X線CTによる亀裂開口幅評価(Ⅱ)

(核燃料サイクル開発機構 契約業務報告書)

2004 年 1 月

大成建設株式会社

本資料の全部または一部を複写・複製・転載する場合は、下記にお問い合わせ下さい。

〒319-1184 茨城県那珂郡東海村村松4番地49
 核燃料サイクル開発機構
 技術展開部 技術協力課
 電話:029-282-1122(代表)
 ファックス:029-393-7980
 電子メール:jserv@jnc.go.jp

Inquiries about copyright and reproduction should be addressed to:

Technical Cooperation Section,

Technology Management Division,

Japan Nuclear Cycle Development Institute

4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan

©核燃料サイクル開発機構 (Japan Nuclear Cycle Development Institute) 2004

JNC TJ8400 2003-091 2004 年 1 月

X線CTによる亀裂開口幅評価(Ⅱ) (核燃料サイクル開発機構 契約業務報告書) 下茂道人*,文村 賢一*

尾原 祐三**, 佐藤 晃**, 菅原 勝彦**

要旨

高レベル放射性廃棄物の性能評価の信頼性を向上させるためには, 亀裂中の微細な構造や不均質性が地下水の流れや物質移行に及ぼす影響を理解する必要がある。そのためには, 亀裂中の開口幅分布を測定する技術を確立することが重要な課題となる。亀裂開口幅測定方法には, ①亀裂表面形状から推定する方法, ②亀裂を直接観察する方法, ③非破壊で推定する方法と, 様々な技術が存在するが, 平成 14 年度には, 非破壊で亀裂開口幅を推定することを目標として, X線 CT を使用した亀裂開口幅測定方法を選択し, その効率性・実用性の観点から検討した。結果として, X線 CT を使用した画像間差分法が亀裂開口幅の評価に有効であることがわかった。しかしながら, 定量化可能な開口幅値の誤差の定量的評価, 花崗岩などの実際の岩体における X線 CT を使用した画像間差分法による亀裂開口幅の評価などの課題も抽出された。

本役務契約では,透水・トレーサー試験が実施可能な 10cm 規模の実際の岩体を用いて,X線 CT による画像間差分法を用いた亀裂開口幅評価を実施した。

その結果,以下の知見を得た。①X線 CT 画像に必然的に含まれるノイズを除去し画像を鮮鋭化する方法として,スタッキング法の有効性を確認した②不均質性を除去し, 亀裂データのみを抽出する方法として画像間差分の有効性を確認した。③ノイズ軽減処 理ならびに画像間差分法により,画像データを用いて亀裂開口分布を正確に再現するこ とができた。④撮影条件およびノイズ処理の過程が同じであれば,補正係数は形状およ び寸法の違いにかかわらず一定値をとることが分かった。⑤表面が滑らかでない割裂亀 裂についても X線 CT データによる亀裂開口量が可能であることが明らかになった。

本報告書は、大成建設(株)が、核燃料サイクル開発機構との契約により実施した業務成 果に関するものである。

機構担当部課室:東海事業所環境保全・研究開発センター 処分研究部 システム解析 グループ

*:大成建設(株)

**: 熊本大学

Evaluation of Fracture Aperture using X-Ray CT (II) (Document Prepared by Other Organization, Based on the Contract) Michito Shimo*, Kenichi Fumimura* Yuzo Obara**, Akira Sato**, Katsuhiko Sugawara**

abstract

Understanding the influence of small scale structure and its heterogeneity onto flow through rock fractures is important for improving the reliability of performance assessment of Geologic Disposal of High Level Nuclear Waste. An established technique for measuring the fracture aperture profile is required to achieve the above purpose. There are several aperture measurement techniques: (1) estimation of aperture based on the measurement of fracture surface geometry, 2direct measurement of the fracture from rock surface, ③ non-destructive method. The X-Ray CT method is one of the non-destructive methods. In H14 study, we investigated problems associated with fracture aperture measurement using X-Ray CT method, and we proposed several approaches to improve measurement accuracy. In this year, the method proposed in H14 study was applied to a natural rock fracture in a 10 cm block, which has been prepared for permeability and tracer tests in the future. The obtained results are summarized as follows: (1) stacking is effective for reducing noises in X-Ray CT profiles, (2) image difference method is also effective to distinguish and extract fractures from X-Ray CT profiles, (3) by combining these methods, it was shown that the measurement accuracy of fracture aperture is improved significantly, (4) it was shown that correction coefficient is constants on the same condition, (5) we applid this methods to rough surface, we got measurement data.

Work performed by Taisei Corporation under contract with Japan Nuclear Cycle Development Institute

JNC Liaison: System Analysis Group, Japan Nuclear Cycle Development Institute, Tokai Works

*Taisei Corporation

**Kumamoto University

目 次

1. はじめん	-			-	1
2. 試料準備	五 刊			-	3
2.1 試料	+作成			-	3
2.1.1	アルミ立方体試料	(平行亀裂)	の作成	-	3
2.1.2	花崗岩立方体試料	(平行亀裂)	の作成	-	3
2.1.3	花崗岩立方体試料	(人工亀裂)	の作成	-	3
2.2 表面	「計測			-	4
2.2.1	レーザー変位計			-	4
2.2.2	アルミ立方体試料	(平行亀裂)	の表面計測結果	-	4
2.2.3	花崗岩立方体試料	(平行亀裂)	の表面計測結果	-	5
2.2.4	花崗岩立方体試料	(人工亀裂)	の表面計測結果	-	7
3. X線CT	こよる亀裂開口幅評	価手法		-	23
3.1 X線	CT の原理			-	23
3.2 / 1	ズ低減処理法の基礎	 世式		-	23
3.2.1	スタッキング法			-	23
3.2.2	移動平均法			-	24
3.2.3 画像間差分法			-	25	
4. X線CTによる亀裂開口量評価			-		
4.1 X線	CTスキャナー			-	
4.2 花崗	岩半月版試料を用い	、た平行亀裂	開口評価	-	
4.2.1	花崗岩半月版試料お	るよび撮影条	件	-	
4.2.2	スタッキング法の通	適用		-	
4.2.3	画像間差分法の適用	3		-	31
4.2.4	移動平均法の適用			-	31
4.2.5	花崗岩半月板試料中	コの平行亀裂	開口量評価結果	-	32
4.3 花崗	岩立方体試料を用い	いた平板亀裂	開口量評価	-	34
4.3.1	花崗岩立方体試料お	るよび撮影条	件	-	34
4.3.2	花崗岩立方体試料中	コの平板亀裂	開口量評価結果	-	34
4.4 花崗	岩立方体試料を用い	いた人工亀裂	開口量評価	-	35
4.4.1	花崗岩立方体試料お	るよび撮影条	件	-	35
4.4.2	花崗岩立方体試料中	コの人工亀梨	開口量評価結果	_	35
5. おわりん				_	58
参考文献			-	59	

