セメント系材料の水理・力学特性の変遷に関する研究

(核燃料サイクル開発機構 業務委託報告書)

2003年2月

株式会社太平洋コンサルタント 鹿島建設株式会社

本資料の全部または一部を複写・複製・転記する場合は,下記にお問い合わせく ださい。

〒319-1184 茨城県那珂郡東海村村松4番地49 核燃料サイクル開発機構 技術展開部 技術協力課

Inquiries about copyright and reproduction should be addressed to : Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan

© 核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2003

セメント系材料の水理・力学特性の変遷に関する研究 (核燃料サイクル開発機構 業務委託報告書)

武井 明彦¹¹ 大和田 仁¹¹ 藤田 英樹¹¹ 根岸 久美¹¹ 日比谷 啓介¹² 横関 康祐¹² 渡邊 賢三¹² 安田 和弘¹²

要 旨

セメント系材料の変遷はベントナイトや岩盤の変遷にも大きな影響を与える。本研究で はニアフィールド水理場の長期的変遷評価システムモデル構築のためのデータ取得を目的 とし,通水法ならびに浸漬法によってセメント系材料の変質供試体を作製しその物理的・ 化学的特性を評価した。また,モデル化に必要な「変遷指標間の関係」を確認した。研究 成果を以下に示す。

- 1 水セメント比 85%ならびに 105%のセメントペーストを試料として,通水法による劣化 過程での各特性の変化を取得した。液固比 500 にて試料全体の Ca の約 60%が溶出し, ポルトランダイトの溶脱が固相の力学特性や空隙率の変遷に大きく寄与していることが わかった。しかしながら,劣化部の Ca 溶出率は通水初期の段階から 60%以上の高い値 となり,力学特性との間には信頼性の高い関係を導くことは困難であった。一方,空隙 率および透水係数と圧縮強度との間には高い相関性が認められ,モデル化に有効である 可能性が示された。またビッカース硬度も Ca 溶出率との間の相関性は低かったが,圧 縮強度や水理特性との間には相関性が認められた。
- 2 水セメント比が 40%から 105%までのセメントペースト試料をイオン交換水に浸漬し, 拡散による物理特性(透水係数,圧縮強度)変化について実験的に検討した。その結果, 空隙率は,浸漬 64 週で初期値より 10~20%程度増加することが分かった。また,カル シウム溶出率と空隙率の関係と,空隙率と透水係数の既往の検討結果を用い,カルシウ ム溶出時の透水係数を推定した。ビッカース硬度は,水と接していた表面近傍で低下す る結果となり,浸漬期間が長く,水セメント比の大きい方がその低下領域が大きいこと が分かった。また,ビッカース硬度や空隙率と力学特性(圧縮強度,ヤング係数)の関 係を用い,カルシウム溶出時の力学特性を推定する手法を提案した。

これらの結果から、通水法と浸漬法相互のデータを補完する可能性が示された。また, 各変遷指標間の関係から,水理・力学特性に関するモデル化手法の方向性を示した。

本報告書は,(株)太平洋コンサルタント,鹿島建設(株)が核燃料サイクル開発機構との委託研究契約に より実施した研究成果に関するものである。 機構担当課室:東海事業所環境保全・研究開発センター処分研究部処分材料研究グループ

^{*1 (}株)太平洋コンサルタント *2 鹿島建設(株)

Study on the Alteration of Hydrogeological and Mechanical Properties of the Cementitious Material

(Document Prepared by Other Institute, Based on the Trust Contract)

A. Takei*, H. Owada*, H. Fujita*, K. Negishi* K. Hibiya**, K. Yokozeki**, K. Watanabe**, K. Yasuda**

Abstract

We acquired the water permeation properties and also mechanical characteristics of the altered specimen that produced by permeation or immersing as the fundamental data for the evaluation in "Study on the system development for evaluating long-term alteration of hydraulic field in Near Field" that had been carried out separately. The results are shown below.

- 1 Hardened cement paste specimens with W/C=85% and 105% were altered and characterized after permeation. About 60% of calcium dissolved as permeated water increased. Mechanical properties and porosity were affected by dissolution of portlandite, but it was difficult to clarify the correlation between leaching ratio of calcium and mechanical properties. The correlations between compressive strength and porosity or permeability were mutually related, so these correlations were expected to be available for modeling. Vickers hardness was not correlated enough with leaching ratio of calcium, but adequate correlations are estimated between Vickers hardness and compressive strength, porosity, permeability.
- 2 Hardened cement paste specimens with W/C=40 to 105% were immersed into deionized water and alteration behavior under diffusion condition was investigated. As a result, after 64 weeks, porosity was increasing and Vickers hardness was decreasing at the altered area. And the water permeability and the compressive strength at the deteriorated area were simulated from relations between water permeability, compressive strength, porosity, Vickers hardness and leaching ratio of calcium.

These results suggest that two methods (permeation and immersing) make up for fault of each other. A model to predict the hydraulic and mechanical properties was proposed by using the relations between each alteration factor.

This work was performed by Taiheiyo Consultant Co., LTD. and KAJIMA Corporation under contract with Japan Nuclear Cycle Development Institute.

JNC Liaison: Materials Research Group, Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works

^{*} Taiheiyo Consultant Co., LTD. ** KAJIMA Corporation.

目	次
---	---

1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1 背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 試験の位置づけと概要・・・・・	3
2. 供試体作成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.1 使用材料······	4
2.2 供試体作成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3	6
3.1 試験概要	6
3.2 試驗方法	7
3.2 1 装置お上7 定路方法	' 7
3.2.2.1 税量のよび未満ががな 3.2.2 試験ケース······	, 8
3.2.3 評価項目	q
3.3 試驗結里	14
3.3.1 固相	14
3.3.2 液相	61
3.4 モデル構築に向けた各特性間の関係の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
3.4.1 Ca 溶出率と力学特性の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
	75
3.4.3 透水係数と力学特性の関係······	77
3.4.4 透水係数と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
3.4.5 Ca 溶出率と水理特性の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
3.4.6 力学代用特性としてのビッカース硬度の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
3.5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
参考文献	85
4. 浸漬試験による検討・・・・・	86
4.1 試験内容 ······	86
4.1.1 実験概要 · · · · · · · · · · · · · · · · · · ·	88
4.2 溶出量と空隙率の関係・・・・・	96
4.2.1 空隙特性の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
4.2.2 液相分析結果······	101
4.2.3 溶出率と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113

4.2.4 空隙率からの透水係数の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	115
4.2.5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
4.3 ビッカース硬度と強度特性の関係把握・・・・・・・・・・・・・・・・・・・・・・・	119
4.3.1 微小硬度試験の種類および適用範囲に関する調査・・・・・・・・・・・・・	119
4.3.2 押込み深さとビッカース硬度の関係に関する検討・・・・・・・・・・・・	121
4.3.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
4.4 カルシウム溶出率とビッカース硬度の関係把握 ・・・・・・・・・・・・・・・	127
4.4.1 ビッカース硬度の経時変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
4.4.2 浸漬試料における元素含有率と液相濃度分析結果・・・・・・・・・・・・・	130
4.4.3 カルシウム溶出率とビッカース硬度の関係・・・・・・・・・・・・・・・・・・	163
4.4.4 試験結果の相互評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	166
4.4.5 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	176
4.5 化学的変遷指標と水理・力学特性の関係のシステム化に向けたデータ整理…	177
4.6 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	184
参考文献 · · · · · · · · · · · · · · · · · · ·	186
5. 通水試験と浸漬試験で得た知見の整理とモデル化に関する検討・・・・・・・・	187
5.1 通水試験と浸漬試験の結果比較	187
5.2 各試験データの評価手法	194
5.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	206
6. おわりに・・・・・・	208
付録 · · · · · · · · · · · · · · · · · · ·	210

図目	次
----	---

义	1-1	ニアフィールドの水理場の長期的変遷評価システムの開発に必要な研究項目	2
义	1-2	本研究の概要	3
义	3-1	試験の概略フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
义	3-2	通水試験装置	7
义	3-3	ケース1(W/C=85%, 出発試料)の元素分布測定結果・・・・・・・・・・・・	21
义	3-4	ケース2(W/C=85%,積算液固比 90)の元素分布測定結果 · · · · · · · · · · · ·	22
义	3-5	ケース3(\/C=85%,積算液固比 180)の元素分布測定結果 ・・・・・・・・	23
义	3-6	ケース4(\/C=85%,積算液固比 360)の元素分布測定結果 ・・・・・・・・	24
义	3-7	ケース4(\/C=85%,積算液固比 360)の元素分布測定結果 ・・・・・・・・	25
义	3-8	ケース6(W/C=105%,出発試料)の元素分布測定結果・・・・・・・・・・・・	26
义	3-9	ケース7(W/C=105%, 積算液固比 90)の元素分布測定結果 · · · · · · · · · · ·	27
义	3-10	ケース 8 (\/C=105%,積算液固比 180)の元素分布測定結果 · · · · · · · ·	28
义	3-11	ケース 9 (\/C=105%,積算液固比 360)の元素分布測定結果 ······	29
义	3-12	ケース 10(W/C=105%,積算液固比 500)の元素分布測定結果・・・・・・・・	30
义	3-13	CaO 溶出率算出に用いた劣化部の領域 · · · · · · · · · · · · · · · · · · ·	31
义	3-14	劣化による圧縮強度の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
义	3-15	劣化によるヤング係数の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
义	3-16	劣化によるポアソン比の変化・・・・・	35
义	3-17	ケース 3 (W/C=85%,積算液固比 180)の圧縮強度測定後供試体 · · · · · · · ·	38
义	3-18	ケース4(W/C=85%,積算液固比 360)の圧縮強度測定後供試体 · · · · · · ·	38
义	3-19	ケース 5 (W/C=105%,積算液固比 500)の圧縮強度測定後供試体 · · · · · · ·	38
义	3-20	ケース 9 (\/C=105%,積算液固比 360)の圧縮強度測定後供試体 ······	39
义	3-21	ケース 10(W/C=105%,積算液固比 500)の圧縮強度測定後供試体・・・・・・	39
义	3-22	劣化による空隙率の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
义	3-23	ケース1(W/C=85%, 出発資料)の空隙径分布測定結果・・・・・・・・・・・	42
义	3-24	ケース2(W/C=85%,積算液固比 90)の上部資料の空隙径分布測定結果 ··	43
义	3-25	ケース2(W/C=85%,積算液固比 90)の下部資料の空隙径分布測定結果 ··	43
义	3-26	ケース3(W/C=85%,積算液固比 180)の上部資料の空隙径分布測定結果 ·	44
义	3-27	ケース3(W/C=85%,積算液固比 180)の下部資料の空隙径分布測定結果・	44
义	3-28	ケース4(W/C=85%,積算液固比 360)の上部資料の空隙径分布測定結果 ·	45
义	3-29	ケース4(W/C=85%,積算液固比 360)の下部資料の空隙径分布測定結果 ·	45
义	3-30	ケース4(W/C=85%,積算液固比 360)の上部資料の空隙径分布測定結果・	46
义	3-31	ケース4(W/C=85%,積算液固比 360)の下部資料の空隙径分布測定結果 ·	46
义	3-32	ケース6(W/C=105%,出発資料)の空隙径分布測定結果・・・・・・・・・・	47

义	3-33	ケース7(W/C=105%,積算液固比90)の上部資料の空隙径分布測定結果··	48
义	3-34	ケース7 (W/C=105%, 積算液固比 90)の下部資料の空隙径分布測定結果··	48
义	3-35	ケース8 (W/C=105%, 積算液固比 180)の上部資料の空隙径分布測定結果·	49
义	3-36	ケース8 (W/C=105%, 積算液固比 180)の下部資料の空隙径分布測定結果·	49
义	3-37	ケース9 (W/C=105%, 積算液固比 360)の上部資料の空隙径分布測定結果·	50
义	3-38	ケース9(W/C=105%, 積算液固比 360)の下部資料の空隙径分布測定結果·	50
义	3-39	ケース 10 (W/C=105%, 積算液固比 500)の上部資料の空隙径分布測定結果·	51
义	3-40	ケース 10 (W/C=105%, 積算液固比 500)の下部資料の空隙径分布測定結果·	51
义	3-41	₩/C=85%各試料の透水係数測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
义	3-42	₩/C=105%各試料の透水係数測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
义	3-43	₩/C=85%各試料のビッカース硬度測定結果・・・・・・・・・・・・・・・・・・・・・・・	56
义	3-44	₩/C=85%各試料(ケース2~5)の pH 測定結果· · · · · · · · · · · · · · · · · · ·	64
义	3-45	₩/C=105%各試料(ケース7~10)の pH 測定結果・・・・・・・・・・・・・・	64
义	3-46	₩/C=85%各試料(ケース2~5)の液相分析結果・・・・・・・・・・・・・・・	65
义	3-47	₩/C=105%各試料(ケース7~10)の液相分析結果・・・・・・・・・・・・・	66
义	3-48	₩/C=85%各試料(ケース2~5)の液相組成から算出した	
		各成分の積算溶出率測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
义	3-49	₩/C=105%各試料(ケース7~10)の液相組成から算出した	
		各成分の積算溶出率測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
义	3-50	圧縮強度比と Ca 溶出率の関係 · · · · · · · · · · · · · · · · · · ·	74
义	3-51	ヤング係数と Ca 溶出率の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
义	3-52	ポアソン比と Ca 溶出率の関係 · · · · · · · · · · · · · · · · · · ·	74
义	3-53	圧縮強度と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
义	3-54	ヤング係数と空隙率の関係・・・・・	76
义	3-55	ポアソン比と空隙率の関係・・・・・	76
义	3-56	圧縮強度と透水係数の関係・・・・・	77
义	3-57	透水係数と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
义	3-58	空隙率と Ca 溶出率の関係 · · · · · · · · · · · · · · · · · · ·	79
义	3-59	透水係数と Ca 溶出率との関係 · · · · · · · · · · · · · · · · · · ·	79
义	3-60	ビッカース硬度と圧縮強度の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
义	3-61	ビッカース硬度と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
义	3-62	ビッカース硬度と透水係数の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
义	3-63	ビッカース硬度比と Ca 溶出率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
図 4	4-1	実験および検討フロー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
义 4	4-2 1	洪試体形状(空隙率測定用) • • • • • • • • • • • • • • • • • • •	89

図 4-3	供試体形状 ······	93
図 4-4	作用水量と細孔溶液中のイオン濃度と pH の関係 (W/C=40,70%) · · · · · ·	95
図 4-5	作用水量と細孔溶液中のイオン濃度と pH の関係(W/C=85,105%)・・・・・	95
図 4-6	各材齢における水セメント比と空隙率の関係 ・・・・・・・・・・・・・・・・・	98
図 4-7	浸漬期間と相関式の係数の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
図 4-8	浸漬による空隙径分布の変化(W/C=40%) ・・・・・・・・・・・・・・・・・・・・・	99
図 4-9	浸漬による空隙径分布の変化(₩/C=55%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
図 4-10	浸漬による空隙径分布の変化(W/C=70%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
図 4-11	浸漬による空隙径分布の変化(W/C=85%) ・・・・・・・・・・・・・・・・・・	100
図 4-12	浸漬による空隙径分布の変化(W/C=105%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
図 4-13	経過時間と作用水量の関係(空隙率測定用試料) ・・・・・・・・・・・・・	104
図 4-14	作用水量と液相カルシウム濃度の関係(空隙率測定用試料) ・・・・・・・	104
図 4-15	作用水量と液相ケイ素濃度の関係(空隙率測定用試料) ・・・・・・・・・	104
図 4-16	作用水量と液相アルミニウム濃度の関係(空隙率測定用試料) ・・・・・・	105
図 4-17	作用水量と液相ナトリウム濃度の関係(空隙率測定用試料) ・・・・・・・	105
図 4-18	作用水量と液相カリウム濃度の関係(空隙率測定用試料) ・・・・・・・・・	105
図 4-19	作用水量と液相硫黄濃度の関係(空隙率測定用試料) ・・・・・・・・・・・	106
図 4-20	作用水量とpHの関係(空隙率測定用試料) ・・・・・・・・・・・・・・・・・・	106
図 4-21	作用水量と積算溶出率(カルシウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
図 4-22	作用水量と積算溶出率(ケイ素)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
図 4-23	作用水量と積算溶出率(アルミニウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
図 4-24	作用水量と積算溶出率(ナトリウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
図 4-25	作用水量と積算溶出率(カリウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
図 4-26	作用水量と積算溶出率(硫黄)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
図 4-27	総作用水量と空隙率の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
図 4-28	液相濃度から算出したカルシウム溶出率と空隙率の関係・・・・・・・・・	114
図 4-29	空隙率と透水係数の関係(ペースト)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	116
図 4-30	透水係数の推定(空隙率と透水係数の関係)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
図 4-31	透水係数の推定(浸漬期間と透水係数の関係)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
図 4-32	透水係数の推定(液相分析結果から算出したカルシウム溶出率	
	と透水係数の関係)	117
図 4-33	圧子押込み深さとビッカース硬度の関係 ・・・・・・・・・・・・・・・・・・・・・	124
図 4-34	水セメント比とビッカース硬度,押込み深さの関係	125
図 4-35	浸漬期間とビッカース硬度,押込み深さの関係・・・・・・・・・・・・・	125
図 4-36	ビッカース硬度の深さ方向の変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
図 4-37	溶出による密度低下を考慮した EPMA 測定値の単位換算方法・・・・・・・	131

図 4-38	配合から算出した密度と FPMA 分析合計値の関係・・・・・・・・・・・・・・・	132
図 4-39	単位換算に用いる密度(初期密度,溶出後換算密度)の影響・・・・・・・	132
図 4-40	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	135
図 4-41	固相 Si 濃度の深さ方向の変化 (W/C=40%) ······	135
図 4-42	固相 AI 濃度の深さ方向の変化 (W/C=40%) · · · · · · · · · · · · · · · · · ·	135
図 4-43	固相 Na 濃度の深さ方向の変化(W/C=40%) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	136
図 4-44	固相K濃度の深さ方向の変化(W/C=40%) ・・・・・・・・・・・・・・・・・・・・	136
図 4-45	固相 S 濃度の深さ方向の変化(W/C=40%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	136
図 4-46	固相 Ca 濃度の深さ方向の変化(\/C=70%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137
図 4-47	固相 Si 濃度の深さ方向の変化(\/C=70%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137
図 4-48	固相 AI 濃度の深さ方向の変化(\/C=70%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137
図 4-49	固相 Na 濃度の深さ方向の変化(\/C=70%) ・・・・・・・・・・・・・・・・・・	138
図 4-50	固相 K 濃度の深さ方向の変化(\/C=70%) ・・・・・・・・・・・・・・・・・・	138
図 4-51	固相 S 濃度の深さ方向の変化(\/C=70%) ・・・・・・・・・・・・・・・・・・・・・	138
図 4-52	固相 Ca 濃度の深さ方向の変化(\/C=85%) ・・・・・・・・・・・・・・・・・	139
図 4-53	固相 Si 濃度の深さ方向の変化(\/C=85%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
図 4-54	固相 AI 濃度の深さ方向の変化(\/C=85%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
図 4-55	固相 Na 濃度の深さ方向の変化(\/C=85%)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	140
図 4-56	固相 K 濃度の深さ方向の変化(\/C=85%) ・・・・・・・・・・・・・・・・・・	140
図 4-57	固相 S 濃度の深さ方向の変化(\/C=85%) ・・・・・・・・・・・・・・・・・・	140
図 4-58	固相 Ca 濃度の深さ方向の変化(⊮/C=105%) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	141
図 4-59	固相 Si 濃度の深さ方向の変化(\/C=105%) ・・・・・・・・・・・・・・・・	141
図 4-60	固相 AI 濃度の深さ方向の変化(\/C=105%) ・・・・・・・・・・・・・・・・	141
図 4-61	固相 Na 濃度の深さ方向の変化(\/C=105%) ・・・・・・・・・・・・・・・・・	142
図 4-62	固相 K 濃度の深さ方向の変化(\/C=105%) ・・・・・・・・・・・・・・・・・	142
図 4-63	固相 S 濃度の深さ方向の変化(\/C=105%) ・・・・・・・・・・・・・・・・・	142
図 4-64	作用水量と液相カルシウム濃度の関係(ビッカース硬度測定用試料) ・・・	154
図 4-65	作用水量と液相ケイ素濃度の関係(ビッカース硬度測定用試料) ・・・・・・	154
図 4-66	作用水量と液相アルミニウム濃度の関係(ビッカース硬度測定用試料)	154
図 4-67	作用水量とナトリウム濃度の関係(ビッカース硬度測定用試料) ・・・・・・	155
図 4-68	作用水量とカリウム濃度の関係(ビッカース硬度測定用試料) ・・・・・・・	155
図 4-69	作用水量と硫黄濃度の関係(ビッカース硬度測定用試料) ・・・・・・・・・	155
図 4-70	作用水量とpHの関係(ビッカース硬度測定用試料) ・・・・・・・・・・・	156
図 4-71	作用水量と積算溶出率(カルシウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159
図 4-72	作用水量と積算溶出率(ケイ素)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159
図 4-73	作用水量と積算溶出率(アルミニウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159

図 4-74	作用水量と積算溶出率(ナトリウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
図 4-75	作用水量と積算溶出率(カリウム)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
図 4-76	作用水量と積算溶出率(硫黄)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
図 4-77	カルシウム溶出率とビッカース硬度比(浸漬前との比)の関係	164
図 4-78	予測モデルによって計算した空隙率の深さ方向の変化・・・・・・・・・	168
図 4-79	水銀圧入法により測定した空隙率と	
	固相カルシウム濃度から計算した空隙率の比較(鹿島モデル)・・・・	168
図 4-80	水銀圧入法により測定した空隙率と	
	固相カルシウム濃度から計算した空隙率の比較(Buil モデル)・・・・	169
図 4-81	ビッカース硬度から換算した圧縮強度の深さ方向の変化・・・・・・・・・	171
図 4-82	ビッカース硬度から換算したヤング係数の深さ方向の変化・・・・・・・	172
図 4-83	各物性の相互作用関係のイメージ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	177
図 4-84	溶出率とビッカース硬度比の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	179
図 4-85	ビッカース硬度と圧縮強度の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	179
図 4-86	ビッカース硬度とヤング係数の関係 ・・・・・・・・・・・・・・・・・・・・・・・・	179
図 4-87	液相濃度から算出したカルシウム溶出率と空隙率の関係・・・・・・・・・	181
図 4-88	空隙率とヤング係数の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
図 4-89	空隙率と圧縮強度の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
図 4-90	溶出量からの空隙率 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	182
図 4-91	空隙率の実測値と各モデルで計算した空隙率との比較・・・・・・・・・・	182
図 4-92	溶出率と透水係数の関係のイメージ ・・・・・・・・・・・・・・・・・・・・・・・	183
図 4-93	空隙率と透水係数の関係 · · · · · · · · · · · · · · · · · · ·	183
図 5-1	ビッカース硬度と圧縮強度の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
図 5-2	空隙率と圧縮強度の関係 · · · · · · · · · · · · · · · · · · ·	190
図 5-3	ビッカース硬度とヤング係数の関係 ・・・・・・・・・・・・・・・・・・・・・・・	191
図 5-4	空隙率とヤング係数の関係 · · · · · · · · · · · · · · · · · · ·	191
図 5-5	カルシウム溶出率とビッカース硬度比の関係(直線近似)・・・・・・・・	192
図 5-6	カルシウム溶出率とビッカース硬度比の関係(曲線近似)・・・・・・・・・	192
図 5-7	カルシウム溶出率と空隙率の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	192
図 5-8	空隙率と透水係数の関係 · · · · · · · · · · · · · · · · · · ·	193
図 5-9	健全時および劣化時の空隙率と透水係数の関係 ・・・・・・・・・・・・・・	193
図 5-10	カルシウム溶出率からビッカース硬度を介在して算出した	
	圧縮強度(直線関係)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	198
図 5-11	カルシウム溶出率からビッカース硬度を介在して算出した	
	圧縮強度(曲線関係)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	198

図 5-12	カルシウム溶出率から空隙率を介在して算出した圧縮強度(実験式)・・	198
図 5-13	カルシウム溶出率から空隙率を介在して算出した圧縮強度(理論式)・・	199
図 5-14	圧縮強度の実測値と計算値の比較(Ca Hv :直線関係)・・・・・・・	199
図 5-15	圧縮強度の実測値と計算値の比較(Ca Hv :曲線関係)・・・・・・・	199
図 5-16	圧縮強度の実測値と計算値の比較	
	(Ca 空隙率 :空隙率を実験式より算出)・・・・・・・・・・・・	200
図 5-17	圧縮強度の実測値と計算値の比較	
	(Ca 空隙率 :空隙率を理論式より算出)・・・・・・・・・・・	200
図 5-18	カルシウム溶出率からビッカース硬度を介在して算出した	
	ヤング係数(直線近似)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	201
図 5-19	カルシウム溶出率からビッカース硬度を介在して算出したヤング係数	
	(曲線関係)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	201
図 5-20	カルシウム溶出率から空隙率を介在して算出したヤング係数(実験式)	202
図 5-21	カルシウム溶出率から空隙率を介在して算出したヤング係数(理論式)	202
図 5-22	ヤング係数の実測値と計算値の比較(Ca HV E:直線関係)・・・・・・	203
図 5-23	ヤング係数の実測値と計算値の比較(Ca HV E:曲線関係)・・・・・・	203
図 5-24	ヤング係数の実測値と計算値の比較	
	(Ca 空隙率 E:空隙率を実験式より算出)・・・・・・・・・・・・	204
図 5-25	ヤング係数の実測値と計算値の比較	
	(Ca 空隙率 E:空隙率を理論式より算出)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204
図 5-26	カルシウム溶出率と透水係数の関係(実験式から空隙率を算出)・・・・・	205
図 5-27	カルシウム溶出率と透水係数の関係(理論式から空隙率を算出)・・・・・	205

表	目	次
1	- H	~ ~ ~ ~

表 3-1	通水試験ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
表 3-2	粉末 X 線回折測定による同定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
表 3-3	熱分析による定量結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
表 3-4	固相の化学分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
表 3-5	劣化部の CaO 溶出率計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
表 3-6	表面からの各深度における CaO 溶出率計算結果・・・・・・・・・・・・・・	20
表 3-7	圧縮強度、静弾性係数、ポアソン比測定結果詳細・・・・・・・・・・・・・・・	36
表 3-8	試料下部測定点におけるヤング係数 , ポアソン比測定結果 (参考値) ・・・・・	37
表 3-9	空隙率測定結果····································	41
表 3-10) 上部および下部の透水係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
表 3-1′	Ⅰ ケース2(W/C=85%, 積算液固比 90)のビッカース硬度測定値詳細 ······	57
表 3-12	2 ケース3(W/C=85%, 積算液固比180)のビッカース硬度測定値詳細・・・・・	58
表 3-13	3 ケース4 (W/C=85%, 積算液固比 360)のビッカース硬度測定値詳細 ·····	59
表 3-14	4 ケース5(W/C=85%,積算液固比500)のビッカース硬度測定値詳細・・・・・	60
表 3-18	5 W/C=85%各試料(ケース2~5)の pH および	
	液相分析結果(デジタル値)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
表 3-16	6 W/C=105%各試料(ケース7~10)の pH および	
	液相分析結果(デジタル値)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
表 3-17	7 W/C=85%各試料(ケース2~5)の液相組成から算出した各成分	
	の積算溶出率(デジタル値)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71
表 3-18	3 W/C=105%各試料(ケース7~10)の液相組成から算出した各成分	
	の積算溶出率(デジタル値)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
表 4-1	配合	88
表 4-2	測定項目一覧 · · · · · · · · · · · · · · · · · · ·	89
表 4-3	測定スケジュール ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
表 4-4	試験方法概要 · · · · · · · · · · · · · · · · · · ·	91
表 4-5	配合	93
表 4-6	測定項目 · · · · · · · · · · · · · · · · · · ·	93
表 4-7	測定スケジュール ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
表 4-8	水銀圧入法により測定した平均空隙径と空隙率 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
表 4-9	液相分析結果一覧(空隙率測定試料:Ca , Si , AI) ······	107
表 4-10	液相分析結果一覧(空隙率測定試料:Na,K,S,pH)・・・・・・・・・・	108
表 4-11	液相溶出率一覧(空隙率測定試料:Ca , Si , AI)・・・・・・・・・・・・・	111

表 4-12	液相溶出率一覧(空隙率測定試料:Na,K,S)・・・・・・・・・・・・・・・	112
表 4-13	セメントの化学成分表 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
表 4-14	微小硬度の種類および適用範囲 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
表 4-15	圧子の押込み深さとビッカース硬度の関係における試験水準	122
表 4-16	深さ方向のビッカース硬度の変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	129
表 4-17	EPMA 分析結果(W/C=40%,単位:mol/L) · · · · · · · · · · · · · · · · · · ·	143
表 4-18	EPMA 分析結果(W/C=70%,単位:mol/L) · · · · · · · · · · · · · · · · · · ·	144
表 4-19	EPMA 分析結果(W/C=85%,単位:mol/L) · · · · · · · · · · · · · · · · · · ·	145
表 4-20	EPMA 分析結果(W/C=105%,単位:mol/L) · · · · · · · · · · · · · · · · · · ·	146
表 4-21	各水セメント比の EPMA コンター図:Ca0(単位:wt %)・・・・・・・・・・	147
表 4-22	各水セメント比のEPMAコンター図:SiO ₂ (単位:wt%)・・・・・・・・・	148
表 4-23	各水セメント比のEPMAコンター図:Al ₂ O ₃ (単位:wt%) ·····	149
表 4-24	各水セメント比のEPMAコンター図:Na ₂ O(単位:wt%)・・・・・・・・・	150
表 4-25	各水セメント比のEPMAコンター図:K ₂ 0(単位:wt%)・・・・・・・・・	151
表 4-26	各水セメント比のEPMAコンター図:SO ₃ (単位:wt%)・・・・・・・・・・・・	152
表 4-27	各水セメント比のEPMAコンター図:CaO/SiO ₂)(単位:なし)・・・・・・・	153
表 4-28	液相濃度一覧(ビッカース硬度測定試料:Ca , Si , AI)・・・・・・・・・・	157
表 4-29	液相濃度一覧(ビッカース硬度測定試料:Na,K,S,pH)・・・・・・	158
表 4-30	液相溶出率一覧(ビッカース硬度測定試料:Ca , Si , AI)・・・・・・・・	161
表 4-31	液相溶出率一覧(ビッカース硬度測定試料:Na,K,S)・・・・・・・・・	162
表 4-32	カルシウム溶出率とビッカース硬度およびビッカース硬度比(浸漬前)	165
表 4-33	ビッカース硬度から換算した圧縮強度 ・・・・・・・・・・・・・・・・・・・・・・	173
表 4-34	ビッカース硬度から換算したヤング係数 ・・・・・・・・・・・・・・・・・・・・・・	174
表 4-35	浸漬前の圧縮強度および弾性係数(2001 年度実施)・・・・・・・・・・・	175

付録

付録	1	OPC (研究用セメント)(Dミルシート ·····	付-2(211)
付録	2	通水試験データ ケース	.2(W/C=85%,積算液固比 90) · · · · · · ·	付-3(212)
付録	3	通水試験データ ケース	、3(W/C=85%,積算液固比 180) · · · · · ·	付-4(213)
付録	4	通水試験データ ケース	.4(₩/C=85%,積算液固比 360)その1↔	付-5(214)
付録	5	通水試験データ ケース	.4(₩/C=85%,積算液固比 360)その2・・	付-6(215)
付録	6	通水試験データ ケース	.4(₩/C=85%,積算液固比 360)その3↔	付-7(216)
付録	7	通水試験データ ケース	、5(W/C=85%,積算液固比 500)その1…	付-8(217)
付録	8	通水試験データ ケース	、5(W/C=85%,積算液固比 500)その2…	付-9(218)
付録	9	通水試験データ ケース	.5(W/C=85%,積算液固比 500)	
		その3・・・・・		付-10(219)
付録	10	通水試験データ ケーン	ス 5(₩/C=85%,積算液固比 500)	
		その 4 · · · · · · · · · · · ·		付-11(220)
付録	11	通水試験データ ケーン	ス7(W/C=105%,積算液固比 90)・・・・・	付-12(221)
付録	12	通水試験データ ケーン	ス8(₩/C=105%,積算液固比 180)・・・・	付-13(222)
付録	13	通水試験データ ケーン	ス9(₩/C=105%,積算液固比 360)	
		その1		付-14(223)
付録	14	通水試験データ ケーン	ス 9(W/C=105%,積算液固比 360)	
		その2・・・・・		付-15(224)
付録	15	通水試験データ ケーン	ス 10(W/C=105%,積算液固比 360)	
		その1		付-16(225)
付録	16	通水試験データ ケーン	ス 10(W/C=105%,積算液固比 360)	
		その2・・・・・		付-17(226)
付録	17	通水試験データ ケーン	ス 10(W/C=105%,積算液固比 360)	
		その3		付-18(227)
付録	18	通水試験データ 上下約	分割して劣化部透水係数を実測	
		した試料 その1・・・・		付-19(228)
付録	19	通水試験データ 上下約	分割して劣化部透水係数を実測	
		した試料 その2・・・・		付-20(229)
付録	20	通水試験データ 上下的	分割して劣化部透水係数を実測	
		した試料 その3・・・・		付-21(230)
付録	21	通水試験データ 上下会	分割して劣化部透水係数を実測	
		した試料 その4・・・・		付-22(231)
付録	22	通水試験ケース3(₩/0	=85%,積算液固比 180)上部試料	
		の XRD チャート・・・・・		付-23(232)

付録	23	通水試験ケース3(W/C=85%,積算液固比 180)上部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-23(232)
付録	24	通水試験ケース4(W/C=85%,積算液固比 360)上部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-24(233)
付録	25	通水試験ケース4(W/C=85%,積算液固比 360)下部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-24(233)
付録	26	通水試験ケース 5 (W/C=85%,積算液固比 500)上部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-25(234)
付録	27	通水試験ケース 5 (W/C=85%,積算液固比 500)下部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-25(234)
付録	28	通水試験ケース9(W/C=105% , 積算液固比 360)上部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-26(235)
付録	29	通水試験ケース9(W/C=105%,積算液固比 360)下部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-26(235)
付録	30	通水試験ケース 10(W/C=105%,積算液固比 500)上部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-27(236)
付録	31	通水試験ケース 10(W/C=105%,積算液固比 500)下部試料	
		の XRD チャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	付-27(236)
付録	32	通水試験ケース3(W/C=85%,積算液固比 180)上部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-28(237)
付録	33	通水試験ケース3(W/C=85%,積算液固比 180)下部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-28(237)
付録	34	通水試験ケース4(W/C=85%,積算液固比 360)上部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-29(238)
付録	35	通水試験ケース4(W/C=85%,積算液固比 360)下部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-29(238)
付録	36	通水試験ケース5(W/C=85%,積算液固比 500)上部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-30(239)
付録	37	通水試験ケース5(W/C=85%,積算液固比 500)下部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-30(239)
付録	38	通水試験ケース9(W/C=105%,積算液固比 360)上部試料	
		の TG / DTA 曲線·····	付-31(240)
付録	39	通水試験ケース9(W/C=105%,積算液固比 360)下部試料	
		の TG / DTA 曲線·····	付-31(240)
付録	40	通水試験ケース 10(W/C=105%,積算液固比 500)上部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-32(241)

付録	41	通水試験ケース 10(W/C=105%,積算液固比 500)下部試料	
		の TG / DTA 曲線· · · · · · · · · · · · · · · · · · ·	付-32(241)
付録	42	通水試験ケース3(W/C=85%,積算液固比 180)上部試料	
		の DSC 曲線·····	付-33(242)
付録	43	通水試験ケース3(W/C=85%,積算液固比 180)下部試料	
		の DSC 曲線······	付-33(242)
付録	44	通水試験ケース4(W/C=85%,積算液固比 360)上部試料	
		の DSC 曲線······	付-34(243)
付録	45	通水試験ケース4(W/C=85%,積算液固比 360)下部試料	
		の DSC 曲線······	付-34(243)
付録	46	通水試験ケース 5 (W/C=85%,積算液固比 500)上部試料	
		の DSC 曲線· · · · · · · · · · · · · · · · · · ·	付-35(244)
付録	47	通水試験ケース5(W/C=85%,積算液固比 500)下部試料	
		の DSC 曲線·····	付-35(244)
付録	48	通水試験ケース9(W/C=105%,積算液固比 360)上部試料	
		の DSC 曲線·····	付-36(245)
付録	49	通水試験ケース9(W/C=105%,積算液固比 360)下部試料	
		の DSC 曲線······	付-36(245)
付録	50	通水試験ケース 10(₩/C=105%,積算液固比 500)上部試料	
		の DSC 曲線·····	付-37(246)
付録	51	通水試験ケース 10(W/C=105%,積算液固比 500)下部試料	
		の DSC 曲線·····	付-37(246)
付録	52	通水試験ケース3(W/C=85%,積算液固比 180)	
		の応力 - ひずみの関係 ・・・・・	付-38(247)
付録	53	通水試験ケース4(W/C=85%,積算液固比 360)	
		の応力 - ひずみの関係 ・・・・・	付-39(248)
付録	54	通水試験ケース 5 (W/C=85%,積算液固比 500)	
		の応力 - ひずみの関係 ・・・・・	付-40(249)
付録	55	通水試験ケース9(₩/C=105%,積算液固比 360)	
		の応力 - ひずみの関係 ・・・・・・・・・・・・・・・・・・・・・・・・	付-41(250)
付録	56	通水試験ケース 10(\/C=105%,積算液固比 500)	
		の応力 - ひずみの関係 ・・・・・・・・・・・・・・・・・・・・・・・・	付-42(251)
付録	57	浸漬前ビッカース硬度データ・・・・・・・・・・・・・・・・・・・・・	付-43(252)
付録	58	浸漬 12 週後ビッカース硬度データ(W/C:40%) ·····	付-44(253)
付録	59	浸漬 12 週後ビッカース硬度データ (W/C:70%) ·····	付-45(254)
付録	60	浸漬 12 週後ビッカース硬度データ (W/C:85%) ·····	付-46(255)

付録	61	浸漬 12 週後ビッカース硬度データ(W/C:105%)・・・・・・・・	付-47(256)
付録	62	浸漬 48 週後ビッカース硬度データ(W/C:40%)・・・・・・・・	付-48(257)
付録	63	浸漬 48 週後ビッカース硬度データ(W/C:70%) ・・・・・・・・	付-49(258)
付録	64	浸漬 48 週後ビッカース硬度データ(W/C:85%)・・・・・・・・	付-50(259)
付録	65	浸漬 48 週後ビッカース硬度データ(W/C:105%)・・・・・・・・	付-51(260)
付録	66	浸漬 64 週後ビッカース硬度データ(W/C:40%)・・・・・・・・	付-52(261)
付録	67	浸漬 64 週後ビッカース硬度データ(W/C:70%) ・・・・・・・・	付-53(262)
付録	68	浸漬 64 週後ビッカース硬度データ(W/C:85%)・・・・・・・・	付-54(263)
付録	69	浸漬 64 週後ビッカース硬度データ(W/C:105%)・・・・・・・	付-55(264)

1.はじめに

1.1 背景と目的

TRU廃棄物の処分に関しては,平成 12 年春に公開されたTRU廃棄物処分概念検 討書においてその見通しが示された¹⁾。その中で,長期的な被ばく線量を支配するの は,非吸着性核種の¹²⁹I,¹⁴C等であることが明らかとなった。また,TRU廃棄物の処 分概念(地層処分ならびに余裕深度処分を対象)の安全裕度評価に重要な評価パラ メータの抽出等に関する検討の結果,バリア材料の劣化による透水係数の把握の重 要性が示された²⁾。そのため,今後,処分システムの安全裕度を正確に把握し,より 信頼性の高い性能評価を行うためには,吸着等の核種の移行に係る現象/パラメー タを精度よく収集することに加えて,セメント系材料からの浸出液や硝酸塩による バリア材料の変質,透水係数の変化ならびにバリアシステム全体の力学挙動の変遷 の結果として生じる可能性のある処分場およびその近傍(ニアフィールド)の水理 場の長期変遷を精度よく予測評価することが必要である。このために必要と考えら れる検討項目を図 1-1 に示す。

本研究は,上記研究項目のうち,図1-1の , に相当するもので,平成13年度 より4ヵ年計画で研究を開始したものである。本研究の目的は,実際の処分環境で 起こるセメント系材料の化学/水理/力学的変遷に関するデータ取得及びモデル化 のための検討を行い,その結果を別途実施している「ニアフィールド水理場の長期的 変遷評価システムの構築」の研究に反映させることである。上記目的を達成するため には,実際の処分環境に近い条件でセメントの変質・透水試験を行う必要があるが, 試験条件等の制約により単一の試験でそれを達成することはできない。そのため, それぞれ得失があるいくつかの加速試験方法の中から平成13年度に選択した通水 法と浸漬法の2通りの試験方法を用いて,上記目的に合致した結果を得るための データ取得手順等を検討した上で,以下の研究を実施した。

- (1)Ca 等の主要成分の溶出等によるセメント系材料の化学的変遷モデル化検討の ためのデータの取得
- (2)セメント成分の溶出等による変質後の化学的特性に応じた透水係数,強度,弾性 係数等の物性値の取得とそのモデル化

昨年度は,通水法と浸漬法によって期間的に可能な範囲でのセメント系材料の変遷 データを取得,評価するとともに,長期の変質挙動を評価するための変質試料を作成 した。また,上記目的に合致した結果を得るためのデータ取得手順等について検討した。本年度は,これらに基づき,実際の処分環境で起こるセメント系材料の化学/水理/力学的変遷に関するデータ取得及びモデル化のため,昨年度用意した試料の変質 度合いを更に進行させ,それらの変質挙動とそれに伴う物理性能の変遷データを取得し,水理/力学変遷評価モデルの構築を行った。

図 1-1 ニアフィールドの水理場の長期的変遷評価システムの開発に必要な研究項目

1.2 試験の位置づけと概要

前項に記述の通り,セメント系材料の変遷を調べる試験方法にはそれぞれ得失が あり,単独の方法では実際の処分条件(拡散場,一般的な水セメント比)でのセメ ント系材料の変質領域に対するデータを合理的試験期間内に直接取得することはで きない。本研究では,通水試験と浸漬試験とから得られるデータを補完的に用いる ことにより,それぞれの方法で直接取得できないデータを間接的に推定し,化学的 変遷ならびに水理/力学特性の変遷に係わる信頼性の高いデータを合理的に取得す ることとした。また,一軸圧縮強度等の力学特性を直接測定できない浸漬試験にお いては,微小劣化部のビッカース硬度を測定し,その値から推定することによって 得られたデータ相互の関係を把握した。

図 1-2 には本試験の概要を示し 通水試験と浸漬試験両手法の得失から生じるデー タ取得における補完状況も表記した。

参考文献

- 1) 共同作業チーム:"TRU 廃棄物処分概念検討書", JNC TY1400 2000-001 TRU TR-2000-01 (2000)
- 2)大井貴夫,他: "TRU 廃棄物処分における N.F.水理場の変遷に関する研究(1)
 -包括的感度解析手法に基づく重要研究課題の抽出について ",日本原子力学会 2002 年度秋の大会予稿集,F41,p641 (2002)

2.供試体作製

通水試験と浸漬試験の両試験に用いる出発試料供試体はセメントペースト硬化体 とした。これら出発試料は昨年度に一緒に作製し,材料および供試体作製条件等は 同一なものとした。これにより,両試験結果の比較検討の精度向上を図った。出発 試料は昨年度の各劣化試験を経て劣化したのち,今年度さらに劣化を進行させた。

以下に昨年度行った出発試料作製の手順を記載する。

- 2.1 使用材料
 - (a) セメント

普通ポルトランドセメント(セメント協会製 研究用セメント)。このセ メントのミルシートを付録1に添付した。

(b) 練り混ぜ水

イオン交換水。

- 2.2 供試体作製
 - (a) 練り混ぜ

セメントペーストは,30,RH70%の恒温恒湿室にて混練をおこない,間 欠的に練り返し撹拌することで,ブリーディング発生を抑制し均一な供試体 を作製した。

水セメント比は 40,55,70,85 および 105%とし,このうち通水試験では 85 および 105%の 2 水準を,浸漬試験では全水準を使用した。両試験で共通 する 85 と 105%の 2 水準は同じ練りバッチから供試体を作製した。

(b) 成型

適当な粘性となった時点で型に流し込み,30,RH70%の恒温恒湿室で硬 化させた。型は20×30cm 程度の平板状のものとした。

(c) 養生

混練から 24 時間程度経過したペースト硬化体は,乾燥を防止するために密 封して,型ごと 50 の恒温器中で 28 日間促進養生をおこなった。

(d) 切り出し

供試体はすべて円柱状であり,養生後の平板状硬化体から所定寸法に切り

出した。この際,平板状硬化体の上面,側面,底面1cm程度を除外して供試体を切り出した。供試体寸法は,通水試験用が 40×h40mm,浸漬試験用が溶出量と空隙率の関係把握用として 30×h5mm,溶出量とビッカース硬度の関係把握用として 30×h10mm および強度特性とビッカース硬度との関係把握用として 50×h100mm であり,それぞれの供試体を同じ練りバッチから採取した。

3. 通水試験による検討

3.1 試験概要

円柱状硬化セメントペースト試料への通水によりバルク試験体の劣化試験をおこ なった。W/C=85%では積算液固比 90 まで,W/C=105%では積算液固比 180 までの 劣化試験は昨年度試験¹⁾ですでに完了しており,本試験では引き続き各W/Cとも積算 液固比が 500 となるまで通水を行った。通水試験では,通水した液の液性を評価す る他,試験体の透水係数の管理も行った。固相評価を実施する積算の液固比は出発 試料を除き計画全体で計 4 点であるが,今年度実施分は 3 (W/C=85%)ないし 2 (W/C=105%)点である。所定量通水した硬化体については,一軸圧縮強度やひず み測定といった物理特性の直接の測定を実施し,水和物同定や組成分布といった化 学的な評価も実施した。供試体の水セメント比や初期通水圧力は昨年度,予備試験 により決定,確認を行った。試験の流れを図 3-1 に示す。

3.2 試験方法

3.2.1 装置および実験方法

図 3-2 に装置の略図を示す(実用新案登録:U3081464)。通水試験(透過セル法) ²⁾ではカラム内に固定した円柱状セメントペースト硬化体に加圧した水を透過させ た。なお,供試体は重量がほぼ恒量となるまで真空乾燥させ,これを初期重量とし た。通水は供試体の上部から下部の方向へ行い,供試体内を通過した液相はポリボ トルに集め定期的に採取した。このボトルは炭酸化を防ぐためAr雰囲気のグローブ ボックス内に設置した。また,通水液には,溶存炭酸ガスの低減のためイオン交換 水を用い,さらに加圧にはArガスを使用した。

3.2.2 試験ケース

表 3-1 に試験ケースを示す。試験体作製時配合,試験体寸法,初期通水圧力といった詳細条件は予備試験¹⁾により確認,決定した。

計画全体では積算の液固比が90,180,360,500となるまで通水を行ったが,積 算液固比90(W/C=85%)および180(W/C=105%)までの評価は昨年度終了して おり,今年度はその後の評価を実施した。試験体は,所定の液固比に達した時点で 通水を終了して評価へ供した。

各ケースとも 4 試料による通水劣化を行い,空隙率とビッカース硬度以外の物理 的性質評価はそのうち 3 試料(n=3),化学的性質評価は 1 試料をそれぞれ試験に 供した。なお,空隙率とビッカース硬度は圧縮強度測定済み試料では値が変わって しまうことから,化学的性質評価用試験体の一部を用いて測定した。また一部ケー スでは,この 4 試料以外に劣化させていた予備劣化試料を使用して,上下に切断し たのちに各々の透水係数を実測する試験を実施して劣化部の透水係数を実験的に求 めた。

液相分析をおこなう試料は各ケースとも化学的性質評価用試験体からの通水液 1 試料とし,通水後の液相は随時採取して評価を実施した。また,物理的性質評価用 試験体からの通水液についても pH 測定は実施した。これは,化学的性質評価用試 験体との間の劣化程度の差異を確認するためである。また,物理的性質評価用試験 体からの通水液も状況により組成分析を実施することができるよう,分析ポイント の積算液固比においてはサンプリングを行った。

透水係数は随時モニターした。なお,ここでいう透水係数とは劣化部と健全部が 混在する試料全体の見かけの透水係数である。劣化の進行に伴ってこの透水係数は 変化したが,通水量が大きくなり過ぎると水みちが形成し易くなるため,通水圧力 を調整して通水量が極力一定となる様にした。試験開始時(昨年度)の通水圧力は W/C=85%が 0.39MPa, W/C=105%が 0.12MPa であったが,試験終了時(積算液 固比 500)の圧力はW/C=85%が 0.06MPa, W/C=105%が 0.01~0.02MPa であった。

計時		WIC	/₩≐ᡱ/★		<u> </u>	積算の	液固比		
市山海火 ケーフ	セメント	(wt%)	供試体 形状	供試体数	水圧力	試験	昨年度	液相評価の点数	
· ^		(,			5	終了	終了時		
1				物性3+分析1	-	出発	試料	昨年度終了	
2				物性3+分析1		90	90	昨年度終了	
3		85		物性3+分析1	0.39 MPa	0.39 MPa	180	90	4
4	OPC			物性3+分析1			MPa	360	90
5	(研究		40 × h	物性3+分析1		500	90	13	
6	用以		40mm	物性3+分析1	-	出発試料		昨年度終了	
7	ント)				物性3+分析1		90	90	昨年度終了
8		105		物性3+分析1	0.12	180	180	昨年度終了	
9				物性3+分析1	MPa	360	180	6	
10				物性3+分析1		500	180	9	

表 3-1 通水試験ケース

・網かけは昨年度¹⁾終了したケース

・通水圧力は,通水量がほぼ一定となるように調整する。

・「液相評価の点数」は今年度実施範囲の点数を示す。

3.2.3 評価項目

(1) 固相

固相試料に対して以下の評価を実施した。また,通水前の出発試料についても同 様の評価を実施した。

なお,劣化試料の化学的評価(元素分布以外)および空隙率測定は劣化部と健全部 とに分けるため試料を上下に切断したのちにそれぞれの部位で実施する。昨年度実施 した試料は全て中央で切断したが,今年度は必ずしも中央ではなく,上部試料は劣化 部だけから構成されるよう元素分布測定結果に基づき分割し,評価することとした。 (ただし,今年度の劣化試料全試料において中央より上には健全部は残存しておらず, 結果的には中央部で二分割した。)

- () 化学的性質
- (a) 粉末X線回折測定

試験体上半分と下半分の2試料につき測定を実施した。水和物試料を真空乾燥

後,メノウ乳鉢を用いて微粉砕し,粉末X線回折法(XRD)により試料中の結 晶相の同定を行った。ただし,通水前の出発試料については試料全体の1試料に つき実施した。

使用機器 X線回折 :理学電機社 RINT2500

測定条件 :

ターゲット	Cu							
電流・電圧	50kV, 250mA							
スリット	DS 1° RS0.15mm SS 1°							
走査速度	5 °/min.							

(b) 熱分析

試験体上半分と下半分の2試料につき測定を実施した。水和物試料を真空乾燥後,メノウ乳鉢を用いて微粉砕し,TG/DTA および DSC により水和物の同定をおこなった。また,定量できるものは定量分析を実施した。ただし,通水前の出発試料については試料全体の1試料につき実施した。

使用機器TG/DTA: セイコー電子工業社TG300DSC: セイコー電子工業社DSC200

測定条件

:

	TG/DTA	DSC
昇温速度	10 / min.	10 / min.
測定範囲	30 ~ 1000	30 ~ 400
試料量	30 ~ 40mg	15 ~ 20mg

(c) 化学分析

試験体上半分と下半分の2 試料につき実施した。JIS R 5202 に準拠し, CaO, SiO₂, Al₂O₃, SO₃, Na₂O, K₂Oの化学組成分析を実施した。ただし, 通水前の出発試料については試料全体の1 試料につき実施した。

(d) 元素分布

EPMA により各元素のマッピングを行った。EPMA での面分析により試料 断面の化学組成分布を測定した。測定元素は Ca, Si, Al, S, Na, K とした。

<u>使用機器</u> E P M A : 日本電子社 JXA-8621

- ()物理的性質
- (a) 圧縮強度

強度が非常に小さいことが予測されたため, JIS A 1108(コンクリートの圧 縮強度試験方法)ではなく JIS A 1216(土の一軸圧縮試験方法)に準拠し一軸 圧縮強度の測定を実施した。n=3 とした。測定値は研究開始時の JIS A 1107-1993に準拠し,直径:高さ=1:2の試験体の圧縮強度に補正した。

使用機器 電動一軸圧縮試験機 : テスコ社 依頼生産品

<u>測定条件</u>

:

(b) ヤング係数

圧縮強度測定時にコンタクトゲージ法によりヤング係数を測定した。n=3 と した。今年度は上下2箇所でゲージを貼り付けひずみを測定した。ゲージは長 さ10mmのものを用いた。上部のゲージが劣化部だけを測定できるようEPMA の結果に基づき各試料での貼り付け位置を検討することとしたが,今年度分の 全試料で上半分は劣化部だけであったため,結果的に上下を2等分する位置で 測定した。つまり,ゲージの貼り付け位置は各部位の中央,すなわち上端から 10mm と 30mm の2点にゲージ(長さ 10mm)の中心がくるように貼り付け た。

一般にコンクリートのヤング係数は最大応力の 1/3 に相当する応力時から求 められる(JIS A 1149)。本試験で得られる圧縮強度は,より劣化が進行した 試料上部が支配しているものと見なし,上部で測定したひずみと応力の関係か らヤング係数を算出した。下部では最大応力まで達していないため 1/3 応力時 が不明であるものの,参考として上部のヤング係数算出と同じ応力域での割線 ヤング係数を求めた。

(c) ポアソン比

コンタクトゲージ法によりポアソン比を測定した。n=3 とした。上記ヤング 係数測定用ゲージと同じ場所にこれに直交する長さ 10mm のひずみゲージを 貼付して横ひずみも測定しポアソン比を算出した。一般にコンクリートのポア ソン比は最大応力の 1/3 に相当する応力時から求められる。本試験で得られる 圧縮強度は,より劣化が進行した試料上部が支配しているものと見なし,上部 で測定した縦ひずみと横ひずみからポアソン比を算出した。下部では最大応力 まで達していないため 1/3 応力時が不明であるものの,参考として上部のポア ソン比算出と同じ応力時でのポアソン比を求めた。

(d) 空隙率

化学的性質評価用試験体の一部を用いて,水銀圧入法により空隙径分布および空隙率を測定した。試験体上半分と下半分の2試料につきそれぞれ実施した。 ただし,通水前の出発試料については試料全体の1試料につき実施した。

(e) 透水係数

通水時に試料全体の透水係数(見かけ透水係数)を随時計測した。また,一 部試料については予備劣化試料を使用して,上下に切断したのちに各々の透水 係数を実測する試験を実施して劣化部の透水係数を実験的に求めた。

(f) ビッカース硬度

化学的性質評価用試験体の一部を用い,JIS Z 2244 に準拠してビッカース硬度の測定をおこなった。試料調製方法および測定方法は 4.1.1 の「ビッカース 硬度による変遷評価の適用性検討」において後述する手法で行い,1点での測定回数は 30回とした。通水方向に平行な切断面上において入水面(上端)から底面まで通水方向に 5mm 間隔に測定点を選び測定した。今年度の測定は W/C=85%の3試料(ケース3,4,5)について実施し,出発試料の値は 4.1.1 における測定結果(昨年度測定)を使用した。なお,W/C=105%では,劣化程度が小さいケース7(積算液固比 90),8(積算液固比 180)においても測定下限値以下であることが昨年度に確認されていたために,より劣化が進行した 今年度のケースにおいては測定を実施しなかった。

(2) 液相

採取した液相試料に対して以下の評価を実施した。

(a) pH 測定

ガラス電極法により pH を測定した。

<u>使用機器</u> pHメーター : ホリバ社 F-14

(b) 組成分析

0.45 µ mのメンブランフィルターでろ過し, ICP (誘導結合プラズマ発光分 光光度計)により Ca, Si, Al, S, Na, K の各濃度を測定した。

使用機器 ICP : Varian社製 VISTA AX CCD Simultaneous

3.3 試験結果

試験結果記述においては,昨年度の試験結果¹⁾も随時引用し,出発試料から積算 液固比 500 までの一連の劣化過程を記載した。

3.3.1 固相

() 化学的性質

(a) 粉末X線回折測定(XRD)

X R D による結晶相の同定結果を表3-2に示した。また,今年度実施したケースに ついては X R D 各チャートを付録22~31に添付した。

炭酸カルシウムと未水和のビーライトは,出発試料も含めいずれの試料におい ても検出されなかった。またフェライト相は,水酸化カルシウム存在時にはピー クが重なり確認できないものの,劣化が進行し水酸化カルシウムが消失すると出 現し未水和のまま積算液固比500まで残存する。

OPCの主要水和物であるC-S-Hはすべての試料で存在が確認された。

通水劣化により水酸化カルシウム(ポルトランダイト)が溶脱することは既往 文献³⁾⁴⁾でも報告されており,本試験の上部試料で水酸化カルシウムが完全に消失 するのはW/C=85%ではケース4(積算液固比360)以降,W/C=105%ではケー ス8(積算液固比180)以降であった。一方,下部試料においてはW/C=85%で はケース5(積算液固比500)のみ,W/C=105%ではケース9(積算液固比360) 以降であった。W/C=85%ではW/C=105%より水酸化カルシウムが残存する期間 が長く,後述する熱分析やEPMAの結果にも見られるように水みち形成による不 均一な劣化のために一部が溶け残ったものと判断される。

エトリンガイトは出発試料には見られなかったものの,一部劣化試料で検出さ れ,通水過程で生成したものと考えられる。ただし,今年度実施分の多くのケー スで検出されなかったのは,所定の通水を終了してから分析までに長期間真空乾 燥保管したため,結晶水の一部を失い結晶構造が壊れたことによりXRDで検出で きなかった可能性もある。

AFm相は,出発試料ではモノサルフェート相(3CaO・Al₂O₃・CaSO₄・12H₂O) とヘミカーボネート相(3CaO・Al₂O₃・0.5CaCO₃・0.5Ca(OH)₂・12H₂O)が存在し ていた。概して劣化が進行するといずれのAFm相も消失する傾向が見られた。

なお,出発試料にエトリンガイトが見られなかったのは炭酸カルシウムフィ

ラーを含まない研究用OPCを使用したためであると考えられ,炭酸カルシウム フィラーを含んでいる通常のOPCではエトリンガイト-モノカーボネート相 (3CaO・Al₂O₃・CaCO₃・xH₂O)-ヘミカーボネート相の組合せが出発試料で報告 されている³。

表3-2 粉末X線回折測定による同定結果

L 7	W/C	C	C-8	S-H	Ca(0	OH) ₂	Ca	CO_3	A	Ft	Μ	S	Н	С	C ₂	₂S	C ₄	AF
ケース	(%)	液 固比	上部	下部	上部	下部	上部	下部	上部	下部	上部	下部	上部	下部	上部	下部	上部	下部
1		出発					;	×	>	×					>	<		-
2		90					×	×			×	×			×	×	1	I
3	85	180					×	×	×	×	×	×	×		×	×	1	-
4		360			×		×	×	×	×	×	×	×		×	×		I
5		500			×	×	×	×	×		×	×	×		×	×		
6		出発					;	×	>	ĸ					>	<		-
7		90					×	×		×			×		×	×	1	I
8	105	180			×		×	×			×		×		×	×		-
9		360			×	×	×	×	×	×	×	×	×	×	×	×		
10		500			×	×	×	×	×	×	×	×	×	×	×	×		

:X線回折ピークが明瞭に確認できたもの

:X線回折ピークがわずかに確認できたもの

×:X線回折ピークが確認できなかったもの

- :他のピークと重なり判別できなかったもの

C-S-H	:x3CaO・ySiO₂・zH₂Oの不定比化合物
-------	--------------------------

Ca(OH)² :水酸化カルシウム portlandite

CaCO3 : 炭酸カルシウム calcite

AFt	: ettringite (3CaO• Al₂O₃• 3CaSO₄• 32H₂O) で代表される固溶体相
MS	: 3CaO・Al2O3・CaSO4・12H2O組成のAFm相
HC	: 3CaO•Al₂O₃•0.5CaCO₃•0.5Ca(OH)₂•12H₂O組成のAFm相
C_2S	: belite (2CaO· SiO₂ , 未水和セメント鉱物)
C ₄ AF	:フェライト相(4CaO・Al₂O₃・Fe₂O₃,未水和セメント鉱物)

(b) 熱分析

TG/DTAおよびDSCにより水和生成物の定量を行った結果を表3-3に示した。また,今年度実施したケースについては,各試料のTG/DTA曲線を付録32~41に,D SC曲線を付録42~51に添付した。

水酸化カルシウムは今年度実施分のいずれのケースおいても,上部試料では消失していた。下部試料では,W/C=105%では積算液固比360以降に消失していたのに対し,W/C=85%では積算液固比360においても少量ながら残存していた。こ

れはXRDや後述するEPMAの結果にも見られるように、不均一な劣化のために一部が溶け残ったものと考えられる。

AFm相は分析手法の技術的な理由により,モノサルフェート相とモノカーボ ネート相(3CaO・Al₂O₃・CaCO₃・nH₂O)の区別は困難である。従って,モノサ ルフェート相含有量はモノカーボネート相との合量を表している。ただし,X線 回折でモノカーボネート相が検出されなかったことから,この合量はほぼモノサ ルフェート相の量であると判断される。また,ヘミカーボネート相がX線回折で 検出されたものの,標準試料の合成ができず今回は定量分析を見送った。

モノサルフェート相は,劣化の進行とともに減少する傾向を示し,水酸化カル シウムの消失とともに同様に消失した。

アルミナゲルはいずれの試料にも検出されなかった。炭酸カルシウムはケース 7の上下試料およびケース8の下部だけに存在が確認されたが,試料調整時に炭酸化した可能性もある。

					TG/	DTA	DSC					
ケース	W/C	液固比	Ca(0	OH) ₂	CaCO ₃		結合水		MS -	⊦ MC	AH	
	(%)		上部	下部	上部	下部	上部	下部	上部	下部	上部	下部
1		出発	27	' .4	N.D.		10.0		5	.3	N.D.	
2		90	10.8	23.4	N.D.	N.D.	11.9	10.5	0.4	1.0	N.D.	N.D.
3	85	180	N.D.	13.8	N.D.	5.7	13.5	11.9	N.D.	1.1	N.D.	N.D.
4		360	N.D.	8.0	N.D.	N.D.	13.7	13.0	N.D.	0.2	N.D.	N.D.
5		500	N.D.	N.D.	N.D.	N.D.	13.4	13.6	N.D.	N.D.	N.D.	N.D.
6		出発	26	6.2	N.D.		10.1		4	.9	N.D.	
7		90	8.2	27.5	3.2	3.4	13.0	11.7	0.3	4.9	N.D.	N.D.
8	105	180	N.D.	16.5	N.D.	N.D.	12.8	11.4	N.D.	1.1	N.D.	N.D.
9		360	N.D.	N.D.	N.D.	N.D.	14.8	14.4	N.D.	N.D.	N.D.	N.D.
10		500	N.D.	N.D.	N.D.	N.D.	14.3	14.1	N.D.	N.D.	N.D.	N.D.

