s. The diffusivity values
are relatively low for major conducting zones, when compared with similar conductors in the
Aspd TRUE Block Scale Experiment (which are in a range from 4 to 38 m?/s). Given the high
transmissivity of the fault hanging wall, the low diffusivity would appear to be the result of very
high storage, hence one might éxpect that the fault zone has a large porosity as corhpared with

other typical fracture zones.

The foot wall tests in Figure 2 differ from the hanging wall tests in both dimension and
diffusivity. The dimension of the responses in the foot wall are 1.25 with one observation MIU
3-6) having a dimension of 1.6. These data suggest that the conductive feature in the foot wall

- has a linear geometry with some leakage, as comparéd with the hanging wall which beﬁaves as a
planar, two dimensional feature. The diffusivity value for MIU 3-6 is similar to that of the
hanging wall (0.24 m?/s), which the other observation zones see diffusivities ranging from 1.3 to
2.8 m%/s. Table 1 gives transmissivity and storativity values from the foot wall test. These are
about 2-3 orders of magnitude larger than the values for the hanging wall, however it should be
noted that for a given magnitude of pumping, the transmissivity is larger for a smaller dimension

match.



MIU 1 Response to LPT Hanging Wall Test
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Figure 3-1. Pressure Interference in the Hanging Wall of the Tsukiyoshi Fault From the LPT
Experiment
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MIU 3 Response to LPT Footwall Test
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Figure 3-2. Pressure Interference in the Foot Wall of the Tsukiyoshi Fault From the LPT

Experiment ’

Table 3-1. Hydraulic Properties and Flow Dimensions for LPT Interference Tests

Source Observation | T, m’/s S, - 7, Diffusivity, | Dimension
m?/s n

MIU-2 Foot |MIU3-5 1.10E-03| 4.60E-03 0.24 1.6

Wall - IMIU3-6 7.20E-02| 2.70E-02 2.67 1.25

MIU3-7 7.22E-02| 2.60E-02 2.78 1.25

MIU3-8 6.90E-02| 5.20E-02 1.33 1.25

MIU-2 MIU1-6 1.70E-05{ 7.90E-05 0.22 2

Hanging Wall |MIU1-7 1.40E-05| 1.00E-04 0.14 2

MIU1-8 1.80E-05|: 5.90E-05 0.31 2

MIU1-9 1.50E-05; 1.20E-04 0.13 2
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1. INTRODUCTION

During H-14, Golder assisted JNC in development of an initial hydrostructural model for discrete
" features localized to the Shi Yu-u Chi site. This analysis focused on analysis of borehole DH-2,

which is the key to hydrostructural analysis in the Shi Yu-u Chi area.



2. DH-2 ANALYSIS
2.1 Background

The DH-2 borehole testing is the primary source for data to understand the hydrostrucfural
framework for the Shi Yu-u Chi Site. DH-2 has produced some results that are inconsistent with
normal hydrologic testing concepts. The two major anomalies are (1) periods of pressure
recovery during constant-rate pumping tests, and (2) major discrepancies between production
and recovery behaviors. The cause of pressure recoveries may be related to increased
conductivity during the test. Increase in conductivity can be the result of changes to skin,
possibly from erosion of ffacture-filling materials. Another rock-based cause for recovery is ex-
solution of gas, as gas-bearing water has a lower viscosity than single-phase water, resulting in a
higher hydraulic conductivity due to reduced viscosity. A third possible cause of recovery

during the test can be some equipment leakage (i.e., the permeability of equipment goes up).

The second discrepancy results from the virtually instant recovery from the tests. Despite
pumping drawdowns that develop gradually, the recovery is almost instantaneous. Part of this
rapid recovery can be caused by the shutting-in of the test interval during recovery. However,
this only removes that portion of recovery that comes from well-bore storage and skin effects.
The instant recovery almost suggests that the aquifer dr fractures were not drawn down at all,

and the production was coming from equipment leakage.

The data from the testing of borehole DH-2 exhibit two severe well testing anomalies. These

are:

* Partial recovery of the pressure during the pumping period

* Very rapid recovery at the end of the test

This report discusses these anomalies and some preliminary analyses of the data to understand

the DH-2 measurements.
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2.2 Qualitative Evaluation

During most of the well tests in DH-2, the pressure began to recover during the pumping phase
of the test. Most often, such a pressure recovery is caused by decreases in the flow rate. The

main remedy involves using an analysis approach that incorporates the variable flow rates.

In the DH-2 tests, however, rate controls were in placé such that the flow rate should have been
constant, and the tests exhibited partial recovefy anyway. The only cause for such partial
recoveries is a change in the mobility, that is the conductivity, of the tested materials during the
test. Such changes may be increases in the hydraulic conductivity of the rock, development of
leaks in the equipment, or development of leaks along the borehole wall. The rapid recovery of
the major part of the DH-2 well tests indicates that the permeabilities were changing during the

test.

Figure 1 shows and example of this behavior. Thirteen of the nineteen intervals showed some
partial recovery, and most the remaining intervals showed a leveling of the pressure drawdown
before resuming an increased drawdown rate. Table 1 summarizes the effect in terms of the time
at which the recovery begins to occur and the amdunt of recover expressed as a percent of the

pressure drawdown at the time the recovery began.

