

JNC Technical Review No.23 2004.6

「金属電解法の溶融塩電解で鉄陰極に析出した デンドライド状のウラン金属」

サイクル機構技報

No.23 2004年6月

目 次

技	術	概	説	
高速	炉の安	全性に <u>た</u>	いかわるCABRI炉内試験の狙いと主要な成界	! 1 佐藤 一憲
技	術	報	告	

- 原子炉容器廻りISI検査装置の開発 一高磁場配置型EMATの開発									
			徐	陽	山下	卓哉			
「常陽」MK-II炉心特性データベースの改訂						• • • • • • • •	23		
	関根 隆	备 前田	茂貴 大川内	靖	青山	卓史			

研究報告

酸化物電解再処理環境におけるセラミック	材料0 竹内	D耐食性 正行	加藤	利弘	鷲谷	忠博	菅沼	降	青瀬		31
超深地層研究所計画(第1段階)における地	下水の	D地球化的	之 学特性	調査 …							41
			彌榮	英樹	岩月	輝希	古江	良治	水野	崇	
ベントナイトコロイドに対するCsの収着学	動 .				6600	和毅				奴	51
亀裂交差部に沿った方向の透水特性の評価					<i>ы</i> хыл	1132	ч нн				63
					鐵	桂一	澤田	淳	内田	雅大	00
放出放射性物質による緊急時線量シミュレ	ーショ	コンシス	テム(5	SIERRA-	-II)の	開発 …			· · · · · · · · · · · · · · · · · · ·		71
			竹安	止則	武石	棯	甲野	政尚	清水	武彦	

会議報告	
敦賀国際パネル ~世界の高速増殖炉開発と「もんじゅ」技術~ —2004年2月25日開催— 北端 琢也 飯島 隆 今泉 英	79 之
2003年度地層処分技術に関する研究開発報告会 一処分技術の信頼性向上のための基盤整備に向けて	···· 82 輔
大洗FBRサイクルシンポジウム2004 ―2004年2月27日開催―	···· 88 衛
第13回もんじゆ・国際技術センター技術報告会2004年3月10日開催	···· 92 嘉
第4回敦賀国際エネルギーフォーラム 一日本のエネルギー政策と国際協調について— —2004年4月26,27日開催— 榊原 安英 北端 琢也 横田 淑生 山口 智彦 池田	···· 96 博

JNC Technical Review

No.23 2004.6

CONTENTS

概況報告

高速増殖炉サイクルの研究開発
高速増殖原型炉「もんじゅ」の研究開発 107
高速増殖炉サイクル実用化戦略調査研究 111
高速増殖炉の研究開発 115
高速増殖炉燃料の研究開発 119
高速増殖炉燃料再処理技術の研究開発 121
高レベル放射性廃棄物の地層処分技術に関する研究開発 123
軽水炉燃料再処理技術の研究開発 129
環境保全技術開発 132
核物質管理と核不拡散対応 138
安全管理と安全研究 139

国際協力

国際会議,海外派遣・留学,主要外国人の来訪,国際協力協定,余剰兵器解体プルトニウム処分協力 …… 143

活動報告

業務品質保証活動	145
外部発表	147
技術情報管理, 情報システム	155
大学等との研究協力、社内公募型研究	156
技術協力・技術移転,開発技術の利用・展開,施設・設備の供用,国内技術協力研修	159
特許・実用新案紹介	162

サイクル機構技報

No.23 2004年6月

表紙の全体デザインと色調

全体デザインは、「サイクル機構による情報発信」をイメージしたものです。 萌葱色(もえぎいろ)を基調とした色調は、「サイクル機構における新たな萌芽」を表現したものです。

表紙の画像

「金属電解法の溶融塩電解で鉄陰極に析出したデンドライド状のウラン金属」

この写真は,(財)電力中央研究所と実施している共同研究「乾式再処理プルトニウム試験に関する共同研究」で高レベル放射性物質研究施設に設置した数10g規模の試験装置により得られたウラン金属の析出物です。金属電解法では,溶融塩中に浸せきした使用済み燃料を陽極として電解し,鉄陰極にウランを回収した後,液体カドミウム陰極にウランとプルトニウムを混合状態で析出させることにより核分裂生成物を除きます。得られた析出物は,高温で低圧蒸留して付着している塩化物やカドミウムを除去し,金属インゴットとしてから射出成形により燃料に加工してリサイクルします。これによって再処理と燃料製造が簡素化されることによるサイクルの経済性向上が期待されています。

また,金属燃料は高速炉の燃料としても優れた性能を有しており,米国の試験炉で 利用された実績も豊富です。写真の析出物は,プルトニウム試験に先立ち2003年に 実施したウラン試験によって得られたもので,溶融塩電解によって樹枝のような形状 に成長することからデンドライドと呼ばれています。

画像提供: 東海事業所 環境保全・研究開発センター 先進リサイクル研究開発部

本誌及びバックナンバーの内容を核燃料サイクル開発機構インターネットホームページ内に 掲載しています。

[アドレス] http://jserv-internet.jnc.go.jp/ または http://www.jnc.go.jp/siryou/gihou/main.html

■本誌の全部又は一部を複写・複製・転載する場合は,編集発行元へお問い合わせください。

核燃料サイクル開発機構 技術展開部 技術協力課 〒319-1184 茨城県那珂郡東海村村松4-49 ©核燃料サイクル開発機構 2004

Inquiries about copyright and reproduction should be addressed to:

Technical Cooperation Section, Technical Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan © 2004 JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE

資料番号:23-1

高速炉の安全性にかかわる CABRI 炉内 試験の狙いと主要な成果

佐藤一憲

大洗工学センター 要素技術開発部

Objectives and Main Outcomes of the CABRI In-Pile Experimental Programs for FBR Safety

Ikken SATO

Advanced Technology Division, O-arai Engineering Center

仏,独等との国際協力によるCABRI炉内試験プログラムでは,約30年にわたり高速増殖炉の安全性にかかわ る試験研究を実施してきた。このプログラムでは,仮想的炉心崩壊事故時の挙動解明を始め,将来的な高速炉燃 料の設計高度化の基礎となるデータなど,本施設の特長を生かした多くの重要な成果が得られている。

サイクル機構では本プログラムへの参加を通じて,試験データの取得のみならず,解析モデルの開発を含めた 各国の参加機関との協力によって安全評価手法の高度化を実現した。

現在, CABRI施設は高速炉分野での利用に区切りを付け,軽水炉分野の安全研究に向けて改造されつつある。 本報告では,これまでのCABRIプログラムの狙いと主要な成果について概説するとともに,将来的な炉内試験 施設の在り方について述べる。

In the CABRI in-pile test programs, experimental studies on FBR safety have been conducted for nearly 30 years under international collaboration with participants from France, Germany and others. From these programs, important outcomes were obtained, reflecting characteristics of the CABRI facility, such as clarification of Hypothetical Core Disruption Accident behavior and creation of experimental database which will contribute to future improvement of FBR fuel design.

Through the participation in these programs, JNC significantly improved its capability in FBR safety evaluation, not only by acquisition of test data but also by technical collaboration with participants including simulation-model development.

Presently, CABRI facility is under reconstruction towards LWR safety study while leaving the FBR safety field. In this report, objectives and main outcomes of these CABRI programs are described. Additionally, a view on the future usage of the existing in-pile test facility is presented.

キーワード

高速増殖炉,CABRI,炉内試験,仮想的炉心崩壊事故,炉心損傷,燃料安全,燃料破損限界,破損メカニズム, 燃料分散,LOF,TOP,スローTOP

FBR, CABRI, In-Pile Test, Hypothetical Core Disruption Accident, Core Damage, Fuel Safety, Fuel Failure Threshold, Failure Mechanism, Fuel Dispersal, LOF, TOP, Slow TOP

1.はじめに

cabriとは仏語で「子ヤギ」の意味である。南仏 プロヴァンス地方の片田舎,カダラッシュ研究所 に設置された試験専用の原子炉CABRI¹⁾(写真1)

は、びょんびょん跳ねる子ヤギのようなパルス過 出力運転を特長とする。同炉はスイミングプール 型の試験炉であり、炉心中央に流動ナトリウム試 験ループ(写真2)を有する。1970年代初め、こ の施設を用いて高速炉の安全研究を行う国際共同 プロジェクトCABRI炉内試験が立ち上げられた。 このプロジェクトはCEA(仏原子力庁)と当時の GfK(独原子力研究協会、現FZK=カールスルー 工研究所)が手を結び、アイダホにTREAT試験施 設²を擁して高速炉安全研究をリードしていた米 国とは一線を画し、独自のイニシアチプに基づく

写真1 CABRI 外観

写真2 CABRI 炉上部(中央のパイプは試験体部分)

安全研究を展開すべくスタートしたものである。 CEA - GfKの連合体は1973年,当時の動燃,高速 増殖炉開発本部に本プロジェクトへの参加を要請 してきた。これを受けて旧動燃はジュニア・パー トナー(データへのアクセスは100%可,試験条件 選定に係わる議論への参加は可だが,決定権はな し)として参加を決定し,1975年2月に契約調印 した。

CABRI 炉内試験プロジェクトの当初の主要課 題は高速炉の仮想的炉心崩壊事故時の挙動解明に

あった。炉心崩壊事故時の挙動が早くから注目さ れた背景には,高速炉の安全上の特徴がある。高 速炉に限らず,原子炉の安全確保は「止める」「冷 やす」「閉じこめる」が基本と言われる。「止める」 は異常があったら炉をスクラムすることであり、 スクラムの信頼性は極めて高く設計される。「冷や す」はスクラム後も発生し続ける崩壊熱をいかに 除去するかであり、軽水炉の炉心崩壊事故(シビ アアクシデント)研究の主要課題は「止めた後に いかに冷やすか」である。すなわち,高い圧力を 維持することによって炉心の冷却水をいかに沸騰 させずに循環させるかというものである。これに 対してナトリウム冷却高速炉では冷却材の沸点が 高いために軽水炉のように高い圧力を維持する必 要はなく「止めてしまえば容易に冷やせる」特長 を持っている。このことから,高速炉の安全研究 では当初より,発生の可能性は極めて小さいもの の、「止まらなかった場合」を敢えて想定し、それ でも格納機能が維持されることを確認することに 重点がおかれてきた。これが仮想的炉心崩壊事故 (Hypothetical Core Disruption Accident)と呼ばれ る所以である。

CABRI プロジェクト立上げの当時は,各国が 各々の高速炉開発計画を持ち,前述の炉心崩壊事 故時の挙動解明を主体に,実験データに基づく合 理的な評価手法の確立に向けて熱意を持って取り 組んでいた。

図1にこれまでの4期にわたるCABRIプログ ラムの実施時期と参加パートナーを示す。第1期 のCABRI 1プログラム^{3)A)}では日本に続き, UKAEA (英原子力公社)及びUSNRC(米原子力 規制委員会)もジュニア・パートナーとして参加 し,5カ国による国際的な共同プログラムとなっ た。CABRI 1プログラムでは全32回の過渡試験が 実施された。このような国際共同プログラムの利 点として,各国の技術者の知識の反映及び各々の 特長を有する解析コードを用いた評価の総合,さ らには一堂に会して議論することにより得られる。

第2期のCABRI 2プログラム⁵以降,日本は試 験条件選定に等しく決定権を有するシニア・パー トナーとして参加している。CABRI 2では全12 回,第3期のCABRI FAST⁶では全8回,第4期 のCABRI RAFT⁷では全11回の過渡試験を実施し た。この間,米,英,独が各国固有の事情で高速

図1 4期にわたるCABRIプログラムの実施時期 と参加パートナー

炉開発を先送りする中で参加パートナーが減少し てゆき,CABRI RAFTプログラムはCEAから分 離・独立したIPSN(仏原子力安全防護研究所,そ の後IRSN=放射線原子力安全研究所に改称), EdF(仏電力供給公社),JNC(核燃料サイクル開 発機構)の資金参加及びFZKのオブザーバー参加 の形で実施された。このプログラムでは2001年10 月までに全過渡試験を終了し,2002年までに過渡 後の試験体に対するPIE(照射後検査)が完了し ている。

以下に, これらの4期にわたる CABRI プログラ ムの狙いと得られた成果について概説する。

2.4期にわたるCABRIプログラムの狙いと成果

これまでの4期30年にわたるCABRIプログラ ムの狙いは大きく2つの分野に分けられる。一つ は前述の「炉心崩壊事故」に係わる分野であり, 先行して実用化されている軽水炉と同等の安全性 を確保するという観点から歴史的に重視されてき たものである。もう一つは高速炉の「燃料安全研 究」ともいうべき分野であり,燃料の高燃焼度化 や高出力化といった燃料設計の高度化に応じ,こ のような設計を支えるためのデータ取得を主目的 として実施されたものである。

2.1 CABRI 1及びCABRI 2プログラムの主要な 成果

高速炉炉心は通常時の物質配位が反応度を最大 にする体系でないことから,炉心崩壊事故を想定 すると冷却材沸騰や燃料移動によって反応度の増 加が生じ得る。このことから高速炉安全研究にお いては,その初期から炉心崩壊事故時の反応度応 答を中心とした事象推移解明に重点がおかれてきた。炉心崩壊事故において想定される冷却材沸騰, 被覆管溶融,燃料溶融,燃料移動といった一連の 挙動を含む代表的事象としてULOF(Unprotected Loss of Flow)事象が挙げられる。これは1次系 の主循環ポンプ(通常2~4系統)がすべてトリ ップしたにも関わらず,多重性・多様性を有する 信頼性の高い原子炉保護系が作動しないという極 めて起こり難い想定であるが,その場合ボイド反 応度係数が正となる一般的な高速炉では10~20秒 で冷却材沸騰を生じ,やがて出力は上昇する。

初期のCABRI 1及び 2プログラムにおいては, 炉心崩壊事故時の初期過程における燃料破損と破 損後燃料移動の挙動解明に重点がおかれた。図2 に炉心崩壊事故時の初期過程における事象推移 と炉出力の変化を模式的に示す。冷却材の沸騰 によって出力が上昇した状況を模擬した多くの CABRI 試験結果からは,燃料条件や過渡条件に依 存した燃料破損メカニズムと破損条件が把握され た^{いい)}。また,破損後の燃料移動に係わる精度の高 いデータから,破損後の燃料分散は燃料エンタル ピー(単位質量あたりの蓄熱量)に支配され,こ の燃料分散が極めて有効な反応度抑制効果として 働くことが確認された100,110。すなわち,炉心崩壊 事故時の初期過程では、炉心におけるエネルギー 放出を抑制する固有のメカニズムが存在すること を明らかにしたと言える。

図3はCABRI試験の高精度データ取得を可能 にした中性子ホドスコープ⁽²⁾と呼ばれる燃料移動 計装の概念を示す。この計測装置では,CABRI炉

図 2 炉心崩壊事故の初期過程における事象進展と 出力変化

図3 リアルタイムの燃料移動計測を可能にする 中性子ホドスコープ

心中央に設置した燃料ピン(第四期のプログラム を除き1本)における核分裂で発生する中性子を コリメーターと呼ばれるスリット越しに多数の中 性子検出器(縦51列×横3列の格子状配置)で検 出し,過渡中の空間的な燃料分布に関わるリアル タイムのデータを取得した。

図4はこのような中性子ホドスコープデータに よる燃料分散挙動モデル⁽³⁾の検証例⁽⁴⁾を示す。この ように実機条件に即した実験データによって燃料 破損判定及び破損後燃料移動に係わる解析モデル を改良・検証することにより,実機評価精度が飛 躍的に向上した。この結果,将来的な大型炉につ いても,ボイド反応度など炉心設計において適切 な配慮を行えば,炉心損傷の初期過程での応答は 炉容器などバウンダリーの健全性に懸念を及ぼす ものではないとの結論が得られた。

図4 CABRI 2 E13試験における燃料分散挙動の 中性子ホドスコープデータと解析の比較

なお, CABRI 1プログラムでは比較的高い過出 カレベルを中心としてデータを取得したのに対し て, CABRI 2プログラムでは燃料条件(燃料設計 及び燃焼条件)依存性の把握,よりマイルドな過 渡条件での挙動の把握につながるデータを取得 し,これらによって広範なデータベースが構築さ れた。

22 CABRI FAST プログラムの主要な成果

CABRI FAST プログラム(CABRI 2プログラム の一部を含む)では,将来的な燃料設計の高度化 を念頭に,「運転時の異常な過渡変化」あるいは 「事故」と呼ばれるカテゴリーに属する過出力条件 下での燃料ピン破損限界あるいは破損に対する裕 度の解明に重点がおかれた。これらのカテゴリー は安全設計の妥当性を確認するために想定される ものであるが,燃料性能をより高く引き出すため には,このような設計の基準となる事象,すなわ ち「設計基準事象」における応答特性が重要となる。

「設計基準事象」としての代表的な過出力条件として「制御棒誤引き抜き事象」が挙げられ,定格 出力Poに対して数% Po/秒といった速度で出力 が上昇する。このような過出力条件はスロー TOP (slow Transient Overpower)と呼ばれている。な お,実際の原子炉では燃料が溶融する以前にスク ラムするように設計されるが,本実験での試験条 件としては燃料破損を発生させるまで,あるいは 施設の能力限界まで更に出力上昇を継続させる。 この分野の先行した研究にはTREAT^{(5),(6)}やEBR II試験研究^{(7),(0),(9)}があった。CABRI FASTプロ グラムでは,従来データが不足しており,かつ 将来の燃料設計の観点から重要性の高いピン径 8 5mm 程度の「太径中空燃料」を中心にスロー TOP 試験データを得た²⁰⁾²¹。

表1はCABRIを始めとする幾つかの炉内試験施設でこれまでに行われた代表的なスロー TOP 型過渡試験の例を示したものである。CABRI炉及 びTREAT炉には、定格出力の3倍内外に相当する 高い過出力条件を実現できる特長があり、多くの 破損データが得られている。図5はこれらの試験 結果のうち、燃料条件に応じた破損限界把握の観 点から重要なデータについて、燃料燃焼度と概略 燃料溶融割合の関係に着目して整理したものであ る。ここでは、破損限界を考える上での一つの指 標として軸方向中心位置での燃料断面溶融割合を

4

5

	CABRI-2 CABRI-FAST	EBR-II TOP	PFR/TREAT	FFTF/TREAT
試験名	E9, E9bis, E12 BCF-1, PFX, PF1, MF2	TOPI-1A, B, C, D, E	C04, C05, L03	RFT-L2, L3 EBT-3 TS-1, 2 CDT-1, 3
	ピン数:7本	ピン数:95本	ピン数:9本	ピン数:11本
試験ピン	ピン径:8.65mm(中空) 85mm(中空)	ピン径:5.84mm(中実) 7.0mm(中実)	ピン径:584mm(中空)	ピン径:5.84mm(中実) 6.86mm(中空)
⊥ 13×	被覆管材:316Ti/15 15Ti	被覆管材:CW316SS, D9, PNC316, PNC1520 PNC-FMS	被覆管材:CWM316	被覆管材:CW316SS, HT9
燃焼度	5 , 6 <i>4</i> , 12atom%	0 ~ 16atom%	4 ,9 atom%	0 2~12 5atom%
過出力速度	1 ,3 %Po/sec	0 .1 , 10%Po/sec	10%Po/sec	5 , 10%Po/sec
燃料破損 ピン数 (過出力 レベル)	2本(E12,BCF 1) (~1.6Po,~1.8Po) 810,840W/cm	・2本(1C) (~1.75Po) 490,550W/cm ・2本(1E) (~1.7Po) 760,780W/cm	9 本(C04,C05,L03) (3Po) 1 250~1 <i>3</i> 50W/cm	2本(TS1,TS2) (3.1,3.4Po) 1.200,1.270W/cm

表1 スロー TOP 条件での代表的な炉内試験の例

用いている。この指標は燃料ピン全体の熱的ポテンシャルを代表するものである。なお,過出力条件下での線出力と燃料熱条件の関係は,出力上昇速度やCABRIやTREAT炉内試験特有の燃料ペレット内径方向発熱分布歪(熱中性子束減衰効果による)に依存した複雑なものとなる。

90%TD(TD:theoretical density)内外の高スミ ア密度燃料の破損限界は,被覆材の材質や肉厚及 び中性子照射量などの条件に依存するが,標準的 な被覆材条件での破損限界は20~30%の燃料断面 溶融割合となっている。なお,EBR II TOPIシ リーズ試験には,破損メカニズム解明のために破 損データを積極的に取得するべく,特殊な被覆材 や通常の使用範囲を大きく超える照射条件を採用 した燃料ピンが含まれている。これに対して85% TD程度以下の中低スミア密度燃料では,70%を 越える高い燃料断面溶融割合まで非破損の結果と なっている。

このように,高速炉燃料は「事故」条件で想定 される過出力条件に対して総じて破損限界が高 く,燃料スミア密度に配慮した設計を行うことに よりその健全性裕度は極めて大きなものにできる ことが示された。

23 CABRI RAFT プログラムの主要な成果

CABRI RAFT プログラムでは,上記の3つの CABRI プログラムの成果を踏まえ,高速炉の実用 化に向けてCABRI施設の能力を最大限に引き出 す試験の実現を図った。その狙いは以下の3つか らなる。

炉心崩壊事故における初期過程終了時(=後続 過程初期)の物質分布

同上後続過程における溶融燃料 / スティール伝 熱

スロー TOP 条件下における破損燃料の冷却性

上記 , は炉心崩壊事故の後続過程に係わる データ取得を狙った意欲的なものである。また, はCABRI FASTプログラムで得られた高速炉燃料の高い破損限界見通しを背景として,炉心の一部の少数燃料ピンにおいて偶発的な燃料破損を想定した場合の影響に着目したものである。これらのCABRI RAFTプログラムの試験は,何れも従来のCABRI 試験には用いられたことのない新たな試験体系や試験技術開発を必要とするものであったが,実験関係者らの多大な努力によって実現された。

炉心崩壊事故における初期過程終了時の物質 分布

従来のCABRI試験では単一燃料ピン体系を用 いていたが、CABRI RAFTプログラムでは3本ピ ン・クラスター体系を用いた試験を2試験実施し、 ULOF条件下での燃料分散挙動を観測した。これ により、より実機に近い冷却材流路条件での軸方 向燃料分散と固化挙動のデータを取得した。これ らの試験においては過渡後に破壊・非破壊検査を 実施しており、その結果の例を図6に示す。これ らの試験結果は単一ピン体系での分散・固化挙動 と基本的に等価なものとなり、軸方向への分散燃 料の侵入長が燃料への投入エネルギーに支配され ていることを確認するとともに、従来のCABRI試 験における単一ピン体系でのデータの実機適用性 を示す結果となった。このような、より実機条件

仮想的炉心崩壊事故の後続過程における溶融 燃料/スティール伝熱

CABRI 1.2プログラムの成果により、初期過 程における出力上昇は, 炉心の最もエンタルピー の高い領域での燃料分散によって効果的に抑制さ れ,初期過程はマイルドに推移することが示され た。このようなマイルドな初期過程の間に一部の 燃料は炉心の上下に分散するが,多くの燃料が炉 心内に残留する。このような残留炉心燃料は更に 発熱しており,時間とともに燃料溶融が進行して 溶融炉心プールを形成することが考えられる。こ のような炉心プール形成の初期段階で制御棒案内 管等の熱的に弱い部分を通じて溶融炉心物質が炉 心外に排出されれば,事故は核的に終息に向かう (図7参照)。このような排出挙動に着目した研究 は現在,カザフスタン共和国国立原子力研究セン ターとの共同により, IGR (Impulse Graphite Reactor 試験炉を用いた「EAGLE プロジェクト²³」で 別途進めている。

図6 CABRI RAFT プログラムの3本ピンクラ スター試験の過渡後非破壊検査データの例

図7 炉心物質の炉心外への流出と核的終息

このようなプール形成過程においては,溶融燃料からスティールへの伝熱が,スティール蒸気圧の形成などを通じてその後の事象推移に影響を与えることから,その不確定性低減が重要な課題である。CABRI RAFTプログラムではこのようなプール形成過程の伝熱に着目した試験を実施した。図8はこのような燃料からスティールへの伝熱とこれに伴うスティール蒸気形成挙動に着目したCABRI RAFT試験²³⁾の試験体概念である。UO2粉末を固めた直径14mmのペレット中に直径1mmのスティール球40個を配したものをカプセル中に納めてあり,燃料は45mmの高さを持つ。このようなカプセルをCABRI炉内に設置し,低出力運転によって燃料最高温度を1,000 程度にした条件からパルス過出力を印加した。

過渡後の断面金相データを写真3に示すが,十 分な燃料溶融が確認でき,燃料へのエネルギー投 入は十分に得られていたことが分かる。この一部 を拡大すると写真4に示すようにミクロンサイズ のスティール粒子が見られ,一度蒸発したステ ィールの凝縮の結果と判断される。試験ではカプ セル圧力履歴等の過渡中のデータが得られてお り,断面金相データに基づく検討と解析コード SIMMER IIIによる評価を総合することにより, スティール蒸気形成挙動に関わる重要な知見が得 られた。図9はこのようなデータ分析と解析評価 によって推定された過渡中の挙動イメージを示 す。この結果から,燃料からの初期の伝熱で発生

図8 CABRI RAFT TP A2試験の試験体概念

写真3 TP-A2試験燃料の断面金相写真

したスティール蒸気が,熱源である溶融燃料と液 相スティールの隙間に入り込む「プランケット効 果」によってスティールへの伝熱が緩慢なものと なるとの見通しが示された。このメカニズムによ

気泡内部のスティール蒸気が凝縮

 したもの(直径約2ミクロン)
 移動方向
 冷却過程で温度勾配に より移動してきた気泡

写真4 凝縮によるスティール微小粒子

技術概説

7

図9 試験データ分析と解析評価を総合して得た TP A2試験の推定事象推移

ってスティール蒸気形成速度が抑制されると、 プール拡大を想定した従来評価におけるスティー ル蒸気に駆動された溶融炉心プールの不安定な揺 動は抑制され、早期流出の有無に係わらず、有意 な機械的エネルギー発生の防止を可能にし得る。 このスティール蒸気プランケット効果による伝熱 抑制効果については、現在、模擬物質を用いた炉 外試験がサイクル機構とCEAグルノーブル研究 所の共同で実施されており、更に詳細な知見を得 て実機評価に反映していく予定である。

スロー TOP条件下における破損燃料の冷却性 高速炉 MOX 燃料の過出力条件下での破損限界 は一般に高く,特別な場合を除いて極端な過出力 にならない限り被覆管の破損は生じていない。特 に中低スミア密度燃料では極めて高い破損限界が 達成可能であり,目標とする高燃焼度領域(15at. %以上)での実験的確認は必要であるものの,破 損に対して十分に裕度を持たせた設計が可能であ るとの見通しが得られている。

しかしその一方で、深層防護の観点からは、万 一の燃料ピン破損を想定してその影響を把握して おくことが重要である。この場合、燃料設計や制 御系の設計において、破損限界に対し十分な裕度 が確保されていることから、想定すべき燃料破損 は、本来の破損限界以下のレベルでの極少数ピン の破損が対象となる。

この場合であっても,燃料溶融を伴わずに破損 を生じた場合については,既存の知見からは短時 間のピン間破損伝播などは見られておらず,異常 拡大防止の観点からの試験研究の重要性は低い。 一方,燃料溶融を伴って被覆管が破損した場合の 応答については , 十分な知見が得られていなかっ た。

CABRI RAFT プログラムのRB1試験²⁴では,こ のような燃料溶融を伴って被覆管が破損した場合 について有効なデータを得ることができた。この 試験では,64at.%の中空照射済燃料ピンに対し てスリット型の人工欠陥を設置し(図10参照),こ のスリットを低融点合金により塞いだ特殊燃料を 使用した。そして過出力によって燃料溶融を生じ させ,冷却材流量を調整することでスリットを塞 いでいる低融点合金を溶融させた。その結果,図 11に示すように20%程度の燃料断面溶融割合とス リット部の開口破損を実現したが,溶融燃料の放 出や急激なガス放出は見られなかった。すなわち, 低スミア密度燃料では,燃料溶融領域の圧力があ

図11 CABRI RAFT RB1試験での過渡後断面金相

まり上昇せず,外側の固相燃料部分が溶融燃料の 放出に対するバリアーとして有効に作用すること が示された。なお,燃料放出が見られない反面, 開口部を通じて,異常検出の観点から重要なDN (遅発中性子先行核)の冷却材流中への移行が確認 された。

この結果は,低スミア密度燃料は,破損限界の 向上のみならず,仮に破損を想定した場合の異常 拡大防止の観点からも有効であることを示したと いえる。

3.CABRI試験施設の軽水炉安全研究への転換と TREATの役割

前述のようにCABRI 炉は1970年代から約30年 間にわたり高速炉安全研究のための試験施設とし て広範な研究課題に貢献してきた。しかし, CABRI RAFT プログラム試験の終了後は,炉内ナ トリウム・ループを撤去し,高温高圧水ループを 設置して軽水炉RIA(Reactivity Initiated Accident) の研究に利用されてつつある。また,CABRI炉の 隣に設置されていたSCARABEE炉は、CABRI炉同 様に高速炉安全研究(燃料集合体内閉塞事故など) に使用されてきたが,既に廃炉となっている。こ のように,今後ナトリウム冷却条件で試験を実施 できる施設は世界的にも極めて少なくなっている。

一方,今後の高速炉実用化のためには,燃料設計の高度化に対応したスロー TOP条件下での破損限界など,実証性を有する許認可データの取得が必要と考えられる。このようなデータの取得には米国のTREAT炉(スタンバイ状態にて休止中)(写真5,6参照)を用いた試験が現実的な方策であり,同施設の機能維持と再開が強く望まれる。このような状況を受け,サイクル機構では現在,米国アルゴンヌ研究所との共同でTREAT炉を活用した新たな安全性試験の実現性を検討している。

4.おわりに

CABRI試験計画は当初、米国のTREAT試験とは 独立の関係にあったと言えるが、これらの試験結 果は相補的なものであり、両者を総合的に評価す ることにより、高速炉安全研究の効果的な推進に 寄与した。すなわち、7本ピン束条件を中心にし て冷却材流路条件の実機模擬性に重点をおいた TREAT試験では、燃料破損や破損後燃料移動の3 次元性が観測精度を低下させたのに対して、単一

写真5 米国アイダホ州のTREAT施設

写真6 TREAT 炉の上部

ピン体系で軸方向の配位や移動を単純化した CABRI試験では、その観測精度が大幅に向上し、 そこから得られた知見はかつてのTREAT試験 データのより深い解釈を可能にした。また、 CABRI炉においては、TREAT炉では困難な短時間 の高い過出力条件での試験が実現され、燃料加熱 速度の影響の解明に効果的につながった。

サイクル機構における高速炉安全研究の基盤 は、このようなCABRIプログラムの進展とともに 確立されてきたと言える。そして2001年12月11日、 フランスにおけるCABRI炉を中心とした高速炉 研究の30年の歴史を記念するパーティーが CABRIサイトに近いエクサンプロヴァンス市で 開催された。最終回のCABRI共同委員会に出席す るために当地に出張していた筆者は、この席に出 席する幸運な機会を得た。この席には、長年にわ たり実験を指揮してきた元IPSNのタテグラン氏 (A. Tattegrain)や計画の立ち上げ段階から仏を強 力にサポートしてきたFZKのホイズナー氏(G. Heusener)など、高速炉安全研究における仏、独 を代表するメンバーらが顔を揃えた。このような 中にあって、明らかに格不足の筆者はCABRIプロ グラムへの参加を始めとして日本における高速炉 安全研究の開拓者というべき渡辺章氏(旧高速増 殖炉開発本部、現在は引退しておられる)のメー ッセージを代読させて頂いた。ここに、同氏への 敬意を込めて紹介させて頂く。

It is fortuitous for me to know that this celebration takes place.

It is almost 26 years ago when the then PNC thought of joining the Cabri project. Though Cabri had many difficulties, it is amazing that the project has achieved many of the initial objectives over so many years. PNC has learned a lot and been enabled to raise young colleagues through this project.

It is a great honor for me to have participated in the early phase of the project and it was the best years of my life. I am lucky to have made acquaintance with the people around Cabri. I learned of pastis, khir, poire williams, armagnac, marc etc to say nothing of Neuf du Pape.

The only regret I have is that I have not kept my promise to bring my wife to Provence. We are healthy and are trying hard to reduce our overweight. Maybe we might be able to visit Provence again.

Oldtimers will miss Andre, Brian, and Franz.

A votre sante, and zum Wohl.

(以下 訳)

この記念会が開催されることを聞き,大変嬉し い。このCABRIプロジェクトに当時の動燃が参加 を考えてから,もう26年になる。CABRIプロジェ クトでは多くの困難があったが,この長い年月を 経て,その所期の目的の多くを達成してきたこと は素晴らしい。旧動燃はこのプロジェクトを通じ て多くを学び,また多くの若手技術者を育てる機 会を得た。

私にとってこのプロジェクト草創の時期に参加 できたことは,極めて光栄なことであり,私の人 生における最良の年月であった。私はCABRIに係 わる仲間と知り合い,パスティス,キール,ヌフ・ デュ・パップなど(=当地の酒)を知る幸運に浴 した。

唯一残念なことと言えば, 妻をこのプロバンス 地方に連れてくるという約束を未だ果たしていな いことだ。妻共々私たちは今,健康であり,節制 に努力している。願わくば,妻と共にプロバンス をもう一度訪ねてみたい。

古き仲間と共に ,今は亡きアンドレ ,プライアン , フランツを偲びつつ・・・

乾杯

参考文献

- J. Dadillon et al.: "The CABRI Facility Experimental Fuel Pin Program Its Objectives and Present Results Obtained Until Now, "Proc. Int. Mtg. on Fast Reactor Safety Technologies, Seattle, Vol.II., p.914 (1979)
- 2) G.A. Freund, H.P. Iskenderian and D. Okrent: "TREAT, A Pulsed Graphite Moderated Reactor for Kinetics Experiments, "Proc. Second U.N. Conf. On Peaceful Use of Atomic Energy, Geneva, Vol.10, p.461(1958)
- 3) J. Dadillon et al.: CABRI Project Recent Progress and Present Status "Proc. of LMBFR Safety Topical Mtg., Lyon, Vol.II., p.177(1982)
- 4) G. Kussmaul, et al.: The CABRI Project Overall Status and Achievements "Proc. of Science and Technology of Fast Reactor Safety, Guernsey, Vol.I., p.103(1986)
- 5) M. Haessler, et al.: "The CABRI 2 Programme -Overview on Results "Proc. of International Fast Reactor Safety Mtg., Snowbird, Vol.II., p.209(1990)
- 6) 佐藤一憲: "CABRI-FAST試験における燃料破損及 び溶融燃料移動挙動",日本原子力学会「1995年春の 年会,予稿集, B28 (19953)
- 7) 佐藤一憲 深野義隆 小野田雄一: "CABRI RAFT試 験総合評価(1):RAFT プログラムの概要と評価の 現状",日本原子力学会「2002年春の年会」予稿集, J30 (2002 3)
- 8) I. Sato, F. Lemoine and D. Struwe: "Transient Fuel Behavior and Failure Condition in the CABRI 2 Experiments, "Nucl. Technology, Vol.145 (1), pp.115-137, January 2004.
- 9)佐藤一憲:"PNC 欧州共同炉内安全性試験CABRI 2計画の総合評価" 動燃技報 No .11 p .19 p .30 , JNC TN 9410 95 245 ,1995年12月 .