表3-3 熱分析による定量結果(wt%)

N.D. : 検出下限値以下

Ca(OH) ₂	:水酸化カルシウム portlandite
CaCO ₃	:炭酸カルシウム calcite
MS	:3CaO・Al2O3・CaSO4・12H2O組成のAFm相
MC	:3CaO・Al2O3・CaCO3・nH2O組成のAFm相
AH	:アルミナゲル

(c) 化学分析

化学分析の結果を表 3-4 に示した。分析値は劣化減量した試料中の含有量で あるから,相対的に溶脱量の多い元素は減少,溶脱し難い元素は増加している。 すなわち,分析値が増加していても単位体積あたりの含有量は減少している場 合もある。全体として劣化とともにCaO,Na2O,K2O量は減少し,SiO2,Al2O3 は増加する傾向があり,CaO,Na2O,K2OがSiO2,Al2O3より溶脱し易すいこ とを反映している。また,CaO,Na2O,K2Oの溶脱は上部試料が下部試料よ り顕著に進行している。SO3は試料上部では概して減少,下部では上昇する傾 向が認められ,部位により挙動が異なることがわかる。

上部試料では液固比とともに CaO 成分の減少が認められる。ただし, XRD や熱分析結果から水酸化カルシウムがほぼ消失したとみられる積算液固比 180 以降は CaO の減少幅は小さくなっており, CaO の減少は水酸化カルシウムの 溶脱によるものが主体であることが推察される。

下部試料は,積算液固比 90 では出発試料と比べ組成の変化はほとんどなく 劣化がほとんど進行していないが,積算液固比 180 以降は CaO の減少が認め られ劣化が起こっていることが確認される。

健全部が残存しない積算液固比 500 においても,上下の組成に差異があり, 劣化部の中においても組成差があることがわかる。

ケース	W/C (%)	液固比	SiO ₂		CaO		Al ₂ O ₃		SO ₃		Na ₂ O		K ₂ O	
			上部	下部	上部	下部	上部	下部	上部	下部	上部	下部	上部	下部
1	出発		16.7		51.0		4.10		1.60		0.14		0.26	
2		90	21.9	17.0	42.6	49.9	5.47	4.28	1.98	1.73	0.04	0.04	0.04	0.06
3	85	180	26.3	18.9	35.3	45.0	6.46	4.78	1.61	2.09	0.01	0.01	0.00	0.01
4		360	29.1	23.7	33.8	40.3	7.25	5.80	1.16	2.37	0.01	0.01	0.01	0.01
5		500	29.0	26.6	32.9	35.8	7.6	6.24	0.96	1.97	0.02	0.01	0.03	0.02
6		出発	16.7		50.8		4.10		1.59		0.12		0.23	
7		90	22.7	16.3	39.6	49.4	5.73	4.12	1.73	1.72	0.06	0.05	0.04	0.08
8	105	180	27.6	18.6	35.2	46.6	6.58	4.69	1.56	2.23	0.04	0.04	0.04	0.04
9		360	30.1	27.3	33.5	36.7	7.43	6.43	0.79	2.21	0.02	0.01	0.01	0.02
10		500	30.4	29.1	32.6	35.6	7.68	6.61	0.82	1.50	0.02	0.01	0.02	0.01

表 3-4 固相の化学分析結果(wt%)

(d) 元素分布

EPMAによる各元素のマッピング結果を図3-3~3-11に示した。劣化試料にお いては上部から劣化が進行する様子がわかり,健全部との境界はかなり明瞭であ る。芳賀ら⁴⁾によれば,劣化部はほぼ水酸化カルシウムが溶脱した領域であると し,健全部との境界を溶解フロントと呼んでいる。さらに,水酸化カルシウムの 飽和溶解により,溶解フロントが水の流入側から流出側へと進んでいく変質過程 を推定している。

W/C=85%の各試料ではW/C=105%に比較し溶脱が不均質に進行したことが マッピング結果からわかる。W/C=85%の積算液固比90(ケース2)では一部突 出して試料下部までCaOが溶出し,積算液固比360(ケース4)ではCa濃度が高 い領域が溶け残っていることから水みちの形成が示唆される。一方,W/C=105% の同じ積算液固比の試料ではこのような現象は見られていない。このことは, XRDおよびDSCの結果とも整合的である。

試料により不均一な劣化進行が認められたが ,基本的に上部ほどCaOの溶脱が 顕著であり ,これにともなってCaO/SiO2比も上部ほど小さくなっている。EPMA マッピング結果から数値解析により劣化部平均のCaO含有量デジタル値を求め, 出発試料のCaO含有量と比較して算出した各試料のCaO溶出率を表3-5に示す。 この計算過程においては空隙量の変化にともなう密度変化を補正するために, EPMA測定6元素合計量が密度に比例すると仮定してCaO溶出率の補正を行っ た。使用したセメントの化学組成(付録1)では測定6元素は全体の94%以上を 占め,補正を全くおこなわずEPMAの数値を直接比較した昨年度の方法よりは精 度が向上したものと考える。補正の有無を比較した一例を4.4.2項に示す。計算時 に設定した劣化部の領域を図3-13に示す。健全部を含まない領域をCaO溶出率の 計算範囲としたが、その範囲は最大でも試料上半分の領域とした。ケース2と7 のみ試料上半分にも健全部が含まれており,計算範囲は上半分よりも狭い範囲と なった。この方法でCaO溶出率を算出すると,積算液固比が大きくなっても劣化 部のCaO溶出率は大きく増加しないことがわかった。なお,3.5項で空隙率とCaO 溶出率の関係を後述するが,対象となる空隙率は試料を2等分した上半分全体で 測定したために、空隙率との比較時には全ケースで上半分領域のCa溶出率を用い た。
また,各深度で水平方向に区分した領域のCa溶出率も同上の方法で算出し,その結果を表3-6に示した。計算に用いた領域は試料表面から2.5,7.5,12.5~ 37.5mmの5mmピッチの位置であり,1走査分である0.1mmの幅の領域である。 この位置は,ビッカース硬度測定と同じ深度である。

SiO2はCaOに比べると溶出する領域が非常に狭く,試料のごく上部の最も劣化が著しい部位でのみ溶出していることがわかる。内部ではSiO2が増加したように見えるが,CaOが大きく減少したことで相対的に含有量が増えたことによるものであり,化学分析においてSiO2が増加したことと同様の効果のために起きた現象である。

SO₃はCaOの分布とほぼ同じ挙動を示したが,劣化部最下部である健全部との 境界付近に高濃度の場所が見られた。これは単なる溶解だけでなく析出現象が起 こっている可能性がある。

Al₂O₃は出発試料からほとんど変化が見られないが ,SO₃と同じ場所にやや濃度 の高い場所があり,AFtやAFmといったアルミネート相の析出が示唆される。

≣, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W/C		出発試料(%)		劣化部(%)		CaO溶出
ホース	(%)	液固比	CaO含有	6 元素含	CaO含有	6 元素含	率(%)
			四里	有量計	皇	有量計	
1		出発試料	31.91	45.98			
2		90			15.48	30.16	68.2
3	85	180			15.76	31.33	66.3
4		360			12.80	26.09	77.2
5		500			12.32	25.20	78.9
6		出発試料	28.12	41.01			
7	105	90			13.21	25.42	70.9
8		180			11.06	22.11	78.8
9		360			11.35	24.60	75.8
10		500			10.18	23.65	79.1

表3-5 劣化部のCaO溶出率計算結果

劣化部と出発試料の EPMA 結果から以下の式により算出し,測定6元素合計量の比によって空隙増加分を補正した。劣化部の領域は図 3-13 に示した。

CaO 溶出率 = (- × /) / ×100

試験	W/C	法田山	表面からの各深度(mm)におけるCaO溶出率(%)							
ケース	(%)	液回几	2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5
2	85	90	71.7	60.9	0	0	0	0	0	0
3		180	80.9	70.1	63.6	53.3	37.1	0	7.2	4.5
4		360	89.1	83.3	74.1	71.6	63.0	43.7	39.5	26.7
5		500	89.7	84.4	76.0	75.0	72.9	70.9	69.3	64.2
7		90	86.6	77.7	37.6	7.6	0	9.6	1.8	6.8
8	105	180	89.4	84.6	83.0	78.4	68.1	59.0	18.2	7.0
9		360	88.2	78.9	73.4	69.4	69.4	69.6	67.8	65.2
10		500	90.7	83.5	76.1	71.3	70.1	70.4	69.7	69.1

表 3-6 表面からの各深度における CaO 溶出率計算結果

表 3-5 と同じ計算方法により算出した。

計算上 CaO 溶出率がマイナスとなったものは,便宜上0とした。

図 3-3 ケース1(W/C=85%,出発試料)の元素分布測定結果

図 3-4 ケース2(W/C=85%,積算液固比 90)の元素分布測定結果

図 3-5 ケース3(W/C=85%,積算液固比180)の元素分布測定結果

図 3-6 ケース4 (W/C=85%,積算液固比 360)の元素分布測定結果

図 3-7 ケース5(W/C=85%,積算液固比 500)の元素分布測定結果

図 3-8 ケース6(W/C=105%,出発試料)の元素分布測定結果

図 3-9 ケース7(W/C=105%,液固比 90)の元素分布測定結果

図 3-10 ケース8(W/C=105%,液固比180)の元素分布測定結果

図 3-11 ケース9(W/C=105%,液固比 360)の元素分布測定結果

図 3-12 ケース 10 (W/C=105%,液固比 500)の元素分布測定結果

図 3-13 CaO 溶出率算出に用いた劣化部の領域(ベースの図は CaO 分布測定結果)

- ()物理的性質
- (a) 圧縮強度

劣化に伴う圧縮強度の変化を図 3-14 に示した。また,表 3-7 には測定値詳細 をまとめた。

圧縮強度は液固比とともに低下するが、変遷初期で大きく低下し、積算液固 比が大きくなるほど低下の度合いは緩やかとなった。この傾向は、W/C=85%、 105%ともに非常によく一致していた。強度低下が著しい期間は試料上部で水酸 化カルシウムが溶脱する期間とほぼ一致しており、Atkinsonモデル⁵⁾のRegion

に対応していると考えることができる。

()項の化学的な評価結果から試料上部から劣化が進行していることが確認されているが,ここで得られた圧縮強度は基本的に劣化の著しい供試体上部の強度であると考えてよい。

今年度実施したケースについては,圧縮強度測定後の試験体の写真を図 3-17 ~3-21 に示した。いずれの供試体も劣化の著しい上部だけでなく下部まで破断 していることが確認される。健全である試料下部も出発試料より小さな荷重で 破断したのは,破断が強度の小さい上部から始まり下部へ伸展していったため と考えることができる。

図 3-14 劣化による圧縮強度の変化

(b) ヤング係数

昨年度のヤング係数測定は試料高さの中央部に歪みゲージを貼り付け測定 したが,今年度は劣化部だけの測定結果が得られるよう EPMA の結果に基づ きゲージを上下の2箇所の高さに貼り付け測定をおこなった。結果的にすべて の試料とも中央より上半分は劣化部だけであり中央部で上下に2等分した。

ヤング係数(上部のゲージ)の変化を図 3.15 に示した。また,表 3-7 には測 定値詳細をまとめた。

今年度実施したケースの各供試体の応力 - ひずみの関係は,下部ゲージでの測定 結果も併せて付録52~56に添付した。応力 - ひずみ曲線からは下部測定点に比べ 上部測定点におけるひずみ量の方が明らかに大きいのがわかる。ただし,測定精度 や試料の不均一性の問題からばらつきが大きく定量的な議論は難しい。また,試料 下部では破壊強度(最大応力)が不明なため,ヤング係数は上部でのみ算出できる (次項のポアソン比も同じ)。

出発試料のヤング係数はW/C=85%,105%ともに3×10³N/mm²程度であり,一 般のコンクリートに比べ一桁程度小さい。これは,水セメント比が非常に大きいこ と,骨材を含まないペーストであること,が原因であるものと考えられる。ただし, 供試体の高さ/直径比が2でないことと,載荷速度が応力一定ではなくひずみ一定 であることが,通常のコンクリートで規定されているヤング係数の測定方法とは異 なるため単純に比較することはできない。

供試体の高さ/直径比が小さくなるとヤング係数は小さくなるという報告⁶⁾が あるものの,既往の報告は非常に少なく,定量的な関係の考察あるいは測定値補正 を行うのに十分なデータは無いのが実情である。また,載荷速度がヤング係数へ与 える影響は,調査した範囲では不明である。

昨年度実施した積算液固比 90 でのヤング係数は,W/C=85%,105%ともに出発 試料よりも大きな値を示した。考えられる原因としては,ひずみを測定した試料中 央部付近では劣化部のデータが正確に取得できていなかった懸念があることに加 え,EPMAの画像から示唆されるように試料中央付近でのアルミネート相析出の 影響も挙げられる。

この積算液固比 90 以外では W/C=85%, 105%ともに, 積算液固比とともにヤン グ係数は低下する傾向が認められた。ヤング係数は応力/ひずみの割合であるから, 劣化により変形し易くなることがあらためて確認できた。

なお,上下2点で測定をおこなった今年度実施分試料については,あくまで も参考値として,下部試料のヤング係数を算出し表 3-8 にまとめた。試料下部 では最大応力が不明であるが,試料全体での最大応力の3分の1の応力域,つま り上部試料での計算に用いた同じ応力域での割線ヤング係数を算出した。

図 3-15 劣化によるヤング係数の変化

(c) ポアソン比

ポアソン比の変化を図 3.16 に示した。また,表 3-7 には測定値詳細をまとめた。

概して積算液固比とともに大きくなる傾向があるものの,試料間のばらつき が大きく有意の差であるかどうかは明らかではない。また,ヤング係数と同様 にアルミネート相の析出の可能性が結果に影響している可能性もある。また,供 試体の高さ/直径比が小さくなるとポアソン比は大きくなるという報告⁶⁾がある ものの,既往の報告は非常に少なく,ヤング係数と同様に定量的な関係の考察ある いは測定値補正をおこなうのに十分なデータは無い。また,載荷速度がヤング係数 へ与える影響は,調査した範囲では不明である。

なおヤング係数と同様,上下2点で測定をおこなった今年度実施分試料については,あくまでも参考値として,下部試料のポアソン比を算出し表 3-8 にまとめた。試料全体での最大応力の3分の1の応力時,つまり上部試料での計算に用いた同じ応力でのポアソン比を計算した。

図 3-16 劣化によるポアソン比の変化

試験	W/C	法田比	通水前乾	含水	圧縮強度		ヤング係	ポアソン比		
ケース	(%)	液回比	燥重量(g)	重量(g)	(N/mm ²)	平均	(×10 ⁴ N/mm ²)	平均		平均
	1	出発試料	58.58	83.38	6.82	6.65	0.34	0.34	0.27	0.29
1			58.13	83.00	6.62		0.37		0.38	
			58.80	83.56	6.52		0.31		0.22	
			57.98	80.21	4.20		0.54	0.50	0.37	
2	2	90	57.93	80.32	4.19	3.89	0.52		0.33	0.32
			57.85	80.22	3.28		0.43		0.25	
			57.16	76.05	2.55	2.30	0.11		0.16	
3	85	180	58.15	77.00	2.37		0.27	0.16	0.41	0.27
			58.27	76.63	1.99		0.10		0.24	
			58.05	73.76	1.52	1.62	0.12	0.11	0.28	0.30
4		360	58.01	72.93	1.71		0.10		0.30	
			57.54	72.21	1.62		0.11		0.31	
		500	57.27	71.80	1.53	1.48	0.07	0.07	0.44	0.34
5			57.94	71.63	1.49		0.07		0.26	
			57.70	71.48	1.41		0.08		0.31	
		出発試料	50.51	76.71	3.93	3.94	0.25	0.31	0.24	0.22
6			50.63	76.78	3.73		0.24		0.24	
			50.20	75.58	4.16		0.44		0.18	
		90	50.00	74.22	1.67		0.28		0.35	
7			49.40	73.60	1.74	1.71	0.41	0.34	0.29	0.30
			49.77	74.37	1.72		0.34		0.26	1
			49.95	71.85	1.19		0.13		0.46	
8	105	180	49.96	71.89	1.20	1.18	0.11	0.12	0.33	0.35
			49.07	71.06	1.15		0.11		0.26	
			50.23	67.96	0.72		0.04	0.05	0.34	
9		360	49.81	67.21	0.73	0.75	0.06		0.25	0.30
			49.22	37.50	0.81		0.05		0.31	
			50.24	66.92	0.70		0.03		0.37	
10		500	50.07	66.76	0.67	0.68	0.03	0.03	-	0.38
			50.37	66.92	0.67		0.03		0.38	

表 3-7 圧縮強度,ヤング係数,ポアソン比測定結果詳細

試験	W/C	海田比	試料下部のヤン	/グ係数	試料下部のポアソン比		
ケース	(%)	液面に	(×10 ⁴ N/mm ²)	平均		平均	
		180	-		-	0.50	
3			0.44	0.58	0.50		
			0.72		-		
			0.34		0.51		
4	85	360 500	0.17	0.36	-	0.55	
			0.57		0.58		
			0.27		0.56	0.87	
5			-	0.41	0.94		
			0.55		1.11		
		360 105 500	0.09		0.71	0.94	
9			0.21	0.15	0.90		
	105		-		1.22		
	105		0.08		0.38		
10			0.07	0.06	0.42	0.37	
			0.04		0.32		

表 3-8 試料下部測定点におけるヤング係数,ポアソン比測定結果(参考値)

ヤング係数:試料全体の3分の1応力までの割線ヤング係数 ポアソン比:試料全体の3分の1時でのポアソン比

図 3-17 ケース3(W/C=85%,積算液固比180)の圧縮強度測定後供試体

図 3-18 ケース4 (W/C=85%,積算液固比 360)の圧縮強度測定後供試体

図 3-19 ケース5(W/C=85%,積算液固比 500)の圧縮強度測定後供試体

図 3-20 ケース9(W/C=105%,積算液固比 360)の圧縮強度測定後供試体

図 3-21 ケース 10 (W/C=105%, 積算液固比 500)の圧縮強度測定後供試体

(d) 空隙率

上下各試料の空隙率の変化を図 3-22 に示し,その測定デジタル値を表 3-9 に示した。また,各試料の空隙径分布の測定結果グラフをそれぞれ図 3-23~ 3-40 に示した。

通水劣化により空隙量が増加することが知られており⁴⁾,本試験においても, 上部試料では,劣化の進行とともに空隙率は増加している。特に変遷初期に空 隙の増加が多く,積算液固比が大きくなると増加の割合は緩やかになっている。 これは圧縮強度と同様に,水酸化カルシウムの溶脱と密接な関係にあることが 推察される。もっとも劣化の著しい積算液固比 500 の測定値ではW/C=85%が W/C=105%を上回っているが,これは試料間のばらつきや測定誤差範囲内であ ると考えている。劣化が進行した場合も,W/Cが異なった試料の空隙率は本質 的には異なると考えられるものの,初期に比べると空隙率の差は縮まり,その 差が誤差範囲となってくるものと考えられる。

下部試料は, W/C=85%, 105%ともに空隙率が変質初期で減少しており, 溶出だけではなく析出が起こった可能性が示唆される。

空隙径分布測定結果より,出発試料においては,平均空隙径の最も大きな ピークは W/C=85%,105%ともに 0.1~1µmの間に位置しており,W/C=105% よりも W/C=85%でより小さな値となっている。両出発試料とも 1~100µmの 間にはピークは存在しない。

劣化が進行してくると,出発試料には無かった 1~10μmの間にピークが 2 ~3 個出現してくる。これらのピークは積算液固比が大きくなるほど,また下 部より上部試料で大きくなる。また,より大きな平均空隙径のピークへと移行 する。XRDや熱分析の結果から水酸化カルシウムの溶脱があまり起きていな かった積算液固比 90 の下部試料では,これらの新たなピークが無かったこと から,水酸化カルシウムの溶脱がこの大きさの空隙出現に密接に関係があるも のと考えられる。同じく,OPCペースト硬化体での通水試験における 1μm程 度の空隙の増加は,水酸化カルシウム結晶の消失によるものであると芳賀ら⁴ は報告している。

積算液固比が 180 以上になると下部試料でもこの空隙が出現し,水酸化カル シウムの溶脱挙動と整合的である。

図 3-22 劣化による空隙率の変化

<i>॑</i> म_ フ	W/C	添田と	空隙率 (%)		
9-X		心回儿	上部	下部	
1	85	出発試料	48	3.2	
2		90	58.2	48.0	
3		180	67.5	55.7	
4		360	73.2	62.0	
5		500	76.3	68.1	
6	105	出発試料	57.4		
7		90	65.8	54.1	
8		180	70.9	61.5	
9		360	74.1	72.5	
10		500	76.0	70.7	

表 3-9 空隙率測定結果

図 3-23 ケース1(W/C=85%,出発試料)の空隙径分布測定結果

図 3-24 ケース2(W/C=85%,積算液固比 90)上部試料の空隙径分布測定結果

図 3-25 ケース2(W/C=85%,積算液固比 90)下部試料の空隙径分布測定結果

図 3-26 ケース 3 (W/C=85%, 積算液固比 180)上部試料の空隙径分布測定結果

図 3-27 ケース3(W/C=85%,積算液固比180)下部試料の空隙径分布測定結果

図 3-28 ケース4(W/C=85%,積算液固比 360)上部試料の空隙径分布測定結果

図 3-29 ケース4(W/C=85%,積算液固比 360)下部試料の空隙径分布測定結果

図 3-30 ケース5(W/C=85%,積算液固比 500)上部試料の空隙径分布測定結果

図 3-31 ケース5(W/C=85%,積算液固比 500)下部試料の空隙径分布測定結果

図 3-32 ケース6(W/C=105%,出発試料)の空隙径分布測定結果

図 3-33 ケース7(W/C=105%,積算液固比 90)上部試料の空隙径分布測定結果

図 3-34 ケース7(W/C=105%,積算液固比 90)下部試料の空隙径分布測定結果

図 3-35 ケース8(W/C=105%,積算液固比180)上部試料の空隙径分布測定結果

図 3-36 ケース8(W/C=105%,積算液固比180)下部試料の空隙径分布測定結果

図 3-37 ケース9(W/C=105%,積算液固比 360)上部試料の空隙径分布測定結果

図 3-38 ケース9(W/C=105%,積算液固比 360)下部試料の空隙径分布測定結果

図 3-39 ケース 10 (W/C=105%, 積算液固比 500)上部試料の空隙径分布測定結果

図 3-40 ケース 10 (W/C=105%, 積算液固比 500) 下部試料の空隙径分布測定結果

(e) 透水係数

W/C=85%および 105%の各試料の透水係数測定結果を図 3-41, 3-42 にそれ ぞれまとめて示した。各試料間の透水係数のばらつきは比較的小さく変質の速 度は同程度であったといえる。

試験開始時の透水係数はW/C=85%で 5.2~6.2×10⁻¹⁰m/s, W/C=105%で 3.0 ~3.5×10⁻⁹m/sであり,一桁近い開きがあった。通水を継続することで透水係 数はいずれも徐々に大きくなり,試験終了時(積算液固比 500)にはW/C=85% で 6.4~8.1×10⁻⁹m/s, W/C=105%で 2.8~3.6×10⁻⁸m/s程度となり約1桁上昇 した。試験終了時の圧力はW/C=85%が 0.06MPa, W/C=105%が 0.01MPaで あった。

これら実測の透水係数は劣化部と健全部が混在する試料全体の見かけの透水係数であるが,昨年度は EPMA の画像から劣化部と健全部の厚さを求め以下の計算により劣化部だけの透水係数の算出を試みた。なお,ここでは,均一な2つの部位(劣化部と健全部)からなり, これらは水流に垂直な平面で接し, 試料内の導水勾配は単調である,という仮定がある。

 $1 / k = L_1 / k_1 + (1 - L_1) / k_2$

ここで, k:全体の透水係数(見かけ), k1:劣化部の透水係数,
k2:健全部の透水係数, L1:劣化部の厚さ割合

この計算手法では代入する劣化部厚さ割合の変動が算出される透水係数に 与える影響が大きい。さらに,実際の試料ではフィンガーリングが存在するた めに劣化部と健全部の境界がモデルのように明瞭に区分でないことから,劣化 部厚さ割合の見積もりも容易ではない。

今年度はいくつかの劣化後試料について,上下に2等分して各々透水係数を 実測した。EPMAのマッピング結果からは,今年度試料は少なくとも上半分に は健全部は存在していないことがわかっている。また,今年度各ケースは下部 にまで劣化部が及んでいるが,CaO溶出率計算における領域設定の考え方と同 様,試料上半分の透水係数を劣化部透水係数代替値として3.4項において他の 特性との関係検討に用いた。これら,上下に2等分して各々透水係数を実測し た試料における,通水中の見かけ透水係数の変化は付録38~41に示した。

昨年度(計算)および今年度(実測)求めた各部位の透水係数を表 3-10 に

まとめた。なお,出発試料の透水係数には通水開始後安定した時点(積算液固 比10)の実測値を用いた。

- 53 -

ケース	W/C	積算	全体の	各	部位の	
	W/C	液固比	透水係数	透	水係数	
1		出発試料		5.65E-10		
2		00	90 1.15E-09	劣化部	2.37E-09	計算劣化部厚さ割合:2/3
2		90		健全部	5.65E-10	
3	050/	180	2.05E-09	-	-	
1	00%	[%]	5 60E 00	上部	1.33E-08	
4		300	300 5.00E-09	下部	3.13E-09	
Б		500	7.89E-09	上部	1.74E-08	
5				下部	5.08E-09	
6		出発試料	5.04E-09			
7		00	9.65E 00	劣化部	2.56E-08	計算劣化部厚さ割合:1/2
'		90	0.00E-09	健全部	5.20E-09	
0	105%	105% 180 1.30E-08	劣化部	2.94E-08	計算劣化部厚さ割合:3/4	
0	105%		1.30E-00	健全部	4.88E-09	
9		360	2.38E-08	-	-	
10		500	2 06E 00	上部	5.51E-08	
		2.00E-08		下部	1.42E-08	

表 3-10 上部および下部の透水係数

単位:m/sec

網掛けした透水係数は計算により算出した(昨年度)。 その他は上下2等分に切断して実測した。
(f) ビッカース硬度

W/C=85%各ケースのビッカース硬度測定結果を図 3-43 に示した。ビッカー ス硬度は各測定位置で 30 点測定してその平均値を用いているが,硬度 1.0 以 下では測定が困難となるため平均値が 1.0 以下のものは 0 としている。また, 表 3-11~3-14 には各試料の測定値詳細を示した。W/C=105%は昨年度に測定 限界以下であることが示唆され,今年度は新たな測定は行っていない。出発試 料のビッカース硬度は 4.4.1 に示すとおり,その値は W/C=85%が 7.16, W/C=105%が 3.18 であった。

液固比 500 が液固比 360 よりも各点でやや大きな硬度を示したが,全体とし て液固比の増加とともにビッカース硬度は低下する傾向を示した。また試料上 部ほどビッカース硬度は小さい傾向を示す。このことより通水劣化によりビッ カース硬度が低下するものと考えられるが,化学的な劣化指標である Ca 溶出 率との関係は 3.5 項で後述することとする。

ケース2(液固比90)の試料下部で出発試料の2倍を超える高い値を示すこ との原因として,昨年度の EPMA の結果からは劣化部と健全部の境界付近に おけるエトリンガイトと思われるアルミネート相の析出による影響が示唆され たが,劣化部と健全部の境界が複雑な形状をしていたため,ビッカース硬度用 試料での劣化部と健全部の境界の位置が明らかではなく断定することができな かった。

今年度実施した液固比 180 以降の測定では EPMA 用試料測定面に接していた面をビッカース硬度測定試料として切り出し、元素分布とビッカース硬度測定位置が対応できるようにした。そのビッカース硬度測定用試料は, EPMA 測定面中心部の幅約 10mm の範囲とした。

その結果,ケース3(積算液固比180)およびケース4(積算液固比360) ではAl₂O₃およびSO₃が濃集しアルミネート相の析出が示唆される部位があっ たものの,その部位においてビッカース硬度が特に大きくなる現象は認められ なかった。このことより,ケース2でビッカース硬度が出発試料の値より大幅 に大きくなったことの原因は析出によるものか断定できなかった。

図 3-43 W/C=85%各試料のビッカース硬度測定結果

測定No			上如	湍からのシ	深さ (mr	n)		
	2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5
1	1.56	1.57	2.92	9.26	15.2	14.5	20.1	×
2	1.42	2.43	2.63	4.26	11.2	14.5	19.8	×
3	1.17	1.94	3.51	6.08	12.1	22.7	15.6	×
4	1.01	2.03	6.18	6.93	13.2	24.6	17.0	×
5	1.53	2.00	6.92	7.28	10.0	13.7	13.0	×
6	1.39	1.68	4.37	7.18	10.0	11.5	16.3	×
7	1.24	1.85	5.00	10.8	12.2	13.9	12.8	×
8	2.40	1.72	5.78	7.47	13.7	15.7	14.2	×
9	1.99	3.51	3.82	6.79	17.2	16.3	17.2	×
10	3.20	3.78	5.64	6.08	12.5	16.4	12.4	×
11	2.29	2.02	6.05	6.52	12.8	16.4	17.1	×
12	1.94	1.49	4.31	7.57	14.8	14.8	10.9	×
13	2.00	2.02	4.20	6.19	20.3	14.2	18.7	×
14	2.80	2.05	4.49	6.27	14.0	15.0	18.0	×
15	2.87	2.24	5.69	9.04	13.3	18.6	19.2	×
16	1.76	5.03	4.43	9.41	13.5	9.03	14.8	×
17	2.07	2.84	7.07	9.46	15.4	14.5	12.6	×
18	2.70	3.51	5.62	7.12	14.1	14.8	11.7	×
19	1.95	2.70	3.38	8.96	13.1	15.4	10.0	×
20	1.95	2.71	6.68	10.7	12.2	12.5	11.3	×
21	2.04	3.48	4.73	6.17	14.1	16.6	15.7	×
22	1.98	3.06	5.00	8.69	14.5	23.3	13.8	×
23	2.01	3.90	4.38	5.70	15.1	19.2	13.9	×
24	3.23	4.63	6.49	9.62	16.7	15.6	16.1	×
25	2.81	3.85	4.87	9.45	10.3	12.0	16.2	×
26	2.08	3.08	3.98	7.81	11.7	16.1	15.4	×
27	2.66	4.63	6.92	7.58	15.6	16.3	13.2	×
28	2.27	4.07	6.60	7.23	7.96	17.1	13.9	×
29	1.44	4.83	6.85	11.5	18.3	13.0	14.0	×
30	1.61	4.80	4.60	9.73	13.7	13.9	13.7	×
平均值	2.05	2.98	5.10	7.90	13.6	15.7	15.0	×
Vc硬度比	0.29	0.42	0.71	1.10	1.90	2.20	2.09	×
標準偏差	0.59	1.12	1.27	1.73	2.57	3.34	2.67	×
変動係数(%)	28.85	37.41	24.86	21.97	18.84	21.23	17.83	×

表 3-11 ケース2(W/C=85%,積算液固比 90)のビッカース硬度測定値詳細

試料欠損のため深さ 37.5mm での測定値は無い Vc 硬度比は出発試料に対するビッカース硬度比

测完No			上立	耑からのシ	深さ (mr	m)		
州化INU.	2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5
1	-	0.65	1.59	4.28	5.38	7.92	14.0	8.53
2	-	-	1.57	3.79	4.85	4.51	6.15	8.38
3	0.72	0.80	1.49	2.32	4.45	7.11	5.25	7.84
4	0.66	0.63	1.29	1.17	4.07	6.59	5.13	6.96
5	0.64	-	1.66	1.47	4.05	7.39	3.77	8.18
6	0.94	0.85	1.62	2.00	5.91	3.66	4.67	9.07
7	1.19	0.96	2.08	1.69	6.00	9.52	5.01	7.35
8	-	0.77	1.94	1.89	4.14	7.61	6.13	6.72
9	1.07	1.07	1.22	2.07	2.82	2.90	5.40	5.72
10	-	1.01	1.33	1.40	4.89	3.53	4.87	6.70
11	0.78	1.07	1.23	1.89	5.01	3.22	5.70	4.49
12	1.20	1.00	1.71	-	3.33	5.46	5.27	5.16
13	-	1.07	1.15	1.31	4.61	9.46	6.80	6.60
14	0.77	-	1.60	1.93	4.40	5.54	6.06	5.13
15	0.78	0.82	1.60	1.41	3.92	4.09	4.45	6.06
16	1.25	1.15	1.74	1.47	4.04	4.96	5.53	10.0
17	0.85	0.99	1.29	1.17	3.97	3.17	6.60	7.44
18	0.84	0.78	1.50	1.37	4.25	6.19	7.38	12.0
19	-	0.76	1.30	0.87	3.83	8.02	14.2	6.77
20	-	-	1.39	1.38	5.06	10.5	9.49	5.38
21	-	-	1.43	1.56	4.23	8.02	8.01	11.7
22	0.76	-	1.20	0.79	4.07	5.82	10.8	9.49
23	0.78	-	1.03	0.88	3.04	6.84	8.11	6.83
24	0.78	0.92	1.00	1.49	4.95	5.23	6.24	7.30
25	-	0.83	0.97	1.56	2.53	2.74	6.24	10.2
26	-	0.73	0.80	1.47	2.15	3.55	6.57	7.72
27	-	-	1.56	1.59	3.02	4.09	6.70	8.72
28	-	1.04	1.39	1.20	3.33	4.61	6.23	8.99
29	-	0.94	1.12	1.12	3.22	2.74	6.12	8.35
30	0.70	0.88	1.01	1.83	4.28	3.59	6.08	6.52
平均值	0.87	0.90	1.39	1.67	4.13	5.62	6.77	7.68
有効データ	0.00	0.00	1.39	1.67	4.13	5.62	6.77	7.68
Vc硬度比	0.00	0.00	0.19	0.23	0.58	0.78	0.94	1.07
標準偏差	0.19	0.15	0.30	0.75	0.93	2.22	2.46	1.84
変動係数(%)	22.46	16.22	21.26	45.15	22.50	39.46	36.34	23.95

表 3-12 ケース3(W/C=85%,積算液固比 180)のビッカース硬度測定値詳細

「 - 」は測定限界以下だった点 平均値が 1.0 以下のものは有効な値を 0 とした Vc 硬度比は出発試料に対するビッカース硬度比

測定No			上立	耑からの え	深さ (mr	n)		
则在NU.	2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5
1	-	-	0.73	0.71	0.88	1.48	2.20	1.80
2	-	0.87	0.89	-	1.23	1.38	2.54	1.53
3	0.92	-	0.81	0.79	0.94	0.92	2.51	0.71
4	0.70	0.81	-	0.96	0.72	0.96	1.91	2.41
5	-	-	-	0.91	1.06	-	2.01	2.12
6	0.70	0.75	-	-	-	0.80	1.25	2.67
7	0.72	-	-	-	1.47	-	1.78	0.75
8	0.76	0.75	0.88	0.75	1.53	0.68	1.17	0.69
9	0.71	0.77	0.69	0.71	2.46	1.82	0.87	2.14
10	0.95	0.80	0.85	1.06	0.84	2.23	0.95	2.06
11	0.88	0.85	-	-	-	0.98	0.71	2.10
12	-	-	0.73	0.75	-	1.35	1.08	1.72
13	-	-	0.67	-	0.89	0.83	1.22	1.40
14	0.92	0.73	-	1.04	0.89	1.06	1.42	1.50
15	-	0.95	0.73	-	-	0.93	1.57	0.92
16	0.68	1.03	-	1.04	1.13	-	1.51	1.41
17	-	1.09	-	0.91	-	0.93	1.47	1.90
18	-	0.82	1.01	0.80	0.79	1.65	1.06	1.99
19	-	0.91	0.72	-	1.29	1.20	1.17	1.26
20	0.77	0.85	0.82	0.76	1.06	1.10	1.36	1.21
21	0.68	-	0.72	0.71	-	1.18	1.17	1.49
22	-	-	0.80	0.78	1.69	1.32	0.74	1.63
23	-	-	0.83	-	1.48	1.00	0.87	1.17
24	-	0.78	0.72	0.86	1.58	0.81	0.98	2.07
25	-	0.75	1.23	-	-	1.00	1.17	1.55
26	-	0.75	0.84	0.92	1.11	1.74	1.19	1.37
27	-	0.68	0.94	0.75	-	1.45	1.13	1.60
28	0.75	0.71	0.75	0.75	0.95	1.27	1.30	1.33
29	-	-	0.87	0.83	0.87	1.08	1.29	1.57
30	_	0.77	-	0.77	0.82	0.95	1.07	1.89
平均值	0.78	0.82	0.82	0.84	1.17	1.19	1.36	1.60
有効データ	0.00	0.00	0.00	0.00	1.17	1.19	1.36	1.60
Vc硬度比	0.00	0.00	0.00	0.00	0.16	0.17	0.19	0.22
標準偏差	0.10	0.11	0.13	0.11	0.41	0.36	0.47	0.49
変動係数(%)	12.86	12.89	15.66	13.67	34.85	30.36	34.98	30.55

表 3-13 ケース4 (W/C=85%,積算液固比 360)のビッカース硬度測定値詳細

「 - 」は測定限界以下だった点 平均値が1.0以下のものは有効な値を0とした Vc硬度比は出発試料に対するビッカース硬度比

測定No			上立	岩からのえ	深さ (mr	m)		
/则ÆINU.	2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5
1	-	-	-	1.83	0.73	2.63	2.02	4.14
2	-	1.00	-	2.01	1.94	2.56	1.76	2.43
3	-	1.29	0.97	1.29	1.99	3.36	2.02	3.12
4	-	0.67	-	1.24	1.28	2.38	3.21	2.82
5	-	-	-	1.10	0.86	2.00	7.01	1.29
6	0.70	-	1.13	0.91	3.20	2.00	1.47	1.99
7	0.78	-	-	1.17	1.46	1.95	2.32	2.21
8	-	-	1.30	2.49	1.48	2.09	2.67	1.93
9	-	-	0.80	1.06	1.53	2.05	5.43	1.75
10	-	0.71	0.69	1.13	1.52	1.50	4.59	2.67
11	-	-	1.16	1.18	1.61	1.99	2.97	3.76
12	-	0.68	0.75	0.76	1.16	2.74	2.98	1.70
13	-	-	1.44	1.01	0.92	5.23	3.39	1.92
14	-	0.90	0.93	0.82	0.82	2.63	1.43	2.65
15	-	1.23	-	1.86	1.08	2.12	1.89	2.06
16	-	0.73	-	0.78	0.98	1.37	2.84	2.50
17	-	-	0.72	-	0.98	1.44	1.38	1.85
18	-	0.99	0.82	0.76	1.17	2.06	3.15	2.31
19	0.68	-	0.71	1.12	1.21	2.86	1.98	2.20
20	-	-	-	0.77	1.34	1.89	1.73	2.47
21	-	1.09	1.09	-	1.32	1.74	2.12	2.44
22	-	-	0.73	0.89	0.77	1.39	1.72	3.59
23	-	-	-	0.93	1.19	1.44	1.84	3.86
24	-	-	0.95	0.88	0.76	1.47	1.50	5.31
25	-	0.74	1.27	0.83	0.90	0.73	1.67	8.51
26	-	-	0.76	1.12	1.29	1.50	1.37	1.28
27	-	-	-	0.82	0.79	1.83	1.25	4.64
28	-	-	0.76	-	0.82	1.52	2.39	1.54
29	-	-	-	0.75	2.09	1.48	1.17	1.97
30	-	-	0.85	-	1.13	0.86	1.27	2.11
平均值	0.72	0.91	0.94	1.14	1.28	2.03	2.42	2.77
有効データ	0.00	0.00	0.00	1.14	1.28	2.03	2.42	2.77
Vc硬度比	0.00	0.00	0.00	0.16	0.18	0.28	0.34	0.39
標準偏差	0.05	0.22	0.23	0.44	0.52	0.84	1.32	1.46
変動係数(%)	7.35	24.66	24.45	38.88	40.65	41.51	54.39	52.65

表 3-14 ケース5 (W/C=85%,積算液固比 500)のビッカース硬度測定値詳細

「-」は測定限界以下だった点

平均値が1.0以下のものは有効な値を0とした Vc硬度比は出発試料に対するビッカース硬度比 3.3.2 液相

(a) pH 測定

W/C=85%および105%の各試料のpH測定結果を図3-44,3-45にそれぞれ示した。各試料間での値のばらつきは比較的小さかった。透水係数測定結果も同様にばらつきが小さかったことから,試料間での変質の速度は同程度であったといえる。pH測定値のデジタル値を表3-15,3-16に示した。

W/C=85%,105%ともに初回採取の液相(液固比約1)は約13の高いpHを呈した。一般に,間隙水組成については高濃度のNa⁺,K⁺イオンによりpHが13以上と高くなると言われており⁷⁷,液固比が小さいために同様の影響が初回採取の液相にも対しても寄与しているためであると考えられる。その後,積算液固比150~200程度までは12.5~12.7程度のpHを維持し,これ以降はpHは低下した。12.5~12.7程度のpHは水酸化カルシウムの飽和溶液の値とほぼ同じであり,水酸化カルシウムの存在が反映されているものと判断される⁴⁾⁸⁾⁹。その維持期間は固相の評価結果による水酸化カルシウムの残存期間ともほぼ整合するものであった。W/C=85%では低下を始める液固比がやや小さかったが,これは不均一な劣化によるものである考えられる。最終的(積算液固比500)にはpHは12以下にまで低下したが,W/C=85%のほうがやや高いpHを呈した。これも不均一な劣化が原因と推定される。両W/Cとも出発試料の化学組成はほぼ同じであったことから,積算液固比が重量比であることより,均一に劣化すれば液相組成の変化はW/Cによらないものと考えることができる。

(b) 組成分析

各分析用試験体からの通水液の化学組成分析結果を図 3-46,3-47 に,溶出率に換算した結果を図 3-48,3-49 にそれぞれ示した。また,これらのデジタル値を表 3-15,3-16,および表 3-17,3-18 に示した。なお,溶出率とは,出発試料に含まれていた各成分量に対する液相へ溶出した積算量の割合であり, 出発試料の各成分量は表 3-4 に示した出発試料の成分割合と初期重量から算出した。

Ca 濃度は W/C=85%, W/C=105%ともに, 通水直後の初回サンプリング(液 固比約1)でのみ 10mmol/L 前後であったが, その後は水酸化カルシウムの飽 和濃度(約22mmol/L)に近い値で推移し,W/C=85%では積算液固比約100, W/C=105%では積算液固比150付近から低下した。W/C=85%でCa濃度低下 が早かったのは上記 pH と同様,不均一な劣化によるものである考えられる。 Ca濃度は基本的に最後に液相が通過する試料下部と平衡な組成となるため, 均一に劣化すれば液相組成の変化はW/Cによらないと考えられるが,EPMA 結果にも観察される不均一な劣化により水みちが形成され濃度の低い液相が 混入したと考えられる。また,積算液固比500の時点では,約60%のCaOが 溶出したことが明らかとなった。熱分析や化学分析の結果から出発試料中CaO の半分弱は水酸化カルシウムとして存在していると考えられるため,溶出した CaOの多くの部分は水酸化カルシウムであると考えられる。水酸化カルシウム 消失後にCa溶出量が小さくなったことに加え,空隙率の増加量も小さくなっ たことからも,主な溶脱成分は水酸化カルシウムであったことが推察される。

Si 濃度は初期は非常に低く, Ca 濃度が低下し始めるころに上昇を始め, 試 験終了まで増加し続けた。変遷後期においては C-S-H 溶解により Si 濃度は上 昇することが知られている。ただしその濃度は低く通水完了の液固比 500 にお いても 0.3mmol/L 程度の濃度である。積算溶出率から見ても 1.5~2%程度の Si が溶出したに過ぎない。

Al 濃度も Si 濃度と似た挙動を示し,初期は非常に低く劣化が進行すると濃度は上昇する。ただ,液固比 400 付近の変遷後期に極大点がある。これは, EPMA により劣化部と健全部の境界付近に濃集が示唆されたアルミネート相が,劣化の進行とともに試料下部へ移動し,さらに試料下端から抜け出る時点で濃度が最大となるためであると考えられる。積算の溶出率は2%程度であった。

SO₃, NaおよびK濃度はW/C=85%, W/C=105%ともに,通水直後でのみ高 い濃度を示したが,すぐに低下しその後は低い濃度であった。これは出発試料 の空隙水中に存在した水酸化アルカリや硫酸アルカリといった可溶性アルカ リが通水によって最初に押し出されたためであると考えられる。Na,Kの濃度 は既往の報告⁴⁾⁷⁾⁹⁾と差異が見られるものの,Na,Kの濃度はごく初期の液相に 高濃度に含まれていると考えられ,サンプリング間隔により濃度が変動するこ とが原因であると判断される。 SO3濃度はAI濃度と同様,通水後期で上昇し極大点があった。この理由も同様に濃集したアルミネート相の溶脱によるものと考えられる。NaおよびKの積算溶出率は試料により100%をやや超える値と算出されているのは,出発試料を化学分析する際に調製過程での溶出によって実際の成分量より小さく測定されたといった試験上の原因が推定される。

図 3-44 W/C=85%各試料(ケース2~5)のpH 測定結果

図 3-45 W/C=105%各試料(ケース7~10)のpH測定結果

図 3-46 W/C=85%各試料(ケース2~5)の液相分析結果

図 3-47 W/C=105%各試料(ケース7~10)の液相分析結果

図 3-48 W/C=85%各試料(ケース2~5)の液相組成から算出した各成分の積算溶出率

図 3-49 W/C=105%各試料(ケース7~10)の液相組成から算出した各成分の溶出率

	表 3-15	W/C=85%各試料([ケース2~5])の pH および液相分析結果(〔デジタル値〕
--	--------	-------------	----------	------------------	---------

ケース	積算	夜固比	nН		液	1日中の濃	度(mmol	/L)	
<i>`</i> ^	予定値	実測値	рп	Ca	Si	AI	SO ₃	Na	K
	1	1.0	12.94	7.8	0.016	N.D.	2.70	37.9	53.6
	3	3.1	12.64	23.5	0.008	0.004	0.18	0.177	0.375
	5	5.4	12.62	23.5	0.008	0.006	0.15	0.076	0.105
ケース2	10	10.7	12.67	22.9	0.006	0.003	0.11	0.048	0.051
90-分析	20	22.3	12.62	22.5	0.005	0.003	0.08	0.032	0.027
	30	30.1	12.59	21.9	0.005	0.007	0.07	0.033	0.033
	50	50.7	12.60	23.3	0.010	0.006	0.06	0.026	0.028
	70	68.6	12.48	22.6	0.006	0.008	0.06	0.031	0.036
	90	89.3	12.63	23.5	0.017	0.009	0.06	0.026	0.028
	1	0.9	13.02	6.6	0.021	0.002	2.89	41.6	58.4
	3	2.8	12.66	23.3	0.008	0.004	0.17	0.182	0.418
	5	4.8	12.62	23.2	0.007	0.005	0.14	0.067	0.093
	10	9.9	12.62	23.4	0.006	0.004	0.11	0.049	0.058
	20	20.2	12.65	22.6	0.005	0.004	0.08	0.037	0.047
ケース3	30	31.1	12.57	21.8	0.004	0.005	0.07	0.033	0.036
180-分析	50	49.3	12.56	23.3	0.010	0.008	0.06	0.027	0.032
	70	70.6	12.47	22.8	0.006	0.009	0.06	0.026	0.026
	90	90.0	12.55	22.6	0.018	0.011	0.05	0.028	0.028
	110	109.9	12.53	19.5	0.001	0.014	0.05	0.011	0.035
	130	129.2	12.57	18.6	0.001	0.021	0.04	0.038	0.032
	150	148.5	12.44	16.3	0.001	0.017	0.04	0.022	0.009
	180	178.9	12.44	14.5	0.013	0.023	0.08	0.015	0.017
	1	1.0	12.91	9.6	0.028	0.001	2.45	36.8	50.5
	3	3.1	12.63	23.5	0.008	0.007	0.18	0.198	0.422
	5	5.4	12.62	23.2	0.007	0.005	0.15	0.082	0.121
	10	11.5	12.62	23.2	0.006	0.004	0.12	0.054	0.066
	20	18.4	12.63	22.7	0.006	0.004	0.09	0.043	0.045
	30	29.5	12.59	21.9	0.006	0.007	0.08	0.034	0.030
	50	51.2	12.57	23.3	0.010	0.007	0.07	0.027	0.028
	70	70.4	12.50	22.7	0.006	0.008	0.06	0.027	0.029
ケース4	90	89.5	12.60	23.2	0.018	0.010	0.05	0.030	0.032
360-分析	110	108.9	12.52	20.3	0.001	0.011	0.04	0.013	0.029
	130	129.5	12.48	18.7	0.001	0.014	0.04	0.037	0.026
	150	149.9	12.44	16.6	0.001	0.021	0.05	0.023	0.011
	180	179.5	12.44	15.2	0.013	0.021	0.05	0.013	0.011
	210	209.9	12.35	12.2	0.057	0.023	0.12	0.024	0.027
	240	239.0	12.19	9.9	0.059	0.027	0.16	0.013	0.005
	270	270.0	12.19	8.3	0.075	0.036	0.22	0.018	0.013
	300	301.2	12.19	7.2	0.131	0.046	0.24	0.022	0.018
	330	329.4	12.08	5.4	0.120	0.033	0.23	0.017	0.022
	360	361.6	12.01	4.5	0.146	0.041	0.23	0.007	0.003
	1	0.9	12.99	8.1	0.022	0.002	2.95	41.7	58.6
	3	2.7	12.64	23.2	0.009	0.005	0.18	0.238	0.517
	5	4.7	12.64	23.2	0.008	0.004	0.15	0.096	0.152
	10	9.7	12.63	23.3	0.007	0.004	0.11	0.052	0.057
	20	19.6	12.66	22.6	0.005	0.004	0.08	0.036	0.032
	30	30.2	12.54	21.7	0.006	0.006	0.07	0.033	0.034
	50	50.1	12.60	23.4	0.011	0.009	0.06	0.030	0.037
	70	70.3	12.50	22.6	0.006	0.009	0.06	0.028	0.034
	90	88.6	12.61	20.5	0.002	0.008	0.04	0.013	0.027
	110	110.4	12.58	20.0	0.001	0.011	0.03	0.013	0.030
ケース5	130	130.3	12.56	19.1	0.001	0.016	0.04	0.037	0.024
500-分析	150	149.4	12.52	17.9	0.001	0.017	0.03	0.038	0.024
	180	179.7	12.50	16.8	0.009	0.016	0.05	0.013	0.012
	210	209.3	12.38	14.0	0.049	0.022	0.08	0.026	0.029
	240	240.4	12.36	11.3	0.058	0.024	0.15	0.019	0.018
	270	270.1	12.24	9.0	0.081	0.035	0.23	0.019	0.018
	300	298.7	12.12	7.7	0.073	0.041	0.23	0.011	0.010
	330	330.2	12.11	5.7	0.085	0.039	0.24	0.016	0.018
	360	359.4	11.94	5.1	0.145	0.052	0.26	0.015	0.021
	400	401.3	11.87	3.8	0.174	0.034	0.18	0.012	0.019
	450	451.8	11.55	2.1	0.276	0.091	0.32	0.017	0.020
	500	501.7	11.67	2.2	0.305	0.050	0.26	0.016	0.022

衣 3-10 W/C=103% 合試料(ソース/~10)の pr のよい 液怕刀 机 紀未(ノンツル)	表 3-16	W/C=105%各試料(〔ケース7~10〕の	pH および液相分析結果	(デジタル値
---	--------	--------------	------------	--------------	--------

ケーマ	<u>積算</u>	<u>夜固比</u>	nН		液	<u> 泪中の濃</u>	<u>度(mmol</u> /	<u>/L)</u>	
· · · · ·	予定値	実測値	PLI	Ca	Si	AI	SO ₃	Na	K
	1	1.3	12.88	9.7	0.004	N.D.	1.50	25.51	34.75
	3	3.2	12.68	23.6	0.006	0.004	0.15	0.170	0.344
	5	5.7	12.65	23.0	0.002	0.006	0.13	0.070	0.113
ケースフ	10	9.3	12.69	22.8	0.004	0.004	0.11	0.045	0.066
90-分析	20	21.9	12 70	22.0	0 004	0.007	0.10	0.033	0.042
23.00	30	297	12.63	23.1	0.004	0.006	0.10	0.032	0.039
	50	523	12.58	20.1	0.000	0.007	0.10	0.002	0.017
	70	71 2	12.00	22.5	0.000	0.007	0.10	0.017	0.017
	00	99.0	12.01	21.0	0.000	0.007	0.10	0.017	0.017
	30	1 2	12.00	∠1.0 12.9	0.000	0.007	1 51	26 66	36 20
	2	1.0	12.93	12.0	0.010	0.011	0.15	20.00	00.09
	ა 	3.Z	12.03	23.3	0.009	0.005	0.10	0.141	0.290
	C 0	0.0	12.03	23.1	0.004	0.006	0.12	0.007	0.113
	10	0.9	12.00	22.0	0.002	0.005	0.10	0.030	0.051
L 70	20	20.8	12.63	21.9	0.008	0.007	0.09	0.028	0.034
9-78	30	31./	12.60	22.0	0.004	0.007	0.09	0.025	0.033
180-分析	50	52.3	12.47	23.1	0.007	0.007	0.09	0.019	0.021
	70	69.9	12.50	22.8	0.006	0.006	0.12	0.017	0.025
	90	88.9	12.52	22.7	0.006	0.006	0.15	0.020	0.033
	110	110.7	12.52	22.8	0.009	0.007	0.11	0.019	0.035
	130	129.7	12.58	22.3	0.011	0.009	0.09	0.015	0.017
	150	151.7	12.58	22.3	0.006	0.009	0.06	0.018	0.032
	180	<u>180.6</u>	12.51	<u>19.5</u>	0.008	0.016	0.09	0.014	0.018
	1	1.2	12.89	11.6	0.014	0.010	1.68	25.56	34.65
	3	3.0	12.64	23.3	0.005	0.005	0.14	0.177	0.382
	5	5.6	12.64	22.9	0.004	0.015	0.14	0.067	0.112
	10	9.1	12.64	22.7	0.005	0.006	0.12	0.041	0.056
	20	20.7	12.65	21.8	0.005	0.006	0.11	0.027	0.033
	30	31.6	12.64	21.2	0.004	0.007	0.10	0.021	0.026
	50	52.5	12 46	22.1	0.007	0.006	0.10	0.017	0.015
	70	69.2	12.59	21 9	0.007	0.005	0.11	0.018	0.022
5-70	۵ <u>۵</u>	Q1 R	12.00	21.0	0.007	0.000	0.14	0.010	0.022
360-分析	110	108.2	12.40	21.0	0.004	0.000	0.10	0.013	0.000
300 J.I.I	120	128.0	12.00	22.9	0.009	0.007	0.10	0.022	0.032
	150	150.0	12.00	22.J 00.0	0.010	0.007	0.07	0.000	0.044
	100	190.0	12.01	22.3	0.000	0.009	0.00	0.010	0.019
	100	100.9	12.04	20.4	0.007	0.011	0.07	0.012	0.013
	210	210.4	12.44	10.1	0.012	0.013	0.10	0.003	0.012
	240	241.4	12.40	12.6	0.021	0.015	0.21	0.002	0.014
	270	267.9	12.32	9.8	0.034	0.018	0.31	0.002	0.011
	300	297.4	12.15	7.4	0.050	0.026	0.42	0.001	0.010
	330	329.9	11.97	5.1	0.073	0.042	0.46	0.001	0.015
	360	362.8	11.87	3.8	0.106	0.050	0.48	0.001	0.012
	1	1.2	12.94	9.7	0.003	N.D.	1.70	28.61	38.43
	3	3.0	12.65	23.4	0.007	0.004	0.16	0.168	0.346
	5	5.4	12.64	23.1	0.004	0.004	0.13	0.059	0.097
	10	8.7	12.64	23.0	0.005	0.006	0.11	0.036	0.050
	20	20.8	12.63	21.9	0.005	0.007	0.10	0.025	0.031
	30	32.1	12.63	21.2	0.004	0.007	0.10	0.023	0.032
	50	48.8	12.50	22.0	0.006	0.006	0.11	0.021	0.034
	70	69.6	12.58	22.0	0.007	0.006	0.14	0.018	0.026
	90	921	12 48	22.2	0,006	0.007	0.14	0.018	0.026
	110	108.5	12.59	23.0	0.009	0.006	0.10	0.017	0.016
5-210	130	128.8	12.50	22.8	0.015	0.007	0.07	0.060	0.061
500-分析	150	1/10 7	12.02	22.0	0.006	0.007	0.07	0.017	0.028
300 J.I.I	180	180 /	12.00	10/	0.000	0.000	0.00	0.01/	0.020
	210	200.4	12.00	16.0	0.000	0.013	0.09	0.014	0.020
	210	209.7	12.40	10.0	0.009	0.013	0.13	0.003	0.010
	240	240.7	12.39	12.4	0.019	0.018	0.23	0.003	0.017
	270	2/2.6	12.20	9.0	0.035	0.024	0.33	0.003	0.015
	300	297.5	12.13	/.1	0.051	0.034	0.40	0.001	0.007
	330	328.3	12.12	5.4	0.073	0.047	0.39	0.001	0.005
	360	362.1	11.98	4.0	0.101	0.060	0.39	0.000	0.001
	400	398.0	11.78	3.3	0.169	0.066	0.36	0.000	0.002
	450	450.1	11.67	1.9	0.229	0.060	0.24	0.004	0.009
	500	498.7	11.50	2.0	0.303	0.063	0.19	0.001	0.009

表 3-17 W/C=85%各試料(ケース2~5)の液相組成から算出した各成分 の積算溶出率(デジタル値)

· ·	看算:	夜田比		,	積質溶h	変(%)		
ケース	予定值	宝測値	Ca	Si		<u>so</u>	Na	К
		<u>天</u> 点直 10	01	0.001	ND	1 35	83.8	97.0
	3	2.1	0.1	0.001	0.001	1.50	84.6	00.1
	5	5.1	0.0	0.001	0.001	1.04	04.0	90.4
H-70	10	10.7	1.2	0.002	0.003	2.01	00.0	90.0
y - XZ	10	10.7	2.0	0.003	0.005	2.01	00.0	99.3
90-分析	20	22.3	5.4	0.005	0.010	2.49	86.4	99.9
	30	30.1	7.3	0.007	0.017	2.77	86.9	100.4
	50	50.7	12.6	0.014	0.033	3.42	88.1	101.4
	70	68.6	17.1	0.018	0.051	3.98	89.3	102.5
	90	89.3	22.4	0.030	0.073	4.56	90.5	103.6
	1	0.9	0.1	0.001	0.000	1.30	82.7	95.1
	3	2.8	0.6	0.001	0.001	1.46	83.5	96.5
	5	4.8	1.1	0.002	0.002	1.60	83.8	96.8
	10	9.9	2.4	0.003	0.005	1.89	84.3	97.4
	20	20.2	4.9	0.005	0.010	2.31	85.2	98.3
ケース3	30	31.1	7.6	0.006	0.017	2.70	86.0	99.0
180-分析	50	49.3	12.2	0.013	0.035	3.28	87.1	100.0
	70	70.6	17.6	0.018	0.058	3.92	88.3	101.0
	90	90.0	22.4	0.031	0.084	4 4 3	89.5	102.0
	110	109.0	26.7	0.001	0.004	<u> 1.40</u>	90.0	102.0
	130	120.0	30.6	0.001	0 171	5.02	Q1 6	104.4
	150	1/9.2	2/1 1	0.002	0.171	5.23	0.16	104.4
	100	170.0	34.1 20 0	0.033	0.211	0.01	92.0 02 E	104.7
<u> </u>	100	1/0.9	30.9	0.048	0.298	1.00	93.5	0.601
	1	1.0	0.1	0.001	0.000	1.22	01.4	91.4
	3	3.1	0.6	0.002	0.002	1.41	82.3	93.0
	5	5.4	1.2	0.002	0.003	1.58	82.7	93.5
	10	11.5	2.8	0.003	0.006	1.93	83.5	94.3
	20	18.4	4.5	0.005	0.010	2.25	84.1	94.8
	30	29.5	1.2	0.007	0.020	2.69	85.0	95.4
	50	51.2	12.8	0.015	0.040	3.41	86.3	96.5
	70	70.4	17.6	0.019	0.058	4.01	87.4	97.5
ケース4	90	89.5	22.5	0.031	0.081	4.52	88.7	98.6
360-分析	110	108.9	26.8	0.032	0.108	4.92	89.3	99.7
	130	129.5	31.0	0.033	0.145	5.31	91.0	100.6
	150	149.9	34.8	0.034	0.198	5.78	92.0	101.1
	180	179.5	39.7	0.047	0.276	6.59	92.9	101.6
	210	209.9	43.8	0.109	0.362	8.41	94.5	103.1
	240	239.0	47.0	0.171	0.461	10.76	95.3	103.4
	270	270.0	49.8	0.255	0.601	14.23	96.5	104.1
	300	301.2	52.3	0.402	0.778	18.04	98.0	105.1
	330	329.4	54.0	0.523	0.893	21.35	99.1	106.2
	360	361.6	55.6	0.692	1.055	25.07	99.6	106.4
	1	0.9	0.1	0.001	0.000	1.33	82.9	95.5
	3	2.7	0.5	0.001	0.001	1.49	83.9	97.2
	5	47	11	0.002	0.002	1 64	84.3	97.7
	10	97	23	0.002	0.002	1 92	84.9	98.2
	20	10.6	<u>7</u> 8	0.005	0.000	2 22	85.6	00.2 08.8
	20	30.0	72	0.000	0.010	2.00	0.00 86 /	00.0 00 F
	50	50.2	1.5	0.007	0.010	200	Q7 0	100 0
	50	70.1	12.3	0.010	0.039	2.33	01.0	100.0
	10	10.3	010	0.019	0.001	3.92	09.0	102.0
	90	00.0	21.0	0.020	0.079	4.29	89.0	102.9
+	110	10.4	20.4	0.021	0.109	4.05	90.2	104.1
y - 15	130	130.3	30.6	0.022	0.148	5.01	91.8	105.0
500-分析	150	149.4	34.4	0.022	0.187	5.35	93.4	105.8
	180	1/9.7	40.0	0.032	0.249	6.06	94.3	106.5
	210	209.3	44.6	0.084	0.331	7.30	96.0	108.0
	240	240.4	48.4	0.149	0.425	9.67	97.3	109.1
	270	270.1	51.4	0.236	0.554	13.14	98.6	110.0
	300	298.7	53.8	0.311	0.699	16.46	99.3	110.5
	330	330.2	55.8	0.407	0.851	20.29	100.4	111.5
	360	359.4	57.4	0.559	1.040	24.12	101.4	112.6
	400	401.3	59.1	0.821	1.217	27.83	102.5	114.1
	450	451.8	60.3	<u>1.32</u> 3	1.787	<u>35.9</u> 6	104.4	<u>115.</u> 8
	500	501.7	61.5	1.870	2.096	42.43	106.2	117.8

表 3-18 W/C=105%各試料(ケース7~10)の液相組成から算出した各成分 の積算溶出率(デジタル値)

4 -	積算	夜固比		/	積算溶出	【率(%)		
$\tau - \lambda$	予定値	実測値	Ca	Si	AI	SO ₃	Na	K
	1	1.3	0.1	0.000	N.D	0.98	85.7	92.5
	3	3.2	0.6	0.001	0.001	1.12	86.5	93.8
	5	5.7	1.3	0.001	0.003	1.28	87.0	94.4
ケースフ	10	9.3	2.2	0.001	0.005	1.48	87.4	94.9
90-分析	20	21.9	5.2	0.003	0.015	2.11	88.5	96.0
	30	29.7	7.2	0.005	0.021	2.51	89.1	96.6
	50	52.3	12.8	0.010	0.042	3.70	90.2	97.3
	70	71.2	17.3	0.014	0.058	4.91	91.0	98.0
	90	88.9	21.5	0.018	0.072	6.38	91.8	98.9
	1	1.3	0.2	0.000	0.002	0.99	89.5	96.8
	3	3.2	0.7	0.001	0.003	1.13	90.2	98.0
	5	5.6	1.3	0.001	0.005	1.28	90.6	98.5
	10	8.9	2.1	0.002	0.007	1.45	91.0	98.9
	20	20.8	5.0	0.005	0.017	2.01	91.8	99.7
ケース8	30	31.7	7.7	0.007	0.026	2.51	92.5	100.5
180-分析	50	52.3	12.9	0.012	0.043	3.47	93.6	101.4
	70	69.9	17.3	0.016	0.057	4.51	94.3	102.3
	90	88.9	22.1	0.020	0.072	5.91	95.3	103.5
	110	110.7	27.6	0.027	0.090	7.12	96.4	105.1
	130	129.7	32.3	0.035	0.110	7.99	97.2	105.7
	150	151.7	37.7	0.039	0.136	8.64	98.2	107.2
	180	180.6	43.9	0.047	0.193	9.92	99.2	108.2
	1	1.2	0.2	0.001	0.002	1.01	79.2	85.1
	3	3.0	0.6	0.001	0.003	1.14	80.0	86.5
	5	5.6	1.3	0.001	0.007	1.32	80.5	87.1
	10	9.1	2.2	0.002	0.010	1.53	80.9	87.5
	20	20.7	4.9	0.004	0.018	2.16	81.7	88.3
	30	31.6	7.5	0.006	0.027	2.73	82.3	88.9
	50	52.5	12.6	0.011	0.044	3.86	83.2	89.5
	70	69.2	16.6	0.015	0.056	5.08	83.9	90.3
ケース9	90	91.8	22.1	0.018	0.073	6.61	85.0	91.9
360-分析	110	108.3	26.3	0.023	0.089	7.45	86.0	93.0
	130	128.9	31.5	0.035	0.105	8.14	88.9	94.8
	150	150.1	36.7	0.040	0.128	8.69	89.8	95.6
	180	180.9	43.7	0.047	0.169	9.83	90.7	96.4
	210	210.4	48.9	0.060	0.216	11.36	91.0	97.2
	240	241.4	53.2	0.084	0.274	14.63	91.2	98.1
	270	267.9	56.1	0.116	0.332	18.80	91.3	98.7
	300	297.4	58.5	0.169	0.429	25.04	91.4	99.3
	330	329.9	60.4	0.255	0.599	32.57	91.5	100.2
	360	362.8	61.7	0.377	0.799	40.26	91.6	101.0
	1	1.2	0.1	0.000	N.D	1.03	88.7	94.4
	3	3.0	0.6	0.001	0.001	1.18	89.5	95.7
	5	5.4	1.2	0.001	0.002	1.33	89.8	96.2
	10	8.7	2.0	0.001	0.004	1.52	90.1	96.5
	20	20.8	5.0	0.004	0.014	2.13	90.9	97.3
	30	32.1	1.6	0.006	0.024	2.68	91.6	98.0
	50	48.8	11.7	0.009	0.037	3.56	92.5	99.2
	/0	69.6	16.7	0.015	0.052	4.98	93.5	100.3
	90	92.1	22.2	0.020	0.072	6.52	94.5	101.5
L - 14	110	108.5	26.4	0.025	0.084	1.38	95.2	102.0
7-110	130	128.8	31.5	0.036	0.101	8.10	98.4	104.5
500-分析	150	149.7	30.0	0.040	0.123	80.0	99.3	105.7
	180	180.4	43.2	0.049	0.173	11.07	100.4	107.0
	210	209.7	48.4	0.059	0.219	15.00	100.0	107.6
	240	240.7	52.0	0.080	0.208	15.60	100.8	100.7
	2/0	212.0	55.8	0.120	0.384	20.07	101.1	109.0
	300	291.5	50.6	0.100	0.489	20.94	101.2	110.0
	200	360.3	0.80	0.247	0.009	20 50	101.2	110.3
	300	2007.1	624	0.3/1	0.921	30.30	101.2	110.4
	400	J90.0	62.4	1 024	1.210	40.04	101.2	110.0
	400	430.1	03.5	1.021	1.005	56 10	101.7	111.5
	300	490./	04.0	1.552	1.907	50.19	101.9	112.4

3.4 モデル構築に向けた各特性間の関係の検討

今回の通水試験により化学的特性,力学特性,水理特性の変遷挙動に関するデー タを取得することができた。ここでは,変遷評価モデル構築を目指した各特性間の 関係を検討した。

3.4.1 Ca 溶出率と力学特性の関係

化学的特性として Ca 溶出率を取り上げ,力学特性との関係を検討した。圧縮強度,ヤング係数,ポアソン比との関係をそれぞれ図 3-50,3-51,3-52 に示した。 なお,圧縮強度は劣化部の強度を反映しているものとして図 3-13(EPMA)の劣 化部領域の Ca 溶出率との関係を検討した。一方,ヤング係数とポアソン比は昨年 度分は試料中央にゲージを貼り付けたことから,より近い空隙率用の上半分の Ca 溶出率と対応させた。また,Ca 溶出率と同様に圧縮強度も出発試料との比とした が,ヤング係数とポアソン比は出発試料間の差異が小さかったためそのままプ ロットした。

圧縮強度比 - Ca 溶出率の間には概ね相関関係が認められるものの,劣化部の Ca 溶出率はいずれも大きな値を示し 0%(健全部)~60%の範囲のデータが皆無 であるために,精度の高い関係を導くことは難しいものと考えられる。

ヤング係数とポアソン比は,昨年度は試料中央部で測定したこと,アルミネート相の濃集の影響を受けた可能性があることのために結果的に Ca 溶出率との相 関性は低くなった。しかしながら,ヤング係数 - Ca 溶出率の間には,概ね負の相 関が認められた。一方,ポアソン比は,W/C とゲージ貼付位置が同一の条件であ れば,Ca 溶出率が増加するとその値は大きくなるが全体の変化量は小さく,変形 解析においては変質程度によらず一定と見なせる可能性がある。

図 3-51 ヤング係数と Ca 溶出率の関係

図 3-52 ポアソン比と Ca 溶出率の関係

3.4.2 空隙率と力学特性の関係

水理特性の代替指標として空隙率を取り上げ,力学特性との関係を検討した。 圧縮強度,ヤング係数,ポアソン比との関係をそれぞれ図 3-53,3-54,3-55 に示 した。なお,空隙率にはより劣化の進行した上部試料の値を用いた。

圧縮強度 - 空隙率の間には高い相関が認められたが,W/Cにより傾向が異なる 可能性がある。これは,初期空隙と溶脱により形成された空隙によって圧縮強度 へ与える影響が異なることが推察される。本試験だけではデータ数が少なく,後 述の浸漬試験結果もふまえて5章で総合的に考察したい。初期空隙と変遷により 新たに形成された空隙を区別して力学特性への影響を整理できれば,モデル化に 有用な関係を与えられる可能性がある。