表 目 次

2. 試料準備

表 2-1	レーザー変位計仕様		4
表 2-2	ノギスによる計測結果	(アルミ供試体)	4
表 2-3	ノギスによる計測結果	(花崗岩供試体)	5

図目次

2. 試料準備 図 2-1 アルミおよび花崗岩立方体試料(平行亀裂) -----8 図 2-2 花崗岩立方体試料(人工亀裂) -----8 図 2-3 花崗岩立方体試料(平行亀裂、試料 A) _____9 図 2-4 花崗岩立方体試料(平行亀裂)を用いた開口幅測定時の試料設置イメージ -----9 図 2-5 花崗岩立方体試料(人工亀裂) -----10 図 2-6 稲田花崗岩ブロック (15cm×15cm×15cm) -----10 図 2-7 超音波速度試験実施状況 -----11 図 2-8 花崗岩割裂試験装置 -----11 -----12 図 2-9 花崗岩割裂状況 図 2-10 花崗岩立方体試料(人工亀裂)アクリル板取付け状況 -----12 図 2-11 アルミ立方体試料(平行亀裂、試料 A・B) 寸法測定位置 -----13 図 2-12 表面計測結果三次元コンター(供試体 A、 z 方向 20 倍表示) -----14 図 2-13 表面計測結果(断面ごとの表面高さ、供試体 A) -----14 図 2-14 表面計測結果三次元コンター(供試体 B、 z 方向 20 倍表示) ----15 図 2-15 表面計測結果(断面ごとの表面高さ、供試体 B) ----15 図 2-16 花崗岩立方体試料(平行亀裂、試料 A・B) 寸法測定位置 -----16 図 2-17 花崗岩立方体試料(平行亀裂、試料 A)表面計測結果 -----17 図 2-18 表面計測結果(断面ごとの表面高さ、供試体 A) -----17 図 2-19 花崗岩立方体試料(平行亀裂、試料 B)表面計測結果 -----18 図 2-20 表面計測結果(断面ごとの表面高さ、供試体 B) -----18 図 2-21 花崗岩立方体試料(平行亀裂)における表面計測差の分布 (供試体 A) -----19 図 2-22 花崗岩立方体試料(平行亀裂)における表面計測差の分布 -----19 (供試体 B) 図 2-23 花崗岩立方体試料(平行亀裂)における表面計測差(供試体 A) -----20 図 2-24 花崗岩立方体試料(平行亀裂)における表面計測差(供試体 B) -----20 図 2-25 花崗岩立方体試料(人工亀裂)における表面計測差(供試体 A) -----21 図 2-26 花崗岩立方体試料(人工亀裂)における表面計測差(供試体 B) -----21 図 2-27 花崗岩立方体試料(人工亀裂)の開口幅分布 -----22

3.	X線	CT による亀裂開口幅評価手法	
义	3-1	立方体領域(スタッキング法)	29
义	3-2	物質内の亀裂と座標軸	29
4.	X線	CT による亀裂開口量評価	
义	4-1	花崗岩半月版試料中の平行亀裂開口量	36
义	4-2	シングルスキャン画像	37
义	4-3	スタッキング画像	38
义	4-4	測線 I における CT 値(シングルスキャン画像)	39
义	4-5	測線 I における CT 値(スタッキング画像)	40
义	4-6	花崗岩中の亀裂画像(画像間差分法)	41
义	4-7	画像間差分後の測線 I 上における CT 値の分布	42
义	4-8	画像間差分およびスタッキング後の測線 I 上における CT 値の分布	43
义	4-9	花崗岩半月板試料中の平行亀裂開口量(補正前)	44
义	4-10	亀裂を密着させた状態での X 線 CT 画像	45
义	4-11	花崗岩半月板試料中の平行亀裂開口量(補正係数: η=0.86)	46
义	4-12	花崗岩半月板試料中の平行亀裂開口量(亀裂投影法)	47
义	4-13	直方体花崗岩試料中の平行亀裂開口量	48
义	4-14	直方体花崗岩試料中の平行亀裂内部を空気で満たした場合の CT 画像	k49
		(スタッキング回数 10 回)	
义	4-15	直方体花崗岩試料中の平行亀裂の CT 画像	50
		(空気と水の差画像)	
义	4-16	立方体花崗岩試料中の平板亀裂開口量	51
		(補正係数: 7=0.86)	
义	4-17	人工割裂亀裂を有する花崗岩立方体試料	52
义	4-18	人工割裂亀裂を有する花崗岩立方体試料の CT 画像	53
		(スタッキング回数 10 回)	
义	4-19	人工割裂亀裂を有する花崗岩立方体試料の CT 画像	54
		(空気と水の差画像)	
义	4-20	画像間差分およびスタッキング後の測線 I 上での CT 値の分布	55
义	4-21	人工割裂部の CT 値(X 軸上に投影)	56
义	4-22	花崗岩立方体試料中の人工亀裂開口量	57

1. はじめに

高レベル放射性廃棄物の性能評価の信頼性を向上させるためには, 亀裂中の微細な構造や不均質性が地下水の流れや物質移行に及ぼす影響を理解する必要がある。そのためには, 亀裂中の開口幅分布を測定する技術を確立することが重要な課題となる。亀裂開口幅測定方法には, ①亀裂表面形状から推定する方法, ②亀裂を直接観察する方法, ③非破壊で推定する方法と, 様々な技術が存在するが, 平成 14 年度には, 非破壊で亀裂開口幅を推定することを目標として, X線 CTを使用した亀裂開口幅測定方法を選択し, その効率性・実用性の観点から検討した。結果として, X線 CTを使用した画像間差分法が亀裂開口幅の評価に有効であることがわかった。しかしながら, 定量化可能な開口幅値の誤差の定量的評価, 花崗岩などの実際の岩体における X線 CTを使用した画像間差分法による亀裂開口幅の評価などの課題も抽出された。

そこで、本業務は、①花崗岩半月版試料を用いた平行亀裂開口量評価、②花崗岩立方 体試料を用いた平行亀裂開口量評価、③花崗岩立方体試料を用いた人工亀裂開口量評価 を実施した。

2章においては、今回 X 線 CT を使用した亀裂開口幅測定に用いた試料の作成状況および作成した試料の表面計測結果について述べる。対象とする試験岩体は、幅 10cm、奥行き 10cm、高さ 10cm の花崗岩 10cm 岩体である。試験体種類としては、①平行平板10cm 岩体、②人工割裂亀裂を有した 10cm 岩体の 2 種類である。

平行平板試験岩体は高さ方向の中央に亀裂を有するように作成し, 亀裂面は十分な精 度で平滑研磨加工を行った。人工割裂亀裂を有する岩体は, 高さ方向の中央付近に亀裂 を有する形態に作成した。なお, 平行平板試験岩体および人工割裂亀裂試験岩体を作成 後, それぞれに対して, あらかじめ亀裂面計測を実施した。

3章においては、X線 CT による岩石中の亀裂開口幅の評価手法について述べる。昨 年度は岩石内の亀裂の分布状況や開口量の分布をX線CT画像から分析する方法として、 亀裂投影法を用いて評価したが、花崗岩のように異方性を有し、さらに、長石、石英、 雲母など CT 値の異なる鉱物粒子で構成されている岩石では、等方・均質な材料に比較 して CT 値のバラツキは大きくなることが分かった。そこで今年度は、不均質材料中に 存在する開口亀裂の分析を目的として、画像を重ね合わせることによってノイズを軽減 する方法であるスタッキング法、ならびに周辺の画像データの平均をとることによって ノイズを軽減する方法である移動平均法を組み合わせたノイズ処理技術を適用し、その 有効性について検証した。さらに、不均質材料中に存在する亀裂の開口量を評価する方 法として、X線 CT 画像に差分法を導入する新たな方法を適用した。この方法は、基本 的には亀裂投影法を発展させた方法で、画像データ処理の過程で画像間差分法を取り入 れた方法である。つまり、亀裂内部を異なる密度を有する物体で満たした状態でそれぞ れ撮影を実施し、画像間の差分をとることにより亀裂開口量評価に必要な情報を抽出す る方法である。 4章では、3章で示すスタッキング法、移動平均法、画像間差分法を用いて、X線CT 値から2章で示す花崗岩試料中の亀裂開口幅を評価した結果について述べる。

X線 CT 画像にスタッキング法ならびに移動平均法を適用し,X線 CT 画像が必然的に 有するノイズの特徴について分析するとともに, 亀裂開口量評価のための最適なノイズ 軽減処理条件について検討した。さらに, 花崗岩中に存在する亀裂の開口量評価のため の画像間差分法を詳述し,X線 CT 画像を用いた亀裂開口量評価の特徴を分析した。

5章では、本研究の成果について述べる。

(実施場所)