- 10) N. Nonaka and I. Sato: "Improvement of Evaluation Method for Initiating-Phase Energetics Based on CABRI-1 In-Pile Experiments", Nucl. Technology, Vol.98, pp.54-69, April 1992.
- 11)小野田雄一,佐藤一憲:"CABRI FAST EFM1試験に おける破損後燃料移動挙動",サイクル技報 No.7, p.71 p.81 JNC TN1340 2000 002 2000年6月.
- 12) K. Baumung and A.H. Lumpkin:" Fuel Motion Measurement with the CABRI Hodoscope 'Proc. of Science and Technology of Fast Reactor Safety, Guernsey, Vol.I., p.141(1986)
- 13) A. M. Tentner, et al.: "The SAS4A LMFBR Whole Core Accident Analysis Code ", Proc. International Meeting on Fast Reactor Safety, pp.989-998, Knoxville, TN(April 1985)
- 14) 佐藤一憲:" CABRI 2炉内試験総合評価(4):ボイド 化冷却材チャネル中での燃料移動挙動",日本原子力 学会「1994年秋の大会」予稿集 B52 (1994 9)
- 15) A.E. Wright, et al.: "Fast Reactor Safety Testing in TREAT in the 1980s, "Proc. Int. Fast Reactor Safety Meeting, Snowbird, Vol. II, p.233 (1990)
- 16) R. Herbert, et al.: "Fuel Pin Failure in the PFR/TREAT Experiments, "Proc. of Science and Technology of Fast Reactor Safety, Guernsey, Vol.I., p.27(1986)
- 17) H. Tsai, et al.: Performance of Fast Reactor Mixed Oxide Fuel Pins During Extended Overpower

Transients, "Trans. 11th Int. Conf. on Structural Mechanics in Reactor Technology, Tokyo, Vol. C, p.179 (1991)

- 18) H. Tsai, et al.: "Behavior of Mixed Oxide Fuel Elements During an Overpower transient, "J. Nucl. Mater., Vol. 204, p.217 (1993)
- 19) H. Tsai, et al.: Behavior of Mixed Oxide Fuel Elements during the TOPI 1E Transient Overpower Test, "Proc. ARS'94 Int. Topical Meeting on Advanced Reactor Safety, Pittsburgh, Vol. 1, 29(1994)
- 20) J. Charpenel, F. Lemoine, I. Sato, D. Struwe and W. Pfrang: "Fuel Behavior under the Slow Power Ramp Transients in the CABRI 2 Experiments, "Nucl. Technology, Vol.130(3), pp.252 271, June 2000.
- 21) 深野義隆 佐藤一憲:" CABRI FAST 炉内試験評価 (2):ランプ型過出力時の中空燃料挙動",日本原子 力学会「1996年春の年会」予稿集 E30 (1996 3)
- 22) 小西賢介他:"高速炉の炉心安全向上のためのEA-GLEプロジェクト(1) - 全体計画概要 - ",日本原 子力学会「2001年秋の大会」予稿集」21(20019)
- 23) 山野秀将 小野田雄一 飛田吉春,佐藤一憲:" CABRI RAFT試験総合評価(6):TPA2試験の評価",日本原 子力学会「2003年春の年会」予稿集」51 (2003 3)
- 24) 深野義隆,佐藤一憲 野中信之:" CABRI RAFT計画 RB1試験の結果概要と分析",日本原子力学会「1998 年春の年会」予稿集,127 (1998 3)

Development on "MONJU "Reactor Vessel ISI Facilities -Investigation of SH Wave EMAT with Halbach Magnet Configuration-

Yang XU Takuya YAMASHITA

International Cooperation and Technology Development Center, Tsuruga Head Office

本研究では、「もんじゅ」原子炉容器廻り供用期間中検査(ISI)の体積検査用電磁超音波探触子(EMAT)の 高度化と軽量化を図るため、SH波EMATに新しい高磁場配置型Halbach磁石構造を導入し、その常温特性に ついて解析と実測の両面から、一般の周期永久磁石(PPM)構造と比較しながら検討した。

Halbach磁石構造はPPM磁石構造の隣接磁石の間にPPM磁石と磁化方向の垂直の磁石を挿入して構成され, ワーキング面において強力な磁気特性を有する。また,Halbach構造SH波EMATはPPM構造SH波EMATよ り強い超音波音圧分布を示し,人工欠陥の探傷に用いたところ,高い欠陥信号レベルが得られ,高欠陥検出性を 有することが分かった。

本研究において,解析結果と実測結果はよく一致し,解析法が妥当と考えられ,SH波EMATの磁石構造の最 適化設計に応用できる。

In this paper, a horizontally polarized shear (SH) wave electromagnetic acoustic transducer (EMAT) with a Halbach magnet configuration is proposed and evaluated from numerical analyses and experiment measurements for the use of "MONJU" fast breeder reactor vessel in service inspection.

The SH wave EMAT with a Halbach magnet structure reveals a stronger magnetic flux density as well as ultrasound pressure than that of a SH wave EMAT with a periodic permanent magnet (PPM) structure. The above EMATs are used for inspection of artificial slits, and it was found that the Halbach magnetic structure has a better defect detectability than the PPM structure.

In this work, the measured magnetic flux density and the ultrasound directivity distributions for both the Halbach and PPM structure SH wave EMATs are in excellent agreement with those expected from numerical simulations. The numerical analysis method should be useful in optimizing the magnet structure for SH wave EMAT.

キーワード

高速增殖炉,供用期間中検查,非破壊検查,電磁超音波探触子,SH波,音圧,超音波指向性,永久磁石構造, 磁束密度,欠陥

Fast Breeder Reactor (FBR), In Service Inspection (ISI), Non-Destructive Testing (NDT), Electromagnetic Acoustic Transducer (EMAT), Horizontally Polarized Shear Wave (SH Wave), Sound Pressure, Ultrasound Directivity, Permanent Magnet Structure, Magnetic Flux Density, Defects

ISIシステム開発グループ 所属 博士研究員(中華人民共和国) もんじゅ原子炉容器用電磁 超音波探触子(EMAT)の開 発に従事 工学博士

徐陽

山下 卓哉 ISIシステム開発グループ リーダ もんじゅ用ISI装置の開発

1.はじめに

高速増殖炉「もんじゅ」の原子炉容器廻りの供 用期間中検査(ISI:In Service Inspection)は,高 温(約200)・高放射線(約10Sv/h)環境での目 視検査を基本とするが,並行して電磁超音波探触 子(EMAT:ElectroMagnetic Acoustic Transducer) による体積検査法の開発が行われている¹⁾²⁾。

電磁超音波探触子(以下EMATと略す)は,構

造が簡単で,磁石(永久磁石あるいは電磁石)と 渦電流励起用コイルから構成される。磁石の構造・ 配置とコイル構造の適切な組合せにより,縦波・ 横波・表面波など各種モードの超音波を簡単に送 受信できる。EMATは通常の圧電素子タイプの超 音波探触子より信号が弱く,電気ノイズに影響さ れやすい欠点があるが,ノンカプラント・冷却不 要・遠隔操作可能など,優れた特徴を持つ。1970 年代後半から,鉄鋼業界を始めとして原子カプラ ント・鉄道探傷などの分野でEMATが盛んに研究 されてきた³⁻⁶)。

「もんじゅ」原子炉容器廻りISIの体積検査の対象はクリープ疲労による溶接線近傍の亀裂状内面 欠陥である。原子炉容器の材料はSUS304ステンレ ス鋼で,溶接線には粗大粒・結晶異方性,熱影響 部には組織多様性の特徴があり,SH波を用いた検 査法が有利だと考えられる。SH波は横波の1種の horizontally polarized shear waveのことで振動粒 子の変位方向と平行する材料境界面における反 射・透過によるモード変換がない,粗大粒や溶接 部による超音波減衰が少ないなどの特徴を有す る^{7)&}。SH波EMAT⁹⁻¹¹⁾は,通常の圧電素子タイプ の超音波探触子で送受信しにくいSH波を簡単に 送受信でき,「もんじゅ」原子炉容器廻りISIの体 積検査に適すると考えられる。

「もんじゅ」原子炉容器廻りISIは、検査機に目 視検査装置と体積検査装置を搭載して、原子炉容 器とガードベッセル間の30cm程度の狭隘空間で タイヤ車輪とばねの突っ張りで自重を支え、垂直 走行しながら遠隔操作で実施する。重い自重によ るタイヤ磨耗と滑りによる位置ずれが問題とされ る。このため、検査性能の向上に加え、検査機本 体と搭載する検査装置の重量を低減し、操作性と 耐久性を向上することが研究課題になっていた。

今までに、SH波EMATに関するR&Dは実験的 試行錯誤に基づいて行われてきたが,理論解析法 による実験的手法の補完が求められている。

本研究では、現有の検査機にも搭載された通常 のSH波EMATに用いられているPPM磁石構造 (Periodic Permanent Magnet,以下に「PPM構造」 と略す)の代わりに、加速器分野で使用されてい るHalbach磁石構造を導入し、その磁気特性と対 応するSH波EMATの超音波指向性を数値解析に よりシミュレーションした。さらにSH波EMATを 試作し、実測による検証を行い、当磁石構造SH 波EMATの優れた特性を明らかにした。実測結果 と解析結果がよく一致することが観察され,解析 手法の妥当性が示されるとともに,当解析手法の SH波EMATの磁石構造の最適設計への適用性が 確認された。また,本研究では,試作したEMAT を用い,スリット状模擬欠陥の検出性について検 討し,Halbach磁石構造SH波EMATの高度な探傷 性能を確認した。

2.PPM 磁石構造と高磁場配置型 Halbach 磁石構造

通常に使われている SH 波EMAT の磁石構造は 30年前に提案されたPPM構造¹²⁻¹⁴)である。図1(a) に示すように, PPM構造は, 隣接する縦方向に磁 化する角柱状磁石(「縦磁化磁石」と略す)のN, S極を逆向きに配置することにより構成され,そ の上面または下面に励磁コイルを付ければSH波 EMAT が構成できる。しかし PPM 構造において, 上下面の磁気エネルギーが等しいため,電磁超音 波探触子として利用できる磁気エネルギーが構造 全体の半分に限られている。ここで, PPM構造の 各縦磁化磁石の間に,磁極方向が交互に反対向き の横方向に磁化する扁平角柱状磁石 (「横磁化磁 石」と略す)を挿入したものを図1(b)に示す。 この磁石構造は,加速器分野でアンジュレーター の挿入光電源用磁気回路として知られている Halbach 磁石構造¹⁵ (Halbach 構造と略す)である。Hal-

図1 PPM 磁石構造(a) とHalbach 磁石構造(b) の模式図

bach構造は上下面の磁気特性が異なることが特 徴で,磁気特性の強い面(図1(b)において上面) を利用すれば,より強力なSH波EMATを構成でき る。Halbach構造においては,隣接する2つの縦 磁化磁石と2つの横磁化磁石の計4つの磁石によ リーつの配置周期を構成する。Halbach構造をSH 波EMATに応用する場合,EMATの周波数特性は 磁石の配置半周期a+b(aとbはそれぞれ縦磁化 磁石と横磁化磁石の厚み)の関数であり,a+bの 値はHalbach構造SH波EMATの設計上の重要パラ メータになる。なお,Halbach構造の横磁化磁石 の厚みb=0の場合,Halbach構造はPPM構造に 退化する。つまり,PPM構造はHalbach構造の特 例に相当する。

3.静磁場と超音波指向性解析の基礎理論

EMATの基本動作原理は電磁誘導である。励磁 コイルに高周波電流を流すと電磁誘導により導電 体表面に渦電流が励起され,永久磁石による静磁 場との相互作用で,同周波数のローレンツ力が発 生し,結晶格子の変位振動に変わり,超音波とし て材料の遠方に伝播していく。コイルにより生成 される動磁場は永久磁石の静磁場よりかなり弱い ので,磁場解析と渦電流解析は独立に行うことが できる。

マクスウェルの電磁方程式¹⁶⁾により,変位電流 を無視する場合,支配方程式のアンペアの法則と ファラデーの電磁誘導法則は,それぞれ

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} \tag{1}$$

と

$$\nabla \times \boldsymbol{E} = -\partial \boldsymbol{B} / \partial t \qquad (2)$$

になる。また,磁束密度の保存則は

$$\nabla \cdot \boldsymbol{B} = 0 \tag{3}$$

であり,ガウスの法則は,式(1)の発散を取っ て整理すると,

$$\nabla \cdot \boldsymbol{J} = \boldsymbol{0} \tag{4}$$

となる。ただし, Hは磁界の強さ, Bは磁束密度, Eは電界の強さ, Jは電流密度である。

なお,永久磁石の構成方程式は¹⁷⁾

$$\boldsymbol{B} = \boldsymbol{B}_r + \mu_0 \mu_r \boldsymbol{H} \tag{5}$$

と表す。ただし,B, は残留磁束密度, μ_0 は真空の 透磁率, μ_1 は比透磁率である。

ここで,磁気スカラーポテンシャル V_m を導入すると,式 $H = -\nabla V_m$ が得られ,これを式(5)と式(3)に代入すると,次式となる。

$$-\nabla \cdot (\mu_0 \mu_r \nabla V_m - B_r) = 0$$
 (6)

磁石構造の磁束密度分布は微分方程式(6)を 解くことにより求められる。

一方,電気スカラーポテンシャル 及び磁気ペクトルポテンシャルAを導入すると,式(2)と
 (3)を満たすように電界の強さEと磁束密度Bを次のように表すことができる。

$$\boldsymbol{E} = -\nabla \phi - \partial \boldsymbol{A} / \partial t \tag{7}$$

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{8}$$

これらの方程式を解くことにより,渦電流

$$J^{i} = -\sigma \partial A / \partial t$$
 (9)

を解くことができる。ただし, は導電率である。 なお,ローレンツ力は式

$$\boldsymbol{F} = \boldsymbol{J}^i \times \boldsymbol{B} \tag{10}$$

から計算できる。

本研究では,有限要素法で静磁場と渦電流解析 を行った後,式(10)によるローレンツ力を求め, 超音波指向性解析のための音波の音圧式¹⁰⁾を

$$P(t) = \frac{\rho}{4\pi} \iiint_{V} \frac{1}{r} a\left(t - \frac{r}{C}\right) dV \qquad (11)$$

から求める。ただし, とCはそれぞれ被検材の 密度とSH 波の音速,r は音源から解析位置までの 距離,tは時間パラメータ,a(t)は音源位置の振動 加速度である。ここで,ローレンツ力を加速度a(t) の代わりに使用し,次のように表す。

$$F(t) = A_F \sin \varpi (t - r/C)$$
 (12)

ここに, A_Fはローレンツ力の振幅である。実際 の音圧解析は相対評価で行うため,式(11)の /4 項を考慮しない。

上記式を用い,磁石構造の磁束密度分布や EMATの音圧分布,超音波指向性などが予測でき る。 16

4. PPM 構造とHalbach 構造の磁束密度分布の 解析結果

静磁場解析は、微分方程式に基づく有限要素解 析コードFEMLAB¹⁹⁾を用いて行った。

図2に示すのは、Halbach構造とPPM構造の ワーキング面からリフトオフ距離(磁石表面から 評価位置までの距離)05mmにおけるv方向の磁 束密度 B.分布である。解析には三種類のサマリウ ム・コバルト磁石材料:R33H,R28HSとR30H (信越化学)の実測データを用いる。各磁石材料の 残留磁束密度は表1を参照されたい。Halbach構 造には,縦磁化磁石はR33H,横磁化磁石は R28HS, PPM構造には, R33HとR30Hの2種類 の磁石材料を用いた。R30Hは現有の検査機に搭 載された既存EMAT用の磁石材料で,R33Hと R28HSは現在開発中のHalbach構造EMAT用の磁 石材料である。200 の高温使用において, Halbach 構造の横磁化磁石は熱減磁が生じやすいの

図2 Halbach構造とPPM構造のy方向磁束密度の分 **布特性(リフトオフ距離05mm)**

	PPM構造	Halbach構造

表1

解析と実測用磁石構造の関連パラメータ

7	7
10	10
2.5	1.25
-	1.25
1.163(R33H) 1.05 (R30H)	1.163(R33H)
-	1.12(R28HS)
0.5	0.5
8	8
	7 10 2.5 - 1.163(R33H) 1.05 (R30H) - 0.5 8

で,高温特性の優れるR28HSを用いた。一方,減 磁しにくい縦磁化磁石はより残留磁束密度の高い 磁石材料を選択して,R33Hを用いた。図2に, 配置周期数8のHalbach構造とPPM構造のy方向 磁束密度分布を比較して示す。磁石寸法は同図及 び表1に示した。

図2のPPM 構造の結果に注目すると, ハイグ レード磁石材料R33Hを使用し,磁石性能を改善 したことによる磁束密度の向上は,高々1割程度 にすぎないことがわかる。一方, Halbach構造は PPM 構造に比べ約1 6倍の大幅な磁束密度の向上 が観察され、磁石構造の改善は磁石性能の改善よ り効果的であることが分かった。

図3に示すのは,磁石の幅中心面とx=(a+ b) / 2面の交線上(図1(b)のy 軸に相当)にお ける Halbach 構造の y 方向磁束密度 B, のリフトオ フ距離依存性である。解析用磁石構造のパラメー タは表1に示した。高さの異なる4種類の磁石に 対して,ワーキング面及びその反対側の面の磁束 密度のリフトオフ依存性を比較した。横軸の0位 置は磁石表面を指し、その右側は磁石外部領域(図 1(b)のy 軸の正方向), 左側は磁石内部領域(図 1(b)のy 軸の負方向) に対応する。磁石外部領 域において,リフトオフ距離の増加に伴い,磁束 密度が減少する。明らかに Halbach 構造のワーキ ング面の磁束密度はその反対側の面より強力であ る。Halbach 構造はPPM 構造とほぼ同じ磁石の量 を使用しても,強力な磁束密度が得られる。その 理由として, Halbach 構造において, 横磁化磁石

の挿入により、磁石ワーキング面の磁力線が隣接 する縦磁化磁石まで簡単に戻れず,より遠回りし てから戻ることにより √方向磁束密度が強くなる ものと理解される。なお,磁石ワーキング面の反 対側の面においては,磁力線の流れはちょうど逆 であるので,磁束密度が低下する。このように, Halbach 構造は,磁石構造両側の磁気特性が異な るのが特徴で,ワーキング表面近傍の磁束密度の 増加はその反対側の面の磁束密度の減少を代償と して得られたのである。磁石構造の両面から取り 出せる磁気エネルギーの合計は増加しないが,強 力な磁気特性を有する面からより多くの磁気エネ ルギーを取り出すことが可能になる。なお,図3 から分かるように,磁石の高さLが3mmから 10mmまでに増加しても,B,がほとんど変化しな い。これは,多数の磁石隣接配置により,×方向 の磁束発散が制限され、水方向に磁束密度が揃うの が原因と考えられる。その結果,磁石高さ寸法し の影響が小さくなる。Halbach構造を設計する際, 性能ばらつきの許容範囲内であれば,磁石高さ寸 法を短くしても,磁気性能を損なうことなく EMAT の軽量化ができると考えられる。

5.SH波EMATの超音波指向性の解析結果

SH波EMATの超音波屈折角 と周波数fの関係 は下式で表される。

$$\sin\theta = \frac{C}{2tf}$$
(13)

ただし, CはSH波の音速, tは磁石構造の配置 半周期で, Halbach構造の場合t = a + b, PPM構 造の場合t = aである。この式で示したのは,隣接 距離がtの無限個の点音源(180°位相差)による 理想的な屈折角である。有限寸法の探触子の場合, 伝播方向は上式で示した方向と多少異なり,探触 子寸法や超音波周波数などにより,近距離音場限 界距離も変化すると考えられる。

前節の磁束密度分布の解析結果を踏まえ,さら に渦電流解析を行ない,式(10)よりローレンツ カのピーク値を求め,式(12)の周波数効果を導 入すると,式(11)から超音波音圧を算出できる。 本研究では,PPM構造EMATよりHalbach構造 EMATが強力であることを評価目的とするため, 超音波の音圧の絶対値を論じず相対比較を行う。 なお,コイル材料は銅として,導電率5998× 10⁷S/mを用いた。また,被検体はSUS304材で, SH 波の音速を3,120m/s,導電率を銅の2,4%と仮 定した。

図4にPPM構造SH波EMATの超音波指向性の 周波数依存性を示す。解析用パラメータは表1に 示した。ただし,磁石材料はR28HSを用いた。な お,リフトオフ距離を05mmとし,超音波音圧の 評価位置はEMAT 中心から距離100mmの位置で ある。音源としての渦電流の影響は浸透深さまで を考慮する。図4において,周波数700kHzにお いて,一つ強力な超音波音圧メインローブが観察 され,700kHzから12MHzまでの周波数の増加に つれ、サイドローブが大きくなるのが分かる。ま た,周波数の増加に伴い,SH波の超音波音圧が減 少し続けるが,指向性が鋭くなる。音圧減少の主 な原因は,周波数増加による被検体表面に励起さ れる渦電流ピーク値の減少及び渦電流浸透深さの 減少である。周波数は1.1 MHzを超えると,超音 波音圧のメインローブレベルが減少し, サイド ローブレベルが増加し,両者が同レベルとなり, はっきりした指向性が観察されない。これは周波 数増加に伴う近距離音場限界距離の増加が原因と 考えられる。したがって,EMATを用いた欠陥探 傷において,探傷距離に合う磁石配置半周期と超 音波周波数の合理的な組合せが重要である。一方, 周波数増加による屈折角の減少は式(13)から説 明できる。

図5に示すのは、PPM構造SH波EMATの幅中 心断面における超音波音圧分布の2次元投影であ る。解析周波数は700kHz,リフトオフ距離は 05mm,磁石配置周期数は8,被検体材料は

の周波数依存性

図 5 SH波EMATの超音波音圧分布の投影図 (解析周波数700kHz)

SUS304ステンレス鋼である。図の左下の0位置 は,EMATのワーキング面の中心部に相当し,横 軸は磁石配置方向に対応する。SH波EMATは磁石 構造配置中心断面を対称面として超音波音圧分布 を生成するので,図に示したのは,EMAT右半分 (配置周期数4,縦磁化磁石8個)に対応する音圧 分布で, 左側はこれと対称な分布となっている。 8個の磁石からそれぞれ強力な超音波音圧が送信 されることが観察できる。それらの干渉と合成に より,右斜め方向(屈折角約63°)に強力な超音波 音圧分布が現れ,主な超音波エネルギーの伝播方 向を表す。図4に示した周波数ごとの超音波音圧 分布は図5の分布から評価距離に対応する音圧を 抽出して得られた結果である。

図 6(a)に示すのは,配置半周期a + b = 2 5mm を固定し,aとbの組合せ変化によるHalbach構造 SH波EMATの超音波音圧変化である。解析条件は 主に表1に示したパラメータで,周波数は700 kHz を用いた。また,横磁化磁石と縦磁化磁石は同じ 磁石材料R28HSを設定した。図から分かるように, aとbの組合せ変化により、超音波音圧のプロファ イルはほとんど変化せず,強さだけが依存性を示 す。図 6(a)の超音波音圧ピーク値と超音波屈折角 を磁石厚みaの関数として再整理した結果を図6 (b)に示す。屈折角はaとbの組合せに依存するが, 変化範囲はわずか03°に限られている。図1(b) に示したように, Halbach構造は, 左右対称な磁 束密度分布を構成するため,横磁化磁石は磁石配 置周期の整数倍より一つ余分に配置される。屈折 角の変化はこの余分に配置された磁石の厚みによ る磁束密度分布の変化の影響と考えられる。一方,

固定a + b 寸法,異なるa とb 組合せによる 図 6 Halbach構造SH波EMATの超音波特性変化

超音波音圧ピーク値は a = 0 からa = 2 5mm まで 磁石厚みの変化に伴い,増加してから減少してい く。a = b = 1 25mm における Halbach 構造 SH波 EMAT の超音波音圧ピーク値が最大となり, PPM 構造SH波EMAT (a = 2 5mm) の1 4倍になる。 この値が磁束密度ピーク値の増加(1.6倍,節4を 参照)より小さい,超音波音圧は磁束密度分布の 合計結果で反映されるものであることから,図2 に示した磁束密度分布の面積比と理解される。い ずれのaとbの組合せにおいても、Halbach構造SH 波EMAT はPPM 構造SH波EMATより強力である ことが明らかである。なお ,aとbの組合せ変化に より、Halbach 構造SH 波EMAT の性能調整ができ る。

6. PPM 構造, Halbach 構造の磁束密度分布特性 の実測結果

PPM 構造とHalbach 構造磁石集合体を試作し, ガウスメーターでそれぞれの磁束密度分布を測定 した。試作した磁石構造のパラメータを表1に示 した。PPM構造の磁石材料にはR33Hを用いた。 実測用ガウスメーターの型番及び本研究に用いる 測定用ステージなどの計測装置は表2にまとめて いる。

図7に両構造のy方向における磁束密度分布の 実測結果と対応の解析結果を示す。リフトオフ距 離は05mmである。Halbach構造はPPM構造より 強力な磁束密度を示すことが実測データから観察 できる。解析では、縦・横磁化磁石ともにそれぞ れ均一な磁気特性を有すると仮定したので、得ら れた磁束密度分布は辺縁効果を除いて、均一的で ある。一方、実測結果には磁束密度分布のピーク 値のばらつきが観察された。これは各単体磁石の 特性がばらつき、特に磁石構造を試作する際に生 じた、ワーキング面における磁石の端面の不揃い が大きな原因と考えられる。なお、実測と解析の 磁束密度分布は少し異なったが、それは、実測用 磁石のコーティング層(厚み10 µm 程度)、作製プ

名 称	モデル	メーカー
ガウスメーター	HGM-8300-2V	(株)エーデーエス
ホール素子	HGM型専用A-1型	(株)エーデーエス
XYステージ	ALD-904-H1PB	中央精機(株)
Zステージ	ALZ-230-C2P	中央精機(株)
制御用コンピューター	Windows OS	-
GPIBカード	PCI-GPIB(Windows Me/9x用)	NI社
制御用ソフト	LabVIEW	NI社
高電圧探傷器	RAM-5000	RITEC社
デジタルオシロスコープ	waverunner LT584M	LeCroy社
SH波垂直探触子	2Z10 × 10SN	ジャパンローブ(株)

表2 本研究で用いた測定装置一覧

解析結果 実測結果 PPM a=2.5mm リフトオフ距離 0.6 Halbach a=b=1.25mm 0.5mm abs(Bv) (T) Halbach 0.5 0.5mm 0.4 PPM 度の絶対値 0.3 0.2 東密原 0.1 逫 0.0 -2010 20 30 -100 x方向における磁石の相対評価位置(mm)

図7 Halbach 構造とPPM 構造の磁束密度分布の 解析と実測結果の比較(リフトオフ距離 05mm) ロセスによる加工層の存在 特に製作寸法の誤差, 及びガウスメーターのホール素子の位置確認誤差 などの総合影響と考えられる。全体的に,実測と 解析磁束密度分布は良く一致すると結論できる。

7.PPM 構造とHalbach 構造SH波EMATの超音 波指向性分布の実測結果

前節で試作したPPM構造とHalbach構造に,コ イルを付けてSH波EMATを作製し送信探触子と して,図8(a)のような半円筒状試験片(SUS304, 半径100mm)を用いて超音波指向性を測定した。 受信用の探触子には表2に示した圧電素子SH波 垂直探触子を用いた。図8(b)で超音波指向性の 規格化実測結果と解析結果を比較する。解析は 0.1 ごとに,実測は5~85 の範囲で5 ごとに行 い周波数は700kHzと900kHzを用いた。Halbach 構造SH波EMATはPPM構造SH波EMATより超 音波音圧が強力であることが実測結果からも確認 された。超音波周波数の増加に伴い,解析と実測 の指向性が共に鋭くなるが,実測指向性は解析指 向性より広がりが大きい特徴がある。これには二

つの原因が考えられる。一つは,解析周波数は単 一周波数であるが,実測に使った超音波信号は単 一周波数ではなく,バンド幅が存在するので,全 体的に超音波指向性が広がったことが考えられ る。もう一つは,受信SH波垂直探触子は点では なく,ある面積を持つので,分解能が低下して, 分布が広がったものと考えられる。解析で求めた 両磁石構造SH波EMATの超音波音圧比は138-139(注意:縦,横磁石の残留磁束密度が異なる) であるのに対し,実測の超音波音圧比は13程度 で,ほぼ一致するといえる。

実探傷は原子炉容器の内面欠陥の検出であるの で、これと対応した状況でのSH波EMATの超音波 指向性を把握する必要がある。図9(a)に実探傷状 況を模擬したEMATの超音波指向性測定法を示 す。平面板材の片面に送信(Halbach構造あるN はPPM構造)SH波EMATを固定し、その反対面 において、受信(PPM構造)SH波EMATを図に 示すように平行移動しながら、送信探触子からの 超音波信号を受信する。受信信号の振幅と対応す る超音波屈折角との関係から換算した実探傷時相 当のSH波EMATの超音波指向性を図9(b)に示

す。実測は650 kHz から900 kHz まで50 kHz ごとに 行った。Halbach構造とPPM構造SH波EMATの 超音波音圧ピーク値の比は約133~137である。 この値は解析結果の1 38~1 39とほぼ同じであ る。注意すべきは,ここで評価したのは送信探触 子から仮想欠陥位置 (受信探触子)までの片道の 超音波伝播距離における仮想欠陥位置での超音波 音圧分布である。実探傷においては,上記仮想欠 陥位置に届いた超音波音圧分布がそこで反射さ れ,送信探触子位置に戻った信号が受信されるの で、実際の受信信号とは異なると考えられる。さ らに、受信EMATも送信EMATのように指向性特 性を持ち、各方向の超音波信号に対する感度が異 なるので,図9(b)の測定結果は仮想欠陥位置に おける本当の超音波指向性とも異なり,超音波指 向性分布の参考データと理解されたい。図9(b) に示した最強の超音波音圧分布は周波数700 kHz で現れている。

8.SH波EMATの表面欠陥検出性の実測

前節のHalbach構造とPPM構造SH波EMATを用 い,SUS304板材(板厚T=50mm)の内面人工ス リットの検出性を検討する。

探傷は表3に示す二つの試験片に加工した寸法 の異なる8種類の表面スリットを対象に、図10の 送受信EMAT配置で行う。EMATをスリットと反 対表面に配置することは、容器の外面から内面欠 陥を探傷することに相当する。前節により、超音 波音圧の最大ピークは周波数700kHzの場合であ るので、周波数700kHzを用いて探傷を行う。

周波数700 kHz に対応する超音波屈折角(約63°) と試験片の厚みから,送信EMATの最大超音波音 圧位置をスリットの開口に向かうように設定して 測定を行った。

表3	スリット仕様と両構造EMATの信号振幅(Д
	比較(P:PPM H:Halbach)	

試料	スリット寸法 mm)	P振幅(V)	H振幅(V)	H/P
	75%T×25	0 .17539	0 23746	1 354
No 1	75%T×12 5	0 .14276	0.19406	1 359
	10%T × 25	0 .10550	0 .14417	1 367
	10%T×12 5	0 .08941	0 .11462	1 282
	5 %T × 25	0 .10874	0.14401	1 324
No 2	5 %T × 12 5	0 .086507	0 .10613	1 227
INO Z	20%T×12 5	0 29770	0 37732	1 267
	50%T×6	0 .14460	0.19591	1 355

20

図10 欠陥検出用 SH 波 EMAT の実験配置

図11(a)と(b)は,それぞれHalbach構造とPPM 構造送信EMATを用い,長さ25mm,深さ板厚5% (25mm × 5%T)のスリットに対して,同じ受信 EMATを用いて得られた反射波信号(80µs付近,

300回平均)である。Halbach構造EMATの信号振 幅はPPM 構造EMATより強力であることが観察 できる。それぞれの寸法のスリットから測定した 反射波信号の振幅を抽出し,その比を表3にまと める。いずれのスリットにおいても, Halbach構 造EMATから得られた欠陥信号はPPM構造EMAT から得られた欠陥信号より大きい。超音波信号の 振幅比は、解析及び測定超音波音圧比の結果に近 い値(13程度)が得られた。なお, No1とNo2 の二つの試験片のスリット信号レベル(例えば, No 1のスリット75% T × 12 5とNo 2のスリット 20% T × 12 5) が明らかに異なるが,これは,機 械加工による試験片の表面磁性化程度が試料No 2のほうが試料No1より強いことが原因と考え られる。磁性化される程度の高い試験片はEMAT の超音波信号強度も高いと思われる。一言付加え ると、「もんじゅ」原子炉容器の外面は磁性化程度 が低いと想定されるので、通常の非磁性体材料の 探傷に相当する。

9.おわりに

本研究では,高磁場配置型Halbach磁石構造を PPM磁石構造の代わりに電磁超音波分野に初め て導入し,その磁束密度分布特性,SH波EMAT とする超音波音圧分布特性を解析と実測の両面か ら検討・評価するとともに,人工欠陥の検出を試 みた。

Halbach構造は, PPM構造より強力な磁束密度 分布を有することを,実測と解析により示した。 また,これまでに明らかではなかったHalbach構 造の磁石高さによる構造磁気特性への影響を検討 し,磁石高さLを適切に選ぶことにより磁石構造 全体の軽量化が可能なことを明らかにした。

Halbach 構造 SH 波 EMAT は PPM 構造 SH 波 EMATより1 4倍程度の超音波音圧の増加が可能 で,実測と解析の両面からそれを検証した。

人工欠陥に関する検出性については, Halbach 構造SH波EMATはPPM構造SH波EMATより高 レベルの検出信号が得られ,高欠陥検出性が確認 された。なお,自然欠陥の検出性については,こ れからの課題として,今後検討する予定である。

上記の解析と実測結果から, Halbach構造は PPM構造より優れた特性を有し,電磁超音波分野 での活用が期待される。

ただし, Halbach構造は扁平状の横磁化磁石を

22

用いるので,高温環境において,熱減磁により横磁化磁石の不可逆減磁が生じる可能性があるため注意が必要である。これについては,磁石構造設計の初期段階で適切な高温用磁石材料を選定することが必要である。Halbach構造の高温特性については,別の論文で論じることにする。

本研究では、実測と解析結果が良く一致することを示し、解析手法の妥当性を証明した。これにより、解析手法のメリットを十分に利用し、磁石構造パラメータの最適設計によるSH波EMATの 高性能軽量化設計が可能と考えられる。

本研究の解析手法は,他の超音波モード用 EMATの開発設計にも適応できる。

謝辞

本研究進行に当たって,信越化学工業株式会社 の大橋健博士から Halbach 磁石構造に関する貴重 な助言を頂き,また,非破壊検査株式会社の横山 邦彦氏から実験測定についてアドバイスを頂きま した。この場を借りて感謝の意を表します。

参考文献

- 1)仲村喬,林道寛,他:"「もんじゅ」ISIシステムの基本構想と展開",三菱重工技報,Vol.23,No.6,pp.65-70(1986).
- 2) H.Rindo, N.Mitabe et al.: "Research and Development on In-Service Inspection System for Reactor Vessel of FBRs ", ASME, ICONE 2 (Second International Conference on Nuclear Engineering, San Francisco, California, U.S.A(1993)
- 3) R.B.Thompson: "A Model for the Electromagnetic Generation and Detection of Rayleigh and Lamb Waves ", IEEE Trans. On Sonics and Ultrasonics, SU-20, pp.340 346(1973).
- 4) B.W.Maxfield, A.Kuramoto et al.: "Evaluating EMAT Designs for Selected Applications", Materials Evaluation, Vol.45, pp.1166 1184 (1987).
- 5) R.B.Thompson." Physical Principles of Measurements with EMAT Transducers ", in Physical Acoustics, Vol.XIX, Edited by R.N.Thurston and A.D.Pierce,

New York, Academic, pp.157 181(1990).