ヤング係数 - 空隙率はプロット全体としては負の相関が認められた。ポアソン 比は,同一のW/Cおよびゲージ貼付位置の条件下では,空隙率の増加により大き くなる傾向があったものの,全体的には変化量は小さい。また,ヤング係数 - 空 隙率の関係,ポアソン比 - 空隙率の関係ともに,前項の Ca 溶出率との関係で述べ た同じ問題を含んでおり全体の相関性は低い。

図 3-54 ヤング係数と空隙率の関係

図 3-55 ポアソン比と空隙率の関係

3.4.3 透水係数と力学特性の関係

水理特性として透水係数を選び,力学特性との関係を検討した。ただし,ヤン グ係数とポアソン比は前述の問題があるためにここでは取り上げなかった。圧縮 強度と透水係数との関係を図 3-56 に示した。透水係数は計算および実測により求 めた劣化部の透水係数の値を用いた。

圧縮強度 - 透水係数の間には W/C にかかわらず高い相関が認められた。

3.4.4 透水係数と空隙率の関係

水理特性である透水係数と物理特性である空隙率の間の関係を検討した。図 3-57 にその関係を示した。なお,計算で求めた劣化部透水係数の劣化部厚さ設定 は必ずしも2分の1ではなく,上部試料(上半分)で測定した透水係数の値とは 厳密には比較できない。

透水係数と空隙率の間には比較的高い相関が認められ,W/C により異なった回 帰式が導かれる可能性がある。

空隙が透水係数へ与える影響は単に空隙率だけではなく空隙構造も重要である と考えられるが,本試験系においても初期空隙と変遷によって形成された空隙で 透水性へ与える影響が異なる可能性が示された。

図 3-57 透水係数と空隙率の関係

3.4.5 Ca 溶出率と水理特性の関係

Ca 溶出率と水理特性の代替指標である空隙率および透水係数の関係を検討した。Ca 溶出率と空隙率との関係を図 3-58 に,透水係数との関係を図 3-59 に示した。空隙率はすべてのケースで上部半分の試料で測定したために,同じ上部半分の範囲の Ca 溶出率(図 3-13 の黒枠)を対応させた。一方,透水係数は劣化部のみの値を求めたため劣化部の Ca 溶出率(図 3-13 の赤枠)を対応させた。

Ca 溶出率と空隙率の関係は,図 3-58 からは2つの W/C で比較的近い傾きで近

似できる関係がありそうであるが,W/C=85%がやや傾きが大きい可能性がある。 Caが溶出しても他の成分は比較的溶出量が小さいために空隙率が100%に近づく ことは考え難いことから,初期空隙率が大きいほど傾きは小さいことが想定され る。

Ca 溶出率と透水係数との間にはある程度の相関が認められるものの,劣化部の Ca 溶出率は 0%(健全部)~60%の範囲のデータが無いために精度の高い関係を 導くことは難しいと判断される。

図 3-58 空隙率と Ca 溶出率の関係

図 3-59 透水係数と Ca 溶出率の関係

3.4.6 力学代用特性としてのビッカース硬度の検討

本試験では力学代用特性としてビッカース硬度の測定を行った。ここでは,実 測強度との関係を検討し代用特性としての有用性を確認したほか,化学特性や水 理特性との関係を検討した。

() ビッカース硬度と圧縮強度との関係

ビッカース硬度と圧縮強度の関係を検討した。その関係を図 3-60 に示す。出発 試料は W/C=85%,105%の両試料を用いたが,昨年度測定した W/C=105%の通水 後劣化試料は,液固比 90 の時点で全領域の硬度が検出限界程度まで低下し変質程 度による差が見られないことからプロットしていない。ビッカース硬度は 5mm 間 隔で測定した値のうち劣化部(図 3-13 の赤枠)に位置するものを平均した。劣化 部に含まれる測定点は,ケース2(積算液固比 90)のみ上端から 2.5mm,7.5mm の2点であり,他のケースは上半分の4点であった。なお,ビッカース硬度は 1.0 以下では測定上信頼性が低くなるが,劣化部領域での平均値は 1.0 以下となった ものもそのままプロットしている。

両特性を比較した結果,高い相関を示し,少なくとも本試験系においては圧縮 強度の代用特性として有用であるものと考えられる。

図 3-60 ビッカース硬度と圧縮強度の関係

() ビッカース硬度と水理特性との関係

ビッカース硬度と水理特性の代替指標である空隙率および透水係数の関係を検 討した。ビッカース硬度と空隙率との関係を図 3-61 に,透水係数との関係を図 3-62 に示した。両図ともに,上記()と同じ理由で W/C=105%の通水後劣化試料 はプロットしていない。空隙率はすべてのケースで上部半分の試料で測定したた めに,空隙率との関係では同じ上部半分の範囲に含まれる測定点のビッカース硬 度を平均した。一方,透水係数は劣化部のみの値を求めたため劣化部のビッカー ス硬度平均を対応させた。試料の上部と劣化部の領域は図 3-13 に示したとおりで あり,W/C=85%ではケース2(昨年度実施,積算液固比 90)のみ劣化部が上部半 分より狭い領域となっている。ここで,ケース 2 では顕著なフィンガーリングに より試料上半分の中での劣化程度がきわめて不均一である。局所位置で測定を行 うビッカース硬度は測定位置により大きく異なり,試料上半分を代表する値と異 なる可能性があることから,空隙率との関係においては参考値とした。

図からは空隙率,透水係数ともにビッカース硬度と相関関係があるといえるが, 空隙率との関係については初期空隙と溶脱によって形成された空隙の差異による 影響を解明する必要がある。

図 3-61 ビッカース硬度と空隙率の関係

図 3-62 ビッカース硬度と透水係数の関係

() ビッカース硬度と Ca 溶出率との関係

ビッカース硬度と化学特性である Ca 溶出率の関係を検討した。その関係を図 3-63 に示す。図 3-63 には,上記()と同じ理由で W/C=105%の通水後劣化試料は プロットしていない。ビッカース硬度は 5mm ピッチで測定したが, Ca 溶出率も その位置に対応するように EPMA の結果から数値化し,その値は表 3-6 に示した とおりである。ただし,前述の通りケース2(昨年度実施,積算液固比 90)のみ, 同一試料ながら,試料切り出し後の EPMA 測定位置とビッカース硬度測定位置の 関係が不明であったため,一部測定点で両特性の対応が取れていない可能性があ ることから参考値とした。なお,Ca 溶出率と同様にビッカース硬度も出発試料に 対する比で整理した。

図 3-63 からは概ね, Ca 溶出率が大きくなるとビッカース硬度比が低下すると いう傾向が認められた。しかし,前述のとおりケース2健全部で出発試料を大幅 に上回るビッカース硬度測定値が得られたり,また逆に比較的小さな Ca 溶出率の 測定点でも非常に低いビッカース硬度比を示す測定点もあるなど,両特性の関係 はあまり相関が高いものとはならなかった。

図 3-63 ビッカース硬度比と Ca 溶出率の関係

3.5 まとめ

通水試験によって変遷するセメント系材料の化学的特性,力学特性,水理特性に ついて実験的に検討した結果を以下にまとめる。

劣化現象には水酸化カルシウムの溶脱が大きな影響を与えている。液相分析結 果からは積算液固比 500 では試料全体の Ca の約 60%が溶出していることが明 らかとなった。

EPMA の結果より,劣化部の Ca 溶出率はいずれの液固比においても高く 60~80%の溶出率を示した。

圧縮強度は特に変遷初期で低下が著しい。これは,ほぼ水酸化カルシウムが溶 脱する領域であり Atkinson モデルの Region に相当する。

ヤング係数とポアソン比は昨年度の試験方法に問題があったこともあり信頼性 の高い考察ができなかったが,概して劣化が進行するほどヤング係数は小さく, ポアソン比は大きくなる傾向が認められた。ただし、ポアソン比の変化量は小さ く有意な差でない可能性もある。

空隙率は変遷初期で大きく増加した。これは圧縮強度と同様,水酸化カルシウムの溶脱が大きく寄与しているものと考えられた。

見かけの透水係数は積算液固比が大きくなるにしたがって大きくなった。いく つかの試料では計算(昨年度)および実測により劣化部の透水係数も得ること ができた。しかし,計算により算出した劣化部の透水係数は,代入する劣化部 厚さの影響が非常に大きく,不均一な劣化のため劣化部厚さが明瞭でないこと を考えると,その精度はやや低いと判断される。

Ca 溶出率と力学特性(ヤング係数、圧縮強度)の間には相関関係が見られるが、 Ca 溶出率が低い範囲でのデータが少ないことから精度の高い関係式を導くこと は困難である。一方、Ca 溶出率とポアソン比の相関性は低く、ポアソン比は変 質によらず一定と見なせる可能性がある。

空隙率 - 圧縮強度,および透水係数 - 圧縮強度の間には高い相関が認められ, モデル構築に有用である可能性が示された。また,空隙率 - 透水係数の間にも 相関があった。

Ca 溶出率と水理特性の関係のうち, Ca 溶出率 - 空隙率の間には比較的高い相関があった。Ca 溶出率 - 透水係数の間には相関関係があるものの, Ca 溶出率が低い範囲でのデータが少ないことから精度の高い相関関係を認めることはできなかった。

ビッカース硬度は圧縮強度との間に相関関係が認められ,本試験系においては代用 特性としての有用性が示された。また,ビッカース硬度 - 空隙率,ビッカース硬度 - 透水係数の間にも相関が認められた。しかしながら,ビッカース硬度 - Ca 溶出 率の関係は相関が認められたものの,ビッカース硬度の各測定点でのばらつきが大 きかったことから,あまり高い相関関係とはならなかった。また,劣化が進行する とビッカース硬度測定値は測定限界を下回り,その信頼性は低くなる。 参考文献

- 1) 武井明彦,他: "セメント系材料の水理・力学特性の変遷に関する研究",核燃料サイクル開発機構業務委託報告書,JNC TJ8400 2002-028,(2002)
- 2)日本コンクリート工学協会:コンクリートの長期耐久性に関する研究委員会報告書, p.97, (2000)
- 山本,他: "各種試験方法によるセメント硬化体の溶脱現象の評価 その2、固相分析",土木学会第57回年次学術講演会概要集,p.509,(2002)
- 4)芳賀和子,他:"セメント硬化体の溶解に伴う変質()遠心力法によるセメント硬化体の通水試験",日本原子力学会和文論文誌,Vol.1,No.1, p.20,(2002)
- 5) A.Atkinson, et al.: "Thermodynamic Modeling and Aqueous Chemistry in the CaO-Al₂O₃-SiO₂-H₂O System", Mat. Res. Soc. Symp.Proc. Vol.212, p.395, (1991)
- 6) 椎名國雄,大藪孝治: "高さを小さくした圧縮試験体の応力ひずみ曲線",セメント技術大会講演集, Vol.49, p.652, (1995)
- 7) R.S. Barneyback, Jr. and S, Diamond: "Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars", Cem. Conc. Res. Vol.11, p.279, (1981)
- 8) 広永,他:"各種試験方法によるセメント硬化体の溶脱現象の評価 その1、液相分析",土木学会第57回年次学術講演会概要集,p.507,(2002)
- 9) W.Pfingsten and M.Shiotsuki : "Modeling a cement degradation experiment by a hydraulic and chemical equilibrium coupled code ", Scientific Basis for Nuclear Waste Management XXI (Mater. Res. Soc. Symp. Proc. 353) Davos, Switzerland, 1997, p.805, (1998)

4. 浸漬試験による検討

4.1 試験内容

本章では,浸漬試験とビッカース硬度測定を組み合わせ,セメント系材料の化学 的変遷と力学的変遷に係わるデータを取得するとともに,化学的変遷を代表的に表 現する指標として空隙率,Caの溶出率に着目し,これらの指標と水理特性,力学特 性等との関係を調べ,その問題点・適用性等について検討した。

以下に昨年度の研究
い及び本研究において実施した試験および検討内容を示す。

拡散場において変質した試料に対して Ca 等の溶出量,空隙率を測定し,溶出量 と空隙増加の関係を把握するとともに,既往の研究成果を用いて,空隙率から 透水係数を推定する(4.2章)。

ビッカース硬度を用いて物性測定を行うための準備として,未変質のセメント 系材料におけるビッカース硬度と一軸圧縮強度等を測定し,未変質材料のビッ カース硬度と一軸圧縮強度等の関係を把握する。また,変質したセメント系材 料の変遷評価手法としてのビッカース硬度の適用性についても検討する(4.3 章)。

サンプルの変質度合いが異なる深さ毎に元素濃度とビッカース硬度を測定し, Ca等の溶出率とビッカース硬度の関係を求め,また,試験結果の評価を行う(4.4 章)。

変遷指標と透水係数,力学特性との関係のシステム化に向けたデータ整理を行う(4.5章)。

まとめ(4.6章)

試験および検討のフローを図 4-1 に示す。

4.1.1 実験概要

(1) 溶出量と空隙率の関係

バルク供試体をイオン交換水に浸漬し,作用水を交換し,溶出劣化試験を行った。 ここでは溶出劣化による空隙の増加について検討した。

本実験で供する配合を表 4-1,供試体形状を図 4-2,測定項目を表 4-3 および測定 のタイムスケジュールを表 4-2 にそれぞれ示す。

初期試料作製工程(昨年度実施済み)

配合は初期空隙率をパラメータとするために,水セメント比を5水準とした。試料ペーストの練混ぜ,成型,養生は2章に示すように通水試験試料と同様の方法とした。W/C=85%,105%の供試体については通水試験供試体と同じ練りバッチから採取した。

養生終了後,ペーストの型枠近傍,上部,下部10mm程度の部分を除いて 30×5 mmの薄板円盤状の供試体を切り出した。

劣化工程

切り出した供試体は表乾状態に調整し、その質量に対して 30 倍のイオン交換水に 浸漬している。作用水の交換は1か月に1回として、その際液相のイオン濃度の測 定を行っている。本年度からは液相のイオン濃度の測定は2ヶ月に1回とする(分 析は2か月分の試料を半量ずつ合わせたもので行う)。作用水の交換の際には供試体 表面の炭酸化および物理的な破壊を極力防止するために、グローブボックス内にて 緩やかに行った。

評価項目

測定項目はイオン濃度, pH および空隙率であり, 測定イオンはカルシウム, ケイ 素, アルミニウム, ナトリウム, カリウム, 硫黄(以下 Ca,Si,Al,Na,K,S)の6種類 とした。空隙率, 空隙径分布は水銀圧入法を評価に用いた。

No.	対象	W/C (wt%)	結合材種	溶出程度
1		40		
2		55	OPC	
3	ペースト	70	UFC (研究田セメント)	5 段階
4		85		
5		105		

表 4-1 配合

図 4-2 供試体形状 (空隙率測定用)

表	4-2	測定項目	一覧
---	-----	------	----

対象	項目	規格	備考	
作用水	рН	ガラス電極法		
	イオン濃度	JIS K 0101	測定イオン:	
		JIS K 0102	Ca,Si,Al,Na,K,S	
セメント系材料	空隙率	水銀圧入法	0.003~360 µm	

作用水は4週間ごとに交換し,その際にあわせて pH,イオン濃度の測定を行った。 なお空隙率は図4-2で示した供試体を粉砕した後,供試体の部分的なばらつきが無 いように3分割し,n=3の測定を実施する。またその平均値にて評価を行った。

表	4-3	測定スケジ:	ュール
	-		

劣化			今年度予定		
程度	W/C	試験終了	pН	イオン濃度	空隙率
1	40,55,70,	スタート時	-	-	昨年度終了
2	85,105%の	12週間	昨年度終了	昨年度終了	昨年度終了
3	5水準	24週間	2回	2回	1回
4		48週間	8回	8回	1回
5		64週間	9回	9回	1回
6		96週間	11回	11回	浸漬劣化のみ
7		112週間	11回	11回	浸漬劣化のみ
8		128週間	11回	11回	浸漬劣化のみ
9		144週間	11回	11回	浸漬劣化のみ

:昨年度報告済み

:今年度追加で報告

(2) ビッカース硬度と強度特性の関係把握

強度特性の変遷評価方法として、ビッカース硬度を適用する。

1) ビッカース硬度による変遷評価の適用性検討

2001 年度の検討で,強度の異なる5種類の健全なペースト供試体について,ビッ カース硬度を測定した。その際,標準偏差の収束程度に注目し,ビッカース硬度の 測定点数を決定した。また,試料の表面処理方法(研磨方法),荷重載荷時間および載 荷荷重,測定数に関してビッカース硬度に及ぼす影響を検討している。

本試験では,測定値の大きさやばらつきなどから,表 4-4 に示す方法にて試料表 面を処理し,30 点の平均値でビッカース硬度を評価することとした。その際,標準 偏差,変動係数なども把握しておくこととする。ここで,ビッカース硬度測定に用 いた機器は島津製作所 HMV2000 であり,圧子は島津製作所 ビッカース圧子で ある。また,供試体の切断に用いたドライカッターは,ビューラー社 アイソメッ ト 2000 である。

なお,水セメント比の高い試料については,溶出が進行することによってペース ト組織が著しく脆くなり,ビッカース硬度を測定できなくなる恐れがある。そのた め,脆い供試体の微小硬度を測定する方法(微小硬度の種類,測定画面の調整:拡 大や縮小,針の押し込み深さからビッカース硬度を換算する方法など)についても 調査し,適用性について検討した。
項目		今年度の手法					
主面加珊士注	乾式カット , エタ	ノールを用いたガ	ラス板による研磨,				
农面処埕力広	研磨粉粒径2µm,	超音波洗浄あり					
		0.1~2.4mm	10 g				
	W/C = 40%	2.5~3.0mm	15 g				
		3.1~3.8mm	25 g				
		3.9~4.9mm	20 g				
		4.7~5.0mm	50 g				
載芬芬香	W/C=70%	0.1~0.6mm	5 g				
单处101101主		0.7~2.5mm	10 g				
		2.6~4.8mm	15 g				
		4.9mm~5.0 mm	25 g				
	W/C-85%	0.1~4.5mm	5 g				
	W/C=0070	4.6~5.0mm	10 g				
	W/C=105%		5 g				
荷重載荷時間	10 秒						
測定数	1 データあたり 30 点以上						
測定位置	変質部:0.2mm ピ	ッチ , 未変質部 : ().5 mmピッチ				

表 4-4 試験方法概要

2) ビッカース硬度と強度特性の関係把握

本項に関する検討は2001年度に実施済みである。本項における検討内容を用いて 変遷後のビッカース硬度と力学特性を関係付ける。

ただし,変遷後のビッカース硬度と強度等との関係が昨年度取得した変質前の関係と有意に異なる場合は,その影響を加味した上で推定する。

(3) 溶出量とビッカース硬度の関係把握

バルク供試体をイオン交換水に浸漬し,作用水を交換し,溶出劣化試験を行う。こ こでは溶出劣化による化学的変遷およびビッカース硬度の低下について実験的に評価 した。

本実験で供する配合を表 4-5,供試体形状を図 4-3,測定項目を表 4-6 および測定の タイムスケジュールを表 4-7 にそれぞれ示す。

初期試料作製工程(昨年度実施済み)

配合は初期強度(硬度)をパラメータとするために,水セメント比を4水準とした。 試料ペーストの練混ぜ,成型,養生は2章に示すように通水試験試料と同様の方法と した。さらにW/C=105%,85%の供試体については通水試験供試体と同じ練りバッチ から採取した。供試体は型枠に打設したペーストをカットし, 30×10mm供試体とし た。

劣化工程

切り出した供試体は表乾状態に調整し,その質量に対して 30 倍のイオン交換水に浸 漬した。作用水の交換は1か月に1回とし,その際にあわせて pH,イオン濃度の測 定を行っている。本年度からは液相のイオン濃度の測定は2ヶ月に1回とする(分析 は2か月分の試料を半量ずつ合わせたもので行う)。作用水の交換の際には,供試体表 面の炭酸化および物理的な破壊を極力防止するために,グローブボックス内にて緩や かに行った。

評価項目

EPMA, ビッカース硬度は 30×10 mmの供試体を半円状にカットして, カット面を 研磨し, 平滑面を試験に供する。EPMAの測定元素は Ca,Si,Al,Na,K,S とする。測定 項目はイオン濃度,pH,ビッカース硬度, EPMAである。測定イオンは Ca,Si,Al,Na,K,S とした。

なお,浸漬法による固相の溶出分布を以下のように定義する。空隙量と溶出率の関係を評価する際の空隙率の測定は,あるサイズを持ったバルク試験であるため 5mm 程度の平均値で評価せざるを得ない。よって溶出率の評価も,ある領域の平均値で評価し,液相からの算出を行う。一方で,ビッカース硬度と溶出率の関係を評価する際には,ビッカース硬度が深さ方向への分布を測定可能であるため,溶出率も EPMA に て溶出率の分布を測定し両者を比較,評価した。

No.	対象	W/C (wt%)	結合材種								
1		40									
2	ペーフト	70	OPC								
3	7-75	85	(研究用セメント)								
4		105									

測定面

図 4-3 供試体形状

表 4-6 測定項目

対象	項目	規格	備考	
セメント系材料	元素分布	EPMA による測定	測定元素: Ca,Si,AI,Na,K,S	
	ビッカース硬度	JIS-Z-2244		
	рН	ガラス電極法		
作用水	イオン連府	JIS K 0101	測定イオン:	
	ゴオノ辰反	JIS K 0102	Ca,Si,Al,Na,K,S	

表 4-7 測定スケジュール

劣化		試験	今年度予定					
程度	W/C	終了	рН	イオン濃度	EPMA	ビッカース硬度		
1	40,70,	スタート時	-	-	昨年度終了	昨年度終了		
2	85105%	12週間	昨年度終了	昨年度終了	昨年度終了	昨年度終了		
3	の4水準	48週間	8回	8回	1回	1回		
4		64週間	9回	9回	1回	1回		
5		96週間	11回	11回	浸漬劣化のみ	浸漬劣化のみ		
6		112週間	11回	11回	浸漬劣化のみ	浸漬劣化のみ		
7		128週間	11回	11回	浸漬劣化のみ	浸漬劣化のみ		
8		144週間	11回	11回	浸漬劣化のみ	浸漬劣化のみ		

:昨年度報告済み

:今年度追加で報告

(4) 試験条件の妥当性検討

Berner²⁾は、耐硫酸塩セメントSULについてmixing tankモデルにより作用水量と細 孔溶液中のイオン濃度とpHを図 4-4 のように示している。これは、セメント硬化体の 空隙水が何回交換されたかという計算に基づいている。すなわち、密度が 2,030kg/m³ で空隙率が 26%のセメント硬化体を対象としており、1kg当たりの硬化体の体積は 1/2030m³/kg = 0.493L/kgとなる。それに対して細孔溶液は 26%あるから、セメント硬 化体 1kgに対する細孔の体積は 0.493・0.26 = 0.128L/kgとなり、1 回のサイクルはセ メント硬化体 1kgあたり 0.128Lの水が作用すると考えることができる。なお、Berner の文献²⁾には、空隙率と密度が記載してある一方で、水セメント比(以下W/C)をは じめ養生条件などが記載されていない。そこで、以下に示す 2 種類の方法で供試体の W/Cを逆算した。まず、水和度が 1.0 であることから 4.2.1 項に示すpowersの式を用 いてW/Cを推測した。またペーストと仮定して、本実験の出発試料において測定した 密度と 2030kg/m³とを比較しW/Cを推定した。

Powers \mathcal{O} = $\frac{W/C - 0.36 \cdot 1}{W/C + 0.32}$ W/C=59.9%

本実験からの推定: W/C=40%(2.033 g/cm³),W/C=55%(1.857 g/cm³),W/C=70% (1.756 g/cm³), W/C=85%(1.653 g/cm³), W/C=105%(1.576 g/cm³)がデータとし て得られており,これより推定するとW/C=39.4%となる。

一方 本研究では1ヶ月に1回,セメント硬化体の30倍の重量の水を交換している。 したがって、Berner のモデルの1サイクルに比して,本研究の1回の交換水量は 30/0.128=234倍となる。当初の研究計画では,36ヶ月までとなっているため,この まま続ければ,最終的にはBerner モデルの234・36=8,424サイクルまでの試験を行 うことになる(ただし,Berner モデルでは交換水が飽和であるとの仮定に基づいてい るため,今回の実験はそれよりも少ないサイクルまでしか至らない可能性がある)。

図 4-4,4-5 を見てみると,8,000~9,000 サイクル付近でカルシウム及びシリカの溶 出が終了することになっており,10,000 サイクルを少し超えたところで pH が7 にな り純水となることが分かる。図中のプロットは,横軸は上述した作用水量であり,縦 軸は本実験で得られているこれまでのデータをプロットした。したがって,本研究の 液固比で試験を継続すれば,3年後にセメント硬化体から完全に各種の元素が溶出す る状態になることが予測され,幅広い範囲での試験結果が得られるものと考えられる。

なお,2001 年度の報告書では,3ヶ月時点での試験結果が得られているが,3ヶ 月は Berner モデルでは234・3=702 サイクルに相当し,カルシウムの濃度が低下し 始める段階にある。液相については,水交換を234 サイクルごとに行う予定になって おり,234 サイクル未満の初期段階におけるデータがやや不足しているように見える ものの,変質開始後は幅広い劣化程度においてデータが得られるものと思われる。

図 4-4 作用水量と細孔溶液中のイオン濃度と pH の関係(W/C=40,70%)

図 4-5 作用水量と細孔溶液中のイオン濃度と pH の関係(W/C=85,105%)

4.2 溶出量と空隙率の関係

4.2.1 空隙特性の変化

セメント系材料の空隙率や空隙径分布などの空隙特性は,配合によって大きく異なることが知られている。特に,空隙特性に及ぼす水セメント比の影響は大きいとされている。例えば,ペースト中のキャピラリー空隙率は下記の式にて,T.C.Powers³⁾によって提案されている。

$$\theta = \frac{W/C - 0.36}{W/C + 0.32}$$
(4-1)

ここで,W/C:水セメント比, :平均水和度

そこで,今回の検討でも,配合による空隙特性の違いを把握するために,水セメント比と空隙特性の関係を整理することとした。

水銀圧入法により測定した空隙率を表 4-8 に示す。水セメント比と水銀圧入法によ り測定した空隙率の関係を図 4-6 に示す。横軸の水セメント比は対数で示している。 水セメント比と空隙率には相関関係があり,水セメント比が増加すると空隙率も増加 する結果となっている。空隙率は浸漬 64 週後に 10~20%程度増加しており,水セメ ント比が大きいほうが空隙率の増加分が大きい傾向となっている。

水セメント比と空隙率の関係を回帰した近似式を以下に示す。

浸漬前 : $_0 = 32.0 \ln(W/C) - 96.1$ (4-2)

浸漬 12 週後 : $_{12} = 37.7 \ln(W/C) - 112.6$ (4-3)

浸漬 24 週後 : 24 = 39.3 ln(W/C)-117.6 (4-4)

浸漬 48 週後 : ₄₈ = 43.0 ln(W/C)-128.1 (4-5)

ここに, 0:浸漬前の空隙率(%), 12:浸漬 12 週後の空隙率(%), 24:浸漬 24 週後の空隙率(%), 48:浸漬 48 週後の空隙率(%), 64:浸漬 64 週 後の空隙率(%), W/C:水セメント比(%)

相関式の係数(傾き,切片)について整理する(図 4-7 参照)と,浸漬期間が増加

すると傾きは大きくなる傾向にあることが分かる。これは水セメント比が大きいもの ほど,浸漬期間に対する空隙率の増加率が大きくなっていることを示すものである。 しかしながら,これらの係数(傾き,切片)は48週と64週ではほとんど変化してい ない。これは,ある材齢以上になると,水セメント比と空隙の関係は一定になること を示唆するものと考えられる。

水セメント比の変化や,浸漬による溶出の進行によって増加する空隙径を調べるた めに,各配合における空隙径分布を整理した。各水セメント比における空隙径分布に ついて,材齢ごとにその関係を示す(図4-8~4-12参照)。水セメント比が大きくなる と,空隙径分布のピークが大きくなる結果となっている。いずれの水セメント比にお いても,材齢が増加すると空隙径分布のピークの高さが大きくなる傾向にある(特に, W/C=40%は0.01 µm付近,W/C=55%は0.03 µm付近,W/C=70%は0.5 µm付近, W/C=85%,W/C=105%はともに1.0 µm付近)。セメント水和物の溶解度の違いから, まず水酸化カルシウムが溶解して空隙が増加すると考えられる。水酸化カルシウム自 体のサイズは0.01~1.0 µm程度とされており,また既往の研究⁴⁾において,水酸化カ ルシウムが溶出すると1.0 µm付近の空隙径が増加するといった報告がある。今回の結 果では,浸漬によって増加する空隙径が水セメント比によって異なっているが,これ は水セメント比が異なることによって生成される水酸化カルシウムのサイズも異なっ ているためであると考えられる。

					水セメ	ント比(%)			
材齢	4	40		55		0	85		105	
	測定値	平均値	測定値	平均值	測定値	平均値	測定値	平均值	測定値	平均値
	20.7		33.8		40.9		(43.4)		(47.2)	
浸漬前	20.7	20.7	33.1	33.5	40.9	41.0	(42.8)	48.1	51.7	50.8
	20.6		33.5		41.0		48.1		50.0	
	24.4		39.6		47.3		(48.8)		61.9(56.9)	
12週後	24.4	25.2	39.3	39.7	49.2	48.5	56.5	56.5	58.1(53.1)	61.0
	26.8		40.0		49.0		(48.6)		63.0(58.0)	
	25.3	25.5	42.4	41.5	51.1	50.7	(49.9)	56.9	63.8	63.8
24週後	26.0		41.3		50.1		(46.3)		(58.7)	
	25.2		40.8		51.0		(46.0)	(47.4)	(59.7)	
	29.0		46.0		56.3		64.0		72.4	
48週後	28.8	28.6	46.7	46.2	57.1	56.4	66.2	64.1	67.8	69.9
	27.9		46.0		56.0		62.2		69.6	
	30.3	31.5	46.9		50.7		65.6		71.3	73.3
64週後	31.9		48.0	48.5	59.7	56.7	68.2	67.6	71.8	
	32.3		50.8		59.7		68.8		76.7	

表 4-8 水銀圧入法により測定した平均空隙径と空隙率

()内は実測値で,評価としては()外の修正値を用いた(微小細孔径の一部のデータが採取不能であったため)。

図 4-6 各材齢における水セメント比と空隙率の関係

図 4-7 浸漬期間と相関式の係数の関係

図 4-9 浸漬による空隙径分布の変化(W/C=55%)

4.10 及復にある王际住力市の交旧(Wic=10

4.2.2 液相分析結果

経過時間と作用水量の関係を図 4-13 に示す。今回の検討では,表乾質量に対して 30 倍のイオン交換水を作用させている。そのため,配合によって単位体積質量が異な ることから,同一経過時間でも作用水量が異なっている。ここでは,浸漬時間ではな く,総作用水量との関係を整理することとした。

浸漬 12 週までの液相分析結果を図 4-14~4-20,表 4-9,4-10 に示す。なお、値は 供試体 2 個から溶出した濃度である。

カルシウム濃度については,浸漬初期においては,水セメント比が大きいものの方 が濃度は高くなる傾向にあったが,作用水量が多くなると水セメント比による違いが ほとんどなくなっていることが分かる。また,いずれの水セメント比においても,1.0L 程度までは作用水量が増えてもカルシウム濃度に大きな変化はないが,作用水量が 1.0L~2.0L 程度の範囲でカルシウム濃度の減少率が高くなっている。しかし,作用水 量が2.0L 程度を越えるとカルシウム濃度の減少率は小さくなっており,ほぼ一定の値 となっている。これは,浸漬初期には溶解度の低い水酸化カルシウムが溶解すること によってカルシウム濃度が増加するが,浸漬期間が長くなり,作用水量が増加すると, 溶出する水酸化カルシウムが少なくなり,カルシウム濃度が小さくなっていると考え られる。

ケイ素濃度については,作用水量 1.0L 程度までは濃度が減少する傾向にあったが, 1.0L 以上になると逆に増加する結果となった。これは徐々に C-S-H の溶解も始まって いるためであると考えられる。

アルミニウム濃度については,作用水量1.0L程度までは濃度が減少する傾向にあったが,1.0L以上となると,多少ばらつきはあるものの,作用水量が増加してもほぼ同じ値となっていることが分かる。

ナトリウム,カリウムは初回の測定で濃度が高くなっており,初回の測定結果に限 れば,水セメント比が低いものほど濃度が高くなる傾向にある。これは水セメント比 が低いものの方がセメント水和物中に含まれる含有量が高かったためであると推察さ れる。しかし,その後の測定ではほとんど溶け出していないことが分かる。後述する 作用水量と積算溶出率の関係において,ほとんど溶け出さなくなった後でも溶出率は 100%になっておらず,試料中にはまだナトリウム,カリウムが残存する結果となって いる。昨年度の報告書にも示したが,溶解度の大きいナトリウム,カリウムがセメン ト硬化体中に残存する原因は,アルカリ骨材反応の分野で多くの研究がなされており, 以下のように考察されている。セメント中に存在するナトリウム,カリウムは,アル カリ硫酸塩およびそれらの複塩のように急速に液相中に溶出するものと,アルミン酸 塩やフェライト相およびシリケート相に存在する難溶性のものがある⁵⁾。また全アル カリに対する水溶性アルカリ量を系統立てて分析した結果⁶⁾においても,全アルカリ に対する水溶性アルカリ量の割合は 10~70%程度と大きく変動することが報告され ている。言い換えれば,90~30%は溶出せずにセメント硬化体中に残存することにな る。

硫黄の測定値は全て検出下限値以下であったが,測定されたデータを結果として示 す。これまでに得られた結果と同様に,硫黄はもともと微量成分であるため,他のイ オンに比べて濃度は低くなっており,作用水の増加に伴う明確な傾向は認められない。 これらのデータは検出限界値以下であるため,その信頼性は低いが,後述するEPMA の結果では,浸漬12週後で表面から0.5mm程度まで硫黄濃度が低下しているため,本 来は今回の測定結果よりも高い濃度になると考えられる(ここで,固相濃度から液相 濃度を算出すると,例えばW/C=40%の場合, 30mm×0.5mmの試料には0.004g程 度硫黄が含まれており,それらが全量溶出したと仮定すると0.2mmol/L程度の濃度と なる)。硫黄については,その溶解挙動が溶液側のOH 濃度に大きく依存すると考えら れる。現在の試験では固相の30倍の水に浸漬しているため,カルシウムやナトリウム, カリウムがOH を伴って溶解することによって液相中のOH 濃度が高くなり,そのため に硫黄が溶出しにくい環境になっていることが推察される。本現象については詳細な 確認をしていないため,今後の挙動を見定めて,現象を確認する必要がある。

pHは,全ての水セメント比において,作用水の増加によって徐々に低下する傾向 となっている。若干の差はあるものの,同一作用水量であれば,水セメント比によら ずほぼ同じpHとなっている。最初の計測時には全ての水セメント比でpHは13程度 であったが,作用水量4~6L程度で11.5程度まで低下する結果となっている。

作用水量と積算溶出率の関係を図 4-21~4-26,表 4-11,4-12 に示す。ここでの溶出 率とは,分母に,使用したセメントの化学成分割合(表 4-13 参照)と配合から算出し た供試体に含有されている元素の量をとり,分子に,作用水に溶出した元素の積算量 をとった割合を示す。算出式を以下に示す。 溶出率(%)=溶出量/初期試料中に含まれる元素量×100

ここに,溶出量 = 液相濃度×作用水量,初期試料中に含まれる元素量 = 試料体積× 初期試料中のセメント量×セメント中に含まれる各元素の質量割合(表 4-13 参照), である。なお単位セメント量は,W/C=40%で1398kg/m³,W/C=55%で1155kg/m³, W/C=70%で985kg/m³,W/C=85%で858kg/m³,W/C=105%で732kg/m³として算出 した。

この供試体の変質は表面から分布をもっているが,供試体全体の溶出率として評価 し,空隙率のデータとの比較,検討を行った。

カルシウム溶出率については,作用水量の増加にともなって増加しているが,その 増加程度は徐々に小さくなっている。水セメント比によって若干異なるが,作用水量 2~4L 程度以上となると溶出率の増加率が小さくなる傾向にある。ケイ素,アルミニ ウムについても,作用水量の増加とともに溶出率が高くなる傾向にあるが,両元素と も作用水量 2L 程度以上で溶出率の増加率が変化し,大きくなっていることが分かる。 これに対して,ナトリウム,カリウムについては初期の段階でその多くが溶け出して しまうため,作用水量が増加しても溶出率はほとんど変化していない。なお初期に溶 出が生じるとされるナトリウム,カリウムの溶出率が 100%に達していないのは,上 述した,難溶性の塩として存在することと,本試験の溶出が変質速度の小さい拡散に よって進行しているため,供試体内部にナトリウム,カリウムが残存しているためと 推測される。

図 4-14 作用水量と液相カルシウム濃度の関係(空隙率測定用試料)

図 4-15 作用水量と液相ケイ素濃度の関係(空隙率測定用試料)

図 4-16 作用水量と液相アルミニウム濃度の関係(空隙率測定用試料)

図 4-17 作用水量と液相ナトリウム濃度の関係(空隙率測定用試料)

図 4-18 作用水量と液相カリウム濃度の関係(空隙率測定用試料)

図 4-19 作用水量と液相硫黄濃度の関係(空隙率測定用試料)

Ca濃度(単位∶mmo	I/L)									
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%		
0.44	10.65	0.40	14.95	0.37	16.87	0.37	17.19	0.34	18.16		
0.88	9.91	0.81	14.57	0.75	18.18	0.74	16.94	0.67	17.89		
1.32	6.76	1.21	11.28	1.12	15.00	1.10	16.72	1.01	17.91		
1.77	4.16	1.61	6.93	1.49	8.84	1.47	11.62	1.35	12.45		
2.21	2.99	2.01	4.24	1.87	7.61	1.84	9.56	1.68	9.73		
2.65	2.91	2.42	3.87	2.24	6.24	2.21	8.57	2.02	6.69		
3.09	2.51	2.82	3.54	2.61	4.64	2.58	6.99	2.36	4.34		
3.53	2.30	3.22	3.14	2.99	4.29	2.94	4.93	2.69	3.99		
3.97	3.19	3.62	3.89	3.36	4.04	3.31	4.12	3.03	3.43		
4.41	2.17	4.03	2.24	3.73	2.98	3.68	3.08	3.37	2.47		
4.86	1.95	4.43	2.35	4.11	2.69	4.05	2.42	3.70	2.03		
5.30	2.18	4.83	2.50	4.48	2.79	4.42	2.42	4.04	1.83		
6.18	1.80	5.64	1.94	5.23	2.00	5.15	1.70	4.71	1.31		
7.06	1.76	6.44	1.97	5.97	1.63	5.89	1.10	5.39	1.10		
Si濃度(単位:mmol/L)											
作用水(L)	W/C=40%	<u>作用水(L)</u>	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	<u>作用水(L)</u>	W/C=105%		
0.44	0.119	0.40	0.131	0.37	0.114	0.37	0.085	0.34	0.154		
0.88	0.078	0.81	0.063	0.75	0.040	0.74	0.071	0.67	0.062		
1.32	0.082	1.21	0.062	1.12	0.030	1.10	0.017	1.01	0.050		
1.77	0.091	1.61	0.046	1.49	0.036	1.47	0.022	1.35	0.020		
2.21	0.148	2.01	0.102	1.87	0.066	1.84	0.028	1.68	0.044		
2.65	0.169	2.42	0.131	2.24	0.069	2.21	0.026	2.02	0.061		
3.09	0.194	2.82	0.157	2.61	0.113	2.58	0.060	2.36	0.112		
3.53	0.274	3.22	0.267	2.99	0.145	2.94	0.121	2.69	0.150		
3.97	0.255	3.62	0.229	3.36	0.178	3.31	0.145	3.03	0.173		
4.41	0.277	4.03	0.219	3.73	0.233	3.68	0.230	3.37	0.222		
4.86	0.259	4.43	0.241	4.11	0.241	4.05	0.223	3.70	0.303		
5.30	0.271	4.83	0.254	4.48	0.253	4.42	0.299	4.04	0.397		
6.18	0.288	5.64	0.277	5.23	0.258	5.15	0.312	4.71	0.439		
/.06	0.306	6.44	0.319	5.97	0.330	5.89	0.463	5.39	0.516		
	₩/C=40%	/L) 作田水(I)	W/C=55%	作田水(1)	W/C=70%	作田水(1)	W/C=85%	作田水(I)	W/C=105%		
0.44	0.081	0.40	0.075	0.37	0.069	0.37	0.093	0.34	0.066		
0.88	0.054	0.81	0.052	0.75	0.050	0.74	0.050	0.67	0.050		
1.32	0.033	1.21	0.028	1.12	0.024	1.10	0.018	1.01	0.010		
1.77	0.040	1.61	0.033	1.49	0.031	1.47	0.027	1.35	0.022		
2.21	0.032	2.01	0.032	1.10	0.035	1.84	0.034	1.68	0.022		
2.21	0.038	2.01	0.039	2.24	0.037	2.21	0.004	2.02	0.064		
3.09	0.034	2.82	0.034	2.61	0.036	2.58	0.042	2.36	0.073		
3,53	0.034	3,22	0.035	2,99	0.039	2.94	0.055	2,69	0.075		
3.97	0.031	3.62	0.033	3.36	0.039	3.31	0.054	3.03	0.069		
4.41	0.039	4.03	0.037	3.73	0.044	3.68	0.065	3.37	0.071		
4.86	0.031	4.43	0.034	4.11	0.042	4.05	0.053	3.70	0.064		
5.30	0.032	4.83	0.035	4.48	0.041	4.42	0.058	4.04	0.063		
6.18	0.031	5.64	0.031	5.23	0.037	5.15	0.048	4.71	0.054		
7.06	0.034	6.44	0.034	5.97	0.041	5.89	0.040	5.39	0.045		

表 4-9 液相分析結果一覧(空隙率測定試料: Ca, Si, Al)

Na濃度(単位:mmol	/L)							
作用水(L)	W/C=40%	 作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.44	1.235	0.40	0.796	0.37	0.505	0.37	0.276	0.34	0.284
0.88	0.073	0.81	0.021	0.75	0.035	0.74	0.019	0.67	0.037
1.32	0.014	1.21	0.013	1.12	0.013	1.10	0.023	1.01	0.036
1.77	0.012	1.61	0.012	1.49	0.011	1.47	0.009	1.35	0.007
2.21	0.008	2.01	0.010	1.87	0.008	1.84	0.007	1.68	0.009
2.65	0.008	2.42	0.009	2.24	0.007	2.21	0.007	2.02	0.006
3.09	0.009	2.82	0.009	2.61	0.008	2.58	0.008	2.36	0.008
3.53	0.012	3.22	0.010	2.99	0.014	2.94	0.010	2.69	0.007
3.97	0.009	3.62	0.010	3.36	0.006	3.31	0.010	3.03	0.005
4.41	0.016	4.03	0.009	3.73	0.007	3.68	0.007	3.37	0.004
4.86	0.011	4.43	0.011	4.11	0.008	4.05	0.007	3.70	0.008
5.30	0.007	4.83	0.006	4.48	0.006	4.42	0.004	4.04	0.003
6.18	0.008	5.64	0.007	5.23	0.009	5.15	0.004	4.71	0.005
7.06	0.008	6.44	0.007	5.97	0.008	5.89	0.005	5.39	0.005
					M//0 70%				W/ (0, 405%)
<u>作用水(L)</u>	W/C=40%	<u>作F用水(L)</u>	W/C=55%	<u> </u>	W/C=70%	<u>作F用水(L)</u>	W/C=85%	<u>作F用水(L)</u>	W/C=105%
0.44	1.639	0.40	1.063	0.37	0.645	0.37	0.335	0.34	0.427
0.88	0.046	0.81	0.015	0.75	0.013	0.74	0.010	0.67	0.010
1.32	0.010	1.21	0.005	1.12	0.005	1.10	0.005	1.01	0.005
1.//	0.005	2.01	0.005	1.49	0.005	1.47	0.004	1.30	0.003
2.21	0.004	2.01	0.004	2.24	0.003	1.04 2.21	0.003	2.02	0.004
2.00	0.003	2.42	0.003	2.24	0.004	2.21	0.003	2.02	0.003
3.53	0.005	3.22	0.003	2.01	0.003	2.00	0.003	2.50	0.003
3.97	0.003	3.62	0.004	3 36	0.003	3 31	0.003	3.03	0.002
4 4 1	0.003	4.03	0.003	373	0.003	3.68	0.002	3.37	0.002
4.86	0.003	4.43	0.003	4.11	0.003	4.05	0.002	3.70	0.002
5.30	0.003	4.83	0.003	4.48	0.003	4.42	0.002	4.04	0.001
6.18	0.003	5.64	0.003	5.23	0.003	5.15	0.001	4.71	0.001
7.06	0.003	6.44	0.003	5.97	0.002	5.89	0.001	5.39	0.001
S濃度(単	单位∶mmol/I	_)			_				
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	<u>作用水(L)</u>	W/C=85%	作用水(L)	W/C=105%
0.44	1.34E-04	0.40	1.32E-04	0.37	1.07E-04	0.37	2.53E-04	0.34	7.91E-04
0.88	4.64E-04	0.81	5.27E-04	0.75	2.67E-04	0.74	4.05E-04	0.67	2.62E-04
1.32	1.25E-04	1.21	4.75E-04	1.12	3.43E-04	1.10	2.37E-04	1.01	2.08E-04
1.77	2.53E-04	1.61	2.40E-04	1.49	4.99E-04	1.47	2.61E-04	1.35	1.76E-04
2.21	1.80E-04	2.01	1.88E-04	1.87	1.73E-04	1.84	2.10E-04	1.68	2.48E-04
2.65	3.18E-04	2.42	3.58E-04	2.24	1.53E-04	2.21	2.55E-04	2.02	4.14E-04
3.09	1.79E-04	2.82	3.39E-04	2.01	1.90E-04	2.38	2.42E-04	2.30	3.30E-04
3.33	1.03E-04	3.22	0.17E-03	2.99	1.92E-03	2.94	2.40E-05	2.09	5.40E-05
3.97	1.01E-04	<u> </u>	2.19E-04	3.30	5.46E-05	3.68	6.70E-05	3.03	5.02E-05
4.86	1.75E-05	4.43	1.09F-05	4,11	2.91F-05	4.05	1.11F-04	3.70	4.37E-05
5.30	2.18E-05	4.83	0.00E+00	4.48	1.46E-05	4.42	3.35E-05	4.04	5.53E-05
6.18	1.01E-04	5.64	1.84E-04	5.23	1.28E-04	5.15	8.11E-05	4.71	1.04E-04
7.06	1.91E-04	6.44	1.72E-04	5.97	1.14E-04	5.89	1.03E-04	5.39	5.87E-05
рН									
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.44	12.6	0.40	12.7	0.37	12.7	0.37	12.7	0.34	12.8
0.88	12.8	0.81	12.9	0.75	13.0	0.74	13.0	0.67	13.1
1.32	12.3	1.21	12.4	1.12	12.6	1.10	12.6	1.01	12.6
1.77	12.3	1.61	12.5	1.49	12.6	1.47	12.7	1.35	12.7
2.21	12.3	2.01	12.0	1.87	12.2	1.84	12.3	1.68	12.3
2.05	11.3	2.42	12.3	2.24	12.5	2.21	12.0	2.02	12.5
3.09	11.Ŏ 11.Q	2.02	11.0	2.01	12.1	∠.5ŏ 2.04	12.2	2.30	11.0
3.00	11.0	3.62	11.9	∠.ઝઝ 3.36	11.0	2.94	12.0	2.09	11.0
4 4 1	11.7	4.02	11.7	373	11.0	3.68	11.8	3.37	11.0
4.86	11.4	4.43	11.5	4,11	11.6	4.05	11.5	3.70	11.0
5.30	11.4	4.83	11.4	4.48	11.5	4.42	11.4	4.04	11.3
6.18	11.6	5.64	11.7	5.23	11.7	5.15	11.6	4.71	11.4
7.06	11.6	6.44	117	5.97	11.5	5.89	113	5 30	11.2

表 4-10 液相分析結果一覧(空隙率測定試料: Na, K, S, pH)

図 4-26 作用水量と積算溶出率(硫黄)

表 4-11 液相溶出率一覧(空隙率測定試料: Ca, Si, Al)

積算Ca消	積算Ca溶出率(単位∶%)										
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%		
0.44	4.10	0.40	6.34	0.37	7.78	0.37	8.97	0.34	10.16		
0.88	7.90	0.81	12.52	0.75	16.17	0.74	17.82	0.67	20.17		
1.32	10.50	1.21	17.30	1.12	23.09	1.10	26.54	1.01	30.19		
1.77	12.10	1.61	20.24	1.49	27.17	1.47	32.61	1.35	37.15		
2.21	13.25	2.01	22.04	1.87	30.68	1.84	37.60	1.68	42.60		
2.65	14.37	2.42	23.68	2.24	33.56	2.21	42.07	2.02	46.34		
3.09	15.34	2.82	25.19	2.61	35.71	2.58	45.73	2.36	48.78		
3.53	16.23	3.22	26.53	2.99	37.70	2.94	48.32	2.69	51.03		
3.97	17.46	3.62	28.19	3.36	39.57	3.31	50.48	3.03	52.95		
4.41	18.30	4.03	29.14	3.73	40.96	3.68	52.09	3.37	54.34		
4.86	19.05	4.43	30.14	4.11	42.20	4.05	53.36	3.70	55.48		
5.30	19.90	4.83	31.21	4.48	43.50	4.42	54.63	4.04	56.51		
6.18	20.59	5.64	32.03	5.23	44.43	5.15	55.53	4.71	57.25		
7.06	21.27	6.44	32.87	5.97	45.18	5.89	56.10	5.39	57.87		
積算Si溶	積算Si溶出率(単位:%)										
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%		
0.44	0.150	0.40	0.182	0.37	0.173	0.37	0.147	0.34	0.284		
0.88	0.249	0.81	0.271	0.75	0.233	0.74	0.269	0.67	0.399		
1.32	0.353	1.21	0.357	1.12	0.279	1.10	0.298	1.01	0.491		
1.77	0.468	1.61	0.422	1.49	0.333	1.47	0.336	1.35	0.528		
2.21	0.655	2.01	0.565	1.87	0.434	1.84	0.385	1.68	0.610		
2.65	0.869	2.42	0.748	2.24	0.540	2.21	0.430	2.02	0.721		
3.09	1.114	2.82	0.968	2.61	0.712	2.58	0.533	2.36	0.927		
3.53	1.461	3.22	1.341	2.99	0.932	2.94	0.741	2.69	1.205		
3.97	1.784	3.62	1.660	3.36	1.203	3.31	0.991	3.03	1.523		
4.41	2.135	4.03	1.965	3.73	1.557	3.68	1.387	3.37	1.933		
4.86	2.463	4.43	2.303	4.11	1.922	4.05	1.771	3.70	2.490		
5.30	2.806	4.83	2.658	4.48	2.308	4.42	2.285	4.04	3.222		
6.18	3.171	5.64	3.045	5.23	2.700	5.15	2.822	4.71	4.031		
7.06	3.558	6.44	3.491	5.97	3.201	5.89	3.618	5.39	4.982		
有昇AI浴	出率(里位	L:%)	14/0 55%		14/0 70%		14/0 05%		111/0 405%		
<u>作用水(L)</u>	W/C=40%	<u>作用水(L)</u>	W/C=55%	<u>作用水(L)</u>	W/C=70%	<u>作用水(L)</u>	W/C=85%	<u>作用水(L)</u>	W/C=105%		
0.44	0.353	0.40	0.359	0.37	0.360	0.37	0.551	0.34	0.420		
0.88	0.590	0.81	0.610	0.75	0.621	0.74	0.845	0.67	0.736		
1.32	0.735	1.21	0.744	1.12	0.746	1.10	0.948	1.01	0.801		
1.77	0.909	1.61	0.900	1.49	0.907	1.47	1.108	1.35	0.940		
2.21	1.047	2.01	1.052	1.87	1.091	1.84	1.311	1.68	1.156		
2.65	1.213	2.42	1.237	2.24	1.285	2.21	1.562	2.02	1.563		
3.09	1.361	2.82	1.400	2.61	1.4/2	2.58	1.812	2.36	2.027		
3.53	1.510	3.22	1.567	2.99	1.6/3	2.94	2.135	2.69	2.502		
3.97	1.045	3.62	1.724	3.30	1.8/4	3.31	2.452	3.03	2.936		
4.41	1.814	4.03	1.900	3.73	2.103	3.68	2.838	3.37	3.387		
4.80	1.946	4.43	2.063	4.11	2.323	4.05	3.150	3.70	3.792		
0.30	2.080	4.83	2.229	4.4ŏ	2.030	4.42	3.495	4.04	4.190		
0.10	2.221	5.04 6.44	2.3/0	5.23	2.121	5.15	3.110	4./1	4.030		
1 (.un	Z.309	0 44	7.040	0.97	/ 14/	0.02	401/	10.0M	4013		

積算Nai	容出率(単位	立:%)							
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.44	74.371	0.40	52.876	0.37	36.461	0.37	22.546	0.34	24.886
0.88	78.770	0.81	54.275	0.75	38.969	0.74	24.060	0.67	28.136
1.32	79.629	1.21	55.159	1.12	39.899	1.10	25.913	1.01	31.257
1.77	80.330	1.61	55.936	1.49	40.720	1.47	26.687	1.35	31.905
2.21	80.807	2.01	56.581	1.87	41.312	1.84	27.250	1.68	32.674
2.65	81.287	2.42	57.159	2.24	41.851	2.21	27.843	2.02	33.214
3.09	81.842	2.82	57.789	2.61	42.461	2.58	28.476	2.36	33.930
3.53	82.580	3.22	58.459	2.99	43.492	2.94	29.329	2.69	34.569
3.97	83.094	3.62	59.153	3.36	43.938	3.31	30.121	3.03	34.978
4.41	84.047	4.03	59.730	3.73	44.423	3.68	30.678	3.37	35.331
4.86	84.717	4.43	60.470	4.11	44.995	4.05	31.265	3.70	36.017
5.30	85.121	4.83	60.840	4.48	45.422	4.42	31.594	4.04	36.283
6.18	85.577	5.64	61.298	5.23	46.096	5.15	31.943	4.71	36.734
7.06	86.052	6.44	61.785	5.97	46.670	5.89	32.358	5.39	37.198
	出率(里位	:%) 你用来(I)			W/C 70%				
<u>1F用水(L)</u>	W/C=40%	<u> </u>	W/C=55%	<u> </u>	W/C=70%	<u>1F用小(L)</u>	W/C=85%	1F用小(L)	W/C=105%
0.44	63.891	0.40	45.702	0.37	30.148	0.37	17.732	0.34	24.224
0.88	05.005	0.81	46.351	0.75	30.777	0.74	18.278	0.67	24.797
1.32	66.049	1.21	46.626	1.12	31.053	1.10	18.560	1.01	25.061
1.77	66.248	1.01	40.840	1.49	31.295	1.47	18.769	1.35	25.238
2.21	00.391	2.01	47.010	1.67	31.400	1.64	10.920	1.00	25.444
2.00	00.322	2.42	47.100	2.24	31.020	2.21	19.074	2.02	25.594
3.09	66.041	2.82	47.312	2.01	31.702	2.00	19.209	2.30	20.742
3.03	66 055	3.22	47.494	2.99	22.027	2.94	19.500	2.09	25.005
3.97	67.060	3.02	47.022	2.30	22.037	3.31	10.625	3.03	25.952
4.41	67 10/	4.03	47.747	3.73 / 11	32.157	4.05	19.023	3.37	26.032
5 30	67 306	4.43	47.075	4.11	32.270	4.05	19.727	4.04	26.122
6.18	67.000	5.64	48 100	5.23	32.530	5 15	10.011	4.04	26.237
7.06	67 538	6.44	48 220	5.25	32.550	5.89	10.077	5 30	26.286
積算S溶	出率(単位	:%)	70.220	0.01	02.041	0.00	10.001	0.00	20.200
作用水(L)	W/C=40%	作用水(L)	W/C=55%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.44	2.37E-03	0.40	2.58E-03	0.37	2.29E-03	0.37	6.10E-03	0.34	2.04E-02
0.88	1.06E-02	0.81	1.29E-02	0.75	7.96E-03	0.74	1.59E-02	0.67	2.72E-02
1.32	1.28E-02	1.21	2.22E-02	1.12	1.53E-02	1.10	2.16E-02	1.01	3.25E-02
1.77	1.73E-02	1.61	2.69E-02	1.49	2.59E-02	1.47	2.79E-02	1.35	3.71E-02
2.21	2.05E-02	2.01	3.06E-02	1.87	2.96E-02	1.84	3.29E-02	1.68	4.35E-02
2.65	2.61E-02	2.42	3.76E-02	2.24	3.28E-02	2.21	3.91E-02	2.02	5.42E-02
3.09	2.93E-02	2.82	4.46E-02	2.61	3.70E-02	2.58	4.49E-02	2.36	6.32E-02
3.53	3.12E-02	3.22	4.58E-02	2.99	3.87E-02	2.94	4.62E-02	2.69	6.46E-02
3.97	3.29E-02	3.62	5.01E-02	3.36	4.11E-02	3.31	4.67E-02	3.03	6.64E-02
4.41	3.31E-02	4.03	5.05E-02	3.73	4.23E-02	3.68	4.83E-02	3.37	6.79E-02
4.86	3.34E-02	4.43	5.07E-02	4.11	4.29E-02	4.05	5.10E-02	3.70	6.90E-02
5.30	3.38E-02	4.83	5.07E-02	4.48	4.32E-02	4.42	5.18E-02	4.04	7.05E-02
6.18	3.56E-02	5.64	5.43E-02	5.23	4.59E-02	5.15	5.38E-02	4.71	7.31E-02
7.06	3.90E-02	6.44	5.77E-02	5.97	4.84E-02	5.89	5.63E-02	5.39	7.47E-02

表 4-12 液相溶出率一覧(空隙率測定試料: Na, K, S)

表 4-13 セメントの化学成分表

ig.loss	insol	SiO ₂	Al ₂ O ₃	Fe_2O_3	CaO	MgO	SO_3
0.62	0.04	21.24	5.24	2.51	64.86	1.84	2.02
Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Cl		
0.23	0.54	0.32	0.37	0.04	0.016		

4.2.3 溶出率と空隙率の関係

総作用水量と空隙率の関係を図 4-27 に示す。作用水量が増加すると,空隙率も増加 する傾向にあるが,浸漬開始から浸漬 12 週における空隙率の増加率に比べて,浸漬 12 週以降は作用水に対する空隙率の増加率が小さくなっていることが分かる。

液相に溶け出した成分濃度から算出したカルシウム溶出率と空隙率の関係を図 4-28 に示す。カルシウム溶出率が増加すると空隙率も大きくなる傾向にあり,いずれの水 セメント比においてもほぼ直線的に空隙率が増加していることが分かる。浸漬期間 64 週までの試験結果に基づくカルシウム溶出率と空隙率の関係に関する近似式を以下に 示す。

水セメント比 40%:	= 0.46• Lc + 20.3	(4-7)
水セメント比 55%:	= 0.44• Lc + 32.7	(4-8)
水セメント比 70%:	= 0.35• Lc + 40.6	(4-9)
水セメント比 85%:	= 0.31• Lc + 47.5	(4-10)
水セメント比 105%:	= 0.35• Lc + 50.3	(4-11)

ここに, : 空隙率(%), Lc: カルシウム溶出率(%) である。

上式における傾きは,カルシウムが1%溶出することによる空隙率の増加量を示す ものであり,水セメント比が異なることによる傾向は確認されなかった。

浸漬 64 週までは,カルシウム溶出率と空隙率の関係を直線関係で整理した。しかし, 浸漬 64 週のデータに着目すると,若干ではあるが,近似した直線よりも空隙率が大き くなる傾向がいずれの水セメントにおいても確認することができる。今後得られるデ ータの挙動を確認した後に,再度カルシウム溶出率と空隙率の関係について整理する 予定である。

W/C= 70%:y=0.348x+40.6 R²=0.981

W/C= 85%:y=0.309x+47.5 R²=0.906

W/C=105%:y=0.353x+50.3 R²=0.950

50

液相濃度から算出した積算Ca溶出率(%)

60

70

「

20

30

図 4-28 液相濃度から算出したカルシウム溶出率と空隙率の関係

40

10

20

10

0 E

- 114 -

4.2.4 空隙率からの透水係数の推定

ペーストの透水係数と空隙率との関係は,理論的あるいは実験的なアプローチによって検討されているものの,理論的なモデルは完全には構築されていない。ここでは 昨年報告したDenys Breysse⁷⁾のモデルに,実験で得られた空隙率を適用することで セメントペーストの透水係数を推定することとした。

Denys Breysse⁷⁾はセメントペースト,モルタル,コンクリートに関して既往の実験結果を整理し,それぞれに対してK_{exp}=aP^bで示される関係式を提案している。それらの関係式のうち,セメントペーストの透水係数については下式に示す関係式を与えている。

$$\ln(K_{exp}) = 9.50 + 5.95 \ln(p)$$
 (4-12)

ここで, K exp: 透水係数(10-13 m/s), p: 空隙率

上式が示す透水係数と空隙率の関係と文献中のデータを図 4-29 に示す。ここでの空隙率は,本研究での実験と同様に水銀圧入法によって得られた空隙率を用いている。 また,透水係数の推定,算出の際には下記の仮定に基づく。

透水係数はペースト(コンクリート)の空隙構造(空隙径および空隙率)に依存するものの,ほぼ空隙率のみで評価可能であり,空隙径による影響は無視できるほど小さい(水酸化カルシウムの溶出によって増加する空隙径は1µm程度,CSHの溶出によって増加する空隙径は数nmとされるが,透水係数は空隙率全体にて評価可能とする)。

Denys Breysse の関係式を用いて,本実験で得られた空隙率から,ペーストの透水 係数を推定した。その結果を図 4-30 に示す。図の縦軸(透水係数)は実測値ではなく, 上式より算出した値である。あわせて,推定した透水係数について,試験期間,カル シウム溶出率との関係についても整理した(図 4-31,4-32 参照)。

図 4-29 空隙率と透水係数の関係(ペースト)

空隙率の増加=浸漬期間の増加(作用水量の増加)となるため,浸漬期間が増加す ることによって,透水係数も増加する結果となっている。浸漬64週後において,全て の水セメント比で透水係数が1オーダー程度増加する結果となっている。

Denys Breysse のモデルを用いることで,セメントペーストの空隙率から透水係数 を算出することが可能である。また,空隙率とカルシウム溶出率との関係も把握して いるため,間接的にカルシウム溶出率と透水係数の関係についても示すことができる。 しかし,昨年度報告したように,このモデルは健全なセメントペーストにおいて構築 されたものであるため,セメント水和物の溶出による変遷が進行した場合には,本モ デルをそのまま適用できない可能性が高い。変遷が進行した場合の透水係数について は,通水試験の結果等を考慮して,別途検討する必要がある。

図 4-30 透水係数の推定(空隙率と透水係数の関係)

図 4-31 透水係数の推定(浸漬期間と透水係数の関係)

図 4-32 透水係数の推定(液相分析結果から算出したカルシウム溶出率と透水係数の関係)

4.2.5 まとめ

浸漬 64 週を経た試料について空隙率等を測定した結果について,本節で得られた知 見を以下に示す。

- ・ 作用水量が増加すると空隙率も増加する。水セメント比によって異なるが,浸 漬64週において10~20%程度空隙率が増加した。
- カルシウム溶出率が増加すると空隙率も増加し、その関係はほぼ直線関係にある。
- 既往のモデルを用いることによって、カルシウム溶出率から透水係数を推定することが可能である。

4.3 ビッカース硬度と強度特性の関係把握

ビッカース硬度と強度特性の関係把握として,2001年度の検討で,強度特性測定の ためのビッカース硬度の適用性検討(試料の表面処理方法:研磨方法,荷重載荷時間 および載荷荷重,測定数などがビッカース硬度の測定値の大きさやばらつきに及ぼす 影響の検討)および各強度特性値間の関係(ビッカース硬度,圧縮強度,空隙率など の相互関係)を実験的に求めた。

しかし,水セメント比の高い試料および作用水量が増加して脆くなった試料につい ては,ビッカース硬度を測定できなくなる恐れがある,といった問題があった。その ように低硬度となった場合の評価の必要性については議論が残るところではあるが, 設計段階で要求される性能次第では,そのような低硬度の評価についても必要になる 場合があると考えられる。

そこで,低硬度となった場合の測定方法について,各種微小硬度に関する調査および低硬度を測定するための予備検討を行うこととした。

4.3.1 微小硬度試験の種類および適用範囲に関する調査⁸⁾⁹⁾

微小硬度は,主に金属やセラミクスなどの硬度や物性を把握するために適用されて いる。また,岩石や鉱物の硬さを表す指標としても用いられている。微小硬度の種類 を大別すると,材料に硬質の圧子を押し付けてくぼみをつけて,くぼみの大きさを比 較する押込み硬度と,材料に一定の高さから一定の重さを持った物質を落下させて跳 ね上がる高さを比較する反発硬度がある。微小硬度の種類としては,今回検討してい るビッカース硬度以外にロックウェル硬度,プリネル硬度,ショア硬度などがある。 これらの微小硬度の主な特徴を以下に示す。

(1) ロックウェル硬度

ロックウェル硬度は,鋼球またはダイヤモンドの円錐圧子を用い、一定の荷重で押 し込み、その圧子が押し込まれた深さによって硬さを求めるものである。金属材料や 熱処理材料の硬さ試験に適しており,各種の材料の品質管理に利用されている。また, JIS 規格で定められているプラスチックの硬さ試験も行うことが出来る。

岩石の硬度を測定する場合には,軟らかい試験体の測定方法としては球形の圧子を 用いる R-B 試験があり,硬い試験体の測定方法として円錐形の圧子を用いる R-C 試験 がある。

(2) ブリネル硬度

ブリネル硬度は,一般的にある直径の鋼球圧子を用いて一定の加重で押し付け、出 来たくぼみの直径より硬さを求めるものである。鋳物製品をはじめ,金属組成の粗い 不均質な素材の硬さ試験として用いられている。

(3) ヌープ硬度

ビッカース硬度とほぼ同様の方法で測定するが,ダイヤモンド圧子の形状は四角錐 ではなく,対面の交角が172°30 と130°となっているため,圧痕は菱形になる。 岩石における測定結果では,ビッカース硬度とヌープ硬度はほぼ同じ値となる。

(4)ショア硬度(反発硬度)

ショア硬度は,ダイヤモンドハンマを一定高さから垂直落下させて試験片面を打ち、 ハンマの反発高さによって指示計にショア硬さ指示するものである。持ち運びが可能 で,装置によっては直接試料の上で測定可能なものもある。