大成建設技術センター:〒245-0051 神奈川県横浜市戸塚区名瀬町 344-1 熊本大学 :〒860-8555 熊本市黒髪2丁目 39番1号

2. 試料準備

試験体は、①平行平板 10cm 試験体、②人工割裂亀裂を有した 10cm 試験体の 2 種類で ある。図 2-1 に示すアルミおよび花崗岩立方体試料(平行亀裂)は、高さ方向の中央に 亀裂を有するように作成し、亀裂面は十分な精度で平滑研磨加工を行った。図 2-2 に示 す花崗岩立方体試料(人工亀裂)は、高さ方向の中央付近に人工亀裂を有する形態に作 成した。なお、アルミおよび花崗岩立方体試料(平行亀裂)および花崗岩立方体試料(人 工亀裂)を作成後、それぞれの亀裂面に対して表面計測を実施した。

2.1 試料作成

2.1.1 アルミ立方体試料(平行亀裂)の作成

花崗岩試料とほぼ密度が同じで均質な試料であるアルミ材を用いて,図 2-1 に示す幅 10cm,奥行き 10cm,高さ 10cm で高さ方向の中央に既知開口幅を有する試料を作成した。 また亀裂面の仕上げは十分な精度で加工した。

2.1.2 花崗岩立方体試料(平行亀裂)の作成

稲田花崗岩を用いて,図 2-1 に示す幅 10cm,奥行き 10cm,高さ 10cm で高さ方向の中 央に既知開口幅を有する試料を作成した。また亀裂面の仕上げは十分な精度で加工した。 図 2-3 に作成した花崗岩立方体試料(平行亀裂)の写真を示し,図 2-4 に花崗岩立方体 試料(平行亀裂)資料を用いた X線 CT による既知開口幅測定時の試料設置状況を示す。

2.1.3 花崗岩立方体試料(人工亀裂)の作成

稲田花崗岩を用いて図 2-5 に示す,幅 10cm,奥行き 10cm,高さ 10cm,高さ方向中央 に割裂によって発生させた人工亀裂を有する試料を作成した。以下,試料作成手順に沿 って図を示す。

- ① 幅 30cm, 奥行き 30cm, 高さ 30cm の稲田花崗岩を準備した。
- ② 準備した花崗岩体を幅 15cm,奥行き 15cm,高さ 15cmの8つの岩体に切断して分割した。(図2-6)
- ③ 図 2-6 に示した岩体に対して、直行する3方向の超音波速度試験を行い、石目の 方向を確認することで、人工亀裂を発生させる方向を決定した。ここで、超音波 速度を測定した直交する3方向の内、最も遅い面に直行する方向に人工亀裂を発 生させた。図 2-7 に超音波速度測定状況を示す。
- ④ 図 2-8 に示す試験装置を用いて,割裂により試料中央部に人工亀裂を発生させた。 この時,試料中央部でのひずみを測定することで,岩石に過度な荷重が載荷する ことを防ぎ,また亀裂の進行状況を確認しながら人工亀裂を作成した。図 2-9 に 割裂状況を示す。
- ⑤ 人工亀裂面の表面計測を行った後、側面をアクリル板で固定した。(図 2-10)

2.2 表面計測

2.2.1 レーザー変位計

本研究で用いたレーザー変位計はキーエンス社製(LK-2100)である。表 2-1 に仕様 を示す。

型式	LK-2100	直線性	±0.1%
基準距離	80mm	分解能	3μ m
測定範囲	± 15 mm	レスポンス	High (平均なし)
光源	赤色半導体レーザー	測定間隔	1秒

表 2-1 レーザー変位計仕様

2.2.2 アルミ立方体試料(平行亀裂)の表面計測結果

図 2-1 に示す幅 10cm, 奥行き 10cm, 高さ 10cm で高さ方向の中央に既知開口幅を有する 2 体で一対の試料(A,B)に対して,ノギスによる供試体寸法計測と研磨仕上げ面を対象としたレーザー変位計による表面計測を実施した。

①ノギスによるアルミ供試体の寸法計測

図 2-11 にノギスによるアルミ供試体の寸法計測位置を示す。図 2-11 で,点0と点P を含む平面が研磨仕上げ対象面である。ノギスによる計測結果を表 2-2 に示す。

試験体A		試験体B		
測定箇所	測定値	測定箇所	測定値	
1	100.31	1	100.30	
2	100.29	2	100.31	
3	100.30	3	100.31	
4	49.98	4	50.01	
5	49.99	5	50.03	
6	49.99	6	50.03	
7	49.99	7	49.98	
8	49.99	8	50.00	
9	49.99	9	50.00	
	· · · · · · · · · · · · · · · · · · ·		unit [mm]	

表 2-2 ノギスによる計測結果(アルミ供試体)

②レーザー変位計による表面計測結果(試料 A)

試料 A の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点, Y 方向に 50 点,合計 5000 点おいて表面計測を行った。得られた結果の 3 次元コンターを

図 2-12 に示す。ここで、表面計測原点 O (X, Y) = (1, 1)、点 P (X, Y) = (100, 50)であ る。図 2-13 に X 軸上の 3 断面, Y 軸上の 3 断面における表面計測結果を示す。示した 結果は、3 回計測した平均値であり、試料設置誤差によって生じた試料の傾きを補正し たデータを用いている。

③レーザー変位計による表面計測結果(試料 B)

試料 B の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点,Y 方向に 50 点,合計 5000 点おいて表面計測を行った。得られた結果の 3 次元コンターを 図 2-14 に示す。ここで,表面計測原点 O (X,Y) = (1,1),点 P (X,Y) = (100,50)であ る。図 2-15 に X 軸上の 3 断面,Y 軸上の 3 断面における表面計測結果を示す。示した 結果は、3 回計測した平均値であり、試料設置誤差によって生じた試料の傾きを補正し たデータを用いている。

2.2.3 花崗岩立方体試料(平行亀裂)の表面計測結果

図 2-1 に示す幅 10cm,奥行き 10cm,高さ 10cm で高さ方向の中央に既知開口幅を有する 2 体で一対の試料(A,B)に対して、ノギスによる供試体寸法計測と研磨仕上げ面を対象としたレーザー変位計による表面計測を実施した。

①ノギスによる寸法計測

図 2-16 にノギスによるアルミ供試体の寸法計測位置を示す。図 2-16 で,点0と点 P を含む平面が研磨仕上げ対象面である。ノギスによる計測結果を表 2-3 に示す。

試験体A		試験体B	
測定箇所	測定値	測定箇所	測定値
1	101.60	1	100.52
2	101.47	2	100.75
3	101.24	3	100.89
4	49.61	4	49.91
5	49.43	5	49.77
6	49.19	6	49.54
7	50.00	7	49.95
8	50.08	8	50.12
9	50.16	9	50.26

表 2-3 ノギスによる計測結果(花崗岩供試体)

unit(mm)

②レーザー変位計による表面計測結果(試料 A)

試料 A の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点,Y 方向に 50 点,合計 5000 点おいて表面計測を行った。得られた結果の 3 次元コンターを 図 2-17 に示す。ここで,表面計測原点 O (X,Y) = (1,1),点 P (X,Y) = (100,50)であ る。図 2-18 に X 軸上の 3 断面,Y 軸上の 3 断面における表面計測結果を示す。示した 結果は、3 回計測した平均値であり、試料設置誤差によって生じた試料の傾きを補正し たデータを用いている。

③レーザー変位計による表面計測結果(試料 B)

試料 B の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点,Y 方向に 50 点,合計 5000 点おいて表面計測を行った。得られた結果の 3 次元コンターを 図 2-19 に示す。ここで,表面計測原点 O (X,Y) = (1,1),点 P (X,Y) = (100,50)であ る。図 2-20 に X 軸上の 3 断面,Y 軸上の 3 断面における表面計測結果を示す。示した 結果は、3 回計測した平均値であり、試料設置誤差によって生じた試料の傾きを補正し たデータを用いている。

④表面計測結果の比較

作成した花崗岩立方体試料(平行亀裂)に対して、レーザー変位計を用いた表面計測 結果と別途行われた接触型三次元表面計測結果を比較する。試料 A と試料 B について、 両手法における表面計測差の平面的な分布状況を図 2-21 および図 2-22 に示す。また、 図 2-23 および図 2-24 は、横軸に計測差、縦軸にデータ個数および式 2-1 で求めた累計 百分率を示す。