- 6)川島捷宏:"電磁超音波の基礎と応用",非破壊検査, Vol.34, pp.796 803(1985).
- 7) K.Hogberg: "Ultrasonic Testing Using the EMAT Technique-Electro Magnetic Acoustic Transducer", Materials and Design, Vol.14, No.4, pp.251 252 (1993).
- 8) H.J.Saltzburger, G.Hubschen et al.:" Electromagnetic Ultrasonic (EMUS) Probes: State of the Art and Developments for Application in Nuclear Power Plants ", Proceedings of the 12th International Conference on NDE in the Nuclear and Pressure Vessel Industries, pp.137 142 (1993)
- 9) B.W.Maxfield and C.M.Fortunko: "The Design and Use of Electromagnetic Acoustic Wave Transducers (EMATs)", Materials Evaluation, Vol.41, pp.1399 1408(1983)
- 10) K.Sawaragi, H.I.Salzburger et al.: "Improvement of SH-wave EMAT phased array inspection by new eight segment probes ", Nuclear Engineering and Design, Vol.198, pp.153 163 (2000)
- 11) Y.Kurozumi, M.Higashi et al.: "Performance Characteristics of Electromagnetic Generation and Detection of Shear Horizontal Waves by Electromagnetic Acoustic Transducers ", Materials Evaluation, Vol.59, No.5, pp.638 644(2001)
- 12) C.F.Vasile and R.B.Thompson: "Excitation of Horizontally Polarized Elastic Waves by Electromagnetic Transducers with Periodic Magnets", Journal of Applied Physics, Vol.50, p.2583 (1979).
- 13) C.M.Fortunko: "Ultrasonic Detection and Sizing of Two-Dimensional Defects as Long wavelengths", Applied Physics Letters, Vol.38, p.980 (1981)
- 14) C.M.Fortunko and J.C.Moulder: "Ultrasonic Inspection of Stainless Steel Butt Welds Using Horizontally Polarized Shear Waves", Ultrasonics, May, p.113 (1982).
- 15) K.Halbach, J.Chin et al.: "A permanent magnet undulator for Spear ", IEEE transactions on Nuclear Science, Vol. 28, pp.3136 3138 (1981)
- 16) 坪井始,内藤督:"数値電磁界解析法の基礎 日本 AEM 学会:電磁力応用シリーズ1" 養賢堂, pp.1 10 (1994).
- 17) 河野照哉: "電気磁気学·電気系基礎シリーズ1",朝 倉書店, pp.109 113(1983)
- 18) 超音波便覧編集委員会: "超音波便覧", 丸善株式会 社, p.28 (1999).

技術報告

資料番号:23-3

照射施設運転管理センター 大洗工学センター

Update of "JOYO" MK II Core Characteristics Database

Takashi SEKINE Shigetaka MAEDA Yasushi OHKAWACHI Takafumi AOYAMA

Experimental Reactor Division, Irradiation Center, O arai Engineering Center

サイクル機構では、「常陽」照射用炉心(MK 炉心)の運転を通じて蓄積した炉心・燃料管理に関するデー タをまとめ 炉心特性データベースとして1998年に公開した。本データベースは高速炉の炉心設計等に使用され, その後、これらのユーザーから更なる充実を求める要望が寄せられた。

「常陽」では,これらの要望に応えるためデータベースの改訂を行い,炉定数をJENDL 2ベースのJFS 3 J2 から, JENDL 3.2に基づく JFS 3 J3.2Rへ更新した。さらに,追加すべき内容として要望のあった,動特性パ ラメータ,全制御棒価値及び MK 性能試験における運転特性試験データ等を追加するとともに,初版公開後に 実施した第32~35サイクルの運転特性試験及び燃料組成データ等を新たに収録した。

さらに、「常陽」では、本データベースがより広く活用されるものとするため、英訳したデータベースを新た に作成し,OECD/NEAを介して世界に公開した。

The" JOYO" MK-II core characteristics database accumulated through operation was compiled and published in 1998. Since then, it has been used for studies on core design, analyses of post irradiation tests and so on. Comments and requests on updating and improvement from many users led to the creation of a revised edition.

The revision includes the change of nuclear constant set used in the MAGI calculation code system from JFS-3-J2 to JFS-3-J3.2R based on JENDL-3.2. Total control rod worth, reactor kinetic parameters, MK-II core performance test results and core characteristics obtained from the 32nd to 35th operational cycles were newly added in the revised version. The English version of the database was also made for worldwide use, which was opened to the public through OECD/NEA.

キーワード

技術報

高速炉 ,「常陽」, MK II, 照射用炉心 , データベース , 照射後試験 , JENDL 3.2 , 炉心管理 , 炉心特性 , 炉心 管理コードシステム

Fast Reactor," JOYO", MK-II, Irradiation Core, Database, Post Irradiation Test Examination, JENDL-3.2, Core Management, Core Characteristics, Core Management Code System

関根 隆 技術課所属 副主任研究員 「常陽」の炉心管理,照射条 件評価及び MK 性能試 験に係る業務に従事

前田 茂貴 技術課所属 研究員 『常陽」の照射条件評価 ,使 用済燃料の崩壊熱測定及び MK 性能試験に係る業 務に従事

大川内 靖 原子炉第一課 運転第2 チーム所属 副主任研究員 常陽」の運転 ,「常陽」の 炉心管理,マイナーアクチ ニドの崩壊熱測定に関する 業務に従事

青山 卓史

技術課長代理 常陽」の炉心管理 , ドシメ トリー,燃料破損検出等に 係る試験研究及びMK 性能試験に従事

1.はじめに

高速実験炉「常陽」は、1982年11月の初臨界以降,約18年にわたり,高速炉開発のための燃料・ 材料の照射試験を実施する照射用炉心(MK 炉 心)として運転されてきた。サイクル機構では、 MK 炉心運転期間中に蓄積してきた炉心管理 コードシステム"MAGI"による炉心特性,照射 条件等の計算データ及び運転サイクルごとに実施 してきた運転特性試験結果を炉心特性データベー スとしてまとめ、1998年に公開した¹⁾。

このデータベースは,炉心設計や照射後試験解 析等に幅広く使用されてきた。その後,ユーザー から,新しい核データライブラリの適用,データ の拡充等,さらなる充実を求める要望・コメント 等が寄せられた。

サイクル機構では,これらの要望に応え,デー タベースを改訂するとともに,英語版を新たに作 成し,世界的に公開した²⁾。本報告では,データベー スの概要及び改訂内容について述べる。

2.「常陽」MK の運転履歴³⁾

「常陽」MK 炉心は,1982年11月22日に初臨 界,1983年3月12日に100 MWtを達成し,同年8 月から照射炉として定格出力による本格的な運転 を開始した。

その後,31サイクルの定格出力運転と13項目の 特殊試験のための短期間運転を行い,1997年9月

炉 CMK **炉心としての運転を終了し**, MK 心への移行を開始した。この移行は, MK 外側 炉心燃料集合体を内側反射体等と置換して装荷す ることにより,燃料集合体の装荷体数を段階的に 67体から74体に増加させ、徐々に燃料領域を拡大 移行炉心を経て実施された。MK するMK 移 行炉心の第1サイクル(MK 炉心からの通算で は第32サイクル)は,1997年12月に運転を開始し, 2000年6月にその第4サイクル(通算第35サイク ル)を終了した。

図1に「常陽」MK 炉心及びMK 移行炉心 における運転履歴を示す。2000年6月のMK 移 行炉心の運転終了時の累積運転時間は約47 800時 間(増殖炉心であるMK 炉心からの累積では約 58 800時間),積算熱出力は約4 390 GWh(同 5 020 GWh)に達した。

3.「常陽」MK 炉心の仕様

「常陽」MK 炉心の主要仕様をMK 炉心と 比較して表1に示す。また,両者の炉心構成を比 較して図2に示す。MK 炉心は,炉心高さ約 55cm,炉心等価直径約73cm,炉心体積約235リッ トルの反射体付き小型炉心で,最大熱出力は 100 MWtである。

小型炉である「常陽」は,燃焼に伴う反応度欠 損が大きいうえに,炉心燃料集合体に比べて核物 質の装填量が少ない照射試験用の集合体を炉心に

図1 「常陽」MK 炉心の運転履歴

25

表1 MK 炉心及びMK 炉心の主要目

	項目		MK	炉心	MK 炉心	
原	子炉熱出力	(MWt)	1	00	140	
1	次 冷 却 材 流 量	(t/h)	2	200	2 ,680	
原	子炉入口温度	()	3	70	350	
原	子炉出口温度	()	5	00	500	
炉	心高さ	(mm)	5	50	500(内側,外側共通)	
炉	内燃料装荷体数	(体)	(57	内側最大25 , 外側最大60	
ラッ	リパ管外対面間距離	(mm)		7	85	
集	合体配列ピッチ	(mm)		8	15	
	燃料材		プルトニウム・ウラン混合酸化物			
燃	被覆管材質		SUS3 ステン	316相当 /レス鋼	高Niオーステナイト 系ステンレス鋼	
料	被覆管外径 / 内径	(mm)		5 .	5/4.8	
e de la companya de l	燃料ペレット直径	(mm)		4	.63	
朱合	プルトニウム 富 化 度	(wt%)	糸]29	内側23 .0 , 外側28 .8	
体	ウラン濃縮度	(wt%)			18	
	ペレット密度	(%T.D.)			94	
	ピン本数 / 集合体				127	
	制御要素材			E	B ₄ C	
制	制御要素⁰B濃縮度	(at%)			90	
御	B₄Cペレット直径	(mm)	16			
11111	ペレット密度	(%T.D.)			90	
棒	制御材ペレットスタック長	(mm)		(550	
	要素本数 / 集合体	(本)			7	

装荷する。このため、運転に必要な過剰反応度は, 炉心燃料に濃縮ウランとプルトニウムの混合酸化 物燃料(プルトニウム混合比は約30wt%)を用い ることにより確保している。当初は²⁵⁵U濃縮度を 約12wt%としたJ1燃料を用いていたが,稼働率を 向上させるため,濃縮度約18wt%のJ2燃料を導 入し,1サイクルの運転日数を45日から70日 とし,燃料要素最高燃焼度を50,000 MWd/tから 75,000 MWd/t に変更した。

MK 移行炉心では,MK 炉心燃料であるJ1 燃料集合体,J2燃料集合体及びMK 炉心外側 燃料集合体の3種類の炉心燃料集合体が使用され た。MK 炉心外側燃料集合体の燃料組成はJ2燃 料と同様であるが,炉心高さ(燃料ペレット装填 部の軸方向長さ)はJ2燃料よりも5 cm短い50 cm となっている。MK 炉心外側燃料集合体は,各 MK 移行炉心サイクルに5体ずつ反射体等と 置換して炉心第4,5列に装荷され,MK 移行 炉心の第4サイクル(第35サイクル)では計20体 が使用された。

燃料領域の周囲には中性子の反射効果により, 炉内の中性子束分布の平坦化と中性子遮へい体と しての役割を持つステンレス鋼製の反射体を配置 している。

制御棒は炉心に6本装荷され,反応度制御及び 炉停止の両方の機能を有している。制御材として は炭化ホウ素(¹⁰B濃縮度約90%)の焼結ペレット を用いている。通常運転時には全制御棒をほぼ 均等に挿入し,原子炉出力の制御を行っている。 MK 炉心当初は,6本すべての制御棒を燃料 領域(炉心第3列)に対称に配置していたが,1991 年にMK 炉心での制御棒の移設に先行して, 1本を内側反射体と燃料領域の境界(炉心第5列) に移設し,以降,制御棒を非対称に配置した炉心 (非対称炉心)構成とした。なお,MK 炉心で は,高中性子照射領域での計測線付試験用集合体 の照射位置を確保するため,さらに1本の制御棒

MK-I標準炉心構成

MK-Ⅲ標準炉心構成

(炉心構成図中の番号は列番号)

図2 MK 及びMK 炉心構成

サイクル機構技報 No.23 2004.6

を炉心第5列に移設した。

冷却系統は1次系,2次系,それぞれ2ループ ずつ有し,1ループあたりのナトリウム流量は約 1,100t/hである。なお,原子炉入口温度は約 370,同出口温度は約500 である。

4.データベースの構成

本データベースの構成を図3に示す。「炉心構成 データ」には,各運転サイクルの炉心構成及び燃 料交換履歴をまとめている。「集合体ライブラリ データ」には、これまでに照射された約360体の炉 心燃料集合体と約70体の照射試験用集合体の製造 時の組成と炉心管理コードシステム"MAGI"(5 章で詳述)による運転サイクルごとの燃焼組成、 燃焼度等が収録されている。「照射データ」には、 MAGIによる各運転サイクル初期及び末期の各炉 心構成要素の中性子束、線束、発熱量、温度評 価結果をまとめている。データの一例として中性 子束の評価結果を表2に示す。これらのデータは テキスト形式のファイルで収録されている。

図3 データベース構成図

表2 中性子束データの例

データベースのユーザーは,これらのデータを 照射後試験結果と比較したり,パーソナルコンピ ュータやワークステーションを用いてデータ編集 して,炉心特性解析を行い,運転特性試験の実測 値と比較することにより,解析手法や炉心設計手 法の開発等に反映することができる。

5.「常陽」MK 炉心の炉心管理データ

「常陽」MK 炉心の炉心管理及び運転計画策 定のため,炉心管理コードシステム"MAGI"を 開発し,照射条件を評価してきた。MAGIの概念 図を図4に示す。

MAGIによる核特性解析では、炉心体系を水平 方向については、8.15cm ピッチで配列されてい る各集合体を6角格子(集合体あたり1メッシュ) に、軸方向については、燃料領域(55cm)とその 上下のステンレス鋼製反射体を含む140cmの範囲 を、第31サイクルまでは20メッシュ(燃料領域に ついては、各メッシュ5 cmで11メッシュ)に分 割した3次元6角格子(Hex Z)でモデル化して

図4 炉心管理コードシステム "MAGI"概念図

いる。また,MK 移行炉心である第32サイクル 以降は、燃料領域の高さが5cm短いMK 外側炉 心燃料集合体が装荷されたため,燃料領域の最上 端と最下端及びこれと隣接する上部・下部インシ ュレータ部の計4ヶ所をそれぞれ更に2分割して 25cmメッシュとし,軸方向を24メッシュ(燃料 領域については13メッシュ)に分割した。

炉定数セットにはJENDL 3.2ライブラリをベースとしたJFS 3 J3.2Rを用い,70群の断面積を,
 別途計算した領域依存の70群のスペクトルで中性子7群,線3群に縮約し,拡散計算を実施して

					制御	棒位置	(mm)			一次冷却材温度(°C)			温度補正(at.250°C)		CRD熱	過剰			
サイクル	日付	時刻			反応	度(%∆k	:/kk')			AJL	ープ	Bル	ープ	出入口	等温温度係数	反応度	収縮補正	反応度	備考
			CR1	CR2	CR3	CR4	CR5	CR6	tota	入口	出口	入口	出口	平均	(%∆k/kk′/°C)	(%∆k/kk')	(%∆k/kk')	(%∆k/kk')	
1	1983/8/9	11:08	406.7	406.7	407.1	406.8	407.2	407.7		251.7	252.5	252.4	252.0	252.2					
(BOC)	S58.8.9		0.636	0.681	0.696	0.685	0.703	0.681	4.081						-4.04×10^{-3}	0.009	0.007	4.10	
1	1983/9/30	14:18	447.9	447.9	446.9	447.0	446.9	447.7		248.8	249.6	250,1	249.3	249.5					
(EOC)	S58.9.30		0.464	0.500	0.514	0.506	0.522	0.504	3.010						-4.04×10^{-3}	-0.002	0.004	3.01	
2	1983/10/12	10:20	425.7	425.6	426.1	426.1	426.1	426.0		257.3	258.2	257.9	257.7	257.8					
(BOC)	S58.10.12		0.596	0.599	0.601	0.584	0.618	0.619	3.618						-4.04×10^{-3}	0.031	0.005	3.65	
2	1983/12/1	13:52	473.0	473.1	472.7	472.6	473.3	472.8		245.4	246.2	246.6	246.0	246.1					
(EOC)	S58.12.1		0.402	0.404	0.405	0.395	0.417	0.418	2,440						-4.04×10^{-3}	-0.016	0.006	2.43	
3	1984/4/19	12:01	469.0	468.1	468.0	468.0	467.9	468.0		252.0	254.1	252.2	252.2	252.6					
(BOC)	\$59.4.19		0 4 4 0	0.426	0.400	0.419	0.436	0 4 4 2	2 563						-4.30×10^{-3}	0.011	0.003	2.58	
3	1984/6/10	19.10	522.9	523.0	523.1	523.2	522.9	518.0	1.000	247.0	249.0	248.4	248.6	248.3	1.00.010	0.011	0.000	2.00	
(E0C)	\$59.6.10		0.247	0.238	0.221	0.233	0.242	0.260	1 4 4 1						-4.30×10^{-3}	-0.008	0.003	1.44	
4	1984/6/25	10.34	472.9	472.9	474.0	473.9	473.8	473.7	1.441	263.9	264.9	264.0	264.3	264.3	4.00 / 10	0.000	0.000	1,44	
(POC)	SE0.6.25	10.01	0.421	0.419	0.209	0.417	0.424	0.409	2.495	200.0	20110	201.0	201.0	201.0	-4.01×10^{-3}	0.057	0.004	2.55	
(600)	1004/0/12	16.29	522.2	522.2	522.2	522.7	524.2	524.1	2.400	252.7	255.9	255.0	255.2	255.0	4.01 × 10	0.037	0.004	2.00	
(EOC)	CE0.0.12	10.20	0.246	0.244	0.224	0.242	0.240	0.224.1	1 451	200.7	200.0	200.0	200.0	200.0	401 × 10 ⁻³	0.020	0.002	1.47	
(EUC)	509.8.12	11.10	0,240	487.0	487.0	0.243	487.0	4625	1.451	051.0	050.0	050.0	0E0 E	050.0	-4.01 × 10	0.020	0,003	1.47	
(000)	1904/9/3	11:12	407.0	407.0	407.0	407.0	407.0	402.0	0.500	201.2	202.9	202.0	202.0	202.0	4.04.1.4.0-3				
(BOC)	559.9.3	10.10	520.0	0.426	0.404 520.2	0.437	0.441	0.458	2,593	250.2	050.1	061.4	0517	051.4	-4.01 × 10	0.009	0.002	2.60	
5	1964/10/21	10:10	520.0	520.1	520.2	321.2	320.8	321.1	1.170	200.2	202.1	201.4	201./	201.4					
(EOC)	\$59,10,21		0.246	0.246	0.231	0.248	0.251	0.248	1.4/0						-4.01 × 10 °	0.005	0.004	1.48	
											:								
34	1999/11/22	11:17	376.2	376.2	376.2	376.2	376.2	376.2		249.9	249.5	250.3	249.0	249.7					
(BOC)	H11 11 22		0.881	0.816	0712	0 771	0.301	0.853	4 3 3 4						-3.47×10^{-3}	-0.001	0.000	4.33	
34	2000/1/6	16:34	400.9	401.0	401.0	400.8	401.1	401.1		249.8	249.4	250.3	248.9	249.6				100	
(MOC)	H1216		0.756	0 705	0.612	0.664	0.258	0.732	3 7 2 7						-3.47×10^{-3}	-0.001	0.000	3.73	MOC 再起動時
34	2000/2/16	10:27	437.6	437.7	437.7	437.5	437.6	437.6		248.5	248.5	249.1	248.1	248.6				01/0	1100 1762 201-1
(EOC)	H12216		0.585	0.549	0.474	0.516	0.199	0.568	2 891						-3.47×10^{-3}	-0.005	0.000	2.89	
35	2000/3/23	10.47	383.1	383.0	383.3	383.1	383.2	383.3	2.001	245.3	244.9	245.8	244.3	245.1	0.171110	0.000	0.000	2.00	
(BOC)	H12323	10.17	0.769	0.762	0 748	0.794	0.268	0.723	4.063	2.1010	21110	21010	21110	21011	-3.49×10^{-3}	-0.017	0.000	4.05	
35	2000/4/17	11:06	389.6	389.4	389.6	389.9	389.6	389.4	4.000	250.5	250.2	251.2	249.7	250.4	0.40 / 10	0.017	0.000	4.00	
(MOC)	L000, 1, 17	11.00	0.740	0 722	0 720	0.762	0.257	0.606	2 0.09	200.0	200.2	201.2	210.7	200.1	-2.40×10^{-3}	0.001	0.000	2.01	MOC 再扫动時
25	2000/6/1	10.49	429.7	429.7	429.7	429.0	429.7	429.6	3.508	251.4	251.5	251.7	250.0	251.4	3.43 × 10	0.001	0.000	3.51	1100 円起動所
(EOC)	L1261	10.40	0.571	0.564	0.556	420,0	0.107	0.526	2.010	201.4	201.0	251.7	200.0	201.4	-2.40×10^{-3}	0.005	0.000	2.01	
(E00)	112.0.1		0.371	4	0.000	0.367	0.137	0.330	3.010						3.45 × 10	0.003	0.000	3.01	
				A								4			4				
															r				
r en.	भग्न उद्यान		ide Sur	L	····	7 H-11 //	en 14 de								/	4:	山谷山去田	过毛杆树	<u>掛ない 巨 竺</u>
上段	:適期D	又心	度測]正時	Fの名	全制在	即恽(立直			/				/	巾	可即徑昂	心助愤	伸延女官
											/				/	а	、裁加以給	定に伴	る始正
下段	 ・ 制御材 	泰插	入に	住ろ	反応	て度									/	V.	ノ系に見入市	旧に十	ノ油正
1 42	 Unit fields lie 	т [,] 1,Ц,	/ vic		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.1.X									•				
										/				鉴》	昌温 度係∛	欧油定:	結果		
						1	次冶	刧お	れの原	ミ子り	ヨ出ラ	人口法	11度	47 L					
						-	2011	- 19 P.	• • • 1/.	/9		11	~~~~						

表3 過剰反応度測定結果

MAGIでは表5に示す33種類の核種を取扱って おり,燃料集合体等の燃焼後の燃料組成は,ORI-GEN 2と同様の行列指数法により求めている。表 6にデータベースに収録した組成データの一例を 示す。

熱流力計算では,各集合体の圧力損失係数と1

	中性子	線					
エネルギー群	エネルギーの範囲	エネルギー群	エネルギーの範囲				
1群	10MeV ~ 1.3534MeV	1群	14MeV ~ 3MeV				
2群	1.3534MeV ~ 0.38774MeV	2群	3MeV ~ 400keV				
3群	0.38774MeV ~ 86.517keV	3群	400keV ~ 20.0keV				
4群	86.517 keV ~ 9.1188keV						
5群	9.1188keV ~ 961.12eV						
6群	961.12eV ~ 101.30eV						
7 群	101.30eV ~						

表4 中性子及び 線のエネルギー群構造

次冷却材流量から、全炉心の流量配分計算を行い, 各集合体の冷却材流量を求めている。これと核特 性解析で求めた各集合体の出力を用いて冷却材温 度を計算する。また、炉心燃料集合体については, 単ピン断熱モデルで熱伝導方程式を解き,各位置 での温度を求めている。

6.初版のデータベースからの改訂点

1998年に公開した初版のデータベースからの主 な改訂点を以下に示す。 核計算に使用する炉定 数 セットをJENDL 2ベースのJFS 3 J2から JENDL 3.2ベースのJFS 3 J3.2R⁴⁾へ更新した。 反応度をドル単位から k/kk¹単位へ変換するた めに必要な動特性パラメータを追加した。 MK 性能試験データを追加した。 初版公開後に実

	核種名		核種名		核種名		核種名		核種名
1	²³⁵ U	9	²⁴¹ Pu	17	²⁴⁴ Cm	25	Fe	33	W
2	²³⁶ U	10	²⁴² Pu	18	¹⁰ B	26	Ni		
3	²³⁸ U	11	²⁴¹ Am	19	¹¹ B	27	Мо		
4	²³⁷ Np	12	²⁴² Am	20	С	28	Pu FP		
5	²³⁹ Np	13	^{242m} Am	21	0	29	U FP		
6	²³⁸ Pu	14	²⁴³ Am	22	Na	30	Be		
7	²³⁹ Pu	15	²⁴² Cm	23	Cr	31	Ν		
8	²⁴⁰ Pu	16	²⁴³ Cm	24	Mn	32	¹⁵ N		

表5 MAGIの取扱い核種

表6 収録した組成データの例

施した第32~35サイクルの運転特性試験データを 追加した。 全制御棒価値を追加した。

また,新たに英語版のデータペースを作成し公 開した。

6.1 JFS 3 J3.2R への改訂に伴う影響

今回の改訂において,使用する炉定数セットを JENDL 3.2ペースのJFS 3 J3.2R に更新した。JFS 3 J2とJFS 3 J3.2R を用いた場合の核特性の評価 結果を比較して図5及び表7に示す。JFS 3 J3.2R への更新により,過剰反応度の計算値が平均して 約0 4% k/kk'低下する結果となった。これはJFS 3 J3.2R への更新に伴い,²⁵⁵U及び²⁵⁹Puの核分裂断 面積 ,が低下すること等が原因と考えられる。

図 5 過剰反応度計算結果(250)

また, JENDL 3.2ではJENDL 2に比較して, ウ ラン, プルトニウム, ナトリウム等の輸送断面積 が小さくなっており, 燃料領域での拡散係数が増 加している。その結果, 炉心中心近傍での集合体 出力が低下している。

その他,集合体出力,燃焼反応度欠損等の評価 結果については,更新に伴う影響が小さいことを 確認した。

62 動特性パラメータの追加

反応度をドル単位から k/kk'単位に換算する ために必要な動特性パラメータを追加した。運転 サイクルごとの実効遅発中性子割合(eff),先行 核崩壊定数(i)及び遅発中性子寿命(l,)の各動 特性パラメータの算出に使用する²³⁵U,²³⁸U,²³⁹Pu, ²⁴⁰Pu,²⁴¹Pu,²⁴²Puの核データにはTomlinson⁵⁾の評価 値を使用し,MAGIで求めた。一例として,実効 遅発中性子割合の評価結果を表8に示す。

63 英語版データベースの作成

「常陽」における運転特性試験結果等は,世界的 にも貴重な高速炉実機のデータであり,前述のよ うに広く公開してきた。これらのデータを日本国 内のみならず,海外の研究者も利用できるものと するため,英語版のデータベースを公開した。図 6に英語版データベースに収録したReadme File

第31サイクル		JFS 3 J2	JFS 3 J3.2R	J3.2R/J2
炉内最大全中性子束	(n/cm ² • s)	4 .77 × 10 ¹⁵	4 .77 × 10 ¹⁵	1 .00
最大線出力密度	(W/cm)	391	383	0.98
最大燃焼度(集合体平均)	(MWd/t)	59,200	58 ,400	0.99
燃焼欠損反応度(% k/kk'/(MWd/t))	- 1 .71 × 10 ⁻⁴	- 1 .69 × 10 ⁻⁴	0.99

表7 JFS 3 J3.2R と JFS 3 J2 による 炉心特性計算値

表 8	実効遅発中性イ割合計算結果	ŧ

サイクル	1	2	3	4	5	6	eff
0	1.175E 04	8.578E 04	7.487E 04	1.475E 03	5.846E 04	1.642E 04	3.948E 03
1	1.169E 04	8.550E 04	7.473E 04	1.474E 03	5.865E 04	1.653E 04	3.945E 03
2	1.166E 04	8.536E 04	7.461E 04	1.471E 03	5.859E 04	1.652E 04	3.939E 03
3	1.165E 04	8.542E 04	7.462E 04	1.471E 03	5.857E 04	1.651E 04	3.939E 03
4	1.162E 04	8.538E 04	7.457E 04	1.470E 03	5.859E 04	1.649E 04	3.937E 03
				:			
30	1.269E 04	9.207E 04	8.046E 04	1.631E 03	6.391E 04	1.668E 04	4.289E 03
31	1.271E 04	9.250E 04	8.074E 04	1.638E 03	6.414E 04	1.663E 04	4.305E 03
32	1.267E 04	9.236E 04	8.059E 04	1.635E 03	6.408E 04	1.658E 04	4.298E 03
33	1.266E 04	9.211E 04	8.037E 04	1.630E 03	6.382E 04	1.654E 04	4.285E 03
34	1.258E 04	9.170E 04	7.999E 04	1.622E 03	6.356E 04	1.645E 04	4.265E 03
35	1.254E 04	9.156E 04	7.986E 04	1.620E 03	6.355E 04	1.644E 04	4.259E 03

Appendix A: Usage of Core Characteristics Database in CD-ROM

This database contains the core management data and core characteristics data taken in the operating characteristics tests in the JOYO MK-II core. Fig. A-1 shows the database structure.

The core management data are stored on CD-ROM in MS-DOS text format with the structure shown in Fig. A-2. The "Core Configuration Data" contain the refueling history and the core configuration in each cycle for the MK-II core. The "Subassembly Library Data" contain the fuel composition data at the fabrication for a total of 362 driver fuel subassemblies and 69 irradiation test subassemblies that

図 6 英語版データベースのReadme File (解説書)の一部

(解説書)の一部を示す。このデータベースは OECD/NEA (Organisation for Economic Co operation and Development/Nuclear Energy Agency) に登録・管理され NEAを通じても入手できるように なり 世界中で幅広く利用されることが期待される。

7.おわりに

高速炉開発の現状を踏まえると 高速実験炉 常 陽」のデータは世界的にも数少ない高速炉の実機 データである。この観点から,サイクル機構では これまでの「常陽」の成果をまとめ,炉心特性デー タベースとして日本国内のみならず,世界的に公 開した。

今後とも「常陽」の炉心特性データベースが 核 データや炉心解析手法の検討,照射後試験の評価 等に幅広く利用されることを期待するとともに, MK 炉心のデータの追加,ユーザーからの要望 の反映等,更なるデータベースの拡充を進めてい く。

参考文献

- 1)田渕士郎 他:"「常陽」MK 炉心特性データベース の作成", JNC TN1340 99 002, p.9(1999).
- 2) Y.Ohkawachi and S.Maeda: JOYO MK Core Characteristics Database ",JNC TW9409 2003 001 (2003).
- 3) 有井祥夫 他:"高速実験炉「常陽」MK 炉心の炉 心・燃料管理経験",日本原子力学会誌 Vol 39 No. 4 p 315(1997).
- 4) 千葉豪 他:高速炉用炉定数セットJFS 3 J3.2の改 訂 日本原子力学会誌 Vol 1, No 4, p 335 (2002).
- 5) L.Tomlinson: "Delayed Neutrons from Fission", AERE R6993(1972)

Corrosion Resistance of Ceramic Materials in Pyrochemical Electrowinning Conditions

Masayuki TAKEUCHI Toshihiro KATO* Tadahiro WASHIYA Takashi SUGANUMA Shinichi AOSE

Advanced Fuel Recycle Technology Division, Waste Management and Fuel Cycle Research Center, Tokai Works * Joyo Industry Co. Ltd

使用済酸化物燃料の乾式再処理法として,溶融塩を用いた高温化学プロセス(酸化物電解法)が検討されている。このプロセスでは,装置材料が溶融塩,塩素,酸素,使用済燃料成分によって形成される苛酷な腐食環境に 晒されるため,再処理用材料として実績を有する金属材料では耐食性の確保が困難である。

本研究では,酸化物電解法に適用する装置材料の耐食性向上を図るために,セラミック材料に着目し,熱力学 計算や腐食試験を通して,耐食性について検討した。腐食試験は塩素雰囲気における溶融塩環境を対象に実施し, さらに酸素,炭素,模擬核分裂生成物の影響について調査した。

その結果,熱力学計算では,酸化物系セラミックスの安定性が示される一方,各種腐食試験結果では窒化珪素, ムライト,コージェライトの各材料が良好な耐食性を示すことが分かり,試験後における材料表面の割れ等は認 められなかった。

Pyrochemical reprocessing using molten salts (electrowinning process) has been developed for recovering MOX from spent nuclear oxide fuel. It is essential to improve the corrosion resistance of equipment such as electrolyzer because the materials are exposed to severe corrosive environments.