微小硬度の種類および主な適用範囲を表 4-14 に示す。

種類	主な 適用材料	形状	検査·判定	一般的な 試験荷重レベル	
ビッカース	超合金 セラミクス	薄板 (薄膜,メッキ,塗装,	材料の強度 , 物性 熱処理過程 高温研さ	0.005 ~ 10N	
ヌープ	鉄鋼材料 非鉄金属	小型部品 , 針状部 品)	高温设で 溶接金属の硬さ 破壊靭性∶セラミクス	0.005 ~ 1010	
ロックウェル	超 会 ま う 調 数 会 ス り 料 属 プ ラ ス 料 属 プ ラ ス 村 料 属 プ ラ ス 材 料 属 の ス の 料 属 の ろ に の ろ の ろ の ろ の ろ の ろ の ろ の ろ の ろ の	薄板 プラスチック板	材料の強度 , 物性 熱処理過程 溶接金属の硬さ	0.15 ~ 1.5 k N	
ブリネル	鋳物	大型の試料∶構造物	材料の硬さ,物性,岩 石の硬さ	5.0 ~ 30 k N	
ショア	鉄鋼材料	大型の試料:構造物	材料の硬さ,物性 (熱処置過程),岩石の 硬さ	特になし: 一例として は, 36gダイヤモンド ヘッドを19mmから落 下させるものがあ	

表 4-14 微小硬度の種類および適用範囲

()内は,適用可能だが精度は低下するもの

いずれの微小硬度においても,セメント系材料への適用が規格化されたものはない。 また,セメント系材料よりも強度の高い金属系の材料や岩石などに適用されているた め,ビッカース硬度を除いて,高い荷重レベルの測定にしか適さないものがほとんど である(現在の試験では,荷重は試料に合わせて調整しているが,およそ10gf程度で 行っている)。

上記より,ビッカース硬度以外の微小硬度をセメント系材料の低硬度の評価への適 用は難しいと考えられる。硬度の選択,針の形状の改良によって低硬度の測定を行う ためには,新たな微小硬度(針)および装置の考案が必要になり容易に対応できない と考えられることから,現時点では微小硬度としてはビッカース硬度が最も適当と考 えられる。

4.3.2 押込み深さとビッカース硬度の関係に関する検討

ビッカース硬度は,ダイヤモンド圧子(四角錐)を試料に押込み,試料表面についた圧子の大きさを用いて,下式で算出するものである。

$$HV = k\frac{F}{S} = 0.102\frac{F}{S} = 0.102\frac{2F\sin{\frac{-}{2}}}{d^2} = 0.1891\frac{F}{d^2}$$
(4-13)

ここに,HV:ビッカース硬度,k:定数,k=1/gn=1/9.80665=0.102,F:載荷荷重 (N),S:くぼみの表面積(mm²),d:くぼみの2方向の対角線長さ平均(mm), : ダイヤモンド圧子の対面角(136°)

通常の測定では,上記のうち「d:くぼみの2方向の対角線長さ平均」をモニタ上 で人間の目で読み取り,それを上式に代入してビッカース硬度を計算している(装置 によっては自動で対角線長さ:dを読み取ることが可能なものがあるが,モニタ上で 圧子の跡が明確なもの:金属材料などに適用が限られ,セメント系材料での適用は困 難である)。溶出が進行して組織が脆くなったものはモニタ上での判別が困難となって しまうため,測定精度の低下に繋がる。

一方で,装置によっては対角線長さ:dだけでなく,圧子の押込み深さを自動で測 定でき,なおかつビッカース硬度も同時に測定できるものがある。その装置を用いれ ば,対角線長さの読み取りが困難な場合でも,自動で測定できる圧子の押込み深さに 関するデータについては採取可能となる。測定する試料の硬度が低下すると,圧子の 押込み深さは大きくなると考えられ,硬度を評価する代替指標として用いることがで きる可能性がある。

そこで,ビッカース硬度と圧子の押込み深さの関係を把握し,その関係を用いてビッカース硬度を推定する方法について検討することとした。なお,理論的には,ビッカース圧子の角度が既知(136°)であり,押込み深さが分かればビッカース硬度を換算できるため,理論値との比較についても実施した。

(1)試験水準

試験に用いた試料を表 4-15 に示す。測定は水に浸漬していない試料をベースにして 実施し,あわせて浸漬後の試料についても実施した。水に浸漬していない試料(本検 討で用いているペーストと同一材料を用いて同一時期に作製し,同一の促進養生を施 したものである。促進養生後は,濡れたウエスで包み,さらに窒素ガスを入れた袋の 中で約 64 週間養生した)を「健全」とし,水に 48 週浸漬した試料を「劣化後」の試 料とした。

水セメント比(%)	試料状態
40	健全
70	健全 , 劣化後
85	健全
105	健全

表 4-15 圧子の押込み深さとビッカース硬度の関係における試験水準

(2)試験結果

各水セメント比における圧子押込み深さとビッカース硬度の関係を図 4-33 に示す。 図には対角線長さを目視確認して算出したビッカース硬度(実測値)と、圧子角と押 し込み深さから理論的に算出したビッカース硬度(理論値)を示す。水セメント比 40% の場合は,圧子の押込み深さが大きくなってもビッカース硬度(実測値)はほとんど 変化しない結果となっているが,水セメント比 70~105%においては,圧子押込み深 さが大きくなるとビッカース硬度(実測値)が小さくなる傾向にあることが分かる。

しかし,圧子の押込み深さとビッカース硬度(実測値)の関係は一義的なものでな く,水セメント比で異なっている。また,水セメント比70%の場合のみの検討ではあ JNC TJ8400 2003-046

るが,健全時と劣化後においても関係が異なっていることが分かる。

また,角度と押込み深さから算出したビッカース硬度(理論値)については,実測 値と大きく異なることが分かった。押込み深さが小さい範囲では,実測のビッカース 硬度より理論的に計算したビッカース硬度が大きくなる傾向にある。今回の測定試料 は,金属材料などに比べると非常に脆いペーストであるため,ひび割れの発生や,圧 子を押込んだ周辺部分の崩壊などが生じたことによって,理論的な値と異なったもの と考えられる。

水セメント比と今回実施した測定の平均値との関係を図 4-34 に示す。健全なものの データと浸漬 48 週後の劣化後の 2 材齢分しかないが ,浸漬期間と測定値の平均値との 関係を図 4-35 に示す。データは少ないが , 圧子の押込み深さに着目すると , 水セメン ト比が大きくなると圧子の押込み深さも大きくなり , また浸漬期間が増加すると圧子 の押込み深さが小さくなっていることが分かる。

実際には W/C の増大,浸漬期間の延長は共にモルタルが軟化する方向にあるものの, 押し込み深さの傾向は反対の傾向となっている。以上より,現在のデータから打込み 深さを指標とすることは困難である。

(4) W/C = 105%: 健全 図 4-33 圧子押込み深さとビッカース硬度の関係

図 4-34 水セメント比とビッカース硬度,押込み深さの関係

図 4-35 浸漬期間とビッカース硬度,押込み深さの関係

4.3.3 まとめ

本節では,微小硬度に関する調査および溶出によって脆くなった試料のビッカース 硬度の測定方法に関する検討を行った。ここでの検討によって得られた知見を以下に 示す。

- ビッカース硬度以外にもいくつかの微小硬度があるが、セメント系材料に適用
 されているものはなく、現時点ではビッカース硬度の適用が最適である。
- ・ 圧子押込み深さが大きくなるとビッカース硬度は小さくなる傾向にある。これ らの関係についてさらに検討を加えることによって, 脆くなったセメント系材 料のビッカース硬度を推定する方法として適用できる可能性がある。
4.4 カルシウム溶出量とビッカース硬度の関係把握

4.4.1 ビッカース硬度の経時変化

ビッカース硬度は試料直径方向について,外側各 10 mmを除いた内部 10 mmを 0.3 mm ピッチで 30 点測定した。深さ方向の測定については,2001 年度報告分については 0.5 ~1.0mm 間隔で測定を行っていたが,後に示す EPMA による分析結果の出力は 0.1mm ピッチで行っているため,ビッカース硬度とカルシウム溶出率との関係に関す るデータを増やすために,劣化部分については 0.2mm 間隔,健全部については 0.5mm 間隔で測定を行うこととした。

各配合におけるビッカース硬度の深さ方向の変化を図 4-36,表 4-16 に示す。図中 の硬度は同一深度 30 点の平均値を示している。破線は浸漬前のビッカース硬度である。 各点の硬度は,付録 57~69 に示す。ばらつきはあるものの,いずれの配合において も浸漬期間が長くなるとビッカース硬度は低下する傾向にあり,表面近傍で特に硬度 が低下する傾向にあることが分かる。浸漬 64 週後の水セメント比 105%以外のビッカ ース硬度については,表面近傍でビッカース硬度が非常に小さくなっており,表面か ら深さ 0.5~2mm 程度の深さで表面近傍より高い部分があり,その内部でさらに高い 部分がある,といった結果になっており,段階的にビッカース硬度が変化する傾向に ある。これは,溶出したカルシウムの形態が影響していると考えられる。表面近傍で は C-S-H まで溶出したことによってビッカース硬度が非常に小さくなっており,表面 近傍よりビッカース硬度が高い部分については,水酸化カルシウムのみが溶出するこ とによって硬度が低下していると考えられる。

また,浸漬 64 週後においても,水セメント比 40,70%では浸漬前のビッカース硬度からほとんど変化していない部分が試料内部に存在するが,水セメント比 85,105%はほぼ全面的に浸漬前より硬度が低下していることが分かる。

- 128 -

(mm) WC200 (mm) WC203 (mm) WC203 (mm) WC203 浸漬前 34.99 9.04 7.16 34.99 0.1 8.22 0.1 8.24 0.5 25.0 0.5 5.0 0.5 1.3 0.5 8.28 10 44.8 1.0 6.9 1.0 1.5 1 Retarpsurf 1.5 45.7 1.5 11.0 1.5 3.2 1.5 Retarpsurf 2.0 42.0 2.0 9.7 2.0 4.5 2 2.1 3.0 42.0 3.0 11.5 3.0 6.5 3 2.1 4.0 3.9.7 4.0 8.7 4.0 4.7 4 2.0 5.0 3.3.7 5.0 6.8 5.0 4.3 5 2.1 3.0 0.3 4.34 0.7 1.66 0.7 1.3 1.1 0.5 12.20 0.5 6.05 0.3		測定位置	W/C-40%	測定位置	W//C-70%	測定位置	W/C_95%	測定位置	
浸漬前 34.99 9.04 7.16 3.184 0.1 25.2 0.1 #::::::::::::::::::::::::::::::::::::		(mm)	W/C=40%	(mm)	W/C=70%	(mm)	W/C=65%	(mm)	W/C=105%
0.1 25.2 0.1 #exampur Property 25.0 0.1 #exampur Property 1.0 0.1 #exampur Property 25.0 0.5 1.3 0.5 #exampur Property 20.0 12:36 45.7 1.5 11.0 1.5 1.2 1.5 45.7 1.5 11.0 1.5 1.2 4.5 2 2.1 12:36 45.7 1.5 11.0 1.5 3.2 1.5 #exampur Mathematic 2.5 42.0 2.5 11.2 2.5 4.6 2.5 2.3 3.0 42.0 3.0 11.5 0.0 6.5 3 2.1 5.0 3.3.7 5.0 6.8 5.0 4.3 5 2.1 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.66 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.79 1.1 1783 1.1 6.65 1.3 4.17 1.3 1.61	浸漬前		34.99		9.04		7.16		3.18
38 0.5 25.0 0.5 1.0 1.5 1.7 1.7 1.5 1.7 1.7 1.60 0.5 1.20 0.5 0.66 0.5 3.3 1.00 1.1 1.20 1.7 1.79 0.5 1.7 0.7 1.7 0.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1		0.1	25.2	0.1	検出限界以下	0.1	検出限界以下	0.1	検出限界以下
10 44.8 10 6.9 10 1.5 1 Мацярыт 20 42.0 2.0 9.7 2.0 4.5 2 2.1 2.5 42.0 2.5 11.2 2.5 4.6 2.5 2.1 3.0 42.0 3.0 11.5 3.0 6.5 3 2.1 4.0 39.7 4.0 8.7 4.0 4.7 4 2.0 5.0 3.3.7 5.0 6.8 5.0 4.3 5 2.1 1.6 6.54 0.1 2.15 0.1 1.26 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.66 0.5 1.220 0.5 6.05 0.5 3.34 0.5 1.66 0.7 1.165 0.7 6.11 3.91 1.1 2.01 1.3 1.6.38 1.3 6.55 1.3 4.17 1.9 1.9 1.9		0.5	25.0	0.5	5.0	0.5	1.3	0.5	検出限界以下
浸漬 1.5 45.7 1.5 11.0 1.5 3.2 1.5 株世界%7 122週後 2.0 42.0 2.0 9.7 2.0 4.5 2 2.1 3.0 42.0 3.0 11.5 3.0 6.5 3 2.1 4.0 39.7 4.0 8.7 4.0 4.7 4 2.0 5.0 33.7 5.0 6.8 5.0 4.3 5 2.1 0.1 6.54 0.1 2.15 0.1 2.12 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.5 17.97 1.5 6.25 1.5 4.44 1.5 1.94 1.9 7.93 2.1 5.25 <t< th=""><th></th><th>1.0</th><th>44.8</th><th>1.0</th><th>6.9</th><th>1.0</th><th>1.5</th><th>1</th><th>検出限界以下</th></t<>		1.0	44.8	1.0	6.9	1.0	1.5	1	検出限界以下
12通後 20 420 20 9.7 2.0 4.5 2 2.1 3.0 42.0 2.5 11.2 2.5 4.6 2.5 2.3 3.0 42.0 3.0 11.5 3.0 6.5 3 2.1 4.0 39.7 4.0 8.7 4.0 4.7 4 2.0 5.0 33.7 5.0 6.8 5.0 4.3 5 2.1 0.1 6.54 0.1 2.15 0.1 2.12 0.1 1.26 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 1.7.83 1.1 6.25 1.5 4.44 1.5 1.94 1.9 1.890 1.7 7.59 1.7	浸清	1.5	45.7	1.5	11.0	1.5	3.2	1.5	検出限界以下
25 42.0 25 11.2 2.5 4.6 2.5 2.1 4.0 39.7 4.0 8.7 4.0 4.7 4 2.0 5.0 33.7 5.0 6.8 5.0 4.3 5 2.1 1 6.54 0.1 2.15 0.1 2.12 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 17.83 1.1 6.65 1.3 4.11 1.9 1.9 1.5 17.97 1.5 6.25 1.5 4.44 1.5 1.94 1.9 1.80 1.7 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41	12週後	2.0	42.0	2.0	9.7	2.0	4.5	2	2.1
3.0 42.0 3.0 11.5 3.0 6.5 3 2.1 4.0 33.7 5.0 6.8 5.0 4.3 5 2.1 5.0 33.7 5.0 6.8 5.0 4.3 5 2.1 0.1 6.54 0.1 2.15 0.1 2.12 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.7 1.165 0.7 6.01 0.7 3.69 0.7 1.79 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.5 17.97 1.5 6.25 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.9 22.39 2.1 7.79 2.1 5.26		2.5	42.0	2.5	11.2	2.5	4.6	2.5	2.3
4.0 39.7 4.0 8.7 4.0 4.7 4 20 0.1 6.54 0.1 2.15 0.1 2.12 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.3 16.38 1.3 6.55 1.3 4.17 1.3 2.17 1.5 17.97 1.5 6.25 1.5 4.44 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 4.08 0.1 7.79 2.1 5.25 2.		3.0	42.0	3.0	11.5	3.0	6.5	3	2.1
30 33/ 50 65 30 443 5 21 0.1 6.54 0.1 2.15 0.1 1.212 0.1 1.26 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.9 1.79 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 17.83 1.1 6.655 1.3 4.17 1.3 2.17 1.5 17.97 1.5 6.25 1.5 4.44 1.9 1.99 2.9 22.39 2.1 7.79 2.1 5.26 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 1.9 2.09 2.9 22.49 3.0 8.437 2.5 5.09 </th <th></th> <th>4.0</th> <th>39.7</th> <th>4.0</th> <th>8.7</th> <th>4.0</th> <th>4.7</th> <th>4</th> <th>2.0</th>		4.0	39.7	4.0	8.7	4.0	4.7	4	2.0
し.1 0.3 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 12.20 0.5 6.05 0.5 3.34 0.5 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.77 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.3 16.38 1.3 6.55 1.3 4.17 1.3 2.17 1.5 17.97 1.5 6.25 1.5 4.44 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 3.9 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.4 2.63 3.5 8.57		5.0	33.7	5.0	0.8	5.0	4.3	5	2.1
しろ 9.34 0.3 4.37 0.3 3.10 0.3 1.60 0.5 1220 0.5 6.05 0.34 0.5 1.66 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 17.83 1.1 6.66 1.1 3.91 1.1 2.01 1.3 16.38 1.3 6.55 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 20.61 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.55 2.1 1.98 3.4 2.27 2.30 3.4 2.22 3.0 3.2 2.66 4.39 1.100 4.1 6.20 3.3 2.56 2.22 2.43 2.43		0.1	0.54	0.1	2.15	0.1	2.12	0.1	1.26
しろ 1.2.0 0.5 0.05 0.3 3.34 0.5 1.00 0.7 11.65 0.7 6.01 0.7 3.69 0.7 1.79 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.3 16.38 1.3 6.55 1.3 4.17 1.3 2.17 1.5 17.97 1.5 6.25 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.9 2.239 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 3.9 2.249 3.0 8.43 2.5 5.09 2.5 2.22 4.4 2.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 2.341 4.0 8.62 3.1		0.3	9.34	0.3	4.37	0.3	3.10	0.3	1.60
1.1.63 0.7 5.01 0.7 3.89 0.7 1.179 0.9 14.05 0.9 6.12 0.9 3.79 0.9 1.79 1.1 17.83 1.1 6.65 1.1 3.91 1.1 2.01 1.3 16.38 1.3 6.55 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 20.61 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 3.4 21.27 2.5 8.16 2.3 5.541 2.3 2.30 3.4 21.27 2.5 8.16 2.3 5.541 2.3 2.56 4.4 2.63 3.5 7.7 2.43 2.5		0.5	12.20	0.5	6.05	0.5	3.34	0.5	1.00
1.1 17.83 0.3 0.31 1.1 2.03 1.13 1.13 1.1 17.83 1.1 6.655 1.1 3.91 1.1 2.01 1.5 17.97 1.5 6.25 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 2.061 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 1.9 2.09 2.4 2.061 1.9 7.41 1.9 5.14 1.9 2.09 3.9 22.49 2.5 8.16 2.3 5.41 2.39 2.50 4.4 2.263 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.62 3.1		0.7	14.05	0.7	6.12	0.7	2 70	0.7	1.79
1.1 1.0.00 1.1 0.000 1.1 0.01 1.1 2.01 1.3 16.38 1.3 6.55 1.5 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 20.61 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.30 2.7 2.58 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.4 2.263 3.5 8.57 2.7 5.30 2.7 2.58 4.4 1.029 3.6 5.69 3.1 2.54 - 4.9 11.00 4.1 6.20 3.5 <t< th=""><th></th><th>0.9</th><th>17.83</th><th>0.9</th><th>6.65</th><th>0.9</th><th>3.79</th><th>0.9</th><th>2.01</th></t<>		0.9	17.83	0.9	6.65	0.9	3.79	0.9	2.01
1.5 17.97 1.5 0.03 1.3 4.44 1.5 1.94 1.9 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 20.61 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 4.8ia(\$ 3.4 21.27 2.5 8.16 5.09 2.5 2.22 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.7 2.35 2.47 1.0 4.5 10.29 3.6 5.69 3.1 2.54 1.1 0.1 7.0 0.1 2.2 0.1		1.1	16.38	1.1	6.55	1.1	/ 17	1.1	2.01
19 18.90 1.7 7.59 1.7 4.75 1.7 2.11 2.4 20.61 1.9 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 3.9 22.49 3.0 8.43 2.5 5.09 2.5 2.22 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 3.5 2.47 4.8 23.41 4.0 8.62 3.1 5.72 3.5 2.47 4.8 23.41 4.0 8.62 3.1 2.56 2.5 2.27 4.8 23.41 4.0 8.62 3.1 2.54 2.56 4.1 2.0 1.9 1.0.0 1.1 3.9		1.5	17.97	1.5	6.25	1.5	4.17	1.5	1 94
記書 10 7.41 1.9 5.14 1.9 2.09 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 48週後 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 48週後 3.9 22.49 3.0 8.43 2.5 5.09 2.5 2.22 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.4 22.63 3.5 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 3.5 2.47 10.0 4.1 6.20 3.3 2.56 1.1 4.1 2.40 10 11.0 4.1 1.6		1.0	18.90	1.0	7 59	1.0	4 75	1.0	2 11
記書 2.9 22.39 2.1 7.79 2.1 5.25 2.1 1.98 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 3.9 22.49 3.0 8.43 2.5 5.09 2.5 2.22 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.57 2.7 5.30 2.7 2.58 4.4 22.63 3.5 8.57 2.7 3.50 2.7 2.58 4.4 22.63 3.5 8.57 2.7 3.50 2.7 2.58 4.8 2.341 4.0 4.5 10.29 3.6 5.69 3.1 2.54 - - - 4.6 5.72 3.5 2.47 - - - 4.3 2.61		2.4	20.61	1.9	7.41	1.9	5.14	1.9	2.09
浸漬 3.4 21.27 2.5 8.16 2.3 5.41 2.3 2.30 48週後 3.9 22.49 3.0 8.43 2.5 5.09 2.5 2.22 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.45 10.29 3.6 5.69 3.1 2.54 - - 4.9 6.27 3.7 2.43 - - - 4.3 2.61 - - 4.3 2.61 - - - 4.3 2.61 - - - 4.9 0.1 k±ug#pu\ft 0.3 9.0 0.3		2.9	22.39	2.1	7.79	2.1	5.25	2.1	1.98
没損 3.9 22.49 3.0 8.43 2.5 5.09 2.5 2.22 46週後 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.54 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.56 4.9 11.00 4.1 6.20 3.3 2.56 2.47 4.6 5.72 3.5 2.47 3.9 2.50 2.43 4.1 2.40 4.9 6.27 3.7 2.43 4.1 2.40 4.1 2.40 4.5 2.69 4.1 2.40 4.5 2.69 2.51 1.5 0.3 9.0 0.1 2.2 0.1 1.9 0.1 ####################################	油油	3.4	21.27	2.5	8.16	2.3	5.41	2.3	2.30
440月後 4.4 22.63 3.5 8.57 2.7 5.30 2.7 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.9 11.00 4.1 6.20 3.3 2.56 4.9 11.00 4.1 6.20 3.3 2.56 4.6 5.72 3.5 2.47 4.6 5.72 3.5 2.47 4.6 5.72 3.9 2.50 4.1 2.40 3.9 2.50 4.1 2.40 4.3 2.61 4.3 2.61 4.5 2.69 4.7 2.77 4.7 2.77 4.9 2.51 4.5 2.69 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5	─ 浸湏 40`周생	3.9	22.49	3.0	8.43	2.5	5.09	2.5	2.22
4.8 23.41 4.0 8.62 3.1 5.72 2.9 2.58 4.5 10.29 3.6 5.69 3.1 2.54 4.9 11.00 4.1 6.20 3.3 2.56 4.9 11.00 4.1 6.20 3.3 2.56 4.9 4.9 1.00 4.1 6.27 3.7 2.43 4.9 4.9 4.9 6.27 3.7 2.43 4.1 2.40 3.9 2.50 4.1 2.40 4.1 2.40 4.3 2.61 4.1 2.40 4.1 2.40 4.3 2.61 4.7 2.77 4.7 2.77 4.9 2.51 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 #MRRPAT 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5	40迴仮	4.4	22.63	3.5	8.57	2.7	5.30	2.7	2.58
○ 4.5 10.29 3.6 5.69 3.1 2.54 ○ 4.9 11.00 4.1 6.20 3.3 2.56 ○ 4.9 11.00 4.1 6.20 3.3 2.56 ○ - 4.9 6.27 3.7 2.43 ○ - 4.9 6.27 3.7 2.43 ○ - - 4.1 2.40 ○ - - 4.1 2.40 ○ - - 4.3 2.61 ○ - - 4.5 2.69 ○ - - 4.5 2.69 ○ - - 4.9 2.51 ○ - - 4.9 2.51 ○.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.		4.8	23.41	4.0	8.62	3.1	5.72	2.9	2.58
人名 4.9 11.00 4.1 6.20 3.3 2.56 1 1 4.6 5.72 3.5 2.47 1 1 4.9 6.27 3.7 2.43 1 1 1 3.9 2.50 1 1 1 1 2.40 1 1 1 1 2.40 1 1 1 2.40 3.9 2.50 1 1 1 1 2.40 4.1 2.40 1 1 1 1 1 2.40 1 2.40 1 1 1 1 1 2.61 4.5 2.69 1 1 1 2 0.1 1.9 0.1 #dumptyT 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 <t< th=""><th></th><th></th><th></th><th>4.5</th><th>10.29</th><th>3.6</th><th>5.69</th><th>3.1</th><th>2.54</th></t<>				4.5	10.29	3.6	5.69	3.1	2.54
4.6 5.72 3.5 2.47 4.9 6.27 3.7 2.43 4.9 6.27 3.7 2.43 3.9 2.50 3.9 2.50 4.1 2.40 3.9 2.50 4.3 2.61 4.3 2.69 4.7 2.77 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 株出限界以下 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 1.1 6.8 1.1 5.4 1.3 2.3				4.9	11.00	4.1	6.20	3.3	2.56
4.9 6.27 3.7 2.43 3.9 2.50 4.1 2.40 4.3 2.61 4.5 2.69 4.7 2.77 4.9 0.1 0.1 7.0 0.1 2.2 4.9 2.51 4.9 2.51 4.9 2.51 4.9 2.51 4.9 2.51 6.1 1.9 3.10 1.0 3.10 1.0						4.6	5.72	3.5	2.47
浸漬 - - - 3.9 2.50 - - 4.1 2.40 - - 4.3 2.61 - - 4.5 2.69 - - 4.5 2.69 - - 4.7 2.77 - - 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 株田限界以下 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 2.3 2.0 2.8 0.9						4.9	6.27	3.7	2.43
浸漬 - - 4.1 2.40 - - 4.3 2.61 - - 4.5 2.69 - - 4.7 2.77 - - 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 株出限界以下 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.								3.9	2.50
浸漬 - - 4.3 2.61 - - - 4.5 2.69 - - - 4.7 2.77 - - 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 株出限界以下 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.1 6.8 1.1 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5								4.1	2.40
4.5 2.69 4.7 2.77 4.9 2.51 0.1 7.0 0.1 2.2 0.1 1.9 0.1 株出限界以下 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3								4.3	2.61
○ ○								4.5	2.69
○ ○								4.7	2.11
浸漬 0.1 7.0 0.1 2.2 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.0 0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5		0.1	70	0.1	2.2	0.1	1.0	4.9	
0.3 9.0 0.3 3.4 0.3 2.2 0.3 1.0 0.5 10.2 0.5 4.6 0.5 2.4 0.5 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.3 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 $64 @ 26$ 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9		0.1	7.0	0.1	2.2	0.1	1.9	0.1	候山限乔以下
10.2 0.3 1.0 1.0 0.7 8.3 0.7 5.6 0.7 2.3 0.8 0.9 0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 1.9 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7		0.5	9.0	0.5	<u> </u>	0.5	2.2	0.5	1.0
0.9 7.8 0.9 6.1 0.9 2.5 1.5 0.9 1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 1.9 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5 <		0.0	8.3	0.5	56	0.5	2.7	0.0	0.9
1.1 6.8 1.1 5.4 1.3 2.3 1.8 1.0 1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 64週後 2.1 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5 2.9 15.6 3.5 13.2 4.4 3.3 3.1 2.9 15.6 3.5 13.2 4.4 3.8 4.7 4.8 4.7 <th></th> <th>0.7</th> <td>7.8</td> <td>0.7</td> <td>61</td> <td>0.7</td> <td>2.5</td> <td>1.5</td> <td>0.0</td>		0.7	7.8	0.7	61	0.7	2.5	1.5	0.0
1.3 7.5 1.3 5.4 1.8 2.5 2.3 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 2.6 2.1 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5 2.9 15.6 3.5 13.2 4.4 3.3 3.1 20.9 3.8 12.8 4.7 4.8 4.7 4.8		1.1	6.8	1.1	5.4	1.3	2.3	1.8	1.0
1.5 7.3 1.5 5.4 2.3 2.0 2.8 0.9 1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 1.9 12.2 2.3 5.9 3.2 3.6 3.8 1.0 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5 1 1.9 2.9 15.6 3.5 13.2 4.4 3.3 1 1 2.9 15.6 3.5 13.2 4.4 3.3 1 1 2.9 15.6 3.5 13.2 4.4 3.3 1 <td< th=""><th></th><th>1.3</th><th>7.5</th><th>1.3</th><th>5.4</th><th>1.8</th><th>2.5</th><th>2.3</th><th>0.9</th></td<>		1.3	7.5	1.3	5.4	1.8	2.5	2.3	0.9
1.7 10.7 1.8 5.5 2.8 2.2 3.3 1.0 64週後 1.9 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5		1.5	7.3	1.5	5.4	2.3	2.0	2.8	0.9
浸漬 1.9 12.2 2.3 5.9 3.2 3.6 3.8 1.0 64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5		1.7	10.7	1.8	5.5	2.8	2.2	3.3	1.0
64週後 2.1 12.4 2.7 6.8 3.4 4.1 4.3 0.9 2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5 2.9 15.6 3.5 13.2 4.4 3.3 3.1 20.9 3.8 12.8 4.7 4.8	浸漬	1.9	12.2	2.3	5.9	3.2	3.6	3.8	1.0
2.3 18.4 2.9 8.8 3.6 3.9 4.7 0.9 2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5	64週後	2.1	12.4	2.7	6.8	3.4	4.1	4.3	0.9
2.5 20.0 3.1 9.5 3.9 4.1 4.9 0.9 2.7 17.2 3.3 13.8 4.2 3.5		2.3	18.4	2.9	8.8	3.6	3.9	4.7	0.9
2.7 17.2 3.3 13.8 4.2 3.5 2.9 15.6 3.5 13.2 4.4 3.3 3.1 20.9 3.8 12.8 4.7 4.8 3.2 20.8 4.1 12.2 4.0 5.0		2.5	20.0	3.1	9.5	3.9	4.1	4.9	0.9
2.9 15.6 3.5 13.2 4.4 3.3 3.1 20.9 3.8 12.8 4.7 4.8 3.2 20.8 4.1 12.2 4.0 5.0		2.7	17.2	3.3	13.8	4.2	3.5		
<u>3.1</u> <u>20.9</u> <u>3.8</u> <u>12.8</u> <u>4.7</u> <u>4.8</u>		2.9	15.6	3.5	13.2	4.4	3.3		
		3.1	20.9	3.8	12.8	4.7	4.8		
		3.3	20.8	4.1	12.2	4.9	5.9		
		3.8	19.7	4.3	12.1				
		4.3	20.2	4.0	12.4				

表 4-16 深さ方向のビッカース硬度の変化

ビッカース硬度の測定下限値は 1.0 としていたが,今年度測定されたものは測定値として示している。「検出限界以下」と記載したものは,圧痕の判定が困難で測定できなかったものである。

4.4.2 浸漬試料における元素含有率と液相濃度分析結果

EPMA の結果を数値化したものは質量割合(wt%)で得られるが,カルシウム溶出率 を算出するために,濃度(mol/L)に変換した。2001年度の検討においては下記の方 法で換算を行っていた。

質量割合[wt%](測定データ)に密度[kg/m³]を乗じて濃度を算出し,単位を変換 する([kg/L] [g/L])。

濃度[g/L]をそれぞれの原子量を用いて[mol/L]に換算する。

表面からの各深さでの密度の測定が不可能であったため,計算には初期に測定した 全体の密度を浸漬後の換算にも用いていた。しかし,初期密度を計算に用いた場合, 溶出による空隙増加に伴う密度低下が考慮されず,適切な方法とは言い難いものであ った。そこで,溶出による空隙増加に伴う密度低下を考慮するために,以下の手法を 採用することとした。

「各深さにおける EPMA 分析値合計(浸漬後)」と「EPMA 分析値合計(浸漬前: 初期値)」との比率を算出する(浸漬後 EPMA 分析値合計 / 初期 EPMA 分析値合計溶 出比率)。

初期密度に,算出した比率を乗じたものを溶出後の密度とする(初期から減少した EPMA分析値の合計=溶出による空隙増加分と仮定)(初期密度: 0×溶出比率=溶出 後密度: t)

溶出後の密度を用いて溶出率算出を行う。

換算のイメージ図を図 4-37 に示す。

図 4-37 溶出による密度低下を考慮した EPMA 測定値の単位換算方法

EPMA 合計値の比で密度を換算するためには,EPMA 合計値が密度と相関関係にあ る必要がある。そこで,本手法の適用性を確認するために,密度と EPMA 分析の合計 値との関係を整理した。配合から算出した密度と EPMA 分析の合計値との関係を図 4-38 に示す。密度が大きくなると EPMA 分析合計値も大きくなる傾向にあり,密度 と EPMA 合計値は高い相関関係にあることが分かる。このことから,EPMA 合計値 は密度の代替指標になり得るため,今回考案した換算手法に用いることは適当である と考えられる。

この手法を用いて,溶出後の密度を用いて単位換算をした場合と,初期密度を用い て単位換算をした場合の比較の一例として,W/C=40%,浸漬12週後のカルシウム濃 度を図4-39に示す。溶出がほとんど進行していない内部では,どちらの密度を用いて も換算してもカルシウム濃度にほとんど差はないが,溶出が進行している表面近傍で は溶出後の密度を用いて換算した場合のほうが濃度は低くなる結果となっている。こ れは,溶出による空隙増加を反映できているためだと考えられ,今回の単位換算には この手法を採用することとした。

図 4-38 配合から算出した密度と EPMA 分析合計値の関係

図 4-39 単位換算に用いる密度(初期密度,溶出後換算密度)の影響

EPMA による定量分析より算出した各元素濃度の深さ方向の変化を図 4-40~4-63, 表 4-17~4-20 に,各元素のコンター図を表 4-21~4-27 に示す。

濃度変化の図においては,図中に破線で浸漬前の濃度を示している。一部のコンタ ー図においては,ひび割れや,供試体が欠けているものがあるが,これは試料の調整 中に生じたものであり,浸漬によるものではない。また,それらの部分は除いて分析 を行っているため,結果には影響しない。

カルシウム濃度の傾向は, すべての水セメント比において表面付近で小さくなって おり, 内部では浸漬前と同程度となる。ごく表面ではカルシウム濃度はゼロに近い値 を示しており,表面から1mm程度の深さでは,Ca濃度が10mol/L程度の部分がある。 さらに内部で浸漬前と同程度の濃度を示しているものが多くなっており,濃度が深さ 方向に段階的に変化していることが分かる。このような濃度分布となる原因としては, ビッカース硬度の考察でも記載したように,ごく表面では水酸化カルシウム,C-S-H ともに溶出しており,表面より濃度がやや高い部分は水酸化カルシウムのみが溶出, さらに内部では溶出がほとんど進行していないからであると考えられる。濃度が減少 する深さについては,水セメント比,浸漬期間で異なっている(例えば,浸漬64週後 において初期より濃度が低下している深さは,W/C=40%では表面から1.2mm 程度, W/C=70%では2.8mm 程度,W/C=85%では3.8mm 程度となっており,W/C=105% ではほぼ全面的に濃度が低下している)。

ケイ素,アルミニウム,硫黄濃度については,ごく表面では濃度が低下しており, 内部では浸漬前と同程度である。W/C=40%では表面以外は浸漬前から濃度がほとんど 変化していないが,その他の水セメントでは,内部において浸漬前より濃度が低下し ている。これらの濃度分布においては,表面から1mm程度の深さにおいて,初期濃度 より大きくなる傾向が確認された。2001年度の報告書でも考察したように,測定試料 の周辺を樹脂で固定することによるエッジ効果の影響が考えられるが,Fauconらが実 施した浸漬試験¹⁰⁾でも同様の傾向が確認されており,ポルトランダイト(Ca(OH)²) やモノサルフェート(3CaO Al₂O₃ CaSO₄ 12H₂O)が溶解した後,Ca²⁺とAl(OH)⁻や SO₄²⁻との平衡関係によりエトリンガイト(3CaO AL₂O₃ 3CaSO₄ 32H₂O)の溶解(表 面部)と沈殿(ピークより内部側)が起こり,表面部ではSO₄²⁻の低下,表面よりや や内部では増加(ピーク),それより内部では濃度低下の傾向を示すと説明されている。 本試験結果も同様の現象によるものと考えられる。

液相の濃度分析の結果を図 4-64~4-70,表 4-28,4-29 に,積算溶出率を図 4-71~ 4-76,表 4-30,4-31 に示す(溶出率への換算は 4.2.2 項で行った方法と同じである)。 2001 年度に報告した内容と同様で,空隙率測定用試料の液相分析結果(4.2.2 項)と 比較した場合,供試体寸法の違いなどの影響で数値は多少異なっているものの,全体 的な傾向はほとんど同じである。

図 4-45 固相 S 濃度の深さ方向の変化(W/C=40%)

図 4-51 固相 S 濃度の深さ方向の変化(W/C=70%)

		浸	漬12週	发					浸	漬48週	发					浸	責64週後	É		
(mm)	Ca	Si	S	Al	Na	K	(mm)	Ca	Si	S	Al	K	Na	(mm)	Ca	Si	S	Al	K	Na
0.1	5.29	3.07	0.06	0.27	0.02	0.00	0.1	0.00	0.02	0.00	0.00	0.00	0.00	0.1	0.38	1.40	0.01	0.03	0.00	0.00
0.2	10.05	5.00	0.16	0.52	0.03	0.00	0.2	0.09	0.66	0.00	0.01	0.00	0.00	0.2	2.67	3.88	0.02	0.20	0.00	0.01
0.3	10.20	4.66	0.29	0.52	0.03	0.01	0.3	1.95	3.22	0.02	0.14	0.00	0.01	0.3	6.17	6.05	0.04	0.47	0.00	0.02
0.4	11.11	4.82	0.48	0.58	0.03	0.01	0.4	5.30	5.56	0.04	0.39	0.01	0.02	0.4	9.39	7.42	0.06	0.62	0.01	0.03
0.5	10.49	4.70	0.43	0.54	0.03	0.01	0.5	8.03	6.76	0.07	0.53	0.01	0.03	0.5	10.40	7.31	0.06	0.67	0.01	0.03
0.6	10.62	4.61	0.36	0.54	0.04	0.01	0.6	9.71	6.47	0.10	0.62	0.01	0.02	0.6	11.30	6.87	0.11	0.72	0.01	0.02
0.7	16.13	5.37	0.41	0.58	0.03	0.01	0.7	10.58	6.19	0.27	0.66	0.01	0.02	0.7	13.38	6.38	0.46	0.85	0.01	0.02
0.8	17.72	5.46	0.41	0.64	0.03	0.01	0.8	11.26	5.79	0.50	0.67	0.01	0.02	0.8	13.10	6.17	0.49	0.75	0.01	0.02
0.9	17.73	5.52	0.40	0.65	0.04	0.01	0.9	11.10	5.65	0.48	0.60	0.01	0.02	0.9	12.19	5.91	0.49	0.64	0.01	0.02
1	17.77	5.44	0.40	0.62	0.04	0.01	1	11.00	5.54	0.53	0.59	0.01	0.02	1	12.65	5.63	0.62	0.71	0.01	0.01
1.1	17.30	5.10	0.41	0.60	0.03	0.01	1.1	10.98	5.50	0.55	0.60	0.01	0.01	1.1	12.39	5.80	0.57	0.61	0.01	0.02
1.2	17.64	5.20	0.42	0.56	0.03	0.01	1.2	11.03	5.40	0.46	0.58	0.01	0.02	1.2	12.51	5.63	0.54	0.64	0.01	0.02
1.3	17.36	5.29	0.45	0.60	0.04	0.01	1.3	12.05	5.50	0.41	0.59	0.01	0.01	1.3	18.45	5.34	0.38	0.65	0.01	0.02
1.4	17.49	5.35	0.44	0.64	0.04	0.01	1.4	15.16	4.98	0.42	0.62	0.01	0.02	1.4	19.19	5.26	0.47	0.68	0.01	0.02
1.5	17.90	5.36	0.43	0.59	0.05	0.01	1.5	16.84	5.07	0.39	0.63	0.01	0.02	1.5	19.27	5.28	0.40	0.65	0.02	0.01
1.6	17.35	5.31	0.43	0.65	0.04	0.01	1.6	16.93	5.04	0.39	0.61	0.01	0.02	1.6	19.11	5.15	0.48	0.64	0.01	0.02
1.7	17.39	5.31	0.39	0.61	0.03	0.01	1.7	17.81	5.19	0.39	0.59	0.01	0.02	1.7	19.07	5.07	0.51	0.68	0.01	0.01
1.8	17.34	5.16	0.37	0.58	0.03	0.01	1.8	17.18	5.05	0.43	0.59	0.01	0.02	1.8	18.83	5.18	0.53	0.65	0.01	0.01
1.9	17.52	5.32	0.40	0.60	0.03	0.01	1.9	17.01	5.09	0.46	0.66	0.01	0.02	1.9	19.28	5.18	0.47	0.66	0.02	0.01
2	17.59	5.41	0.41	0.61	0.04	0.01	2	17.42	5.18	0.50	0.65	0.01	0.01	2	19.32	5.22	0.49	0.64	0.01	0.01
2.1	17.35	5.25	0.42	0.63	0.04	0.01	2.1	17.26	5.13	0.44	0.61	0.01	0.02	2.1	19.11	5.12	0.49	0.69	0.01	0.02
2.2	17.67	5.32	0.42	0.59	0.02	0.01	2.2	17.52	5.11	0.43	0.63	0.01	0.02	2.2	19.51	5.19	0.46	0.67	0.01	0.02
2.3	17.48	5.48	0.42	0.61	0.04	0.01	2.3	16.98	5.06	0.40	0.60	0.01	0.02	2.3	18.89	5.15	0.45	0.68	0.02	0.01
2.4	17.74	5.39	0.42	0.64	0.03	0.01	2.4	17.24	4.93	0.44	0.60	0.01	0.01	2.4	18.85	5.10	0.46	0.62	0.01	0.01
2.5	17.66	5.24	0.38	0.62	0.03	0.01	2.5	18.05	5.03	0.42	0.58	0.01	0.02	2.5	18.99	5.02	0.44	0.64	0.01	0.01
2.6	17.71	5.33	0.41	0.62	0.03	0.01	2.6	16.70	4.97	0.41	0.64	0.01	0.02	2.6	19.17	5.09	0.45	0.65	0.01	0.02
2.7	17.52	5.48	0.42	0.60	0.03	0.01	2.7	17.48	4.98	0.41	0.62	0.01	0.02	2.7	19.38	5.19	0.45	0.69	0.01	0.02
2.8	17.42	5.31	0.38	0.64	0.04	0.01	2.8	17.42	5.03	0.41	0.62	0.01	0.01	2.8	18.93	5.08	0.49	0.66	0.01	0.02
2.9	17.20	5.32	0.39	0.59	0.03	0.01	2.9	17.22	5.05	0.40	0.60	0.01	0.02	2.9	19.06	5.11	0.43	0.63	0.01	0.01
3	17.54	5.47	0.43	0.62	0.03	0.01	3	17.18	5.04	0.38	0.59	0.01	0.02	3	19.01	5.07	0.45	0.67	0.01	0.01
3.1	17.35	5.41	0.39	0.62	0.03	0.01	3.1	16.95	4.98	0.41	0.61	0.01	0.02	3.1	19.31	5.17	0.45	0.67	0.02	0.01
3.2	17.50	5.23	0.33	0.59	0.02	0.01	3.2	17.08	4.99	0.39	0.61	0.02	0.01	3.2	19.30	5.20	0.45	0.64	0.01	0.02
3.3	17.43	5.43	0.40	0.01	0.03	0.01	3.3	17.13	4.94	0.44	0.01	0.01	0.01	3.3	19.94	5.39	0.42	0.69	0.01	0.02
3.4	17.20	5.33	0.41	0.62	0.03	0.01	3.4	17.12	4.97	0.41	0.62	0.01	0.02	3.4	10.70	5.20	0.40	0.69	0.01	0.02
3.0	17.40	5.33	0.40	0.00	0.02	0.01	3.0	17.23	1.00	0.39	0.50	0.01	0.02	3.0	19.12	5.15	0.44	0.00	0.01	0.02
3.0	17.30	5.20	0.42	0.61	0.03	0.01	3.0	17.13	4.90	0.39	0.00	0.02	0.01	3.0	10.90	5.14	0.40	0.70	0.01	0.02
3.1	17.55	5.24	0.41	0.04	0.03	0.01	3.1	17.00	5.02	0.41	0.03	0.01	0.01	3.8	18.02	5.12	0.43	0.00	0.01	0.02
3.0	17.41	5.10	0.40	0.03	0.03	0.01	3.0	16.03	5.02	0.44	0.62	0.01	0.01	3.0	10.92	5.12	0.43	0.00	0.01	0.02
3.5	17.47	5.19	0.39	0.00	0.03	0.01	3.9	16.69	4.07	0.39	0.02	0.01	0.01	3.9	10.15	5.10	0.43	0.04	0.01	0.01
4	17./?	5.24	0.30	0.00	0.04	0.01	4	17.18	5.06	0.40	0.01	0.01	0.02	41	10.13	5.10	0.43	0.65	0.01	0.01
4.1	17.43	5.24	0.40	0.04	0.04	0.01	4.1	17.10	5.00	0.30	0.03	0.01	0.02	4.1	10.37	5.16	0.40	0.00	0.01	0.02
4.2	17.01	5.16	0.43	0.05	0.03	0.01	4.2	16.61	5.00	0.41	0.00	0.01	0.01	4.2	10.27	5.00	0.42	0.02	0.01	0.02
4.5	17.13	5.21	0.40	0.50	0.03	0.01	4.5	17.45	5.03	0.40	0.50	0.01	0.02	4.5	10.1/	5.09	0.45	0.02	0.01	0.01
4.4	17.50	5.13	0.41	0.59	0.03	0.01	4.4	16.62	4.84	0.40	0.62	0.02	0.02	4.4	19.44	5.10	0.40	0.03	0.01	0.02
4.5	17.17	5.13	0.30	0.59	0.03	0.01	4.5	16.02	5.02	0.43	0.61	0.01	0.01	4.5	19.19	5.19	0.44	0.66	0.01	0.01
4.0	17.12	5.28	0.40	0.02	0.02	0.01	4.0	16.90	4 98	0.42	0.63	0.01	0.02	4.0	19.00	5 15	0.44	0.00	0.02	0.02
4.8	16.93	5.08	0.00	0.53	0.03	0.01	4.8	17.10	4.80	0.44	0.60	0.01	0.02	4.8	18.98	5 20	0.43	0.61	0.02	0.02
4.9	17.15	5.00	0.39	0.67	0.02	0.01	4.9	16.77	4.83	0.37	0.61	0.01	0.02	4.9	18.76	5.03	0.43	0.63	0.02	0.01
5	17.54	5.20	0.37	0.61	0.02	0.01	5	17.10	4.96	0.39	0.59	0.02	0.02	5	19.13	5 34	0.42	0.67	0.01	0.01
5	11.04	0.20	0.01	0.01	5.52	0.01	5	11.10	7.00	0.00	5.55	0.02	0.02		10.10	0.04	0.42	0.01	0.01	0.01

表 4-17 EPMA 分析結果 (W/C=40%, 単位:mol/L)

		浸	漬12週	後					浸	漬48週	後					浸	漬64週	後		
(mm)	Ca	Si	S	Al	Na	K		Ca	Si	S	Al	K	Na		Ca	Si	S	Al	K	Na
0.1	3.42	1.84	0.08	0.19	0.01	0.00	0.1	0.00	0.04	0.00	0.00	0.00	0.00	0.1	0.00	0.09	0.00	0.00	0.00	0.00
0.2	5.31	2.72	0.14	0.30	0.01	0.00	0.2	0.55	1.33	0.01	0.04	0.00	0.00	0.2	0.38	1.06	0.01	0.03	0.00	0.00
0.3	5.59	2.79	0.19	0.31	0.01	0.00	0.3	2.51	3.08	0.02	0.18	0.00	0.01	0.3	2.02	2.70	0.02	0.15	0.00	0.00
0.4	5.70	2.78	0.18	0.31	0.01	0.00	0.4	4.21	4.02	0.03	0.27	0.01	0.01	0.4	3.49	3.71	0.03	0.24	0.00	0.01
0.5	5.58	2.74	0.20	0.30	0.01	0.00	0.5	6.13	4.31	0.07	0.36	0.01	0.01	0.5	5.43	4.36	0.03	0.32	0.01	0.02
0.6	5.27	2.60	0.21	0.29	0.01	0.00	0.6	7.94	4.25	0.17	0.46	0.00	0.01	0.6	6.81	4.40	0.10	0.40	0.01	0.03
0.7	5.99	2.90	0.23	0.32	0.01	0.00	0.7	7.68	3.86	0.23	0.46	0.01	0.01	0.7	7.08	3.78	0.21	0.44	0.00	0.01
0.8	5.82	2.78	0.23	0.32	0.01	0.00	0.8	6.89	3.80	0.26	0.38	0.00	0.01	0.8	6.96	3.55	0.23	0.44	0.00	0.01
0.9	6.47	3.04	0.23	0.36	0.01	0.00	0.9	7.18	3.89	0.22	0.39	0.00	0.01	0.9	6.94	3.55	0.26	0.42	0.01	0.01
1	5.84	2.67	0.28	0.34	0.01	0.00	1	6.64	3.72	0.30	0.37	0.01	0.01	1	6.41	3.43	0.28	0.37	0.00	0.01
1.1	6.07	2.86	0.25	0.32	0.01	0.00	1.1	6.60	3.73	0.27	0.38	0.00	0.01	1.1	6.65	3.58	0.26	0.36	0.00	0.01
1.2	6.51	2.99	0.25	0.36	0.01	0.00	1.2	6.95	3.73	0.28	0.39	0.00	0.01	1.2	6.63	3.68	0.25	0.36	0.00	0.02
1.3	6.39	2.94	0.26	0.35	0.02	0.00	1.3	6.85	3.72	0.41	0.38	0.01	0.01	1.3	6.55	3.50	0.29	0.35	0.00	0.01
1.4	6.91	3.00	0.26	0.35	0.02	0.00	1.4	7.35	3.88	0.32	0.40	0.01	0.01	1.4	6.34	3.47	0.26	0.33	0.00	0.02
1.5	8.93	3.37	0.27	0.39	0.01	0.01	1.5	7.03	3.76	0.34	0.37	0.00	0.01	1.5	6.94	3.60	0.30	0.37	0.00	0.01
1.6	10.18	3.32	0.25	0.37	0.02	0.00	1.6	6.84	3.68	0.32	0.37	0.00	0.01	1.6	6.95	3.64	0.27	0.37	0.00	0.01
1.7	10.15	3.48	0.24	0.42	0.03	0.00	1./	6.80	3.64	0.31	0.38	0.01	0.00	1.7	0.62	3.56	0.30	0.35	0.00	0.01
1.8	8.28	3.05	0.22	0.33	0.02	0.00	1.8	6.78	3.69	0.32	0.36	0.01	0.01	1.8	7.08	3.58	0.29	0.39	0.00	0.01
1.9	7.51	2.60	0.20	0.32	0.02	0.00	1.9	0.03	3.56	0.27	0.38	0.01	0.01	1.9	0.77	3.55	0.33	0.38	0.00	0.02
2	7.95	2.57	0.19	0.31	0.02	0.00	21	7.14	3.79	0.30	0.38	0.01	0.01	2	0.74	3.50	0.30	0.38	0.01	0.01
2.1	7.00	2.12	0.20	0.31	0.02	0.00	2.1	6.42	3.38	0.29	0.30	0.00	0.01	2.1	7.04	3.00	0.29	0.38	0.00	0.02
2.2	7.00	2.07	0.22	0.32	0.02	0.00	2.2	7.20	3.59	0.25	0.33	0.00	0.01	2.2	7.04	3.09	0.28	0.37	0.00	0.01
2.3	7.90	2.94	0.24	0.33	0.02	0.00	2.3	7.39	3.00	0.20	0.39	0.01	0.01	2.3	6.70	3.00	0.20	0.37	0.01	0.01
2.4	7.03	2.99	0.21	0.33	0.02	0.00	2.4	7.90	3.47	0.27	0.30	0.01	0.00	2.4	0.79	3.03	0.30	0.30	0.00	0.01
2.5	7.50	2.75	0.22	0.30	0.02	0.00	2.5	3.34	3.30	0.20	0.40	0.01	0.01	2.5	7.62	3.45	0.20	0.35	0.00	0.01
2.0	830	2.00	0.21	0.32	0.02	0.00	2.0	11.20	3.42	0.20	0.41	0.01	0.01	2.0	8.37	3.55	0.24	0.30	0.00	0.01
2.7	7 97	2.91	0.22	0.30	0.03	0.00	2.7	11.20	3.58	0.27	0.39	0.01	0.01	2.7	10.37	3.30	0.25	0.37	0.00	0.01
2.0	8.10	2.52	0.21	0.32	0.02	0.00	2.0	11.01	3.27	0.20	0.40	0.01	0.01	2.0	11.00	3.47	0.20	0.43	0.01	0.01
2.5	7 94	2.00	0.22	0.32	0.01	0.00	3	11.70	3.50	0.20	0.33	0.01	0.01	3	11.60	3 33	0.31	0.43	0.01	0.02
31	8.24	3.02	0.21	0.32	0.02	0.00	31	11.02	3.61	0.23	0.41	0.01	0.01	31	12.04	3.49	0.31	0.45	0.01	0.02
32	8.32	2.92	0.23	0.34	0.02	0.00	3.2	11.50	3 37	0.27	0.40	0.01	0.01	32	12.04	3 35	0.27	0.43	0.01	0.02
33	7.66	2.88	0.10	0.00	0.02	0.00	33	11.60	3.47	0.01	0.42	0.01	0.01	3.3	12.00	3 38	0.32	0.46	0.01	0.02
3.4	7.68	2.85	0.19	0.31	0.02	0.00	3.4	11.53	3.39	0.30	0.43	0.01	0.01	3.4	12.22	3.44	0.29	0.45	0.01	0.02
3.5	7.83	2.92	0.22	0.34	0.02	0.00	3.5	11.65	3.37	0.29	0.42	0.01	0.01	3.5	11.89	3.42	0.29	0.45	0.00	0.01
3.6	7.56	2.78	0.20	0.30	0.02	0.00	3.6	12.12	3.49	0.34	0.43	0.01	0.01	3.6	12.36	3.31	0.28	0.43	0.01	0.02
3.7	8.00	2.85	0.21	0.34	0.02	0.00	3.7	11.82	3.49	0.32	0.45	0.01	0.01	3.7	12.33	3.47	0.29	0.40	0.01	0.02
3.8	7.45	2.81	0.21	0.30	0.02	0.00	3.8	10.88	3.38	0.28	0.41	0.01	0.01	3.8	12.24	3.42	0.32	0.45	0.01	0.02
3.9	8.15	2.93	0.23	0.34	0.02	0.00	3.9	11.24	3.48	0.27	0.43	0.01	0.01	3.9	12.40	3.53	0.31	0.47	0.01	0.02
4	7.90	2.86	0.23	0.34	0.02	0.00	4	11.73	3.47	0.27	0.40	0.01	0.01	4	12.49	3.42	0.32	0.45	0.01	0.02
4.1	7.62	2.75	0.20	0.29	0.02	0.00	4.1	11.62	3.47	0.28	0.43	0.01	0.01	4.1	12.33	3.46	0.30	0.41	0.01	0.02
4.2	7.70	2.67	0.21	0.30	0.02	0.00	4.2	11.50	3.45	0.27	0.41	0.01	0.01	4.2	11.97	3.37	0.30	0.41	0.01	0.01
4.3	7.88	2.82	0.20	0.32	0.02	0.00	4.3	11.11	3.60	0.26	0.43	0.01	0.01	4.3	12.64	3.34	0.32	0.44	0.01	0.02
4.4	7.95	2.87	0.21	0.32	0.02	0.00	4.4	11.10	3.49	0.32	0.41	0.01	0.01	4.4	12.04	3.59	0.30	0.45	0.01	0.02
4.5	8.08	2.90	0.19	0.29	0.01	0.00	4.5	11.42	3.50	0.28	0.45	0.01	0.01	4.5	13.05	3.54	0.32	0.49	0.01	0.02
4.6	7.79	2.79	0.23	0.31	0.02	0.00	4.6	11.43	3.36	0.28	0.42	0.01	0.01	4.6	12.36	3.54	0.28	0.44	0.01	0.02
4.7	8.16	2.64	0.19	0.28	0.02	0.00	4.7	11.25	3.42	0.29	0.40	0.01	0.01	4.7	12.28	3.46	0.32	0.47	0.01	0.01
4.8	8.02	2.93	0.21	0.32	0.02	0.00	4.8	11.77	3.33	0.29	0.40	0.01	0.01	4.8	12.05	3.46	0.28	0.40	0.01	0.02
4.9	7.70	2.83	0.23	0.31	0.02	0.00	4.9	11.37	3.47	0.29	0.41	0.01	0.01	4.9	11.68	3.41	0.31	0.41	0.01	0.02
5	7.25	2.77	0.23	0.34	0.02	0.00	5	11.32	3.43	0.29	0.41	0.00	0.01	5	12.29	3.47	0.29	0.45	0.01	0.01

表 4-18 EPMA 分析結果(W/C=70%, 単位:mol/L)

		浸	清12週	後					浸	清48调	後					浸	清64调	後		
(mm)	Ca	Si	S	Al	Na	K		Ca	Si	S	Al	K	Na		Ca	Si	S	Al	K	Na
0.1	2.89	1.55	0.06	0.14	0.02	0.00	0.1	0.00	0.05	0.00	0.00	0.00	0.00	0.1	1.10	1.69	0.01	0.07	0.00	0.01
0.2	4.30	2.26	0.08	0.27	0.02	0.00	0.2	0.01	0.14	0.00	0.00	0.00	0.00	0.2	1.99	2.44	0.02	0.13	0.00	0.01
0.3	4.69	2.50	0.12	0.27	0.02	0.00	0.3	1.56	2.16	0.02	0.11	0.00	0.01	0.3	2.83	3.20	0.03	0.18	0.00	0.01
0.4	4.85	2.57	0.13	0.28	0.02	0.00	0.4	2.23	2.76	0.02	0.14	0.00	0.01	0.4	4.24	3.71	0.02	0.25	0.00	0.02
0.5	4.71	2.47	0.15	0.28	0.02	0.00	0.5	3.59	3.44	0.04	0.22	0.00	0.01	0.5	5.35	3.67	0.06	0.31	0.00	0.01
0.6	4.98	2.58	0.16	0.27	0.02	0.00	0.6	5.00	3.74	0.06	0.30	0.01	0.01	0.6	6.41	3.20	0.16	0.45	0.00	0.02
0.7	4.90	2.50	0.21	0.28	0.02	0.00	0.7	6.15	3.48	0.15	0.39	0.01	0.01	0.7	5.68	3.18	0.17	0.32	0.00	0.01
0.8	5.00	2.51	0.21	0.30	0.02	0.00	0.8	5.59	3.25	0.19	0.34	0.00	0.01	0.8	5.60	3.17	0.16	0.32	0.00	0.01
0.9	4.92	2.45	0.22	0.30	0.02	0.00	0.9	5.28	3.13	0.18	0.33	0.01	0.01	0.9	5.30	3.07	0.19	0.31	0.00	0.01
1	5.15	2.60	0.20	0.30	0.02	0.00	1	5.45	3.19	0.21	0.32	0.01	0.01	1	5.52	3.08	0.21	0.31	0.00	0.01
1.1	5.05	2.58	0.22	0.29	0.02	0.00	1.1	5.27	3.25	0.21	0.30	0.00	0.01	1.1	5.20	3.05	0.21	0.30	0.00	0.01
1.2	5.32	2.57	0.23	0.30	0.02	0.00	1.2	5.25	3.14	0.20	0.29	0.00	0.01	1.2	5.14	2.99	0.21	0.29	0.00	0.01
1.3	4.96	2.47	0.22	0.28	0.02	0.00	1.3	5.49	3.25	0.22	0.31	0.00	0.01	1.3	5.20	3.05	0.22	0.28	0.00	0.01
1.4	4.92	2.47	0.21	0.27	0.02	0.00	1.4	5.20	3.13	0.21	0.29	0.00	0.01	1.4	5.34	3.08	0.24	0.28	0.00	0.02
1.5	5.13	2.50	0.20	0.29	0.02	0.00	1.5	5.28	3.18	0.23	0.29	0.00	0.01	1.5	5.33	3.11	0.20	0.27	0.00	0.01
1.6	4.62	2.25	0.17	0.25	0.02	0.00	1.6	5.41	3.20	0.24	0.29	0.00	0.01	1.6	5.32	3.07	0.22	0.30	0.00	0.01
1.7	5.82	2.47	0.20	0.28	0.02	0.00	1.7	5.52	3.16	0.28	0.33	0.00	0.01	1.7	5.78	3.10	0.25	0.33	0.00	0.01
1.8	7.50	2.79	0.20	0.29	0.02	0.00	1.8	5.59	3.15	0.27	0.35	0.00	0.01	1.8	5.39	3.05	0.24	0.30	0.00	0.01
1.9	8.11	2.88	0.26	0.36	0.02	0.00	1.9	5.59	3.22	0.28	0.33	0.00	0.01	1.9	5.31	2.97	0.24	0.31	0.00	0.01
2	9.00	2.95	0.21	0.34	0.02	0.00	2	5.42	3.16	0.27	0.33	0.00	0.01	2	5.81	3.22	0.21	0.32	0.01	0.01
2.1	9.07	2.94	0.22	0.33	0.02	0.00	2.1	5.23	3.07	0.26	0.29	0.00	0.01	2.1	5.51	3.15	0.23	0.31	0.00	0.01
2.2	9.10	3.07	0.21	0.34	0.02	0.01	2.2	5.69	3.20	0.27	0.35	0.01	0.01	2.2	5.66	3.14	0.24	0.32	0.00	0.01
2.3	8.86	2.90	0.20	0.33	0.02	0.00	2.3	5.65	3.20	0.23	0.33	0.00	0.01	2.3	5.59	3.10	0.22	0.32	0.00	0.01
2.4	8.22	2.92	0.19	0.31	0.03	0.01	2.4	5.59	3.14	0.25	0.32	0.00	0.01	2.4	5.60	3.08	0.23	0.32	0.00	0.02
2.5	9.56	2.89	0.22	0.32	0.02	0.00	2.5	5.71	3.20	0.22	0.31	0.01	0.01	2.5	5.24	3.04	0.21	0.29	0.00	0.01
2.6	9.08	3.10	0.20	0.33	0.02	0.00	2.6	5.49	3.17	0.24	0.32	0.00	0.01	2.6	5.63	3.10	0.20	0.31	0.00	0.01
2.7	9.32	3.07	0.19	0.34	0.02	0.00	2.7	5.34	3.14	0.27	0.30	0.01	0.01	2.7	5.48	3.16	0.21	0.29	0.00	0.01
2.8	8.90	2.80	0.24	0.34	0.02	0.00	2.8	5.10	2.98	0.22	0.29	0.00	0.01	2.8	5.84	3.20	0.20	0.30	0.00	0.01
2.9	9.26	2.93	0.21	0.34	0.03	0.00	2.9	5.33	3.12	0.22	0.32	0.00	0.01	2.9	5.96	3.20	0.21	0.33	0.00	0.01
3	8.59	2.86	0.24	0.37	0.03	0.00	3	5.44	3.12	0.25	0.31	0.00	0.01	3	5.88	3.07	0.23	0.32	0.00	0.01
3.1	8.96	2.97	0.21	0.32	0.02	0.00	3.1	5.48	3.06	0.25	0.30	0.00	0.01	3.1	5.64	3.07	0.22	0.31	0.00	0.01
3.2	8.52	2.84	0.22	0.31	0.02	0.00	3.2	5.82	3.13	0.24	0.31	0.00	0.01	3.2	5.77	3.01	0.27	0.32	0.00	0.01
3.3	8.96	2.98	0.23	0.35	0.02	0.00	3.3	6.34	3.19	0.23	0.32	0.00	0.01	3.3	5.63	3.04	0.20	0.31	0.00	0.01
3.4	9.07	3.01	0.23	0.33	0.03	0.00	3.4	6.90	3.24	0.25	0.33	0.01	0.01	3.4	5.74	2.97	0.21	0.31	0.00	0.01
3.5	9.14	2.88	0.22	0.34	0.02	0.00	3.5	1.4Z	3.13	0.22	0.33	0.01	0.01	3.5	0.74	3.09	0.22	0.33	0.00	0.01
3.0	9.16	2.96	0.21	0.34	0.02	0.00	3.0	8.38	3.01	0.27	0.35	0.00	0.01	3.6	1.19	3.19	0.22	0.39	0.01	0.01
3.7	9.18	2.92	0.18	0.34	0.02	0.00	3.7	9.23	3.00	0.28	0.39	0.01	0.01	3.7	0.32	3.11	0.21	0.35	0.00	0.02
3.0	9.09	3.20	0.24	0.37	0.02	0.00	3.0	9.49	3.14	0.24	0.39	0.01	0.01	3.0	9.00	3.01	0.24	0.35	0.01	0.02
3.9	0.90	2.02	0.22	0.34	0.02	0.01	3.9	9.02	3.14	0.24	0.30	0.01	0.01	3.9	9.09	2.03	0.22	0.34	0.00	0.01
4	0.04	2.00	0.22	0.30	0.02	0.00	4	9.70	3.07	0.20	0.39	0.01	0.01	4	0.97	2.97	0.20	0.34	0.00	0.01
4.1	0.04	3.01	0.22	0.32	0.02	0.00	4.1	9.40	2.02	0.23	0.33	0.01	0.01	4.1	0.90	2.09	0.23	0.30	0.00	0.01
4.2	9.29	3.10	0.20	0.32	0.03	0.00	4.2	9.00	2.99	0.20	0.37	0.00	0.01	4.2	9.03	2.19	0.23	0.33	0.01	0.01
4.3	8.06	3.00	0.20	0.37	0.02	0.01	4.3	9.84	3.00	0.25	0.30	0.01	0.01	4.3	9.24	2.97	0.20	0.34	0.01	0.01
4.4	0.50	2.00	0.22	0.32	0.02	0.00	4.4	10.10	3.04	0.25	0.30	0.00	0.01	4.4	3.57	2.33	0.21	0.33	0.00	0.01
4.5	9.10	2.99	0.22	0.33	0.02	0.00	4.5	10.10	3.09	0.20	0.37	0.01	0.01	4.5	0.50	2.00	0.21	0.32	0.00	0.01
4.0	9.71	2.90	0.22	0.34	0.03	0.01	4.0	0.07	3.20	0.27	0.41	0.01	0.01	4.0	9.09	2.90	0.20	0.33	0.01	0.02
4.7	8.80	2.99	0.23	0.31	0.02	0.00	4.7	3.07	3.14	0.27	0.30	0.01	0.01	4.7	0.04	2.97	0.23	0.34	0.01	0.02
4.0	0.00	3.05	0.21	0.34	0.03	0.01	4.0	10.07	3.13	0.20	0.42	0.01	0.01	4.0	3.33	2.09	0.23	0.37	0.00	0.01
4.9	9.39	3.00	0.23	0.30	0.03	0.01	4.9	10.37	2.09	0.24	0.34	0.01	0.01	4.9	10.00	2.90	0.23	0.30	0.00	0.02
	9.00	3.20	0.24	0.39	0.02	0.00	<u> </u>	10.00	2.94	0.20	0.55	0.01	0.01	5	10.22	2.91	0.24	0.30	0.01	0.01