A qualitative examination of the data indicate that the onset of recovery is an inverse function of
the transmissivity of the interval, since the recovery begins earlier in more transmissive zones.
The amount of recovery varies from none to 15% with most recoveries in the range of a few

percent.

2.3 Flow Dim Type Curve Analysis

FlowDim type curve derivative analysis is particularly useful for understanding flow geometrics.
The results of FlowDim analysis of the DH-2 tests are summarized in Table 1. Figure 2 provides

the derivative curves for all the DH-2 tests.
Analysis of FlowDim results indicates the following:

1. All tests show evidence of a constant pressure-boundary.



2. Assuming a storage of 1 x 107, the boundary lies at a radius of a few tens of meters for

all tests.

3. No tests show stabilization to two-dimensional flow, though some tests can be matched

using type curves with skin and storage.
4. Most tests can be matched with linear flow.

5. The boundary effects appear at a range of times between 0.1 and 2.5 hours. This is

significantly earlier than the onset of the partial recoveries.

6. The time of the onset of boundary effects is a clear function of the transmissivity (Figure
3).

24 Discussion

There are a number of possible explanations for the unusual behaviors of the DH-2 well tests. .
However, the similarity of the behaviors of the major portion of the tests would give reason to

consider a factor related to the equipment or the borehole conditions.

The linear flow suggests that the test is strongly effected by a channel conductor. The partial
recovery of the pressure shows that permeability of this conductor is increasing as the testing
continues, and the rapid recovery suggests that the permeability change was non-reversible. One
possibility is the erosion or “washing out” of the conductor as the test proceeds. Another

possibility is that the linear flow is due to flow along the borehole, due to leaking packers.

Leakage around packers could also explain the observed constant pressure bdundary. However,
the timing of the onset of constant pressure boundary effects would suggest that the boundary is
at a greater distance than the length of a packer. It is curious, however, that the time to the onset
of the boundary varies with transmissivity, and the distance calculations suggest a similar

distance for all tests.

F-4



Table 1. Summary of DH-2 Analyses

Recovery During Pumping Boundary Analysis Properties

Derivative Distance, m
Test Onset Time, h Percent Onset Time, h Dimension kPa/(i/m) (S=1E-5) T, m%/s
DH2-1 none 0.18 1 1.4 15.5 9.3E-06
DH2-2 3.9 2% 0.88 1 40 20.3 3.2E-07
DH2-3 1.9 0.14% 0.14 1 27 31.2 4.8E-06
DH2-4 2 0.4% 0.18 1 2.0 40.5 6.5E-06
DH2-5a 3.2 3% 0.18 1 8.8 19.6 1.5E-06
DH2-5b 1.5 15%

‘|DH2-6 10 2% 1.0 1.0 72 16.1 1.8E-07
DH2-7 unclear 0.125 1 0.56 64.6 2.3E-05
DH2-8 step test 0.097 2 0.74 49.5 1.8E-05
DH2-9 2 1% 0.10 1or2 2.0 30.6 6.5E-06
DH2-10 4.5 1% 08 1or2 25 77.4 5.2E-06
DH2-11 2 1% 0.13 1 3.2 27.6 4.1E-06
DH2-12 4 0.32% 1.2 1 36 25.0 3.6E-07
DH2-13 1 3% 25 1 110 20.6 1.2E-07
DH2-15 none 0.056 2?7 0.26 63.5 5.0E-05
DH2-16 1.5 3% 0.044 1 0.26 56.3 5.0E-05
DH2-17 none 0.044 1.5 0.26 56.3 5.0E-05
DH2-18 none 0.12 15 2.8 28.3 4.6E-06
DH2-19 6 1% 0.17 1or2 42 8.7 3.1E-07

Note: Transmissivity based on cylindrical flow conversion of derivative. Linear flow values will be larger.
Drawdown In DH2-13
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Figure 1. Example of Partial Pressure Recovery
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DH-2 Test Derivative Plots
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Figure 3. Time of onset of constant pressure boundary versus apparent transmissivity
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3. CONCLUSIONS

Analysis of DH-2 has provided significant insights into the hydrologic behavior of the Shi Yu-u

Chi site. The analysis presented in this report raises the following issues:

1. Has the later time pressure recovery during pumping been understood yet? That
recovery happens later in the test than these derivatives show, but it still needs an.
explanation. Before publishing it would be good to make sure that whatever is
causing the pressure recovery is not affecting the earlier time data that appear in the

derivative plots.

2." The linear flow can be caused by fracture intersection zones (FIZ), but it can also be
caused by lots of other things. We have analysed similar well tests from granitic
reservoirs in southeast Asia. Our analysis of these tests indicated that many different

geometries could create this behavior.

3. The key thing is to use knowledge of geology to decide which of the many
possibilities are reasonable. One interesting geological hypotheses is that these tests
are all seeing a major subvertical conductor at a distance of 50-100m from the

borehole. Does this idea make any geological sense?

4. Some additional information on storage is very important to get the diffusivities.
Knowledge of diffusivity will make it possible to more definitively estimate the
length séales for the boundary effects. Diffusivity also facilitates derivation of
permeability from the testing. Keep in mind that the linear flow equations are
different from cylindrical flow, and the log-log 1/2 slope lines give the product of K

and Ss. 2-D flow solutions provide transmissivity (m?s).
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