In this study, the corrosion resistance of ceramic materials was discussed through thermodynamic calculation and corrosion test. The corrosion test was carried out in alkali molten salt under chlorine gas conditions. In addition, the effects of oxygen, carbon and simulated fission products on ceramic corrosion were evaluated in this conditions.

As results, the stability of ceramic oxides was shown by thermodynamic calculation. Silicon nitride, mullite and cordierite indicated favorable corrosion resistance in the above conditions and cracks on the materials were not observed after the immersion test.

キーワード

腐食,酸化物電解法,セラミックス,使用済燃料再処理,溶融塩,塩素,酸素,浸漬試験,熱力学計算,機械強度

Corrosion, Electrowinning Process, Ceramic, Spent Nuclear Fuel Reprocessing, Molten Salt, Chlorine, Oxygen, Immersion Test, Thermodynamic Calculation, Mechanical Strength

サイクル機構技報 No.23 2004.6

1.はじめに

サイクル機構が推進しているFBRサイクルの実 用化戦略調査研究では,経済性,核拡散抵抗性, 環境負荷低減性の向上を目指した次世代の再処理 技術として溶融塩電解法が見直されており、その 中でロシア原子炉科学研究所(RIAR: Research Institute of Atomic Reactors)で開発された酸化物燃 料を対象とした酸化物電解法
¹⁾²⁾が有力な候補技 術として検討されている。酸化物電解法の概要を 図1に示す。この方法は破砕された使用済酸化物 燃料を電解槽へ投入し、アルカリ溶融塩中で同時 電解によりウランを粗分離した後に,残存する燃 料を塩素化溶解し,更に電解によってウランやプ ルトニウムを混合酸化物(MOX)として回収する 高温化学プロセスであるシ。適用される再処理機器 の中でも一連の主工程を担う溶融塩電解槽の耐食 性確保が技術課題の一つとされているい。

これまでに実用されているPUREX再処理用装 置材料は,硝酸溶液中での耐食性が重要視される ため,そのほとんどがステンレス鋼を中心とした 金属材料であるが,酸化物電解法で形成される高 温かつ塩素・酸素雰囲気下で使用済燃料を処理す る苛酷な環境において,優れた耐食性を有する金 属材料は見当たらない。RIARでは,熱分解炭素 (Pyrographite)が溶融塩電解槽の坩堝材料として 使用されているが⁴⁾酸化物電解法では溶融塩中に 溶解しているPuCl₄をPuO₂として安定化させて MOx共析を行うために,酸素ガスを電解槽内に通 気する必要がある。熱分解炭素のような炭素材は 高温酸素雰囲気で酸化の問題があり,環境として は極めて苛酷になるため,耐食性の向上が求めら れる。本研究では,酸化物電解法用の有望な高耐 食材料としてセラミック材に着目し,材料選定に 必要な腐食データを得ることを主目的とした。一 般に,セラミック材は金属材料に比較して脆い反 面,耐熱性,耐環境性,耐磨耗性に優れているこ とから,金属材料では実用に供し得ないような高 温,強腐食環境下における構造材料として実用さ れている。

セラミック材の耐食性評価に当たっては,酸化 物電解法特有の腐食環境に対する各種材料の反応 性を熱力学計算によって調べると共に,酸化物電 解法の腐食環境を考慮した溶融塩中での腐食試験 により,各種セラミック材の耐食性を評価した。 更に,以上の結果から優れた耐食性を示したセラ ミック材については機械強度の評価も実施した。

2. 熱力学計算

酸化物電解法に適用する高耐食材料の選定に当 たって、その基礎データとして熱力学計算を実施 し、酸化物電解法特有の各種腐食環境における材 料の反応性を検討した。熱力学データベースは MALT ⁷⁾を使用した。材料種は、表1に示す11 種のセラミックス材とし、比較として炭素材も対 象とした。腐食因子は溶融塩を取り扱う高温環境 に加えて、プロセスガスとして使用される塩素及 び酸素、更に、燃料の主成分であるウラン酸化物 がUO₂Cl(塩化ウラニル)として溶融塩中に塩素化 溶解することから、UO₂Cl(+Cl₂)の環境について も考慮した。また、炭素が酸化物燃料の溶解促進 に寄与するとしたSkibaらの報告^{®)}から、炭素共存 の塩素雰囲気についても検討した。

図1 酸化物電解法の基本フロー³⁾

サイクル機構技報 No.23 2004.6

研究報告

++	本当 七手			環	境		因子		
11	个计个里		Cl <u>(</u> g)		O ₄ (g)		UO₂Cl₄(I)+(Cl₄(g))		C+(Cl ₂ (g))
炭化物	SiC	×	1/2SiC+Cl ₂ =1/2SiCl ₄ +1/2C G ⁰ = -238kJ/mol		SiC+O₂=SiO₂+C Gº=-680kJ/mol		$1/2SiC+UO_2Cl_2+Cl_2$ =1/2SiO_2+UCl_4+1/2CO_2 G ⁰ =-345kJ/mol	×	
窒	Si₃N₄	×	$\begin{array}{l} 1/6Si_{3}N_{4}+CI_{2} \\ = 1/6SiCI_{4}+1/3N_{2} \\ G^{0} = -197kJ/mol \end{array}$		$1/3Si_3N_4+O_2$ =SiO ₂ +2/3N ₂ G°=-598kJ/mol		1/3Si ₃ N ₄ +UO ₂ +Cl ₂ =SiO ₂ +UCl ₄ +2/3N <u>{</u> g) G ^o =-440kJ/mol	×	
化	BN	×	2/3BN+Cl ₂ =2/3BCl(g)+1/3N(g) G [°] = -125kJ/mol		4/3BN+O ₂ =2/3B ₂ O ₄ (s) +2/3N ₄ (g) G°=-465kJ/mol		4/3BN+UO2Cl2+Cl2=2/3B2O3 (s)+UCl4 s)+2/3N4 g) G ⁰ =-271kJ/mol	×	
物	AIN	×	2/3AIN+Cl ₂ =2/3AICl ₃ +1/3N ₂ G ^o = -212kJ/mol		4/3AIN+O ₂ =2/3Al ₂ O ₃ +2/3N ₂ G°=-630kJ/mol		4/3AIN+UO ₂ Cl ₂ +Cl ₂ =2/3Al ₂ 0 ₃ +UCl ₄ +2/3N ₂ G ⁰ =-437kJ/mol	×	
硼化物	ZrB₂	×	$1/5ZrB_2+Cl_2$ = $1/5ZrCl_4+2/5BCl_3$ G^0 = -234kJ/mol		$2/5ZrB_2+O_2=2/5ZrO_2$ + $2/5B_2O_3$ $G^0=-660kJ/mol$	×	$\label{eq:rb2} \begin{split} &ZrB_2 + UO_2 Cl_2 + 4Cl_2 \\ &= &ZrCl_4 + UO_2 + 2BCl_3 \\ &G^0 = -1192kJ/mol \end{split}$	×	
	ZrO ₂		$1/2ZrO_2+Cl_2$ =1/2ZrCl_4+1/2O_2 G ⁰ = +79kJ/mol				1/3ZrO ₂ +UO ₂ Cl ₂ =1/3ZrCl ₄ +1/3U ₃ O ₈ +1/3Cl ₂ G ⁰ = +16kJ/mol	×	$1/2ZrO_2+1/2C+2Cl_2$ =1/2ZrCl_4+1/2CO_2 G ⁰ = -119kJ/mol
酸	Al ₂ O ₃		1/3Al ₂ O ₃ +Cl ₂ =2/3AlCl ₃ +1/2O ₂ G ^o = +103kJ/mol				$2/3Al_2O_3+UO_2Cl_2+Cl_2$ =4/3AlCl_3+1/3U_3O_8+2/3O_2 G^0 = +169kJ/mol	×	1/3Al ₂ O ₃ +1/2C+Cl ₂ =2/3AlCl ₃ +1/2CO ₂ G ^o = -95kJ/mol
14	Y_2O_3		1/3Y ₂ 0 ₃ +Cl ₂ =2/3YCl <u>{</u> s) +1/20 <u>4</u> g) G ⁰ = +22kJ/mol			×	2/9Y ₂ O ₃ +UO ₂ Cl ₂ =4/9YCl(s) +1/3U ₃ O ₄ (s)+1/3Cl <u>(</u> g) G ⁰ = -22kJ/mol	×	1/3Y ₂ O ₃ +1/2Cl ₂ =2/3YCl ₃ +1/2CO ₂ G ⁰ = -175kJ/mol
16	SiO ₂		$1/2SiO_2+Cl_2$ =1/2SiCl_4+1/2O_2 G ⁰ = +101kJ/mol				$\begin{array}{l} 1/3SiO_2 + UO_2CI_2 \\ = SiCI_4 + 1/3U_3O_8 + 1/3CI_2 \\ G^0 = + 31kJ/mol \end{array}$	×	1/2SiO₂+1/2C+Cl₂ =1/2SiCl₄+1/2CO₂ G°= -96kJ/mol
物	MgO		MgO+Cl ₂ =MgCl ₂ +1/2O ₂ G ^o = +7.4kJ/mol			×	$2/3MgO+UO_2CI_2$ = $2/3MgCI_2+1/3U_3O_8+C_{12}$ G^0 = - $32kJ/mol$	×	MgO+1/2C+Cl ₂ =1/2CO ₂ G ^o = -190kJ/mol
	CaO	×	CaO+Cl ₂ =CaCl ₂ +1/2O ₂ G ^o = -144kJ/mol			×	CaO+UO ₂ Cl ₂ =CaCl ₂ +1/3U ₃ O ₈ +1/3U ₃ O ₈ +1/6O ₂ G ⁰ = -151kJ/mol	×	
炭素	С		1/2C+Cl₂=1/2CCl₄ G⁰= +13kJ/mol	×	C+O ₂ =CO ₂ G ^o = -396kJ/mol	×	C+UO₂Cl₂=CO₂+UCl₄ G⁰=-202kJ/mol		

表1 熱力学計算による各セラミック材料の安定性評価(温度:923K)

: G° > 0kJ/mol

: G° 0kJ/mol and the product is solid and stable in the corrosion environment

x: G° 0kJ/mol and the product is liquid, gas or unstable in the corrosion environment

表1には計算結果として,酸化物電解法の標準的なプロセス温度923Kにおける各種セラミック材と腐食因子の反応における標準生成自由エネル ギー変化(以下, G°)を示す。また表中には,

G[®]値に基づいて推定される耐食性の評価結果を 3段階で示した。印は G[®] > 0 kJ/molで熱力学 的に比較的安定なケース, 印は G[®] 0kJ/mol であり 熱力学的には比較的不安定であるものの, 反応生成物がその環境で安定な固体化合物を生成 するケース,×印は G[®] 0kJ/molで気体もしく は液体の化合物を生成するケースをそれぞれ表し ている。この評価では,熱力学的に比較的反応が 起こりにくい に加えて, の評価についても, 反応生成物による耐食効果が期待できる。なお, 酸素雰囲気に対して酸化物は安定であること,塩素との反応で評価が×の材料については炭素が共存しても評価は変わらないことから,これらの場合は反応式や G°値の記載を省略した。

酸化物燃料の溶解に使用される塩素との反応で は、炭化物、窒化物等の非酸化物系セラミックス がいずれも G^o 0kJ/molを示している一方、酸 化物系セラミックスはCaOを除いて、いずれも G^o>0であり塩素に対する安定性は酸化物系セ ラミックスの方が高いと考えられる。また、酸素 との反応については、非酸化物系セラミックスは いずれも安定な酸化物を形成することから、大き な腐食反応には進展しないことが推定される。 UO₂Cl(+Cl₂)との反応では酸化物系セラミック
スの中でY₂O₃, MgO, CaOはそれぞれ G^o 0を 示しており, 十分な熱力学安定性を有するとはい いがたい。その他の酸化物については比較的安定 である。一方, 非酸化物系セラミックスはいずれ も G^o 0であるが, SiC, AIN, Si₃N₄については その環境で安定な酸化物の生成が推定される。

各非酸化物系セラミックスは塩素との反応で低 沸点の塩化物を形成する傾向にあり,塩素雰囲気 では安定して存在しにくいが,酸素雰囲気では多 くの材料種で安定な酸化物を形成すると考えられ る。酸化物系セラミックスについては,対象化合 物の中で,ZrO₂,Al₂O₃,SiO₂はいずれの腐食因子 に対しても G⁰>0であり熱力学的に比較的安定 であると言える。このことから,熱力学計算結果 では,非酸化物系セラミックスよりも酸化物系セ ラミックスの方が熱力学的に安定であると判断さ れる。なお,炭素については塩素との反応に対し て比較的安定であるものの,酸素雰囲気では高温 酸化が懸念される。

以上のように,評価対象とした多くの酸化物系 セラミックスは酸化物電解法の主要な腐食因子に 対して熱力学的に安定であると考えられるが,懸 念される環境として炭素共存の塩素雰囲気が挙げ られる。表1に示す結果では,炭素による還元反 応が進行することで,いずれの酸化物系セラミッ クスも G⁰ 0を示している。

以上の熱力学計算結果から,酸化物電解法の腐 食環境におけるセラミック材の耐食性について推 定するための基礎データを得ることができた。し かし,熱力学上の検討は材料の長期的な耐食性を 推定する上で有用な情報を与えるが,速度論で評 価される材料の耐食性を判断するには十分でな い。したがって,この評価結果を参考にする一方, 最終的に各種セラミック材の耐食性を評価するに は,実際の環境を想定した腐食データの収集が必 要である。

次章以降では腐食試験による各種セラミック材 の耐食性評価結果について示す。

3.材料腐食試験

3.1 供試材

腐食試験用の供試材は熱力学計算結果を行った 材料を中心に,市販の緻密性セラミック材10種 (非酸化物系セラミックス5種,酸化物系セラ ミックス5種)とした。この酸化物系セラミック

スの中には,熱力学計算結果から比較的耐食性上 有望と推定されるAl₂O₃(アルミナ)とSiO₂(石英) の

複合酸化物であるAl₆Si₂O₁₃ (ムライト), Mg₂Al₃(AlSi₅O₁₈)(コージェライト)も対象とし て加えた。更に比較材として熱分解炭素も同様の 評価を行った。 複合酸化物の ZrSiO4(ジルコン)を 坩堝用候補材料とした報告^いもあるが 緻密材を入 手することが困難であったため、本試験では対象 外とした。なお 熱力学計算を行った材料の中で, SiO2は優れた耐食性が期待されるものの,衝撃に 対する抵抗性が低く,閉じ込めが重要視される再 処理用構造材料には不適と考えた。また,MgOや CaO についても塩基性酸化物は塩素によって腐食 を受けやすいとの報告。から、それぞれ評価対象外 とした。表2には腐食試験用の供試材とその諸性 について示す。

試験片は腐食量の評価用に10×10×2(mm)の 板形,機械強度の評価を伴う試験片にはJIS規格^(*) に定められた3点曲げ試験用の3×4×40t (mm)の角柱形を用いた。また,本試験ではセラ ミック材の課題である機械強度を評価するため に,曲げ強度及び硬さを浸漬試験前後で測定した。 なお,腐食速度については,浸漬試験で得られた 重量減少量から以下の式にしたがって算出した。 Corrosion rate(mm/y)

= (M×10^s×365 25×24)/(S×t×d×10^s) M:重量減少量(g),S:表面積(mm²), t:浸漬時間(hr),d:かさ密度(g/cm³)

32 試験装置

使用した腐食試験装置の外観を写真1に示す。 装置の主要部は試験セルを内蔵した電気炉と未反 応の塩素ガスを処理するためのオフガス処理装置 から構成される。電気炉内の構成を図2に示す。 試験セル全体は耐食性を考慮し,上蓋部分を除い てSiO2で製作されている。セル内にはガスの導入 及び熱電対を挿入するための細管や試験片を設置 するためのラックが備えられている。試験セルの 上蓋部分及び高温部のガス排出ラインの材料には 塩素雰囲気での耐食性に比較的優れた金属材料の ハステロイQ(Ni Cr Mo系合金,主成分Ni:55%, Cr:15%,Mo:16%,単位w/w)を使用してい る。オフガス処理装置は,アルカリスクラバ及び 活性炭による中和または吸着処理で未反応の塩素 を回収した。

表2 腐食試験用供試材の諸性

++ 火川 千手	制造动力、相均	かさ密度	曲げ強度	ビッカース硬さ	線膨張係数	熱伝導率	士亜化学成分组成	
们不当了	彩垣 入一 刀・尻恰	g/cm ³	MPa	HV (GPa)	× 10 ⁻⁶ /K	W/m•K (R.T.)	土安化子风万組风	
SiC	京セラ(株)製,SC-211	32	540	21 .6	4 4	60	SiC>95, Al ₂ O ₃ <4, Y ₂ O ₃ <1	
Si₃N₄	(株)ニッカトー製, SUN-11	32	700	12.7	3 2	17(673K)	S ₁₃ N ₄ >90, Al ₂ O ₃ , Y ₂ O ₃ etc.	
BN	昭和電工(株)製, UHS-FL	1 .92	41.2	18(HS)* 1	0.86	75 .4	BN>99.5	
AIN	高純度化学製	2 23	N.A.	N.A.	N.A.	N.A.	AIN>99	
ZrB ₂	旭硝子(株)製, CERABOREX	5.6	343	15 .7	6 .1	48.6	Zr79.6, B18.6, Hf1.3	
ZrO ₂	(株)ニッカトー製, ZR-11	5 <i>A</i>	200	N.A.	10	2 A(673K)	ZrO ₂ >93, CaO: 5.5	
Al ₂ O ₃	(株)ニッカトー製, SSA-999H	3 .95	392	14 .7	8 4	37	Al ₂ O ₃ >99.9	
Y ₂ O ₃	(株)ニッカトー製	5	133	N.A.	8.5	N.A.	Y ₂ O ₃ =99.5, SiO ₂ =0.03, Al ₂ O ₃ =0.03	
$AI_6Si_2O_{13}$	(株)ニッカトー製, KM	2.7	210	N.A.	5.6	3.6	Al ₂ O ₃ =60, SiO ₂ =37, K ₂ O=0.8 etc.	
Mg ₂ Al ₃ (AISi ₅ O ₁₈)	共立マテリアル(株)製, SS-600	2 5	N.A.	N.A.	N.A.	N.A.	Al ₂ O ₃ >35, SiO ₂ <55, MgO<15	
Pyrographite	Advanced Ceramics co. 製	22	96 .1	N.A.	2 *2	2 3*2	C>99.9	

*1 Shore硬さ

*2積層面に対して垂直方向のデータ

N.A. = Not available

写真1 材料腐食試験装置の外観

3.3 試験条件

浸漬腐食試験では、溶融塩中の環境因子として、 材料腐食に与える塩素、炭素、核分裂生成物(Fission product:以下「FP」)の影響を評価し、高耐 食材料の絞込みを行った。試験はNaCI KCI等モル 混合塩(共晶融点:約930K¹¹⁾)を用いて、共晶融

図2 腐食試験装置における電気炉内の構成

点以上の1,023Kで溶融塩を形成し、塩素を通気し た環境で腐食試験を行った。なお、使用した塩素 ガスの純度は99,9%以上であり、通気流量は 150ml/minとした。塩の加熱にあたっては、試薬 中の水分を除去するために、十分な予備加熱 (573K,1h)と窒素ガスによるパージ(流量 200ml/min)を行った。試験片は溶融塩中及び気 相中に各2片設置し、両環境での耐食性について 同時に評価した。また、FP元素による影響評価で は非放射性の模擬塩化物を使用し、使用済燃料中 研究報告

の濃度が比較的高いFP元素の中から、溶融塩中で 化学的に安定な元素や化学的毒性及び塩素との反 応が極めて高い塩化物を除いて選定した。模擬FP 塩化物の添加形態を表3に示す。試薬は各0.1mol (溶融塩中濃度約0.7mol/I)添加した。また、添 加方法については事前に熱力学計算によって、各 材料と塩化物の反応性を調査し、熱力学的に安定 と予測される10種の塩化物は溶融塩中に同時添加 し、その他の4種(Rh,Ce,Pd,Ru)について はそれぞれ単独で添加した条件で腐食速度を評価 した。試験条件を表4に示す。

以上の試験結果から耐食性に優れた材料は,更 に酸素の影響及びセラミック材の耐久性を評価す るために,塩素・酸素混合ガスを導入した環境で 480hrs(96hrs × 5 batch)の腐食試験を実施し, 腐食データ及び機械強度データ(曲げ,硬さ)を 取得した。この試験条件については,実際のプロ セス同様,2CsCl NaCl混合塩(共晶融点の実測

元 素 種	添加形態
Y	YCl₃ • 6H₂O
Ag	AgCI
Pr	PrCl₃
Ru	RuCl₃
Sm	SmCl₃ • 6H₂O
Dy	DyCl₃
Eu	EuCl₃
Tb	TbCl₃
Gd	GdCl₃ • 6H₂O
Nd	NdCl₃ • 6H₂O
Rh	RhCl₃ • 3H₂O
Pd	PdCl₂
Ce	CeCl₃
La	LaCl₃ • 7H₂O

表3 模擬 FP 塩化物の添加形態

表4 塩素通気環境における腐食試験条件

材料種	$\begin{array}{c} SiC \;, Si_3N_4 \;, BN \;, AIN \;, ZrB_2 \;, ZrO_2 \;, \\ Al_2O_3 \;, Y_2O_3 \; Al_6Si_2O_{13} \;, Mg_2Al_4 \;(\; AISi_5O_{18} \;) \;, \\ Pyrographite \end{array}$				
試験片形状	10 × 10 × 2(mm)				
設置位置	溶融塩中,気相				
試験片数	n=2				
塩の種類	NaCl-KC(モル比=1:1)				
塩重量	214g(NaCl: 94g ,KCl: 120g)				
Cl₂流量	150 ml/min				
模擬 FP 塩の添加量	0 .1 mol				
炭素粉の添加量	10 g				
溶融塩温度	1 ,023 K				
試験時間	24hrs				

値:約770K)を用いて,溶融温度は923Kとした。 ガス通気条件は塩素・酸素1:1の混合ガスで流 量は150ml/minとした。機械強度の評価方法は, 3点曲げ試験及びビッカース硬さ測定とした。

機械強度の評価に関しては,更に室温~1,073K の範囲で10サイクルの熱疲労試験を実施し,試験 前後における強度変化を調べた。

4.結果及び考察

4.1 塩素雰囲気下における耐食性

塩素雰囲気下での溶融塩中及び気相中における 各種セラミック材の腐食速度を図3に示す。溶融 塩中、気相中共に良好な耐食性を示した材料種(腐 **食速度1×10**¹mm/v以下を目安¹²)はSi₃N₄,Al₂O₃, Al₆Si₂O₁₃, Mg₂Al₃ (AlSi₅O₁₈) であり, これらの材 料は比較材とした熱分解炭素に対して同等以上の 優れた耐食性を示した。一方,十分な耐食性が得 られなかったその他の材料種については,酸化物 電解法の腐食環境中で適用することは難しいと判 断される。ZrO2については,気相中の耐食性は良 好であったが,溶融塩中の腐食速度は約5× 10¹mm/y であり,十分な耐食性とはいい難い。こ の理由には,ZrO2中に不純物として含まれるCaO (熱力学計算結果や3.1項に示したように,塩素雰 囲気に対する耐食性の問題)の影響が考えられる ため、製造工程で不純物成分をコントロールする ことにより、耐食性改善の可能性がある。

図4にはSiを含むセラミック材でも塩素雰囲気 中における耐食性に大きな違いが認められた SiC, Si₃N₄, Al₆Si₂O₁₃について,溶融塩中における 浸漬試験前後の表面 SEM 観察結果を示す。優れた 耐食性を示した Si₃N₄, Al₆Si₂O₁₃は浸漬試験前後で

図3 塩素通気環境における各種材料の腐食速度

研究報告

表面上の変化は特に認められないが、大きな腐食 速度を示したSiCでは試験後で結晶粒が粗大化す る傾向が認められており、腐食と共に脱粒を伴っ て著しい損傷を示したものと考えられる。この点 に関連して、Marraによれば¹³⁾、2%Cl₂/Ar 混合ガ ス雰囲気でも酸化皮膜を形成する上で十分な酸素 が存在し、その酸化皮膜はSiCよりもSi₃N₄の方が 厚く、保護性が高いことが報告されており、同じ Si系セラミックスでもSiCよりもSi₃N₄の方が耐食 性に優れている点を裏付けている。また、塩素雰 囲気におけるSi₃N₄の優れた耐食性はCaCl₂溶融塩 を対象とした評価でも実証されている¹⁴⁾。

42 炭素及び模擬 FP 塩化物共存塩素雰囲気下に おける耐食性

前項の腐食試験結果から,良好な耐食性を示したSi₃N₄,Al₂O₃,Al₆Si₂O₁₃,Mg₂A₁(AlSi₅O₁₈)について,更に塩素通気下で酸化物系セラミックスの反応性に影響を与える可能性がある炭素又は模擬 FP塩化物を溶融塩中に添加した環境で腐食試験を実施した。得られた各材料の腐食速度を図5に示す。ここで,炭素共存環境におけるAl₆Si₂O₁₃及びMg₂Al(AlSi₅O₁₆) 模擬FP塩10種混合共存環境でのMg₂Al(AlSi₅O₁₆) については 0.1~0 3mg/24hrs 程度の重量増を示したため 図中では1×10²mm/y 以下として示した。なお,試験前後におけるこれ ら材料の外観変化は認められなかった。炭素と塩 素の混合環境では,熱力学検討結果から,いずれ

図5 塩素通気環境における腐食への炭素及び模擬 FP塩の影響

の酸化物系セラミックスも G⁰ 0であることを 示したが(表1参照),腐食試験結果から絞り込ま れた4種の材料はいずれも良好な耐食性を示し た。中でも,Si₃N₄,Al₆Si₂O₁₃,Mg₂Al₃(AlSi₅O₁₈) は1×10¹mm/yを大きく下回る結果が得られた。 計算結果に反して,酸化物系セラミックスが炭素 共存環境でも耐食性が優れていた理由の一つとし て,炭素による還元反応は大部分の酸化物が 1,773K以上の温度で進行し,炭化物とCOを生成 するとの知見があることから¹⁵⁰,本試験の溶融温 度では十分に反応が進行しなかった可能性が考え られる。

模擬 FP の塩化物を添加した塩素通気環境につ いても、Si₃N₄、Al₆Si₂O₁₃、Mg₂Al₃(AlSi₅O₁₈)の3 種はいずれも1×10¹mm/y程度又はそれ以下の 腐食速度であり、熱分解炭素よりも優れた耐食性 を示した。この中でSi₃N₄は計算結果から多くの腐 食因子に対して G⁰ 0であったが本腐食試験か らはいずれの環境でも優れた耐食性を示した。 Al₂O₃に関しては、特にCe,Ruの各塩化物添加の 環境で1×10⁰mm/y前後の比較的大きな腐食速度 を示しており、十分な耐食性を有しているとはい えない。

43 塩素・酸素通気環境における耐食性及び機械 強度変化

前項の試験結果によって更に絞り込まれた3種 のセラミック材(Si₃N₄,Al₆Si₂O₁₃,Mg₂Al₄(AlSi₅O₁₈)) について,材料腐食に対する酸素の影響を熱分解 炭素と比較すると共に,機械強度について評価す るために,塩素・酸素通気環境で480hrs (96hrs × 5パッチ)の浸漬腐食試験を実施した。各材料 の腐食速度及び機械強度測定結果を表5に示す。 比較材とした熱分解炭素は溶融塩相,気相共に5 × 10¹mm/y以上の腐食速度を示しており,高温酸 素雰囲気中の耐食性に課題があることを改めて示 した。一方,3種のセラミック材は溶融塩中,気 相中共に1×10²mm/y以下の優れた耐食性を示 しており,複合酸化物であるAl₆Si₂O₁₃,Mg₂Al₃ (AlSi₆O₁₈)のみならず,非酸化物のSi₃N₄について も塩素や酸素が共存する雰囲気で優れた耐食性を 示した。

腐食試験後の外観については,各セラミック材 及び熱分解炭素共に,設置環境に関係なく,割れ や欠陥等は認められず,試験前同様の健全な状態 を保持していた。一方,図6に示すSEM観察結果 では,各セラミック材の表面組織変化は認められ ず,良好な耐食性を反映しているが,熱分解炭素 では積層構造中に空隙が認められており,酸化反応に基づく劣化の進行が読み取れる。

また,機械強度測定ではSi₈N₄の曲げ強度が溶融 塩中,気相共に腐食試験前に比べて低下傾向を示 したが,その他についてはいずれも顕著な強度低 下は認められなかった。関連して,表6には熱疲 労試験による機械強度の変化を示す。本結果も腐 食試験後の傾向と同様であり,Si₈N₄の曲げ強度の みが低下傾向を示した。この点については,今後 更に詳細な評価が必要と考えられる。また,硬さ に関して,Al₆Si₂O₁₃,Mg₂Al₈(AlSi₅O₁₈),熱分解炭 素材は強度上の問題から圧痕の周囲が欠けること で測定不能であったが,測定可能であったSi₈N₄は 腐食試験及び熱負荷試験後でも大きな変化は認め られず,良好な強度を保持していた。

4.4 酸化皮膜による Si₃N₄の耐食効果

これまでの腐食試験結果から,Si_aN₄は熱力学的

	腐食	速度	曲	げ強	度	ł	硬 さ	ł.	
<u>++</u> ⊭1 1 希	mr	n/y		MPa		GPa			
们个个个星	<u> </u>	乍归	試験前	試懸	食 後	計時前	試験後		
	冶赋垣中	XITH		溶融塩中	気相	百八 向火 月リ	溶融塩中	気相	
Si₃N₄	< 0.01	< 0 .01	876	606	610	1 ,295	1 ,280	1 <i>A</i> 27	
$AI_6Si_2O_{13}$	< 0.01	< 0 .01	130	205	206				
Mg ₂ Al ₃ (AlSi ₅ O ₁₈)	< 0.01	< 0.01	139	150	127				
Pryographite	0.596	0.704	147	206	181				

表5 塩素-酸素混合ガス通気環境における腐食試験結果

2CsCl-NaCl ,923K ,Cl₂+O₂流量:150ml/min 試験時間:480hrs * 硬さはビッカース法によって測定

図6 腐食試験後における各材料の表面 SEM 観察結果 (塩素 - 酸素混合ガス通気環境)

サイクル機構技報 No.23 2004.6

研究報告

表6 熱負荷試験による機械強度の変化

	曲げ	強度	硬	さ*
材 料 種	M	Pa	GI	Pa
	試験前	試験後	試験前	試験後
Si₃N₄	876	733	1 ,295	1 <i>4</i> 73
$AI_6Si_2O_{13}$	130	183		
Mg ₂ Al ₃ (AlSi ₅ O ₁₈)	138	143		

*硬さはビッカース法によって測定

に不安定であるにもかかわらず,優れた耐食性を 示した。この要因には酸化皮膜による耐食効果が 考えられる。この点について詳細に検討するため, Si₈N₄表層の組成分析を行った。

図7には,オージェ分光分析法によって深さ方 向に測定した腐食試験前後におけるSi_aN₄表面の 組成分析結果を示す。横軸にはスパッタ時間を深 さ換算した値を,縦軸にはオージェハンドブッ ク¹⁰⁾中の相対感度係数を用いて濃度換算した値を 示した。なお,スパッタ速度はNi Fe換算で約 10nm/minである。図に示すように,試験前後共 にSi_aN₄最表面で酸素含有量が高く,材料中心へと 深くなるにつれて減少する傾向が認められた。こ れは材料表面における酸化皮膜層の存在を示すも

図7 オージェ分光分析法によるSi₃N₄最表面から 深さ方向への組成変化

のと考えられる。ただし、その厚みはいずれも極めて薄く、スパッタ速度からの計算で数nm程度と 推定される。酸素の傾向は更に深い領域でも完全 に消失せずに、5%程度の原子割合で一定の推移 を示しているが、これはSi₃N₄中に不純物として含 まれるAl₂O₃やY₂O₃の影響と考えられる。

また,SiaNa表面皮膜層におけるSi化合物の化学 形態について検討するために、試験前後における 最表面の分析を行った。図8には最表面に認めら れた各種元素のピークから,特にSi結合のピーク 強度を微分して得られたスペクトルを示す。横軸 にオージェ電子の運動エネルギー,縦軸には電子 数のエネルギー微分値 (counts/s)を示した。各 化学形態に対する吸収エネルギーの特定にあたっ ては,先述のハンドブック⁽⁶⁾を引用した。この結 果から,腐食試験前後共にSi Oのピークが明瞭に 観察されており,それぞれSiO,の存在が推察でき る。これはSi Nのピークよりもはるかに顕著であ ることから,最表面の化学組成では,Si₃N₄よりも SiO2が支配的であると考えられる。このことから, 試験前の状態でSiaNa表面には既にSiOaの皮膜層が 形成されていることが分かる。なお,試験前後に おけるSi Oのピーク強度比較から,試験後の強度 が比較的高いように見えるが,不純物の炭素量が 溶融塩への浸漬によって低減されているため、組 成に関する詳細な比較はできない。いずれにして も,試験前のSiaNa表面には,既に酸化物層が形成 されており,その保護効果によって酸素や塩素雰 囲気でもSiaNaは良好な耐食性を維持できるもの と考えられる。

図8 Siの結合ピークに対する微分スペクトル

45 熱力学計算結果と腐食速度の比較

熱力学計算は平衡上の評価であることから,基本的に速度論に関する情報を与えることはできないことを前に述べたが,ここでは,熱力学計算結果と浸漬試験で得られた腐食速度の傾向について比較検討する。

一例として,図9には各種セラミック材と塩素 との反応に対する G°と試験結果から得られた腐 食速度の関係を示す。図に示すように, Si₃N₄を除 けば, G^oと腐食速度の対数値には相関が認めら れており,多くの材料種に関しては G°から腐食 速度を概算的に推定できる可能性を示唆した。相 関が認められた背景には腐食反応が主に計算式に 基づいた素反応に支配されている点や腐食反応の 平衡状態に達する時間が極めて速い点などが考え られる。一方,Si₃N₄についてのみ, G⁰ 0でも 優れた耐食性を示しているが、これは前項にも示 したように材料表面の酸化皮膜による保護効果と 考えられる。これを裏付ける点として,Si₃N₄の腐 **食速度を**SiO2の G⁽ + 101 kJ/mol)上にプロット した場合,全体の傾向によく一致することが分か る。なお,表2に示しているように,腐食試験用 の供試材には多少にかかわらず不純物を含んでい ることから, G°と腐食速度の相関性を厳密に議 論することは難しい。

5.おわりに

本研究では 熱力学計算及び腐食試験を通して, 酸化物電解法の腐食環境で優れた耐食性を発揮し 得るセラミック材の選定を行う上で有用な腐食

図9 標準生成自由エネルギー変化 G^oに対する 腐食速度の依存性

データが得られた。その結果,高温溶融塩,塩素, 酸素,模擬FPが複雑に共存する雰囲気で優れた耐 食性が期待できるセラミック材として,Si₃N₄, Al₆Si₂O₁₃,Mg₂Al(AlSi₅O₁₈)を選定した。これらの 材料は酸化物電解法用装置材料の耐食性を改善す る上で有望な候補材料と考えられる。今後は,こ れら材料について実際の再処理環境における耐食 性を総合的に判断するために,ウラン,プルトニ ウム,TRU元素等による腐食への影響を検討する 必要がある。

参考文献

- 1)神山弘章:"ロシアにおける高温化学再処理技術", 原子力工業, No.40,p.31(1994).
- 2) 鈴木一弘: "海外における先進的リサイクル技術の 開発", エネルギーレビュー, No.16,p.22(1996).
- 3)小泉健治,他:"先進的溶融塩電解槽の開発(1)"
 -開発方針及び基本概念-,日本原子力学会「2001 年秋の大会」予稿集N3.
- 4) A.V.Bychkov, S.K.Vavilov et al." Pyroelectrochemical reprocessing of irradiated FBR MOX fuel. . Experiment on high burn-up fuel of the BOR-60 reactor, Global 97', p.912(1997).
- 5) M.Aso et al.:" The corrosion resistance tests of crucible materials for the oxide pyro-process ",Global 99', p.659(1999)
- 6) A.V.Bychkov, S.K.Vavilov et al.: "Pyroelectrochemical reprocessing of irradiated uranium-plutonium oxide fuel for fast reactors "Global 93', p.1351(1993).
- 7)日本熱測定学会編: "熱力学データベース MALT2", 科学技術社 (1992).
- 8) O.V.Skiba, Yu.P.Savochkin et al.: "Technology of pyroelectrochemical reprocessing and production of nuclear fuel 'Global 93', p.1344(1993)
- 9)小田耕平,他:"酸化物セラミックスの塩素・塩化 水素ガスによる高温腐食",材料と環境,No.46,p.736 (1997).
- 10) JIS ハンドブック「R 1601ファインセラミックスの曲 げ強さ試験方法」,日本規格協会(1984)
- 11) 溶融塩委員会:"溶融塩物性表",化学同人(1963).
- 12) 佐藤教男:" 金属の腐食と不働態", 化学工学, No.45, p488(1981)
- 13) J.E.Marra, E.R.Kreidler et al.: "Reactions of siliconbased ceramics in mixed oxidation chlorination environments", J.Am.Ceram.Soc., No.71,p.1067(1988).
- 14) D.F.McLaughlin, C.E.Sessions et al.: "Corrosion behavior of silicon niride, magnesium oxide, and several metals in molten calcium chloride with chlorine " Nucl.Tech., No.99, p.242 (1992).
- 15) Lewis Lay: " Corrosion resistance of technical ceramics ", National physical laboratory (1984).
- 16) C.L.Hedberg." Handbook of Auger Electron Spectroscopy (Third edition)", Physical Electronics (1995).