表 4-19 EPMA 分析結果(W/C=85%, 単位:mol/L)

		浸	浸 [12週	後					浸	漬48週	後					浸	.漬64週	发		
(mm)	Ca	Si	S	Al	Na	K		Ca	Si	S	AI	K	Na		Ca	Si	S	AI	K	Na
0.1	2.26	1.21	0.04	0.11	0.01	0.00	0.1	0.00	0.02	0.00	0.00	0.00	0.00	0.1	0.01	0.05	0.00	0.00	0.00	0.00
0.2	3.43	1.80	0.07	0.18	0.01	0.00	0.2	0.00	0.01	0.00	0.00	0.00	0.00	0.2	0.91	1.63	0.01	0.07	0.00	0.01
0.3	379	1.98	0.09	0.22	0.02	0.00	0.3	0.13	0.60	0.00	0.01	0.00	0.00	0.3	1.54	216	0.02	0.11	0.00	0.01
0.0	4.35	2.23	0.09	0.26	0.02	0.00	0.0	0.10	0.90	0.00	0.02	0.00	0.00	0.0	1.88	2.52	0.02	0.13	0.00	0.01
0.4	4.00	2.20	0.00	0.23	0.02	0.00	0.4	0.46	1 10	0.01	0.02	0.00	0.00	0.4	2.05	2.02	0.02	0.10	0.00	0.01
0.5	3.81	2.04	0.00	0.23	0.02	0.00	0.5	0.40	1.15	0.01	0.05	0.00	0.00	0.5	3.08	2.50	0.03	0.13	0.00	0.01
0.0	4.06	2.02	0.13	0.23	0.01	0.00	0.0	1.53	1.50	0.01	0.00	0.00	0.00	0.0	1 28	3.00	0.15	0.20	0.00	0.02
0.7	3.0/	2.11	0.14	0.23	0.01	0.00	0.7	2.67	2.00	0.04	0.10	0.00	0.00	0.7	4.20	2.83	0.10	0.33	0.01	0.02
0.0	1 37	2.01	0.17	0.25	0.01	0.00	0.0	3.86	2.03	0.03	0.17	0.00	0.00	0.0	4.12	2.00	0.10	0.32	0.00	0.02
1	4.02	2.25	0.10	0.20	0.01	0.00	1	3.00	2.01	0.12	0.25	0.00	0.01	1	3.90	2.00	0.11	0.30	0.00	0.02
11	4.02	2.00	0.10	0.24	0.02	0.00	11	1.90	2.01	0.14	0.25	0.00	0.01	11	3.09	2.00	0.12	0.30	0.00	0.01
1.1	4.14	2.00	0.19	0.23	0.01	0.00	1.1	3.95	2.09	0.13	0.20	0.00	0.01	1.1	3.55	2.74	0.12	0.20	0.00	0.02
1.2	2.02	2.07	0.10	0.24	0.02	0.00	1.2	3.00	2.00	0.14	0.24	0.00	0.01	1.2	3.03	2.02	0.13	0.24	0.00	0.01
1.3	3.92	1.97	0.17	0.23	0.01	0.00	1.3	3.92	2.09	0.15	0.22	0.01	0.00	1.0	3.73	2.02	0.14	0.25	0.00	0.02
1.4	4.23	2.00	0.17	0.25	0.02	0.00	1.4	3.71	2.00	0.15	0.21	0.00	0.01	1.4	3.70	2.91	0.11	0.20	0.00	0.02
1.5	4.53	2.20	0.17	0.25	0.02	0.00	1.5	3.60	2.04	0.17	0.22	0.00	0.01	1.5	3.11	2.70	0.19	0.25	0.00	0.02
1.0	4.07	2.02	0.17	0.24	0.01	0.00	1.0	4.02	2.07	0.10	0.24	0.00	0.01	1.0	3.09	2.04	0.13	0.25	0.00	0.02
1.7	3.95	1.90	0.10	0.23	0.01	0.00	1.7	4.04	2.09	0.19	0.25	0.00	0.01	1.7	3.01	2.09	0.20	0.24	0.00	0.01
1.0	3.94	1.98	0.10	0.22	0.01	0.00	1.0	3.94	2.60	0.19	0.25	0.00	0.00	1.0	3.57	2.07	0.17	0.24	0.00	0.01
1.9	4.45	2.11	0.15	0.25	0.01	0.00	1.9	4.04	2.62	0.20	0.25	0.00	0.01	1.9	3.92	2.85	0.15	0.25	0.00	0.02
2	4.83	2.19	0.10	0.25	0.02	0.00	2	4.00	2.00	0.20	0.24	0.00	0.01	2	3.91	2.00	0.18	0.25	0.00	0.02
2.1	0.70	2.40	0.15	0.27	0.02	0.00	2.1	3.70	2.40	0.23	0.23	0.00	0.00	2.1	3.83	2.12	0.20	0.27	0.00	0.02
2.2	6.05	2.19	0.17	0.26	0.02	0.00	2.2	4.19	2.12	0.23	0.26	0.00	0.00	2.2	3.11	2.76	0.18	0.26	0.00	0.02
2.3	5.99	2.28	0.16	0.28	0.02	0.00	2.3	3.83	2.49	0.20	0.24	0.00	0.00	2.3	3.68	2.70	0.16	0.24	0.00	0.01
2.4	0.00	2.31	0.18	0.28	0.01	0.00	2.4	4.19	2.59	0.23	0.26	0.00	0.01	2.4	3.91	2.82	0.16	0.27	0.00	0.02
2.5	7.44	2.57	0.18	0.30	0.02	0.00	2.5	3.68	2.50	0.17	0.23	0.00	0.00	2.5	3.69	2.72	0.18	0.24	0.00	0.01
2.6	7.90	2.55	0.28	0.32	0.02	0.00	2.6	3.88	2.59	0.20	0.23	0.00	0.01	2.6	3.55	2.62	0.24	0.25	0.00	0.02
2.7	7.20	2.51	0.16	0.29	0.02	0.00	2.7	4.16	2.62	0.19	0.25	0.00	0.01	2.7	3.67	2.70	0.15	0.24	0.00	0.01
2.8	7.23	2.49	0.17	0.27	0.02	0.00	2.8	3.86	2.54	0.20	0.24	0.00	0.00	2.8	3.68	2.70	0.18	0.25	0.00	0.02
2.9	7.06	2.40	0.15	0.27	0.01	0.00	2.9	4.01	2.60	0.19	0.25	0.00	0.01	2.9	3.77	2.71	0.18	0.26	0.00	0.01
3	7.13	2.44	0.16	0.30	0.02	0.00	3	3.90	2.57	0.19	0.24	0.00	0.01	3	3.66	2.63	0.22	0.26	0.00	0.01
3.1	7.43	2.69	0.18	0.30	0.02	0.00	3.1	3.68	2.54	0.16	0.22	0.00	0.01	3.1	3.86	2.79	0.15	0.26	0.00	0.01
3.2	6.83	2.30	0.15	0.25	0.02	0.00	3.2	4.14	2.64	0.19	0.26	0.00	0.01	3.2	3.91	2.75	0.18	0.26	0.00	0.02
3.3	6.86	2.47	0.21	0.29	0.02	0.00	3.3	3.72	2.46	0.19	0.21	0.00	0.01	3.3	3.72	2.71	0.17	0.26	0.00	0.01
3.4	6.71	2.17	0.18	0.26	0.02	0.00	3.4	3.94	2.61	0.18	0.24	0.00	0.00	3.4	3.91	2.79	0.18	0.26	0.00	0.01
3.5	7.42	2.38	0.20	0.30	0.03	0.00	3.5	3.96	2.60	0.16	0.24	0.01	0.01	3.5	4.04	2.80	0.21	0.28	0.00	0.01
3.6	7.54	2.24	0.18	0.24	0.02	0.00	3.6	4.24	2.64	0.20	0.26	0.00	0.01	3.6	3.73	2.67	0.19	0.24	0.00	0.01
3.7	7.01	2.37	0.17	0.29	0.02	0.00	3.7	3.88	2.54	0.16	0.24	0.00	0.01	3.7	3.78	2.77	0.16	0.26	0.00	0.01
3.8	7.24	2.38	0.17	0.29	0.02	0.00	3.8	4.43	2.72	0.19	0.26	0.00	0.01	3.8	3.80	2.73	0.16	0.27	0.00	0.01
3.9	8.15	2.56	0.20	0.29	0.03	0.00	3.9	3.81	2.60	0.17	0.24	0.00	0.01	3.9	3.69	2.72	0.16	0.25	0.00	0.01
4	7.27	2.50	0.17	0.28	0.02	0.00	4	4.02	2.65	0.16	0.26	0.00	0.01	4	3.60	2.67	0.16	0.25	0.00	0.02
4.1	7.32	2.54	0.19	0.29	0.02	0.00	4.1	4.28	2.62	0.24	0.26	0.00	0.01	4.1	3.53	2.62	0.21	0.25	0.00	0.02
4.2	7.73	2.48	0.18	0.28	0.02	0.00	4.2	4.06	2.62	0.16	0.23	0.00	0.01	4.2	3.95	2.78	0.18	0.28	0.00	0.02
4.3	7.35	2.52	0.18	0.28	0.02	0.00	4.3	3.91	2.58	0.16	0.21	0.00	0.01	4.3	3.79	2.69	0.22	0.26	0.00	0.01
4.4	7.24	2.36	0.16	0.26	0.02	0.00	4.4	3.95	2.57	0.15	0.22	0.00	0.00	4.4	3.89	2.71	0.22	0.27	0.00	0.01
4.5	7.63	2.42	0.18	0.30	0.02	0.00	4.5	4.37	2.66	0.17	0.26	0.01	0.01	4.5	3.69	2.61	0.20	0.25	0.00	0.02
4.6	7.12	2.44	0.14	0.28	0.02	0.00	4.6	4.26	2.65	0.16	0.24	0.00	0.01	4.6	4.33	2.81	0.19	0.29	0.00	0.02
4.7	6.37	2.32	0.16	0.26	0.02	0.00	4.7	5.07	2.72	0.19	0.28	0.00	0.00	4.7	3.63	2.70	0.17	0.25	0.00	0.02
4.8	7.20	2.41	0.16	0.27	0.02	0.00	4.8	4.70	2.60	0.15	0.25	0.00	0.01	4.8	3.52	2.63	0.15	0.24	0.00	0.02
4.9	7.79	2.47	0.18	0.29	0.02	0.00	4.9	4.66	2.55	0.18	0.25	0.00	0.00	4.9	3.83	2.69	0.19	0.25	0.00	0.02
5	7.48	2.43	0.19	0.28	0.02	0.00	5	5.06	2.46	0.16	0.25	0.00	0.01	5	3.68	2.69	0.17	0.24	0.00	0.02
-														-						

表 4-20 EPMA 分析結果 (W/C=105%, 単位:mol/L)

表 4-21 各水セメント比の EPMA コンター図: CaO(単位: wt%)

表 4-22 各水セメント比のEPMAコンター図:SiO₂(単位:wt%)

表 4-23 各水セメント比のEPMAコンター図: Al₂O₃(単位:wt%)

表 4-24	各水セメント比のEPMAコン	ンター図:Na2O(単位:wt%)
--------	----------------	-------------------

	W/C=40%	W/C=70%
浸漬前	1.00 0.79 0.60 0.50 0.40 0.30 0.20 0.10 0.10 0.10	1.00 0.70 0.60 0.50 0.40 0.30 0.20 0.20 0.10 0.10 0.00
浸漬 12 週後	1.20 1.10 0.90 0.80 0.60 K20	1.20 1.10 1.00 0.90 0.80 0.60 0.40 0.20 0.00
浸漬 48 週後	K20 5mm	K20 5mm 1.20 1.10 0.90 0.80 0.60 0.40 0.20 0.20 0.20 0.20
浸漬 64 週後	1.00 0.70 0.60 0.50 0.40 0.30 0.20 0.20	1.00 0.70 0.60 0.50 0.40 0.30 0.20 0.20
	W/C=85%	W/C=105%
	W/C=85%	W/C=105% W/C=105% 0.70 0.70 0.60 0.50 0.40 0.30 0.20 0.20 0.10 0.10 0.20 0.10
浸漬前 浸漬 12 週後	W/C=85% 0.10 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70	W/C=105% W/C=105% 0.70 0.60 0.50 0.40 0.20 0.10 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20
浸漬前 浸漬 12 週後 浸漬 48 週後	W/C=85% Imm W/C=85% Imm	W/C=105% W/C=105% 0.70 0.60 0.70 0.60 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.20 1.10 1.00 0.20 1.10 1.20 1.10 1.00 0.20 1.10 1.00 0.20 1.10 1.00 0.20

表 4-25 各水セメント比のEPMAコンター図:K₂O(単位:wt%)

表 4-26 各水セメント比のEPMAコンター図: SO3(単位: wt%)

表 4-27 各水セメント比のEPMAコンター図: CaO/SiO₂)(単位:なし)

図 4-64 作用水量と液相カルシウム濃度の関係(ビッカース硬度測定用試料)

図 4-65 作用水量と液相ケイ素濃度の関係(ビッカース硬度測定用試料)

図 4-67 作用水量とナトリウム濃度の関係(ビッカース硬度測定用試料)

図 4-68 作用水量とカリウム濃度の関係(ビッカース硬度測定用試料)

図 4-69 作用水量と硫黄濃度の関係(ビッカース硬度測定用試料)

図 4-70 作用水量とpHの関係(ビッカース硬度測定用試料)

Ca濃度(<u>単位:mmo</u>	I/L)		-			
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	9.18	0.373	15.37	0.368	15.22	0.337	16.99
0.883	6.46	0.747	13.50	0.736	12.75	0.673	14.05
1.324	4.27	1.120	9.66	1.104	11.73	1.010	12.65
1.766	2.77	1.493	5.90	1.472	8.26	1.346	7.35
2.207	1.80	1.867	4.08	1.840	5.57	1.683	7.03
2.649	1.94	2.240	3.58	2.208	4.57	2.020	5.74
3.090	1.74	2.613	2.80	2.576	3.70	2.356	5.03
3.532	1.48	2.987	2.74	2.944	3.62	2.693	4.45
3.973	2.21	3.360	2.68	3.312	3.16	3.030	3.78
4.414	1.49	3.733	2.22	3.680	2.66	3.366	3.16
4.856	1.43	4.107	1.93	4.048	2.31	3.703	2.30
5.297	1.26	4.480	2.04	4.416	2.11	4.039	2.38
6.180	1.20	5.226	1.64	5.152	1.78	4.713	1.70
7.063	1.38	5.973	1.15	5.888	1.60	5.386	1.52
	単位∶mmol	/L)					
<u>作用水(L)</u>	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	0.135	0.373	0.096	0.368	0.172	0.337	0.135
0.883	0.091	0.747	0.107	0.736	0.012	0.673	0.049
1.324	0.103	1.120	0.036	1.104	0.027	1.010	0.048
1.766	0.130	1.493	0.068	1.472	0.043	1.346	0.032
2.207	0.197	1.867	0.112	1.840	0.074	1.683	0.045
2.649	0.221	2.240	0.173	2.208	0.097	2.020	0.060
3.090	0.227	2.613	0.204	2.576	0.151	2.356	0.103
3.532	0.300	2.987	0.243	2.944	0.198	2.693	0.163
3.973	0.299	3.360	0.250	3.312	0.205	3.030	0.152
4.414	0.351	3.733	0.340	3.680	0.250	3.366	0.171
4.856	0.301	4.107	0.283	4.048	0.313	3.703	0.233
5.297	0.297	4.480	0.305	4.416	0.306	4.039	0.300
6.180	0.319	5.226	0.313	5.152	0.278	4.713	0.322
7.063	0.320	5.973	0.384	5.888	0.334	5.386	0.356
AI濃度(」	単位:mmol	/L)				<u> </u>	
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	0.069	0.373	0.069	0.368	0.063	0.337	0.059
0.883	0.053	0.747	0.052	0.736	0.056	0.673	0.057
1.324	0.033	1.120	0.032	1.104	0.037	1.010	0.031
1.766	0.036	1.493	0.035	1.472	0.039	1.346	0.041
2.207	0.028	1.867	0.032	1.840	0.038	1.683	0.042
2.649	0.027	2.240	0.037	2.208	0.046	2.020	0.052
3.090	0.025	2.613	0.032	2.576	0.036	2.356	0.041
3.532	0.027	2.987	0.034	2.944	0.046	2.693	0.041
3.973	0.024	3.360	0.031	3.312	0.038	3.030	0.041
4.414	0.026	3.733	0.035	3.680	0.044	3.366	0.051
4.856	0.023	4.107	0.031	4.048	0.045	3.703	0.050
5.297	0.027	4.480	0.032	4.416	0.037	4.039	0.045
6.180	0.025	5.226	0.031	5.152	0.040	4.713	0.042
7.063	0.029	5.973	0.033	5.888	0.037	5.386	0.038

表 4-28 液相濃度一覧(ビッカース硬度測定試料: Ca, Si, Al)

表 4-29 液相濃度一覧(ビッカース硬度測定試料:Na,K,S,pH)

Na濃度(単位:mmo	I/L)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	0.887	0.373	0.537	0.368	0.297	0.337	0.276
0.883	0.161	0.747	0.018	0.736	0.015	0.673	0.015
1.324	0.062	1.120	0.012	1.104	0.016	1.010	0.033
1.766	0.036	1.493	0.010	1.472	0.010	1.346	0.008
2,207	0.016	1.867	0.007	1.840	0.006	1.683	0.006
2.649	0.014	2.240	0.008	2,208	0.006	2.020	0.006
3.090	0.013	2.613	0.008	2,576	0.008	2,356	0.006
3.532	0.032	2.987	0.008	2,944	0.007	2,693	0.006
3.973	0.010	3.360	0.006	3.312	0.011	3.030	0.006
4.414	0.010	3,733	0.006	3.680	0.006	3.366	0.005
4.856	0.010	4.107	0.008	4.048	0.007	3,703	0.006
5 2 9 7	0.006	4 4 8 0	0.006	4 4 1 6	0.004	4 039	0.003
6.180	0.007	5 2 2 6	0.006	5 1 5 2	0.006	4 713	0.006
7.063	0.008	5.973	0.007	5 888	0.005	5,386	0.005
K濃度(単	単位 · mmol/	(1)	0.001	0.000	0.000	0.000	0.000
作用水(1)	W/C=40%	作用水(1)	W/C=70%	作田水(1)	W/C=85%	作用水(1)	W/C=105%
	1 332	0373	0.657	0.368	0.384	0337	0.404
0.441	0.107	0.373	0.037	0.300	0.004	0.537	0.404
1 3 2 4	0.137	1 1 2 0	0.015	1 1 0 4	0.010	1.010	0.010
1 766	0.003	1 / 03	0.000	1.104	0.003	1 3/6	0.003
2 207	0.024	1.435	0.000	1.472	0.004	1.540	0.003
2.201	0.009	2 2/0	0.003	2 208	0.003	2 020	0.003
2.049	0.000	2.240	0.003	2.200	0.003	2.020	0.001
3.030	0.005	2.013	0.003	2.570	0.002	2.000	0.002
2.072	0.003	2.907	0.003	2.944	0.002	2.093	0.002
3.973	0.003	3.300	0.002	3.512	0.002	3.030	0.001
4.414	0.003	<u> </u>	0.002	3.000	0.002	3.300	0.001
4.000	0.003	4.107	0.002	4.040	0.002	3.703	0.002
6.190	0.003	4.400 5.226	0.002	4.410 5.152	0.001	4.039	0.001
0.100	0.003	5.220	0.002	5.152	0.002	4.713	0.001
1 1 1 1 1 1					111111	5 486	
7.003	0.003 首位 · mmol /	0.975	0.002	0.000	0.001	5.380	0.001
7.003 S濃度(単 作田水(1)	0.003 单位∶mmol/ ₩/C=40%	5.975 (L) 作田水(L)	0.002	5.000	0.001 W/C-85%	5.386	0.001 W/C-105%
7.003 S濃度(単 作用水(L)	0.003 単位∶mmol/ W/C=40%	5.973 (L) 作用水(L)	W/C=70%	5.000 作用水(L)	W/C=85%	5.386 作用水(L)	W/C=105%
7.063 S濃度(单 作用水(L) 0.441	0.003 単 <u>位</u> : mmol/ W/C=40% 3.53E-04 4.61E_04	<u>(L)</u> 作用水(L) 0.373	W/C=70% 1.47E-04	5.888 作用水(L) 0.368	0.001 W/C=85% 4.49E-04	5.386 作用水(L) 0.337	W/C=105% 6.24E-05
7.063 S濃度(達 作用水(L) 0.441 0.883 1.324	0.003 [≝] 1 <u>1</u> :mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04	5.973 <u>作用水(L)</u> 0.373 0.747 1.120	0.002 W/C=70% 1.47E-04 2.81E-04 4.05E-04	<u>5.888</u> 作用水(L) 0.368 0.736	0.001 W/C=85% 4.49E-04 2.91E-04 2.46E-04	5.386 作用水(L) 0.337 0.673	0.001 W/C=105% 6.24E-05 2.49E-04
7.063 S濃度(作用水(L) 0.441 0.883 1.324 1.766	0.003 <u>●位:mmol/</u> <u>W/C=40%</u> 3.53E-04 4.61E-04 2.09E-04 1.81E-04	5.973 (L) 0.373 0.747 1.120 1.493	0.002 W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04	5.888 作用水(L) 0.368 0.736 1.104	0.001 W/C=85% 4.49E-04 2.91E-04 2.46E-04	5.386 作用水(L) 0.337 0.673 1.010	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04
7.003 S濃度(達 作用水(L) 0.441 0.883 1.324 1.766 2.207	0.003 <u>≇12 mmol/</u> <u>W/C=40%</u> 3.53E-04 4.61E-04 2.09E-04 1.81E-04 1.36E-04	<u>5.973</u> <u>作用水(L)</u> 0.373 0.747 1.120 1.493 1.867	0.002 W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04	5.888 作用水(L) 0.368 0.736 1.104 1.472	0.001 W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04
7.063 S濃度(達 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649	0.003 <u>■位:mmol/</u> <u>W/C=40%</u> 3.53E-04 <u>4.61E-04</u> 2.09E-04 1.81E-04 1.36E-04 3.32E-04	<u>5.973</u> <u>作用水(L)</u> 0.373 0.747 1.120 1.493 1.867 2.240	0.002 W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04	5.888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208	0.001 W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.02E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04
7.063 S濃度(達 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090	0.003 ≱12: mmol/ <u>W/C=40%</u> 3.53E-04 4.61E-04 1.61E-04 1.36E-04 3.32E-04 3.22E-04	<u>(L)</u> (<u>作用水(L)</u> 0.373 0.747 1.120 1.493 1.867 2.240 2.613	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.87E-04	<u> 作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 2.02E-04 1.33E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04
7.063 S濃度(僅 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532	0.003 <u>20</u> :mmol/ <u>W/C=40%</u> <u>3.53E-04</u> <u>4.61E-04</u> <u>2.09E-04</u> <u>1.81E-04</u> <u>3.32E-04</u> <u>3.22E-04</u> <u>1.41E-04</u>	3.973 作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.26E-04 1.33E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-04
7.063 <u>S濃度(重</u> 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973	0.003 É位:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 1.36E-04 3.32E-04 3.32E-04 3.22E-04 1.41E-04 4.37E-05	L) 作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.87E-04 1.87E-04 1.87E-04	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.26E-04 1.31E-04 1.11E-04 6.60E-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-04 1.03E-04
7.063 <u>S濃度(重</u> 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414	0.003 É位:mmol/ 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 3.22E-04 1.41E-04 4.37E-05 5.53E-05	L) (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.73E-04 1.87E-04 1.87E-04 1.11E-04 6.65E-05 0.00E±00	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.26E-04 1.33E-04 1.33E-04 1.11E-04 6.60E-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-04 4.42E-05 3.49E-05
7.063 <u>S濃度(這</u> <u>作用求(L)</u> 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856	0.003 ẩ값:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.22E-04 1.41E-04 3.53E-05 3.53E-04	3.3973 (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.73E-04 1.87E-04 1.11E-04 6.65E-05 0.00E+00 6.17E-05	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.26E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 6.705-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.35E-04 1.35E-04 3.44E-04 3.44E-04 1.03E-04 4.42E-05 3.49E-05 3.49E-05 5.30E-05
7.063 S濃度(作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297	0.003 ₫₫:mmol/ ₩/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-04 1.41E-04 4.37E-05 5.53E-05 3.69E-05 2.62E-05	3.373 化 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.73E-04 1.87E-04 1.11E-04 6.65E-05 0.00E+00 6.17E-05	<u>*</u> (上) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55F-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.35E-04 1.35E-04 4.42E-04 1.35E-04 4.42E-04 1.03E-04 4.42E-05 3.49E-05 5.30E-05 5.30E-05
7.063 S濃度(作用元×(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180	0.003 ₫값:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.22E-04 1.41E-04 4.37E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 0.00E+00 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05	<u>*</u> (上) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 3.55E-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.54E-04 1.35E-04 4.42E-05 3.49E-05 3.49E-05 3.49E-05 3.49E-05 3.49E-05
7.063 <u>S濃度(i)</u> <u>作用7k(i)</u> 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063	0.003 ₫값:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 4.41E-04 3.32E-04 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98F-05	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 0.00E+00 6.17E-05 1.09E-05 1.56F-04	<u>*</u> (上) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 2.44E-05 2.40F-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.54E-04 3.44E-04 3.44E-04 3.44E-05 3.49E-05 5.30E-05 3.49E-05 1.14E-04 1.08F-04
7.063 <u>S濃度(値</u> 作用水(<u>し</u>) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 0.H	0.003 ▲① mmol/ ▲/C=40% W/C=40% 3.53E-04 4.61E-04 4.61E-04 1.36E-04 1.81E-04 1.32E-04 3.22E-04 3.22E-04 1.41E-04 4.37E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 0.98E-05	L) (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04	3.886 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.32E-04 1.33E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.44E-05	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386	0.001 W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 3.44E-04 1.03E-04 4.42E-05 3.49E-05 3.49E-05 1.14E-04
7.063 S濃度(直) 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH (作用水(L))	0.003 ▲① mmol// W/C=40% W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 1.36E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.69E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 W/C=40% W/C=40%	L) (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 0.00E+00 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888	W/C=85% 4.49E-04 2.91E-04 2.75E-04 2.26E-04 2.33E-04 1.33E-04 1.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.44E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-04 1.03E-04 4.42E-05 3.49E-05 5.30E-05 1.14E-04 1.08E-04
7.063 S濃度(這 作用求(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH 作用求(L) 0.441	0.003 ₫₫:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 9.3E-05 0.69E-05 1.34E-04 9.98E-05 W/C=40% 12.5	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70%	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 作用水(L) 0.368	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.02E-04 1.33E-04 1.11E-05 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-05 3.49E-05 5.30E-05 3.49E-04 1.08E-04 4.421
7.063 S濃度(追 (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.990 3.532 3.973 4.414 4.856 5.297 6.180 7.063 p H (作用水(L) 0.883	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.22E-04 1.41E-04 4.37E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7	3.373 化 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 1.11E-04 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.7 12.9	3.888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 作用水(L) 0.368 0.736	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337 0.673	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.35E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 5.30E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0
7.063 S濃度(追 (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 p H (作用水(L) 0.883 1.324	0.003 ₫₫:mmol/ ₩/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-04 3.22E-04 1.41E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7 12.2	3.373 化 (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.7 12.9 12.5	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 作用水(L) 0.368 0.736 1.104	W/C=85% 4.49E-04 2.91E-04 2.75E-04 2.02E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 4.44E-05 2.40E-04 12.7 13.0 12.5	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337 0.673 1.010	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.53E-04 1.35E-04 4.42E-04 1.03E-04 4.42E-05 3.49E-05 3.49E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5
7.063 S濃度(追) (作用水(L)) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH (作用水(L)) 0.441 0.883 1.324	0.003 ₫₫:mmol/ ₩/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 1.41E-04 3.22E-04 1.41E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 12.5 12.7 12.2 12.2	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.2973 (作用水(L) 0.37 0.75 1.12 1.49	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 3.08E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.98E-05 0.00E+00 6.17E-05 1.09E-05 1.56E-04 W/C=70% 12.7 12.9 12.5 12.5	<u>作用水(L)</u> 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.048 4.416 5.152 5.888 <u>作用水(L)</u> 0.368 0.736 1.104	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.33E-04 1.33E-04 1.33E-05 3.55E-05 3.55E-05 3.55E-05 2.40E-04 2.40E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 2.40E-04 2.40E-04 W/C=85% 12.7 13.0 12.5 12.5	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337 0.673 1.010 1.346	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 3.49E-05 3.49E-05 3.49E-05 1.14E-04 1.03E-04 W/C=105% 12.7 13.0 12.5 12.5
7.063 S濃度(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH 作用水(L) 0.441 0.883 1.324	0.003 ▲① mmol/ ▲/C=40% W/C=40% 3.53E-04 4.61E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 3.32E-04 4.41E-04 4.37E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 1.34E-04 12.5 12.7 12.2 12.2 11.8 12.2	L L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 0.00E+00 6.65E-05 0.00E+00 6.17E-05 7.25E-05 7.25E-05 7.25E-05 7.25E-05 12.7 12.9 12.5 12.5 12.5	3.886 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 使用水(L) 0.3668 0.736 1.104 1.472 1.840	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.32E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.5 12.5	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 (作用水(L) 0.337 0.673 1.010 1.346 1.683	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 5.30E-05 1.03E-04 4.42E-05 3.49E-05 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5
7.063 <u>S濃度(上)</u> <u>作用水(L)</u> 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 PH 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649	0.003 ▲① mmol/ ▲/C=40% W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 1.81E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.69E-05 5.53E-05 3.69E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 9.98E-05 12.7 12.5 12.7 12.2 12.2 11.8 12.1	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 0.00E+00 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 12.6 12.7 12.9 12.5 12.0 12.0	3.886 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 使用水(L) 0.368 0.736 1.104 1.472	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.26E-04 1.33E-04 1.31E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.5 12.1 12.4	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 使用水(L) 0.337 0.673 1.010 1.346 1.683 2.020	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-04 1.03E-04 4.42E-05 3.49E-05 3.49E-05 1.08E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.2 12.5
7.063 S濃度(i 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.090	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-05 3.69E-05 3.69E-05 3.69E-05 3.227 12.5 12.7 12.2 11.8 12.1 11.7	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.240 2.613 2.240 2.613 2.226 2.975 1.12 1.49 1.867 2.240 2.226 2.975 1.12 1.49 1.867 2.220 2.613 2.226 2.975 1.12 1.49 1.867 2.220 2.613 2.226 2.975 1.12 1.22 1.220 2.613 2.226 2.973 1.107 1.120 1.12 1.120 1.12 1.120 1.220 1.12 1.220 1.200 1.20	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.11E-04 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.9 12.5 12.0 12.2 112	1.3886 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 W/C=85% 12.5 12.5 12.5 12.4 12.9	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 3.49E-05 5.30E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
7.063 S濃度(追 (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 p H (作用水(L) 0.883 1.324 1.766 2.207 2.649 3.090 3.532	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-05 3.69E-05 3.69E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7 12.2 11.8 12.1 11.7 11.6	3.3973 化 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.7 12.9 12.5 12.0 12.2 11.9 11.8	1.3886 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576	W/C=85% 4.49E-04 2.91E-04 2.91E-04 2.75E-04 2.02E-04 1.33E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 12.7 13.0 12.5 12.5 12.5 12.5 12.5 12.1 12.4 12.0 118	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.35E-04 1.35E-04 1.35E-04 1.34E-04 1.35E-04 3.44E-05 3.44E-05 3.49E-05 5.30E-05 5.30E-05 3.49E-05 3.49E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5 12.2 12.5 12.1 11 9
7.063 S濃度(追 (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 p H (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.030	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.31E-04 3.32E-04 3.32E-04 3.22E-04 1.41E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7 12.2 11.8 12.1 11.7 11.6 11.4	3.373 化 (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.987	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.7 12.9 12.5 12.0 12.2 11.9 11.8 117	法888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 0.736 1.104 1.472 1.840 2.208 2.576 2.944	W/C=85% 4.49E-04 2.91E-04 2.91E-04 2.75E-04 2.02E-04 2.02E-04 1.33E-04 1.33E-04 1.31E-05 7.05E-05 6.60E-05 6.11E-05 7.05E-05 4.44E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.1 12.4 12.0 11.8 12.0	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.713 5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 5.30E-05 3.49E-05 3.49E-05 1.14E-04 1.08E-04 4.42E 4.42E.05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.1 11.9 11.9
7.063 S濃度(追 (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 p H (作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414	0.003 ₫₫:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 1.41E-04 4.37E-05 5.53E-05 3.69E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7 12.2 12.8 12.7 12.2 11.8 12.1 11.7 11.6 11.4 11.5	L) (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.987 3.360 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 0.37 0.75 1.12 1.49 1.867 2.240 2.613 3.733 0.37 0.360 0.37 0.37 0.360 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.360 0.37 0.5 0.5 0.37 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 3.08E-04 1.87E-04 3.08E-05 0.00E+00 6.65E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.7 12.9 12.5 12.0 12.2 11.9 11.8 11.7 11.8	法888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 0.736 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 3.55E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.5 12.1 12.4 12.0 11.8 12.0	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 /作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 3.49E-05 3.49E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5 12.5 12.5 12.1 11.9 11.9 11.8
7.063 S濃度(追) (F用北(L)) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH (作用水(L)) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856	0.003 ₫₫:mmol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 1.41E-04 3.32E-04 1.41E-04 3.32E-04 1.41E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 W/C=40% 12.5 12.7 12.2 12.7 12.2 12.1 11.7 11.6 11.4 11.5 11.3	L) (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.273 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.987 3.360 3.733 4.107 1.49 1.867 2.240 2.613 2.987 3.360 3.733 4.107 1.12 1.49 1.49 1.12 1.49 1.12 1.12 1.49 1.12	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 1.99E-05 1.56E-04 W/C=70% 12.7 12.9 12.5 12.0 12.2 11.9 11.8 11.7 11.8 11.7	1.3888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 0.368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.32E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.5 12.5 12.1 12.4 12.0 11.8 11.5	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 (作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.030	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-05 3.44E-05 3.49E-05 5.30E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.7 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.1 11.9 11.8 11.5
7.063 席世光(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.207	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.81E-04 3.32E-04 3.32E-04 3.32E-04 3.32E-04 4.41E-04 4.37E-05 5.53E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 12.7 12.2 12.7 12.2 11.8 12.7 12.8 12.7 12.2 11.8 12.1 11.7 11.6 11.4 11.5 11.3 11.2	L (作用水(L) 0.373 0.747 1.120 1.493 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.273 (作用水(L) 0.37 0.75 1.12 1.49 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 3.08E-04 1.87E-04 0.00E+00 6.17E-05 7.25E-05 7.25E-05 12.7 12.9 12.5 12.0 12.2 11.9 11.8 11.7 11.8 11.4	1.3888 作用水(L) 0.368 0.736 1.104 1.472 1.840 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.048 4.048	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.26E-04 2.32E-04 1.33E-04 1.11E-04 6.60E-05 6.11E-05 7.05E-05 3.55E-05 4.44E-05 2.40E-04 12.7 13.0 12.5 12.5 12.5 12.1 12.4 12.0 11.8 12.0 11.8 12.1	3.386 (作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 (作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.3366 3.030 3.3366 3.030 3.366 3.703 4.039	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.54E-04 1.35E-04 4.42E-04 3.44E-05 3.49E-05 5.30E-05 3.49E-05 1.03E-04 4.42E-05 3.49E-05 1.08E-04 1.08E-04 1.02E-105% 12.7 13.0 12.5 12.5 12.5 12.5 12.1 11.9 11.8 11.5 11.4
7.063 S濃度(i 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH 作用水(L) 0.441 0.883 1.324 1.766 2.207 2.649 3.090 3.532 3.973 4.414 4.856 5.297 6.180 7.063 pH (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 H (た) 7.063 0 (た) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 0 (c) 7.063 (c) 7.063 0 (c) 7.063 (c) 7.063 (c) 7.063 (c) 7.063 (c) 7.065 (c) 7.063 (c) 7.063 (c) 7.065 (c) 7.063 (c) 7.063 (c) 7.065 (c) 7.064 (c) 7.065 (c) 7.0555 (c) 7.05555 (c) 7.55555 (c) 7.555555555555555555555555555555555555	0.003 Immol/ Immol/ W/C=40% 3.53E-04 4.61E-04 2.09E-04 1.36E-04 3.32E-04 3.32E-05 3.69E-05 2.62E-05 1.34E-04 9.98E-05 12.7 12.2 11.8 12.1 11.7 11.6 11.4 11.5 11.2 11.4	3.3973 化 1作用水(L) 0.373 0.747 1.120 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 5.226 5.973 0.75 1.12 1.49 1.867 2.240 2.613 2.987 3.360 3.733 4.107 4.480 2.613 2.987 3.360 3.733 4.107	W/C=70% 1.47E-04 2.81E-04 4.05E-04 3.22E-04 1.73E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.87E-04 1.11E-04 6.65E-05 0.00E+00 6.17E-05 1.09E-05 7.25E-05 1.56E-04 W/C=70% 12.9 12.5 12.0 12.2 11.9 11.8 11.7 11.8 11.7 11.8 11.7	1.0368 0.736 1.104 1.472 1.840 2.208 2.576 2.944 3.312 3.680 4.048 4.416 5.152 5.888 (作用水(L)) 0.368 0.736 1.104 1.472 1.840 2.576 2.944 3.312 3.680 4.048 4.576 2.944 3.312 3.680 4.048 4.048 4.576 2.944 3.312 3.680 4.048 4.048 4.048 4.048 4.048 4.16 5.152	W/C=85% 4.49E-04 2.91E-04 2.46E-04 2.75E-04 2.02E-04 1.33E-04 1.31E-04 6.60E-05 6.11E-05 6.11E-05 3.55E-05 4.44E-05 2.40E-04 W/C=85% 12.7 13.0 12.5 12.1 12.5 12.1 12.4 12.0 11.8 11.5 11.4 11.7	5.386 作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.703 4.039 4.713 5.386 (作用水(L) 0.337 0.673 1.010 1.346 1.683 2.020 2.356 2.693 3.030 3.366 3.030 3.366 3.030 3.366 3.030 3.366 3.030 3.366 3.030 3.366 3.030 3.366 3.030 3.366 3.703 4.039 4.713	W/C=105% 6.24E-05 2.49E-04 1.53E-04 1.53E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 3.49E-05 5.30E-05 3.49E-05 1.14E-04 1.08E-04 W/C=105% 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 11.9 11.8 11.5 11.4

図 4-74 作用水量と積算溶出率(ナトリウム)

図 4-76 作用水量と積算溶出率(硫黄)

表 4-30 液相溶出率一覧(ビッカース硬度測定試料: Ca, Si, Al)

積算Ca消	容出率(単位	ቷ:%)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	3.61	0.373	7.31	0.368	7.98	0.337	9.66
0.883	6.15	0.747	13.73	0.736	14.66	0.673	17.64
1.324	7.83	1.120	18.32	1.104	20.81	1.010	24.83
1.766	8.92	1.493	21.13	1.472	25.14	1.346	29.01
2.207	9.63	1.867	23.07	1.840	28.06	1.683	33.00
2.649	10.39	2.240	24.77	2.208	30.46	2.020	36.26
3.090	11.08	2.613	26.10	2.576	32.40	2.356	39.12
3.532	11.66	2.987	27.40	2.944	34.29	2.693	41.65
3.973	12.53	3.360	28.68	3.312	35.95	3.030	43.80
4.414	13.12	3.733	29.74	3.680	37.34	3.366	45.60
4.856	13.68	4.107	30.65	4.048	38.56	3.703	46.91
5.297	14.18	4.480	31.62	4.416	39.66	4.039	48.26
6.180	14.65	5.226	32.40	5.152	40.60	4.713	49.23
7.063	15.19	5.973	32.94	5.888	41.43	5.386	50.09
積算Si溶	出率(単位	(%)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	0.175	0.373	0.151	0.368	0.297	0.337	0.253
0.883	0.293	0.747	0.318	0.736	0.400	0.673	0.345
1.324	0.427	1.120	0.374	1.104	0.446	1.010	0.435
1.766	0.596	1.493	0.481	1.472	0.520	1.346	0.494
2.207	0.851	1.867	0.656	1.840	0.648	1.683	0.579
2.649	1.138	2.240	0.927	2.208	0.816	2.020	0.691
3.090	1.432	2.613	1.247	2.576	1.077	2.356	0.883
3.532	1.821	2.987	1.627	2.944	1.420	2.693	1.187
3.973	2.209	3.360	2.019	3.312	1.774	3.030	1.473
4.414	2.663	3.733	2.552	3.680	2.205	3.366	1.793
4.856	3.054	4.107	2.996	4.048	2.746	3.703	2.228
5.297	3.438	4.480	3.473	4.416	3.274	4.039	2.791
6.180	3.852	5.226	3.963	5.152	3.754	4.713	3.394
7.063	4.266	5.973	4.566	5.888	4.330	5.386	4.061
積算AI溶		E:%)	1	1	1		
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	0.307	0.373	0.371	0.368	0.376	0.337	0.379
0.883	0.542	0.747	0.652	0.736	0.705	0.673	0.748
1.324	0.691	1.120	0.824	1.104	0.924	1.010	0.945
1.766	0.850	1.493	1.011	1.472	1.155	1.346	1.209
2.207	0.975	1.867	1.181	1.840	1.378	1.683	1.479
2.649	1.093	2.240	1.381	2.208	1.649	2.020	1.813
3.090	1.205	2.613	1.553	2.576	1.865	2.356	2.079
3.532	1.325	2.987	1.737	2.944	2.139	2.693	2.341
3.973	1.433	3.360	1.904	3.312	2.363	3.030	2.603
4.414	1.550	3.733	2.092	3.680	2.623	3.366	2.933
4.856	1.653	4.107	2.259	4.048	2.890	3.703	3.254
5.297	1.771	4.480	2.430	4.416	3.112	4.039	3.544
6.180	1.883	5.226	2.597	5.152	3.347	4.713	3.813
7.063	2.010	5.973	2.775	5.888	3.563	5.386	4.060

表 4-31 液相溶出率一覧(ビッカース硬度測定試料:Na,]	K,S)
---------------------------------	-----	---

積算Na消	容出率(単位	ት:%)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	54.667	0.373	39.978	0.368	24.354	0.337	24.589
0.883	64.609	0.747	41.351	0.736	25.600	0.673	25.921
1.324	68.441	1.120	42.220	1.104	26.932	1.010	28.903
1.766	70.648	1.493	42.936	1.472	27.722	1.346	29.591
2.207	71.644	1.867	43.444	1.840	28.216	1.683	30.127
2.649	72.510	2.240	44.032	2.208	28.734	2.020	30.643
3.090	73.283	2.613	44.615	2.576	29.359	2.356	31.146
3.532	75.270	2.987	45.247	2.944	29.906	2.693	31.643
3.973	75.864	3.360	45.695	3.312	30.817	3.030	32.179
4.414	76.494	3.733	46.165	3.680	31.323	3.366	32.618
4.856	77.097	4.107	46.797	4.048	31.894	3.703	33.173
5.297	77.459	4.480	47.223	4.416	32.209	4.039	33.470
6.180	77.911	5.226	47.661	5.152	32.709	4.713	33.990
7.063	78.387	5.973	48.171	5.888	33.142	5.386	34.465
積算K溶	出率(単位	:%)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	53.141	0.373	31.691	0.368	20.388	0.337	23.287
0.883	60.995	0.747	32.304	0.736	20.907	0.673	23.878
1.324	63.729	1.120	32.590	1.104	21.187	1.010	24.157
1.766	64.702	1.493	32.813	1.472	21.403	1.346	24.332
2.207	65.074	1.867	32.959	1.840	21.553	1.683	24.477
2.649	65.317	2.240	33.115	2.208	21.709	2.020	24.563
3.090	65.510	2.613	33.255	2.576	21.825	2.356	24.659
3.532	65.715	2.987	33.407	2.944	21.945	2.693	24.757
3.973	65.843	3.360	33.520	3.312	22.047	3.030	24.843
4.414	65.958	3.733	33.625	3.680	22.146	3.366	24.919
4.856	66.072	4.107	33.736	4.048	22.241	3.703	25.017
5.297	66.183	4.480	33.830	4.416	22.309	4.039	25.081
6.180	66.296	5.226	33.926	5.152	22.398	4.713	25.168
7.063	66.408	5.973	34.026	5.888	22.474	5.386	25.235
積算S溶	出率(単位	:%)					
作用水(L)	W/C=40%	作用水(L)	W/C=70%	作用水(L)	W/C=85%	作用水(L)	W/C=105%
0.441	6.41E-03	0.373	3.23E-03	0.368	1.09E-02	0.337	1.64E-03
0.883	1.48E-02	0.747	9.38E-03	0.736	1.79E-02	0.673	8.18E-03
1.324	1.86E-02	1.120	1.83E-02	1.104	2.38E-02	1.010	1.22E-02
1.766	2.19E-02	1.493	2.53E-02	1.472	3.05E-02	1.346	1.62E-02
2.207	2.43E-02	1.867	2.91E-02	1.840	3.59E-02	1.683	1.98E-02
2.649	3.04E-02	2.240	3.59E-02	2.208	4.08E-02	2.020	3.13E-02
3.090	3.62E-02	2.613	4.00E-02	2.576	4.40E-02	2.356	4.04E-02
3.532	3.88E-02	2.987	4.24E-02	2.944	4.67E-02	2.693	4.31E-02
3.973	3.96E-02	3.360	4.39E-02	3.312	4.83E-02	3.030	4.42E-02
4.414	4.06E-02	3.733	4.39E-02	3.680	4.98E-02	3.366	4.52E-02
4.856	4.12E-02	4.107	4.52E-02	4.048	5.15E-02	3.703	4.65E-02
5.297	4.17E-02	4.480	4.55E-02	4.416	5.24E-02	4.039	4.75E-02
6.180	4.41E-02	5.226	4.70E-02	5.152	5.34E-02	4.713	5.05E-02
7.063	4.59E-02	5.973	5.05E-02	5.888	5.92E-02	5.386	5.33E-02
4.4.3 カルシウム溶出率とビッカース硬度の関係

固相カルシウム溶出率とビッカース硬度比の関係を図 4-77,表 4-32 に示す。ビッカ ース硬度比は,浸漬前のビッカース硬度との比について整理を行った。図中には今回 測定したデータが正規分布に従うと仮定して,95%信頼区間を合わせて記載している。 カルシウム溶出率は,EPMAの定量分析で測定した質量割合から算出した。

カルシウム溶出率が増加するとビッカース硬度比が小さくなっていることが分かる。 しかし,ばらつきが大きくなっており,95%信頼区間の幅が1.0 程度となっている。 これは,ビッカース硬度自体のばらつきが大きいことや,溶出の進行程度が小さい箇 所において,浸漬前よりもビッカース硬度が大きく測定される場合があり,ビッカー ス硬度比が1.0以上になっていることなどが影響していると考えられる。

全データに関する近似式については,切片がほぼ 1.0 程度となっており,また,カ ルシウム溶出率が 100%となってもビッカース硬度比はゼロとならないものになって いる。これは,カルシウムがすべて溶出しても,カルシウム以外の物質によって硬度 が保たれることを示唆していると考えられる。

カルシウム溶出率とビッカース硬度比の関係については,ここで示したようなばら つきがある,ということを認識した上で,評価に用いる必要がある。式を以下に示す。

Hv tt=-0.0083Lc+0.932 (4-14)

ここに, Hv 比:ビッカース硬度比, Lc:カルシウム溶出率(%)

2日 2主	测定传展	W/C=40%		测会 (cm) W/C=70%		测完位置 W/C=85%			测空传黑	W/C	W/C=105%		
	測正11/1直	Ca溶出率	ビッカース	測正111直	Ca溶出率	ビッカース	測正111直	Ca溶出率	ビッカース	測正111直	Ca溶出率	ビッカース	
期间	(mm)	(%)	硬度比	(mm)	(%)	硬度比	(mm)	(%)	硬度比	(mm)	(%)	硬度比	
	0.1	67.5	0.72	0.1	65.9	0.00	0.1	66.1	0.00	0.1	69.9	0.00	
	0.5	35.6	0.71	0.5	44.4	0.55	0.5	44.8	0.18	0.5	41.1	0.00	
	1.0	0.0	1.28	1.0	41.8	0.76	1.0	39.5	0.20	1	46.5	0.00	
:= :主	1.5	0.0	1.00	1.5	11.0	1.22	1.5	39.8	0.45	1.5	39.7	0.00	
() () () () () () () () () ()	2.0	0.0	1.20	2.0	20.8	1.07	2.0	0.0	0.64	2	35.8	0.66	
12.迥夜	2.5	0.0	1.20	2.5	25.2	1.24	2.5	0.0	0.64	2.5	1.0	0.71	
	3.0	0.0	1.20	3.0	20.8	1.27	3.0	0.0	0.90	3	5.2	0.67	
	4.0	0.0	1.13	4.0	21.2	0.96	4.0	0.0	0.66	4	3.3	0.62	
	5.0	0.0	0.96	5.0	27.7	0.75	5.0	0.0	0.61	5	0.0	0.67	
	0.1	100.0	0.19	0.1	100.0	0.24	0.1	100.0	0.30	0.1	100.0	0.40	
	0.3	88.0	0.27	0.3	75.0	0.48	0.3	81.7	0.43	0.3	98.3	0.50	
	0.5	50.7	0.35	0.5	38.9	0.67	0.5	57.9	0.47	0.5	93.8	0.52	
	0.7	35.0	0.33	0.7	23.5	0.66	0.7	27.8	0.52	0.7	79.6	0.56	
	0.9	31.8	0.40	0.9	28.5	0.68	0.9	38.0	0.53	0.9	48.6	0.56	
	1.1	32.5	0.51	1.1	34.2	0.74	1.1	38.1	0.55	1.1	44.0	0.63	
	1.3	26.0	0.47	1.3	31.8	0.72	1.3	35.6	0.58	1.3	47.8	0.68	
	1.5	0.0	0.51	1.5	29.9	0.69	1.5	38.1	0.62	1.5	48.6	0.61	
	1.9	0.0	0.54	1.7	32.2	0.84	1.7	35.2	0.66	1./	46.3	0.66	
	2.4	0.0	0.59	1.9	34.9	0.82	1.9	34.4	0.72	1.9	46.2	0.66	
	2.9	0.0	0.64	2.1	34.0	0.86	2.1	38.0	0.73	2.1	50.0	0.62	
浸漬	3.4	0.0	0.61	2.0	0.9	0.90	2.3	22.0	0.76	2.3	49.1	0.73	
48週後	3.9	0.0	0.65	3.0	0.0	0.93	2.0	33.0	0.71	2.3	31.0 44.7	0.70	
	4.4	0.0	0.03	3.5	0.0	0.95	2.7	35.7	0.74	2.1	44.7	0.81	
	4.0	0.0	0.07	4.0	0.0	1 1 4	36	17	0.80	2.9	51.1	0.80	
				49	0.0	1.22	4.1	0.0	0.87	3.3	50.5	0.81	
				1.0	0.0	1.22	4.6	0.0	0.80	3.5	47.3	0.78	
							4.9	0.0	0.88	3.7	48.4	0.76	
										3.9	49.4	0.79	
										4.1	43.1	0.75	
										4.3	48.0	0.82	
										4.5	41.9	0.85	
										4.7	15.3	0.87	
										4.9	0.0	0.79	
	0.1	97.6	0.20	0.1	100.0	0.24	0.1	87.0	0.27	0.1	99.9	0.00	
	0.3	62.1	0.26	0.3	79.9	0.38	0.3	66.7	0.30	0.3	79.5	0.33	
	0.5	36.1	0.29	0.5	45.9	0.51	0.5	37.2	0.33	0.5	60.8	0.30	
	0.7	17.8	0.24	0.7	29.5	0.62	0.7	33.4	0.33	0.8	45.2	0.30	
	0.9	25.1	0.22	0.9	30.9	0.67	0.9	37.7	0.35	1.5	49.9	0.29	
	1.1	23.9	0.19	1.1	33.7	0.60	1.3	39.0	0.32	1.8	52.5	0.31	
	1.3	0.0	1.00	1.3	34.7	0.59	1.8	36.7	0.35	2.3	51.0	0.28	
	1.5	0.0	1.00	1.5	30.9	0.59	2.3	34.3	0.27	2.8	51.0	0.29	
:三:志	1./	0.0	1.00	1.8	29.4	0.61	2.8	31.5	0.31	3.3	50.5	0.30	
(反)貝	1.9	0.0	1.00	2.3	30.6	0.65	3.2	32.3	0.50	3.8	49.5	0.30	
04迴夜	2.1	0.0	1.00	2.7	16.5	0.75	3.4	32.0	0.58	4.3	49.7	0.29	
	∠.3 2.5	0.0	1.00	2.9	0.0	1.05	3.0	0.0	0.55	4./	32.0	0.29	
	2.5	0.0	1.00	33	0.0	1.00	<u> </u>	0.0	0.57	4.9	30.0	0.29	
	2.1	0.0	1.00	35	0.0	1.00	4.4	0.0	0.40				
	31	0.0	1.00	3.8	0.0	1.40	47	0.0	0.67				
	3.3	0.0	1.00	4.1	0.0	1.35	4.9	0.0	0.82				
	3.8	0.0	1.00	4.3	0.0	1.34		0.0	0.02				
	4.3	0.0	1.00	4.6	0.0	1.37							
	4.8	0.0	1.00	4.9	0.0	1.56							

表 4-32 カルシウム溶出率とビッカース硬度およびビッカース硬度比(浸漬前)

4.4.4 試験結果の相互評価

(1) カルシウム濃度による空隙率の評価

空隙率に及ぼすカルシウム濃度の影響を把握するために,Builのモデル¹¹⁾および 鹿島で提案しているモデル¹²⁾を用いて空隙率を算出した。

Buil
$$\forall \vec{\tau} \mathcal{V}$$
: = $_{0} + \frac{M_{CH}}{d_{CH}} (1 - Vc) (C_{p0} - C_{p})$ (4-15)

=
$$_{cap}$$
+ $_{leach}$
鹿島モデル: $= \frac{W/C - 0.36 \cdot F}{W/C + 0.32}$ + $\cdot V_h(C_p)(C_{p0} - C_p)$ (4-16)

ここに, :空隙比(空隙率/100), ₀:初期空隙比(浸漬前), M_{cH}: Ca(OH)₂のモル 重量(74 g/mol), d_{cH}: Ca(OH)₂の密度(2230 g/L), _{cap}: キャヒ[°]ラリ-空隙, _{leach}: 溶 出により増加した空隙, F:水和度(0.8), Vc:セメントの容積比, V_h(C_p):水和物 のモル体積: Ca(OH)₂の場合は74/2230=0.0332, C-S-Hの場合は0.0541(L/mol), C_{p0}: 固相の初期カルシウム濃度(mol/L), C_p: 固相カルシウム濃度(mol/L), :溶出に 関する補正係数(1.0)

上式における右辺第二項の(*C_{p0} C_p*)は溶出したカルシウム濃度を表しており, カルシウムの溶出による空隙増加のみを考慮したモデルである。鹿島モデルにおけ るV_h(C_p)については,EPMA分析結果から,表面近傍で濃度が低下している部分を C-S-Hが溶解している部分とし,それ以外をCa(OH)₂が溶解した部分として取り扱 った。

両モデルについて,固相のカルシウム濃度(EPMA分析)から計算した空隙率の 深さ方向の変化を図4-78に示す。両モデルとも,内部よりも水と接していた表面に 近いほうが空隙率は高くなっており,水セメント比が大きいものほど内部まで空隙 率が高くなっていることが分かる。しかし,鹿島モデルではC-S-Hの溶出を考慮し ているため,表面近傍でより空隙率が高くなる結果となっており,表面近傍で溶出 率が高くなる現象をより適切に表現できるモデルとなっている。 水銀圧入法により測定した空隙率と,各計算値(鹿島モデル,Builモデル)との 比較を図 4-79,4-80 に示す。Builモデルの初期空隙比 ₀は,鹿島モデルより算出 した。各モデルとも計算値は,深さごとに計算した値のうち供試体サイズを考慮し て深さ 2.5mmまでの平均値として求めた(空隙率測定用試料は厚さ 5mm,EPMA 分析用試料は厚さ 10mm)。現段階では,水銀圧入法で測定した空隙率と各モデルで 計算した空隙率はほぼ一致しており,それぞれのモデルを用いることで,空隙率を 予測することが可能であることが分かる。今後さらに溶出が進行し,C-S-Hまで溶 出する深さが大きくなった場合は,その影響を考慮している鹿島モデルのほうがよ り高い精度の予測が可能であると考えられる。

図 4-78 予測モデルによって計算した空隙率の深さ方向の変化

図 4-79 水銀圧入法により測定した空隙率と固相カルシウム濃 度から計算した空隙率の比較(鹿島モデル)

図 4-80 水銀圧入法により測定した空隙率と固相カルシウム濃 度から計算した空隙率の比較(Buil モデル)

(2) ビッカース硬度から推定する強度特性

未変質のペースト供試体を対象とした各強度特性間の関係式を用いて、「深さ方向の ビッカース硬度の変化」から「深さ方向の強度特性の変化」を推定した。

未変質ペースト供試体における各強度特性間の関係式

(2001年度報告書 4.3.2(2)項参照)

- $_{\rm p} = 1.651 {\rm HV}$ (4-17)
- $E_{p} = 0.183 HV^{0.681}$ (4-18)

ここに, 。:ペーストの圧縮強度(N/mm²),:E。:ペーストのヤング係数(×10⁴N/mm²),

ビッカース硬度から換算した強度特性の深さ方向の変化を図 4-81,4-82,表 4-33, 4-34 に示す。図中には浸漬前の初期値(計算値)もあわせて示す。

2001 年度の報告書¹⁾に示したように,ビッカース硬度と強度特性とは高い相関関係 があるため,ビッカース硬度と同様に,圧縮強度,ヤング係数は浸漬表面で小さく, 内部で大きい結果となっている。2001 年度実施の強度試験結果を表 4-34 に示す

ただし,本検討では未変質時の力学特性とビッカース硬度の関係が変質時でも適用 可能と仮定し,評価に用いた。溶出劣化が全体的に,かつ均一に生じたバルクの供試 体を作製することが極めて困難なためであるが,新しい溶出手法が確立された際には, 劣化時と健全時との相違を把握する必要がある。

図 4-81 ビッカース硬度から換算した圧縮強度の深さ方向の変化

図 4-82 ビッカース硬度から換算したヤング係数の深さ方向の変化

	測定位署		測完位署		测定位置		测宁位署	
	/別た111旦 (mm)	W/C=40%	/別に回直 (mm)	W/C=70%	/別を回り (mm)	W/C=85%	/別に回直 (mm)	W/C=105%
浸清前		57 77	(11011)	14.93	(11111)	11.82	(111117)	5.25
	0.1	41.6	0.1	0.0	0.1	0.0	0.1	0.0
	0.5	41.3	0.5	8.3	0.5	2.1	0.5	0.0
	1.0	74.0	1.0	11.4	1.0	2.4	1	0.0
這注	1.5	75.5	1.5	18.2	1.5	5.3	1.5	0.0
	2.0	69.3	2.0	16.0	2.0	7.5	2	3.5
12.迴按	2.5	69.4	2.5	18.6	2.5	7.6	2.5	3.7
	3.0	69.3	3.0	19.0	3.0	10.7	3	3.5
	4.0	65.6	4.0	14.3	4.0	7.8	4	3.3
	5.0	55.7	5.0	11.2	5.0	7.2	5	3.5
	0.1	10.8	0.1	3.55	0.1	3.50	0.1	2.08
	0.3	15.4	0.3	7.22	0.3	5.12	0.3	2.64
	0.5	20.1	0.5	9.99	0.5	5.51	0.5	2.74
	0.7	19.2	0.7	9.93	0.7	6.10	0.7	2.96
	0.9	23.2	0.9	10.11	0.9	6.26	0.9	2.95
	1.1	29.4	1.1	10.98	1.1	6.46	1.1	3.32
	1.3	27.0	1.3	10.81	1.3	0.88	1.3	3.59
	1.0	29.7	1.0	10.32	1.3 1.7	7.33	1.0	3.20
	2.4	34.0	1.7	12.52	1.7	8.40	1.7	3.40
	2.4	37.0	21	12.24	21	8.67	21	3.45
,= ,+	3.4	35.1	2.1	13.47	23	8.94	2.1	3.80
浸漬	3.9	37.1	3.0	13.92	2.5	8.40	2.5	3.66
48週後	4.4	37.4	3.5	14.15	2.7	8.76	2.7	4.26
	4.8	38.6	4.0	14.24	3.1	9.44	2.9	4.25
			4.5	16.99	3.6	9.40	3.1	4.20
			4.9	18.17	4.1	10.23	3.3	4.23
					4.6	9.44	3.5	4.09
					4.9	10.35	3.7	4.01
							3.9	4.12
							4.1	3.95
							4.3	4.31
							4.5	4.44
							4.7	4.37
	0.1	11 5	0.1	36	0.1	30	4 .ቻ በ 1	4.14 0.0
	0.1	1/ 0	0.1	5.0	0.1	3.2	0.1	17
	0.5	16.9	0.5	7.5	0.5	39	0.5	1.7
	0.7	13.6	0.7	9.3	0.7	3.8	0.8	1.6
	0.9	12.8	0.9	10.0	0.9	4.1	1.5	1.5
	1.1	11.2	1.1	8.9	1.3	3.8	1.8	1.6
	1.3	12.4	1.3	8.9	1.8	4.2	2.3	1.5
	1.5	12.1	1.5	8.9	2.3	3.2	2.8	1.5
	1.7	17.7	1.8	9.1	2.8	3.7	3.3	1.6
浸漬	1.9	20.1	2.3	9.7	3.2	6.0	3.8	1.6
64週後	2.1	20.5	2.7	11.2	3.4	6.8	4.3	1.5
	2.3	30.4	2.9	14.5	3.6	6.5	4.7	1.5
	2.5	33.1 00.4	<u>న</u> .1	15.6	3.9	b./	4.9	1.5
	2.1	20.4 25.7	<u> </u>	22.8 21.0	4.2	5./		
	∠.ઝ 3.1	20.1	<u>ა.</u> ე ვ დ	∠1.0 21.2	4.4 17	0.0 7 0		
	33	34.0	<u> </u>	20.2	<u>4.</u> 7	9.7		
	3.8	32.5	4.3	20.0	1.0	0.1		
	4.3	46.5	4.6	20.5				
	4.8	47.1	4.9	23.3				

表 4-33 ビッカース硬度から換算した圧縮強度

(単位はN/mm²)

	測定位置	W/C-40%	測定位置	W/C-70%	測定位置	W/C-85%	測定位置	W/C-105%
	(mm)	W/O=+0/0	(mm)	W/ 0=70%	(mm)	W/0-00%	(mm)	W/O=103%
浸漬前		2.90		1.15		0.98		0.57
	0.1	2.32	0.1	0.00	0.1	0.00	0.1	0.00
	0.5	2.31	0.5	0.77	0.5	0.30	0.5	0.00
	1.0	3.43	1.0	0.96	1.0	0.33	1	0.00
浸清	1.5	3.48	1.5	1.32	1.5	0.57	1.5	0.00
12调後	2.0	3.28	2.0	1.21	2.0	0.72	2	0.43
12/21/2	2.5	3.28	2.5	1.34	2.5	0.73	2.5	0.45
	3.0	3.28	3.0	1.36	3.0	0.92	3	0.43
	4.0	3.16	4.0	1.12	4.0	0.74	4	0.41
	5.0	2.83	5.0	0.95	5.0	0.70	5	0.43
	0.1	0.93	0.1	0.43	0.1	0.43	0.1	0.30
	0.3	1.18	0.3	0.70	0.3	0.56	0.3	0.35
	0.5	1.41	0.5	0.88	0.5	0.58	0.5	0.36
	0.7	1.37	0.7	0.87	0.7	0.63	0.7	0.38
	0.9	1.56	0.9	0.88	0.9	0.64	0.9	0.38
	1.1	1.83	1.1	0.94	1.1	0.65	1.1	0.41
	1.3	1.73	1.3	0.93	1.3	0.68	1.3	0.44
	1.5	1.84	1.5	0.90	1.5	0.71	1.5	0.40
	1.9	1.91	1.7	1.02	1.7	0.74	1.7	0.43
	2.4	2.02	1.9	1.01	1.9	0.79	1.9	0.43
	2.9	2.14	2.1	1.04	2.1	0.60	2.1	0.41
浸漬	3.4	2.07	2.0	1.00	2.3	0.01	2.3	0.45
48週後	3.9	2.15	3.0	1.10	2.0	0.70	2.0	0.44
	4.4	2.10	3.5	1.11	2.7	0.00	2.7	0.49
	4.0	2.20	4.0	1.12	3.6	0.04	2.9	0.49
			4.0	1.32	<u> </u>	0.04	3.3	0.49
			1.0	1.02	4.6	0.84	3.5	0.10
					4.9	0.90	37	0.10
					1.0	0.00	3.9	0.48
							4.1	0.47
							4.3	0.50
							4.5	0.50
							4.7	0.51
							4.9	0.48
	0.1	0.97	0.1	0.44	0.1	0.40	0.1	0.00
	0.3	1.15	0.3	0.59	0.3	0.44	0.3	0.26
	0.5	1.25	0.5	0.72	0.5	0.46	0.5	0.25
	0.7	1.08	0.7	0.83	0.7	0.46	0.8	0.25
	0.9	1.04	0.9	0.88	0.9	0.48	1.5	0.24
	1.1	0.95	1.1	0.81	1.3	0.46	1.8	0.25
	1.3	1.02	1.3	0.81	1.8	0.48	2.3	0.24
	1.5	1.00	1.5	0.81	2.3	0.41	2.8	0.24
	1.7	1.30	1.8	0.82	2.8	0.45	3.3	0.25
浸漬	1.9	1.41	2.3	0.86	3.2	0.62	3.8	0.25
64週後	2.1	1.43	2.7	0.95	3.4	0.68	4.3	0.24
	2.3	1.87	2.9	1.13	3.6	0.65	4.7	0.24
	2.5	1.98	3.1	1.19	3.9	0.67	4.9	0.24
	2./	1./9	3.3	1.54	4.2	0.60		
	2.9	1.67	3.5	1.49	4.4	0.59		
	3.1 2.2	2.04	3.ð	1.47	4./	0.75		
	<u>3.3</u>	2.03	4.1	1.42	4.9	0.80		
	3.0	1.90	4.3	1.41				
	4.J	2.00	4.0 / 0	1.40				
	4.0	2.02	4.3	1.00				