累計百分率 =
$$\frac{b$$
る計測差以下のデータの個数
全データ個数 ×100 (2-1)

図 2-23 から, 試料 A について両手法による計測差が 0.05mm 以上のデータは, 全計測 点 5000 点の内 1.6%であり, 90%以上が計測差 0.03mm 以下となった。また, 同様に図 2-24 から, 試料 B について両手法による計測差が 0.05mm 以上のデータは, 全計測点 5000 点の内 2.5%であり, 90%以上が計測差 0.03mm 以下となった。以上の結果から, レー ザー変位系と接触型三次元計測計測の結果の整合性が確認できたと考える。

2.2.4 花崗岩立方体試料(人工亀裂)の表面計測結果

図 2-5 に示す,幅 10cm,奥行き 10cm,高さ 10cmの稲田花崗岩を用いて,高さ方向中央に割裂によって発生させた人工亀裂を有する試料を作成した。作成した亀裂面に対して、レーザー変位計による表面計測を実施した。

① レーザー変位計による表面計測結果(試料 A)

試料 A の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点,Y 方向に 100 点,合計 10000 点おいて表面計測を行った。得られた結果の 3 次元コンター を図 2-25 に示す。ここで,示した結果は,5 回計測した平均値であり,試料設置誤差 によって生じた試料の傾きを補正したデータを用いている。

② レーザー変位計による表面計測結果(試料 B)

試料 B の研磨面を対象として,表面計測開始点 O から 1mm 単位で X 方向に 100 点,Y 方向に 100 点,合計 10000 点おいて表面計測を行った。得られた結果の 3 次元コンター を図 2-26 に示す。ここで,示した結果は,5 回計測した平均値であり,試料設置誤差 によって生じた試料の傾きを補正したデータを用いている。

③ 人工亀裂開口幅

試料 A および試料 B の結果から、人工亀裂開口幅の分布を求めた。図 2-27 は、横軸 に開口幅、縦軸にデータ個数および式(2-2)で求めた累計百分率を示す。

図 2-25 から人工亀裂の開口幅は, 0.3mm 程度が最も多く, 約 90%が 1mm 以下である。 表面計測結果から得られた亀裂の開口幅について, 累計百分率の中央値は 0.375mm であ り, 全データの平均値は 0.500mm であった。

図 2-1 アルミおよび花崗岩立方体試料(平行亀裂)

図 2-2 花崗岩立方体試料 (人工亀裂)

図 2-3 花崗岩立方体試料(平行亀裂、試料 A)

図 2-4 花崗岩立方体試料(平行亀裂)を用いた開口幅測定時の試料設置イメージ

図 2-5 花崗岩立方体試料 (人工亀裂)

図 2-6 稲田花崗岩ブロック (15cm×15cm×15cm)

図 2-8 花崗岩割裂試験装置

図 2-9 花崗岩割裂状況

図 2-10 花崗岩立方体試料(人工亀裂)アクリル板取付け状況

図 2-11 アルミ立方体試料(平行亀裂、試料 A・B) 寸法測定位置

図 2-12 表面計測結果三次元コンター(供試体 A、 z 方向 20 倍表示)

図 2-13 表面計測結果(断面ごとの表面高さ、供試体 A)

図 2-14 表面計測結果三次元コンター(供試体 B、 z 方向 20 倍表示)

図 2-16 花崗岩立方体試料(平行亀裂、試料 A・B)寸法測定位置

図 2-17 花崗岩立方体試料(平行亀裂、試料 A)表面計測結果

図 2-18 表面計測結果(断面ごとの表面高さ、供試体 A)

図 2-19 花崗岩立方体試料(平行亀裂、試料 B)表面計測結果

-19-

図 2-23 花崗岩立方体試料(平行亀裂)における表面計測差(供試体 A)

図 2-24 花崗岩立方体試料(平行亀裂)における表面計測差(供試体 B)

図 2-25 花崗岩立方体試料(人工亀裂)における表面計測差(供試体 A)

図 2-26 花崗岩立方体試料(人工亀裂)における表面計測差(供試体 B)

図 2-27 花崗岩立方体試料(人工亀裂)の開口幅分布

3. X線CTによる亀裂開口幅評価手法

3.1 X線CTの原理

等方・均質な媒質からなる長さPの物体に強度*i*₀のX線ビームが入射したとき、透過X線の強度*i*は次式で与えられる。

$$i = i_0 \exp\left(-f_{\rm m}P\right) \tag{3-1}$$

また,式 (3·1) より投影 P は次式で与えられる。

$$p = -\ln\left(\frac{i_0}{i}\right) = f_{\rm m}P \tag{3-2}$$

ここで、fmは線吸収係数と呼ばれる係数で、この係数はX線の波長、媒質の密度と状態に依存する物質固有の値である。X線CTでは、様々な方向から式(3-2)の投影を計測し、撮影断層内の線吸収係数の分布をフィルタ補正逆投影法により再構成する。

また,再構成された線吸収係数fmは断層厚さあたりの平均値に相当し,その表示には fm の値を適当にスケールしたCT値が用いられる。本論文では,空気を 0,水を 1000 と表示したものをCT値と呼ぶことにする。

3.2 ノイズ軽減処理法の基礎式

3.2.1 スタッキング法

ノイズ軽減法として用いられている中にスタッキング法がある。これは、同じ性質を 持つデータを重ね合わせることにより、データの持つノイズを軽減する方法である。以 下にその詳細を述べる。

まず,図 3·1 に示す直方体領域を考え,その中心を原点 O とし各面に直交する方向 に座標(x, y, z)を定める。直方体領域のx 軸方向長さをP, y 軸方向長さをW, z 軸方向 長さをHとする。いま,x-y平面に平行な断面をX線 CT 撮影した場合を考え,画像の 1 画素の辺長をd,断層厚さをhと表記する。このとき,この直方体領域に含まれるx軸方向の画素数を \overline{P} , y 軸方向の画素数を \overline{W} , z 軸方向の画素数を \overline{H} と表記すると, これらは次式で与えられる。

$$\overline{P} = \frac{P}{d}, \ \overline{W} = \frac{W}{d}, \ \overline{H} = \frac{H}{h}$$
 (3-3)

つぎに、画素の番地として、 x 軸方向の画素番号 $i=1, 2, ..., \overline{P}$, y 軸方向の画素番 $\exists j=1, 2, ..., \overline{W}$, z 軸方向の画素番 $k=1, 2, ..., \overline{H}$ を採用し、番地(i, j, k)での CT 値

をf(i, j, k)と表記する。

さて、k番目の撮影断面において、同一条件でn回撮影が実施された場合を考える。このとき、l回目の撮影において番地 (i, j, k) でのCT値 $f_i(i, j, k)$ は真の値 $f^{0}(i, j, k)$ とノイズ 成分 $\Delta f_i(i, j, k)$ に分解できると仮定すると、

$$f_{l}(i,j,k) = f^{0}(i,j,k) + \Delta f_{l}(i,j,k)$$

$$(3-4)$$

となる。ここで, *n*枚の画像を重ね合わせて*x-y*平面の番地(*i*, *j*, *k*)での平均CT値f^{*}(*i*, *j*, *k*) を求めると,式(3-4)はつぎのようになる。

$$f^{*}(i,j,k) = f^{0}(i,j,k) + \frac{\sum_{l}^{n} \varDelta f_{l}(i,j,k)}{n}$$
(3-5)