Hydrochemical Investigations in Mizunami Underground Research Laboratory Project (Phase)

Hideki MIE Teruki IWATSUKI Ryoji FURUE Takashi MIZUNO

Mizunami Underground Research Laboratory, Tono Geoscience Center

本研究では、「超深地層研究所計画」第1段階での調査・解析結果を踏まえて,研究坑道掘削前の地下水の地 球化学特性(水質やpH,酸化還元状態等の三次元的分布)とその形成機構に関わる地球化学モデルの構築,研 究坑道建設過程で予測される地球化学的諸現象等に関する考察を行った。

その結果,堆積岩上部の明世累層中にはSi Na Ca SO4 HCO3型地下水が分布し,長石類など構成鉱物の風 化変質反応や海成硫酸塩・硫化物の酸化溶解反応,炭酸塩鉱物の溶解反応等が水質形成に関与していることが明 らかになった。一方,堆積岩下部の土岐夾炭累層と花崗岩中には Na CI型地下水が分布し,塩素イオン濃度の異 なる地下水の混合が水質形成に関与していることが明らかになった。

これらの結果に基づいて構築した地球化学モデルにより、未知の深度領域での水質分布を予測できる可能性が 示された。また,第2段階の研究坑道掘削段階で起こり得る地球化学的諸現象に関しては,溶存ガスの脱ガス現 象により,酸化還元電位,pH,硫酸イオン・無機炭酸濃度の変化が起こり得ることが想定された。

This report discusses about hydrochemical properties before the construction of the underground research laboratory, hydrochemical model about groundwater evolution, and hydrochemical changes during construction based on the results of investigations in Mizunami Underground Reseach Laboratory Project (Phase)

Chemical compositions of groundwater are Si Na Ca SO4 HCO3 type and Na Cl type in Akeyo Formation and in Toki Lignite bearing Formation, and Toki granite, respectively. Groundwater evolves by water rock interaction in Akeyo Formation and the mixing process in Toki Lignite bearing Formation and Toki granite.

This hydrochemical model enables prediction of groundwater chemistry in the MIU construction site. In Phase (Construction Phase), changes of Eh and pH, concentration of sulphate ion and inorganic carbon will take place according to the degassing of dissolved gas.

キーワード

地下水,水質,pH,酸化還元状態,水質形成機構,地球化学モデル,地球化学特性,水-岩石反応,超深地層 研究所

Groundwater, Groundwater Chemistry, pH, Redox, Evolutionary Process, Hydrochemical Model, Hydrochemical Property, Water Rock Interaction, Mizunami Underground Research Laboratory

に従重

岩月 輝希 超深地層研究グループ 地下水化学チームリーダ 超深地層研究所計画の地球 化学特性調査に関する研究 に従事 理学博士

古江 良治 超深地層研究グループ 地下水化学チーム所属 超深地層研究所計画の地球 化学特性調査に関する研究 に従重

水野 崇 超深地層研究グループ 地下水化学チーム所属 超深地層研究所計画の地球 化学特性調査に関する研究 に従事

1.はじめに

高レベル放射性廃棄物の地層処分技術に関する 研究では,自然状態における地下深部の地球化学 環境や地層処分場を建設する過程で起こり得る諸 現象及び周辺環境への影響,地層処分場閉鎖後の 地球化学環境等を調査・解析・評価するための研 究・技術開発が課題の一つとされている。

「特定放射性廃棄物の最終処分に関する法律」で は,建設地選定段階の調査内容として「当該対象 地層内の水素イオン濃度その他の当該対象地層の 化学的性質に関する事項」,選定要件として「地下 施設が当該対象地層内において異常な腐食作用を 受けるおそれがないと見込まれることその他当該 対象地層の化学的性質が最終処分施設の設置に適 していると見込まれること」が挙げられており, これらの地球化学環境の調査・解析・評価が求め られている。

東濃地科学センターでは岐阜県瑞浪市におい て、「超深地層研究所計画」(以下,MIU計画)に 基づき、深度1,000m規模の地下研究施設(以下, 研究所)の建設を進めており、研究所の建設過程 の各段階で地球化学環境の調査を行いながら、上 記課題に関わる研究・技術開発を行っている。 MIU計画は、「地表からの調査予測研究段階(第 1段階)」、「研究坑道の掘削を伴う研究段階(第2 段階)」、「研究坑道を利用した研究段階(第3段 階)」の3段階に分けて進められており、2005年の 初めには第1段階の調査を終了する予定である。 また第2段階に関しては、2003年より立坑の掘削 を開始しており、2005年からは掘削タワーや巻上 機等を用いた本格的な掘削を行う予定である。

本報告では,第1段階の調査研究の結果明らか になった研究坑道建設前の地下深部の地球化学特 性(水質やpH,酸化還元状態等の三次元的分布) や,それから構築される地下水の水質形成機構に 関わる地球化学モデル,モデルから予測される研 究坑道建設過程で遭遇する地球化学環境及び地球 化学的諸現象等について述べる。

2.既存研究成果の概要

研究所用地の周辺は,基盤岩である白亜紀後期 の土岐花崗岩(約7,000万年前)を新第三紀の堆積 岩(瑞浪層群:約1,500~1,800万年前)が不整合 に覆い,さらにそれを固結度の低い砂礫層(瀬戸 層群:約200~500万年前)が不整合に覆っている²。 瑞浪層群は,下位より,泥岩・砂岩・礫岩からな り亜炭を挟む土岐夾炭累層(湖成層),凝灰質の泥 岩・砂岩を主体とする明世累層(海成層),シルト 岩・砂岩を主体とする生俵累層(海成層)の3層 に区分される。研究所用地では,これまでの調査 研究により,厚さ百数十mの堆積岩(明世累層・ 土岐夾炭累層)が基盤花崗岩を覆って分布するこ とが明らかになっている。研究所用地周辺の地下 水の流動状態は地形に依存し,おおむね北東から 南西の流動方向であると推測されているジ。地下水 の地球化学特性については,研究所用地を含む約 10km四方の領域内(図1)に異なる水質を示す 地下水が分布していることが判っており³⁾,各地下 水の分布状態は次のように整理できる。1)研究 所用地の北方の地下水涵養域:ナトリウム,カル シウム,炭酸水素イオンに富む地下水(以下,Na Ca HCO₃型地下水)またはナトリウム,炭酸水 素イオンに富む地下水(以下, Na HCO。型地下 水),2)研究所用地の南方の地下水流出域:ナ トリウム,炭酸水素イオン,塩素イオン濃度に富 む地下水(以下, Na CI HCO。型地下水)または ナトリウム,塩素イオンに富む地下水(以下,Na CI型地下水)(図2)。研究所用地は1)と2) の地下水分布域の中間に位置している。本研究で

(出展:「高レベル放射性廃棄物の地層処分技術に関する研究開 発 - 平成14年度報告 - 」に加筆)

図1 超深地層研究所周辺約10km 四方の調査領域

研究報

(出展:「高レベル放射性廃棄物の地層処分技術に関する研究開発-平成14年度報告-」に加筆)

は,研究所用地を含む約10km四方のスケールで 明らかとなった地下水の地球化学特性に基づい て,より狭域のスケール(サイトスケール;数百 m~数km×数百m~数km)に焦点をあてて,地 球化学特性の深度依存性やボーリング・研究坑道 の掘削の影響についてより詳細に検討を行った。

3.調查方法

MIU計画第1段階の研究坑道建設前における 地球化学調査には,研究所用地内の3本のボーリ ング孔 (MSB 2号孔: 掘削長約180mの鉛直孔, MSB 4号孔: 掘削長約100mの鉛直孔, MIZ 1号 孔:掘削調查中,予定掘削長約1,350m,鉛直孔~ 斜孔)と研究所用地外のDH 2号孔(掘削長約500m の鉛直孔)を用いた(図3)。 MSB 2号孔及び MSB 4号孔は2002年に掘削され、う同年に4深度,次年 に14深度の地下水の採水を行った。DH 2号孔は, 1993年から1994年にかけて地下水流動状態の調査 用に掘削されたボーリング孔であり、水理学的調 査終了後,裸孔状態にあった。その後,2002年に 深度約170~500m間で11深度の地下水の採水調査 を行った。MIZ 1号孔は, 2003年から2004年にか けて掘削を行っており,深度約100~230m間で2 深度の地球化学調査を行っている。

地下水は,各孔で試験深度の上下に遮水パッ カーを設置し,岩盤の透水性を把握するための揚 水試験の過程で水中ポンプを用いて採取した。揚 水試験時には,地上で水中ポンプの地下水排出口 に地下水水質連続モニタリング装置⁵⁾を接続し水

(出展:「超深地層研究所計画 年度計画書(平成15年度)」に加筆) 図3研究所用地周辺におけるボーリング位置図

温, pH, Eh(酸化還元電位), EC(電気伝導度) 等を大気に触れない状態で連続的に測定した。こ の方法では,溶存ガスの脱ガスに伴う値の変化を 免れ得ないものの,参考値として地下水の酸化還 元状態に関わる情報を取得する事ができる。また、 MSB 2, MSB 4号孔においては, 揚水試験実施後 にボーリング孔内に MPシステム (多区間間隙水 圧モニタリングシステム))を設置し,気密採水ボ トルを用いたバッチ式採水により揚水試験を行わ なかった深度の地下水を採取した。地下水の採水 では,掘削水の影響を可能な限り排除した地下水 試料を採水するために,上記のボーリング孔のう ちDH 2号孔を除くボーリング孔において掘削水 に蛍光染料などのトレーサーを加えて, トレー サー濃度の低下量に基づいて,掘削水の地下水試 料への汚染程度を把握して,可能な限り汚染程度 の小さな地下水試料を採水する品質管理手法いを 用いた。本手法に基づいて、トレーサー濃度が十 分に低下していること(1%以下を目標), pH・ EC等のモニタリングの値が一定の値に収束して いること,トレーサー濃度の低下と主要化学成分 濃度の変化に相関性が認められることを確認して 採水を行った。

得られた地下水試料に対して,主要溶存化学成 分濃度,水素・酸素・炭素同位体組成,溶存ガス 等の分析を行った。また,ボーリングコア試料に ついては,コアの風化変質状態や特定の鉱物の深 度分布の観察,化学分析等を行った。これらのデー タに基づき,地球化学計算コードPHREEQEを用 いた熱力学解析,マスパランス解析などを行い, 研究所用地内の地球化学特性の三次元的分布,そ の形成機構,研究坑道建設予定深度の地球化学環 境について考察した。

4.結果と考察

4.1 地下水の水質分布と水質形成機構

4.1.1 地下水の水質分布

地下水の分析結果を表1に示す。深度約500mま での研究所用地周辺の地下水は,堆積岩上部の明 世累層中でシリカ,ナトリウム,カルシウム,硫 酸,炭酸水素イオンに富み(以下,Si Na Ca SO4 HCO3型地下水)堆積岩下部の土岐夾炭累層並び に花崗岩中では,ナトリウム,塩素イオンに富む 水質(以下,Na Cl型地下水)を示す。Si Na Ca SO4 HCO3型地下水は,約10km四方の領域での 調査におけるNa Ca HCO3型地下水に相当し(図 2),研究所用地周辺では,シリカと硫酸も多く含 まれることが判明した。

ボーリングコアの化学分析の結果,明世累層と 土岐夾炭累層の塩素の含有量には明瞭な違いが認 められ(図4),海成層である明世累層よりも湖成 層である土岐夾炭累層の方が塩素の含有量が高い という結果が得られた。これは,明世累層と土岐 夾炭累層の境界部周辺に水理学的な境界が存在 し,土岐夾炭累層の岩石中には地下水から塩素が 供給されている可能性を示唆するものである⁴。花 崗岩中のNa CI型地下水には,深部ほど塩分濃度

が高くなる傾向が認められた(図5)。また,Na CI型地下水は,硫酸イオン濃度が低く,溶存ガス として硫化水素ガスを含むという特徴があり,Si Na Ca SO4 HCO3型地下水に比べ明らかに還元 的状態にあると考えられる。

4.1.2 水質形成機構

研究所用地周辺の地下水の水素・酸素同位体比 は、すべて日本海側の天水線と太平洋側の天水線 の間にプロットされ(図6),地下水の主な起源は 天水であると推測される。明世累層中のSi Na Ca SO4 HCO3型地下水を採水した深度は約15~60m と浅く、岩層の風化変質が進んでおり、コアに酸 化的環境であることを示唆する鉄水酸化物の沈殿

表1 地下水の分析結果一覧

							_																									
孔名	地	方法	標高	ξ (mas	31) 採水日	Temp.	pН	Eh	cond.	Na^{*}	\mathbf{K}^{+}	Ca^{2*}	${\rm Mg}^{2*}$	TC	IC	TOC	\$04 ²⁻	\$ ²⁻	F-	C1-	$\mathrm{NO_3}^-$	Br⁻	Si	AI	ΣFe	Fe ²⁺	ΣMn	В	U	δD	$\delta^{18}0$	$\delta^{\ 13}\mathrm{C}$
	8		upper	lower	r med.	degC		mv	mS/m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ррп	ррт	ppm	ррт	ppm	ppm	ppm	ppb	‰SMO₩	‰SMOW	960
MSB-2	A	MP	179.7	175.8	8 177.8 2003.11.25	n.m.	6.9	n.m.	0.469	34.0	5.2	66.0	10.2	63.4	48.3	15.2	115.9	<0.01	0.1	3.2	<0.3	<0.1	20.5	0.015	5.83	5.07	0.42	0.06	0.22	n. m.	n. m.	n. m.
MSB-2	A	MP	174.9	159.6	6 167.3 2003.11.25	n.m.	7.9	n.m.	0.389	89.7	3.2	8.6	0.9	41.0	31.3	9.6	85.3	<0.01	0.6	1.3	<0.3	<0.1	17.9	0.004	0.06	<0.05	0.02	0.14	0.11	n. m.	n. m.	n. m.
MSB-2	A	MP	158.7	130.3	3 144. 5 2003. 11. 25	n.m.	8.9	n. m.	0.255	60.6	1.5	2.7	0.2	24.9	19.0	5.8	34.2	0.04	10.0	1.0	<0.3	<0.1	6.6	0.007	0.02	<0.05	0.01	1.23	K0. 05	n. m.	n.m.	n. m.
MSB-2	A	MP	129.4	121.1	1 125.3 2003.11.25	n. m.	7.7	n. m.	0.254	53.0	2.0	6.6	0.9	27.7	20.3	7.5	22.5	0.02	7.0	6.6	<0.3	<0.1	7.1	0.010	0.22	0.21	0.07	1.13	0.06	n. m.	n. m.	n. m.
MSB-4	A	MP	198.7	188.9	9 193.8 2003.11.21	n.m.	7.3	n.m.	0.324	18.8	1.9	46.9	8.0	60.4	48.6	11.8	15.4	<0.01	0.1	1.1	<0.3	<0.1	27.3	0.003	2.81	1.14	0.26	0.05	0.07	n. m.	n.m.	n. m.
MSB-4	A	MP	187, 9	180, 6	5 184, 3 2003, 11, 21	n. m.	7.6	n. m.	0.340	31.9	2.1	44.6	6.6	51.2	41.5	9.7	55.8	<0.01	0.2	1, 1	<0.3	<0, 1	25.4	0.004	0.14	0, 09	0.17	0,11	0.07	n. m.	n, m,	n. m.
MSB-4	A	MP	179.7	152.3	3 166. 0 2003. 11. 20	n.m.	7.9	n. m.	0.340	41.3	2.4	37,8	4.8	46.1	38.9	7.2	59.6	<0.01	0.2	1.0	<0.3	<0, 1	26.4	0.004	0, 21	0,14	0,13	0,13	K0. 05	n. m.	n. m.	n. m.
MSB-4	A	MP	151.4	137.6	5 144. 5 2003. 11. 20	n.m.	8.8	n. m.	0.450	89.5	1.3	14.7	0.5	14.4	9.8	4.6	15.5	0.10	9.1	112.0	<0.3	0.12	7.4	0.008	0.02	<0.05	0.00	1.63	0.07	n. m.	n. m.	n. m.
MSB-2	T	MP	120.2	78.3	3 99.3 2003.11.25	n.m.	7.7	n.m.	0.581	122.8	1.2	14.7	0.8	25.6	18.7	6.9	37.1	<0.01	5.2	135.3	<0.3	0.21	7.4	0.004	0.13	0.08	0.04	1.02	<0. 05	n. m.	n. m.	n. m.
MSB-2	T	PT	119.5	68.0	93.7 2002.7.7	21.8	9.1	-118	n. m. 1	107.0	0.2	15.0	0.2	7.6	6.0	1.6	0.8	0.08	11.0	155.0	<0.3	0.29	4.9	0.012	0.02	<0.05	0.01	n. m.	n.m.	-57.8	-9.1	-13.4
MSB-2	T	MP	77.4	68.1	1 72.8 2003.11.25	n.m.	7.9	n.m.	0.493	102.6	0.9	13.1	0.9	17.2	12.1	5.1	8.1	0.08	9.9	125.6	<0.3	0.18	5.9	0.005	0.15	0.09	0.07	0.83	0.05	n. m.	n. m.	n. m .
MSB-2	T	MP	67.2	44.8	3 56.0 2003.11.21	n. m.	7.6	n. m.	0.704	120.0	0.9	31.9	0.9	15.0	11.6	3.4	11.0	0.08	6.5	202.5	<0.3	0.34	6.7	0.005	0.23	0.19	0.07	1.51	0.05	n. m.	n. m.	n. m.
MSB-2	T	PT	66.5	44.5	5 55.5 2002.6.29	21.3	8.8	-75	n. m. 1	130.0	1.9	27.0	0,1	4.8	4.0	0.7	<0.4	0.04	8.3	223.0	<0.3	0.42	5.7	0.014	0.02	<0.05	0.02	n. m.	n. m.	-57.0	-9.1	-12.4
MSB-4	T	MP	136, 7	132.8	8 134, 8 2003, 11, 20	n.m.	8.6	n. m.	0.454	92.9	1.1	15.3	0.4	15.7	9.5	6.2	15.0	0.11	9.0	120.0	<0.3	0.24	7.0	0.006	0.14	<0.05	0,00	1.67	0.07	n. m.	n. m.	n. m.
MSB-4	T	MP	131,9	120, 6	5 126, 3 2003, 11, 20	n.m.	8.4	n, m,	0,535	94.4	0,8	17.2	0.2	17.3	12, 2	5,0	8.0	<0.01	6, 1	131.2	<0.3	0,20	8.9	0.011	0,02	<0,05	0,00	1,26	0.31	n. m.	n, m,	n, m,
MSB-2	G	PT	27.0	23.0	25.0 2002.7.22	20.5	8.6	-140	n.m. '	110.0	1.1	27.0	0.2	6.0	5.4	0.6	1.6	0.05	8.0	189.0	<0.3	0.25	5.5	0.004	0.06	<0.05	0.02	n. m.	n. m.	-61.0	-8.9	-13.2
MSB-4	G	MP	119.7	115.5	5 117.6 2003.11.20	n.m.	8.3	n.m.	0.442	70.1	0.9	16.7	0.4	18.7	11.4	7.3	0.9	0.07	11.1	91.5	<0.3	0.10	6.4	0.035	0.02	<0.05	0.01	1.58	0.06	n. m.	n. m.	n. m.
MSB-4	G	PT	119.0	115.5	5 117.2 2002.8.13	23.0	8.8	-86	n. m.	74.0	0.2	14.0	<0.1	10.0	8.9	1.1	<0.4	0.50	12.0	96.0	<0.3	0.18	6.1	0.069	0.04	<0.05	0.01	n. m.	n.m.	-61.8	-8.9	-14.3
DH-2	G	PT	-13.9	-15.9	9 -14.9 2002.9.23	24.2	8.7	-60	48	76.0	1.1	15.1	0.2	12.3	12.3	<2	6.3	n.m.	9.7	93.9	<0.05	0.18	6.9	n.m.	0.02	n. m.	0.02	n. m.	n.m.	-60.4	-9.0	n. m.
DH-2	G	PT	-34.9	-43.4	4 -39.1 2002.10.9	22.4	8.7	-46	53	99.5	1.0	17.6	0.2	10.8	10.8	<2	3.6	n.m.	8.8	106.0	<0.05	0.21	6.9	n. m.	<0.01	n. m.	<0.01	n. m.	n. m.	-60.0	-8.9	n. m.
DH-2	G	PT	-109.1	-111, 1	1 -110.1 2002.9.25	22.5	8.5	0	65	98.5	1.0	19.2	0,1	3.9	3.9	<2	3.9	n.m.	9.9	145.0	<0.05	0.29	6.6	n, m,	<0.01	n. m.	<0.01	n. m.	n. m.	n. m.	n. m.	n. m.
DH-2	G	PT	-111.9	-113.9	9 -112.9 2002.9.10	23.5	8.6	-61	63	88.6	0.6	16.5	0.1	7.1	7.1	<2	3.9	n.m.	9.2	138.0	<0.05	0.27	6.0	n.m.	0.03	n. m.	<0.01	n. m.	n. m.	n. m.	n. m.	n. m.
DH-2	G	PT	-116, 1	-118, 1	1 -117.1 2002.9.17	23.2	8,5	-19	65	91.0	0.6	22, 1	0, 1	7.1	7.1	<2	3.9	n.m.	9.5	146.0	<0, 05	0, 28	6.7	n, m,	0, 01	n, m.	<0, 01	n. m.	n. m.	-60.3	-8.9	n, m,
DH-2	G	PT	-119.4	-121.4	4 -120.4 2002.9.20	24.7	8.5	-99	66	97.0	0.6	21.7	0.1	7.3	7.3	<2	3.7	n.m.	9.1	150.0	<0.05	0.29	6.6	n.m.	0.02	n.m.	<0.01	n. m.	n. m.	n. m.	n.m.	n. m.
DH-2	G	PT	-127.3	-134.8	3 -131.0 2002.10.6	23.2	8.6	-103	66	103.0	0.7	19.9	0.1	7.2	7.2	<2	3.7	n.m.	8.8	158.0	<0.05	0.28	6.2	n.m.	<0.01	n. m.	<0.01	n. m.	n. m.	n. m.	n. m.	n. m.
DH-2	G	PT	-154.2	-156.2	2 -155. 2 2002. 9. 27	23.7	8.7	-32	77	117.0	0.6	25.5	0.1	5.5	5.5	<2	4.0	n.m.	8.1	191.0	<0. 05	0.34	6.8	n. m.	0.03	n. m.	<0.01	n. m.	n. m.	n. m.	n. m.	n. m.
DH-2	G	PT	-171.9	-173.9	9 -172.9 2002.10.1	24.6	8.8	-121	78	114.0	0.6	25.3	0.1	5.1	5.1	<2	3.7	n.m.	7.8	211.0	<0.05	0.35	6.4	n. m.	<0.01	n. m.	<0.01	n. m.	n.m.	-59.4	-8.9	n. m.
DH-2	G	PT	-245.9	-254.4	4 -250. 1 2002. 10. 12	23.2	8.8	-60	88	141.0	0.9	36.3	0.1	4.7	4.7	<2	3.2	n.m.	6.5	228.0	<0.05	0.42	6.5	n.m.	<0.01	n. m.	<0.01	n.m.	n. m.	-60.8	-9.0	-10.8
DH-2	G	PT	-257.6	-266, 1	1 -261.8 2002.10.15	25.0	8.7	-122	103	157.0	1.0	42.1	0, 2	4.4	4.4	<2	2.3	n.m.	6.1	267.0	<0.05	0.47	6.4	n, m,	<0.01	n. m.	<0.01	n, m,	n. m.	-60.5	-9.0	n, m,
MIZ-1	G	PT	93.6	90.3	3 92.0 2003.4.20	19.6	9.2	-71	352	58.7	0.3	5.9	<0.1	10.1	9.6	<1	6.8	0.09	8.7	37.5	<0.3	<0.1	8.6	0.058	0.021	<0.05	0.002	n. m.	n. m.	-60.7	-8.8	n. m.
MIZ-1	G	PT	-8,4	-19.1	1 -13,8 2003,7,9	22.3	8.9	-280	480	68, 1	0.9	11, 1	<0.1	9.4	6.6	2.8	8.4	4,49	11.9	85.3	<0,3	0, 2	4.5	0,889	0.086	<0, 05	0.084	n. m.	n. m.	-59.6	-8, 8	n, m,
高砂温泉	G	温泉水	-532	-1041	1 -787 1991, 10, 8	36.2	8.8	n.m.	n.m. 1	719.8	5.8	468.3	4.50	n. m.	n. m.	n. m.	4.0	0.70	4.3	1929	n. m.	n.m.	8.4	<0.1	n. m.	0.4	0.030	4.42	n. m.	n. m.	n. m.	n. m.
高砂温泉	G	温泉水	-532	-1041	1 -787 2003.8.8	36.2	9.0	n.m.	292 3	370.0	2.1	200.0	0.10	<2	<2	<2	0.9	n.m.	9.5	934	<0.05	4.1	7.3	<0.2	<0.05	<0.05	<0.01	n. m.	n. m.	-57.9	-8.9	-13.2

A: 明世累層, T: 土岐夾炭累層, G: 土岐花崗岩 MP: MPシステムによる探水, PT: 揚水試験に伴う採水, n.m.: 未測定 TC: 総炭素濃度, IC: 無機炭素濃度 (主にHCDg⁻イオン), TOC: 有機炭素濃度 *1991.10.8に得られた高砂温泉のデータは掘削直後のデータ

図 5 水質深度分布図

や低pH環境であることを示唆する炭酸塩鉱物(主 に貝化石)の溶脱痕が観察された⁴⁾。これらの事か ら,Si Na Ca SO4 HCO3型地下水が分布する深度 では,長石類など構成鉱物の風化変質反応や海成 硫酸塩・硫化物の酸化溶解反応,炭酸塩鉱物の溶 解反応等が水質形成反応として挙げられる。

一方, Na CI型地下水については, 塩素イオン

濃度が深度に比例して増加し,ナトリウム・カル シウム・フッ素・臭素・硫酸・炭酸水素イオン濃 度が,深度に伴う塩素イオン濃度変化と良い相関 を示しながら増減する傾向が認められる(図7)。 塩素イオンは,水-岩石反応によって生成する2 次鉱物中には取り込まれにくいイオンであるた め,地下水中のその濃度は,水-岩石反応の進行 程度や海水に起源の地下水組成を検討する際の指 標となる。塩素イオン濃度の深度依存性と,他成 分との相関性から,花崗岩深部に高塩素イオン濃 度の地下水が存在していると推測され,この地下 水と浅部の低塩素イオン濃度の地下水の混合が水 質形成機構として想定できる。混合の端成分と考 えられる花崗岩深部の高塩素イオン濃度の地下水 の起源・成因については, ブラインや温泉水のよ うに長期にわたる水 - 岩石反応または高温環境で の水 - 岩石反応を主成因とする地下水, あるいは 当該地域が海底下にあった時代(中期中新世)に 地下深部に浸透していた海水に由来する化石海水 などである可能性が考えられる。

これらの仮説について検討するため,研究所用 地で得られた Na CI型地下水に加えて,研究所用 地周辺で最も深度が深く,最も塩素イオン濃度の

図7 塩素イオン濃度との相関図

研究報告

高い地下水が観察される高砂温泉(研究所用地の約2km南方に位置)の水質データ(表1)も用いて解析を行った。高砂温泉の水質は,研究所用地のNa CI型地下水の形成において,現在得られているデータの中で,混合の端成分となる高塩素イオン濃度地下水に最も近いと推測される。

一般的に,水-岩石反応を主成因とする高塩分 濃度の地下水は,反応によって酸素同位体比が岩 石の値に近付く傾向がある"。また、海水に由来す る化石海水は,海水の水素・酸素同位体比(とも に0‰)とその後の水 - 岩石反応を反映した値と なる。Na CI型地下水の水素・酸素同位体比(図 6)については,水素同位体比も酸素同位体比も ともに 他の水質の地下水[®]に比べて低い値を示す ものの,長期にわたる水-岩石反応や高温環境で の水 - 岩石反応の結果生じる酸素同位体比の変化 であるのか,あるいは海水に由来する化石海水と の混合であるのかを確認できない。この理由は、 得られた地下水に対して,端成分となる花崗岩深 部の高塩素イオン濃度地下水の混入率が,水素・ 酸素同位体比を有意に変化させるほど大きくない ためと考えられる。

また,各成因により形成される地下水の化学的 特徴については,水-岩石反応を主成因とする高 塩分濃度地下水の場合は,一般的に水-岩石反応 の進行に伴って塩素イオン濃度やフッ素イオン濃 度の増加が予想される。化石海水の場合は,水-岩石反応によって影響を受けにくい陰イオンの成 分比が海水の特徴を保存している可能性がある。 特に,海水の寄与が大きい地下水の臭素イオン/ 塩素イオン (Br/Cl) 比やホウ素イオン / 塩素イ オン(B/CI)比は,各々重量比で0.0034,0.00024³⁾ という特徴的な値を示す事が判っている。Na CI 型地下水のフッ素イオン濃度は,塩素イオン濃度 と負の相関を示しており,塩素イオン濃度が高い ほど濃度が減少する。また、高砂温泉についても, フッ素イオン濃度はとりわけて高くなく、これま でに得られてきたNa HCO。型地下水の値(最大で 約13ppm³⁾)と同等である。この結果は,水-岩 石反応の進行程度がNa HCO。型地下水と同等で あり,水-岩石反応が高塩分濃度地下水の主成因 ではない可能性を示唆する。しかしながら, Metcalfe et al.(2003)⁽⁾はフッ素イオンが塩素イオン に比べ特定の鉱物に取り込まれ易いことを指摘し ており,熱力学解析の結果,花崗岩中ではホタル