表 4-34 ビッカース硬度から換算したヤング係数

(単位は×104N/mm²)

W/C	圧縮強度	弾性係数		
(%)	(N/mm^2)	(N/mm^2)		
40	55.86	1.88 × 10 ⁴		
55	28.72	1.30×10^4		
70	16.03	0.88×10^4		
85	10.19	0.64×10^4		
105	4.50	0.39×10^4		

表 4-35 浸漬前の圧縮強度および弾性係数(2001年度実施)

4.4.5 まとめ

浸漬試験による溶出劣化として,浸漬64週までのビッカース硬度の変遷を確認し, カルシウム溶出率との関係について整理した。本項で明らかとなった事項を以下に示 す。

- 浸漬期間が長くなるとビッカース硬度は低下する傾向にあり、表面近傍で特に硬度 が低下した。
- ・ EPMA 分析値などを用いて,溶出によって空隙が増加した場合の密度低下を考慮 した溶出率の算出方法を提案した。
- カルシウム溶出率とビッカース硬度比との関係を整理し,カルシウム溶出率が大きくなるとビッカース硬度比が低下する傾向を確認した。
- ・ Buil モデル, 鹿島モデルなどのモデルを用いることで, カルシウム溶出による空隙率の変化を予測することが可能である。

JNC TJ8400 2003-046

4.5 化学的変遷指標と水理・力学特性の関係のシステム化に向けたデータ整理

本実験では,セメント系材料の化学的変遷を代表的に表現する指標として Ca の溶 出率に着目し,Caの溶出率と力学特性(ヤング係数,圧縮強度など)あるいは透水係 数の変遷との関係を調べた。本章ではその問題点・適用性等について検討する。本年 度,新たに得られたデータを加えて,それぞれの関係を再度整理した。溶出率,ビッ カース硬度,力学特性および空隙率の相互作用関係のイメージを図 4-83 に示す。

図 4-83 各物性の相互作用関係のイメージ

力学特性を把握する手法としては,以下に示すように,Ca溶出率からビッカース硬度を介在して求める方法(方法),空隙率を介在して求める方法(方法),空隙率 を算出する理論式(Buil モデル, 鹿島モデル)を用いて求める方法(方法)の3つ が考えられる。

方法 ビッカース硬度を介在させる方法(図 4-83 において右軸から時計回り)

現状のデータでは溶出率とビッカース硬度には,図4-84に示すような関係がある。 また,ビッカース硬度とヤング係数(圧縮強度)の間には健全な供試体を対象とすると図 4-85,図4-86に示すような関係が得られている。以下に式を示す。

$$E=0.183Hv^{0.681}$$
 (4-20)

ここに, : 圧縮強度(N/mm2),Hv:ビッカース硬度,E:ヤング係数(×10⁻⁴N/mm²) これらの関係を用いて,カルシウム溶出率から力学特性を推定することが可能であ る。しかし,カルシウム溶出率とビッカース硬度比の関係についてはばらつきが大き くなっており,この関係を用いる場合は,ばらつきの大きさを考慮した上で評価する 必要がある。

また,ビッカース硬度比については浸漬前との比で整理しているため,ビッカース 硬度比が 1.0 以上となる場合があるため,この関係の幅を考慮した場合,カルシウム が溶出すると硬度が増加するといった危険側の結果になり得る。また,安全側に評価 すると,カルシウムが 60%程度溶出すると硬度がゼロになる,といった結果になる。 この関係の幅を考慮する場合は,実際の現象を考慮して矛盾がないことを確認した上 で,評価に用いる必要がある。

一方,ビッカース硬度とヤング係数(圧縮係数)の関係は,昨年報告した場合と同様に, 溶出劣化が全体的に,かつ均一に生じたバルクの供試体を作製することが極めて困難 であることから,本実験では健全時の力学特性とビッカース硬度の関係を求め,その 関係を劣化時でも適用可能と仮定し,評価に用いる。新しい溶出手法が確立された際 には,劣化時と健全時との相違を把握する必要がある。

図 4-86 ビッカース硬度とヤング係数の関係

方法 空隙率を介在させる方法(図 4-83 において右軸から反時計回り)

現状のデータでは溶出率と空隙率には,図4-87に示すような関係がある。また,空隙率と圧縮強度及びヤング係数の間には,健全な供試体を対象とすると図4-88,図4-89に示すような関係が得られている。以下に式を示す。

$$=1.23 \times 10^{5} \quad ^{-2.47} \qquad (4-21)$$

$$E=246$$
 ^{-1.56} (4-22)

これらの関係を用いてカルシウム溶出率からヤング係数(圧縮強度)を推定するこ とが可能である。現時点では,カルシウム溶出率と空隙率の関係として直線関係で示 しているが,さらに溶出が進行した場合についてもデータを取得し,その場合の傾向 を考慮した上で,この関係については見直しをする必要があると考えられる。

方法 空隙率を算出する理論式(Buil モデル, 鹿島モデル)を用いて求める方法

図 4-90 に示すように,空隙率の増加は固相中のカルシウム減少量を水酸化カルシウムの体積として増加すると提案されている。今後,水酸化カルシウムが残存しない場合などの適用性を明確にすれば,この関係を用いて空隙率の推定(計算例は図 4-91) を行うことも可能である。

図 4-91 空隙率の実測値と各モデルで計算した空隙率との比較

水理特性(透水係数)を把握する手法として, Ca 溶出率から空隙率を介在して関係 付ける方法と,力学特性の場合と同様に,空隙率の理論式を用いて空隙率を算出し, 透水係数を求める手法の2つがある,その関係のイメージを図 4-92 に示す。

図 4-92 溶出率と透水係数の関係のイメージ

溶出率と空隙率の関係は図 4-87 に示したとおりであり、ここでも同様な考え方にて 空隙率を推定する。また、図 4-93 に示す、既往の実験から得られた、空隙率と透水係 数の関係式に、本実験で得られた空隙率を代入し、透水係数を算出する。実験式を用 いて透水係数を算出する場合については、通水試験で得られた結果などを用いてモデ ルを見直し、見直したモデルで再度計算を行う必要がある。

図 4-93 空隙率と透水係数の関係

4.6 まとめ

溶出によって変遷するセメント系材料の物理特性(透水係数,圧縮強度)について, 実験的に検討した結果を以下にまとめる。

(1) 溶出量と空隙率の変化

- ・ 作用水量が増加すると空隙率も増加する。水セメント比によって異なるが,浸漬 64週において10~20%程度空隙率が増加した。
- カルシウム溶出率が増加すると空隙率も増加し、その関係はほぼ直線関係にある。
- 既往のモデルを用いることによって、カルシウム溶出率から透水係数を推定することが可能である。

(2) ビッカース硬度と強度特性の関係把握

- ビッカース硬度以外にもいくつかの微小硬度があるが、セメント系材料に適用されているものはなく、現時点ではビッカース硬度の適用が最適である。
- ・ 圧子押込み深さが大きくなるとビッカース硬度は小さくなる傾向にある。これらの
 関係についてさらに検討を加えることによって、脆くなったセメント系材料のビッ
 カース硬度を推定する方法として適用できる可能性がある。
- (3) カルシウム溶出量とビッカース硬度の関係把握
- 浸漬期間が長くなるとビッカース硬度は低下する傾向にあり、表面近傍で特に硬度 が低下した。
- ・ EPMA 分析値などを用いて,溶出によって空隙が増加した場合の密度低下を考慮 した溶出率の算出方法を提案した。
- カルシウム溶出率とビッカース硬度比との関係を整理し、カルシウム溶出率が大きくなるとビッカース硬度比が低下する傾向を確認した。
- Buil モデル, 鹿島モデルなどのモデルを用いることで, カルシウム溶出による空隙率の変化を予測することが可能である。

(4) 今後の課題

- 上記の結果は浸漬 64 週までの結果であり,昨年度に比較して溶出がより進行して いるが,水セメント比が低い場合については依然として表面近傍のみにしか劣化部 分が確認されないものもある。今後はさらに浸漬を経た後,同様の測定,分析を実 施し,溶出の影響を顕著に受けた供試体についてデータを取りまとめていくことが 必要である。
- 今回は作用水交換法によって溶出試験を促進しているため、液交換の際に実現象では生じえない境界条件の変化を与えている。そのため周辺 Ca 濃度の増加によって溶出が抑制されるなどの影響を除く必要がある。
- 溶出率と空隙率の関係を評価し、水酸化カルシウムの体積換算によって、空隙の増加率が精度良くトレースできることを Buil モデル、鹿島モデルの両手法で確認した。しかし、溶出が進み、他元素の溶出が顕著となる、溶出率が上昇した時においても確認を行い、モデルの適用性・妥当性を検討する必要がある。
- 既往の検討結果を参考に、空隙率から透水係数を算出することが可能であることが わかった。しかし検討した既往のモデルが少ないため、空隙率(あるいは空隙径分 布)と透水係数の関係をさらに広く調査し、適切なモデル、算出式を適用する必要 がある。
- ビッカース硬度とヤング係数,圧縮強度あるいは空隙率とヤング係数,圧縮強度の 関係については,健全な供試体で得られた関係が劣化供試体についても適用可能と 仮定している。よって,均一にバルクの供試体を劣化させるなど困難な課題がある もの,この仮定を実験的に確認する必要がある。
- これらのデータを用いてモデル化する際には、測定データのばらつき、測定範囲な
 ども考慮する必要があると考えられる。

参考文献

- 1)株式会社太平洋コンサルタント, 鹿島建設株式会社:"セメント系材料の水理・力学 特性の変遷に関する研究",核燃料サイクル開発機構 業務委託報告書, JNC TJ8400 2002-028, (2002)
- 2) U.Berner : "A Theremodynamic Description of the Evolution of Pore Water Chemistry and Uranium Speciation during the Degradation of Cement", PSI-Bericht Nr.62 , (1990)
- 3) T.C.Powers : "Physical Properties of Cement Paste ", Proceedings of the Fourth International Conference on the Chemistry of Cement, U.S. National Bureau of Standards Monograph 43, Vol.2, pp.577-613, (1962)
- 4)芳賀和子,他:"セメント硬化体の溶解に伴う変質()遠心力法によるセメント硬化
 体の通水試験",日本原子力学会和文論文誌,Vol.1,No.1, p.20,(2002)
- 5) 岸谷孝一,他:コンクリート構造物の耐久性シリーズ,アルカリ骨材反応,技報堂 出版,(1986)
- 6)小林一輔,他:コンクリート構造物の耐久性シリーズ2,アルカリ骨材反応の診断,
 森北出版,(1991)
- 7) Denys Breysse and Bruno Gerard : "Modeling of permeability in cement-based materials , part 1-uncracked medium ", Cement and Concrete Research , Vol.27 , No.5 , pp.761-775 , (1997)
- 8) 土質工学会編:岩の調査と試験,土質工学会,(1989)
- 9)株式会社アカシホームページ <u>http://www.akashi-grp.co.jp/</u>
- 10) P. Faucon, et al : "Behavior of crystallized phases of Portland cement upon water attack ", Materials and Structures, Vol.30, pp.480-485, (1997)
- 11) M. Buil, et al: "A Model of the Attack of Pure Water or Undersaturated Lime Solutions on Cement, Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes "2nd Volume, STP 1123, ASTM, pp.227-241, (1992)
- 12) Kosuke Yokozeki, et al : : "Prediction of Degradation for Physical Properties due to Leaching of Hydration Products from Concrete ", Journal of Advanced Concrete Technology, Vol.1, No.2, pp.161-171, (2003)

5. 通水試験と浸漬試験で得た知見の整理とモデル化に関する検討

5.1 通水試験と浸漬試験の結果比較

力学特性及び水理特性の変遷評価手法について,今年度までに得られた通水試験結 果と浸漬試験結果を比較し,相互補完の可能性を検討する。

ビッカース硬度,空隙率と強度特性の関係について,昨年度までに得られたデータ に,通水試験で新たに得られたデータを加え以下に示す。ビッカース硬度と圧縮強度, 空隙率と圧縮強度の関係について図 5-1,5-2 に示す。また,ビッカース硬度とヤング 係数,空隙率とヤング係数の関係について図 5-3,5-4 に示す。圧縮強度については, 昨年度までの結果と同様に,通水,浸漬試験のそれぞれの関係が同じ傾向を示してお り,両試験の結果はほぼ一致していることから,これらの関係は両試験共通のものと して適用できると考えられる。ヤング係数については,ばらつきはあるものの,圧縮 強度と同様,通水,浸漬試験のそれぞれの関係が同じ傾向を示しており,両試験の結 果はほぼ一致していることから,これらの関係は両試験共通のものとして適用できる

=1.626Hv ((5	5 -	1)
_,,	· -	-		/

$=308.16 e^{-0.0762}$	(5-2)
E=0.0513Hv+0.2261	(5-3)
E=11.497 e -0.066	(5-4)

ここに、: 圧縮強度(N/mm²), E:ヤング係数(N/mm²), Hv:ビッカース硬度,
 : 空隙率(%)

カルシウム溶出率とビッカース硬度(ビッカース硬度比)の関係およびカルシウム 溶出率と空隙率の関係について,通水試験,浸漬試験の両試験で今年度までに得られ たデータをプロットしたものを図 5-5,5-6,5-7 に示す。ビッカース硬度比について は,両試験とも初期試料との比で示した。カルシウム溶出率とビッカース硬度比の関 係(図 5-5,5-6)については,ばらつきは大きいものの,両試験結果ともカルシウム 溶出率が増加するとビッカース硬度比が低下する傾向にあることが分かる。直線近似 の関係において,カルシウム溶出率が0%の場合のビッカース硬度比はほぼ1.0 程度と なり,カルシウム溶出率 100%でビッカース硬度比はほぼゼロとなっている。実現象 を想定した場合,カルシウム溶出率が0%の場合には硬度は低下せず,カルシウムが ほとんど溶出した場合は構造を保持できなくなり硬度がゼロとなる,と考えられる。 この関係はその現象を表しているため,関係としては妥当なものであると考えられる。 曲線関係で近似した場合,カルシウム溶出率0%では直線関係で近似した場合よりビ ッカース硬度比が高くなるが,全体としては直線関係より同一カルシウム溶出率にお けるビッカース硬度比が小さくなる。これらの関係を以下に示す。

ここに,HV比:ビッカース硬度比,LC:カルシウム溶出率(%),である。

カルシウム溶出率と空隙率の関係(図 5-7)についても,通水試験と浸漬試験結果は ほぼ同様の傾向にあることが分かる。カルシウム溶出率が増加すると,空隙率はほぼ 直線的に増加する結果となっている。図中には,水セメント比85%,105%について, 浸漬試験のみの近似式(4-10),(4-11)と,通水試験と浸漬試験の結果を合わせた 近似式を示す。若干水セメント比105%の場合の傾きが異なっているが,ほぼ同様の 係数の近似式となった。通水試験と浸漬試験の結果より得られた近似式を以下に示す。

$$W/C = 85\%$$
 : = 0.333Lc+46.8 (5-7)

W/C
$$105\%$$
 : = 0.256Lc+53.9 (5-8)

ここに, :空隙率(%), Lc:カルシウム溶出率(%)である。

一方,水理特性については浸漬試験では透水係数を測定できないため,データを比較することはできない。そのため,4.2.4 項で記述した Denys Breysse の検討結果と, 通水試験の結果を比較することとした。通水試験は高水セメント比のみの試験である が溶出し空隙率が増加した場合の透水係数を得ることができる。健全な供試体のみに 基づく Denys Breysse の検討結果と比較することで,広い範囲の空隙率と透水係数の 関係を評価できると考えられる。文献データと通水試験結果をプロットしたものを図 5-8 に示す。通水試験の場合の空隙率と透水係数の関係は以下のように近似できる。

$$K = 10^{(-6.23+9.3 \cdot \log)}$$
 (5-9)

ここに,K:透水係数(m/s), :空隙率(%),である。 空隙率が高くなった場合に通水試験結果のほうが透水係数は高くなる傾向にあるが, 空隙率が低い場合は既往の検討結果とほぼ同等の値となっており,本研究の透水試験 のデータから得られた上式は安全側に評価出来るため,上式を用いて広い範囲の空隙 率に関する評価が可能であると考えられる。また,文献データおよび通水試験データ を健全時と劣化時に分けた場合について図 5-9 に示す。

これら手法の異なる 2 種類の試験結果から,強度特性(圧縮強度,ヤング係数)と ビッカース硬度,空隙率の関係およびカルシウム溶出率と空隙率,ビッカース硬度の 関係においては,通水試験,浸漬試験ともほぼ同様の関係にあり,これらの関係,指 標を用いることで,両試験結果を補完することが可能であると考えられる。また,空 隙率あるいはカルシウム溶出率から透水係数の算出が可能であると考えられる。

図 5-1 ビッカース硬度と圧縮強度の関係

図 5-3 ビッカース硬度とヤング係数の関係

図 5-4 空隙率とヤング係数の関係

図 5-5 カルシウム溶出率とビッカース硬度比の関係(直線近似)

図 5-6 カルシウム溶出率とビッカース硬度比の関係(曲線近似)

図 5-7 カルシウム溶出率と空隙率の関係

図 5-8 空隙率と透水係数の関係

図 5-9 健全時および劣化時の空隙率と透水係数の関係

5.2 各試験データの評価手法

上記の結果より,カルシウム溶出率から力学特性および水理特性を推定できること が分かった。

力学特性(圧縮強度)の推定手法を整理すると,以下の2つの方法がある。

手法 :カルシウム溶出率からビッカース硬度(ビッカース硬度比)を求め(図
 5-5,5-6参照),さらにビッカース硬度から圧縮強度を求める(図 5-1 参
 照)。

<u>カルシウム溶出率 ビッカース硬度比</u>

直線近似式 (5-5): HV比 = -0.0094·LC + 0.959

曲線近似式 (5-6): HV比 = 1.12· e^{-0.037LC}

ビッカース硬度 圧縮強度

式 (5-1): =1.626Hv

手法 :カルシウム溶出率から空隙率を求め(図 5-7 参照),さらに空隙率から圧 縮強度を求める(図 5-2 参照)。

カルシウム溶出率 空隙率

実験式(4-7~9,5-7,5-8):

水セメント比 40%	:	$= 0.46 \cdot Lc + 20.3$
水セメント比 55%	:	= 0.44• Lc + 32.7
水セメント比 70%	:	= 0.35• Lc + 40.6
水セメント比 85%	:	= 0.333Lc+46.8
水セメント比 105%	:	= 0.256Lc+53.9

=
$$_{cap}$$
 + $_{leach}$
理論式 (4-16): = $\frac{W/C - 0.36 \cdot F}{W/C + 0.32}$ + $\cdot V_h(C_p)(C_{p0} - C_p)$

(鹿島モデル)

空隙率 圧縮強度

式 (5-2): =308.16 e^{-0.0762}

上記の手法の適用性について検討するために,それぞれの手法で算出した圧縮強度

の比較を行うこととした。それぞれの手法で算出した圧縮強度について,カルシウム 溶出率との関係で整理したものを図 5-10,5-11,5-12,5-13 に示す。図中には浸漬試 験の初期値(カルシウム溶出率 0%)および通水試験で実測した値を比較としてプロ ットする。各手法ともカルシウム溶出率が大きくなると圧縮強度が低下する関係とな っている。算出に用いる関係式の形状によって,それぞれ直線的,曲線的な変化を示 している。比較となる実測データは少ないものの,手法の直線関係で求めた圧縮強 度が最も実測に近い値となっている。

それぞれの手法による計算値と実測値を比較する(図 5-14~5-17 参照)と,手法 の直線近似した場合がもっとも実測値と計算値が一致する結果となっているため,現 段階では手法の直線近似が最適な手法であると考えられる。手法で理論式(4-16) と実験式(4-7~9,5-7,5-8)から空隙率を算出した場合では,実験式を用いた方が 圧縮強度の推定精度は良い。

次に力学特性(ヤング係数)の推定手法を整理すると,以下の2つの方法がある。 手法:カルシウム溶出率からビッカース硬度(ビッカース硬度比)を求め(図5-5, 5-6参照),さらにビッカース硬度からヤング係数を求める(図5-3参照)。

> <u>カルシウム溶出率 ビッカース硬度比</u> 直線近似式(5-5): HV比= - 0.0094・LC + 0.959 曲線近似式(5-6): HV比=1.12・e^{-0.037LC} <u>ビッカース硬度 ヤング係数</u> 式(5-3): E=0.0513Hv+0.2261

手法 :カルシウム溶出率から空隙率を求め(図 5-7 参照),さらに空隙率からヤン

グ係数を求める(図 5-4 参照)。

カルシウム溶出率 空隙率

実験式(4-7~9,5-7,5-8):

水セメント比 40%	:	= 0.46• Lc + 20.3
水セメント比 55%	:	= 0.44• Lc + 32.7
水セメント比 70%	:	= 0.35• Lc + 40.6
水セメント比 85%	:	= 0.333Lc+46.8
水セメント比 105%	:	= 0.256Lc+53.9

=
$$_{cap}$$
 + $_{leach}$
理論式 (4-16): = $\frac{W/C - 0.36 \cdot F}{W/C + 0.32}$ + $\cdot V_h(C_p)(C_{p0} - C_p)$

(鹿島モデル)

空隙率 ヤング係数

上記の手法の適用性について検討するために,それぞれの手法で算出したヤング係 数の比較を行うこととした。それぞれの手法で算出したヤング係数について,カルシ ウム溶出率との関係で整理したものを図 5-18,5-19,5-20,5-21 に示す。図中には浸 漬試験の初期値(カルシウム溶出率 0%)および通水試験で実測した値を比較として プロットする。傾向は圧縮強度と同様であり,各手法ともカルシウム溶出率が大きく なるとヤング係数が低下する関係となっている。算出に用いる関係式の形状によって, それぞれ直線的,曲線的な変化を示している。

それぞれの手法による計算値と実測値を比較する(図 5-22~5-25 参照)と,どの方法によっても実測値を満足に推測できていないため,今後推定方法を詳細に検討する必要がある。今後の検討の方針として,圧縮強度とヤング係数の関係は 1/2 乗で表現できることから,この関係を評価にふまえて再検討を行う。

また,これら圧縮強度やヤング係数の推定方法の適用性を確認するためには,低カ ルシウム溶出率(10~60%程度の範囲)における力学特性のデータが必要であるが, その範囲のデータについては,本研究の範囲では取得の見込みがない。したがって, 低カルシウム溶出率のデータを取得するとともに,既往の研究データを調査して最適 なモデルを構築する必要があると考えられる。

水理特性の推定については,カルシウム溶出率から空隙率を求め,さらに空隙率か ら透水係数を求める(図 5-8 参照)方法がある。カルシウム溶出率と空隙率との関係 を実験で得られた関係(図 5-7 参照)および 4.4.4 項で記述した理論式(鹿島モデル) を用いて計算した。また,空隙率と透水係数との関係には通水試験結果から得られた 近似式(式 5-9)を採用することとした。この手法に基づき実験式(図 5-7 参照)およ び理論式(鹿島モデル)から算出した透水係数の関係をそれぞれ図 5-26,27 に示す。 カルシウム溶出率が低い領域では水セメント比が小さいほうが透水係数は低くなって

式 (5-4): 11.497 e^{-0.0657}

いるが、カルシウム溶出率が高くなると水セメント比による違いはほとんどなくなり、 いずれの水セメント比においても、カルシウム溶出率100%で透水係数は10⁻⁶m/s程度 となっている。この結果から推定すると、カルシウム溶出率が高くなった場合には、 水セメント比によらず、いずれの場合にも高い透水係数になると考えられる。

図 5-10 カルシウム溶出率からビッカース硬度を介在して算出した圧縮強度(直線関係)

図 5-11 カルシウム溶出率からビッカース硬度を介在して算出した圧縮強度(曲線関係)

図 5-12 カルシウム溶出率から空隙率を介在して算出した圧縮強度(実験式)

図 5-13 カルシウム溶出率から空隙率を介在して算出した圧縮強度(理論式)

図 5-14 圧縮強度の実測値と計算値の比較(Ca HV : 直線関係)

図 5-15 圧縮強度の実測値と計算値の比較(Ca HV :曲線関係)

図 5-16 圧縮強度の実測値と計算値の比較(Ca 空隙率 :空隙率を実験式より算出)

図 5-17 圧縮強度の実測値と計算値の比較(Ca 空隙率 :空隙率を理論式より算出)

図 5-18 カルシウム溶出率からビッカース硬度を介在して算出したヤング係数(直線近似)

図 5-19 カルシウム溶出率からビッカース硬度を介在して算出したヤング係数(曲線関係)

図 5-20 カルシウム溶出率から空隙率を介在して算出したヤング係数(実験式)

図 5-21 カルシウム溶出率から空隙率を介在して算出したヤング係数(理論式)

図 5-22 ヤング係数の実測値と計算値の比較(Ca HV E:直線関係)

図 5-23 ヤング係数の実測値と計算値の比較(Ca HV E:曲線関係)

図 5-24 ヤング係数の実測値と計算値の比較(Ca 空隙率 E:空隙率を実験式より算出)

図 5-25 ヤング係数の実測値と計算値の比較(Ca 空隙率 E:空隙率を理論式より算出)

図 5-26 カルシウム溶出率と透水係数の関係(実験式から空隙率を算出)

図 5-27 カルシウム溶出率と透水係数の関係(理論式から空隙率を算出)

5.3 まとめ

本章では通水試験と浸漬試験の結果の比較をし,カルシウム溶出率や空隙率と透水 係数,強度特性(圧縮強度,ヤング係数)との関係を整理した。主な検討結果を以下 に示す。

・ ビッカース硬度と圧縮強度,ヤング係数および空隙率と圧縮強度,ヤング係数 には相関関係があり,以下の近似式で示すことができる。

= 1.626 HV, $= 308.16 e^{-0.0762}$

E=0.0513Hv+0.2261 , $E=11.497 e^{-0.066}$

- ここに、 : 圧縮強度(N/mm²), E:ヤング係数(N/mm²), HV:ビッカース硬度, :空隙率(%)
- カルシウム溶出率が増加するとビッカース硬度比は低下する傾向にあり、その
 関係を近似すると以下のよう示すことができる。

HV比= - 0.0094·LC+0.959

ここに, HV 比: ビッカース硬度比, LC: カルシウム溶出率(%)

カルシウム溶出率と空隙率は以下の関係にある。

= ·LC + :実験式

ここに, :空隙率(%), , は水セメント比によって異なる係数(W/C=85%の場合は : 0.333, : 46.8, W/C=105%の場合は : 0.256, : 53.9)

$$= _{cap + leach} : \underline{\underline{\Xi}} \underline{\underline{mt}} = \frac{W/C - 0.36 \cdot F}{W/C + 0.32} + \cdot V_h(C_p) (C_{p0} - C_p)$$

ここに, :空隙比(空隙率/100), _{cap}: キャヒ[°] ラリ-空隙, _{leach}:溶出に より増加した空隙, F:水和度, Vh(Cp):水和物のモル体積: Ca(OH)² の場合は 74/2230=0.0332, C-S-Hの場合は 0.0541 (L/mol), Cp⁰: 固相 の初期カルシウム濃度(mol/L), Cp: 固相カルシウム濃度(mol/L), : 溶出に関する補正係数

空隙率と透水係数の関係において,既往の検討結果と通水試験の結果はほぼ同 様な関係にあり,通水試験のみの近似式は以下のように近似される。

$$K = 10^{(-6.23+9.30\log)}$$

ここに,K:透水係数(m/s), :空隙率(-),である。

本章で得られた関係を用いることで,カルシウム溶出率や空隙率から水理・力
 学特性を評価することが可能である。

6.おわりに

本研究ではニアフィールド水理場の長期的変遷評価システムモデル構築のためのデ ータ取得を目的とし,セメント系材料の変質供試体の物理的・化学的特性を評価した。 通水法と浸漬法の2種類の試験方法により得られたデータを補完的に用いてより信頼 性を高めた。また,取得したデータからモデル化に必要な「変遷による各特性間の関 係」を検討した。

通水法では,水セメント比 85%ならびに 105%のセメントペーストを試料として, 劣化過程での各特性の変化のデータ取得を行った。試験が完了する積算液固比までに約 60%のカルシウムが溶出,ポルトランダイトの溶脱が固相の力学特性や空隙率の変遷に 大きく寄与していることがわかった。圧縮強度や空隙率はポルトランダイトが溶出する 領域でその変化が大きく Atkinsonモデルの Region にほぼ相当する。しかしながら, 劣化部のカルシウム溶出率はいずれのケースにおいても 60~80%といった高い値とな ったために,力学特性との間には信頼性の高い関係を導くことは困難であった。一方, 空隙率および透水係数と圧縮強度との間には高い相関性が認められ,モデル構築に有用 である可能性が示された。また,空隙率と透水係数の間にも相関関係があった。また, ビッカース硬度もカルシウム溶出率との間には高い精度の関係を確認することはでき なかったが,圧縮強度や水理特性との間には相関性が認めら代用特性としての有用性が 示された。

浸漬法では,水セメント比が40%から105%までのセメントペースト試料をイオン 交換水に浸漬し,拡散による物理特性(透水係数,圧縮強度)変化について実験的に 検討した。その結果,空隙率は,浸漬64週で初期値より10~20%程度増加すること が分かった。また,カルシウム溶出率と空隙率の関係と,空隙率と透水係数の既往の 検討結果を用い,カルシウム溶出時の透水係数を推定した。ビッカース硬度は,水と 接していた表面近傍で低下する結果となり,浸漬期間が長く,水セメント比の大きい 方がその低下領域が大きいことが分かった。また,ビッカース硬度や空隙率と力学特 性(圧縮強度,ヤング係数)の関係を用い,カルシウム溶出時の力学特性を推定する 手法を提案した。

通水法と浸漬法の両試験手法の結果から,両手法相互のデータを補完する可能性が示された。また,各変遷指標間の関係から,水理・力学特性に関するモデル化手法の方向性を

示すことができ,特にカルシウム溶出率や空隙率から水理・力学特性を評価できる可能性 が確認できた。

付 録

付-1 (210)

研究用セメントの試験結果

1. 化学分析 (JIS R 5202:1999)

化学成分(%)											
ig.loss	insol.	SiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	Ca0	MgO	SO3				
0.62	0.04	21.24	5.24	2.51	64.86	1.84	2.02				

	1	化学成	分(%)			全アルカリ(%)
Na ₂ 0	K ₂ 0	TiO ₂	P ₂ O ₅	Mn0	C1	Na ₂ Oeq
0.23	0.54	0.32	0. 37	0.04	0.016	0. 59

2. 物理試験 (JIS R 5201:1997)

ана стана стан

宓庇			凝 結		ملح حضر لديلي
名度 (g/cm ³)	比表面積 (cm ² /g)	水 量 (%)	始発 (h-m)	終結 (h-m)	安定性(パット法)
3.17	3150	28.0	2-35	3-40	良

	· · · ·	強さ	(N/mm²)	- 	чита — — — — — — — — — — — — — — — — — — —
	圧 縮	·		曲げ	
3日	7日	28日	3日	7日	28日
30.6	47.3	65.2	6.5	8.1	9.5

2000年1月

社団法人 セメント協会・研究所

付録 1 OPC (研究用セメント)のミルシート

試料名		90-物	生A	90-物	生B	90-物	生C	90-分林	f
試料重量	₫(g)	57.98		57.73		57.85		57.85	
試料厚さ	(cm)	4.01		4.00		4.00		4.00	
試料断面	ī積(cm2)	12.83		12.83		12.83		12.83	
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
-	0.39	1.0	-	1.0	-	1.0	-	1.0	-
2670		3.1	6.12E-10	3.1	5.90E-10	3.3	6.21E-10	3.1	5.97E-10
5600		5.5	6.02E-10	5.4	5.77E-10	5.6	6.07E-10	5.4	5.86E-10
9000		8.3	6.38E-10	8.0	5.71E-10	8.3	5.99E-10	8.0	5.75E-10
13000		11.9	6.65E-10	11.1	5.81E-10	11.6	6.13E-10	11.0	5.65E-10
17695		15.9	6.51E-10	14.6	5.63E-10	15.3	5.94E-10	14.5	5.50E-10
23060		20.7	6.66E-10	18.6	5.54E-10	19.5	5.87E-10	18.4	5.52E-10
27330	0.47	25.3	6.82E-10	22.4	5.53E-10	23.6	5.95E-10	22.3	5.59E-10
31755		30.1	6.75E-10	26.2	5.42E-10	27.7	5.80E-10	26.1	5.40E-10
35830		34.8	7.35E-10	30.0	5.76E-10	31.8	6.24E-10	30.1	6.17E-10
40070		39.9	7.53E-10	34.1	6.05E-10	36.2	6.59E-10	34.6	6.61E-10
43010		43.4	7.55E-10	36.9	5.96E-10	39.3	6.45E-10	37.6	6.41E-10
46260		47.7	8.14E-10	40.3	6.61E-10	43.1	7.41E-10	41.2	6.99E-10
53190	0.16	50.9	8.73E-10	43.3	7.93E-10	46.4	8.83E-10	44.1	7.88E-10
56195	0.43	54.8	8.89E-10	46.8	8.03E-10	50.3	8.86E-10	47.6	7.95E-10
58895		58.3	8.88E-10	50.0	7.96E-10	53.8	8.81E-10	50.7	7.79E-10
61965		62.7	1.00E-09	54.0	8.96E-10	58.3	9.92E-10	54.6	8.57E-10
64840		67.1	1.03E-09	57.9	9.26E-10	62.5	1.02E-09	58.2	8.66E-10
67750		71.6	1.07E-09	62.1	9.62E-10	67.0	1.05E-09	62.0	8.73E-10
70330		76.3	1.25E-09	66.4	1.15E-09	71.6	1.22E-09	65.7	9.76E-10
73520	0.29	80.1	1.21E-09	70.0	1.11E-09	75.4	1.17E-09	68.6	9.14E-10
76410		83.8	1.27E-09	73.3	1.16E-09	78.9	1.23E-09	71.3	9.40E-10
79250		87.7	1.38E-09	76.9	1.26E-09	82.7	1.34E-09	74.1	1.01E-09
81865		91.4	1.41E-09	80.3	1.28E-09	86.3	1.36E-09	76.8	1.02E-09
84850		*	冬了	84.2	1.32E-09	90.5	1.41E-09	79.9	1.03E-09
87915				*	冬了	×	冬了	83.3	1.10E-09
90505								86.2	1.12E-09
93650								89.8	1.15E-09
								X	冬了

付録 2 通水試験データ ケース 2 (W/C=85%, 積算液固比 90)

試料名		<u> 180-物</u>	I性A	180-物	I性B	180-物	性C	<u>180-分</u>	析
試料重量	t(g)	57.16		<u>58.1</u> 5		58.01		58.00	
試料厚さ	(cm)	3.99		4.00		4.00		3.99	
試料断面	ī積(cm2)	12.83		12.83		12.83		12.83	
積算時間	诵水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
-	0.39	1.0	-	1.0	-	1.0	-	0.9	-
2670	0.00	31	586E-10	31	600E-10	31	6 05E - 10	2.8	524F-10
5600		5.5	5.87E-10	5.4	5.86E-10	5.4	6.00E-10	4.8	5.17E-10
9000		8.1	5 78E - 10	8.0	5 78E-10	81	5.82E-10	7.1	5 15E - 10
13000		11.3	5.82E-10	111	5.85E-10	11 1	5.76E-10	99	5.19E-10
17695		14.8	5.63E-10	14.6	572E-10	14.7	5.64E-10	13.1	5.13E-10
23060		191	5.85E-10	18.7	5.65E-10	18.7	5.62E-10	16.7	5.06E-10
27330	0 47	23.5	6.37E-10	22.5	5.68E-10	22.6	5 75E - 10	20.2	5 10F - 10
31755	•	27.9	6.11E-10	26.5	5.60E-10	26.5	5.57E-10	23.7	4.99E-10
35830		32.3	672E-10	30.4	6.02E-10	30.5	6 15E - 10	27.2	5.39E-10
40070		37.1	6.94F-10	34.7	6.38E-10	35.0	6.62E-10	31.1	576E-10
43010		40.4	6.86E-10	37.6	6.27E-10	38.0	6.42E-10	33.8	5.59E-10
46260		44.2	721E-10	41.3	7.06E-10	41.6	6.95E-10	37.0	6 15E - 10
53190	0.16	47.1	7.68E-10	44.3	8.37E-10	44.5	7.99E-10	39.7	7.27E-10
56195	0.43	50.5	7.76E-10	48.0	8.47E-10	48.1	8.07E-10	42.9	7.38E-10
58895	0.10	53.6	7.58E-10	51.4	8.43E-10	51.2	7.88E-10	45.8	7.23E-10
61965		57.4	8.30E-10	55.6	9.55E-10	55.2	8.82E-10	49.3	7.92E-10
64840		61.0	8.43E-10	59.7	9.72E-10	58.9	8.94E-10	52.7	8.10E-10
67750		64.6	8.46E-10	64.1	1.03E-09	62.8	9.02E-10	56.2	8.13E-10
70330		68.3	9.50E-10	68.5	1.18E-09	66.6	1.03E-09	59.7	9.32E-10
73520	0.29	71.2	8.93E-10	72.0	1.09E-09	69.7	9.64E-10	62.6	8.79E-10
76410	0.20	73.8	9.13E-10	75.2	1.12E-09	72.5	9.85E-10	65.2	9.05E-10
79250		76.7	9.95E-10	78.6	1.20E-09	75.6	1.07E-09	67.9	9.78E-10
81865		79.4	1.01E-09	81.7	1.20E-09	78.4	1.08E-09	70.6	9.98E-10
84850		82.4	1.01E-09	85.3	1.21E-09	81.7	1.09E-09	73.6	1.01E-09
87915		85.9	1.10E-09	89.3	1.30E-09	85.3	1.19E-09	76.9	1.08E-09
90505		88.8	1.13E-09	92.6	1.30E-09	88.4	1.20E-09	79.7	1.10E-09
93650		92.5	1.15E-09	96.7	1.31E-09	92.2	1.21E-09	83.3	1.12E-09
97945	0.20	96.0	1.19E-09	100.6	1.35E-09	95.7	1.25E-09	86.6	1.16E-09
102040		99.5	1.29E-09	104.5	1.44E-09	99.3	1.33E-09	90.0	1.25E-09
106410		103.4	1.32E-09	108.7	1.45E-09	103.2	1.34E-09	93.7	1.27E-09
110685		107.3	1.35E-09	112.8	1.45E-09	107.0	1.33E-09	97.3	1.27E-09
115215		111.8	1.45E-09	117.4	1.55E-09	111.3	1.41E-09	101.4	1.35E-09
119290		116.3	1.64E-09	122.1	1.73E-09	115.5	1.57E-09	105.5	1.51E-09
123605		121.2	1.66E-09	127.2	1.77E-09	120.1	1.60E-09	109.9	1.53E-09
127920	0.12	124.4	1.83E-09	130.2	1.78E-09	123.2	1.76E-09	112.8	1.69E-09
132265		127.7	1.87E-09	133.7	1.99E-09	126.2	1.78E-09	115.8	1.73E-09
136645		131.2	2.00E-09	137.4	2.13E-09	129.6	1.91E-09	119.0	1.84E-09
140885		134.8	2.07E-09	141.1	2.18E-09	132.9	1.95E-09	122.2	1.89E-09
145360		138.6	2.12E-09	145.0	2.24E-09	136.4	1.98E-09	125.7	1.95E-09
149770		142.4	2.12E-09	149.0	2.26E-09	139.9	2.00E-09	129.2	1.97E-09
153875		146.2	2.26E-09	152.9	2.40E-09	143.4	2.13E-09	132.6	2.11E-09
158190		150.4	2.43E-09	157.4	2.59E-09	147.3	2.28E-09	136.5	2.23E-09
162695		155.0	2.48E-09	162.0	2.60E-09	151.5	2.33E-09	140.6	2.29E-09
166920		159.3	2.52E-09	166.5	2.64E-09	155.5	2.37E-09	144.5	2.34E-09
171140		163.6	2.51E-09	170.9	2.63E-09	159.5	2.36E-09	148.5	2.34E-09
175530		168.5	2.77E-09	176.0	2.96E-09	164.0	2.60E-09	153.0	2.55E-09
178645		172.2	2.87E-09	179.8	3.00E-09	167.4	2.70E-09	156.3	2.64E-09
181620		175.6	2.87E-09	183.3	2.99E-09	170.6	2.72E-09	159.4	2.66E-09
184175		178.6	2.91E-09	X	冬了	173.4	2.77E-09	162.2	2.71E-09
18711 <mark>5</mark>		糸	冬了			176.7	2.77E-09	165.4	2.73E-09
189965						180.0	2.94E-09	168.6	2.83E-09
192830						×	冬了	172.0	2.95E-09
195700								175.5	3.03E-09
198585								178.9	3.01E-09
								*	冬了

付録3 通水試験データ ケース3(W/C=85%,積算液固比180)

試料名		360-物	I性A	360-物	I性B	360-物	性C	360-分	析
試料重量	1(g)	58.05		58.01		57.54		58.07	
試料厚さ	(cm)	3.99		4.00		4.00		4.01	
試料断面	〕 積(cm2)	12.83		12.83		12.83		12.83	
積質時間	通水圧力	積質	诱水係数	積質	诱水係数	積質	诱水係数	積質	诱水係数
(min)	(MPa)	海田上	(m/sec)	海田比	(m/sec)	海田比	(m/sec)	海田比	(m/sec)
-	0.39	<u>/ IX III (I</u>	-	10	-	10	-	10	-
2670	0.00	2.8	5 39E-10	3.2	612E-10	3.0	575E-10	3.1	601E-10
5600		1.0	5 35E-10	5.5	6.00E-10	53	5.70E 10	5.1	5.80E-10
0000		73	5.28E-10	8.2	5.80E-10	7.8	5.63E-10	8.0	5.00L-10
13000		10.2	5.20L-10	11.3	5.80E-10	10.0	5.66E-10	11.0	5.73L-10
17605		13.4	5.26E-10	1/ 0	5.72E-10	14.4	5.00L-10	14.5	5.55E-10
22060		17.4	5.20L-10	19.0	5.69E 10	19.4	5.02L-10	19.0	5.33L-10
23000	0.47	20.9	5.22E-10	22.0	5.00L-10	22.0	5.40E-10	22.1	5.47E-10
21755	0.47	20.0	5.20L-10	22.3	5.74L-10	22.0	5.40L-10	22.1	5.49L-10
25020		24.0	5.20E-10	20.0	5.59E-10	20.0	5.30E-10	20.0	5.55E-10
40070		20.1	5.03E-10	25.1	0.00E-10	29.0	5.00E 10	29.0	5.00E-10
40070		32.1	5.94E-10	20.1	0.39E-10	26.4	5.90E-10	33.0	5.67E 10
43010		34.9	0.04E-10	30.0	0.23E-10	30.4	0.00E-10	30.1	0.07E-10
40200	0.40	38.3	0.035-10	41.5	0./0E-10	39.7	0.30E-10	39.3	0.1/E-10
53190	0.16	41.1	1.13E-10	44.4	7.92E-10	42.5	1.3/E-10	41.9	7.12E-10
50195	0.43	44.0	7.00E-10	47.9	7.992-10	45.9	7.01E-10	45.1	1.10E-10
58895		41.1	1.13E-10	51.0	1.01E-10	48.8	1.44E-10	47.8	0.99E-10
61965		51.6	8.74E-10	54.9	8.70E-10	52.6	8.30E-10	51.2	7.66E-10
64840		55.3	8.81E-10	58.6	8.79E-10	56.2	8.43E-10	54.5	7.71E-10
67750		59.0	8.74E-10	62.4	8.82E-10	59.8	8.47E-10	57.7	7.72E-10
70330	0.00	63.1	1.07E-09	66.1	9.91E-10	63.4	9.56E-10	60.9	8.50E-10
73520	0.29	66.2	9.84E-10	69.1	9.30E-10	66.3	8.98E-10	63.4	7.93E-10
76410		69.1	1.01E-09	/1.8	9.49E-10	69.0	9.22E-10	65.7	8.04E-10
79250		72.2	1.07E-09	/4./	1.02E-09	/1.8	9.92E-10	68.2	8.57E-10
81865		75.0	1.07E-09	//.4	1.03E-09	74.5	1.00E-09	70.4	8.56E-10
84850		78.2	1.07E-09	80.4	1.04E-09	//.5	1.01E-09	72.9	8.63E-10
87915		81.7	1.14E-09	83.8	1.11E-09	80.8	1.09E-09	/5./	9.13E-10
90505		84.6	1.14E-09	86.7	1.13E-09	83.7	1.11E-09	78.1	9.22E-10
93650	0.00	88.2	1.15E-09	90.4	1.15E-09	87.3	1.13E-09	81.0	9.29E-10
97945	0.20	91.6	1.18E-09	93.8	1.19E-09	90.6	1.16E-09	83.7	9.53E-10
102040		95.0	1.20E-09	97.3	1.29E-09	94.1	1.20E-09	00.0	1.04E-09
106410		98.7	1.26E-09	101.1	1.32E-09	97.8	1.28E-09	89.5	1.02E-09
110685		102.3	1.26E-09	104.8	1.32E-09	101.5	1.28E-09	92.4	1.02E-09
115215		106.3	1.34E-09	109.1	1.41E-09	105.7	1.37E-09	95.6	1.06E-09
119290		110.3	1.46E-09	113.4	1.59E-09	109.9	1.56E-09	98.7	1.16E-09
123605	0.40	114.5	1.47E-09	118.1	1.65E-09	114.6	1.60E-09	102.1	1.18E-09
127920	0.12	117.3	1.60E-09	121.3	1.82E-09	117.6	1.74E-09	104.3	1.28E-09
132265		120.0	1.61E-09	124.5	1.85E-09	120.7	1.78E-09	106.5	1.29E-09
136645		123.0	1.70E-09	128.0	2.01E-09	124.1	1.93E-09	108.9	1.36E-09
140885		126.0	1.70E-09	131.5	2.07E-09	127.5	1.99E-09	111.2	1.40E-09
140300		129.1	1.70E-09	135.3	2.14E-09	131.1	2.03E-09	113.7	1.41E-09
149/70		132.2	1.74E-09	139.1	2.10E-09	134.8	2.00E-09	110.2	1.41E-09
1538/5		135.2	1.03E-09	142.9	2.30E-09	138.4	2.10E-09	118.6	1.49E-09
158190		138.5	1.95E-09	147.1	2.45E-09	142.4	2.34E-09	121.3	1.56E-09
162695		142.1	1.95E-09	151.6	2.51E-09	146.8	2.39E-09	124.1	1.58E-09
166920		145.4	1.96E-09	155.9	2.55E-09	150.9	2.43E-09	126.8	1.60E-09
171140		148.6	1.93E-09	160.2	2.56E-09	155.0	2.43E-09	129.5	1.59E-09
1/5530		152.3	2.11E-09	165.1	2.82E-09	159.8	2.68E-09	132.5	1.72E-09
1/8645	ļ	155.0	2.18E-09	168.7	2.92E-09	163.2	2.79E-09	134.7	1.79E-09
181620	L	15/.6	2.1/E-09	1/2.2	2.94E-09	166.6	2.80E-09	136.8	1.79E-09
184175		159.8	2.20E-09	1/5.3	2.99E-09	169.5	2.84E-09	138.7	1.84E-09
18/115		162.4	2.19E-09	1/8.8	3.01E-09	1/2.9	2.85E-09	140.8	1.84E-09
189965		165.0	2.30E-09	182.4	3.17E-09	1/6.3	3.02E-09	143.0	1.92E-09
192830		167.7	2.38E-09	186.2	3.29E-09	1/9.9	3.12E-09	145.3	1.98E-09
195700		1/0.5	2.42E-09	190.0	3.34E-09	183.6	3.18E-09	147.6	2.04E-09
198585	L	1/3.3	2.40E-09	193.8	3.34E-09	187.3	3.1/E-09	149.9	2.02E-09
201480		176.1	2.45E-09	197.8	3.42E-09	191.1	3.25E-09	152.3	2.06E-09
204350		179.0	2.51E-09	201.8	3.52E-09	194.9	3.35E-09	154.7	2.14E-09

付録 4 通水試験データ ケース 4 (W/C=85%,積算液固比 360) その 1

試料名		360-物	性A	360-物	l性B	360-物	性C	360-分	·析
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
207210	0.12	182.1	2.70E-09	206.1	3.77E-09	199.1	3.60E-09	157.3	2.25E-09
209995	-	185.2	2.75E-09	210.4	3.83E-09	203.2	3.67E-09	159.8	2.31E-09
212975	0.08	187.2	2.63E-09	213.3	3.69E-09	206.0	3.55E-09	161.6	2.23E-09
215900		189.3	2.63E-09	216.1	3.69E-09	208.8	3.55E-09	163.3	2.22E-09
218730		191.2	2.56E-09	218.8	3.59E-09	211.4	3.46E-09	164.9	2.17E-09
221605		193.2	2.64E-09	221.7	3.68E-09	214.2	3.56E-09	166.6	2.22E-09
224630		195.4	2.67E-09	224.6	3.72E-09	217.1	3.62E-09	168.4	2.24E-09
227500		197.4	2.65E-09	227.5	3.71E-09	219.9	3.61E-09	170.1	2.24E-09
230195		199.5	2.84E-09	230.3	3.95E-09	222.7	3.86E-09	171.8	2.39E-09
233095		201.7	2.91E-09	233.4	4.04E-09	225.7	3.98E-09	173.7	2.45E-09
236060		204.0	2.96E-09	236.7	4.10E-09	229.0	4.06E-09	175.7	2.49E-09
238910		206.3	2.92E-09	239.7	4.02E-09	232.0	4.01E-09	177.5	2.45E-09
241920		208.6	2.92E-09	242.9	4.03E-09	235.3	4.04E-09	179.5	2.47E-09
244715		210.8	2.92E-09	245.9	4.03E-09	238.3	4.06E-09	181.3	2.47E-09
247680		213.1	2.96E-09	249.1	4.07E-09	241.6	4.11E-09	183.3	2.50E-09
250330		215.2	2.94E-09	252.0	4.03E-09	244.5	4.10E-09	185.0	2.48E-09
253320		217.6	2.97E-09	255.2	4.08E-09	247.9	4.17E-09	187.0	2.52E-09
256200		219.9	3.09E-09	258.4	4.20E-09	251.2	4.31E-09	189.0	2.58E-09
259205		222.4	3.16E-09	261.8	4.26E-09	254.7	4.41E-09	191.1	2.63E-09
262080		224.9	3.16E-09	265.1	4.27E-09	258.2	4.45E-09	193.1	2.65E-09
264980		227.3	3.15E-09	268.4	4.24E-09	261.6	4.47E-09	195.1	2.63E-09
267690		229.6	3.18E-09	271.4	4.27E-09	265.0	4.56E-09	197.0	2.66E-09
270490		232.0	3.19E-09	274.6	4.27E-09	268.4	4.57E-09	199.0	2.66E-09
273615		234.7	3.24E-09	278.2	4.30E-09	272.3	4.63E-09	201.2	2.70E-09
276270		237.1	3.37E-09	281.3	4.46E-09	275.7	4.83E-09	203.2	2.79E-09
279375		239.9	3.38E-09	285.0	4.46E-09	279.8	4.86E-09	205.5	2.79E-09
282240		242.5	3.42E-09	288.4	4.49E-09	283.5	4.93E-09	207.6	2.83E-09
285125		245.2	3.54E-09	292.0	4.65E-09	287.5	5.12E-09	209.9	2.94E-09
288005		247.9	3.56E-09	295.6	4.67E-09	291.5	5.16E-09	212.1	2.97E-09
290960		250.7	3.56E-09	299.2	4.63E-09	295.6	5.15E-09	214.5	2.96E-09
293550		253.2	3.59E-09	302.4	4.67E-09	299.2	5.22E-09	216.5	2.99E-09
296690		256.4	3.78E-09	306.5	4.90E-09	303.8	5.50E-09	219.1	3.15E-09
299560		259.4	3.98E-09	310.4	5.13E-09	308.3	5.79E-09	221.6	3.28E-09
302390		262.4	3.93E-09	314.3	5.08E-09	312.0	5.75E-09	224.1	3.25E-09
305325		265.5	3.94E-09	318.2	5.09E-09	317.2	5.78E-09	226.6	3.27E-09
308125		208.4	3.90E-09	322.0	5.01E-09	321.5	5.72E-09	229.0	3.24E-09
311000		271.4	3.0/E-09	323.0	4.97E-09	323.9	5.00E-09	231.3	3.22E-09
216920		274.4	3.0/E-09	329.7	4.90E-09	224.0	5.00E-09	234.0	3.23E-09
310620		211.4	7 USE -08	333.3 337 F	5.00E-09	334.9 330 F	5.04E-09	230.0	3355 00
3332200		200.3	1 12E 00	3/16	530E 00	344 0	613= 00	239.0	3 1/E 00
325555		203.7	4.12E-09	341.0	5.00E-09	344.2	6 33E-09	241.0	3.44E-09
328215		201.1	4 2/F - 00	3/00	541E-09	343.3	6 30E - 09	244.4	3.53E-09
331190	-	200.2	4 25F - 09	354 1	546F-09	358.0	6.32F-09	2497	3.54F-09
334155		296.8	4.29F-09	358.4	5.52F-09	555.5 ≴	<u>\$.522-05</u> 冬了	252.5	3.58F-09
336905		300.2	4.56F-09	5555. 4 4	冬了	<i>i</i> n		255.3	3.77F-09
339835		303.7	4.56E-09	<i>in</i>				258.2	3.77E-09
342720		307.3	4.59E-09					261.1	3.81E-09
345685		310.9	4.61E-09					264.1	3.84E-09
348520		314.4	4.59E-09					267.0	3.84E-09
351425		318.0	4.69E-09					270.0	3.90E-09
354225		321.4	4.62E-09					272.9	3.83E-09
356985		324.8	4.56E-09					275.6	3.80E-09
359980		328.5	4.71E-09					278.7	3.90E-09
362885		332.4	4.98E-09					281.9	4.10E-09
365755		336.2	5.00E-09					285.0	4.13E-09
368645		340.1	4.97E-09					288.2	4.11E-09
371515		343.9	5.03E-09					291.4	4.19E-09
374390		347.7	5.00E-09					294.6	4.19E-09
377170		351.5	5.04E-09					297.7	4.22E-09

付録 5 通水試験データ ケース 4 (W/C=85%,積算液固比 360) その 2

11111		260 M	MH A	000 Mm	#+D	260 Mm	#	260 A	#C
武科石		300-初	192A	300-物	1±D	300-初	性し	300-万	111
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
380195	0.08	355.6	5.19E-09					301.2	4.37E-09
383085		359.6	5.12E-09					304.5	4.33E-09
385995		*	冬了					308.0	4.57E-09
388600								311.3	4.72E-09
391665								315.1	4.67E-09
394570								318.6	4.66E-09
397300								322.0	4.66E-09
400370								325.9	4.73E-09
403220								329.4	4.73E-09
406090								333.1	4.79E-09
409030								337.1	5.18E-09
411610								340.7	5.25E-09
414725								345.0	5.24E-09
417535								348.9	5.26E-09
420510								353.2	5.44E-09
423365								357.4	5.46E-09
								X	冬了

付録 6 通水試験データ ケース 4 (W/C=85%, 積算液固比 360) その 3

試料名		500-物	I性A	500-物	I性B	500-物	性C	500-分	析
試料重量	₫(q)	57.27	-	57.94	-	57.76	-	57.85	
試料厚さ	(cm)	4.00		4.00		3.99		4.00	
試料断面	面積(cm2)	12.83		12.83		12.83		12.83	
積管時間	通水圧力	積質	透水係数	積質	透水係数	積質	透水係数	積質	诱水係数
(min)	(MPa)	海田比	(m/sec)	海田比	(m/sec)	海田比	(m/sec)	海田比	(m/sec)
	0.30	10	-	/ <u>IXIEIL</u> 0.0	-	10	- (11/ 300)		-
2670	0.00	2.0	5 27E-10	2.0	5 38E-10	3.0	5/0E-10	27	5 22E - 10
5600		5.0	531E-10	5.0	5 30E 10	5.0	5/3E-10	47	5.1/E-10
9000		73	5.24E-10	7.4	5/1E-10	7.5	5 33E - 10	7.0	5.07E-10
13000		10.2	5 38E-10	10.4	5.54E-10	10.3	5.25E-10	9.7	5.00E-10
17695		13.5	5 18F - 10	13.7	5.34E-10	13.6	5 10F - 10	12.8	4.90E-10
23060		17.2	5 10E - 10	17.5	5.26E-10	17.2	5.08E-10	16.3	4.89E-10
27330	0 47	20.7	5.07E-10	21.0	5.22E-10	20.8	5 18E - 10	19.6	4.90F-10
31755	••••	24.3	4.96E-10	24.6	5.05E-10	24.3	4.97E-10	23.0	4.78E-10
35830		27.7	5.27E-10	28.0	5.23E-10	27.8	5.43E-10	26.4	5.22E-10
40070		31.5	5.55E-10	31.6	5.32E-10	31.8	5.80E-10	30.2	5.62E-10
43010		34.1	5.38E-10	34.0	5.19E-10	34.4	5.56E-10	32.8	5.43E-10
46260		37.2	5.88E-10	37.0	5.65E-10	37.5	5.98E-10	35.8	5.83E-10
53190	0.16	39.7	6.91E-10	39.5	6.80E-10	40.1	6.80E-10	38.3	6.71E-10
56195	0.43	42.8	6.94E-10	42.5	6.77E-10	43.1	6.77E-10	41.2	6.70E-10
58895	50	45.5	6.78E-10	45.0	6.57E-10	45.7	6.59E-10	43.8	6.57E-10
61965		48.9	7.48E-10	48.2	7.00E-10	48.9	7.19E-10	47.0	7.13E-10
64840		52.2	7.53E-10	51.2	7.06E-10	52.0	7.18E-10	50.1	7.20E-10
67750		55.4	7.51E-10	54.2	7.03E-10	55.0	7.12E-10	53.1	7.18E-10
70330		58.6	8.35E-10	57.1	7.84E-10	58.0	7.87E-10	56.2	8.05E-10
73520	0.29	61.1	7.75E-10	59.4	7.31E-10	60.3	7.28E-10	58.6	7.46E-10
76410		63.4	7.93E-10	61.6	7.38E-10	62.5	7.36E-10	60.8	7.56E-10
79250		65.8	8.49E-10	63.8	7.85E-10	64.7	7.88E-10	63.1	8.16E-10
81865		68.1	8.50E-10	65.9	7.86E-10	66.8	7.83E-10	65.2	8.13E-10
84850		70.7	8.61E-10	68.2	7.92E-10	69.1	7.81E-10	67.6	8.19E-10
87915		73.5	9.05E-10	70.8	8.29E-10	71.7	8.23E-10	70.3	8.65E-10
90505		75.9	9.21E-10	72.9	8.39E-10	73.8	8.26E-10	72.5	8.67E-10
93650		78.8	9.33E-10	75.6	8.44E-10	76.4	8.31E-10	75.3	8.69E-10
97945	0.20	81.6	9.58E-10	78.0	8.58E-10	78.9	8.47E-10	77.8	8.87E-10
102040		84.5	1.04E-09	80.5	9.25E-10	81.3	8.90E-10	80.4	9.38E-10
106410		87.6	1.07E-09	83.2	9.24E-10	83.9	8.99E-10	83.1	9.37E-10
110685		90.7	1.08E-09	85.8	9.20E-10	86.4	8.77E-10	85.7	9.19E-10
115215		94.3	1.15E-09	88.7	9.55E-10	89.2	9.07E-10	88.6	9.51E-10
119290		97.9	1.32E-09	91.6	1.04E-09	91.9	9.76E-10	91.4	1.02E-09
123605		101.8	1.36E-09	94.6	1.05E-09	94.7	9.84E-10	94.3	1.03E-09
127920	0.12	104.5	1.51E-09	96.6	1.15E-09	96.5	1.06E-09	96.2	1.11E-09
132265		107.2	1.56E-09	98.6	1.17E-09	98.4	1.07E-09	98.2	1.12E-09
136645		110.2	1.66E-09	100.7	1.22E-09	100.4	1.12E-09	100.2	1.16E-09
140885		113.1	1.71E-09	102.8	1.25E-09	102.3	1.12E-09	102.2	1.16E-09
145360		116.3	1.78E-09	105.1	1.25E-09	104.3	1.12E-09	104.3	1.17E-09
149770		119.5	1.80E-09	107.3	1.25E-09	106.3	1.11E-09	106.3	1.15E-09
153875		122.7	1.92E-09	109.4	1.30E-09	108.1	1.14E-09	108.3	1.19E-09
158190		126.2	2.02E-09	111.8	1.38E-09	110.2	1.20E-09	110.4	1.25E-09
162695		130.0	2.09E-09	114.3	1.40E-09	112.4	1.20E-09	112.7	1.25E-09
166920		133.7	2.14E-09	116.7	1.41E-09	114.4	1.19E-09	114.8	1.25E-09
171140		137.3	2.15E-09	119.1	1.40E-09	116.4	1.18E-09	116.8	1.22E-09
175530		141.5	2.34E-09	121.7	1.51E-09	118.6	1.25E-09	119.1	1.30E-09
1/0645		144.5	2.42E-09	123.7	1.00E-09	120.2	1.29E-09	120.8	1.34E-09
101020		147.4	2.435-09	120.5	1.00E-09	121.8	1.29E-09	122.4	1.30E-09
1041/5		150.0	2.405 00	127.1	1.5/E-09	123.1	1.31E-09	123.8	1.305-09
10/115		153.0	2.495-09	120.9	1.000-09	124.0	1.29E-09	120.4	1.30E-09
103900		150.9	2.000-09	120.0	1.030-09	120.2	1.01 = 09	127.0	1.40E-09
192030		162.0	2.090-09	132.7	1.000-09	121.0	1 405-09	120.0	1.44E-09
108595		165 /	2.700-09	134./	1.60 = 00	129.0	1 /2 00	130.3	1 /6 - 09
201/20		169.7	2.100-09	130.0	1 71 = 00	122.0	1/60 00	132.0	1 /0 = 00
201400		172 0	2.00E-09	130.0	1.71E-09	132.0	1.40E-09	133.7	1.49E-09
		112.0	L-01 L-09	103.3	1.106-09	100.0	1.016-09	10+.0	1.076-03

付録 7 通水試験データ ケース 5 (W/C=85%,積算液固比 500) その 1

試料名		500-物	I性A	500-物	I性B	500-物	性C	<u>500-分</u>	·析
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
207210	0.12	175.6	3.08E-09	142.0	1.80E-09	135.6	1.52E-09	136.6	1.56E-09
209995		179.1	3.14E-09	144.0	1.86E-09	137.4	1.57E-09	138.4	1.60E-09
212975	0.08	181.5	3.00E-09	145.4	1.79E-09	138.6	1.52E-09	139.6	1.55E-09
215900	0.00	183.9	3.01E-09	146.8	1.79E-09	139.8	1.51E-09	140.8	1.53E-09
218730		186.1	293E-09	148.1	173E-09	140.9	148E-09	142.0	150E-09
221605		188.4	2.98E-09	149.5	179E-09	1421	1.52E-09	1431	1.53E-09
224630		190.9	3.03E-09	151.0	1 80F-09	143.3	1.54E-09	144.4	1.56E-09
227500		193.2	2.99E-09	152.3	1.80E-09	144.5	1.55E-09	145.6	1.55E-09
230195		195.5	3.19E-09	153.7	1.90E-09	145.7	1.64E-09	146.8	1.64E-09
233095		198.1	3.26E-09	155.2	1.97E-09	147.0	1.69E-09	148.1	1.69E-09
236060		200.7	3.30E-09	156.8	1.99E-09	148.4	1.73E-09	149.4	1.72E-09
238910		203.2	3.24E-09	158.3	1.97E-09	149.7	1.70E-09	150.7	1.67E-09
241920		205.8	3.24E-09	159.9	1.99E-09	151.1	1.73E-09	152.1	1.69E-09
244715		208.3	3.25E-09	161.4	1.98E-09	152.4	1.74E-09	153.3	1.69E-09
247680		210.9	3.29E-09	163.0	2.02E-09	153.8	1.77E-09	154.7	1.71E-09
250330		213.2	3.27E-09	164.4	2.01E-09	155.0	1.78E-09	155.9	1.72E-09
253320		215.9	3.29E-09	166.0	2.04E-09	156.5	1.81E-09	157.3	1.72E-09
256200		218.5	3.38E-09	167.6	2.11E-09	157.9	1.86E-09	158.6	1.79E-09
259205		221.3	3.43E-09	169.3	2.17E-09	159.5	1.92E-09	160.1	1.81E-09
262080		223.9	3.42E-09	171.0	2.18E-09	161.0	1.94E-09	161.5	1.82E-09
264980		226.6	3.37E-09	172.7	2.17E-09	162.5	1.93E-09	162.9	1.81E-09
267690		229.0	3.37E-09	174.3	2.21E-09	163.9	1.97E-09	164.2	1.83E-09
270490		231.6	3.36E-09	175.9	2.23E-09	165.4	1.99E-09	165.6	1.84E-09
273615		234.4	3.37E-09	177.8	2.27E-09	167.1	2.02E-09	167.1	1.86E-09
276270		236.9	3.48E-09	179.5	2.38E-09	168.6	2.10E-09	168.5	1.93E-09
279375		239.8	3.48E-09	181.5	2.38E-09	170.3	2.10E-09	170.1	1.93E-09
282240		242.5	3.54E-09	183.3	2.43E-09	171.9	2.14E-09	171.6	1.97E-09
285125		245.4	3.69E-09	185.3	2.53E-09	173.7	2.23E-09	173.2	2.03E-09
288005		248.2	3.68E-09	187.2	2.57E-09	175.4	2.27E-09	174.8	2.06E-09
290960		251.1	3.64E-09	189.3	2.56E-09	177.2	2.26E-09	176.4	2.05E-09
293550		253.7	3.67E-09	191.1	2.60E-09	178.8	2.28E-09	177.8	2.09E-09
296690		256.9	3.83E-09	193.3	2.74E-09	180.8	2.43E-09	179.7	2.20E-09
299560		260.0	3.98E-09	195.5	2.88E-09	182.8	2.51E-09	181.4	2.27E-09
302390		263.0	3.92E-09	197.7	2.86E-09	184.7	2.51E-09	183.1	2.27E-09
305325		266.1	3.91E-09	199.9	2.88E-09	186.7	2.55E-09	184.9	2.28E-09
308125		269.0	3.84E-09	202.1	2.85E-09	188.5	2.52E-09	186.6	2.26E-09
311050		272.0	3.78E-09	204.3	2.85E-09	190.5	2.53E-09	188.4	2.26E-09
313960		274.9	3.76E-09	206.5	2.86E-09	192.5	2.56E-09	190.1	2.24E-09
316820		277.8	3.79E-09	208.7	2.92E-09	194.5	2.62E-09	191.9	2.31E-09
319685		280.8	3.84E-09	211.0	2.98E-09	196.6	2.69E-09	193.7	2.35E-09
322560		283.8	3.93E-09	213.3	3.04E-09	198.7	2.76E-09	195.5	2.41E-09
325555		287.1	4.03E-09	215.9	3.16E-09	201.0	2.87E-09	197.5	2.49E-09
328315		290.1	3.99E-09	218.2	3.16E-09	203.2	2.89E-09	199.3	2.48E-09
331190		293.1	3.97E-09	220.6	3.18E-09	205.4	2.93E-09	201.2	2.49E-09
334155		296.3	3.98E-09	223.1	3.22E-09	207.8	2.96E-09	203.2	2.51E-09
336905		299.4	4.15E-09	225.6	3.39E-09	210.1	3.12E-09	205.1	2.65E-09
339835		302.7	4.15E-09	228.3	3.41E-09	212.5	3.16E-09	207.2	2.64E-09
342720		305.9	4.19E-09	230.9	3.45E-09	215.0	3.19E-09	209.3	2.68E-09
345685		309.3	4.20E-09	233.7	3.50E-09	217.6	3.25E-09	211.4	2.71E-09
348520		312.5	4.17E-09	236.3	3.50E-09	220.1	3.29E-09	213.5	2.72E-09
351425		315.8	4.23E-09	239.1	3.56E-09	222.7	3.33E-09	215.6	2.74E-09
354225		318.9	4.15E-09	241.7	3.51E-09	225.2	3.33E-09	217.6	2.73E-09
356985		321.9	4.07E-09	244.3	3.47E-09	227.6	3.31E-09	219.6	2.70E-09
359980		325.3	4.17E-09	247.1	3.58E-09	230.3	3.41E-09	221.8	2.77E-09
362885		328.7	4.34E-09	250.0	3.75E-09	233.2	3.62E-09	224.1	2.93E-09
365755		332.1	4.36E-09	252.9	3.79E-09	236.0	3.68E-09	226.3	2.96E-09
368645		335.4	4.35E-09	255.8	3.79E-09	238.9	3.69E-09	228.6	2.95E-09
371515		338.9	4.42E-09	258.8	3.86E-09	241.8	3.82E-09	230.9	3.03E-09
374390		342.3	4.39E-09	261.7	3.84E-09	244.7	3.84E-09	233.2	3.00E-09
377170		345.6	4.41E-09	264.6	3.88E-09	247.6	3.89E-09	235.5	3.05E-09