ここで、 \sum_{l}^{n} はlについてはnまでの総和を表す。ノイズ成分はランダムノイズであると仮定し、nを限りなく大きくすると、

$$\sum_{l}^{n} \Delta f_{l}(i,j,k) \approx 0 \qquad (n \to \infty) \tag{3-6}$$

となる。したがって、同じ場所できるだけ多くの撮影を行ってそれらをスタッキングすると、CT 値の平均値は真の値に近づくことになる。

3.2.2 移動平均法

先に図 3-1 に示した直方体領域を考える。この直方体領域の平均CT値f,は次式で与えられる。

$$f_{v} = \frac{1}{\overline{P}\overline{W}\overline{H}}\sum_{i}\sum_{j}\sum_{k}f(i,j,k)$$
(3-7)

ここで,Σiは添字iについての総和を表す。上式を用いてある領域の平均CT値を求め, この値を領域中心での代表CT値とする方法を単純平均化¹⁴⁾という。この方法では,領 域の大きさ (*P*, *W*, *H*)を種々変えることにより任意の領域での平均化が可能である。と くに,対象となる領域で密度が均質である場合には,式 (3-7)による単純平均化はノイ ズ成分どうしを足し合わせることにより取り除くことができるため,ノイズ軽減法とし て有効である。

この単純平均化を、画像データ内で原点Oの位置を順次移動させて実施し、それぞれの位置での領域の平均値を求める方法として移動平均法がある¹⁴⁾。移動平均法を実施する場合には、単純平均化に用いられた領域の大きさも重要なパラメータである。式(3-7)を用いて移動平均法を適用する場合は3次元データの処理となる。そこでまず、取り扱いを容易とするために、3次元画像データをスタッキングし、2次元画像データとする。すなわち、z方向にわずかづつ移動させて撮影した \overline{H} 枚の画像にスタッキング法を適用する。つまり、式(3-7)においてk方向について \overline{H} 枚の画像のスタッキングを行うと、

$$f_{\rm s}(i,j) = \frac{1}{\overline{H}} \sum_{k}^{\overline{H}} f(i,j,k)$$
(3-8)

となる。この操作によってCT値f_s(*i*, *j*)の2次元画像を作成する。つぎに, f_s(*i*, *j*)を用いて式 (3-7)で示した単純平均化を実施すると,

$$f_{v} = \frac{1}{\overline{P}\overline{W}} \sum_{i}^{\overline{P}} \sum_{j}^{\overline{W}} f_{s}(i,j)$$
(3-9)

となる。

3.2.3 画像間差分法

① 画像間差分法

菅原ら⁴の示した亀裂投影法の過程に画像間差分法を導入し,亀裂開口量を評価する 方法について述べる。X線CT画像の撮影は,まず,密度の小さい物質で亀裂内部を満た した状態で実施する。その後,亀裂内部を密度の高い物質で満たし,亀裂以外の部分は 同じ条件で撮影を実施する。密度の異なる物質としては,例えば空気と水,あるいは水 とKI水溶液などが考えられる。

まず,図 3-2 のように,線吸収係数が $f_m(x)$ の物質内に存在する開口量wの亀裂面間の中 心点Oを原点とし,亀裂面に垂直な方向をx軸とする直角座標(x, y, z)を定める。ここで, 亀裂面の位置は $x=\pm w/2$ であり,亀裂内部は線吸収係数が $f_c^{(\alpha)}$ の物質 α で満たされてい ると仮定する。このとき,X線の投影 $p^{(\alpha)}$ は式(3-1)の関係から,

$$p^{(\alpha)} = f_m(x)\{P - w\} + f_c^{(\alpha)}w$$
(3-10)

と表すことができる。また, 亀裂内部が線吸収係数 $f_c^{(\beta)}$ の物質 β で満たされていると, 投影 $p^{(\beta)}$ は,

$$p^{(\beta)} = f_m(x)\{P - w\} + f_c^{(\beta)}w$$
(3-11)

となる。画像間差分を行うということは,式(3-10)と式(3-11)の差分をとることに 対応し,それをwについて解くとつぎのようになる。

$$w = \frac{p^{(\alpha)} - p^{(\beta)}}{f_c^{(\alpha)} - f_c^{(\beta)}}$$
(3-12)

上式に従うと、物体の線吸収係数f_m(x)の影響がなくなり、試料内部の不均質性やカッピングの影響を取り除くことができる。

っぎに、上述の関係を CT 値を用いて表す方法について説明する。まず、式 (3-12) の $f_c^{(\alpha)}$ および $f_c^{(\beta)}$ を亀裂内に満たされた物質の平均 CT 値 $\bar{f}_c^{(\alpha)}$ および $\bar{f}_c^{(\beta)}$ と仮定する と、

$$w = \frac{p^{(\alpha)} - p^{(\beta)}}{\bar{f}_c^{(\alpha)} - \bar{f}_c^{(\beta)}}$$
(3-13)

を得る。また,投影域に含まれるx軸方向のピクセル数が \overline{P} ,y軸方向のピクセル数が \overline{W} , z軸方向のピクセル数が \overline{H} であるとき,投影断面のピクセル数は $\overline{S} = \overline{W} \cdot \overline{H}$ である。投 影域の番地(*i*,*j*,*k*)におけるCT値を $f^{(a)}(i,j,k)$ と表記すると,亀裂内が物質 α で満たされて いる場合,投影断面*i*の平均CT値 $g^{(a)}(i)$ は,

$$g^{(\alpha)}(i) = \frac{\sum_{j} \sum_{k} f^{(\alpha)}(i, j, k)}{\overline{S}}$$
(3-14)

と表される。ここで、 Σ_n は添字nについての総和を表す。また同様に、亀裂内に物質 β が満たされている場合は番地(i, j, k)におけるCT値を $f^{(\beta)}(i, j, k)$ と表記すると、投影断面iの平均CT値 $g^{(\beta)}(i)$ は、

$$g^{(\beta)}(i) = \frac{\sum_{j} \sum_{k} f^{(\beta)}(i, j, k)}{\overline{S}}$$
(3-15)

-26-

となる。ただし, $f^{\alpha}(i, j, k)$ と $f^{\beta}(i, j, k)$ は亀裂の部分だけが異なった値である。上式を用いると、両者の投影は次式で与えられる。

$$p^{(\alpha)} = \sum_{i} g^{(\alpha)}(i) d, \quad p^{(\beta)} = \sum_{i} g^{(\beta)}(i) d$$
 (3-16)

一方, 亀裂内を満たしている物質の CT 値 $\bar{f}_{c}^{(\alpha)}$ および $\bar{f}_{c}^{(\beta)}$ は, その物質だけの X 線 CT 撮影を行って評価する必要がある。ただし, αおよび物質 β がそれぞれ水と空気の 場合には次のように設定されている。

$$\bar{f}_{\rm c}^{(\alpha)} = 1000, \quad \bar{f}_{\rm c}^{(\beta)} = 0$$
 (3-17)

適用上の問題点に関する検討

CT画像データを用いた亀裂開口量の評価に関して、菅原ら⁴ は画像再構成時に生じるCT値のスケールの影響を論じている。つまり、再構成されたCT値fとその真の値f^e との関係は次式で表される。

$$f = \kappa f^0 + \kappa e \tag{3-18}$$

ここで、*κ*は比例定数であり、誤差がない場合には*κ*=1 である。また第2項はスケー ルのシフトを示し、誤差がない場合には *e*=0 である。先に式 (3-10) ~式 (3-12) で示 した画像間差分法の場合、亀裂内部の CT 値分布のみが異なる2つの画像の差分を実施 する。このことから、式 (3-18) 中の*κe* の項は画像間差分によって除去されるものの、 比例定数*κ*の補正が必要になる。

これまでの経験により、比例定数κに関しては、試料の密度、寸法と形状、撮影方法 などによって値が変化することが知られている。これは、同じ画像中においても場所に よる密度分布の違いや分析対象位置周辺の形状の違いによりその影響が異なっている 場合が考えられる。したがって、式(3-12)で示した亀裂開口量の評価式のうち、亀裂 を含んだ岩石マトリクス部の投影(式(3-10)および式(3-11))ならびに亀裂内流体そ れぞれについて誤差を評価する必要がある。そこで、亀裂を含んだ岩石マトリクス部の 投影の比例定数κmat, 亀裂内流体の比例定数をκliqであるとすると、式(3-12)の関係か ら真の亀裂開口量 wmは次のように表される。

$$w_{\rm m} = \eta w \tag{3-19}$$

-27-

ただし、ηは補正係数であり次式で与えられる。

$$\eta = \frac{\kappa_{\text{mat}}}{\kappa_{\text{liq}}} \tag{3-20}$$

図 3-1 立方体領域 (スタッキング法)