石(CaF2)の溶解・沈殿反応が平衡状態にあると 計算されることから(図8),水-岩石反応により 地下水中に供給されたフッ素イオンが二次生成鉱 物のホタル石の沈殿により,再度鉱物化した可能 性もある。図8に示す熱力学解析では,飽和指数 が-1~1の範囲内にある場合を平衡状態にある とみなした。

一方,海水の指標として用いられることの多い Br/CI比,B/CI比について見てみると,高砂温泉 の値は各々00044(2003年データ),00023(1991 年データ)であり,Br/CI比は海水のそれに近い ものの,B/CI比に関しては海水の10倍程度であ る。海水のBr/CI比,B/CI比そのものを示さない 理由として,高砂温泉の塩素濃度が海水の1%程 度であり,化石海水に由来するとしてもその寄与 率が非常に低いことや,化石海水の水質が長期的 な水-岩石反応により海水の水質から変化してい る可能性があること等が挙げられる。実際に,化 石海水のこれらの化学成分比については,水-岩 石反応により海水のそれに比べ幅広い値を示す例 も示されている¹¹。

以上のことから,花崗岩深部の高塩素イオン濃度の地下水の起源・成因は,海水が長期的水-岩石反応の結果その水質を変化させた化石海水である可能性が高いと考えられるが,第2段階における調査で,より塩素イオン濃度の高い地下水を採取することで確認を行っていく必要がある。

図8 飽和指数の深度分布

研究報告

47

42 地下水のpH・酸化還元状態とその形成機構 地下水のpHは約7~9の範囲で深度とともに 上昇する傾向を示す(図5)。堆積岩の上部では炭 酸塩鉱物(主に貝化石)の溶解・再結晶痕が普遍 的に観察され,地下水の化学組成を基にして熱力 学的に地下水に対する各鉱物の飽和指数を計算し た結果,pHがほぼ一定になる深度で,方解石の溶 解・沈殿反応がほぼ平衡状態に達していることか ら(図5,図8),地下水のpHに関わる主要な緩 衝反応として炭酸塩鉱物の溶解・沈殿反応が想定 できる。

地下水の酸化還元電位については溶存ガス(特 に硫化水素)の脱ガスにより真値から変化してい る可能性があるため参考値として取り扱う必要が あるものの,土岐夾炭累層ならびに花崗岩中の地 下水で0~-280mVという値が得られている。明 世累層中のSi Na Ca SO4 HCO3型地下水につい ては酸化還元電位を実測できていない事から、 ボーリングコアの観察結果に基づいて酸化還元状 態の推測を試みた。酸化還元状態を反映し易い鉱 物(鉄や硫黄を含む鉱物)の深度分布を観察した 結果,深度約10~20m以浅の割れ目表面に鉄水酸 化物の沈殿が,約40~60m以深のコア中に黄鉄鉱 が認められた。これらのことから,鉄の化学種 (二価鉄 / 三価鉄)の酸化還元境界が深度約10~ 20m,硫黄の化学種(硫酸イオン/硫化鉱物)の 酸化還元境界が深度約40~60mに位置すると推測 できる。また,これらの鉱物が酸化還元電位の主 要な制限固相となっている可能性がある。

一方, 土岐夾炭累層以深のNa CI型地下水は, 前述したように,明世累層中のSi Na Ca SO4 HCO3型地下水に比べ硫酸イオン濃度が低く 溶存 ガスとして硫化水素ガスを含み,明らかに還元的 状態にある。実測された酸化還元電位に基づく熱 力学解析では, 主に Fe(OH)(am.) またはシデラ イト(FeCO₃)の溶解・沈殿反応が平衡状態にあ ると計算され,これらの鉱物が酸化還元電位の制 限固相となっている可能性がある。しかしながら, 揚水ポンプを用いた地下水の採水においては,原 位置の水圧が地上の1気圧まで減圧し,酸化還元 電位の実測時に地下水から硫化水素ガスが脱ガス している可能性が高いこと,硫化水素ガスが遍在 する環境においては硫酸イオン / 硫化物イオン / 硫化水素ガス間の酸化還元反応も主要な反応とな りうることから,原位置の酸化還元電位とその形

成機構については更に注意深い検討が必要であ る。この点については,今後,第2段階において, 原位置の水圧を保持し溶存ガスの脱ガスのない地 下水に対して酸化還元電位の実測を行う計画であ る。

43 研究坑道建設過程で遭遇する地球化学環境 と地球化学的諸現象について

研究所用地周辺における地下水の水質分布・水 質形成機構を表す地球化学モデルを図9に示す。 研究所用地周辺に分布する Na CI型地下水が,深 部の高塩素イオン濃度の地下水と浅部の低塩素イ オン濃度の地下水との混合によって形成されてい ると仮定すると、地下水水質の深度依存性から未 知の深度領域の水質を予測することができる可能 性がある。図9はDH 2号孔の調査結果から,深 度500m程度までの花崗岩中の塩素イオン濃度の 深度分布を推定したものである。推定にあたり, DH 2号孔とMIZ 1号孔との間の塩素イオン濃度 は,各深度において水平に成層分布しているもの と仮定した。この地球化学モデルについて, MIZ 1号孔の調査により得られた溶存化学成分濃度と DH 2号孔のデータに基づく予測結果を比較する ことでモデルの検証を行った。花崗岩中では塩素 イオン濃度が深度とともに直線的に増加し,ナト リウム・カルシウムなどのイオン濃度が塩素イオ ン濃度と良い相関を示しながら増減する傾向が認 められることから, MIZ 1号孔の採水ポイントで ある深度約220mでの各成分のイオン濃度を塩素 イオン濃度との相関式から計算した。この結果, MIZ 1号孔の深度約220mでの分析値は,硫酸イオ ン・無機炭素濃度を除いて予測値におおむね一致

図9 地球化学モデル

する結果となり,研究所用地では,同様の水質の 地下水が各深度において水平に成層分布している 可能性が高いことが明らかになった。したがって, DH 2号孔とMIZ 1号孔の間に位置する研究坑道 建設地点においても,地球化学モデルからその水 質を予測できると考えられる。また,予測される 地下水水質の分布を研究坑道建設に伴う地下水の 擾乱が起こる前の初期状態として扱う事が可能で ある。なお,実測された硫酸イオン・無機炭素濃 度が予測値と一致しない理由として,両成分とも に溶存ガス(硫化水素ガス,炭酸ガス)の濃度変 化によって影響を受け易い成分であることから, ボーリング孔掘削からポンプ採水調査の間に生じ た溶存ガスの脱ガス現象によって濃度が変化した ものと推察される。

ボーリング孔掘削に伴う溶存ガスの脱ガス現象 は,第2段階の研究坑道掘削段階でも起こりうる 現象であり,脱ガスに伴い起こり得る地球化学特 性の変化について考察しておく必要がある。脱ガ スに伴う諸現象としては,前述のように酸化還元 電位の変化、硫酸イオン・無機炭素濃度の変化等 が考えられる。DH 2号孔とMIZ 1号孔の深度約 220mの地下水の水質, pHは, ほぼ同じ値を示す ものの酸化還元電位がDH 2号孔で約 - 50mV, MIZ 1号孔で約 - 280mVと大きく異なっていた。 このように酸化還元電位が大きく異なる理由を明 らかにするため,両地点の溶存化学成分濃度をも とに熱力学解析を行った結果,両地点で方解石, ホタル石,石英の溶解・沈殿反応が平衡状態にあ り,更にDH 2号孔ではギブサイト,カオリナイ ト, Fe(OH)(am.)が, MIZ 1号孔ではシデライト の溶解・沈殿反応が平衡状態にあると推測された。 一方, DH 2号孔では地下水の採水時点(掘削の 約10年経過後)で, MIZ 1号孔では掘削・採水終 了の約半年後にボーリング孔壁をボアホールテレ ビにより観察した結果,黒い沈殿物が孔壁面全面 に付着している様子が観察された。DH 2号孔の 沈殿物をSEM EDS分析した結果,沈殿物は鉄水 酸化物(一部は硫化物)の可能性があると推察さ れた。ボーリングコアの割れ目には沈殿物が観察 されないことから,沈殿物は自然状態では存在し ておらず,ボーリング孔掘削に伴い新たに生成し たものと考えられる。その後の調査により沈殿物 は約2週間以内に生成することが確認された。

これらの事から, DH 2号孔ではボーリング孔

の掘削に伴い生成した鉄水酸化物と地下水が酸化 還元平衡状態にあり,酸化還元電位を決めている と考えられる。MIZ 1号孔では掘削直後にデータ が取得されているため,沈殿物の影響の無い,よ り人為的擾乱の小さい状態でデータが取得できた と考えられるのに対して,DH 2号孔では,新た に生成した鉄水酸化物の沈殿が主要な酸化還元反 応鉱物となることで,酸化還元電位がより酸化的 状態に変化したと推測される。この鉄水酸化物の 沈殿は,ボーリング孔の存在により,より深部か ら還元性の硫化水素ガスが供給されることで掘削 水中の鉄イオンが還元され生成したものと推察さ れる。

第2段階の研究坑道掘削段階では,ボーリング 孔に比べて,はるかに大きな規模で地下環境に対 して酸化的,低圧力の地下空間が出現するため, ボーリング孔で観察された脱ガス現象より更に大 規模な脱ガスが起こり,坑道周辺に溶存ガス成分 に関する不飽和領域が形成されることが予想され る。そのため,硫酸イオン・無機炭素濃度や酸化 還元電位の変化が坑道周辺で顕著に起こる事が予 測される。

5.まとめと今後の取り組み

本研究では, MIU計画第1段階での調査・解析 結果を踏まえて,研究所用地に分布する堆積岩及 び花崗岩(深度500m程度まで)を対象に,研究 坑道建設前(初期状態)の地下水の地球化学特性 (水質, pH, 酸化還元状態など)の3次元的分布 とその形成機構について考察を行い,これらを表 現する地球化学モデルを構築した。今後, MIZ 1 号孔で新たに取得されるデータを用いて,深度 500m以深の領域において 本研究で構築された地 球化学モデルが適用可能かどうかを確認する。さ らに,今後実施される孔間水理試験・検層などの 結果を踏まえた深部における地下水流動に関し て,地球化学特性の観点から,地下水流動解析の 結果の検証を行う手法について検討を行っていく 予定である。また,第2段階の研究坑道掘削段階 では,第1段階の初期状態に関する地球化学モデ ルとそれから予想される研究坑道掘削過程で起こ りうる諸現象に基づき,地下施設建設過程の地球 化学的擾乱や周辺環境への影響を評価していく予 定である。

参考文献

- 1)核燃料サイクル開発機構:"超深地層研究所 地層 科学研究基本計画",サイクル機構技術資料,JNC TN7410 2001 018(2002)
- 2) 糸魚川淳二:"瑞浪地域の地質",瑞浪市化学博物館 専報, No.1, pp. 1 50 (1980)
- 3)核燃料サイクル開発機構:"広域地下水流動研究年 度報告書(平成14年度)",サイクル機構技術資料, JNC TN7400 2003 002(2003)
- **4**) 熊崎直樹,池田幸喜,他:"Synthesis of the Shallow Borehole Investigations at the MIU Construction Site.", JNC TN7400 2003 005 (2003)
- 5) 岩月輝希,豊島賢治,他:"深地層を対象とした地下 水の地球化学調査の現状",原子カバックエンド研 究, Vol.4,No.2(1998)
- 6) 古江良治,岩月輝希,他:"試錐孔を利用した地下水

の地球化学特性調査手法と品質管理",サイクル機構 技術資料, JNC TN7520 2003 001 (2003)

- 7)酒井均,松久幸敬:"安定同位体地球化学",東京大 学出版会(1996)
- 8) Furue, R., Iwatsuki, T., et al.: " Data book on groundwater chemistry in the Tono area. ", JNC TN 7450 2003 001 (2003)
- 9)半谷高久,小倉紀雄:"水質調査法",丸善(2000)
- 10) Metcalfe, R., Hama, K., et al.: "Geochemical approaches to understanding a deep groundwater flow system in the Tono area, Gifu ken, Japan.", Kono, Nishigaki & Komatsu (eds), Groundwater Engineering, pp. 555 561 (2003)
- 11) 小原欽一:深部地下水の水質形成機構に関する研 究,サイクル機構技術資料,PNC TJ1679 97 001 (1997)

Sorption Behavior of Cesium onto Bentonite Colloid

Kazuki IIJIMA Tsuguya MASUDA Tsutomu TOMURA*

Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works * Inspection Development Corporation

ベントナイトコロイドは,地層処分において緩衝材として用いるベントナイトから生成し,核種を収着することにより,その移行を促進する可能性がある。そこで,ベントナイトコロイドに対する Csの収着及び脱離試験 を行い,分配係数及び収着の可逆性に関する知見を得るとともに,コロイドの形状を調べ,収着挙動に及ぼす影響を検討した。

Csの分配係数として,バッチ式収着試験では約20m³/kg,8.4×10⁻⁴mol/I NaCI溶液によるバッチ式脱離試 験では約30m³/kgの値が得られた。Cs濃度,収着及び脱離期間の依存性は認められず,収着したCsの20%程 度が脱離される段階では,収着は可逆的であった。コロイドの粒径分布は200nmより大きい粒子が大部分を占 め,コロイド断面のTEM観察から,結晶シートの積層数は,多いもので6~7層,少ないものでは2~3層と 薄いシート状の粒子であることが観察された。収着の分配係数は,粉末状ベントナイトに対するそれより大きな 値を示したが,この原因としては,溶液中の競合イオン,含まれるスメクタイトの性質,あるいは,収着サイト 密度の違いが考えられた。

It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed.

Kds for Cs were around 20 m^3/kg for sorption and 30 m^3/kg for desorption, in which sorbed Cs was desorbed by $8.4x10^4$ mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density.

キーワード

地層処分,緩衝材,ベントナイトコロイド,セシウム,収着,分配係数,脱離,イオン交換,選択係数,可逆性

Geological Disposal, Buffer Material, Bentonite Colloid, Cesium, Sorption, Distribution Coefficient, Desorption, Ion Exchange, Selectivity Coefficient, Reversibility

レスロ 11 放射化学研究 副主任研究員 地層処分にあ 及び有機物の する研究開発

増田 嗣也 放射化学研究グループ所属 地層処分におけるコロイド の影響評価に関する研究開 発に従事

放射化学研究グループ所属 地層処分における放射性核 種の収着挙動に関する研究 開発に従事

努

戸村

サイクル機構技報 No.23 2004.6

1.はじめに

我が国の高レベル放射性廃棄物の地層処分シス テムにおいて,ガラス固化体中の放射性核種は, 地下水がガラス固化体に到達すると,地下水中に 溶解し,緩衝材であるベントナイト,さらに岩盤 を移行していくシナリオ(地下水シナリオ)が考 えられる¹⁾。放射性核種は、ベントナイト中では拡 散,岩盤中では拡散あるいは移流によって移行し ていくが,その際,ベントナイトや岩盤中の鉱物 の表面に物理的あるいは化学的に捕らえられる (収着)ため 移行が遅延されることが期待される。 また,岩石基質部への拡散(マトリクス拡散)に よっても,移行が遅延される可能性がある。

しかし,地下水中にコロイドが存在すると,核 種がこれに収着されることにより,岩盤への収着 量が低下し,その結果,核種の移行が促進される 可能性が指摘されている²⁾。また 破砕帯にベント ナイトコロイドとともに放射性核種を含むトレー サー溶液を流したグリムゼル試験場の原位置試験 では, 価のアメリシウム(Am), 価のプルト ニウム(Pu)及びセシウム(Cs)の一部は,コロ イドに随伴して移行するのが認められたとの報告 がある³⁾。したがって,コロイドが安定に存在しう る系においては,核種の移行挙動に及ぼす影響の 有無を,慎重に評価する必要がある。

地下水中に存在しうるコロイドとしては,フミ ン酸に代表される天然有機物コロイドや,岩石の 構成鉱物を起源とする無機コロイド等が考えられ る4)5)8)。また,地下水の浸食作用を受けることに より,緩衝材として用いている粘土の一種である ベントナイトから,ベントナイトコロイドが生成 する可能性も指摘されているひ。これについては、 緩衝材から地下水の浸食によりベントナイトコロ イドが生成する流速を見積もったところ,10°から 10⁴m/sという日本の地下深部に比べ速い流速が 必要であったとの報告がある。しかし,一方で水 がほとんど流れていない条件下でも,圧縮ベント ナイトと花崗岩の境界でゲル状のベントナイトが 形成され、その一部が遊離して境界付近の水中に ベントナイトコロイドとして存在しうることが示 されている⁹⁾。したがって、ベントナイトコロイド も,地下水中に存在しうるコロイドの一つと考え るべきである。

コロイドへの核種の収着量を示す分配係数は, 核種移行に及ぼすコロイドの影響を評価する際 に,特に重要なパラメータである¹⁰⁾。また,コロ イドへの収着が不可逆的であった場合,その核種 移行への影響はさらに大きくなることが指摘され ているいが、収着の不可逆性を調べるためには、 収着された核種が溶液中に再度溶解する(脱離)挙 動を調べる必要がある。しかし,粉末状ベントナ イト(後述のクニゲルV1®の場合,粒径60 µ m 以 下)に対する核種の収着挙動に関する報告に比べ ると,ベントナイトコロイド(粒径1 nm ~ 1 μ m)に対する核種の収着挙動に関する報告は少な く、特に、脱離挙動に関する報告は極めて限られ ている。Amの収着挙動について Degueldre らは, 炭酸イオン共存下では炭酸錯体生成がモンモリロ ナイトコロイドへの表面錯体生成と競合し,また 生成した水酸化錯体、炭酸錯体及び炭酸水素錯体 もコロイド表面に収着されることから、コロイド への収着挙動を表面錯体モデルにより説明でき た,と報告している¹²。Nagasakiらは,ベントナ イト平衡液中においてAm は何らかのコロイドと 結合した形で存在するとしている^{い)}。また,別報 において, Am 及び 価ランタニドのモンモリロ ナイトコロイドへの収着挙動は,親和性の観点か らは基本的に塊状のモンモリロナイトと同様であ ると報告している¹⁴)。Luらは, V価のPuのモンモ リロナイトコロイドへの収着速度と温度,イオン **強度及びコロイド濃度の影響を調べている[™]。そ** れによると, Puのコロイドへの収着量は, 20日後 まで増加が認められている。その一方,脱離挙動 を調べたところ 293日後でも20%程度しか脱離さ れなかった。このようにPuは,強い収着・遅い脱 離挙動を示し,分配係数は温度とともに増加し, イオン強度及びコロイド濃度の増加とともに減少 した,と報告している。また, Painter らは,スメ クタイトコロイド等へのPuの収着挙動を複数の 収着サイト(鉱物の表面で核種が収着される部分) への収着及び脱離速度により説明しており,スメ クタイトコロイドについては2種類の収着サイト を仮定したモデルの方が1種類のサイトのみを仮 定したモデルより実験結果とよく一致したが、モ ンモリロナイトコロイドについては両モデル間の 差はなかった、としている⁽⁰⁾。

性能評価上重要な元素の一つであるCsの収着 挙動についてSatmarkらは,分配係数に及ぼすpH の影響はないこと,pH 5 ~ 10の領域では分配係数 が1 m³/kg程度であることを報告している¹⁷。しか し,脱離挙動や粉末状ペントナイトとの比較を行った報告はなく,性能評価に適用しうる定量的な 収着挙動評価が必要である。

本報では、ベントナイトコロイドに対するCsの 収着及び脱離挙動について調べるとともに、ベン トナイトコロイドの形状を透過型電子顕微鏡(TEM) により観察し、その知見に基づいて、収着挙動へ の影響を考察したので報告する。

なお,緩衝材として用いられる粘土に関する用 語のうち,ベントナイト,スメクタイト及びモン モリロナイトについては,本報では次の意味に使 い分ける。

- ・ベントナイト:スメクタイトを主成分とする粘 土の総称。不純物を含む。
- ・スメクタイト:2:1型粘土鉱物のうち,層電荷(構造中の陽イオンが他の陽イオンに置換されることにより結晶層に生じる負の電荷)が02~06のもの。八面体シートの中心がアルミニウム(AI)の2八面体型スメクタイトと,中心がマグネシウム(Mg)の3八面体型スメクタイトがある。単位結晶構造を図1に示す。スメクタイトの場合,層間に交換性陽イオンが入ることにより,負電荷が解消され,層と層は層間の正電荷を仲介とする静電力で結合する。なお,

図1 スメクタイトの単位結晶構造 (Grim²⁷⁾による)

2:1型粘土鉱物とは,2枚の四面体シート(ケ イ素(Si)と酸素(O)からなるSiO四面体の 二次元的に連続した網状のつながり)が頂点を 向かい合わせて1枚の八面体シート(AIO八面 体の二次元的に連続した網状のつながり)をは さんで組み合う結晶構造の粘土鉱物を指す。

・モンモリロナイト: 2八面体型スメクタイトの
 一種で八面体シートのAIの一部がMgに置換されることによって,層電荷が生じたもの。

したがって,本報で対象とするコロイドは,ベ ントナイト(クニミネ工業(株)製クニピアF[®])か ら調製したコロイドという意味で,ベントナイト コロイドという用語に統一した。

- 2.実験
- 2.1 収着試験

収着試験条件を表1に示す。

(1) ベントナイトコロイド溶液の調製

ベントナイトは,クニミネ工業製のクニピアF[®] を用いた。小田らがモデル計算に当たり,実験デー タ等に基づき設定したクニピアF[®]の主な特性値 を表2に示す⁽⁸⁾。なお A.1においてクニゲルV1[®]に 対するCsの収着挙動と比較を行ったため,その特 性値についても併せて示した。クニピアF[®]は,ス メクタイト含有量が99%,交換性陽イオンが存在 しうる収着サイト量を示す陽イオン交換容量(CEC) は約115meq/gで,その多くをNaが占めているの が特徴である。収着試験に用いるベントナイト溶 液を調製する際には,ある程度の濃度を持った塩 溶液を用いることが望ましい。これは,ベントナ イト溶液にCsを添加した際にイオン強度が変化

表1 収着試験条件

項目	条件				
試験方法	バッチ式収着試験				
ベントナイト	クニミネ工業製クニピアF [®]				
コロイド溶液 調 製 方 法	10 ⁴ mol/I NaCI溶液にクニピアF [®] を 2 g/Iの濃度で分散させ、1ヶ月静置後、 上澄み液を800 nm メンブランフィル ターでろ過して調製				
コロイド濃度	1 .02 g/l				
Cs 濃 度	1 ×10 ^{-₄} ~1 ×10 ⁻⁹ mol/((11点)				
濃度測定方法	スペクトル測定				
Csトレーサー	Cs-137 : 1 kBq/ml				
雰 囲 気	大気雰囲気				
温 度	室温(20~25)				
繰り返し測定数	2				

研究報告

表2 ベントナイトの主要特性¹⁵⁾

項目	クニピア F®	クニゲルV1 [®]
スメクタイト含有率 (wt%)	99	48
陽イオン交換容量 (CEC)(meq/100g)	115 .0	60 .1
初期交換性陽イオン (meq/100g)	Na : 103 89 Ca : 9 76 K : 1 23 Mg : 0 .12	Na :51 45 Ca :7 41 K :0 57 Mg :0 66
可 溶 性 不 純 物 (mol/g)	Na₂SO₄ : 4 .17 × 10⁵ NaCl:1 .54 × 10⁵	CaSO ₄ : 1 .79 × 10 ⁻⁵ CaCl ₂ :6 .14 × 10 ⁻⁷

し,凝集によってコロイド濃度が低下することを 防ぐためである。久野らはコロイドの安定性に及 ぼす溶液中イオン濃度について検討し、ナトリウ ム (Na) 濃度については, 10³mol/I以上になると コロイドの凝集が顕著になるとしている¹⁹⁾。そこ で、ここでは、コロイドが安定に存在しうる濃度 と考えられる 3 × 10⁴mol/Ⅰの塩化ナトリウム (NaCI)溶液を用いることとした。この溶液中に, クニピアF[®]を2g/Iの固液比で分散させたものを 1ヶ月静置し 上澄み液をADVANTEC製の800nm メンブランフィルターでろ過して調製した。収着 試験溶液中のコロイド濃度は,33で述べるよう に,スメクタイトの組成に基づき,AI及びSi濃度 からコロイド濃度を見積もることが可能である。 23に示すように 誘導結合プラズマ発光分光分析 法 (ICP AES) によりそれらの濃度を測定したと ころ,コロイド濃度は1.02g/Iであった。 (2) Cs 測定方法及び初期濃度設定

Cs濃度測定方法としては,Cs 137をトレーサー として添加し 娘核種のBa 137mの 放射能をGe 半導体検出器で測定する 線スペクトル測定法を 用いた。Csトレーサーを含む溶液300µ lをろ紙に しみ込ませ,その放射能を30分間測定した。

初期Cs濃度の設定においては,高濃度側ではイ オン強度が高くなることにより起こるコロイドの 凝集を避けること,低濃度側では高い信頼性で濃 度を測定できることが条件となる。これらを考慮 して,初期Cs濃度は1×10⁴~1×10⁹mol/1とし, この間で11点の濃度を設定した。なお,1× 10⁹mol/1以上の濃度の場合は,所定の濃度の非放 射性Csを添加し,さらに1kBq/mlの濃度となる ようCs 137を添加した。

(3) 試験手順

試験は、バッチ式試験法で行った。30mlのポリ

エチレン容器に,コロイド溶液27mlを入れ,さら に所定の10倍濃度に調整したCs溶液3mlを添加 した。これを90rpmで振とうし,所定の期間毎に 試料を採取した。まず,300µlを採取し全Cs濃度 を,350µlをMillipore製の分画分子量(ろ過でき る粒子の分子量の下限)10,000の限外ろ過(UF)フ ィルターでろ過,そのろ液300µlを採取してコロ イドに収着していないCs濃度を測定した。濃度測 定結果から,(1)式に基づきペントナイトコロイ ドへのCsの分配係数を算出した。

Kd -	_ 単位	重量当たり	の固相	へのCs収着量(mol/kg)
Ku –	溶液中	の固相に	収着して	こいないCs濃度(mol/m ³)
=	$=\frac{(Cs)}{[Cs]_F}$	$=\frac{[Cs]_T - [Cs]}{[Cs]_F}$	$\frac{1}{C_{col}}$	(1)

ここで,

Kd (m³/kg) :分配係数

- [Cs](mol/l):溶液中全Cs濃度
- [Cs](mol/l):溶液中のコロイドに収着して いないCs濃度

C_{co}(kg/m³):溶液中のコロイド濃度

である。また, さらに1 5mlを採取し, 次に述べる脱離試験に用いた。なお,一つのCs濃度水準について, 繰り返し測定数は2とした。

2.2 脱離試験

脱離試験条件を表3に示す。

(1) 脱離液の設定

脱離液は,脱離中に凝集や溶解によってコロイ ド濃度が変化しないように,ベントナイトコロイ ド溶液と同じ組成で,コロイドを含まない溶液を 用いるのが望ましい。そこで,コロイド溶液を分 画分子量10,000のUFフィルターでろ過し,ろ液中 のNa,カリウム(K),Mg及びカルシウム(Ca)濃 度をICP AESで分析したところ 8 A×10⁴mol/Iの Naが認められたが,その他の元素は検出限界以下

表3 脱離試験条件

項目	条件				
試験方法	バッチ式収着試験				
脱離液	8				
コロイド濃度	収着試験の1/10				
Cs 濃 度	収着試験の初期Cs濃度 1 ×10⁴~ 1 ×10⁰mol/l(6点)				
濃度測定方法	スペクトル測定				
繰り返し測定数	2				

研究報告

であった。そこで、この8 4×10⁴mol/IのNaCl溶 液を脱離液として用いることとした。なお、この Na濃度はコロイド溶液調製当初の濃度より高い が、これはクニピアF[®]中の可溶性不純物及び交換 性Naイオンの一部が溶出してきたものと考えら れる。

(2) 試験手順

試験は,収着試験と同様に,バッチ式試験法で 行った。ポリエチレン容器に脱離液13 5mlを入 れ,ここに収着試験に用いた溶液1 5mlを添加す る。これを90rpmで振とうし,所定の期間ごとに 試料を採取して,全Cs濃度及びコロイドに収着し ていないCs濃度を測定した。濃度測定結果から, (1)式に基づきベントナイトコロイドへのCsの分 配係数を算出し,収着試験で得られた分配係数と 比較した。

23 コロイド濃度の測定

溶液中のコロイド濃度と収着試験中のコロイド の安定性を調べるため,収着試験と全く同じ溶液 でCs 137トレーサーを含まない試料を用いて,収 着試験を行った。初期Cs濃度は1×10⁴,1×10⁷ 及び1×10^emol/Iとし繰り返し測定数は1とした。

コロイド及びCsを含む溶液を30mlのポリエチ レン容器に入れ,これを90rpmで振とうし,所定 の期間ごとに試料を採取した。採取した試料は, Millipore製あるいはADVANTEC製のメンプラン フィルター(孔径0 80,0 45及び0 20µm)でろ 過し,ろ液を蒸留水で10倍希釈した後,ICP AES により溶液中のSi及びAI濃度を測定した。

2.4 コロイド形状の測定

ベントナイトコロイドと粉末状ベントナイトの Cs 収着挙動の違いを説明するために,コロイドの 粒径分布測定及び形状観察を行った。

(1) 粒径分布

ベントナイトコロイドの粒径分布は,ろ過と ICP AESによる濃度測定を組み合わせて行った。 収着試験に用いる前のベントナイトコロイド溶液 から試料を採取し,孔径の異なるMillipore製メン ブランフィルター(孔径800~25nm)でろ過する。 ろ液は,蒸留水で10倍に希釈した後,ICP AESに より試料中のSi及びAI濃度を測定した。そして, 3 3に示すように Si及びAI濃度からスメクタイト の組成に基づきコロイド濃度を見積もり,そのフ ィルター孔径依存性から粒径分布を求めた。 (2)形状観察

ベントナイトコロイドの形状は,TEMにより観 察した。ベントナイトコロイドは,薄いシート状 のスメクタイト結晶が何層も重なった形で存在す ると予想されたため,結晶シートに垂直な方向と 平行な方向の2方向から観察した。垂直方向から の観察試料は,コロイド溶液を銅メッシュに貼ら れた有機マイクログリッド上にコロイド溶液を滴 下し,自然乾燥させて調製した。また,平行方向 からの観察試料は,コロイド溶液をエポキシ樹脂 面上に滴下し,自然乾燥後さらに滴下面を樹脂で 固定してから,滴下面に垂直に樹脂を切断して, 調製した。

3.実験結果

3.1 収着試験

収着試験で得られたベントナイトコロイドに対 するCsの分配係数を図2に示す。横軸には,収着 していない溶液中Cs濃度をとっている。また,分 配係数は,スメクタイト含有量の異なる他のベン トナイトの値と比較できるよう,ベントナイト中 のスメクタイト量で規格化している。グラフから, 今回のCs濃度領域では,分配係数はCs濃度によら ず20m³/kg程度でほぼ一定であることが分かる。 また,収着期間1~72日では,期間によらず分配 係数はほぼ一定であった。CECに対するCs収着サ イトの割合(サイト占有率)は,初期濃度1× 10⁴mol/1の場合で10%,1×10⁹mol/1の場合で10⁴% である。

分配係数のpH依存性を図3に示す。分配係数が ほぼ一定であったことからも分かるように,pH依

図2 収着試験で得られたベントナイトコロイドへ のCsの分配係数

図3 Cs 分配係数の pH 依存性

存性は認められなかった。試験期間中、pH調整は 特に行っていないが、試験期間を通じて7~85程 度で、収着期間とともにpHはわずかに増加した。

32 脱離試験

脱離試験で得られたベントナイトコロイドに対 するCsの分配係数を図4に示す。収着試験と同 様,今回のCs濃度領域では,分配係数はCs濃度 によらずほぼ一定であった。また,分配係数の収 着期間及び脱離期間依存性も認められない。値を 収着試験における分配係数と比較すると,脱離試 験の方が30m³/kg程度とやや大きいが,ほぼ同程 度の値が得られた。

3.3 コロイド濃度の測定

収着試験前のコロイド溶液を,孔径の異なるフ ィルターでろ過したろ液中のAI及びSi濃度とAI/Si モル比を表4に示す。いずれの濃度も,孔径が大

図4 脱離試験で得られたベントナイトコロイドへ のCsの分配係数

表4 コロイド溶液のAI及びSi濃度

フィルタ孔径	AI濃度(mg/l)	Si濃度(mg/l)	AI/Si 比
1 nm	<12	42±0.1	
200 nm	2.4±1.0	8.0±2.4	0.31±0.16
450 nm	83±15	22 ± 4	0.39±0.10
800 nm	95 ± 8	242 ± 28	0 41±0 .06
ろ過なし	132 ± 25	327 ± 55	0 42±0 .11

分画分子数10,000のUFでろ過したもの

きくなるとともに増加するが,450nmを超える大きな粒子が多いことが分かる。また,AI/Si比を見ると,450nmより大きい粒子では04程度なのに対し,小さい粒子では04より小さく,Siが多い組成になっている。

澁谷らは、クニピアF[®]から精製したスメクタイトについて、エタノール洗浄後に全岩化学組成分析を行い、以下のような構造式を導出している²⁰。

$E(Al_{1.560}, Mg_{0.305}, Fe_{0.099}, Ti_{0.007})$

(Si_{3.949},Al_{0.051})O₁₀(OH)₂ E(交換性陽イオン)=(Na_{0.431},K_{0.002},Ca_{0.002})(**2**)

この時, AI/Si比は0 408となる。また, クニピア F[®]中のスメクタイトの主成分であるモンモリロ ナイトの一般式は,(3)のように表される²¹。

$$E_{0.33}(Al_{1.67}Mg_{0.33})Si_4O_{10}(OH)_2$$
 (3)

ここで E は交換性陽イオンを表す。この時 AI/Si 比は0 418となる。これらの値は,クニピアF[®]か ら調製した溶液中のAI/Si比のうち,450nm, 800nm及びろ過なしのもののAI/Si比とよく一致 しており,少なくとも比較的大きな粒径のものは スメクタイト,特にモンモリロナイトのコロイド と考えられる。