付録 8 通水試験データ ケース 5 (W/C=85%,積算液固比 500) その 2

試料名		500-物	性A	500-物	I性B	500-物	性C	500-分	·析
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
380195	0.08	349.3	4.55E-09	267.8	4.02E-09	250.9	4.06E-09	238.0	3.15E-09
383085		352.8	4.48E-09	270.9	3.97E-09	254.1	4.05E-09	240.4	3.10E-09
385995		356.4	4.72E-09	274.1	4.21E-09	257.4	4.30E-09	243.0	3.28E-09
388600		359.9	4.88E-09	277.2	4.37E-09	260.6	4.51E-09	245.3	3.41E-09
391665		363.8	4.80E-09	280.7	4.31E-09	264.3	4.52E-09	248.1	3.38E-09
394570		367.6	4.76E-09	284.0	4.30E-09	267.8	4.55E-09	250.7	3.39E-09
397300		371.0	4.75E-09	287.1	4.29E-09	271.2	4.63E-09	253.2	3.40E-09
400370		375.0	4.78E-09	290.7	4.32E-09	275.1	4.73E-09	256.0	3.44E-09
403220		378.7	4.78E-09	294.0	4.33E-09	278.7	4.78E-09	258.7	3.47E-09
406090		382.4	4.78E-09	297.3	4.35E-09	282.5	4.88E-09	261.3	3.50E-09
409030		386.4	5.14E-09	300.9	4.67E-09	286.6	5.31E-09	264.3	3.77E-09
411610		390.1	5.22E-09	304.2	4.74E-09	290.4	5.41E-09	266.9	3.82E-09
414725		394.4	5.18E-09	308.1	4.71E-09	294.9	5.46E-09	270.1	3.85E-09
417535		398.3	5.12E-09	311.6	4.65E-09	299.1	5.50E-09	273.0	3.82E-09
420510		402.5	5.22E-09	315.3	4.76E-09	303.6	5.67E-09	276.1	3.92E-09
423365		406.4	5.15E-09	318.9	4.71E-09	307.9	5.67E-09	279.1	3.89E-09
426245		410.5	5.19E-09	322.6	4.80E-09	312.4	5.83E-09	282.1	3.96E-09
428960		414.4	5.40E-09	326.2	4.97E-09	316.8	6.06E-09	285.1	4.11E-09
431905		418.7	5.38E-09	330.2	5.06E-09	321.6	6.09E-09	288.3	4.14E-09
434880		423.0	5.39E-09	334.2	5.10E-09	326.5	6.13E-09	291.6	4.15E-09
437605	0.06	426.0	5.44E-09	336.9	5.06E-09	329.9	6.22E-09	293.9	4.23E-09
440640	0.00	429.3	5.37E-09	339.9	4.96E-09	333.7	6.17E-09	296.5	4.18E-09
443510		432.4	5.41E-09	342.8	4.99E-09	337.3	6.25E-09	298.9	4.23E-09
446380		435.5	5.31E-09	345.6	4.90E-09	340.8	6.14E-09	301.3	4.15E-09
449265		438.6	5.27E-09	348.4	4.85E-09	344.3	6.13E-09	303.7	4.15E-09
452190		441.8	5.41E-09	351.3	4.97E-09	348.0	6.29E-09	306.1	4.25E-09
455025		444.9	5.53E-09	354.2	5.07E-09	351.7	6.40E-09	308.6	4.34E-09
457915		448.4	5.90E-09	357.3	5.38E-09	355.7	6.84E-09	311.3	4.62E-09
460615		451.6	5.89E-09	360.2	5.37E-09	359.4	6.85E-09	313.8	4.63E-09
463670		455.2	5.86E-09	363.4	5.34E-09	363.5	6.80E-09	316.6	4.60E-09
466545		458.7	6.00E-09	366.6	5.45E-09	367.6	6.99E-09	319.3	4.74E-09
469310		462.0	5.99E-09	369.6	5.43E-09	371.5	6.98E-09	321.9	4.73E-09
472385		465.7	5.91E-09	372.8	5.33E-09	375.7	6.84E-09	324.8	4.63E-09
475180		469.2	6.12E-09	375.9	5.50E-09	379.7	7.10E-09	327.5	4.81E-09
478030		472.6	6.04E-09	379.0	5.39E-09	383.7	7.00E-09	330.2	4.73E-09
480965		476.2	5.96E-09	382.1	5.30E-09	387.7	6.85E-09	332.9	4.65E-09
483870		479.9	6.34E-09	385.3	5.62E-09	391.9	7.29E-09	335.8	4.95E-09
486715		483.7	6.72E-09	388.7	5.88E-09	396.3	7.66E-09	338.7	5.23E-09
489445		487.4	6.69E-09	391.9	5.86E-09	400.5	7.57E-09	341.6	5.21E-09
492395		491.3	6.56E-09	395.3	5.73E-09	404.9	7.44E-09	344.6	5.10E-09
495225		495.1	6.62E-09	398.5	5.79E-09	409.1	7.50E-09	347.5	5.16E-09
498115		499.0	6.65E-09	401.9	5.81E-09	413.5	7.51E-09	350.5	5.18E-09
501145		X	冬了	405.4	5.79E-09	418.1	7.48E-09	353.6	5.18E-09
504035				408.7	5.70E-09	422.3	7.39E-09	356.6	5.13E-09
506765				411.8	5.76E-09	426.4	7.41E-09	359.4	5.18E-09
509625				415.1	5.71E-09	430.6	7.35E-09	362.4	5.14E-09
512550				418.5	5.82E-09	435.0	7.49E-09	365.4	5.25E-09
515430				422.0	6.16E-09	439.6	7.89E-09	368.6	5.57E-09
518405				425.6	6.13E-09	444.3	7.84E-09	372.0	5.57E-09
521280				429.1	6.03E-09	448.7	7.73E-09	375.1	5.49E-09
524170				432.7	6.18E-09	453.3	7.86E-09	378.4	5.61E-09
527065				436.2	6.15E-09	457.8	7.83E-09	381.6	5.60E-09
529755				439.5	6.10E-09	462.1	7.79E-09	384.6	5.58E-09
532765				443.2	6.16E-09	466.8	7.81E-09	388.0	5.62E-09
535750				446.9	6.15E-09	471.4	7.77E-09	391.3	5.59E-09
538435				450.2	6.16E-09	475.6	7.78E-09	394.3	5.63E-09
541410				454.0	6.41E-09	480.4	8.03E-09	397.8	5.83E-09
544295				457.8	6.61E-09	485.2	8.28E-09	401.3	6.04E-09
547170				461.6	6.70E-09	490.1	8.40E-09	404.8	6.12E-09
549985				465.4	6.71E-09	494.8	8.37E-09	408.3	6.11E-09

付録 9 通水試験データ ケース 5 (W/C=85%,積算液固比 500) その 3

試料名		500-物	I性A	500-物	I性B	500-物	性C	500-分	·析
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
552975	0.06			469.3	6.49E-09	499.7	8.11E-09	411.8	5.94E-09
555835				473.1	6.66E-09	X	冬了	415.3	6.09E-09
558725				476.9	6.63E-09			418.8	6.05E-09
561550				480.6	6.58E-09			422.2	6.03E-09
564490				484.5	6.52E-09			425.7	5.96E-09
567360				488.4	6.92E-09			429.3	6.33E-09
583330				488.4	停止			449.9	6.45E-09
584890				488.4	停止			451.8	6.17E-09
593350				488.4	停止			463.1	6.67E-09
596215				492.1	6.41E-09			466.8	6.42E-09
599070				495.8	6.59E-09			470.6	6.69E-09
601920				499.5	6.38E-09			474.3	6.46E-09
604805				X	冬了			478.0	6.46E-09
607685								481.9	6.79E-09
610370								485.6	6.88E-09
613465								489.9	6.95E-09
616295								493.7	6.73E-09
618985								497.5	6.93E-09
622000								501.7	7.01E-09
								X	冬了

付録 10 通水試験データ ケース 5 (W/C=85%, 積算液固比 500) その 4

試料名		90- 物性 A		90-物	± Β	90-物	ŧC	90-分析		
試料重量	1(g)	50.00		49.40		49.77		49.65		
試料厚さ	(cm)	4.00		3.98		4.00		4.00		
試料断面	ī積(cm2)	12.83		12.94		12.89		12.77		
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数	
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	
-	0.12	1.3	-	1.3	-	1.3	-	1.3	-	
1190		3.2	3.43E-09	3.3	3.54E-09	3.1	3.27E-09	3.2	3.39E-09	
2665		6.0	4.07E-09	5.8	3.65E-09	5.6	3.64E-09	5.7	3.73E-09	
4230		9.7	5.08E-09	9.3	4.69E-09	9.3	4.96E-09	9.3	5.00E-09	
5590		13.0	5.28E-09	12.5	4.94E-09	12.6	5.26E-09	12.6	5.20E-09	
7320		17.6	5.83E-09	16.9	5.39E-09	17.3	5.82E-09	17.3	5.80E-09	
8940		22.3	6.21E-09	21.3	5.72E-09	21.9	6.12E-09	21.9	6.10E-09	
10330		26.1	5.84E-09	24.8	5.33E-09	25.6	5.72E-09	25.5	5.69E-09	
11720		30.2	6.39E-09	28.8	6.02E-09	29.8	6.48E-09	29.7	6.46E-09	
12990		34.1	6.75E-09	32.8	6.66E-09	34.0	6.99E-09	33.8	7.00E-09	
14450		38.7	6.72E-09	37.4	6.57E-09	38.7	6.90E-09	38.5	6.90E-09	
15740		42.5	6.44E-09	41.0	5.96E-09	42.7	6.66E-09	42.4	6.62E-09	
17055		46.7	6.94E-09	45.3	6.76E-09	47.0	7.02E-09	46.8	7.06E-09	
18685		52.3	7.34E-09	50.9	7.24E-09	52.6	7.28E-09	52.3	7.35E-09	
20120		57.0	7.13E-09	55.6	6.91E-09	57.3	7.03E-09	57.0	7.03E-09	
21430		61.7	7.72E-09	60.3	7.67E-09	61.9	7.53E-09	61.7	7.70E-09	
22910		67.3	8.24E-09	66.1	8.26E-09	67.3	7.91E-09	67.3	8.17E-09	
24430	0.09	71.8	8.42E-09	70.6	8.15E-09	71.2	7.28E-09	71.2	7.48E-09	
25875		76.1	8.71E-09	75.0	8.70E-09	75.4	8.19E-09	75.5	8.54E-09	
27360		80.6	8.64E-09	79.6	8.67E-09	79.6	8.08E-09	79.9	8.41E-09	
28900		85.3	8.81E-09	84.5	8.83E-09	84.0	8.20E-09	84.4	8.53E-09	
30395		90.0	9.06E-09	89.3	9.00E-09	88.3	8.30E-09	88.9	8.65E-09	
		X	冬了	×	冬了	**	冬了	**	冬了	

付録 11 通水試験データ ケース 7 (W/C=105%, 積算液固比 90)

試料名		180-物性A		180-物	I性B	180-物	性C	180-分	析
試料重量	∎(g)	49.95		49.96	-	49.07		48.92	
試料厚さ	(cm)	4.00		4.00		4.00		3.98	
試料断面	ī積(cm2)	12.90		12.83		12.71		12.85	
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
-	0.12	1.3	-	1.3	-	1.3	-	1.3	-
1190		3.2	3.42E-09	3.1	3.34E-09	3.1	3.35E-09	3.2	3.39E-09
2665		5.7	3.64E-09	5.7	3.84E-09	5.6	3.55E-09	5.6	3.41E-09
4230		9.2	4.85E-09	9.3	4.89E-09	8.7	4.29E-09	8.9	4.51E-09
5590		12.4	5.05E-09	12.4	5.02E-09	11.7	4.67E-09	12.1	4.88E-09
7320		17.1	5.77E-09	16.8	5.38E-09	15.7	4.94E-09	16.5	5.31E-09
8940		21.7	6.12E-09	21.1	5.74E-09	19.7	5.38E-09	20.8	5.62E-09
10330		25.4	5.70E-09	24.5	5.42E-09	23.1	5.13E-09	24.3	5.24E-09
11720		29.4	6.28E-09	28.4	5.93E-09	26.6	5.40E-09	28.1	5.70E-09
12990		33.4	6.65E-09	32.1	6.30E-09	29.9	5.60E-09	31.7	6.10E-09
14450		37.8	6.57E-09	36.3	6.29E-09	33.8	5.74E-09	35.9	5.95E-09
15/40		41.6	6.31E-09	39.9	6.02E-09	37.1	5.46E-09	39.4	5.66E-09
17055		45.7	6.70E-09	43.8	6.44E-09	40.7	5.81E-09	43.1	5.97E-09
18685		51.0	6.91E-09	48.9	6.72E-09	45.3	6.08E-09	48.1	6.46E-09
20120		50.4	0./1E-09	53.Z	0.40E-09	49.2	5.83E-09	52.3	6.18E-09
21430		09.0 64.0	7.13E-09	57.5 62.9	7.10E-09	53.0	0.20E-09	20.3 61.7	0.70E-09
24420	0.00	60.2	2 10E 00	02.0	6.07E 00	57.7 61.5	0.72E-09	66.0	7.332-09
25875	0.09	73.1	7.70E-09	70.5	8 1/E-09	65.2	7.000-09	60.0	7.91E-09
27360		77.0	7.70L-09	70.5	8.01E_00	69.0	7.42L-09	73.8	7.01L-09
28900		81.2	7.55L-05	79.0	8 08E-09	73.0	7 38E-09	78.0	7.40L-03
30395		85.2	7.04E-00	83.3	8.33E-09	77.1	7.83E-09	82.1	7.76E-09
31640		88.6	778E-09	86.9	8 28F - 09	80.4	774E-09	85.6	772E-09
32960		92.2	7.82E-09	90.7	8.25E-09	84.0	7.62E-09	89.2	7.72E-09
34470		96.3	776E-09	95.0	8 29 F - 09	88.0	7.66E-09	93.4	770F-09
35900		100.1	7.68E-09	99.2	8.42E-09	92.1	8.08E-09	97.4	7.80E-09
37320		104.1	7.92E-09	103.5	8.69E-09	96.3	8.46E-09	101.4	8.04E-09
38815		108.4	8.35E-09	108.4	9.38E-09	101.2	9.39E-09	106.0	8.59E-09
40305		112.9	8.59E-09	113.4	9.72E-09	106.3	9.75E-09	110.7	8.86E-09
41690		117.1	8.77E-09	118.1	9.89E-09	111.1	1.00E-08	115.2	9.02E-09
43145		121.7	8.94E-09	123.3	1.02E-08	116.4	1.02E-08	120.0	9.24E-09
44525		126.1	9.19E-09	128.3	1.05E-08	121.7	1.11E-08	124.7	9.60E-09
45925		130.8	9.52E-09	133.6	1.09E-08	127.3	1.15E-08	129.7	9.94E-09
52835	0.01以下	133.5	-	136.7	-	130.7	-	132.5	-
55865		134.5	-	137.9	-	131.9	-	133.6	-
57400	0.06	136.6	8.88E-09	140.3	1.03E-08	134.5	1.10E-08	135.8	9.29E-09
58845		138.8	9.96E-09	142.9	1.16E-08	137.3	1.24E-08	138.2	1.04E-08
60280		141.2	1.07E-08	145.6	1.24E-08	140.3	1.33E-08	140.8	1.12E-08
61550		144.0	9.65E-09	148.9	1.13E-08	143.9	1.22E-08	143.8	1.02E-08
63150		147.7	9.80E-09	153.2	1.15E-08	148.5	1.25E-08	147.8	1.04E-08
64710		151.3	9.94E-09	157.4	1.17E-08	153.2	1.27E-08	151.7	1.06E-08
66030		154.5	1.04E-08	161.2	1.23E-08	157.3	1.35E-08	155.2	1.12E-08
69700		161.0	1.075-08	160.0	1.20E-U8	166.0	1.300-08	100./	1.13E-UX
70240		165.0	1.07 =-00	173.7	1.200-00	171.0	1/55-00	166.0	1 10E-00
71785		160.0	1 15E-08	178.6	1.38E-08	176.7	1.53E-08	171 5	1.15E-08
73045		172.6	1 17F-08	170.0	冬了	181.4	1.57E-08	175.3	1.28E-08
74550		176.8	1.20F-08	<i>n</i>	· ·	101. 4	<u></u>	180.0	1.30F-08
76125		181.2	1.21E-08			~		100.0	<u>冬了</u>
		. <u>5</u>	冬了					, w	

付録 12 通水試験データ ケース 8(W/C=105%,積算液固比 180)

試料名		360-物	I性A	360-物	I性B	360-物	性C	360-分	·析
試料重量	∄ (g)	50.23	-	49.81	-	49.22	-	49.77	
試料厚さ	(cm)	3.99		3.99		3.98		4.00	
試料断面	ī積(cm2)	12.84		12.64		12.92		12.81	
藉管哇問	通水压力	積 皆	透水低数	秸笛	透水低数	秸窅	透水低数	秸笛	透水低数
假异时间 (min)	/MP₂)	海田比		海田比		海田比	(m/sac)	海田比	
(11111)	012	/区回10 1 2	(11/360)	/区回1-0 1 2	(117360)	/区回に 1 つ	(11/360)	/区回1-0 1 2	(117360)
- 1100	0.12	3.0	- 3 28E_00	2.0	- 3.26E_00	3.1	- 331E_00	3.0	- 3 25E_00
2665		5.0	3.57E-00	5.4	3.20E-03	5.1	3.37E-00	5.0	3 70E - 09
4220		9.4	160E 00	9.4	1.50E-09	9.4	1 12E 00	0.1	191E 00
4230 5500		0.7	4.00E-09	0.7	4.392-09	11.0	4.43E-09	9.1	4.01E-09
7320		16.1	4.00L-09	15.8	5.25E-09	16.1	4.73L-09	16.4	4.97 L-09
80/0		20.4	5.76E-00	20.0	5.61E-00	20.3	5.10L-03	20.7	5.30L-03
10330		20.4	537E-00	20.0	5.01L-03	20.5	5.52L-05	20.7	5.70L-03
11720		27.6	578E-09	27.1	579E-09	23.7	5.60E-09	27.2	5.84F-09
12990		31.1	610E-09	30.7	631E-09	31.0	5.86E-09	31.6	6.29E-09
14450		35.2	6.06E-09	34.9	6.29E-09	35.0	5.80E-09	35.8	619E-09
15740		38.7	5.82E-09	38.5	6.07E-09	38.4	5.51E-09	39.4	5.95E-09
17055		42.5	622E-09	<u>42</u> 1	644F-00	<u>4</u> 2 3	623E-00	<u>4</u> 33	6.35E-09
18685		47.5	6.65F-00	47 Λ	670F-00	47.0	6.33E-09	48 3	6.58F-00
20120		517	642F-09	517	6.51F-09	51 3	605F-00	52.5	6.37F-00
21430		55.9	6.87F-09	55.9	6.94F-09	55.4	6.55E-09	56.6	6.82F-09
22910		60.9	7.33F-09	60.9	7.37F-09	60.4	714F-09	61.6	718F-09
24430	0.09	64.8	7.35E-00	64.8	7.39F-00	64 3	710F-09	65.4	721F-00
25875	0.03	68.6	7.65F-09	68.6	770F-09	68.1	7.53F-09	69.2	748F-09
27360		72.5	7.55E-09	72.5	7.58E-09	72.0	7.34E-09	73.0	7.35E-09
28900		76.6	7.66E-09	76.5	7.69E-09	76.1	7.01E 00	77.0	7.00E 00
30395		80.7	7.83E-09	80.6	7.88E-09	80.2	7.59E-09	81.0	7.66E-09
31640		84.0	7.85E-09	84.0	7.90E-09	83.5	7.53E-09	84.3	7.65E-09
32960		87.6	7.88E-09	87.6	7.91E-09	87.1	7.52E-09	87.8	7.68E-09
34470		91.7	779E-09	91.6	7.87E-09	91.1	749E-09	91.8	7.63E-09
35900		95.6	7.84E-09	95.5	7.85E-09	94.9	7.54E-09	95.6	7.61E-09
37320		99.6	8.06E-09	99.5	8.08E-09	98.9	778E-09	99.5	7.86E-09
38815		104.0	8.56E-09	103.9	8.58E-09	103.3	827E-09	103.8	8.37E-09
40305		108.6	8.88E-09	108.4	8.87E-09	107.8	8.56E-09	108.3	8.65E-09
41690		112.9	9.03E-09	112.7	9.04E-09	112.1	8.71E-09	112.6	8.81E-09
43145		117.6	9.23E-09	117.4	9.27E-09	116.8	8.96E-09	117.1	9.03E-09
44525		122.1	9.49E-09	121.9	9.47E-09	121.3	9.21E-09	121.5	9.12E-09
45925		126.9	9.87E-09	126.6	9.85E-09	126.1	9.58E-09	126.2	9.59E-09
52835	0.01以下	129.7	-	129.3	-	128.9	-	128.9	-
55865		130.7	-	130.3	-	129.9	-	129.9	-
57400	0.06	132.9	9.28E-09	132.5	9.25E-09	132.1	8.96E-09	132.0	8.93E-09
58845		135.2	1.04E-08	134.8	1.03E-08	134.4	1.01E-08	134.3	1.01E-08
60280		137.6	1.11E-08	137.2	1.11E-08	136.8	1.07E-08	136.7	1.08E-08
61550		140.6	1.01E-08	140.1	1.00E-08	139.8	9.75E-09	139.6	9.79E-09
63150		144.4	1.02E-08	143.7	9.71E-09	143.6	9.96E-09	143.2	9.94E-09
64710		148.1	1.03E-08	147.4	1.03E-08	147.3	1.00E-08	146.9	1.01E-08
66030		151.4	1.08E-08	150.6	1.07E-08	150.6	1.05E-08	150.1	1.05E-08
67325		154.6	1.09E-08	153.8	1.08E-08	153.9	1.07E-08	153.3	1.06E-08
68790		158.4	1.10E-08	157.5	1.10E-08	157.6	1.08E-08	157.0	1.07E-08
70240		162.2	1.13E-08	161.3	1.13E-08	161.4	1.10E-08	160.7	1.10E-08
71785		166.4	1.18E-08	165.5	1.19E-08	165.7	1.16E-08	164.8	1.15E-08
73045		169.9	1.21E-08	169.0	1.21E-08	169.2	1.18E-08	168.2	1.17E-08
74550		174.2	1.24E-08	173.3	1.24E-08	173.5	1.20E-08	172.3	1.19E-08
76125		178.7	1.25E-08	177.7	1.24E-08	178.1	1.21E-08	176.7	1.20E-08
77600		183.1	1.27E-08	182.1	1.28E-08	182.4	1.24E-08	180.9	1.23E-08
78750		186.7	1.38E-08	185.8	1.40E-08	186.1	1.35E-08	184.5	1.34E-08
80255		191.6	1.41E-08	190.7	1.43E-08	191.0	1.37E-08	189.2	1.36E-08
81980		197.3	1.43E-08	196.4	1.44E-08	196.7	1.39E-08	194.8	1.38E-08
83330		201.9	1.45E-08	201.0	1.48E-08	201.3	1.41E-08	199.2	1.40E-08
84750		206.7	1.49E-08	205.9	1.51E-08	206.1	1.44E-08	203.9	1.43E-08
86120	0.04	210.2	1.62E-08	209.3	1.64E-08	209.5	1.57E-08	207.2	1.55E-08
87485		213.6	1.63E-08	212.8	1.65E-08	212.9	1.58E-08	210.4	1.54E-08

付録 13 通水試験データ ケース 9 (W/C=105%, 積算液固比 360) その 1

試料名		360-物	-物性A 360-物性B 3		360-物	I性C	360-分	·析	
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
89060		217.6	1.63E-08	216.7	1.65E-08	216.9	1.60E-08	214.2	1.57E-08
90520		221.2	1.63E-08	220.4	1.64E-08	220.6	1.59E-08	217.8	1.56E-08
91945		224.8	1.64E-08	224.0	1.66E-08	224.2	1.60E-08	221.2	1.56E-08
93225		228.1	1.65E-08	227.3	1.66E-08	227.5	1.61E-08	224.3	1.57E-08
94780		232.5	1.86E-08	231.7	1.88E-08	231.9	1.80E-08	228.6	1.78E-08
96155		236.8	1.99E-08	236.0	2.01E-08	236.1	1.92E-08	232.6	1.88E-08
97500		240.9	1.97E-08	240.1	1.98E-08	240.2	1.91E-08	236.5	1.87E-08
99175		246.0	2.00E-08	245.2	2.01E-08	245.3	1.92E-08	241.4	1.89E-08
100630		250.5	2.00E-08	249.7	2.01E-08	249.8	1.93E-08	245.7	1.90E-08
102000		254.7	2.01E-08	253.9	2.01E-08	254.0	1.94E-08	249.7	1.91E-08
103500		259.8	2.18E-08	258.9	2.19E-08	258.9	2.09E-08	254.5	2.06E-08
104830		264.3	2.24E-08	263.5	2.25E-08	263.5	2.15E-08	258.8	2.11E-08
106340		269.5	2.20E-08	268.6	2.21E-08	268.6	2.13E-08	263.7	2.07E-08
107660		273.9	2.18E-08	273.0	2.19E-08	273.0	2.12E-08	267.9	2.05E-08
109280		279.4	2.19E-08	278.5	2.21E-08	278.5	2.13E-08	273.0	2.06E-08
110705		284.5	2.33E-08	283.6	2.36E-08	283.6	2.28E-08	277.9	2.20E-08
112155		289.9	2.42E-08	289.0	2.44E-08	289.1	2.36E-08	283.0	2.27E-08
113525		295.0	2.41E-08	294.2	2.44E-08	294.2	2.35E-08	287.8	2.26E-08
114990		300.3	2.39E-08	299.6	2.43E-08	299.6	2.35E-08	292.8	2.23E-08
116375		305.3	2.33E-08	304.6	2.38E-08	304.7	2.32E-08	297.4	2.14E-08
117845		310.8	2.42E-08	310.5	2.59E-08	310.5	2.48E-08	302.6	2.29E-08
119280		316.2	2.44E-08	316.2	2.62E-08	316.2	2.51E-08	307.7	2.30E-08
120740	0.03	319.9	2.17E-08	320.2	2.37E-08	320.2	2.32E-08	311.3	2.11E-08
122175		323.4	2.14E-08	324.1	2.37E-08	324.2	2.32E-08	314.8	2.10E-08
123610		327.2	2.30E-08	328.4	2.61E-08	328.5	2.50E-08	318.6	2.29E-08
125005		330.8	2.23E-08	332.6	2.64E-08	332.7	2.53E-08	322.3	2.31E-08
126410		334.3	2.17E-08	336.8	2.60E-08	336.7	2.45E-08	326.0	2.25E-08
127925		338.1	2.16E-08	341.2	2.56E-08	341.1	2.39E-08	329.9	2.22E-08
129360		341.7	2.16E-08	345.4	2.53E-08	345.1	2.35E-08	333.6	2.21E-08
130815		345.4	2.18E-08	349.6	2.53E-08	349.2	2.36E-08	337.3	2.22E-08
132265		349.4	2.43E-08	354.3	2.81E-08	353.7	2.64E-08	341.5	2.47E-08
133785		353.6	2.40E-08	359.1	2.76E-08	358.4	2.61E-08	345.8	2.44E-08
135075		357.2	2.42E-08	4	冬了	×	冬了	349.5	2.45E-08
136510		X	冬了					353.5	2.42E-08
138035								357.7	2.37E-08
139550								361.8	2.38E-08
								<u>×</u>	冬了

付録 14 通水試験データ ケース 9 (W/C=105%,積算液固比 360) その 2

試料名		500-物	I性A	500-物	I性B	500-物	性C	500-分	析
試料重量	量(g)	50.24		50.07		50.37		49.57	
試料厚さ	(cm)	3.99		4.00		4.00		4.00	
試料断面	ī積(cm2)	12.92		12.86		12.93		12.61	
積質時間	通水圧力	積質	透水係数	積質	透水係数	積質	透水係数	積質	诱水係数
(min)	(MPa)	液用ド	(m/sec)	液周比	(m/sec)	海田比	(m/sec)	海田比	(m/sec)
-	0.12	11	-	12	-		-	/戊回心 12	-
1190	0.12	2.8	3.09F-09	3.2	350E-09	2.8	338E-09	3.0	327E-09
2665		5.1	329E-09	5.7	3.67E-09	5.2	349E-09	5.0	3.57E-09
4230		82	1 25E-00	0.7	182E-00	8.5	1.57E-00	87	4.67E-00
5590		11.0	451E-09	12.3	5.02E-00	11.6	4.94F-09	11 9	4.07 C 00
7320		15.0	4.98E-09	16.7	545E-09	15.9	5.37E-09	16.4	5.68E-09
80/0		10.0	534E-00	21.0	5.78E_00	20.2	570E-00	20.8	6.02E-00
10330		22.3	501E-09	24.5	542E-09	23.6	536E-09	20.0	5.65E-09
11720		25.8	545E-09	28.3	5.86E-09	20.0	5.80E-09	28.3	610E-09
12990		20.0	5.86E-09	31.9	614F-09	30.9	6.07E-09	32.1	640E-09
14450		33.2	5.82E-09	35.9	5 98E-09	34.9	5.95E-09	36.3	633E-09
15740		36.6	5.02L 00	39.4	572E-09	38.4	574E-09	39.0	612E-09
17055		40.1	5.81E-09	<u> </u>	614E-09	42.1	610E-09	43.8	646E-09
18685		<u>44</u> 7	602F-00	<u>48</u> 0	649F-00	46.0	640F-09	48.8	6.65E-09
20120		<u>4</u> 9.7	5.85F-00	52.0	6.26F_00	51 0	621F-09	52 0	641F-09
21430		52.3	614F-00	56.2	6.64F-09	55.0	661F-09	57.2	6.89F-09
22010		56.8	649F-00	61.0	7 04F-09	50.0	7 00F-09	62.1	7.24F-09
2//30	0.00	60.2	640E-00	65.1	7.04L-03	63.3	6.58E-00	65.9	7.24L-03
25875	0.03	63.6	677F_00	68.7	7 30F-09	66.0	7 23E-09	60.6	7 58E_00
27360		67.0	6.67E-09	72.4	7.30L-09	70.6	7.23L-09	73.4	7.50L-09
28000		70.6	670E-09	76.3	7.14L-09	74.5	7.11L-09	77.4	7.43E-09
20300		70.0	6.87E-00	80.1	7.20L-09	78.3	7.22L-09	81.4	7.53L-03
31640		77.2	6.88E-00	83.3	7.41L-09	81.5	7.37E-09	847	7.00L-09
32060		80.3	6.82E-00	86.7	7.07E-00	8/ 8	7.30E-03	88.2	7.68E_00
24470		92.0	6 70E 00	00.7	7.402-03	0.+0	7.332-03	00.2	7.000-03
35000		87.4	6.00E-09	90.0	7.32E-09	00.0	7.272-09	92.1	7.03E-09
27220		07.4	7115 00	09.0	7.40L-03	92.2	7.230-03	00.9	7.00L-09
38815		0/ 8	7.11L-03	102.1	7.30L-03	100.0	7.43L-03	104.1	834E-00
40305		08.8	7.40L-03	102.1	8 25E-00	104.2	8.08E_00	104.1	8.63E_00
40303		102.5	7.03L-03	110.4	0.23L-03	104.2	0.00L-09	112.7	0.03L-03
41030		102.5	7.79L-09	11/7	8.52E-09	112.3	833E-00	117.7	0.70L-09
43143		110.5	831E-09	114.7	877E-09	116.4	8/8E-09	121.6	9.00L-09
45025		11/17	8 50E-00	123.3	0.77E-03	120.6	8.68E_00	126.2	0.57E_00
52835	0.01 년 도	1171	0.392-09	125.5	9.00L-09	120.0	0.001-03	120.2	9.07L-09
55865	0.0164	118.0		120.0		123.0		120.0	
57400	0.06	110.0	807E-00	120.0	8 30E_00	125.8	8 06E-00	123.0	8 00E_00
588/5	0.00	121.0	807E-00	120.0	0.33L-03	123.0	0.00L-03	13/1	1.01E-08
60280		121.3	0.57E-03	133.1	1.01E_08	130.0	9.00L-03	136.5	1.07E-08
61550		126.6	8 69F-09	135.8	914F-00	132.5	872F-09	130.3	978F-00
63150		120.0	877F-00	139.2	925E-00	135.8	882F-00	143.0	9.92F-00
64710		133.1	882F-09	142.6	933F-09	139.0	8.83F-09	146.6	1 00F-08
66030		135.9	9.22F-09	145.6	9.70F-09	141.8	9.19F-09	149.7	1.05F-08
67325		138.7	9.36F-09	148.5	9.82F-09	144.6	9.25F-09	152.9	1.06F-08
687.90		141.9	9.39F-09	151 9	9.95F-09	147 7	9.29F-09	156.5	1.07F-08
70240		145.2	9.63F-09	155.3	1.02F-08	150.9	9.45F-09	160.0	1.10F-08
71785		148.8	1.00E-08	159.1	1.06E-08	154.4	9.87E-09	164.2	1.15E-08
73045		151.8	1.02E-08	162.2	1.08E-08	157.3	9.99E-09	167.6	1.18E-08
74550		155.4	1.03E-08	166.0	1.09E-08	160.9	1.01E-08	171.8	1.20E-08
76125		159.2	1.03E-08	170.0	1.10E-08	164.6	1.02E-08	176.2	1,21E-08
77600		162.8	1.05E-08	173.9	1.12E-08	168.1	1.04E-08	180.4	1.24E-08
78750		165.8	1.13E-08	177.1	1.22E-08	171.1	1.12E-08	183.9	1.34E-08
80255		169.8	1.15E-08	181.5	1.24F-08	175 1	1.15E-08	188.6	1.37E-08
81980		174.5	1.16F-08	186.5	1.26F-08	1797	1.16E-08	194.1	1.38F-08
83330		178.2	1.18F-08	190.5	1.29F-08	183.4	1.19E-08	198.4	1.41F-08
84750		182.1	1.19E-08	194.8	1.31E-08	187.4	1.21E-08	203.1	1.43E-08
86120	0.04	184.8	1.29F-08	197 9	1.44F-08	190.2	1.32E-08	206.4	1.57E-08
87485	0.07	187.6	1.30E-08	200.9	1.44E-08	193.0	1.32E-08	209.7	1.57E-08
					•		•		

付録 15 通水試験データ ケース 10 (W/C=105%, 積算液固比 500) その 1

試料名 [500-物性A 5		500-物	I性B	500-物	性C	500-分析			
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
89060		190.8	1.30E-08	204.4	1.45E-08	196.2	1.33E-08	213.4	1.57E-08
90520		193.7	1.30E-08	207.7	1.46E-08	199.2	1.33E-08	217.0	1.57E-08
91945		196.6	1.30E-08	210.9	1.46E-08	202.2	1.34E-08	220.4	1.58E-08
93225		199.1	1.30E-08	213.9	1.48E-08	204.9	1.35E-08	223.5	1.59E-08
94780		202.7	1.47E-08	217.9	1.67E-08	208.5	1.53E-08	227.8	1.80E-08
96155		206.0	1.55E-08	221.6	1.76E-08	212.0	1.62E-08	231.9	1.93E-08
97500		209.2	1.53E-08	225.2	1.75E-08	215.3	1.61E-08	235.8	1.90E-08
99175		213.3	1.57E-08	229.9	1.79E-08	219.6	1.64E-08	240.7	1.93E-08
100630		216.8	1.56E-08	233.9	1.81E-08	223.3	1.65E-08	245.0	1.93E-08
102000		220.1	1.57E-08	237.8	1.81E-08	226.8	1.66E-08	249.0	1.93E-08
103500		224.1	1.70E-08	242.3	1.96E-08	230.9	1.79E-08	253.8	2.10E-08
104030		221.1	1.74E-00	240.4	2.01E-00	234.7	1.04E-00	200.2	2.10E-00
100340		231.7	1.7 IE-00	251.0	1.900-00	230.9	1.01E-00	203.1	2.12E-00
107000		230.2	1.09E-00	250.9	1.935-00	242.0	1.00E-00	207.3	2.100-00
1109200		239.5	1.73E-00	209.0	1.93E-00	247.1	1.010-00	272.0	2.112-00
112155		243.0	1.04E-00	204.3	2.07E-00	255.0	2.00E-08	211.0	2.24E=00
112133		247.0	1.90L-00	203.1	2.14L-00	260.1	2.00L-00	202.0	2.32L-00
11/100/		256.2	192F-08	278./	213E-08	264.6	201E-00	207.4	2.31E-08
116375		260.2	1.91F-08	282.8	2.06F-08	268.9	1.98F-08	297.5	2.30F-08
117845		265.0	2.04F-08	2877	2.14F-08	2737	2.11F-08	303.1	2.48F-08
119280		269.6	2.07E-08	292.4	2.15E-08	278.4	2.14E-08	308.6	2.50E-08
120740	0.03	272.8	1.89E-08	296.0	2.13E-08	281.7	1.95E-08	312.4	2.28E-08
122175		276.0	1.90E-08	299.6	2.18E-08	284.9	1.94E-08	316.1	2.28E-08
123610		279.4	2.06E-08	303.6	2.38E-08	288.4	2.09E-08	320.2	2.50E-08
125005		282.8	2.09E-08	307.5	2.40E-08	291.7	2.07E-08	324.3	2.51E-08
126410		286.1	2.04E-08	311.3	2.35E-08	295.0	1.98E-08	328.3	2.49E-08
127925		289.7	2.02E-08	315.4	2.33E-08	298.3	1.93E-08	332.5	2.45E-08
129360		293.0	2.02E-08	319.3	2.33E-08	301.5	1.90E-08	336.5	2.42E-08
130815		296.5	2.05E-08	323.2	2.36E-08	304.8	1.97E-08	340.6	2.43E-08
132265		300.3	2.27E-08	327.6	2.63E-08	308.5	2.20E-08	345.0	2.69E-08
133785		304.3	2.24E-08	332.2	2.60E-08	312.3	2.16E-08	349.6	2.64E-08
135075		307.7	2.26E-08	336.1	2.61E-08	315.5	2.16E-08	353.5	2.62E-08
136510		311.4	2.22E-08	340.4	2.57E-08	319.0	2.11E-08	357.7	2.53E-08
138035		315.3	2.19E-08	344.9	2.54E-08	322.7	2.07E-08	362.1	2.53E-08
139550		319.1	2.20E-08	349.3	2.54E-08	326.3	2.06E-08	366.5	2.56E-08
140900		323.1	2.40E-00	303.9	2.010-00	330.0	2.2/E-00	371.1	2.010-00
142343		221.0	2.43E-00	300.0	2.000-00	227.7	2.34E-00	290.1	2.010-00
145165		224.9	2.40E-00	267.6	2.020-00	2/1/	2.300-00	300.1	2.72E-00
145105		338.0	2.37E-00	307.0	2.77E-08	341.4	2.33E-00	388.0	2.7 TE-00
148120		342.9	2.36E-08	377.1	2.76E-08	349.4	2.34E-08	393.4	2.03L-00
149600		347.0	2.37E-08	381.8	278E-08	353.4	2.36E-08	398.0	2.68E-08
150985		351.2	2.60E-08	386.8	3.09E-08	357.6	2.61E-08	402.7	2.96E-08
152440		355.6	2.65E-08	392.1	3.16E-08	362.1	2.66E-08	407.6	2.98E-08
153755		359.7	2.65E-08	397.0	3.18E-08	366.1	2.67E-08	412.1	2.98E-08
155155		363.9	2.61E-08	402.1	3.16E-08	370.4	2.64E-08	416.8	2.91E-08
156680		368.5	2.59E-08	407.6	3.14E-08	375.0	2.61E-08	421.8	2.86E-08
158190		373.0	2.55E-08	413.1	3.14E-08	379.6	2.60E-08	426.7	2.81E-08
159505	0.02	375.5	2.49E-08	416.2	3.02E-08	382.1	2.46E-08	429.4	2.68E-08
161075		379.1	2.95E-08	420.5	3.57E-08	385.6	2.94E-08	433.2	3.16E-08
162545		382.5	2.91E-08	424.5	3.52E-08	388.9	2.92E-08	436.6	3.10E-08
163945		385.5	2.84E-08	428.3	3.47E-08	392.0	2.87E-08	440.0	3.11E-08
165445		388.8	2.80E-08	432.2	3.39E-08	395.3	2.82E-08	443.5	3.06E-08
166/25		391.5	2.11E-08	435.4	3.31E-08	398.0	2.76E-08	446.4	2.98E-08
160700		395.0	2.74E-08	439.6	3.28E-08	401.4	2.13E-08	450.1	2.90E-08
171155		391.9	2.092-08	443.0	3.21E-U8	404.3	2.09E-08	403.1	2.93E-08
172600		400.9	202 00	440.3	3/20 00	407.3	2.035-00	400.3	2.01 E-00
174080		404.1	2.93E-00	454 5	3.40E-00	414.0	301F-08	463.2	318F-08
									J. J. UU

付録 16 通水試験データ ケース 10 (W/C=105%, 積算液固比 500) その 2

試料名		500-物	I性A	500-物	性B	500-物	性C	500-分	·析
積算時間	通水圧力	積算	透水係数	積算	透水係数	積算	透水係数	積算	透水係数
(min)	(MPa)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)	液固比	(m/sec)
175390		410.5	2.94E-08	458.0	3.50E-08	417.0	2.96E-08	466.4	3.12E-08
176865		413.9	2.90E-08	461.9	3.44E-08	420.3	2.93E-08	469.9	3.07E-08
178225		416.9	2.85E-08	465.5	3.37E-08	423.3	2.89E-08	473.0	3.02E-08
179785		420.3	2.83E-08	469.5	3.35E-08	426.8	2.88E-08	476.6	3.01E-08
181120		423.1	2.77E-08	472.9	3.25E-08	429.7	2.80E-08	479.6	2.97E-08
182705		426.6	2.79E-08	476.8	3.26E-08	433.1	2.82E-08	483.3	3.02E-08
184100		429.9	3.08E-08	480.7	3.57E-08	436.5	3.11E-08	486.9	3.37E-08
185450		433.2	3.20E-08	484.6	3.72E-08	439.9	3.24E-08	490.5	3.49E-08
186995		437.0	3.15E-08	488.9	3.66E-08	443.7	3.20E-08	494.6	3.45E-08
188575		440.8	3.09E-08	493.3	3.59E-08	447.5	3.15E-08	498.7	3.39E-08
189870		443.9	3.05E-08	496.8	3.52E-08	450.6	3.08E-08	X	冬了
191300		447.2	3.02E-08	500.7	3.46E-08	453.9	3.04E-08		
192740		450.5	2.95E-08	X	冬了	457.3	3.03E-08		
194190		454.1	3.18E-08			460.9	3.24E-08		
195505		457.5	3.41E-08			464.4	3.41E-08		
197035		461.5	3.32E-08			468.3	3.35E-08		
198560		465.4	3.30E-08			472.2	3.31E-08		
199925		468.9	3.29E-08			475.7	3.29E-08		
201450		472.7	3.21E-08			479.5	3.22E-08		
202820		476.0	3.16E-08			482.9	3.18E-08		
204315		479.6	3.14E-08			486.5	3.14E-08		
205745		483.0	3.08E-08			489.9	3.14E-08		
207015		486.0	3.01E-08			492.9	3.06E-08		
208580		489.7	3.03E-08			496.7	3.08E-08		
209780		492.9	3.50E-08			500.0	3.58E-08		
212890	0.01	497.3	3.59E-08			*	冬了		
215700		501.1	3.51E-08						
		×.	冬了						

付録 17 通水試験データ ケース 10 (W/C=105%, 積算液固比 500) その 3

試料名		W/C105	%-500分割		試料名		W/C85	%-360 分割	割 W/C85%-500分割	
<u> 試料重量(g)</u>)	50.72			試料重量	1 (g)	57.70		58.05	
<u>試料厚さ(cn</u>	n)	4.00			試料厚さ	(cm)	3.97		4.00	
試料断面積	(cm2)	12.89			試料断面	ī積(cm2)	12.83		12.83	
積算時間 通2	水圧力	液固比	诱水係数		積算時間	诵水圧力	液固比	诱水係数	液固比	诱水係数
(min) (N	MPa)		(m/sec)		(min)	(MPa)		(m/sec)		(m/sec)
- ().12	1.0	-		-	0.39	0.9	-	0.9	-
1190		2.6	289F-09		2670	0.00	27	513E-10	2.8	535E-10
2665		47	316E-09		5600		47	5.03E-10	49	5 22E - 10
4230		7.6	4.03E-09		9000		7.0	5.02E-10	7.2	5 10E 10
5590		10.3	4.00E 00		13000		0.8	5.02E 10	10.0	5.22E-10
7320		13.8	4.20L-00		17605		12.0	5.00E-10	13.2	5.16E-10
8040		17.0	4.020-00		22060		12.3	101E 10	16.2	5.10L-10
10220		20.2	4.032-09		23000	0.47	10.0	4.912-10	20.2	5.04E-10
11720		20.3	4.550-09		21755	0.47	19.9	4.091-10	20.2	101E 10
12000		20.4	4.04L-09		25020		20.2	4.732-10	23.7	4.91E-10
12990		20.4	5.13E-09		40070		20.0	4.000 - 10	27.0	5.00E-10
14430		29.0	5.12E-09		40070		29.9	4.90E-10	30.4	5.14E-10
13740		JZ.0	4.94E-09		43010		32.2	4.0/E-10	3Z.0	5.00E-10
1000		30.0	5.1ZE-09		40200	0.40	34.9	0.10E-10	30.0	0.00E-10
00400		39.8	5.2/E-09		53190	0.10	31.2	0.20E-10	38.0	0.00E-10
20120		43.1	5.13E-09		50195	0.43	40.1	0.41E-10	40.9	0./UE-10
21430		40.4	0.39E-09		00095		42.5	0.102-10	43.5	0.4/E-10
22910	2.00	50.2	5.65E-09		61965		45.7	6.91E-10	46.5	6.76E-10
24430 (J.09	53.2	5.62E-09		64840		48.6	6.97E-10	49.4	6.94E-10
25875		56.1	5.91E-09		67750		51.6	6.88E-10	52.4	6.92E-10
27360		59.1	5.86E-09		70330		54.5	7.65E-10	55.4	7.92E-10
28900		62.2	5.87E-09		73520	0.29	56.8	7.07E-10	57.7	7.37E-10
30395		65.3	6.03E-09		76410		58.9	7.20E-10	59.9	7.48E-10
31640		67.9	6.00E-09		79250		61.1	7.69E-10	62.2	8.15E-10
32960		70.6	5.98E-09		81865		63.1	7.68E-10	64.3	8.28E-10
34470		73.6	5.91E-09		84850		65.5	7.67E-10	66.8	8.14E-10
35900		76.6	5.99E-09		87915		67.9	8.02E-10	69.4	8.66E-10
37320		79.6	6.12E-09		90505		70.1	8.10E-10	71.7	8.76E-10
38815		82.8	6.35E-09		93650		72.6	8.09E-10	74.4	8.72E-10
40305		86.2	6.50E-09		97945	0.20	75.0	8.19E-10	76.9	8.88E-10
41690		89.3	6.59E-09		102040		77.4	8.69E-10	79.5	9.59E-10
43145		92.6	6.64E-09		106410		80.0	8.77E-10	82.4	9.74E-10
44525		95.9	6.88E-09		110685		82.5	8.66E-10	85.1	9.64E-10
45925		99.3	7.04E-09		115215		85.2	8.92E-10	88.2	1.02E-09
52835 0.0	1以下	101.2	-		119290		87.9	9.77E-10	91.3	1.14E-09
55865		101.9	-		123605		90.7	9.76E-10	94.5	1.14E-09
57400 0	0.06	103.5	6.52E-09		127920	0.12	92.6	1.06E-09	96.7	1.25E-09
58845		105.1	7.32E-09		132265		94.4	1.06E-09	98.9	1.26E-09
60280		106.8	7.78E-09		136645		96.4	1.12E-09	101.2	1.32E-09
61550		108.8	6.97E-09		140885		98.3	1.11E-09	103.4	1.33E-09
63150		111.4	7.01E-09		145360		100.3	1.13E-09	105.8	1.35E-09
64710		113.9	7.04E-09		149770		102.3	1.11E-09	108.2	1.34E-09
66030		116.1	7.27E-09		153875		104.2	1.16E-09	110.5	1.41E-09
67325		118.2	7.28E-09		158190		106.3	1.20E-09	113.0	1.45E-09
68790		120.7	7.31E-09		162695		108.5	1.21E-09	115.6	1.46E-09
70240		123.2	7.38E-09		166920		110.6	1.22E-09	118.1	1.47E-09
71785		125.9	7.63E-09		171140		112.7	1.21E-09	120.5	1.45E-09
73045		128.1	7.70E-09		175530		114.9	1.28E-09	123.2	1.53E-09
74550		130.7	7.71E-09		178645		116.6	1.32E-09	125.2	1.57E-09
76125		133.5	7.69E-09		181620		118.2	1.33E-09	127.0	1.57E-09
77600		136.1	7.74E-09		184175		119.6	1.34E-09	128.6	1.58E-09
78750		138.3	8.24E-09		187115		121.1	1.34E-09	130.5	1.60E-09
80255		141.2	8.40E-09		189965		122.8	1.39E-09	132.4	1.63E-09
81980		144.5	8.36E-09		192830		124.4	1.44E-09	134.3	1.66E-09
83330		147.1	8.41E-09		195700		126.1	1.48E-09	136.2	1.72E-09
84750		149.9	8.48E-09		198585		127.8	1.47E-09	138.2	1.69E-09
86120 (0.04	151.8	9.12F-09		201480		129.6	1.49F-09	140.2	1.71F-09
87485	5.0 r	1537	9 19F-09		204350		131.4	1.53E-09	142.2	177F-09
01400		100.7	9.19E-09	I	204000		131.4	1.552-09	142.Z	1.11 - 09

付録18 通水試験データ 上下分割して劣化部透水係数を実測した試料 その1

付-19(228)

試料名		W/C105	5%-500 分 署	試料名		W/C85	%-360分割	W/C85	%-500 分 割
積算時間	通水圧力	液固比	透水係数	積算時間	通水圧力	液固比	透水係数	液固比	透水係数
(min)	(MPa)		(m/sec)	(min)	(MPa)		(m/sec)		(m/sec)
89060	0.04	155.9	9.12E-09	207210	0.12	133.2	1.62E-09	144.3	1.84E-09
90520		157.9	9.06E-09	209995		135.1	1.67E-09	146.4	1.90E-09
91945		159.9	9.08E-09	212975	0.08	136.4	1.60E-09	147.9	1.85E-09
93225		161.6	9.04E-09	215900		137.7	1.62E-09	149.3	1.84E-09
94780		164.1	1.02E-08	218730		138.9	1.57E-09	150.6	1.78E-09
96155		166.3	1.08E-08	221605		140.1	1.60E-09	152.0	1.84E-09
97500		168.5	1.06E-08	224630		141.4	1.62E-09	153.5	1.85E-09
99175		171.3	1.08E-08	227500		142.7	1.61E-09	154.9	1.83E-09
100630		173.7	1.08E-08	230195		143.9	1.73E-09	156.3	1.97E-09
102000		176.0	1.08E-08	233095		145.3	1.77E-09	157.8	1.99E-09
103500		178.6	1.17E-08	236060		146.7	1.79E-09	159.4	2.02E-09
104830		181.1	1.20E-08	238910		148.1	1.76E-09	160.9	2.00E-09
106340		183.8	1.18E-08	241920		149.5	1.80E-09	162.5	1.98E-09
107660		186.1	1.17E-08	244715		150.9	1.79E-09	164.0	1.99E-09
109280		189.1	1.18E-08	247680		152.3	1.82E-09	165.6	2.03E-09
110705		191.8	1.27E-08	250330		153.6	1.81E-09	167.0	2.00E-09
112155		194.7	1.31E-08	253320		155.1	1.83E-09	168.6	2.00E-09
113525		197.5	1.32E-08	256200		156.6	1.87E-09	170.2	2.08E-09
114990		200.4	1.32E-08	259205		158.1	1.93E-09	171.9	2.11E-09
116375		203.2	1.31E-08	262080		159.6	1.93E-09	173.5	2.11E-09
117845		206.4	1.40E-08	264980		161.1	1.92E-09	175.1	2.11E-09
119280		209.5	1.42E-08	267690		162.5	1.95E-09	176.7	2.12E-09
120740	0.03	211.6	1.30E-08	270490		164.0	1.94E-09	178.2	2.11E-09
122175		213.8	1.30E-08	273615		165.7	1.98E-09	180.0	2.15E-09
123610		216.1	1.41E-08	276270		167.2	2.06E-09	181.6	2.22E-09
125005		218.4	1.42E-08	279375		168.9	2.05E-09	183.4	2.21E-09
126410		220.6	1.39E-08	282240		170.5	2.09E-09	185.1	2.27E-09
127925		223.0	1.37E-08	285125		172.2	2.19E-09	186.9	2.35E-09
129360		225.2	1.37E-08	288005		173.9	2.19E-09	188.7	2.35E-09
130815		227.5	1.39E-08	290960		1/5.6	2.19E-09	190.6	2.36E-09
132265		230.1	1.54E-08	293550		177.2	2.23E-09	192.2	2.37E-09
133785		232.7	1.52E-08	296690		179.2	2.34E-09	194.3	2.49E-09
135075		235.0	1.53E-08	299560		181.1	2.45E-09	196.3	2.62E-09
136510		237.5	1.50E-08	302390		182.9	2.45E-09	198.2	2.60E-09
138035		240.1	1.48E-08	305325		184.9	2.47E-09	200.3	2.60E-09
139550		242.6	1.48E-08	308125		186.7	2.48E-09	202.2	2.60E-09
140955		245.2	1.62E-08	311050		188.7	2.47E-09	204.2	2.56E-09
142345		247.9	1.64E-08	313960		190.6	2.49E-09	206.2	2.54E-09
143790		250.5	1.62E-08	316820		192.6	2.54E-09	208.2	2.62E-09
140100		253.1	1.60E-08	319685		194.0	2.58E-09	210.2	2.00E-09
140000		200.8	1.59E-08	322360		196.6	2.00E-09	212.3	2.73E-09
148120		208.4	1.59E-08	320000		198.9	2.78E-09	214.5	2.85E-09
149600		261.2	1.60E-08	328315		200.9	2.78E-09	216.6	2.83E-09
150985		263.9	1.70E-08	331190		203.1	2.81E-09	218.8	2.83E-09
152440		200.9	1.78E-08	334155		205.4	2.83E-09	221.0	2.88E-09
153/55		269.6	1.80E-08	336905		207.6	3.00E-09	223.2	3.01E-09
100100		272.5	1.77E-08	339835		210.0	3.00E-09	223.0	3.01E-09
150080		2/5.5	1.75E-08	342720		212.3	3.04E-09	227.9	3.07E-09
150190	0.00	2/8.5	1./JE-08	343685		214.8	3.10E-09	230.4	3.10E-09
109005	0.02	280.2	1.005-00	348520		217.2	3.10E-09	232.7	3.10E-09
1010/5		202.0	1.995-08	301425		219.7	3.1/E-U9	235.2	3.10E-U9
162045		204.8	1.90E-08	256005		222.0	3.13E-09	231.5	3.13E-09
103945		286.8	1.92E-08	326985		224.3	3.TTE-09	239.8	3.09E-09
100445		289.0	1.00E-08	309980		226.9	3.21E-09	242.3	3.22E-09
100/25		290.8	1.0/E-U8	302885		229.6	3.30E-09	244.9	3.30E-09
100350		293.1	1.00E-U8	303/35		232.2	3.42E-09	247.5	3.40E-09
109/20		295.0	1.01E-U8	300045		234.9	3.44E-09	250.2	3.43E-09
171155		297.0	1.02E-U8	37 1515		237.6	3.54E-09	252.9	3.54E-09
172000		299.2	1.9/E-08	374390		240.4	3.33E-09	200.0	3.54E-09
174080		301.4	Z.UTE-08	3//1/0		243.0	ა.ე9⊨-09	258.2	3.01E-09

付録19 通水試験データ 上下分割して劣化部透水係数を実測した試料 その2

試料名		W/C105	5%-500分割		試料名		W/C85	%-360分割	W/C85	%-500分割
積算時間	通水圧力	液固比	透水係数		積算時間	通水圧力	液固比	透水係数	液固比	透水係数
(min)	(MPa)		(m/sec)		(min)	(MPa)		(m/sec)		(m/sec)
175390	0.02	303.4	1.98E-08		380195	0.08	246.1	3.74E-09	261.2	3.75E-09
176865		305.6	1.95E-08		383085		249.0	3.71E-09	264.1	3.73E-09
178225		307.6	1.92E-08		385995		252.0	3.93E-09	267.2	4.00E-09
179785		309.9	1.90E-08		388600		254.9	4.09E-09	270.1	4.15E-09
181120		311.8	1.86E-08		391665		258.3	4.05E-09	273.4	4.14E-09
182705		314.0	1.87E-08		394570		261.4	4.06E-09	276.7	4.18E-09
184100		316.2	2.07E-08		397300		264.4	4.07E-09	279.7	4.19E-09
185450		318.5	2.15E-08		400370		267.9	4.14E-09	283.2	4.27E-09
186995		321.0	2.13E-08		403220		271.1	4.17E-09	286.5	4.33E-09
188575		323.5	2.10E-08		406090		274.3	4.22E-09	289.8	4.38E-09
189870		325.5	2.06E-08		409030		277.9	4.57E-09	293.5	4.75E-09
191300		327.8	2.03E-08		411610		281.2	4.64E-09	296.9	4.88E-09
192740		330.0	2.01E-08		414725		285.1	4.64E-09	300.9	4.90E-09
194190		332.4	2.17E-08		417535		288.5	4.62E-09	304.6	4.88E-09
195505		334.7	2.30E-08		420510		292.3	4.73E-09	308.5	5.05E-09
197035		337.3	2.27E-08		423365		296.0	4.71E-09	312.4	5.01E-09
198560		340.0	2.25E-08		426245		299.6	4.75E-09	316.3	5.10E-09
199925		342.3	2.24E-08		428960		303.2	4.93E-09	320.1	5.34E-09
201450		344.8	2.19E-08		431905		307.2	4.96E-09	324.3	5.36E-09
202820		347.1	2.17E-08		434880		311.2	4.98E-09	328.6	5.40E-09
204315		349.6	2.16E-08		437605	0.06	314.0	5.06E-09	331.6	5.52E-09
205745		351.9	2.13E-08		440640		317.0	5.01E-09	334.9	5.45E-09
207015		353.9	2.09E-08		443510		320.0	5.06E-09	338.0	5.51E-09
208580		356.5	2.11E-08		446380		322.8	4.96E-09	341.1	5.44E-09
209780		358.7	2.42E-08		449265		325.7	4.93E-09	344.2	5.40E-09
212890	0.01	361.7	2.50E-08		452190		328.7	5.07E-09	347.5	5.55E-09
215700		364.3	2.46E-08		455025		331.7	5.18E-09	350.7	5.70E-09
218530		366.9	2.42E-08		457915		334.9	5.52E-09	354.2	6.06E-09
221405		369.4	2.30E-08		460615		337.9	5.53E-09	357.4	6.05E-09
224440		372.0	2.19E-08		463670		341.3	5.48E-09	361.1	6.06E-09
227310		374.3	2.11E-08		466545		344.6	5.63E-09	364.7	6.20E-09
230185		376.6	2.12E-08		469310		347.7	5.62E-09	368.1	6.19E-09
231635		379.2	2.36E-08		472385		351.1	5.54E-09	371.8	6.14E-09
233070		381.8	2.30E-08		475180		354.4	5.73E-09	375.4	6.34E-09
234515		384.7	2.63E-08		478030		357.6	5.66E-09	378.9	6.24E-09
235950		387.5	2.62E-08		480965		361.0	5.60E-09	382.5	6.18E-09
237420		390.5	2.59E-08		483870		X	紧 了	386.3	6.56E-09
238840		393.2	2.57E-08		486715				390.2	6.88E-09
240265		396.0	2.57E-08		489445				394.0	6.88E-09
241720		398.9	2.54E-08		492395				397.9	6.74E-09
243215		401.7	2.52E-08		495225				401.8	0.81E-09
244625		404.5	2.53E-08		498115				405.7	0.88E-09
246050		407.2	2.53E-08		501145				409.9	0.85E-09
24/480		410.0	2.53E-08		504035				413.8	0.76E-09
248910		412.7	2.53E-08		506/65				417.5	0.90E-09
250135		415.1	2.56E-08		509625				421.4	0.83E-09
251/90		418.4	2.5/E-08		512550				425.5	0.97E-09
253225		421.2	2.55E-08	Î	515430				429.7	1.3/E-09
254685		424.0	2.54E-08		518405				434.1	7.33E-09
256000		426.6	2.51E-08		521280				438.2	1.20E-09
25/000		429.5	2.30E-08		524170				442.4	7.395-09
209005		432.3	2.30E-08		520755				440.7	7.04E-09
261005		435.0	2.50E-08		529/55				400.6	7.30E-09
201005		431.8	2.30E-08		532/05				400.0	1.00E-09
203310		440.8	2.022-08	Î	520/20				409.4	7 265 00
204780		444.1	2.00E-U8		5/1/10				403.3	7.000-09
200240		447.3	2.01 E-00		541410				407.9	7.00009
260000		450.0	2.000-00		544290				412.4	8 02 00
209090		400.0	2.000-00		5/0025				411.0	8 05E 00
210290		400.1	2.00E-00		049900		1		401.0	0.000 - 09

付録 20 通水試験データ 上下分割して劣化部透水係数を実測した試料 その3

試料名		W/C105	5%-500分割
積算時間	通水圧力	液固比	透水係数
(min)	(MPa)		(m/sec)
271940	0.01	459.7	2.84E-08
273415		462.9	2.85E-08
274835		466.0	2.85E-08
276070		468.7	2.83E-08
277820		472.4	2.82E-08
279175		475.4	2.83E-08
280600		478.5	2.84E-08
282040		481.6	2.85E-08
283480		484.7	2.86E-08
284925		487.9	2.85E-08
286180		490.6	2.86E-08
287805		494.2	2.84E-08
289295		497.4	2.83E-08
290760		500.6	2.86E-08
		×	冬了

試料名		W/C85%-360分割		W/C85%-500分割	
積算時間	通水圧力	液固比	透水係数	液固比	透水係数
(min)	(MPa)		(m/sec)		(m/sec)
552975	0.06			486.2	7.76E-09
555835				490.7	7.95E-09
558725				495.3	7.93E-09
561550				499.7	7.89E-09
		終了		冬了	

付録 21 通水試験データ 上下分割して劣化部透水係数を実測した試料 その4

付録 22 通水試験ケース3(W/C=85%,積算液固比 180)上部試料の XRD チャート

付録 23 通水試験ケース3(W/C=85%,積算液固比 180)下部試料の XRD チャート

付録 24 通水試験ケース4(W/C=85%,積算液固比 360)上部試料の XRD チャート

付録 25 通水試験ケース4(W/C=85%,積算液固比 360)下部試料の XRD チャート

付録 26 通水試験ケース5(W/C=85%,積算液固比 500)上部試料の XRD チャート

付録 27 通水試験ケース5(W/C=85%,積算液固比 500)下部試料の XRD チャート

付録 28 通水試験ケース9(W/C=105%,積算液固比 360)上部試料の XRD チャート

付録 29 通水試験ケース9(W/C=105%,積算液固比 360)下部試料の XRD チャート

付録 30 通水試験ケース 10 (W/C=105%,積算液固比 500)上部試料の XRD チャート

付録 31 通水試験ケース 10 (W/C=105%,積算液固比 500)下部試料の XRD チャート

付 - 27 (236)

付録 32 通水試験ケース3(W/C=85%,積算液固比 180)上部試料のTG / DTA 曲線

付録 33 通水試験ケース3(W/C=85%,積算液固比 180)下部試料のTG/DTA曲線

付録 34 通水試験ケース4(W/C=85%,積算液固比 360)上部試料のTG/DTA曲線

付録 35 通水試験ケース4(W/C=85%,積算液固比 360)下部試料のTG/DTA曲線

付録 36 通水試験ケース5(W/C=85%,積算液固比 500)上部試料のTG / DTA 曲線

付録 37 通水試験ケース5(W/C=85%,積算液固比 500)下部試料のTG / DTA 曲線

付録 38 通水試験ケース9(W/C=105%,積算液固比 360)上部試料のTG/DTA曲線

付録 39 通水試験ケース 9 (W/C=105%, 積算液固比 360) 下部試料の TG / DTA 曲線

付録 40 通水試験ケース 10 (W/C=105%,積算液固比 500)上部試料の TG / DTA 曲線

付録 41 通水試験ケース 10 (W/C=105%, 積算液固比 500) 下部試料の TG / DTA 曲線

付録 42 通水試験ケース3(W/C=85%,積算液固比 180)上部試料の DSC 曲線

付録 43 通水試験ケース3(W/C=85%,積算液固比 180)下部試料の DSC 曲線

付録 44 通水試験ケース4(W/C=85%,積算液固比 360)上部試料の DSC 曲線

付録 45 通水試験ケース4(W/C=85%,積算液固比 360)下部試料の DSC 曲線

付 - 34 (243)