図 3-2 物質内の亀裂と座標軸

4. X線CTによる亀裂開口量評価

4.1 X線CTスキャナー

本研究で用いた装置は東芝製産業用X線CTスキャナー(TOSCANNER-20000)である。撮影条件は種々設定可能であるが、本研究では管電圧 300kV、管電流 2mA、断層撮影厚 2mmの条件の下で撮影を実施した。なお、本研究で用いたX線CTスキャナーに関する仕様の詳細ならびにX線CTの基本原理については菅原ら⁴⁾およびSugawara et al.^{9)~11)}を参照されたい。

4.2 花崗岩半月版試料を用いた平行亀裂開口量評価

4.2.1 花崗岩半月版試料および撮影条件

本研究では不均質材料として花崗岩試料を用意した。すなわち,図 4-1 に示すよう に2つの花崗岩の半月板を用意し,その直径の面を亀裂面と見なし,面を合わせた後そ の一端に隙間ゲージを挿入して亀裂幅が線形に変化する模擬亀裂を作成した。開口側の 端面における亀裂の中心点を原点0'とする直角座標(x, y, z)を用いる。なお,半月 板の直径は 60mmであり,また,最大開口幅はwmax =1.31mmおよび 0.51mmの2種類を設 定した。なお,亀裂面となる面の仕上げ精度は,接触式表面粗さ計を用いて計測した結 果,平均粗さで 0.012mm 以下の精度で仕上げられていることを確認している。

X線 CT の撮影は、まず、模擬亀裂内部が空気の場合について撮影を実施した。ただ し、撮影は亀裂を横切る半月板の中心断面で実施し、同じ位置で合計6回の撮影を行っ た。続いて、模擬亀裂内部を水で満たした状態で同様に計6回の撮影を実施した。ただ し、撮影条件をできるだけ等しくするために、亀裂内部が空気ならびに水の場合でも、 半月板試料の周辺を水で満たした状態で撮影を実施した。

4.2.2 スタッキング法の適用

模擬亀裂を有する花崗岩試料の X 線 CT 画像として, 1回の撮影のよって得られた画像(以下,シングルスキャン画像と称す)の例を図 4-2 に示す。ただし,この画像は亀裂内部が空気の場合である。図中の比較的白い部分は高密度領域を示しており,試料周辺や亀裂内部のように密度の低い空気の領域は黒く表されている。この図からわかるように,シングルスキャン画像でも線形に設定された模擬亀裂の様子を確認することができる。さらに,花崗岩に含まれる石英等の比較的密度の高い鉱物の分布も確認できる。

次に,同じ条件で撮影した6枚の画像に対してスタッキング法を適用して求めた画像 (以下,スタッキング画像と称する)を図 4-3 に示す。先に図 4-2 で示した画像と比 較すると,岩石マトリクス部のノイズが軽減されている様子がわかる。ここで,図 4-2 および 図 4-3 中の測線IにおけるCT値の分布ならびにヒストグラムをそれぞれ図 4-4 および図 4-5 に示す。シングルスキャン画像とスタッキング画像を比較すると,同じ測 線上でありながらスタッキング画像の方がCT値のバラツキが小さくなっていることが わかる。亀裂を含まない岩石マトリクス部の CT 値の標準偏差 σを求めると、シングル スキャンの場合にはσ=137 であり、スタッキング画像の場合にはσ=113 である。したが って、先に式(3-5) および式(3-6) で示したように、画像をスタッキングによって画 像に含まれるノイズが軽減され、その結果、得られる CT 値の分布は岩石の持つ本来の 密度分布に従った CT 値の分布に近づいていくものと考えられる。以下ではスタッキン グ画像を解析の対象とする。

上述のように、ノイズを軽減するにはできるだけ多くの画像のスタッキングが望ましいと考えられる。ただし、CT画像の撮影には多くの時間ならびに費用が必要となる。したがって、それらの制限の中で最適なスタッキング回数を個々に評価する必要がある。

4.2.3 画像間差分法の適用

亀裂内部を空気および水でそれぞれ満たした状態で撮影を実施し、それぞれの場合に ついてスタッキング画像を作成した。この2つの画像について画像間差分を実施した結 果を図4-6に示す。この画像間差分は、先に述べたように式(3-12)中の右辺の分子に 相当する。この図から分かるように、亀裂部分に関する情報を鮮明に抽出できているこ とが分かる。さらに、先に図4-3で示したスタッキング画像にみられる花崗岩固有の 密度分布に起因するCT値のバラツキがほぼ除去できていることも確認できる。このよ うに、目的としている亀裂以外の部分は全く同じ状態で撮影した画像どうしの差分をと ることで、式(3-10)および式(3-11)で示した岩石マトリクス部の*fm(x)*を除去可能 である。すなわち、不均質な材料の影響を取り除くことが可能である。

X線 CT 画像では,撮影対象試料の外側周辺部で CT 値の平均値が上昇する現象,すな わちカッピング効果が現れる。特に,岩石程度以上の密度を有する試料の場合には必然 的に現れる現象である。しかし,先に示した図 4-6 ではその影響がなく,画像間差分法 によってカッピング効果もほぼ除去できていると考えることができる。

4.2.4 移動平均法の適用

画像間差分後の測線 I 上における CT 値の分布を図 4-7 に示す。この図に示すように、 画像間差分後のデータも亀裂部分に比較して岩石マトリクス部分では CT 値のバラツキ が大きい。そこで、ここでは亀裂に平行な方向に移動平均を実施する。すなわち、式 (3-7)のパラメータ(P, W, H)のうち P=H=1 とし、任意の W の値をとることにより移 動平均を実施する。移動平均の実施料域については、分析対象のサイズやノイズレベル により個々に決定する必要があるが、ここでは W=25 を採用して移動平均を実施した。 その結果を図 4-8 に示す。この図に示すように、移動平均法を実施後は岩石マトリクス 部の CT 値のバラツキが非常に小さく、ノイズはほぼ除去されていると見なすことがで きる。

4.2.5 花崗岩半月板試料中の平行亀裂開口量評価結果

前節で示したノイズ処理後のCT画像データに対して,式(3-12)で示した画像間差分 法を実施し,花崗岩中の模擬亀裂の開口量評価を実施した。先に示したように,本研究 では半月板試料端部での最大開口幅はWmax =1.13mm, 0.51mmの二種類を設定した。式 (3-19) で示した補正前の評価結果を図 4-9 に示す。この図に示すように、亀裂の開口 分布はほぼ直線的であり、設定通りの亀裂開口分布が得られているものと考えられる。 ここで、得られた開口量の分布を最小二乗法で近似しy=60mmの位置での亀裂開口量 δ を求めた結果, 必ずしも0と評価されておらず, Wmax =1.13mm および 0.51mm いずれ の場合もδ=0.055mmであった。また、この値は表面の平均粗さである 0.012mmよりも大 きく, 面のかみ合わせによる開口量以上の開口量を評価していることになる。これは次 の理由によるものと考えられる。半月板試料の亀裂面を完全に密着させた状態で撮影し たX線CT画像を図 4-10 に示す。この図に示すように、密着させた状態でも亀裂の存在 を確認することができる。このように本実験で用いたCTスキャナーの分解能(1 pixel 長:0.293mm)以下の空隙であっても、再構成画像上では確認できることが分かる。す なわち,微小な開口量を持つ亀裂であってもその存在自体は検出可能である。これは, 本方法を用いた場合について亀裂の存在により評価される開口量の下限値であり, 亀裂 開口量のシフトであると考えることができる。