そこで,(2)式の組成を仮定して,AI及びSi濃 度からモンモリロナイト濃度を求めた。結果を表 5に示す。コロイド溶液中のモンモリロナイト濃 度は1,100mg/Iと計算された。収着試験でのコロ イド溶液は,収着試験に用いる際に添加されるCs

表5 Al・Si濃度から求めたモンモリロナイト濃度

业士 《四	モンモリロナイト濃度 (mg/l)								
松 1空	AI 基 準	Si 基 準	平 均						
< 1 nm	< 10	14 ± 1							
< 200 nm	20 ± 8	26 ± 8	23						
< 450 nm	70 ± 13	73 ± 12	72						
< 800 nm	801 ± 70	801 ± 92	801						
全範囲	1 ,120 ± 210	1 ,080 ± 180	1 ,100						

57

溶液により約1.1倍に希釈されるため,収着試験 溶液中でのモンモリロナイト濃度は,1.02g/Iと 見積もられる。

収着試験溶液中のSi濃度の時間変化を表6に示 す。試験前のコロイド溶液は、収着試験に使用す る際の希釈倍率1.1倍を用いて、表4の値をこの 希釈倍率によって補正した。106日後の濃度を見る と、孔径450nmのフィルターろ液中濃度が増加し ているのを除き、大きな変化は認められない。特 に、800nmを超える粒子の顕著な増加が認められ ないことから、コロイドの凝集は起こっていない と考えられる。

3 A コロイド形状の測定

(1) 粒径分布

収着試験に用いる前のコロイド溶液を, さらに フィルター孔径の数を増やしてろ過し, ろ液中の Si濃度から,より詳細なコロイドの粒径分布(質 量の分布)を求めた。結果を図5に示す。表6の 溶液のデータも併せて図中に点線で示した。フィ ルター孔径は,25,100,220,350,450,650及び 800nmのものを使用した。ろ過なしの値,すなわ ち,累積存在割合100%の点は,粒径1,000nmの 位置にプロットした。詳細な分布を調べた際の分 布は,他の二つに比べ,450nm以下のやや小さい

表6	収着試験溶液中Si濃度の時間変化
-LC U	

フィルタ孔径	試験前(mg/l)	106日後(mg/l)
1 nm	3.9±0.1	5.1±0.6
200 nm	7 2±2 .1	-
450 nm	20 ± 3	98 ± 11
800 nm	218 ± 25	222 ± 14
ろ過なし	295 ± 49	312 ± 7

分画分子量10,000のUFでろ過したもの

図5 ろ過により求めたコロイド粒子の粒径分布

粒径のものが多くなった。これは,ろ過する溶液 を,静置しておいたコロイド溶液の液面付近で採 取したために,沈降しにくくより安定に分散して いる比較的小さい粒子が多くなったと考えられ る。なお 収着106日後の溶液の200nmフィルター ろ過を実施していないため,グラフの形が他の2 つとは異なる。しかし,3つのいずれも,おおむ ね200nmより大きな粒子が大部分を占めるとい う粒径分布になっていることが分かる。

(2)形状観察

コロイド粒子の結晶面に対し垂直な方向からの TEM 写真を写真1に示す。この粒子は,最大長さ 18µm,最大幅1µm程度のコロイドとしては大 きな粒子であるが,その影から結晶シートが何層 も重なっている様子が観察された。しかし,このよ うな鮮明な像はまれであった。電子線の加速電圧 が強すぎ,電子線の透過力が強すぎることも考え られたため,通常500kVの加速電圧を200kVに下 げてTEM 観察を行ったが,同様の結果であった。

結晶面に対しほぼ平行な方向からのTEM像を 写真2に示す。写真中に,数本の線が平行に並ん ているのがいくつか認められるが,これがスメク タイト結晶の層構造で,1本の線が一枚の結晶 シートに相当する。これによれば,結晶シートの 積層数は,多い粒子で6~7層程度,場合によっ ては2~3層であることが分かる。

4.考察

4.1 分配係数

ベントナイトコロイドに対するCsの分配係数

写真1 コロイドの結晶面上方からのTEM 写真

写真2 コロイドの結晶断面のTEM 写真

を,サイクル機構収着データベース²²中の粉末状 ベントナイトに対するCsの分配係数の一例²³と比 較を試みた。結果を図6に示す。粉末状ベントナ イトの値はクニゲルV1[®]を用いており,表2に示 すように本研究で用いたクニピアF[®]とは Cs収着 に寄与するスメクタイト含有量が異なるが,分配 係数はスメクタイト量で規格化しているため,図 中での比較は可能である。

図を見ると,ベントナイトコロイドは,粉末状 ベントナイトより大きな分配係数を示した。この 原因としては,以下のようなことが考えられる。

(1) 溶液中に存在する収着競合イオンの違い

(2) ベントナイトの違い

(3) 比表面積の違い

以下で,それぞれについて考察する。

(1) 競合イオンの影響

図6に示した粉末状ベントナイトのデータは, クニゲルV1[®]を用い,固液比2g/Iで蒸留水中で取 得されている。クニピアF[®]とクニゲルV1[®]では, 初期の交換性陽イオン組成や可溶性不純物の組成 が異なるため,収着試験溶液中に存在する競合イ オンの種類及び濃度の条件が異なる。収着試験前

図6 コロイド状と粉末状のベントナイトへのCs 分配係数の比較

の溶液中の交換性陽イオン濃度を図7に示す。Na 濃度は同程度だが,クニゲルV1®の場合Ca濃度が 高いことが分かる。

佐藤らは,陽イオン交換モデルにより,クニゲ ルV1[®]へのCs 収着挙動を説明できたとしている²³⁾ ことから,同じイオン交換平衡定数を用いて本試 験の溶液条件におけるベントナイトへのCs分配 係数を算出した。結果を表7に示す。計算された 分配係数はいずれも測定値より低く,競合イオン の影響を考慮した既報のモデルとイオン交換平衡 定数だけでは,コロイド状と粉末状ベントナイト に対する分配係数の差を十分説明できないことが 分かった。

(2) ペントナイトの種類の影響

ベントナイトが異なる場合,それに含まれるス メクタイトの性質も若干異なる可能性があり,そ れの結果,収着サイトのイオン交換選択性等の違 いとなって現れることが考えられる。そこで,コー ルド収着試験溶液中の元素分析結果及びホット収 着試験のCs分析結果から、Na⁺とCs⁺イオンのイオ ン交換選択係数を求め、文献値との比較を試みた。 Gaines and Thomasの選択係数は,(4)式のよ うなNa⁺とCs⁺のイオン交換反応に対して,(5)式

図7 収着試験前の溶液中の陽イオン濃度 クニゲルV1[®]のデータは,佐藤・澁谷²⁰⁾による

表 7 既報²⁰のイオン交換モデルと平衡定数に基づ くCs分配係数の計算値

初期Cs(mol/l)	1 × 10 ⁻⁴	1 × 10 ⁻⁷	1 × 10 ⁻⁹
分 配 係 数 (計算値)(m³/kg)	3.3	5.6	6 2
分 配 係 数 (実験値)(m³/kg)	19	17	23

研究報告

に基づき求められる。

 $ZNa + Cs^{+} = ZCs + Na^{+}$ (4)

ここで, ZNa及びZCsは, スメクタイト表面の 化学種である。

$$K = \frac{(ZCs)\{Na^+\}}{(ZNa)\{Cs^+\}}$$
(5)

ここで,

(ZNa),(ZCs): スメクタイト中のNaあるい はCsの等量分率

{ Na⁺ },{ Cs⁺ }: 平衡液中の Na , Csの活量

初期Cs濃度10⁴,10⁷及び10⁹mol/Iの各場合の選 択係数を表8に示す。選択係数の常用対数(log K) は、12~14と求められた。一方、この値につい て、Wannerらは、MX 80ベントナイトに対する Cs 収着試験の実測値から16と求めている²⁴⁾。この 値に比べると、筆者らが求めた値は若干小さくな った。一方、佐藤らが設定したイオン交換平衡定 数²³⁾によれば、NaとCsのlog Kは08と、今回求 めた値よりさらに小さくなる。このように、選択 係数に差があったため、(1)で計算した分配係数 と実測値に大きな差が出た可能性もある。選択係 数の差が、ベントナイト中に含まれるスメクタイ トの性質の差によるものか、今後検討していく。 (3)粒径の影響

ベントナイトコロイドの場合,粉末状のものに 比べ,比表面積が大きくなり,それに伴い収着サ イト密度が増加することによって,分配係数が大 きくなる可能性が考えられる。

粒径分布測定の結果を見ると,コロイドの中で も200nm以上の比較的大きな粒子が重量の大部 分を占めていることが分かる。また,TEM観察結 果を見ると,積層数が数層程度の粒子が多いこと が分かる。つまり,ベントナイトコロイドは,非 常に薄いシート状の粒子で,底面部分すなわち四

表 8	イオ	ン交換	選択係	系数の	比較
-----	----	-----	-----	-----	----

	初期Cs濃度(mol/l)		
	1 .1 × 10⁴	1 .1 × 10 ⁻⁷	1 2 × 10 ⁻⁹
非収着 Cs(mol/I)	5 .8 × 10 ⁻⁶	6 4 × 10 ⁻⁹	5 2 × 10 ⁻¹¹
収 着Cs(mol/g)	1 .1 × 10⁴	1 .1 × 10 ⁻⁷	1 2 × 10 ⁻⁹
全 Na 濃度(mol/l)	1.8×10⁻³	1.8×10⁻³	1 8 × 10 ⁻³
非収着 Na(mol/I)	1 .1 × 10⁻³	8.9×10⁴	8 5×10 ⁻⁴
収 着 Na(mol/g)	7 5×10⁴	8 .7 × 10⁻⁴	9 8 × 10 ⁻⁴
選択係数(logK)	1 4	12	13

面体シートの面積が非常に大きいことが推測され る。スメクタイトが積層構造を取っている場合, この底面の四面体シートで挟まれた層間部分に交 換性陽イオンが存在し,Csはこの陽イオンと交換 する形で収着されると考えられている。また、そ の他にエッジサイトと呼ばれる結晶端に存在する 水酸基への収着も示唆されているい。スメクタイト がコロイド状の, すなわち, 積層数の少ない比較 的大きな粒子の形で存在する場合,層間部分が減 少し,四面体シートが露出した底面部分が増加す る。層間部分が2つの底面部分に分裂する際に、 どの程度Cs収着サイトが増加するのかは不明だ が、これが分配係数の増加につながった可能性も ある。3.1で述べたように、Csのサイト占有率が 非常に低い初期濃度1×10°mol/Iの場合でも,分 配係数及び選択係数がCs濃度が高い場合とほと んど変わらないことから、この濃度領域でCs収着 に寄与するサイトは1種類と考えられ,底面部分 への収着が寄与していることが考えられる。

スメクタイトへのCs 収着サイトについては, NakanoらがEXAFS測定及びMD計算に基づき,Cs は四面体シート上の酸素の六角状空隙(hexagonal cavity)に収着されると推定している²⁵。一方, Bostickらは,モンモリロナイトへのCs収着のタイ プをEXAFSを使って調べ、収着したCsに外圏錯体 と内圏錯体の存在を確認し,内圏錯体は外圏錯体 より抽出されにくく,層間あるいはエッジサイト に存在すると報告しており,少なくとも2種類の 収着サイトの存在を指摘している²⁵。

今後,スメクタイトがコロイド状になった場合 の,これら収着サイト密度の増加の程度を見積も り,収着試験結果の解釈を進めていく。

42 収着の可逆性

次に、ペントナイトコロイドへのCs 収着の可逆 性について考察する。図2から、分配係数は収着 期間に依らず1~72日までほぼ一定の値を示して いることが分かる。これは、1日で収着がほぼ平衡 に到達していることを意味している。一方、図4 から、脱離試験についても同様に1日と30日ある いは46日の間で、分配係数の脱離期間依存性が認 められないことから、1日で脱離がほぼ平衡に達 していることが分かる。このように、早い脱離を 示すこと、脱離試験で得られた分配係数が、収着 試験で得られたそれと同程度であることから、現 しかし,今回用いた脱離方法では,1回に脱離 できるCsの量は,収着したCsの20%程度にすぎ ず,大部分のCsは脱離できていない。不可逆性を 示すサイトがあるとすれば,それは最もCs選択性 の高いサイトであり,可逆的な収着サイトのCsの ほとんどが脱離されて初めて,分配係数に変化が 現れると推測される。3.1で述べたように,初期濃 度が最も低い1×10°mol/1の場合でCsのサイト占 有率は10°%であり,この段階では可逆的な収着サ イトのみが収着に寄与しているといえる。今後さ らに脱離の回数を重ね,よりCs選択性の高いサイ トの有無を確認することにより,収着の可逆性を 詳細に検討していく。

5.おわりに

ベントナイトコロイドに対するCsの収着及び 脱離試験を行い,分配係数及び収着の可逆性に関 する知見を得た。

- (1) 収着試験においては、クニピアF[®]から調製したペントナイトコロイドに対するCsの分配係数として、約20m³/kgの値が得られた。また、平衡時のCs濃度10¹¹~10⁵mol/l,収着期間1~72日、pH7~85の間では、分配係数に対するこれらの依存性は認められなかった。
- (2)脱離試験においては、分配係数として、約 30m³/kgの値が得られた。また、Cs濃度、収着 期間及び脱離期間の依存性は認められなかった。
- (3) AI及びSi濃度の分析から,溶液中に認められ るコロイドは,モンモリロナイトと考えられ, 収着試験溶液中での濃度は1.02g/Iと見積もら れた。また 粒径ごとの濃度の時間変化を調べ, 試験期間中にコロイドの凝集は起こっていない ことを確認した。
- (4) コロイドの粒径分布は,200nmより大きい粒 子が大部分を占めた。また,コロイド断面の TEM観察から,結晶シートの積層数は,多いも ので6~7層,少ないものでは2~3層程度で あることが観察された。
- (5) 収着の分配係数は、粉末状ペントナイトに対するそれより大きな値を示したが、この原因としては、溶液中の競合イオンの違い、含まれるスメクタイトの性質の違い、あるいは、コロイド形状になることによる収着サイト密度の増加

が考えられた。

(6) 今回実施した脱離試験条件下, すなわち, 脱 離割合20%程度, Csのサイト占有率は低いもの で10⁴%程度の段階では, Csの脱離は可逆的で あった。

今後, 収着サイト密度の定量的な評価等ベント ナイトコロイドの特性評価を進め, 収着試験結果 の解釈を進めるとともに, 脱離を繰り返し行い, Csのサイト占有率を可能な限り下げることによ り,よりCs選択性の高いサイトの有無を確認して いく。

参考文献

- 1)核燃料サイクル開発機構:"わが国における高レベル 放射性廃棄物地層処分の技術的信頼性", JNC TN1400 99 023(1999)
- 2) A. B. Kersting, et al. : "Migration of plutonium in groundwater at the Nevada Test Site", Nature, Vol.397, pp.56 59(1999)
- 3) A. Mori, et al. :" The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock ", Colloids Surf. A: Physicochem. Eng. Aspects, Vol.217, pp.33 47(2002)
- 4) K. H. Lieser, et al. : "Colloids in Groundwater and their Influence on Migration of Trace Elements and Radionuclides ", Radiochim. Acta, Vol.49, pp.83 100 (1990)
- 5) J. I. Kim :" Actinide Colloid Generation in Groundwater ", Radiochim. Acta, Vol.52/53, pp.71 81(1991)
- 6) C. Degueldre, et al. "Colloid properties in granitic groundwater systems. I: Sampling and characterization", Appl. Geochem., Vol.11, pp.677 695(1996)
- 7) A. Avogardo and G. De Marsily:" The role of colloids in nuclear waste disposal ", Mat. Res. Soc. Symp. Proc., Vol.26, pp.495 505(1984)
- 8) S. Kurosawa, et al.: "Erosion properties and dispersion flocculation behavior of bentonite particles", Mat. Res. Soc. Symp. Proc., Vol.556, pp.679 686 (1999)
- 9) T. Missana, et al.: "Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository ", J. Contam. Hydrol., Vol.61, pp.17 31(2003)
- 10) I. Baek and W. W. Pitt, Jr:" Colloid facilitated Radionuclide Transport in Fractured Porous Rock ", Waste Manage., Vol.16, pp.313 325(1996)
- W. Miller, et al.: Geological Disposal of Radioactive Wastes and Natural Analogues. Waste Management Series, Vol.2, Pergamon, Amsterdam(2000)
- 12) C. Degueldre, et al.: "Sorption of 241Am onto Montmorillonite, Illite and Hematite Colloids", Radiochim. Acta, Vol.65, pp.173 179(1994)

- **13)** S. Nagasaki, et al.: "Colloid Formation and Sorption of Americium in the Water/Bentonite System ", Radiochim. Acta, Vol.66/67, pp.207 212(1994)
- 14) S. Nagasaki, et al.: "Affinity of finely dispersed montmorillonite colloidal particles for americium and lanthanides ", J. Nucl. Mat., Vol.244, pp.29 35(1997)
- 15) N. Lu, et al.: "Sorption kinetics and impact of temperature, ionic strength and colloid concentration on the adsorption of plutonium 239 by inorganic colloids ", Radiochim. Acta, Vol.91, pp.713 720(2003)
- 16) S. Painter, et al.: "Significance of Kinetics for Sorption on Inorganic Colloids: Modeling and Experiment Interpretation Issues ", Environ. Sci. Technol., Vol.36, pp.5639 5375(2002)
- 17) B. Satmark and Y. Albinsson : "Sorption of Fission Products on Colloids Made of Naturally Occurring Materials and the Stability of these Colloids ", Radiochim. Acta, Vol.58/59, pp.155 161(1992)
- 18) 小田治恵,柴田雅博:" ベントナイト 水相互作用の 実験とモデル化", JNC TN8400 99 032(1999)
- 19) Y. Kuno, et al. : "Natural Colloids in Groundwater from a Bentonite Mine Correlation between Colloid Generation and Groundwater Chemistry ", Mat.

Res. Soc. Symp. Proc., Vol.713, pp.841 848(2002)

- 20) 澁谷朝紀ら: "スメクタイトの物理・化学的特性および NaCl 溶液中でのH+との相互作用", JNC TN8400 99 066(1999)
- 21) 須藤談話会編:"粘土科学への招待"三共出版(2000)
- 22) 澁谷朝紀ら:" 核種のベントナイトおよび岩石に対す る収着データベース", JNC TN8410 99 050(1999)
- 23) 佐藤治夫, 澁谷朝紀:"緩衝材及び岩石への核種の吸 着・拡散メカニズム", 動燃技報, No.91, pp.71 89 (1994)
- 24) H. Wanner, et al.: " A thermodynamic surface model for caesium sorption on bentonite", Fresenius J. Anal. Chem., Vol.354, pp.763 769(1996)
- 25) M. Nakano, et al.: " Local structural information of Cs in smectite hydrates by means of an EXAFS study and molecular dynamics simulations ", Appl. Clay Sci., Vol.23, pp.15 23(2003)
- 26) B. C. Bostick, et al.: "Cesium Adsorption on Clay Minerals: An EXAFS Spectroscopic Investigation", Environ. Sci. Technol., Vol.36, pp.2670 2676(2002)
- 27) R. Grim: Clay Mineralogy 2nd ed., McGraw Hill, New York (1968)

Evaluation of Hydraulic Permeability along Fracture Intersection

Keiichi TETSU* Atsushi SAWADA Masahiro UCHIDA

Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works *Inspection Development Company Ltd.

高レベル放射性廃棄物の地層処分の安全性を評価するため、天然バリア内の核種移行解析が行われている。亀 裂内の物質の移行評価においては,亀裂内の地下水流速とマトリクス拡散寄与面積が重要なパラメータとなる。 亀裂交差部は,流速が速くマトリクス拡散寄与面積が小さい可能性があり,核種移行の遅延効果が低下すること が懸念されている。本研究では,亀裂交差部の流速とマトリクス拡散寄与面積の把握を目的としている。

今回の報告ではY字状に交差した天然亀裂を持つ花崗岩を用い, 亀裂交差部に沿った方向とそれ以外の亀裂部 の透水試験を実施した。試験の結果,亀裂交差部に沿った方向の透水量係数が最も高く,地下水及び物質の重要 な移行経路となる可能性が示された。

今後は亀裂交差部の三次元的な形状測定を行い、今回の試験結果と組み合わせて、亀裂交差部の流速及びマト リクス拡散寄与面積の評価を実施する予定である。

Nuclide migration analysis in natural barriers is being performed to evaluate the safety assessment for the geological disposal system of high level radioactive waste. Fluid velocity and fracture surface area from which nuclides can diffuse into the matrix are important parameters for radionuclide migration evaluation in fractures. Since a fracture intersection may have large flow velocity and small fracture surface area, retardation effects in natural barrier might be reduced. The purpose of this study is to understand the fluid velocity and fracture surface area along fracture intersections

In this study, permeability tests in fracture intersection were conducted using granite with a natural Y type fracture intersection. The test results showed that the transmissivity along the fracture intersection was greater than that of the other parts of the fracture in the rock block, and indicated the possibility that fracture intersection act as an important pathway for the movement of groundwater and solute.

As a future study, geometrical structure along the fracture intersection will be investigated and fluid velocity in the fracture intersection and fracture surface area will be evaluated incorporating the results obtained from this study.

キーワード

高レベル放射性廃棄物,地層処分,天然バリア,核種移行解析,マトリクス拡散寄与面積,亀裂交差部,天然亀 裂,花崗岩,透水試験,透水量係数

High Level Radioactive Waste, Geological Disposal System, Natural Barrier, Fracture Surface Area, Fracture Intersection, Natural Fracture, Granite, Nuclide Migration Analysis, Permeability Test, Transmissivity

鐵

桂一

澤田 システム解析グループ所属 副主任研究員 天然パリアの性能評価研究 に従事

内田 雅大 システム解析グループリー ・
地層処分における水理・物

質移動に関する研究に従事

研究報告

63

サイクル機構技報 No.23 2004.6

高レベル放射性廃棄物の地層処分の安全評価で 実施される天然バリア中の核種移行解析において は,対象となる地質媒体の特性を適切に取り扱う ことが重要となる。花崗岩などの亀裂性岩盤を対 象とした場合の核種移行解析には、個々の亀裂を 均質な平行平板や一次元チャンネルで近似したモ デルが一般的に用いられるいと、しかし実際には、 巨視的には岩盤中の移行経路として亀裂ネット ワークの不均質性が,微視的には亀裂表面形状, 充填物,他の亀裂との相互作用(亀裂の分岐や交 差等に起因する亀裂内空隙構造の不均質性)が, 地下水の流れや核種の移行現象に影響を与えてい る。このため、現実にはこうした不均質性を持つ 移行経路に対して一定開口幅を仮定する平行平板 モデルや一次元チャンネルモデルで近似したモデ ルを適用することの妥当性や信頼性を確認するた めには, 亀裂ネットワークの不均質性, 亀裂表面 形状,充填物,他の亀裂との相互作用などが地下 水の流れや核種の移行現象に与える影響を把握す る必要がある。

亀裂性岩盤を対象とした地層処分の安全評価解 析において、亀裂内チャンネル部(水みち)の流 量とマトリクス拡散寄与面積(チャンネル部の表 面積)が重要なパラメータとなる。チャンネルと は図1の緑色部分のように、亀裂内で選択的に水 が流れる部分である。亀裂内の核種移行は、流速 が遅いとマトリクス拡散の効果が大きくなること で遅延効果が期待でき、逆に流速が速くなるとマ トリクス拡散の効果が小さくなり遅延効果が低下 する。マトリクス拡散とは溶質が岩石のマトリク ス部(基質部)へ拡散により移行することであり、 チャンネルと接する亀裂の面積をマトリクス拡散

図1 亀裂交差部とチャンネル

寄与面積と呼ぶ。マトリクス拡散寄与面積が大き いほど,より多くの溶質がマトリクス部に移行し やすくなり,結果として核種移行の遅延効果が期 待でき,逆にマトリクス拡散寄与面積が小さいと 遅延効果が低下する。

チャンネル等での物質の流れにくさは,移行抵抗として表すことが出来る³⁾。移行抵抗は(1)式のように,マトリクス拡散寄与面積(チャンネルの幅wとチャンネルの長さLの積)に比例し,流量Qに反比例する。そして移行抵抗が大きいとき, 亀裂内の核種移行の遅延効果が期待できる。

移行抵抗=
$$\frac{\mathbf{w} \cdot \mathbf{L}}{\mathbf{Q}_{\mathbf{v}}}$$
 (1)

移行抵抗 (yr/m),

w :チャンネルの幅(m)

L:チャンネルの長さ(m)

Qy: チャンネル中の年間流量(m³/yr)

本研究で着目した亀裂の交差部は他の亀裂部に 比べ透水性が高く、図1青色部のように亀裂交差 部に沿った方向にチャンネルが発生している可能 性がある。その場合 亀裂交差部のチャンネルは, 平行平板で仮定した場合の亀裂や単一亀裂のチャ ンネルに比べ,マトリクス拡散寄与面積が小さい と考えられる。そして,流量に対してマトリクス 拡散寄与面積が小さいため移行抵抗が小さくな り,核種移行の遅延効果が低下する事が懸念され ている。

これらのことより本研究の目的は, 亀裂交差部 に沿った方向の透水特性(流量)の把握及び亀裂 交差部の空隙形状(マトリクス拡散寄与面積)の 把握とした。本研究では亀裂交差部に沿った方向 とそれ以外の亀裂部で透水試験を行い, 亀裂交差 部が選択的な流路であることの確認をするととも に, 亀裂交差部に沿った方向の透水特性を把握し た。

2.試験概要

2.1 試験岩体と試験装置の概要

試験に用いた試験岩体は,岩手県釜石鉱山より 採取されたY字状に交差した天然亀裂を含む花崗 閃緑岩である。この亀裂は原位置で,透水性を有 していることが確認されている¹。試験岩体は亀裂 が開かないようにターンバックルと呼ばれる治具 で固定して,縦05m×横05m×高さ047mに切 断,整形した。この試験岩体に縦05m×横05m ×高さ0.03mのステンレス鋼板を岩体に載せ,全 体の大きさが05m角になるように調節した。試験 岩体表面で観察される亀裂の様子を,図2(a)(b) に示す。図2(a)(b)の中央は試験岩体の上面で あり,試験岩体の下面は,亀裂が存在しないため 表記していない。また試験岩体の各側面をA,B, C,Dとした。亀裂の観察及び通水より,図2(a) (b)の岩体中央付近にある水平方向の亀裂(下部

亀裂)と、そこから上方に分岐した亀裂(上部亀裂)が主要な亀裂であると判断し、この2枚の亀裂部を試験に使用した。主要な2枚の亀裂部の構造を図2(c)に示す。図2(c)において青色で示されているのが下部亀裂、緑色で示されているのが上部亀裂である。また亀裂交差部は、B面、C面それぞれの亀裂分岐点を通過する線と推定し、図2(c)では赤色で示した。

岩体表面亀裂部の止水と 注排水を行う領域 セ ル)に分割するため,図3のように試験岩体の各 面に止水板を圧着した。止水板は止水エレメント と呼ばれるシリコンパッキンにより6×6個の独 立したセル(1つのセルは約8 cm角)に仕切られ, 各セルごとに岩体亀裂部における注水及び排水が 可能である。止水板取り付け後,岩体稜線部をシ リコン系ポリマーシーリング剤(シリコンシーラ ント®)で充填し 試験岩体全体の止水を行った。各 注排水セルと亀裂の位置関係及び試験で使用した セルを図4に示す。図4において主要な亀裂は, 赤色で示した箇所である。この主要な亀裂に注排 水を行うセルを緑色で示した。セルには番号を割 り当て,試験岩体側面の名称とセルの番号の組み 合わせでセルの位置を表現する(例えば,C面の 一番右側のセルはC24)。

亀裂部の透水性評価には、ダルシー則に基づく 式から求まる透水量係数を用いる。本試験で使用 した岩体は亀裂開口幅が大きく透水性が高いた め、水を使用した場合、装置で制御可能な試験条 件下(水頭差1cm程度)において亀裂内の流れ が乱流になる可能性がある⁵⁰。流れが乱流である場 合、測定した圧力、流量条件からダルシー則に基 づく式より求めた透水量係数は、過小評価される 可能性がある。このため、亀裂内部の流れを層流 状態にする必要がある。

この試験岩体で層流状態を達成するため,水よ りも粘性の高い高粘性流体を試験に使用した⁶³。高 粘性流体は水にメチルセルロース系の増粘剤(テ ルポリマー30L[®])を溶かして作製した。メチル セルロース系の増粘剤は,安全性,経済性,取り 扱いやすさに優れた特徴がある。また,少量で高 い粘性の流体を得られるため,液体の密度が水と ほとんど変わらない利点がある。しかし、重合度, 水溶性濃度が高くなると,わずかに非ニュートン 性を示す。

今回の試験岩体については,おおよそ0.1wt %

(a) 止水板取付け状況1

(b) 止水板取付け状況2

図4 注排水セルと亀裂の位置関係

以上で亀裂内の流れが層流となることが分かって いる⁷⁾。本研究では、02wt%濃度の高粘性流体を 試験に使用した。本試験に使用した高粘性流体は 増粘剤の濃度が極めて低いため、おおむねニュー トン流体と見なす事が出来る。試験に用いた高粘 性流体の粘性係数は、透水試験時の液温15~20 ()で6 $0 \times 10^{-3} ~ 7.0 \times 10^{-3} (kg/m \cdot s)$ であり、 同じ液温での水の粘性係数、 $1.0 \times 10^{-3} ~ 1.1 \times 10^{-3}$ (kg/m • s)に比べ6~7倍大きい。

22 透水試験の概要

透水試験装置の概略図を図5に示す。透水性の 高い主要な亀裂に適した流量を得るために,試験 岩体への注水は堰の水頭差を利用した通水方法を 用いた。注水及び排水のための堰と岩体側面のセ ルは、64mm(外径6mm内径4mm)チュー ブを用いて接続した。亀裂の透水性が高く注排水 の水頭差が小さいため、岩体周囲亀裂部の水頭測 定には、他の測定法に比べ測定精度が高いと考え られるマノメータを用いた。マノメータは、主要 な亀裂部に沿ったセルと64mmチュープを 用いて接続した。流量の測定には、メスシリンダー または電子天秤を使用した。注水側の堰には、マ イクロポンプを使用して高粘性流体を送液した。 注水側、排水側とも、堰の高粘性流体はオーバー フローさせ、堰の水頭を一定に保った。排水側の 堰は高さを固定し、注水側の堰を排水側の堰に対 して段階的に上下させた。注水堰の上昇幅は、亀 裂面全体を対象とした(1面注水,1面排水)透水

図 5 透水試験装置概略図

研究報告

試験で0~0.07m,1セル対1セル(1注水口対 1排水口)の透水試験で0~0.14mとした。排水 流量が定常になった後,マノメータ水頭値,排水 側の流量,排水の水温を測定した。試験岩体への 注水は堰の水頭差で制御するが,試験岩体の水頭 差は注水側と排水側のマノメータの差で示され る。なお透水試験は,注水及び排水のチュープを 任意に組み合わせ,室温で実施した。

本研究では,透水試験で測定した流量Qと注排 水側のマノメータの水頭差 hより,透水特性の 指標となる透水量係数を求めた。透水量係数はま ず高粘性流体における透水量係数Tを求め,高粘 性流体と水の粘性係数の比より,流体が水である ときの透水量係数T、に変換した⁸⁾。

ダルシー則に基づき,水の粘性に換算した透水 量係数T_wを求める式を(2)式に示す。また三乗 則より亀裂開口幅bを求める式を,(3)式に示す。

$$T_{w} = T \frac{\mu}{\mu_{w}} = \frac{Q}{w \frac{\Delta h}{L}} \cdot \frac{\mu}{\mu_{w}}$$
(2)

- T_w:水に換算した時の透水量係数(m²/s)
- T :透水量係数(m²/s)
- μ_w:水の粘性係数(kg/m·s)
- μ :粘性係数(kg/m·s),Q:流量(m³/s)
- h:水頭差(m),L:チャンネルの長さ(m)
- w :チャンネルの幅(m)

$$b = \sqrt[3]{T_w} \frac{12\mu_w}{\rho_w g} = \sqrt[3]{\frac{Q}{w \frac{\Delta h}{L}} \cdot \frac{12\mu}{\rho_w g}}$$
(3)

b : 亀裂開口幅(m), w: 水の密度(kg/m³), g :重力加速度(m/s²)

高粘性流体の粘性係数 μ は回転粘度計(山崎精 機研究所製:YV6S)により求めた値を用いた。 また,高粘性流体の密度は水の密度とほぼ同じで あることから, = w=1,000(kg/m³)とした。 チャンネルの幅w(m)は注水に用いたセルの幅, チャンネルの長さL(m)は注水セルの中心と排水 セル中心間の距離と仮定している。

- 3.透水試験の結果と考察
- 3.1 試験ケース

透水試験は,下部亀裂,上部亀裂それぞれ亀 裂開口部全体を透水,特定セル間を透水の2種 類とし,合計47ケース実施した。

32 透水試験結果

(1) 亀裂面全体を対象とした透水試験

亀裂面全体を対象とした透水試験により,注水 流量Q(m³/s)及び向かい合うセル間の水頭差 h(m)を測定し,流量の平均と水頭差の比(Q/ h)を求めた。その後(2)式,(3)式を用いて, 水の粘性に換算した平均透水量係数Tw,平均亀裂 開口幅bを求めた。亀裂面全体を対象とした透水 試験における注排水セルの組み合わせ及び平均透 水量係数Tw,平均亀裂開口幅bを表1に示す。透 水量係数及び亀裂開口幅bの計算の際,チャンネ ルの長さし(m),チャンネルの幅w(m)を,岩体 の1辺の長さである05mと仮定した。また,各 ケースの水に換算した平均透水量係数を図6に示 す。図6において矢印の向きは通水方向を示して おり,対面する水色のセル間に水頭差を与えてい る。また矢印の色は透水量係数の大きさを表して