付録 46 通水試験ケース5(W/C=85%,積算液固比 500)上部試料の DSC 曲線

付録 47 通水試験ケース5(W/C=85%,積算液固比 500)下部試料の DSC 曲線

付 - 35 (244)

付録 48 通水試験ケース9(W/C=105%,積算液固比 360)上部試料の DSC 曲線

付録 49 通水試験ケース9(W/C=105%,積算液固比 360)下部試料の DSC 曲線

付録 50 通水試験ケース 10 (W/C=105%, 積算液固比 500)上部試料の DSC 曲線

付録 51 通水試験ケース 10 (W/C=105%,積算液固比 500)下部試料の DSC 曲線

付録 52 通水試験ケース3(W/C=85%,積算液固比 180)の応力-ひずみの関係

付-38(247)

付録 53 通水試験ケース4(W/C=85%,積算液固比 360)の応力-ひずみの関係

付-39(248)

付録 54 通水試験ケース5(W/C=85%,積算液固比 500)の応力-ひずみの関係

付-40(249)

付録 55 通水試験ケース9(W/C=105%,積算液固比 360)の応力-ひずみの関係

付録 56 通水試験ケース 10 (W/C=105%, 積算液固比 500)の応力 - ひずみの関係

付-42(251)

~ */	V	V/C(%	5)	
∏ ₫ X	40	70	85	105
1.0	27.1	10.5	4.1	4.1
2.0	29.4	8.5	5.6	3.9
3.0	31.6	4.3	4.8	2.8
4.0	43.1	13.7	8.2	1.4
5.0	35.9	9.3	18.7	2.6
6.0	34.4	5.4	7.0	2.5
7.0	20.4	14.0	7.5	3.3
8.0	27.5	5.9	5.0	2.6
9.0	22.6	7.7	7.2	3.5
10.0	24.1	3.1	8.5	2.5
11.0	16.5	6.6	8.3	2.8
12.0	54.3	10.0	8.5	3.5
13.0	36.6	12.9	7.3	3.4
14.0	31.1	7.1	4.2	2.0
15.0	38.8	9.0	5.8	2.0
16.0	44.8	10.5	4.8	2.2
17.0	40.6	4.7	7.9	3.2
18.0	44.7	12.1	5.0	4.7
19.0	検出限界以下	7.0	5.3	2.9
20.0	24.6	10.5	4.3	3.1
21.0	28.7	14.4	8.4	1.4
22.0	38.6	10.8	6.7	2.3
23.0	43.4	7.5	11.1	3.0
24.0	検出限界以下	12.0	5.3	10.0
25.0	25.6	10.3	8.8	2.7
26.0	45.5	5.6	7.9	4.6
27.0	42.3	10.1	7.8	2.9
28.0	検出限界以下	8.4	7.8	2.3
29.0	48.0	13.6	7.6	2.5
30.0	44.5	5.9	5.4	4.7
平均	35.0	9.0	7.2	3.2
標準偏差	9.7	3.1	2.8	1.5
変動係数	27.6	34.5	38.6	48.7

付録 57 浸漬前ビッカース硬度データ

W/C = 40%				浿	定深さ(mr	n)			
n数	0.1	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
1.0	32.1	22.1	59.2	45.3	41.2	34.6	39.4	46.5	35.0
2.0	27.9	23.7	57.3	35.1	32.6	48.8	32.6	39.9	37.4
3.0	22.9	21.0	52.4	53.0	42.2	42.5	34.9	40.2	28.4
4.0	41.1	24.3	34.8	37.0	34.2	42.2	55.4	41.0	27.1
5.0	21.6	22.2	34.8	46.4	62.7	41.5	46.3	42.3	30.3
6.0	19.0	18.6	39.5	42.6	30.6	32.5	44.4	31.3	51.2
7.0	15.2	19.6	51.0	48.0	33.2	35.5	31.1	33.8	30.5
8.0	23.1	24.4	53.7	44.0	62.8	34.9	44.2	33.7	37.2
9.0	18.3	49.3	53.0	38.9	49.5	36.5	44.9	36.0	32.6
10.0	19.5	29.0	35.8	42.4	48.8	39.7	44.9	38.7	32.2
11.0	22.7	33.5	47.1	37.6	39.9	51.9	38.6	42.7	31.8
12.0	23.5	34.6	33.3	43.9	38.8	36.1	45.0	41.0	31.9
13.0	23.6	25.0	52.4	75.4	37.6	48.7	47.2	41.3	32.7
14.0	23.2	17.6	42.6	44.6	31.6	49.3	39.3	38.4	37.0
15.0	18.2	17.9	42.6	38.9	50.8	49.3	48.6	34.6	29.2
16.0	34.2	23.8	48.0	39.4	14.0	38.3	30.5	41.6	32.9
17.0	16.1	15.8	44.1	42.3	33.2	41.8	40.2	36.2	25.7
18.0	19.2	25.0	34.4	39.5	45.8	50.3	38.6	32.3	30.5
19.0	25.5	35.7	44.2	41.3	54.7	43.1	50.7	46.6	37.9
20.0	29.6	28.6	40.6	50.7	56.6	52.6	41.1	34.4	36.4
21.0	19.8	29.4	43.9	50.9	42.4	31.2	31.5	41.5	35.3
22.0	24.7	34.5	49.3	34.1	45.8	47.1	35.9	43.9	33.8
23.0	19.0	21.4	40.7	44.4	43.7	37.9	35.1	38.4	34.6
24.0	23.3	23.3	39.4	44.4	34.5	34.6	33.3	31.1	37.9
25.0	35.4	24.0	47.8	44.3	36.8	42.5	48.2	48.0	36.5
26.0	21.2	23.6	36.5	50.9	36.2	51.9	65.9	47.4	31.7
27.0	27.7	14.2	41.8	42.4	39.9	48.8	40.4	36.1	34.2
28.0	22.4	19.8	56.5	64.5	49.2	46.5	37.4	41.7	38.6
29.0	40.2	20.9	48.1	52.4	41.6	28.8	49.3	51.2	33.5
30.0	45.5	28.2	39.7	57.8	48.0	41.7	44.8	39.3	27.8
平均	25.2	25.0	44.8	45.7	42.0	42.0	42.0	39.7	33.7
標準偏差	7.6	7.2	7.4	8.7	10.2	6.8	7.8	5.2	4.8
変動係数	30.2	28.7	16.5	19.0	24.3	16.3	18.6	13.0	14.2

付録 58 浸漬 12 週後ビッカース硬度データ (W/C:40%)

W/C = 70%				測定深	さ(mm)					
n数	0.1	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
1.0	検出限界以下	4.2	9.8	12.5	7.8	12.8	19.8	9.4	5.0	9.6	6.4
2.0	検出限界以下	7.3	7.9	13.0	6.3	11.5	13.7	9.3	8.2	6.6	3.8
3.0	検出限界以下	3.5	2.9	10.5	6.5	9.0	11.5	9.6	8.0	7.0	6.5
4.0	検出限界以下	検出限界以下	7.0	11.4	8.9	10.5	12.3	10.2	8.7	8.9	5.9
5.0	検出限界以下	検出限界以下	検出限界以下	11.0	9.2	9.7	10.7	9.0	7.4	8.4	6.5
6.0	検出限界以下	検出限界以下	検出限界以下	8.4	9.0	13.5	9.3	10.1	8.4	7.0	7.4
7.0	検出限界以下	検出限界以下	検出限界以下	9.3	8.4	8.9	10.6	8.9	8.8	9.5	7.1
8.0	検出限界以下	検出限界以下	検出限界以下	9.7	8.2	14.3	12.1	13.5	9.6	11.2	5.5
9.0	検出限界以下	検出限界以下	検出限界以下	9.5	8.9	12.7	12.8	6.8	8.8	10.9	6.8
10.0	検出限界以下	検出限界以下	検出限界以下	9.5	10.1	12.6	9.2	9.7	9.8	10.6	7.8
11.0	検出限界以下	検出限界以下	検出限界以下	11.1	9.7	10.9	9.3	9.4	6.5	10.1	5.2
12.0	検出限界以下	検出限界以下	検出限界以下	10.0	10.5	14.4	7.8	9.7	5.4	8.5	6.1
13.0	検出限界以下	検出限界以下	検出限界以下	10.2	9.9	9.2	6.7	10.0	5.8	9.4	7.1
14.0	検出限界以下	検出限界以下	検出限界以下	12.8	11.6	11.5	10.7	11.3	5.2	10.0	7.5
15.0	検出限界以下	検出限界以下	検出限界以下	10.5	10.1	8.9	11.5	11.1	5.7	9.7	6.5
16.0	検出限界以下	検出限界以下	検出限界以下	10.1	8.8	9.8	16.2	10.9	7.4	8.8	6.4
17.0	検出限界以下	検出限界以下	検出限界以下	10.7	9.8	10.9	9.6	11.0	7.9	8.9	5.7
18.0	検出限界以下	検出限界以下	検出限界以下	9.6	10.5	13.3	15.5	14.7	8.9	9.7	6.4
19.0	検出限界以下	検出限界以下	検出限界以下	9.0	12.6	11.7	9.4	9.6	8.2	8.7	4.5
20.0	検出限界以下	検出限界以下	検出限界以下	15.1	11.7	9.1	9.0	10.2	8.5	5.7	5.8
21.0	検出限界以下	検出限界以下	検出限界以下	10.4	9.1	9.1	12.6	7.5	10.3	9.4	6.2
22.0	検出限界以下	検出限界以下	検出限界以下	8.9	7.5	10.8	11.9	8.0	11.1	8.6	6.5
23.0	検出限界以下	検出限界以下	検出限界以下	13.6	7.7	10.8	11.9	9.0	11.6	8.5	7.5
24.0	検出限界以下	検出限界以下	検出限界以下	8.2	11.4	12.3	10.2	8.0	9.1	7.6	5.9
25.0	検出限界以下	検出限界以下	検出限界以下	9.6	8.5	8.7	8.5	9.9	8.0	11.5	9.5
26.0	検出限界以下	検出限界以下	検出限界以下	10.3	12.2	10.1	8.5	5.9	13.4	8.2	12.2
27.0	検出限界以下	検出限界以下	検出限界以下	10.9	12.6	12.5	11.9	9.9	10.5	11.4	7.6
28.0	検出限界以下	検出限界以下	検出限界以下	16.1	11.5	13.8	10.5	7.3	11.9	8.5	8.5
29.0	検出限界以下	検出限界以下	検出限界以下	11.2	11.8	12.6	15.9	8.0	9.8	10.6	8.1
30.0	検出限界以下	検出限界以下	検出限界以下	18.1	9.4	11.4	16.3	8.2	11.9	9.0	5.9
平均	検出限界以下	5.0	6.9	11.0	9.7	11.2	11.5	9.5	8.7	9.1	6.8
標準偏差	-	2.0	2.9	2.3	1.7	1.8	2.9	1.8	2.1	1.4	1.5
変動係数	-	40.6	42.2	20.6	17.8	15.6	25.4	18.8	24.5	15.6	22.7

付録 59 浸漬 12 週後ビッカース硬度データ(W/C:70%)

W/C = 85%			測定深	さ(mm)					
n 数	0.1	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
1.0	検出限界以下	1.3	1.7	2.5	6.2	6.9	9.7	4.1	3.9
2.0	検出限界以下	1.3	1.6	1.5	4.6	5.1	10.0	4.8	3.5
3.0	検出限界以下	検出限界以下	1.2	1.1	3.6	2.5	8.7	5.1	3.3
4.0	検出限界以下	検出限界以下	検出限界以下	2.0	2.9	3.5	9.2	4.8	2.7
5.0	検出限界以下	検出限界以下	検出限界以下	2.0	5.3	5.7	5.0	4.6	3.3
6.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.2	6.2	5.9	4.8	3.5
7.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.2	5.7	5.6	4.4	6.1
8.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.7	4.5	6.9	3.5	4.6
9.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.1	3.1	5.5	11.4	4.4
10.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	3.8	4.7	5.5	3.7	5.4
11.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.4	6.4	7.8	4.4	3.2
12.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.9	4.8	6.3	4.0	3.5
13.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	5.9	3.9	7.5	4.6	7.5
14.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	5.0	5.2	7.7	3.9	3.9
15.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.2	4.7	8.2	3.3	4.1
16.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	3.7	5.1	8.0	4.5	3.5
17.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.3	3.6	4.4	4.0	4.8
18.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.9	4.1	4.4	5.0	5.6
19.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	3.4	4.4	4.6	5.1	5.0
20.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	3.0	5.2	5.3	5.4	4.1
21.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.5	5.9	5.9	5.6	3.4
22.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.9	5.9	3.9	6.4	4.3
23.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.7	4.3	6.8	2.6	4.1
24.0	検出限界以下	検出限界以下	検出限界以下	4.1	4.5	3.0	5.6	3.4	3.8
25.0	検出限界以下	検出限界以下	検出限界以下	4.8	4.3	3.4	7.8	4.0	3.5
26.0	検出限界以下	検出限界以下	検出限界以下	5.1	5.2	4.0	4.5	7.4	2.5
27.0	検出限界以下	検出限界以下	検出限界以下	4.8	6.8	3.9	6.1	4.1	9.6
28.0	検出限界以下	検出限界以下	検出限界以下	4.6	3.7	3.3	7.3	3.6	3.7
29.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	5.6	4.7	5.1	3.8	5.5
30.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	4.9	3.8	4.9	4.8	4.1
平均	検出限界以下	1.3	1.5	3.2	4.5	4.6	6.5	4.7	4.3
標準偏差	-	0.0	0.3	1.6	0.9	1.1	1.7	1.6	1.4
変動係数	-	0.6	17.7	48.8	19.3	24.1	26.0	33.6	33.3

付録 60 浸漬 12 週後ビッカース硬度データ(W/C:85%)

W/C = 105%			測定深	さ(mm)					
n数	0.1	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
1.0	検出限界以下	検出限界以下	2.9	検出限界以下	2.4	3.3	2.0	1.6	2.5
2.0	検出限界以下	検出限界以下	1.6	検出限界以下	2.8	2.5	1.7	2.5	4.5
3.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.3	2.3	1.9	2.1	1.3
4.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	3.1	2.0	2.4	2.3	1.2
5.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.5	1.9	3.0	2.1	1.9
6.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.8	2.0	3.0	2.0	5.0
7.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.9	1.8	2.5	1.6	2.8
8.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.5	2.1	2.2	1.8	2.5
9.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.2	1.9	2.0	1.4	5.2
10.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.5	1.4	2.0	1.6	2.1
11.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	1.9	2.2	3.8	1.7
12.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.0	2.3	2.1	1.9	3.0
13.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.7	2.0	1.7	1.8	2.4
14.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.6	1.5	2.3	1.6	2.1
15.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	2.9	2.7	2.2	1.6
16.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.6	4.0	2.7	2.4	1.6
17.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.5	3.2	1.7	1.4	1.8
18.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.9	2.7	2.3	1.7	1.4
19.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.2	2.5	2.7	1.6	1.8
20.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.3	2.2	2.5	1.8	1.5
21.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	2.2	1.9	1.7	1.7
22.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.4	2.0	1.6	1.6	1.8
23.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	2.0	1.9	2.1	1.9
24.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	2.5	1.6	1.8	1.9
25.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.4	2.0	1.8	1.7	1.3
26.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.0	2.0	1.6	2.8	1.4
27.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.2	2.7	2.0	2.0	1.6
28.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.0	1.7	1.9	2.1	1.4
29.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.9	1.9	1.8	2.6	1.6
30.0	検出限界以下	検出限界以下	検出限界以下	検出限界以下	1.6	2.3	1.9	1.8	1.4
	検出限界以下	検出限界以下	*2.26	検出限界以下	2.1	2.3	2.1	2.0	2.1
平均	検出限界以下	検出限界以下	検出限界以下	検出限界以下	2.1	2.2	2.1	2.0	2.1
標準偏差	-	-	-	-	0.4	0.5	0.4	0.5	1.0
変動係数	-	-	-	-	17.5	23.3	18.9	24.1	48.8

付録 61 浸漬 12 週後ビッカース硬度データ(W/C:105%)

注) 深さ 1.0mm に関して,3 点データ取得可能であったが,深さ 1.5mm では全点検出限 界以下であるため,平均値を検出限界以下とした。

W/C = 40%							測定	E深さ(r	nm)						
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.9	2.4	2.9	3.4	3.9	4.4	4.8
1.0	8.2	7.9	15.6	14.2	10.6	21.7	19.6	15.3	25.7	22.0	21.1	18.7	20.9	14.7	32.1
2.0	8.1	8.9	18.0	14.2	10.4	30.2	9.6	17.2	19.0	19.3	25.1	23.2	23.6	20.0	28.0
3.0	8.7	4.6	17.8	13.0	10.9	16.8	18.6	19.5	17.8	20.7	20.6	17.2	21.7	20.9	29.9
4.0	8.4	7.5	10.8	11.6	11.5	25.3	13.4	14.4	19.8/	23.8	21.3	16.3	17.1	22.2	22.3
5.0	6.3	9.3	12.3	9.7	11.0	19.3	10.4	16.8	13.5	24.3	27.4	17.5	22.4	22.8	20.6
6.0	7.4	8.7	11.7	13.4	18.9	19.2	11.2	14.7	13.4	24.1	24.8	21.0	25.7	21.8	24.4
7.0	8.5	10.2	15.0	12.8	14.1	14.7	14.6	17.1	18.8	21.1	21.3	22.3	20.6	24.1	23.2
8.0	8.5	6.4	10.7	14.0	11.5	15.9	12.6	15.7	22.5	19.5	20.8	20.0	29.5	21.1	19.8
9.0	8.3	7.4	12.8	11.5	13.4	15.4	15.1	14.1	20.6	17.6	20.3	24.5	21.4	32.3	21.5
10.0	8.1	8.2	12.2	12.5	12.1	16.9	17.8	14.9	21.4	17.8	22.8	17.3	26.0	23.6	28.6
11.0	9.5	8.0	12.2	10.6	14.5	15.6	18.5	18.8	18.6	18.1	27.9	17.9	24.4	22.7	15.4
12.0	4.8	10.3	9.7	12.3	12.7	14.3	24.3	16.2	26.6	17.4	21.6	28.8	18.6	23.4	29.2
13.0	6.4	7.9	10.5	11.0	10.1	16.4	19.1	18.6	21.9	20.1	18.3	24.1	25.5	23.3	21.0
14.0	5.9	10.2	9.4	11.5	15.6	19.5	18.5	16.0	24.3	20.5	15.1	23.8	23.3	22.0	23.3
15.0	9.0	8.5	12.4	12.2	12.3	21.1	18.6	13.5	23.4	20.7	21.1	20.5	26.3	14.9	26.0
16.0	6.5	7.6	12.9	11.3	16.4	18.1	16.0	16.5	12.2	26.5	21.4	24.4	22.2	21.8	27.3
17.0	6.6	6.5	10.9	12.2	12.7	19.8	18.8	19.9	18.1	22.4	22.3	21.1	27.2	20.1	23.6
18.0	5.6	8.4	13.1	9.9	15.4	15.2	18.7	18.9	17.2	24.4	27.4	19.9	23.6	25.8	23.5
19.0	6.3	9.7	11.8	10.5	12.6	21.7	14.7	22.1	21.9	20.9	26.4	20.7	21.1	22.0	25.7
20.0	5.2	10.8	10.8	11.2	16.1	14.8	16.0	21.7	15.6	20.2	25.7	22.9	20.5	25.5	20.9
21.0	6.1	8.7	13.2	10.3	14.6	21.3	18.0	21.5	20.5	24.2	21.2	22.0	21.4	24.2	23.0
22.0	2.5	10.3	12.0	11.9	21.1	20.5	15.6	19.5	19.0	18.1	21.6	22.1	28.0	25.3	24.3
23.0	3.8	10.5	8.6	13.4	16.7	16.9	12.9	18.8	19.1	24.0	21.6	22.9	18.4	22.8	16.5
24.0	6.6	14.6	10.4	13.3	11.5	15.8	15.2	18.0	19.9	19.4	16.3	21.7	22.4	24.4	19.9
25.0	4.9	11.5	11.6	10.1	16.9	16.1	19.9	25.2	17.2	19.7	23.9	19.5	29.3	19.5	19.4
26.0	4.3	12.4	9.9	11.2	18.0	13.9	13.9	14.4	16.1	15.5	19.5	24.3	28.4	26.2	24.1
27.0	3.5	11.7	11.3	10.0	19.5	15.9	16.5	17.8	15.7	15.8	24.5	21.2	15.3	22.0	18.5
28.0	5.0	11.6	13.0	9.8	12.9	14.3	19.5	21.8	17.0	20.0	23.1	23.2	18.5	24.4	20.5
29.0	6.8	11.1	14.6	9.1	12.9	14.7	18.5	20.3	13.4	20.7	24.0	18.2	16.7	19.3	26.0
30.0	6.5	10.8	10.6	10.9	14.5	13.6	15.3	19.9	16.8	19.4	23.1	20.9	14.7	25.7	23.8
平均	6.5	9.3	12.2	11.7	14.0	17.8	16.4	18.0	18.9	20.6	22.4	21.3	22.5	22.6	23.4
標準偏差	1.8	2.1	2.2	1.4	2.9	3.7	3.2	2.8	3.7	2.7	3.0	2.8	4.0	3.3	3.9
変動係数	27.2	22.1	18.3	12.4	20.6	20.9	19.7	15.9	19.5	13.1	13.5	13.0	18.0	14.7	16.8

付録 62 浸漬 48 週後ビッカース硬度データ(W/C:40%)

W/C = 70%								測定	深さ(mm)							
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.5	3.0	3.5	4.0	4.5	4.9
1.0	1.9	3.3	5.4	3.0	4.6	5.4	3.3	4.9	10.8	7.8	6.9	5.3	10.2	8.8	5.8	12.1	9.9
2.0	1.4	4.7	4.9	6.9	7.0	6.5	6.7	5.3	9.5	8.7	7.5	8.8	9.1	7.9	8.4	9.5	7.9
3.0	2.0	4.2	8.1	4.3	7.3	7.8	6.1	5.6	8.6	4.5	5.9	10.2	7.9	12.1	8.2	9.0	10.1
4.0	1.7	2.5	7.8	6.0	5.5	7.0	5.2	4.7	7.4	7.4	4.4	6.7	6.5	10.6	9.2	9.8	10.5
5.0	2.2	5.2	4.5	7.2	5.6	6.0	6.4	4.4	10.2	8.3	6.8	6.3	10.9	5.7	11.2	11.7	9.5
6.0	2.8	7.2	5.1	4.8	4.6	5.0	5.7	5.5	5.5	8.6	7.4	6.0	9.1	7.0	8.2	7.6	13.5
7.0	2.2	5.4	5.8	5.4	5.9	7.1	7.9	4.5	6.4	5.3	11.8	5.2	7.2	9.2	9.9	12.9	14.6
8.0	2.7	5.5	8.3	5.9	6.4	7.5	4.9	6.8	5.4	5.0	5.3	7.5	7.6	8.8	12.3	11.1	10.3
9.0	1.9	4.1	5.5	5.3	5.2	3.8	5.0	6.2	5.8	6.7	6.4	7.2	7.8	9.2	8.6	11.3	9.2
10.0	1.9	4.4	5.6	4.9	6.1	4.4	5.5	3.9	6.2	5.6	8.0	9.1	10.0	7.9	8.1	10.2	11.6
11.0	1.6	5.0	4.2	5.0	7.7	5.7	8.1	6.8	6.5	7.6	8.4	12.4	9.1	7.1	7.1	14.3	11.3
12.0	1.5	6.1	5.9	5.2	4.6	6.4	8.3	7.1	5.6	5.7	7.1	4.7	10.9	8.9	8.4	10.3	11.2
13.0	1.4	5.3	3.8	7.9	4.8	6.0	5.6	4.2	4.5	6.1	7.6	7.9	9.5	5.7	7.2	13.4	12.2
14.0	1.9	4.1	4.0	6.2	6.1	5.5	5.8	8.3	6.9	5.1	5.7	7.9	8.2	8.6	7.6	9.9	8.3
15.0	1.6	4.2	5.3	4.6	6.0	5.0	6.7	6.9	7.4	9.0	8.1	8.9	7.1	7.7	11.0	9.2	11.7
16.0	1.8	3.6	4.3	6.1	7.2	5.8	6.5	9.2	7.2	7.7	6.8	8.9	8.0	9.7	8.9	12.8	11.4
17.0	2.1	2.8	6.7	5.9	7.2	9.7	6.9	6.4	8.9	7.1	6.4	8.0	7.8	12.8	9.4	12.2	13.3
18.0	1.5	2.8	6.8	6.4	4.8	7.4	6.7	5.8	7.4	12.0	7.9	8.4	8.2	10.1	7.4	11.6	10.9
19.0	1.8	4.2	7.0	6.6	5.9	7.3	5.6	6.6	8.8	7.0	7.5	7.7	9.8	4.6	6.4	8.4	14.3
20.0	1.5	3.7	9.0	7.5	9.1	7.1	9.3	6.7	7.3	8.3	6.4	8.3	9.2	7.5	11.4	8.2	7.6
21.0	2.4	4.1	7.9	4.2	5.8	6.8	9.9	6.6	6.5	8.3	9.1	10.3	9.0	7.9	8.6	9.8	7.1
22.0	2.5	3.7	7.4	6.7	5.5	7.5	6.3	7.4	6.4	7.9	8.2	6.1	5.8	8.7	8.0	7.3	12.9
23.0	1.9	4.5	6.8	5.8	5.2	6.2	6.1	5.1	7.6	10.8	13.5	7.3	10.1	10.4	9.3	10.8	14.0
24.0	2.2	3.4	5.5	8.2	6.2	6.3	6.5	6.7	9.3	7.6	11.7	8.8	7.1	10.2	8.9	10.7	10.6
25.0	2.9	5.2	5.4	7.3	4.7	8.0	6.7	8.1	8.5	9.1	6.6	9.9	6.7	10.3	10.5	8.5	12.0
26.0	2.5	5.6	6.7	6.4	5.8	9.4	5.8	8.2	10.2	5.3	6.7	11.1	6.2	8.9	7.9	10.1	12.0
27.0	2.7	3.9	3.7	4.9	8.8	8.4	8.0	7.2	9.7	9.9	8.0	7.7	6.0	8.4	9.5	9.3	15.0
28.0	3.0	3.7	7.0	7.6	7.5	6.8	7.2	6.4	6.9	6.4	11.2	8.5	9.4	7.4	8.1	9.5	7.9
29.0	2.9	4.1	8.7	6.0	7.0	8.4	7.8	7.1	5.8	7.1	9.3	11.2	9.5	8.4	6.6	8.1	10.0
30.0	4.3	4.6	4.3	8.2	5.6	5.6	5.7	5.1	10.5	6.7	7.4	8.9	9.2	6.7	6.6	9.2	9.3
平均	2.2	4.4	6.0	6.0	6.1	6.6	6.5	6.3	7.6	7.4	7.8	8.2	8.4	8.6	8.6	10.3	11.0
標準偏差	0.6	1.0	1.5	1.3	1.2	1.4	1.4	1.3	1.7	1.8	2.0	1.8	1.4	1.8	1.6	1.8	2.1
変動係数	29.1	23.6	25.4	21.1	19.6	20.7	20.8	21.2	22.8	23.7	26.0	22.5	17.1	21.0	18.1	17.2	19.5

付録 63 浸漬 48 週後ビッカース硬度データ(W/C:70%)

W/C = 85%									測定	深さ(mm)								
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	3.1	3.6	4.1	4.6	4.9
1.0	1.7	3.4	3.2	4.7	2.9	4.4	4.6	3.8	3.9	4.8	4.9	4.2	6.2	5.7	5.8	4.6	5.3	5.0	6.1
2.0	1.7	2.2	2.7	3.7	4.0	2.7	2.9	5.3	4.2	4.2	5.7	4.7	5.8	3.9	4.7	5.8	7.1	5.4	6.2
3.0	2.7	2.4	3.1	3.6	3.9	4.6	3.6	4.0	6.0	4.1	5.6	5.6	5.5	4.6	7.2	5.7	6.3	5.6	5.3
4.0	1.9	2.1	4.6	3.7	4.2	4.5	4.4	4.6	6.3	5.3	4.4	6.1	6.4	4.6	6.3	5.1	6.7	6.7	7.5
5.0	2.9	2.2	3.4	3.4	3.1	4.1	3.6	4.3	5.3	5.0	6.0	6.5	5.5	4.2	6.0	5.9	6.0	5.9	7.3
6.0	1.9	2.6	2.6	3.5	5.7	4.0	4.1	4.7	5.3	4.3	5.6	5.7	4.9	4.5	5.0	5.7	5.9	4.4	5.4
7.0	2.2	3.6	3.8	3.6	3.9	3.4	5.1	4.3	5.9	5.7	6.4	6.1	5.7	4.5	5.2	6.3	6.0	4.7	5.4
8.0	1.8	3.3	4.9	2.9	2.9	3.2	4.3	3.1	4.2	7.0	4.4	6.0	3.9	5.6	6.2	5.9	7.2	6.2	5.7
9.0	1.8	3.5	2.5	4.7	4.1	3.5	2.9	4.7	3.6	4.6	5.3	6.5	5.0	5.7	5.9	4.1	6.7	6.4	5.9
10.0	2.2	3.4	4.2	3.6	3.7	3.2	5.2	5.1	4.9	4.7	5.8	5.9	4.8	6.2	6.3	5.4	6.3	4.5	6.8
11.0	2.3	3.7	3.1	2.9	2.6	3.0	4.8	4.8	4.5	4.8	6.2	6.3	4.4	5.3	6.0	6.6	6.1	5.3	6.7
12.0	2.3	3.1	2.4	2.8	2.8	1.7	4.2	3.6	4.9	4.6	6.8	5.5	5.0	6.3	6.8	4.2	5.3	6.2	6.8
13.0	2.7	2.7	1.4	4.4	4.5	2.7	3.7	6.0	4.2	5.7	6.8	5.5	5.3	6.8	4.7	6.2	5.9	5.1	4.6
14.0	1.9	3.2	2.8	4.2	3.0	5.1	4.7	4.7	4.3	4.7	6.9	5.6	5.8	5.9	5.6	6.5	5.4	5.3	6.0
15.0	1.8	2.5	4.3	3.3	3.5	4.3	2.8	4.4	5.4	6.2	4.7	4.6	5.3	6.2	5.7	6.8	6.0	7.0	5.0
16.0	2.5	2.5	2.6	3.2	4.5	4.1	3.7	3.8	4.9	4.3	3.9	5.0	5.1	5.6	4.0	4.3	7.2	6.6	8.7
17.0	3.6	3.1	3.2	3.4	3.8	4.8	4.7	4.6	4.1	4.1	5.9	4.6	5.8	4.6	6.3	5.8	7.1	5.2	5.6
18.0	1.8	3.5	3.2	4.2	4.8	4.1	5.3	4.6	4.5	5.7	5.7	4.1	4.9	5.5	7.2	6.4	8.7	7.0	6.3
19.0	1.5	3.2	3.5	3.9	4.8	3.8	4.2	4.0	4.3	3.9	5.7	3.6	4.5	6.0	5.7	6.0	6.1	5.8	6.7
20.0	2.2	3.7	2.7	4.7	3.5	5.4	4.5	5.3	4.3	5.6	4.9	6.0	4.3	5.6	5.4	4.9	5.6	6.6	6.5
21.0	2.0	3.7	2.9	4.1	3.6	4.7	4.2	4.2	3.9	4.8	4.3	5.8	3.9	5.5	5.6	6.6	6.1	7.0	6.4
22.0	<(欠損	3.8	3.7	3.8	3.5	3.7	4.8	4.7	5.8	6.0	4.5	6.0	4.0	4.9	5.1	5.3	6.8	4.8	6.9
23.0	1.8	3.7	3.0	4.0	4.7	4.2	3.8	5.3	3.4	5.2	4.9	4.7	4.1	4.3	5.9	6.1	7.0	4.9	7.0
24.0	1.7	3.4	3.5	3.5	3.2	4.3	5.1	4.8	5.5	4.9	4.7	5.5	4.6	5.1	5.9	5.7	6.5	5.2	5.4
25.0	1.6	3.7	4.1	3.2	2.8	4.6	5.2	4.4	4.4	6.1	4.2	4.8	5.0	5.2	5.0	5.5	3.8	6.6	7.2
26.0	2.2	3.0	4.0	4.5	5.3	4.2	3.2	4.0	4.6	4.2	4.1	6.6	5.4	4.9	5.3	5.2	5.8	6.1	6.0
27.0	2.4	3.2	3.8	2.5	3.6	4.3	3.7	4.3	5.4	6.5	5.6	6.5	5.0	4.6	5.6	5.9	6.4	5.2	6.5
28.0	2.3	3.1	3.8	3.3	4.6	4.4	3.5	4.6	6.0	6.7	3.9	4.4	5.2	5.8	5.4	5.9	5.4	5.8	6.2
29.0	2.1	2.8	3.7	4.5	3.1	2.6	4.4	3.6	4.6	5.1	4.9	5.2	5.2	6.0	6.6	5.7	6.1	5.1	7.0
30.0	2.1	2.9	3.6	3.4	3.2	3.9	4.1	3.9	4.4	5.9	5.1	5.2	6.2	5.6	5.5	6.9	5.1	5.8	4.6
平均	2.1	3.1	3.3	3.7	3.8	3.9	4.2	4.4	4.7	5.1	5.3	5.4	5.1	5.3	5.7	5.7	6.2	5.7	6.3
標準偏差	0.5	0.5	0.7	0.6	0.8	0.8	0.7	0.6	0.8	0.8	0.9	0.8	0.7	0.7	0.7	0.7	0.9	0.8	0.9
変動係数	21.2	16.5	22.2	16.1	21.1	21.2	17.2	13.7	16.0	16.2	16.7	14.8	13.3	13.5	12.6	13.1	14.2	13.5	14.3

付録 64 浸漬 48 週後ビッカース硬度データ(W/C:85%)

付録 65 浸漬 48 週後ビッカース硬度データ(W/C:105%)

W/C=105%									測定	深さ(r	nm)														
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	4.9
1.0	0.9	1.5	1.4	1.5	2.6	1.7	1.8	2.3	1.6	2.4	2.2	1.8	2.3	2.7	1.4	1.9	3.3	2.5	2.5	1.9	2.3	2.4	2.7	2.9	2.7
2.0	1.8	1.9	1.6	1.8	2.2	2.1	1.5	1.9	1.8	1.9	2.0	2.2	2.2	2.0	2.1	2.6	3.5	2.7	2.2	2.1	2.1	2.6	3.6	2.3	2.5
3.0	1.2	検出限界以下	1.5	2.5	2.1	1.9	2.2	2.0	2.6	2.2	1.9	2.0	2.3	3.2	22	2.6	3.9	2.3	2.4	2.3	2.4	2.4	2.6	2.8	2.4
4.0	12	1.8	1.9	1.6	2.0	1.9	1.9	1.7	2.1	1.7	2.0	2.0	2.4	3.0	2.4	2.9	2.8	3.0	2.2	2.5	2.5	3.2	2.5	3.2	2.4
5.0	検出限界以下	1.2	1.6	2.0	2.3	2.2	1.1	1.9	2.2	1.2	1.6	2.1	2.1	2.2	2.1	2.8	3.5	2.4	2.3	3.1	2.7	2.3	1.9	3.4	2.7
6.0	1.3	1.4	1.6	1.5	1.9	2.2	1.2	2.0	2.2	1.5	1.7	1.8	2.5	2.4	3.1	2.5	2.5	3.3	2.4	3.5	1.6	2.3	2.3	2.9	2.2
7.0	1.2	1.9	検出限界以下	1.7	1.1	2.0	1.5	1.7	2.1	2.0	2.0	1.7	2.2	2.7	3.5	2.7	2.5	2.7	3.4	2.6	2.2	2.8	2.3	2.7	3.1
8.0	1.2	検出限界以下	検出限界以下	1.7	1.2	2.5	1.5	2.6	1.7	1.7	2.2	2.1	2.3	2.9	3.0	2.5	1.6	3.2	2.6	3.0	2.2	3.2	2.4	2.9	1.9
9.0	検出限界以下	1.3	1.4	1.8	1.4	1.6	2.0	1.8	2.1	2.1	1.7	1.9	2.0	1.6	2.8	2.9	2.6	2.6	2.6	2.7	2.2	2.6	2.6	2.8	2.8
10.0	1.3	1.5	1.6	2.1	1.6	2.3	1.9	1.7	2.0	2.1	2.2	2.0	2.5	2.5	2.5	2.9	22	2.5	2.5	2.9	2.5	3.0	3.3	3.5	2.7
11.0	検出限界以下	1.8	1.6	1.7	2.1	1.8	1.8	1.7	2.1	2.0	1.5	2.3	2.5	2.5	2.5	2.7	2.8	2.0	2.8	2.5	2.1	2.4	2.8	2.3	2.3
12.0	1.1	1.6	1.3	1.2	1.5	1.3	2.0	1.8	1.8	2.0	2.1	2.9	2.6	2.2	22	3.3	2.7	2.5	3.2	2.2	2.3	2.6	2.3	3.0	2.4
13.0	1.3	1.6	1.7	1.8	2.1	1.6	2.7	1.9	1.9	2.0	1.8	2.3	2.3	2.0	2.0	3.1	2.0	2.7	2.0	2.7	2.3	2.5	2.2	2.6	2.6
14.0	1.2	1.7	1.6	2.1	2.0	2.0	3.4	2.0	2.3	2.5	2.2	2.2	2.7	2.1	2.1	2.5	2.3	2.2	2.2	2.3	2.7	2.6	2.7	2.6	3.0
15.0	1.1	1.4	1.7	1.8	1.8	1.6	3.5	2.3	1.5	2.3	2.3	2.4	3.0	2.7	2.7	3.4	23	2.9	2.7	2.3	3.4	3.3	2.7	2.8	2.2
16.0	1.2	1.6	1.7	2.3	1.6	2.0	1.9	2.2	2.2	2.7	2.4	3.3	1.7	2.2	2.2	3.0	2.8	2.7	2.0	2.4	2.7	2.2	2.7	3.2	3.2
17.0	検出限界以下	1.6	1.8	1.6	1.5	2.7	2.6	1.9	2.0	2.0	2.1	2.5	2.2	2.6	2.6	2.9	2.6	2.0	2.1	3.7	3.3	1.9	2.1	2.8	2.2
18.0	検出限界以下	1.6	1.5	1.8	2.0	2.0	3.1	1.8	2.2	2.3	2.0	2.0	2.6	2.5	2.5	2.7	23	2.4	2.0	2.2	2.4	22	2.8	3.2	2.6
19.0	検出限界以下	1.5	1.8	1.6	1.8	2.1	2.3	1.6	1.9	2.6	1.9	2.7	2.1	2.7	2.7	2.3	2.1	2.7	2.2	2.8	2.4	2.5	1.9	2.6	2.3
20.0	検出限界以下	1.7	2.3	1.7	1.4	2.3	2.6	1.6	2.4	1.8	2.0	4.2	1.7	2.4	2.4	2.3	2.4	2.4	2.3	3.4	2.1	2.4	2.5	2.8	2.7
21.0	1.3	1.7	2.0	1.5	1.6	2.4	2.3	1.9	2.6	2.5	2.3	2.6	1.9	3.0	3.0	2.4	2.6	2.1	2.6	2.2	1.7	1.9	3.3	1.8	3.0
22.0	1.2	2.0	1.9	1.7	1.8	1.8	2.7	2.7	2.0	2.0	1.8	2.3	2.3	3.0	3.0	22	2.0	2.2	3.0	1.8	2.9	2.4	2.6	2.6	2.2
23.0	1.3	1.9	1.7	2.0	2.2	2.1	2.9	1.8	2.4	2.1	1.9	2.1	2.4	2.5	2.5	2.8	2.1	2.8	2.2	1.8	2.1	3.1	3.0	2.9	2.0
24.0	検出限界以下	2.1	1.7	1.6	1.6	2.2	2.9	1.8	2.3	2.0	1.3	2.5	1.7	2.7	2.7	2.2	2.6	2.5	2.4	2.5	2.3	3.7	1.0	2.5	2.1
25.0	検出限界以下	1.4	1.5	2.4	1.9	3.3	23	2.1	2.3	2.2	1.6	2.0	1.9	2.7	2.7	3.3	2.6	2.3	2.8	2.8	2.1	2.8	2.6	2.8	2.8
26.0	1.3	1.7	検出限界以下	2.0	1.8	2.6	1.6	1.7	2.4	2.9	2.2	2.3	2.0	3.3	3.3	1.9	2.4	1.7	2.5	2.5	2.4	2.5	4.7	3.0	2.5
27.0	1.4	1.3	1.3	検出限界以下	1.5	1.3	1.5	1.9	2.2	2.1	1.8	2.5	2.5	3.0	3.0	1.4	2.5	1.9	2.5	3.0	3.2	3.0	4.0	2.8	2.2
28.0	1.4	1.4	1.7	1.6	検出限界以下	1.7	1.8	1.9	2.2	2.2	2.5	2.0	2.5	3.6	3.6	1.9	2.5	2.1	2.9	1.6	2.1	2.7	3.2	2.5	2.3
29.0	1.4	検出限界以下	検出限界以下	1.5	1.8	1.7	2.4	2.1	2.0	2.2	2.1	2.5	1.6	2.8	2.8	2.1	22	3.1	1.6	1.8	2.5	2.6	3.0	2.6	3.0
平均	1.2	1.6	1.6	1.8	1.8	2.0	2.1	1.9	2.1	2.1	2.0	2.3	2.3	2.6	2.6	2.6	2.6	2.5	2.5	2.6	2.5	2.7	2.8	2.8	2.6
標準偏差	0.3	0.3	0.3	0.3	0.4	0.4	0.6	0.3	0.3	0.3	0.3	0.5	0.3	0.4	0.5	0.5	0.5	0.4	0.4	0.6	0.5	0.5	0.7	0.5	0.5
変動級	25.1	21.5	19.5	19.8	21.0	22.1	29.4	14.6	13.1	16.5	13.5	21.7	14.8	16.7	18.4	18.5	19.5	16.6	17.8	22.6	20.8	19.0	27.1	17.5	21.2

W/C = 40%										則定深	さ(mm)								
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	2.9	3.1	3.3	3.8	4.3	4.8
1.0	6.4	5.2	6.6	7.8	10.0	4.6	5.1	7.0	8.1	5.4	9.1	11.1	22.0	28.9	9.7	20.5	17.8	13.0	28.1	33.7
2.0	10.8	10.4	9.1	8.0	9.8	5.3	4.8	6.7	15.3	9.7	12.5	23.5	13.1	6.6	12.4	15.1	15.5	12.9	18.2	32.1
3.0	10.6	9.2	10.9	13.4	8.2	3.9	9.2	4.4	10.8	12.4	10.0	20.8	10.6	10.5	15.7	18.1	21.8	18.7	15.8	21.2
4.0	7.7	10.4	11.2	8.9	6.4	9.8	11.7	7.6	8.3	12.5	29.5	14.0	18.4	17.4	16.7	19.9	21.8	15.4	17.3	21.3
5.0	7.6	8.8	11.5	9.0	14.8	5.7	6.2	6.2	9.4	9.3	14.1	7.7	19.4	11.9	11.8	25.8	19.9	16.1	21.9	19.9
6.0	7.2	6.7	9.0	7.6	10.4	10.2	6.3	5.1	10.8	11.1	18.8	22.0	13.9	19.3	14.1	29.3	23.3	22.1	15.3	37.8
7.0	9.0	8.2	11.1	5.5	12.9	15.5	6.7	5.0	15.4	16.0	24.4	34.0	14.4	12.2	21.1	16.3	22.4	24.2	26.8	39.0
8.0	10.5	6.8	10.2	5.2	7.6	5.8	8.8	6.2	9.0	19.4	12.5	27.4	12.5	14.8	21.5	15.7	25.2	12.5	26.1	26.9
9.0	6.1	8.8	15.7	10.0	7.4	6.7	12.3	5.7	16.5	16.9	8.8	14.7	24.3	17.8	17.9	13.9	21.8	15.6	20.5	27.4
10.0	9.5	9.9	5.7	9.6	6.7	5.0	9.9	8.0	13.0	12.9	15.6	26.6	8.5	18.8	16.3	26.1	9.5	13.8	27.6	22.1
11.0	6.3	12.0	7.1	17.6	7.7	6.4	4.7	4.4	8.4	17.2	10.9	13.3	23.7	15.5	22.7	12.6	15.9	25.9	23.1	29.3
12.0	7.1	8.8	11.9	7.2	11.5	4.9	5.2	6.9	16.2	18.5	5.6	18.6	8.6	14.7	20.2	15.2	18.9	7.6	25.6	27.4
13.0	5.3	8.8	17.0	8.4	5.8	6.5	12.0	6.5	12.8	12.7	6.6	11.5	26.2	14.9	12.3	30.0	17.4	22.6	33.7	27.0
14.0	4.8	8.2	14.9	8.4	12.9	5.4	6.3	7.7	6.4	24.7	8.5	9.5	10.5	15.2	13.6	11.6	31.9	20.5	21.1	30.2
15.0	5.7	7.9	12.7	5.2	17.1	5.5	9.4	6.2	9.2	16.7	7.8	21.1	12.6	24.6	13.9	19.6	13.6	25.0	19.9	28.1
16.0	5.4	4.0	4.4	8.2	4.9	3.7	6.1	6.7	8.3	6.2	13.6	10.8	13.1	20.3	18.8	27.0	25.0	19.6	36.9	26.2
17.0	4.8	5.3	4.1	5.3	5.4	12.1	7.9	4.0	8.2	7.0	17.1	14.7	8.8	12.4	20.1	22.0	23.5	19.6	27.7	25.6
18.0	5.0	10.1	8.3	6.8	5.3	7.4	5.9	4.0	11.2	12.0	7.4	22.7	17.0	17.3	10.6	34.0	20.6	17.6	36.3	27.1
19.0	9.7	7.3	5.1	7.6	4.0	6.2	6.3	7.5	7.7	6.0	10.0	23.2	14.1	16.7	12.0	20.7	24.3	26.0	23.1	36.1
20.0	5.4	6.5	13.4	3.5	6.8	6.8	7.4	8.7	13.0	8.0	7.5	22.2	12.8	18.4	19.4	20.2	25.8	20.5	28.6	35.5
21.0	8.7	10.1	11.4	5.3	5.6	7.0	7.2	9.7	8.8	10.1	9.3	20.2	9.7	22.7	15.5	20.5	23.9	24.1	35.9	34.5
22.0	7.0	11.4	9.7	6.1	5.6	7.0	7.9	8.7	6.7	9.8	11.1	26.0	17.1	23.0	17.8	23.6	23.9	26.1	41.0	32.1
23.0	8.0	9.8	13.8	8.3	5.2	5.8	12.1	19.1	11.3	6.2	13.9	25.3	10.3	23.2	15.2	17.2	25.2	22.2	35.3	22.2
24.0	4.6	9.2	11.5	7.1	6.5	8.8	8.3	10.8	12.4	8.3	10.7	15.0	20.2	24.7	15.7	19.7	20.9	22.9	35.0	46.1
25.0	7.4	11.0	11.3	13.9	6.1	3.5	5.5	10.5	11.2	15.9	6.7	15.8	18.3	14.4	14.6	19.3	19.2	14.5	33.6	28.0
26.0	6.6	13.2	14.9	10.0	5.7	4.2	6.0	6.7	11.0	16.2	9.4	14.1	20.3	14.4	12.0	26.0	23.3	24.3	28.9	24.9
27.0	6.6	11.2	11.9	7.5	4.7	8.2	6.6	9.4	10.1	10.5	11.9	9.1	11.3	15.1	11.7	18.0	15.5	18.2	41.4	24.9
28.0	5.4	11.6	3.7	7.1	6.6	7.5	4.5	7.7	9.8	9.3	13.6	19.0	19.0	17.9	18.1	25.0	16.7	23.9	25.9	22.2
29.0	7.0	11.1	8.7	10.1	6.1	7.6	6.1	7.0	10.0	13.8	19.6	21.9	17.7	19.3	14.1	22.7	19.6	21.7	37.0	19.9
30.0	2.8	8.6	9.9	9.6	5.4	7.5	9.3	5.7	13.0	9.9	15.4	16.7	153.0	13.4	11.5	22.1	20.3	23.2	37.9	26.9
平均	7.0	9.0	10.2	8.3	7.8	6.8	7.5	7.3	10.7	12.2	12.4	18.4	20.0	17.2	15.6	20.9	20.8	19.7	28.2	28.5
標準偏差	2.0	2.2	3.5	2.9	3.2	2.6	2.3	2.9	2.7	4.6	5.4	6.4	25.6	4.8	3.6	5.3	4.4	4.8	7.6	6.2
変動係数	28.4	23.9	34.2	34.8	41.8	37.5	30.9	39.0	25.5	38.1	43.4	34.5	127.7	27.8	22.8	25.5	21.2	24.6	27.1	21.9

付録 66 浸漬 64 週後ビッカース硬度データ(W/C:40%)

W/C = 70%									浿]定深	さ(mn	n)								
n数	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.8	2.3	2.7	2.9	3.1	3.3	3.5	3.8	4.1	4.3	4.6	4.9
1.0	2.3	3.2	5.5	4.7	5.9	6.7	4.9	3.9	3.1	5.3	11.8	7.3	5.9	14.5	15.1	9.8	12.8	15.3	13.8	9.1
2.0	1.5	2.9	5.0	4.7	4.6	5.1	4.8	6.7	3.1	5.4	10.4	5.8	5.6	14.3	14.2	13.1	16.9	9.6	16.7	12.6
3.0	1.4	2.5	4.3	5.3	3.9	5.7	3.9	5.8	6.9	5.6	4.8	4.9	8.9	17.8	16.3	9.7	15.1	13.8	13.4	14.5
4.0	1.7	2.6	4.8	8.1	3.8	3.9	4.2	5.2	8.4	6.6	5.1	5.9	10.0	18.8	10.2	11.5	13.9	10.3	15.3	12.3
5.0	2.3	2.3	3.8	9.0	5.3	5.6	4.1	5.8	4.7	5.6	6.7	5.3	7.3	15.3	21.0	12.0	8.2	9.7	12.8	20.0
6.0	1.7	2.7	3.9	3.8	5.0	4.1	4.5	7.3	5.6	7.4	7.2	4.6	7.0	15.8	18.1	17.5	18.0	20.7	13.6	11.0
7.0	1.8	2.8	5.0	7.5	4.0	6.0	5.0	5.0	7.9	5.6	10.2	8.5	6.4	12.4	17.9	15.3	5.0	7.7	15.0	20.0
8.0	2.1	5.5	7.2	6.6	4.0	7.2	5.1	7.3	6.3	6.1	8.2	5.5	12.0	9.4	11.0	13.2	8.7	8.0	9.8	11.8
9.0	1.9	2.8	5.5	5.9	8.8	4.4	4.1	5.0	6.1	4.7	7.0	5.6	8.4	10.2	12.3	14.6	9.1	8.7	10.8	15.7
10.0	2.2	2.7	4.9	6.5	6.8	4.9	4.3	7.7	7.1	7.0	6.6	6.0	7.8	18.1	12.8	13.6	8.8	7.5	10.7	12.9
11.0	1.9	2.4	6.1	7.0	8.4	5.2	8.0	3.6	5.3	6.7	7.9	7.2	10.0	16.9	15.1	8.3	13.3	10.5	8.7	13.5
12.0	2.2	2.7	8.0	8.1	6.7	5.1	7.5	4.5	5.5	5.2	8.0	9.2	10.2	17.8	14.5	9.6	10.8	10.7	12.2	12.8
13.0	2.1	4.2	4.4	6.1	4.4	5.0	4.5	2.5	4.3	5.3	6.2	8.0	8.0	15.1	14.0	8.6	13.9	11.8	10.6	16.8
14.0	2.1	3.4	3.2	6.4	4.4	5.2	5.1	7.3	5.6	5.6	7.7	6.3	6.6	13.2	11.2	15.6	10.9	14.3	12.6	8.1
15.0	1.8	1.5	2.5	8.9	8.5	5.1	4.1	5.2	4.4	5.4	6.9	6.1	9.9	10.0	11.1	10.9	10.0	8.6	11.2	8.7
16.0	1.9	2.0	4.3	5.6	8.2	5.0	4.4	3.9	4.0	5.3	7.4	12.6	14.5	11.4	10.1	8.1	9.0	11.6	12.8	12.4
17.0	3.9	1.9	4.6	4.6	11.2	6.2	6.8	2.6	6.2	8.9	7.5	8.8	10.9	16.9	9.3	14.5	12.1	12.8	12.6	16.5
18.0	1.6	2.4	4.3	2.7	5.1	6.4	6.5	5.4	6.5	6.6	5.3	13.0	12.9	18.7	11.1	13.5	10.3	13.0	9.9	18.3
19.0	1.9	4.5	5.9	5.4	5.9	5.2	5.4	4.2	5.9	4.9	5.1	7.6	7.7	13.6	13.7	10.9	12.0	9.2	8.8	15.1
20.0	3.4	5.2	5.5	4.2	4.6	5.5	5.5	6.1	5.1	3.4	6.0	16.7	10.7	11.0	14.1	13.7	12.8	8.0	10.4	14.6
21.0	2.5	4.3	4.4	3.6	4.4	4.6	6.2	4.1	5.1	7.3	7.5	11.6	11.8	9.9	10.2	12.9	10.7	9.9	15.3	17.9
22.0	3.1	4.0	3.5	4.4	5.3	6.2	6.2	4.4	5.8	5.3	6.2	9.1	8.0	12.5	14.6	14.4	8.8	11.2	15.0	10.9
23.0	3.0	4.7	3.7	3.6	6.1	6.4	4.9	4.5	4.3	3.9	4.9	11.0	12.8	14.5	13.7	11.8	13.3	14.0	13.5	12.4
24.0	2.7	4.7	2.8	5.1	8.2	4.9	5.1	5.1	5.3	7.6	7.4	9.1	9.6	13.2	11.8	12.5	11.8	13.2	14.0	15.8
25.0	2.6	4.4	3.2	4.4	7.1	5.3	4.9	7.0	5.4	7.4	4.9	9.3	13.4	11.3	10.8	17.4	15.9	11.6	19.4	13.5
26.0	2.5	4.8	4.0	6.6	6.8	5.2	4.5	6.5	6.6	6.7	5.4	13.5	10.6	13.1	8.1	15.5	13.3	15.5	13.3	15.3
27.0	2.1	3.9	3.8	4.1	5.6	5.3	5.6	5.8	5.5	4.9	4.7	10.4	10.3	12.9	12.2	13.3	13.4	11.1	10.5	16.9
28.0	1.8	3.6	3.7	5.3	7.5	5.9	5.6	6.9	6.2	6.1	5.2	8.1	9.1	12.0	10.0	11.2	14.0	20.5	10.9	17.9
29.0	1.6	3.2	3.6	5.5	5.1	5.2	8.4	6.5	4.2	4.8	4.5	10.8	7.8	12.4	15.3	16.6	15.6	16.2	9.7	15.4
30.0	2.3	4.0	5.9	4.9	6.4	5.1	6.6	5.7	5.3	5.8	6.7	16.3	9.5	11.8	16.5	15.9	18.6	19.1	9.5	10.1
平均	2.2	3.4	4.6	5.6	6.1	5.4	5.4	5.4	5.5	5.9	6.8	8.8	9.5	13.8	13.2	12.8	12.2	12.1	12.4	14.1
標準偏差	0.6	1.1	1.2	1.6	1.8	0.7	1.2	1.4	1.2	1.2	1.8	3.2	2.3	2.8	2.9	2.6	3.1	3.6	2.5	3.2
変動係数	26.4	31.2	27.1	28.8	29.8	13.6	22.3	25.8	22.1	19.9	26.3	36.9	24.3	20.1	22.3	20.5	25.5	29.8	20.1	22.6

付録 67 浸漬 64 週後ビッカース硬度データ(W/C:70%)

W/C = 85%								測定	深さ(mm)							
n数	0.1	0.3	0.5	0.7	0.9	1.3	1.8	2.3	2.8	3.2	3.4	3.6	3.9	4.2	4.4	4.7	4.9
1.0	1.5	1.4	3.1	3.0	1.9	3.6	1.9	1.2	4.0	3.9	6.0	4.5	5.0	2.2	3.9	5.1	8.4
2.0	2.0	3.6	1.5	2.6	2.1	1.6	2.4	1.9	3.4	5.0	3.0	3.7	4.6	4.1	3.0	6.3	6.9
3.0	2.0	2.6	1.4	3.1	3.2	2.0	2.0	1.8	2.1	3.4	4.6	3.5	5.9	4.5	3.7	4.8	4.8
4.0	1.8	2.2	1.6	1.2	3.9	1.8	2.9	1.6	2.7	3.8	7.1	3.7	4.2	3.0	3.8	4.0	4.2
5.0	2.7	3.0	1.5	1.7	3.8	1.4	3.6	2.5	2.0	5.6	5.3	3.6	3.0	2.3	3.0	2.7	3.3
6.0	2.5	3.3	1.4	1.9	3.2	1.1	2.9	1.6	1.8	3.7	5.3	3.2	2.2	4.1	3.4	5.1	3.7
7.0	2.4	2.8	2.6	1.6	3.7	1.6	2.8	2.4	1.8	2.5	3.4	3.1	3.4	2.9	3.0	5.0	4.2
8.0	2.3	2.5	2.4	2.2	2.9	2.3	3.5	2.0	1.4	3.3	3.2	3.5	4.0	2.4	3.1	6.4	5.0
9.0	1.4	1.7	2.4	1.8	2.3	2.0	4.0	2.3	1.1	4.1	4.7	5.3	4.9	3.1	3.7	5.9	5.0
10.0	1.9	1.6	2.4	2.9	2.4	2.1	2.5	2.0	1.8	2.9	6.3	3.5	1.9	2.2	3.6	5.2	5.2
11.0	2.1	2.4	2.3	2.9	3.1	2.7	1.9	2.7	1.6	3.4	6.2	3.5	3.7	2.4	3.3	7.3	7.0
12.0	3.1	2.3	2.5	2.1	3.1	3.2	2.4	2.2	1.5	4.0	4.2	4.6	3.2	2.4	3.8	6.7	4.8
13.0	2.5	2.0	2.0	2.3	2.2	2.6	1.6	1.4	3.1	2.6	3.0	4.1	6.1	2.4	3.8	5.7	4.4
14.0	1.9	1.8	2.5	2.2	1.3	2.4	1.6	1.8	2.1	4.0	1.2	5.5	4.1	3.3	2.9	4.9	5.2
15.0	2.1	1.9	2.1	2.6	2.0	2.1	2.3	2.2	1.7	6.2	2.2	3.9	4.5	4.5	4.2	6.5	8.7
16.0	1.0	2.2	1.7	2.6	2.5	2.6	2.4	1.7	2.1	2.4	3.1	3.8	6.1	2.6	3.9	6.0	9.9
17.0	2.0	1.8	3.5	2.1	2.4	2.1	2.4	1.3	2.3	2.5	5.3	4.1	3.2	3.4	3.4	3.9	8.6
18.0	1.8	2.1	2.4	2.2	2.1	1.6	2.0	3.1	2.5	3.5	3.8	3.3	3.0	5.9	3.0	3.6	7.4
19.0	1.6	1.7	3.3	3.8	2.1	3.1	3.7	1.9	2.3	2.2	4.0	4.6	3.3	4.9	3.0	2.6	6.0
20.0	1.3	2.1	3.8	3.2	2.9	2.2	3.3	1.5	2.1	2.3	2.9	5.3	3.9	2.1	2.6	4.4	4.9
21.0	1.5	2.7	2.1	2.1	1.8	2.4	4.4	1.3	2.6	2.5	2.8	4.7	3.6	5.9	3.1	4.5	4.9
22.0	2.0	3.9	2.5	2.1	2.7	1.9	3.6	2.4	2.8	2.6	2.4	5.3	4.5	3.6	2.6	3.9	4.0
23.0	1.9	1.7	3.0	2.1	2.2	2.5	2.3	2.0	2.2	2.4	2.9	4.0	3.5	4.1	3.2	2.9	6.1
24.0	1.7	1.7	2.0	2.9	2.6	2.5	2.1	2.2	1.9	4.1	4.0	2.6	3.9	3.1	2.1	4.3	6.5
25.0	1.6	1.7	2.0	2.6	2.0	2.8	3.3	1.9	1.9	3.4	4.4	3.0	4.3	3.6	2.1	4.4	5.3
26.0	1.6	1.3	2.5	1.9	2.4	3.7	1.8	2.1	2.1	3.5	4.8	4.2	3.0	4.1	3.1	4.2	4.7
27.0	1.4	1.5	2.0	2.0	2.1	2.6	1.8	2.0	3.5	4.1	3.9	5.5	3.7	3.9	3.2	4.6	6.4
28.0	1.9	2.3	1.9	2.3	1.6	2.6	1.4	2.3	2.4	4.6	5.4	3.9	6.1	4.3	3.3	3.6	6.3
29.0	1.7	2.3	3.8	1.8	1.8	2.6	1.4	2.0	2.1	5.7	4.2	1.9	4.4	2.9	5.3	5.8	7.5
30.0	2.3	1.5	3.0	2.4	2.3	2.1	1.5	1.9	2.4	3.9	4.7	2.9	5.4	3.6	4.2	3.3	7.5
平均	1.9	2.2	2.4	2.3	2.5	2.3	2.5	2.0	2.2	3.6	4.1	3.9	4.1	3.5	3.3	4.8	5.9
標準偏差	0.5	0.6	0.7	0.5	0.7	0.6	0.8	0.4	0.6	1.1	1.4	0.9	1.1	1.0	0.6	1.2	1.7
変動係数	23.6	29.4	28.4	23.3	26.2	25.8	33.1	22.3	28.4	29.3	33.0	22.5	27.0	29.9	19.1	25.6	28.2

付録 68 浸漬 64 週後ビッカース硬度データ(W/C:85%)

W/C = 105%	測定深さ(mm)												
	0.1	0.3	0.5	0.8	1.5	1.8	2.3	2.8	3.3	3.8	4.3	4.7	4.9
1.0	検出限界以下	0.9	0.9	0.8	1.2	1.2	0.9	1.1	0.9	0.8	1.1	0.9	0.9
2.0	検出限界以下	1.1	0.8	0.8	0.9	0.9	0.9	1.0	0.8	1.2	0.7	0.9	0.9
3.0	検出限界以下	1.1	1.0	1.0	1.1	0.9	1.0	1.1	1.0	1.0	0.8	0.9	0.8
4.0	検出限界以下	1.0	1.1	1.1	0.9	0.8	1.1	1.0	1.0	0.9	0.8	0.9	0.9
5.0	検出限界以下	0.9	1.1	0.9	0.9	1.0	0.8	0.9	1.0	0.9	0.8	0.9	0.8
6.0	検出限界以下	1.0	1.2	0.9	1.0	1.1	0.9	1.0	1.1	1.2	0.8	1.0	0.8
7.0	検出限界以下	1.2	0.9	1.2	0.8	0.9	1.0	0.9	1.0	1.0	0.9	0.9	0.9
8.0	検出限界以下	1.3	1.1	0.9	1.0	0.9	1.0	1.1	0.9	0.9	0.9	0.8	0.9
9.0	検出限界以下	1.1	1.0	1.1	0.9	1.1	0.8	1.0	1.0	0.9	0.9	0.9	0.9
10.0	検出限界以下	0.8	0.8	0.7	0.7	1.0	0.9	1.1	1.0	0.8	0.9	1.0	1.0
11.0	検出限界以下	1.1	0.9	0.7	1.0	1.0	0.9	1.1	0.9	0.9	0.9	1.0	0.9
12.0	検出限界以下	0.9	1.1	0.8	0.8	1.0	0.8	0.9	1.1	1.1	1.0	1.1	1.0
13.0	検出限界以下	1.0	0.8	0.8	0.7	0.8	0.9	0.8	0.9	0.9	0.9	1.1	1.0
14.0	検出限界以下	1.0	0.9	1.1	0.8	1.0	0.8	1.0	1.0	1.1	0.8	1.0	1.0
15.0	検出限界以下	1.2	0.8	0.9	0.8	0.9	0.9	0.9	0.8	0.9	1.0	0.8	0.9
16.0	検出限界以下	1.2	0.8	0.9	1.1	1.0	0.8	0.7	0.9	0.8	0.8	0.9	0.8
17.0	検出限界以下	1.1	0.7	1.0	0.9	0.9	0.9	0.7	0.9	1.0	0.7	0.8	0.8
18.0	検出限界以下	1.2	0.8	1.0	0.8	0.8	0.9	0.9	0.8	0.9	0.8	0.8	1.0
19.0	検出限界以下	1.1	0.8	0.9	0.9	1.1	0.9	0.9	0.9	1.2	0.9	0.9	1.0
20.0	検出限界以下	1.2	0.9	1.0	0.7	0.9	0.9	0.7	1.0	1.1	1.0	1.0	1.1
21.0	検出限界以下	1.6	1.0	0.9	1.1	1.0	0.9	0.7	0.8	1.0	1.0	0.9	1.0
22.0	検出限界以下	1.0	0.9	1.0	0.9	1.3	0.9	0.9	1.1	1.0	0.9	1.0	0.8
23.0	検出限界以下	0.8	0.8	0.8	1.0	1.0	0.9	0.9	1.0	1.0	1.0	0.8	0.8
24.0	検出限界以下	1.1	0.9	1.0	1.1	1.2	1.0	0.9	1.1	0.8	0.9	1.0	0.8
25.0	検出限界以下	0.9	1.0	1.0	1.0	1.0	1.3	1.0	0.9	0.8	1.0	0.9	0.9
26.0	検出限界以下	0.8	1.2	0.9	1.1	1.2	0.9	1.0	1.1	0.9	1.0	0.9	1.0
27.0	検出限界以下	0.9	1.0	0.9	0.8	0.9	0.9	0.9	1.1	0.9	1.1	0.8	0.9
28.0	検出限界以下	0.8	1.1	0.9	0.8	1.0	0.8	0.8	1.0	1.1	1.0	0.7	0.9
29.0	検出限界以下	0.8	1.2	1.2	0.9	0.9	0.8	0.8	0.9	1.1	1.0	1.1	1.0
30.0	検出限界以下	0.9	1.3	1.2	1.0	0.7	1.0	1.1	0.7	1.0	1.0	0.9	1.2
平均	検出限界以下	1.0	1.0	0.9	0.9	1.0	0.9	0.9	1.0	1.0	0.9	0.9	0.9
標準偏差	-	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
変動係数	-	17.6	16.2	13.7	14.4	13.4	12.0	13.6	11.2	12.4	10.9	10.7	11.6

付録 69 浸漬 64 週後ビッカース硬度データ(W/C:105%)