そこで、この δ を考慮して設定した w_{max} から式(3-19)の校正係数 η を求め亀裂開 口分布を評価した。その結果, Wmax =0.51mm, 1.13mm いずれの場合についても得られ た校正係数はh=0.86 であった。また、この校正係数を用いて評価した亀裂開口量の分 布を図 4-11 に示す。また, 亀裂表面を理想的な平面であると仮定し, 評価結果との差 から求め平均粗さµmeanを評価した。その結果, Wmax =0.51mmおよび 1.13mmの平均粗さ はそれぞれµmean=0.009mmおよび 0.058mmであった。さらに、比較のため、同じ半月板 試料に対して従来の亀裂投影法4を適用した結果を図 4-12 に示す。この方法は, 比較的 均質な岩石試料についてはその有効性が示されているが⁴⁾,花崗岩のような不均質材料 に対しては適用が難しいことが分かる。一方,本研究のように画像処理の過程で画像間 差分法を導入することによって, 花崗岩についても設定した亀裂開口分布を正確に評価 できることが分かる。本研究では亀裂内部が空気および水の2つの状態について撮影を 行い,これらの画像データを用いて画像間差分法により亀裂開口量を評価する方法を提 案した。岩石内の開口亀裂の評価は, 亀裂を含むマスとしての変形特性あるいは透水特 性を評価するために重要であると考えられる。このような場合、岩石は湿潤されている ことも多く, 亀裂内部も同じように水などで満たされている状態で亀裂開口量を評価す る必要がある。しかし、Sugawaraら¹¹⁾が用いたKI水溶液のように、密度の異なる流体 を亀裂内部に注入することができれば、本方法を用いて亀裂の開口量評価が可能である と考えられる。

さて、本研究ではスタッキング法がノイズ軽減処理として有効であることを示し、 亀

裂開口幅の分析にも同じ環境の下で6回の撮影を実施しスタッキングを実施したデー タを用いた。しかし、本研究で用いた産業用X線CTスキャナーの場合には1回の撮影 に約5分の時間を要する。したがって、亀裂内流体の岩石マトリクス部への透水現象が 撮影時間に比較して十分短い時間に発生する場合には、同じ画像を複数回撮影すること が不可能になってくる。さらに、一般にCT画像の撮影には多額の費用が必要であるた め、同じ画像を複数枚撮影するのは現実的でない場合がある。このような観点から、実 際の画像処理過程ではそれぞれ異なる1枚ずつの画像データを用いなければならない 場合が多いものと考えられる。

そこで、上述の亀裂開口幅評価手順のうち、スタッキングの処理を実施せず、亀裂内 部を水および空気で満たしたそれぞれ1枚の画像を用いて亀裂開口幅を評価した。その 結果を Fig.a に示す。この図に示すように、スタッキングを実施した画像に比較して 精度は低下するものの、全体としてはスタッキングがない場合でも比較的精度よく亀裂 の開口分布求められていることが分かる。したがって、目的とする亀裂開口幅評価の精 度如何では、シングルスキャン画像による亀裂開口量評価も十分有効であると考えるこ とができる。

4.3 花崗岩立方体試料を用いた平行亀裂開口量評価

4.3.1 花崗岩立方体試料および撮影条件

先に述べたように、CT値の分布は試料の密度, 寸法と形状, 撮影方法などによって値 が変化することが知られている。したがって, 計測対象となる試料の寸法と形状, なら びに亀裂開口量が異なれば, X線CT画像の平均CT値やCT値のノイズレベルなどが異なる ことが考えられる。さらに, 前節で示した補正係数ηについてもこれらの条件によって 変化することが考えられる。そこで本節では, 撮影対象となる試料の寸法および形状と 先に求めた補正係数ηとの関係を明らかにするために, 図4-13示す 10cm×10cm×5cm の 直方体岩石試料を用いて撮影を実施し, 亀裂開口量の評価を行うものとする。ここでは, 試料端部での最大開口量をwmax=2.80mm, 最小開口量をwmin=1.60mmと設定し上述と 同様の条件で, すなわち, 亀裂内部が空気および水である場合についてそれぞれ撮影を 実施した。また, ノイズ処理方法の普遍性を検証するために, 得られた画像について半 月板で用いたノイズ処理と同じ方法を実施し, 画像間差分を導入した亀裂投影法を適用 するものとする。

4.3.2 立方体花崗岩試料中の平板亀裂開口量評価結果

10回のスタッキングにより得られた試料のCT画像を図 4-14 に示す。ただし、この画像は亀裂内部が空気で満たされている場合のものである。さらに、模擬亀裂内部を空気および水でそれぞれ満たして撮影した画像を用いて差画像を作成した。その結果を図4-15に示す。これらの画像データを用いて、亀裂開口量のシフト δ を考慮し、半月板試料の分析により得られた補正係数 η を用いて亀裂開口量を評価した。その結果を図4-16に示す。この図に示すように、y=0mm~70mmの範囲では設定した亀裂開口量とほぼ一致していることが分かる。したがって、試料の形状ならびに亀裂開口量が異なる場合でも、同様の撮影条件、ノイズ処理を施した場合には同じ補正係数 η の値を用いて亀裂開口量を評価できることが確認できる。

本評価結果では y>70mm の範囲で開口分布が設定した亀裂開口分布と異なっている。 これは, X線 CT 画像でしばしば観察される虚像の影響であると考えられる。現在のと ころ, 虚像の出現を正確に理解するには至っておらず, 試料内部での密度分布の急激に 変化を避ける, あるいは試料の角部を作らないなどの工夫が必要である。

4.4 花崗岩立方体試料を用いた人工亀裂開口量評価

4.4.1 花崗岩立方体試料および撮影条件

前節までの考察により同一条件で撮影した X 線 CT 画像については,同一のノイズ処 理および補正係数を用いることにより,異なる寸法および形状の試料内部の亀裂開口量 の評価が可能であることが明らかになった。そこで,本節では 10cm×10cm×10cm の花 崗岩立方体試料図 4-17 中に作成した人工割裂亀裂の亀裂開口量の評価を試みる。撮影 の手順は,これまで示した方法と同一の方法をとるものとする。

4.4.2 花崗岩立方体中の人工亀裂開口量評価結果

まず、上述の試料中に作成した亀裂内部を水および空気で満たした状態でそれぞれ 10回の撮影を実施した。それらの画像データをスタッキングした結果を試料図 4-18 に 示す。さらに、画像間差分を実施した結果を試料図 4-19 に示す。この図に示すように、 花崗岩中に存在する人工亀裂の様子が明瞭に読み取れる。すなわち、先に示した平板亀 裂の場合とは異なり、試料内部で亀裂の方位は必ずしも直線的ではない様子がわかる。

さて、ここでは試料図 4-19 に示した人工亀裂のX線CT画像データの特徴について述べる。まず、これまでと同様にy軸方向についてW=25の移動平均を実施した。測線I上でのCT値の分布を試料図 4-20 に示す。この図に示すように、これまでと同様に岩石マトリクス部においてはCT値はほぼ0であるとみなすことができ、亀裂開口部分の情報が明瞭に読み取れる。次に、このCT値の分布をx軸上にすべて投影し平均のCT値分布を求めた結果を試料図 4-21 に示す。この図に示すように、亀裂開口部に注目すると、これまでの平板亀裂の場合とは異なっていることが分かる。すなわち、CT値の分布は必ずしも一様な凸型をしていない。これは、亀裂の形状が必ずしも直線的ではないために、上述の移動平均により評価対象となる点の周囲における亀裂開口の情報が含まれる結果であると考えられる。しかし、この図から求められるCT値の分布は、試料内部に存在する亀裂開口面積を表していることになる。したがって、この結果より試料内部の平均亀裂開口量の評価が可能である。先に述べた亀裂開口量のシフト δ =0.055mmおよび補正係数 η = 0.86を用いて平均亀裂開口量wmeanを評価した結果、wmean=0.46mmであった。この結果は、本花崗岩試料作成後の寸法の増分、すなわち人工亀裂開口により増加した平均的な亀裂列開口量と等しく、亀裂開口量を正確に評価していると考えることができる。

次に, 試料図 4-19 で示した結果を基にy軸上の亀裂開口量の分布を評価した。その結 果を試料図 4-22 に示す。この図に示すように, W=25 の移動平均を実施した場合にはwm は概ね 0.41mm< wm<0.53mmの範囲で分布していることが読み取れる。ただし, この 分布は移動平均を実施する範囲Wの大きさに依存することが考えられる。現段階では亀 裂内部の詳細な開口分布は不明であるので, 今後, 実際の亀裂のように表面の形状が滑 らかでない場合について, 適切な平均化処理を検討する必要がある。

(a) 花崗岩半月板試料

(b) 花崗岩試料

図 4-1 花崗岩半月版試料中の平行亀裂開口量

図 4-2 シングルスキャン画像

図 4-3 スタッキング画像

(b) 測線 I における CT 値のヒストグラム

図 4-4 測線 I における CT 値 (シングルスキャン画像)

(b) 測線 I における CT 値のヒストグラム

図 4-5 測線 I における CT 値 (スタッキング画像)

図 4-6 花崗岩中の亀裂画像(画像間差分法)

図 4-7 画像間差分後の測線 I 上における CT 値の分布

図 4-8 画像間差分およびスタッキング後の測線 I 上における CT 値の分布

図 4-9 花崗岩半月板試料中の平行亀裂開口量(補正前)

図 4-10 亀裂を密着させた状態での X 線 CT 画像

図 4-11 花崗岩半月板試料中の平行亀裂開口量(補正係数: η=0.86)

図 4-12 花崗岩半月板試料中の平行亀裂開口量(亀裂投影法)

(a) 直方体花崗岩試料

(b) 直方体岩石試料

図 4-13 直方体花崗岩試料中の平行亀裂開口量

図 4-14 直方体花崗岩試料中の平行亀裂内部を空気で満たした場合の CT 画像 (スタッキング回数 10 回)

図 4-15 直方体花崗岩試料中の平行亀裂の CT 画像 (空気と水の差画像)

(補正係数: η=0.86)

JNC TJ8400 2003-091

図 4-17 人工割裂亀裂を有する花崗岩立方体試料

図 4-18 人工割裂亀裂を有する花崗岩立方体試料の CT 画像 (スタッキング回数 10 回)

図 4-19 人工割裂亀裂を有する花崗岩立方体試料の CT 画像 (空気と水の差画像)

図4-20 画像間差分およびスタッキング後の測線 I 上でのCT 値の分布

図 4-21 人工割裂部の CT 値(x 軸上に投影)

図 4-22 花崗岩立方体試料中の人工亀裂開口量

5. おわりに

本研究では、X線 CT の画像データを用いて、不均質材料中に存在する開口亀裂の開 口量を評価するためのデータ処理方法を検討した。また、CT 値の再構成時に生じるラ ンダムなノイズやカッピングといった CT 画像データ特有のノイズの除去、不均質性の 除去と亀裂データの適切な抽出方法を考慮した画像間差分法を提案し、不均質性の大き い岩石試料への適用方法について検討した。本研究で得られた知見をまとめると以下の 通りである。

- (1) X線CT画像に必然的に含まれるノイズを除去し画像を鮮鋭化する方法として、ス タッキング法を適用し、その有効性について検討した。その結果、6回程度の画像 スタッキングにおいても十分にノイズ軽減が可能であることが確認された。
- (2) 試料の不均質性を除去し、亀裂データのみを抽出する方法として画像間差分を適用し、その有効性について検討した。その結果、画像間差分により岩石固有の不均質性が、画像データからほぼ除去されていることが確認された。また、カッピングの影響を除去する方法としても有効であることが示された。
- (3) 上記(1)および(2)の処理後,移動平均法によるノイズ処理を実施した。その 結果,岩石マトリクス部における CT 値はほぼ0となり,亀裂開口に関する CT 値デ ータのみを抽出することができた。
- (4) 上述(1)~(3) の処理を施した画像データを用いて亀裂の開口量を評価した。その 結果,開口量が0と判断できる場合にも亀裂の存在による開口量のシフト&が確認 された。またその量は、本研究で示した手法を用いた結果&=0.055mmであった。
- (5) ノイズ軽減処理ならびに画像間差分法により、画像データを用いて亀裂開口分布 を正確に再現することができた。さらに、本研究で撮影したデータを用いて従来の 亀裂投影法と比較検討した結果、画像間差分法の導入が不均質材料の亀裂開口量評 価に非常に有効であることが示された。
- (6) 直方体試料を用いて亀裂を模擬し、同様の手法を用いて亀裂開口量を評価した。 その結果、撮影条件およびノイズ処理の過程が同じであれば、補正係数 ηは形状お よび寸法の違いにかかわらず一定値をとることが分かった。
- (7) 直方体試料中に作成した割裂亀裂について、上述と同様の撮影を実施し、その結果得られる画像データから亀裂開口量の評価を実施した。その結果、得られた平均 亀裂開口量は、亀裂作成前後の寸法測定により得られた亀裂開口による寸法の増分 とほぼ一致しており、表面が滑らかでない割裂亀裂についてもX線CTデータによる 亀裂開口量が可能であることが明らかになった。

参考文献

- 1), J. R. E. Arthur : "New techniques to measure new parameters", Proc. of Eoscoe Material Symp. on Stress-Strain Behavior of soils, Cambridge, pp.340-346 (1971).
- 2), F. Verhelst, et al. : "X-ray computerized tomography, Determination of heterogeneities in rock sample", Proc. of 8th ISRM Cong. Tokyo, Vol.1, pp.105-108 (1995).
- T.Nakano, et al. : "Observation of 3-dimnsional internal structure of rock using X-ray CT : (1) Density calibration of CT value", Geoinfomatics, Vol.8, No.4, pp.239-255 (1997).
- 4) K.Sugawara, et al. : "Crak opening analysis by means of the X-ray CT", Shigen-to-sozai, Vol.114, No.12, pp.881-887 (1998).
- 5) V. Cromwell, et al. : "The use of a medical computer tomography (CT) system to observe multi phase flow in porous media", Soc. of Petroleum Eng., 13098, Soc. Petroleum Eng., Richardson, TX (1984).
- M. E. Coles, et al. : "Application of CAT scanning for oil and gas production research", IEEE Trans. Nucl. Sci., Vol.38, pp.510-515 (1991).
- 7) K.Sugawara, et al. : "Visualization of water saturation process in rock by X-rays CT",
 '99 Japan-Korea Joint Symposium on Rock Engng. Fukuoka, Japan, pp.503-508 (1999).
- 8) K.Sugawara, et al. : "Measurement of permeability of rock by means of X-ray CT", Shigen-to-sozai, Vol.115, No.11, pp.803-808 (1999).
- 9) A.Sato, et al. : "Analysis of permeation process in rock by means of X-ray", Proc. of ISRM Int. Symp. Rock Engng. for mountainous regions, Portugal, pp.675-682 (2002).
- 10) K. Sugawara, et al. : "Analysis of water flow in rock by means of X-ray CT", International Workshop on X-ray CT for Geomaterials, pp.315-334 (2003).
- 11) K. Sugawara, et al. : "Analysis of wetting process of rock by means of X-ray CT", International Workshop on X-ray CT for Geomaterials , pp.335-345 (2003).
- 12) J. Otani, Y.Obara : X-ray CT for geomaterials –soils, concrete, rocks –, International Workshop on X-ray CT for Geomaterials (2003).
- 13) T.Hirono, et al. : "Nondestructive observation of internal structure in sediments and rocks using microfocus X-ray CT system", J. Geolo. Soc. Japan, Vol.108, No.9, pp.606-609 (2002).
- 14) K. Pratt William : Digital image processing, Jon and Wiley & Sons, Inc., Chapter 12. (1978)