ケース	注水セル	排水セル	水の粘性に換算 した平均透水量 係数T _v (m ² /s)	平均亀裂開 口幅b(m)
11	A13~18	C19~24	0 .7 × 10 ⁻⁴	0 .45 × 10 ^{⋅3}
12	C19~24	A13~18	0 .7 × 10 ⁻⁴	0 .45 × 10 ^{⋅3}
13	A19~24	C19~24	2 .9 × 10 ⁻⁴	0 .74 × 10 ^{⋅3}
14	C19~24	A19~24	3 2×10 ⁻⁴	0 .73 × 10 ^{⋅3}
15	C19~24	A13 ~ 18 A19 ~ 24	3 <i>A</i> × 10 ⁻⁴	0 .77 × 10 ^{.3}
16	A13 ~ 18 A19 ~ 24	C19~24	3 2 × 10 ⁻⁴	0 .77 × 10 ^{.3}
17	D13 , 14 D20 ~ 24	B12 B15 ~ 17 B19 ~ 21	1 .6 × 10 ⁻⁴	0 .60 × 10⁻³
18	B12 B15~17 B19~21	D13 , 14 D20 ~ 24	1 .6 × 10 ⁻⁴	0 .61 × 10⁻³
19	D19~24	B19~24	1 .5 × 10⁻⁴	0 .61 × 10 ⁻³
1 10	B19~24	D19~24	1 .6 × 10 ⁻⁴	0 .60 × 10 ⁻³
1 11	D13 , 14 D19~24	B12 B15 ~ 17 B19 ~ 24	1 .7 × 10⁻⁴	0 .62 × 10 ⁻³
1 12	B12 B15~17 B19~24	D13 , 14 D19~24	1 .6 × 10 ⁻⁴	0 .61 × 10⁻³

表1 亀裂面全体を対象とした透水試験

(チャンネルの幅w = 0 5 (m), チャンネルの長さL = 0 5 (m) と仮定)

図6 水に換算した透水量係数(亀裂面全体)

おり,青色は10×10⁻(m²/s)未満,紫色は10 ×10⁻(m²/s)~20×10⁻(m²/s),オレンジ色は 20×10⁻(m²/s)以上である。

既往の室内試験及び原位置試験により得られた 数十cm ~数m以下のスケールの花崗岩中におけ る透水量係数は,10⁻¹⁰~10⁻⁶m²/sオーダーに分布 していると報告されている¹)。これに対し,今回の 透水試験で求められた透水量係数は10⁻⁴~ 10⁻⁶m²/sオーダーであり,これまでに報告された 花崗岩の透水量係数に比べて大きな値を示す。こ れは原位置における応力と試験時における応力の 差に起因する可能性がある。

表1及び図6より,試験に使用した岩体の特徴 として,注水と排水の方向を逆にしても透水量係 数がほぼ等しい事が分かった。また,上部亀裂面 をAC方向に通水しているケース11,12と下 部亀裂面をAC方向に通水しているケース1 3,14の透水量係数より,上部亀裂面よりも下部 亀裂面で透水性が高いことが分かった。

上部亀裂面をA C方向に通水しているケース 1 1,1 2とB D方向に通水しているケース1 7,1 8では B D方向の透水量係数の方が大きい。 下部亀裂面をA C方向に通水しているケース1 3,1 4とB D方向に通水しているケース1 9,1 10では, A C方向の透水量係数が大きい。これよ り上部亀裂面,下部亀裂面とも透水異方性を示す 事が分かった。

(2)特定セル間を対象とした透水試験

特定セル間を対象とした透水試験として,対 面するセル間(1セル対1セル間)の透水試験及 び 亀裂交差部及び亀裂交差部と同一流路長セル 間(1セル対1セル間)の透水試験を行った。対 面するセル間のケース2 1~2 18と,亀裂交差 部と同一流路長のケース3 1~3 17とに分けて 試験ケースを示す(表2)。

特定のセル間を対象とした透水試験により注水 流量Q(m³/s)とセル間の水頭差 h(m)を測定し, 流量と水頭差の比(Q/h)を求めた。その後近 似式の比(Q/h)より,水の粘性に換算した透 水量係数 Tw, 亀裂開口幅 b を求めた。特定セル間 を対象とした透水試験における注排水セルの組み 合わせ及び透水量係数Tw, 亀裂開口幅bを表2に 示す。透水量係数及び亀裂開口幅bの計算の際, チャンネルの長さL(m)は試験セル間の距離とし, チャンネルの幅w(m)は試験区間のセルの幅であ **る0.083mと仮定した。しかし、実際の亀裂内では、** チャンネルの幅がセルの幅と異なる可能性がある とともに,流れの蛇行等によりチャンネルが長く なる可能性が考えられるため,1セル対1セル間 の透水試験の結果は, 亀裂内部の透水性を比較す るために用いた。各ケースの水に換算した透水量 係数を図7に示す。図7において矢印の向きは通 水方向を示しており,矢印間のセル(1セル対1 セル)に水頭を与えている。また矢印の色は透水 量係数の大きさを表しており,青色は05×10-3 (m²/s)未満,紫色は05×10⁻³(m²/s)~15×10⁻³ (m²/s)オレンジ色は15×10⁻(m²/s)以上である。

図7より,特定セル間を対象とした透水試験よ り得られた透水量係数(ケース2 1~2 18,3 1~3 17)は,10⁻³~10⁻⁽(m²/s)オーダーであ り,亀裂面全体を対象とした透水量係数(ケース 1 1~1 12)よりも,おおよそ1桁大きな値を 示す。この結果から,1セル対1セル間の透水試 験では,亀裂内でチャンネルの幅が,仮定した値 (0.083m)よりも大きく広がっている可能性があ るものと考えられる。

表2,図7より,注水と排水の方向が逆のケー

表2 1セル対1セル間の透水試験

ケース	注水 セル	排水 セル	チャンネ ルの長さ L(m)	水の粘性に換算 した平均透水量 係数T ₋ (m ² /s)	平均亀裂 開口幅 b(m)
21	D24	B19		1 .1 × 10 ⁻³	1 .11 × 10 ⁻³
22	B19	D24		1.0×10 ⁻³	1 .09 × 10 ⁻³
23	D23	B20	1	1 .0 × 10 ⁻³	1 .09 × 10 ⁻³
24	B20	D23		1 .0 × 10 ⁻³	1 .08 × 10 ⁻³
25	D22	B21	0.5	0.9×10 ⁻³	1 .04 × 10 ⁻³
26	B21	D22	1	0 9 × 10 ⁻³	1 .03 × 10 ⁻³
27	D19	B24	1	0 .7 × 10 ⁻³	0 .93 × 10 ⁻³
28	B24	D19	1	0.6×10 ⁻³	0.94 × 10 ⁻³
29	D13	B12	0.51	0 2 × 10 ⁻³	0 .60 × 10 ⁻³
2 10	B12	D13	0.51	0 2 × 10 ^{.3}	0.59 × 10⁻³
2 11	C22	A21		2 .0 × 10 ^{.3}	1 .34 × 10 ^{.3}
2 12	A21	C22	0.5	2 .1 × 10 ⁻³	1 .39 × 10 ⁻³
2 13	C24	A19	0.5	1 9 × 10 ⁻³	1 .32 × 10 ⁻³
2 14	A19	C24		2 .1 × 10 ⁻³	1 .39 x 10 ⁻³
2 15	C22	A15		0 4 × 10 ⁻³	0 .74 × 10 ^{⋅3}
2 16	A15	C22	0.51	0 4 × 10 ⁻³	0 .76 × 10 ⁻³
2 17	C24	A13	0.51	0 4 × 10 ⁻³	0 .79 × 10 ^{⋅3}
2 18	A13	C24		0 4 × 10 ⁻³	0 .80 × 10 ⁻³
31	C21	B19		2.8×10 ⁻³	1 51 × 10 ⁻³
32	B19	C21		2 3×10 ⁻³	1 .43 × 10 ⁻³
33	B21	A19	0.20	1.6×10 ⁻³	1 26 × 10 ⁻³
34	A19	B21	0.29	2 .0 × 10 ⁻³	1 .38 × 10 ⁻³
35	A22	B24		0 8 × 10 ⁻³	1 .0 × 10 ⁻³
36	B24	A22		0 .7 × 10 ⁻³	0 .97 × 10 ⁻³
37	D22	A18		0 2 × 10 ⁻³	0.58 × 10 ⁻³
38	A18	D22		0 .1 × 10 ⁻³	0.58 × 10 ⁻³
39	A16	B12	0.21	0 2 × 10 ⁻³	0 57 × 10 ⁻³
3 10	B12	A16	0.51	0 .1 × 10 ⁻³	0 54 × 10 ^{⋅3}
3 11	B16	C24		0 5×10⁻³	0 .87 × 10 ⁻³
3 12	C24	B16		0.6×10 ⁻³	0.86 × 10 ⁻³
3 13	B22	C24		2 .0 × 10 ⁻³	1 .34 × 10 ⁻³
3 14	C24	B22		2 3 × 10 ⁻³	1 .37 × 10 ⁻³
3 15	D24	C22	0 29	0 8 × 10 ⁻³	1 .00 × 10 ⁻³
3 16	C22	D24		0.8×10 ⁻³	1 .00 × 10 ⁻³
3 17	D22	A24		0 3 × 10 ⁻³	0 .72 × 10 ⁻³

(チャンネルの幅w=0.083(m)と仮定)

スで透水量係数がほぼ等しいことが分かる。この ことから,注水と排水の方向を逆にしても流体の チャンネルの位置は変わらず,亀裂内のある限ら れた部分を選択的に流れているものと考えられる。

図7より, 亀裂内で透水量係数が大きい場所は ケース2 11~2 14,3 1~3 4,3 13,3 14の セル間であり,下部亀裂のB面側に集中している。 その中で最も透水量係数が大きい場所は, 亀裂交 差部に沿った方向のセル間(ケース3 1,3 2)で あった。このことから, 亀裂交差部及びその近傍 が,物質の重要な移行経路になっている可能性が 高いと考えられる。

4.おわりに

亀裂交差部に沿った方向の透水特性の把握を目的として、天然亀裂を持つ50cmスケールの比較的大きな花崗岩の試験岩体を用い、高粘性流体を用いた室内試験を行った。測定結果より、水に換算した透水量係数及び亀裂部の亀裂開口幅を計算し、亀裂交差部に沿った方向とそれ以外の方向について、亀裂内の透水性の違いを検討した。

透水試験の結果, 亀裂内で透水量係数が大きい 場所は,下部亀裂で流れ方向がA面 C面方向のセ ル間(表1:C24 B22間(ケース3 13,314), A19 B21間(ケース3 3,34),A19 C24間(ケー ス2 3,24),A21 C22間(ケース2 11,212)) であり,下部亀裂のB面近傍に位置する。その中 でも亀裂交差部に沿った方向のセル間(表2: C21 B19間(ケース3 1,32))で透水量係数が 最大になることが分かった。そして交差亀裂に 沿った方向の透水量係数が他の亀裂部に比べ,最 この実測結果より、急裂交差部及びその近傍が, 地下水及び物質の重要な移行経路となり得る可能 性が高いと考えられる。

またすべてのケースにおいて,注水と排水の方 向が逆でも透水量係数がほぼ等しいことから,通 水方向を逆にしても,チャンネルの位置は同じで, 亀裂内のある限られた部分を選択的に流れるもの と考えられる。

今後は, 亀裂交差部が高い透水特性を示す原因 を検討するために, 今回試験に用いた試験岩体を 研削しつつ亀裂開口部の詳細な観察を行い, 三次 元的な開口幅分布,形状測定を行う。そして,本 研究で取得した試験データと今後取得予定の亀裂 開口幅データより, 亀裂交差部のチャンネルの表 面積(マトリクス拡散寄与面積)の評価を行い, 亀裂開口部の形状が流体流れに与える影響を数値 解析的に検討する予定である。

参考文献

1)核燃料サイクル開発機構:"わが国における高レベ

ル放射性廃棄物地層処分の技術的信頼性 地層処分 研究開発第2次とりまとめ 総論レポート", JNC TN1400 99 020,V51 ~ V95(1999)

- 2)核燃料サイクル開発機構:高レベル放射性廃棄物の 地層処分技術に関する研究開発 平成13年度報告 ,サイクル機構技術資料,JNC TN1400 2002 003, (2002).
- 3) Timo Vieno, Henrik Nordmen" Safety assessment of spent fuel disposal in Hästholmen, Kivetty, Olkiluoto and Romuvaara TILA-99", POSIVA 99-07 (1999)
- 4) 吉野尚人,内田雅大" 亀裂状媒体水理試験設備(LAB-ROCK)用試験岩体の切り出し・整形", JNC TN8410 2001-015(2001)
- 5)山田直之, 鐵桂一, 澤田淳"実岩体を用いた透水試 験 NETBLOCK 試験報告", JNC TN8430 2001-003(2001)
- 6)山口嘉一, 渋市秀雄, 松本徳久"高粘性流体試験に よる高透水性岩盤の透水性評価",地下水学会誌,第 37巻第1号, p.31~46, ISSN 0913 4182(1995)
- 7) 鐵桂一,澤田淳"高粘性流体を用いた天然亀裂岩体 の透水試験 NETBLOCK試験報告", JNC TN8430 2001 006(2001)
- 8) 鐵桂一,澤田淳"高粘性流体を用いた天然亀裂岩体 の透水試験2 NETBLOCK試験報告", JNC TN8430 2003 004 (2003)

Development of Simulation System (SIERRA-II) for Emergency Dose by Released Radioactive Substances

Masanori TAKEYASU Minoru TAKEISHI Masanao NAKANO Takehiko SHIMIZU*

> Radiation Protection Division, Tokai Works Health and Safety Division, Oarai Engineering Center

東海事業所及び大洗工学センター内にある原子力施設から放射性物質が異常放出した際の環境線量を評価する ための計算手段として,放出放射性物質による緊急時線量シミュレーションシステム(SIERRA-)を開発した。 SIFRRA は、東海事業所及び大洗工学センターで連続測定されている局地気象観測データ等を入力データ として,事業所周辺の3次元風速場を計算する。そして,ランダムウォーク法に基づき,放出された放射性物質 の移流・拡散を数値的に解くことにより、大気中の放射性物質濃度、内部及び外部被ばく線量を計算するシステ ムである。

東海再処理施設からのクリプトン - 85(Kr 85)の管理放出に伴い,事業所敷地内のモニタリングステーション 及びモニタリングポストで観測された空間放射線線量率の変動データを用いて,SIERRA の性能を評価した。 その結果,観測された線量率の経時変動パターンは良好にシミュレートできた。また,計算値と観測値は, ファクター2で30%,ファクター5で51%の一致度であった。

A computer code system named SIERRA (Simulation system()) for emergency dose by released radioactive substances) was developed for calculating environmental dose when radioactive substances were released unexpectedly from the nuclear facilities at the Tokai Works and the Oarai Engineering Center (OEC).

Using the SIERRA II, three dimensional wind fields around the Tokai Works and OEC are calculated with local meteorological observation data, which are being measured continuosly at the Tokai Works and OEC, and other data. Then, the advection and diffusion processes of released radioactive substances are solved numerically, based on a random walk method to estimate air concentration and internal and external exposure doses.

The performance of the SIERRA was evaluated using the monitoring data of ambient radiation dose rate at monitoring stations and monitoring posts around the Tokai Reprocessing Plant under its normal operation.

The observed fluctuation of dose rate was simulated well by the SIERRA . The agreements betweenits calculation and observation within a factor of 2 and 5 were 30% and 51%, respec the tively.

キーワード

緊急時,環境線量,線量予測,大気力学モデル,ランダムウォーク法,SIERRA ,Kr 85,モニタリングポ スト,空間放射線,性能評価

Emergency, Environmental Dose, Dose Prediction, Atmospheric Dynamic Model, Random walk Method, SIERRA Kr 85, Monitoring Post, Ambient Radiation, Performance Examination

副主任研究員

業務に従事

武石 稔 環境監視課長 東海事業所周辺の環境監視 業務の総括

中野 政尚 環境監視課所属 観測チームリーダ 東海事業所周辺の環境監視 業務に従事

清水 武彦 安全対策課所属 環境監視チームリーダ 大洗工学センター周辺の環 境監視業務に従事

71
1.はじめに

原子力施設において,放射性物質または放射線 の異常な放出が発生した,あるいは発生する可能 性がある場合には,原子力事業者は,国及び地方 公共団体等関係機関に異常事態が発生した旨の報 告を迅速かつ正確に行わなければならない。その 際,報告する項目として,主要な地点において予 測される環境線量がある¹⁾。

東海事業所では、東海再処理施設を対象として, 放出された放射性物質による環境線量を計算する システムとして,1979年に環境データ図形表示シ ステム(DIAMOND))を開発した。DIAMONDは, 気象条件及び放射性物質の放出状況がある条件で 継続する場合の大気拡散を計算できるガウスプ ルームモデルに基づいていた。そのため,計算が 簡便な一方,短時間で変動するような気象条件で の計算には適していなかった。現在は,1997年に 開発した緊急時環境影響シミュレーションシステ ム (SMAP)) を運用している。SMAPは,放出さ れた放射性物質を煙の塊(パフ)として取り扱う パフモデルを採用することにより、気象条件及び 放射性物質の放出状態の時間的変化に即した計算 ができる。このシステムは、1999年に発生したJCO 臨界事故時に, JCOから放出された放射性希ガス の大気拡散を計算するために使用し,サイクル機 構のモニタリングステーション及びモニタリング ポストで観測された空間放射線線量率の変動を解 析し,良い一致を見た³⁾。

パフモデルは、3次元のガウス分布を有する球 形のパフを多数放出することにより放射性物質の 大気拡散を近似することから、山岳地形のような 起伏の多い複雑地形にパフが接した時などの拡散 評価が十分とは言えない。そこで、放出された放 射性物質を仮想粒子群で模擬し、粒子群の移流と 拡散を数値的に解く計算コードが開発されてい る。この3次元粒子拡散コードでは、複雑地形上 での放射性物質の拡散をパフモデルより詳細に計 算できる。このような計算コードとしてシステム 化されたものとしては、日本全国の原子力発電所 に対し、近隣地方自治体の地域防災のために整備 されたSPEEDIネットワークシステム⁴³がある。 SPEEDIは、地方自治体が周辺住民の防災対策方 針を判断する目的で開発されたものであるため, 原子力施設から数kmから数十km離れた住民の居 住地域での線量計算に重点が置かれている。 SPEEDIは数十km四方の領域の線量計算を実時間 で行うために、計算の空間的分解能を最小200m四 方と比較的大きくし,計算機への負荷を小さくし ている。

これに対して,事故時に原子力事業者が評価し なければならない予測線量は,線量が最大となる 地点付近での線量である。線量が最大となる地点 は,排気筒の高さにもよるが,放射性物質が放出 された施設から最大数kmの範囲内である。その範 囲内には,モニタリングステーション及びモニタ リングポストが設置され,空間放射線線量率等が 測定されている。モニタリングポスト等の数は限 られているため,線量の最大値を算出するために は,ポストのデータを空間的に補完する必要があ る。放出が開始される前の時点では,測定値は得 られていないため,線量を予測することも必要で ある。

本研究では、放出地点近傍の環境線量を計算す るために ,SIERRA (Simulation system ()for emergency dose by released radioactive substances)*を開発した。SIERRA は, SPEEDIと 同じく 放出放射性物質を粒子群として取り扱い, 粒子群の移流・拡散を数値的に解くシステムであ る。SIERRA IIでは,放射性物質が放出される可 能性のある施設から4km四方の範囲内は 空間的 分解能を50mとして計算できるため,モニタリン グポスト等のデータより正確に線量の最大値を評 価することができる。予測気象データを用いるこ とにより、放出が開始される前の時点での予測線 量の計算も可能である。SIERRA は, すでに, 敦賀地区及び東海・大洗地区において整備が終了 し、稼働しているいい。

本稿では,東海・大洗地区で整備したSIERRA の概要と性能の評価結果について報告する。SI-ERRA の性能評価には,東海再処理施設の通常 運転時の計画的なクリプトン 85(Kr 85)の大気 放出に伴う事業所敷地内外のモニタリングステー ション及びモニタリングポストでの空間放射線線 量率の観測データを用いた。

^{*} 先に1994年にSPEEDIをベースとしたSIERRA(-I)を開発した。SIERRA は,SIERRA(-I)がベースとした計算コードと異なるコードを ベースとしているため機能は異なる。しかし,原子力事業者が放出地点近傍の環境線量を計算するという同じ目的で開発されているため,SI-ERRA と命名した。

2.1 機能とデータの流れ

SIERRA は、東海事業所と大洗工学センター 内の施設で万が一の事故・トラブルが発生した時 に放出される放射性物質による環境線量を実時間 で計算する機能を持つ。この機能を実現するため に、気象データと排気筒モニタデータをオンライ ンで自動取得するとともに、計算実行、結果の図 形出力までの操作を簡単かつ迅速に行えるように GUI (Graphical User Interface)化するなどして 本システムを構築した。基本的な機能を表1に、 データの流れを図1に示す。

対象施設は、東海事業所と大洗工学センター内 の施設で、再処理施設、高速増殖実験炉「常陽」 等の主要施設については、それらの排気筒情報を あらかじめ設定している。主要施設以外からの放 射性物質の大気放出に対しても、任意の放出地点 を放出高さとともにGUI上で指定可能である。た だし、任意地点に放出口を設定した場合の放出率 は、オフライン入力となる。

計算対象領域は,東海事業所と大洗工学セン ターを含んだ40km四方,鉛直方向400mの領域と した。この領域での計算格子間隔は,水平方向 1 25km,鉛直方向20mである。さらに,最大線 量が出現すると予想される事業所近傍の4km四 方については,計算格子間隔の大きい領域の中に 格子間隔を小さくした領域を配置するネステッド 格子モデル⁷⁾を採用し,計算格子間隔を水平方向 50m,鉛直方向20mとした。

計算は,過去の任意の時刻から,現在より最大 48時間先までの期間に対して可能である。最大48 時間先までの予測計算は,気象庁が数値計算によ る全地球の気象予報を行い,1日2回提供してい るGPV (Grid Point Value,風向・風速,気圧,気

図1 データの流れの模式図

温,降水量等の20km間隔の予測値)をもとに, 日本気象協会の大気力学モデル[®]によりSIERRA

の風速場計算用に計算した48時間先までの予測 気象データ(風向・風速,大気安定度,降水量)を 使用することにより実施する。具体的には,ひた ちなか市にある原子力緊急時支援研修センターに おいて大気力学モデルにより計算されたSIERRA

用の予測気象データを使用する。

入力データは,東海事業所と大洗工学センター の10分ごとの局地気象観測データ(風向・風速, 大気安定度及び降水量)と排気筒モニタデータ, 並びに前述の大気力学モデルにより計算された1 時間ごとの局地気象予測データ(風向・風速,大 気安定度及び降水量)である。東海事業所の風向・ 風速の観測データとしては,事業所敷地内外の2 地点の地上のデータ,気象観測塔とドップラー ソーダ(気流中の微小な温度変動によって後方散 乱される音波のドップラー周波数偏移を利用して 風速を計測する音波レーダーの一種)により観測 した2地点の地上30m,70m高のデータがある。

項目	機機能
計算対象領域と 空間的計算分解能	東海事業所と大洗工学センターを含む水平方向40km×40km及び鉛直方向400mの領域。空間的分解能は水平方向1 25km×1 25km及び鉛直方向20m。東海事業所と大洗工学センターを中心とした水平方向4km×4kmの領域は,水平方向50m×50mの空間的分解能。
計算対象期間と 時間的計算分解能	過去の任意時刻より,現在から最大48時間先までの期間。過去の期間については10分ごと,予測の期間については1時間ごと。
入力データ	東海事業所と大洗工学センターでの局地気象観測データと排気筒モニタデータ(10分ごと)及び大気力学モデル により計算された局地気象予測データ(1時間ごと)。
出力データ	風速場のベクトル図,大気中濃度と線量率の等値線図,任意期間の最大線量。
操作環境	Windows PC 上で動作。計算条件設定,計算実行,出力条件設定をGUI (Graphical User Interface)上で設定可能。固定パラメータはあらかじめ設定し操作簡易化。

表1 SIERRA IIの機能

研究報告

74

大洗工学センターの風向・風速のデータとしては, 気象観測塔により観測した地上10m,40m,80m 高の3つのデータを用いている。予測気象データ (風向・風速)としては,東海事業所と大洗工学セ ンターを含んだ40km四方の領域の中の20km間 隔の計9地点の地上100m,200m,300m,400m のデータ,さらに,2つの事業所の近傍では,事業 所を中心とした12km四方の領域において,4km 間隔の計16地点の地上100m,200m,300m,400m のデータがある。

出力データは、10分ごとの風速場のベクトル図 と等値線図,及び任意に設定した期間において積 算した最大線量である。等値線図の対象は、空気 吸収線量率,地表沈着放射性物質による外部被ば くに係る線量率,地表面における大気中核種濃度 及び吸入摂取による内部被ばくに係る実効線量率 である。

システムは, Windows OS 搭載のパーソナルコ ンピュータ上で動作する。システムの操作は,計 算条件設定,計算実行及び出力設定をGUIによる 対話形式で迅速かつ簡便に実施することができ る。計算に必要な地形情報,放射性核種情報等は あらかじめデータベースとして格納されており, GUIによる操作を簡便にしている。

22 モデル

(1) SIERRA の計算の特徴

SIERRA では,計算コードとしてEXPRESS³⁾ を採用し,種々の改良を加えた。EXPRESSは,移 流・拡散方程式の数値解モデルを解くコードであ る。EXPRESSは,計算機への負荷を下げ,ワーク ステーション等の小型計算機で迅速に計算できる ように開発されている。SIERRA は,さらに放 出地点近傍の計算精度の向上等,種々の改良を 行った。SIERRA の主な改良点は以下の通りで ある。

EXPRESSでは、Pasquill Giffordの線図⁽¹⁾から粒子の水平方向及び鉛直方向の拡散係数を導出している。Pasquill Giffordの線図から導出される拡散係数は、風下距離が大きくなるに従い大きくなり、風下距離数kmでほぼ一定値になる。また、EXPRESSでは、数kmから数十kmの住民の居住地域が計算対象領域であることから、鉛直方向の拡散係数としてPasquill Giffordの線図から導出される風下距離数kmでの一定

値を拡散係数として風下距離に係わらず用いて いる。SIERRA は風下距離が数百mから数km 程度までを計算対象領域としていることから, EXPRESSで用いられた鉛直拡散係数の値は過 大である。そのため,SIERRA では,拡散係 数をPasquill Giffordの線図から,風下距離の関 数として誘導される値を用いた。

- 2)計算領域の中で,特に放出源近傍の領域に対 して計算格子分解能を上げるネステッド格子を 採用した。これは,計算格子分解能が125km である東海事業所と大洗工学センターを含んだ 40km四方の領域の中で,事業所近傍の4km四 方に対してのみ計算格子分解能を50mとした格 子配置である。この格子配置により,事業所近 傍の計算の空間的分解能を上げつつ,計算時間 と計算機への負荷を抑制した。
- 3)拡散計算において、粒子状物質の重力沈降の 効果を考慮できるようにした。その際重力沈降 の計算パラメータとなる粒子の粒径分布と粒径 成長速度を 核種ごとに設定できるようにした。
- 4)湿性沈着の計算において,降水強度の空間的 な分布を考慮できるようにした。EXPRESSで は,観測データを単純平均した降水強度の値を 計算領域全体に対して用いていた。SIERRA では,降水強度の観測データから,観測位置か ら地表面計算格子点までの水平距離の2乗の逆 数の重み付き平均により各格子点での局所降水 強度を算出し,計算に使用した。
- (2)計算の流れ

SIERRA での計算は,図1に示すように,風 速場計算,大気拡散計算,濃度・線量計算の順で 行う。以下に,計算方法を示す。

1) 風速場計算

風速場の計算は,まず下記のの方法により風 向・風速のデータを3次元格子点へ内外挿し,次 にの方法により,質量保存則を満足するように 風速場に最小の修正を加える。なお,先に領域全 体の風速場計算を行い,その結果を事業所近傍の 計算格子分解能の大きい領域の初期値として使用 する。

3次元格子点への重み付き内外挿

観測された,あるいは大気力学モデルによって 予測された風向・風速データを,以下の式により, 3次元格子点との水平距離と鉛直距離,及び3次 元格子点との間に存在する地形障壁の高度により

研究報告

重み付けをし,基準として設定した高度における 格子点上の風速ベクトルへ内外挿する。

$$(u,v)_{i,j} = \sum_{k=1}^{N} (u,v)_k W_k / \sum_{k=1}^{N} W_k$$
(1)

 $w_k = w(r)w(h)w(h_b)$ (2)

ここで(*u*,*v*),は基準高度における格子点(*i*, *j*)上の風速(ms¹), *N*は観測地点の個数,(*u*, *v*)は地点*k*で観測または予測された風速(ms¹), *W*(*r*)は観測地点*k*と格子点(*i*,*j*)との水平距離 を関数とした観測地点*k*の荷重係数,*W*(*h*)は観 測地点*k*と格子点(*i*,*j*)との鉛直距離を関数とし た観測地点*k*の荷重係数,*W*(*h*_b)は観測地点*k*と 格子点との間の地形障壁の高度を関数とした観測 地点*k*の荷重係数である。

3次元質量保存風速場計算

(1) 式により得られた風速場に最小の修正を加 えることにより,質量保存風速場を求める。この 計算は,以下の式で表される風速場の修正量Eを 最小にする風速ベクトル(*u*,*v*,*w*)を求めるこ とである。

$$E = \int_{v} \left[\alpha_{1}^{2} (u - u_{0})^{2} + \alpha_{1}^{2} (v - v_{0})^{2} + \alpha_{2}^{2} (w - w_{0})^{2} + \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right] dv$$
(3)

ここで,(*u*₀,*v*₀,*w*₀)は に求められた風速ベク トル, ,は水平方向の風速成分の修正量の相対的 大きさを決める係数, ₂は鉛直方向の風速成分の 修正量の相対的大きさを決める係数, はラグラ ンジュの未定乗数である。

2)大気拡散計算

大気拡散の計算は,拡散方程式の数値計算をラ ンダムウォーク法で行う。なお,風速場計算とは 逆に,先に事業所近傍の計算格子分解能の大きい 領域に対して拡散計算を行い,その結果を領域全 体の拡散計算の初期値として使用する。

煙を粒子の集まりで表現した時,粒子群の移動 は,3次元風速場による移流項と大気乱流に依存 する拡散項の和で表される。ある時刻tにおいて, (x_t, y_t, z_t) の位置に存在した粒子の t後の位置 $(x_{t+1}, y_{t+1}, z_{t+1})$ は,以下のように表される。

 $x_{t+\Delta t} = x_t + u\Delta t + (24K\Delta t)^{1/2} [-0.5, 0.5]$ (4)

$$y_{t+\Delta t} = y_t + v\Delta t + (24K\Delta t)^{1/2} [-0.5, 0.5]$$
 (5)

$$z_{t+\Delta t} = z_t + (w - V_S)\Delta t$$

$$\pm \left[2K_{zo} + (K'_{zo}\Delta t)^2\right]^{0.5} + K'_{zo}\Delta t$$
(6)

ここで、(u, v, w)は粒子位置での風速ベクトル (ms¹)で、風速場計算により求められる3次元格 子点上の風速から粒子位置までの距離の逆二乗で 重み付けした8点内挿により求める。Kは拡散係 数(m²s¹)で、Pasquill Giffordの線図から水平方 向及び鉛直方向の粒子の拡散係数を導出する。さ らに、[-05, 05]は-05~05の一様乱数、 V_s は重力沈降速度(ms¹)、 K_{zo} は鉛直位置zoにお ける鉛直拡散係数、 K_{zo} は鉛直位置zoにおける鉛直 拡散係数の導関数における傾きである。なお、核 種の放射性崩壊に伴う減衰は考慮していない。

V。は, Stokesの法則に従う球形粒子の重力沈降 に関する終末沈降速度とし次式により計算する。

$$V_{s} = \frac{2 \times 10^{-12} r_{p}^{2} (\rho_{p} - \rho_{a}) g}{9 \mu_{a} \rho_{a}}$$
(7)

ここで, *r_p*は粒子の半径(μm), 。は粒子の密 度(kg m³), 。は空気の密度(kg m³), *g*は重力 加速度(9 8m s²), μ。は空気の動粘性係数(1 5 ×10⁵m³s¹)である。

粒径分布と粒径成長速度は,核種ごとに設定で きるようにした。

3)濃度の計算

粒子がもつ質量(放射能に相当)が粒子位置を 中心としてガウス分布で拡がると仮定したKDE (Kernel Density Estimator)法により,計算格子 点の放射性物質濃度を計算する。評価点(x,y, z)における濃度 (Bq m³)は以下の式で計算さ れる。

$$\chi(x,y,z) = \sum_{i=1}^{N} Q_i \cdot (\chi/Q)_i(x,y,z)$$
(8)

$$\left(\chi/Q\right)_{i}(x,y,z) = \frac{1}{(2\pi)^{3/2}\sigma_{x}\sigma_{y}\sigma_{z}} \exp\left\{\frac{(x-X)^{2}}{2\sigma_{x}^{2}}\right\} \exp\left\{\frac{(y-Y)^{2}}{2\sigma_{y}^{2}}\right\}$$
$$\cdot \left[\exp\left\{-\frac{(z-Z)^{2}}{2\sigma_{z}^{2}}\right\} + \exp\left\{-\frac{(z+Z-2z_{g})^{2}}{2\sigma_{z}^{2}}\right\}\right]$$
(9)

ここで,Nは粒子の総数, Q_i は粒子iが持つ放射 性物質量(Bq),(/Q)(x, y, z)は位置(X, Y, Z)の粒子iが評価点(x, y, z)に与える濃度 (m³), x, y, zはPasquill Giffordの線図で る。なお,(/Q)(x,y,z)は,粒子と評価点 の距離及び x, y, zをパラメータとしてテー ブル化し計算に使用する。

3.1 4.) 沈着量の計算

乾性沈着の場合,位置(X,Y,Z)の粒子iが 地表の評価点(x,y,0)へ tの間に沈着する量 *G*(x,y) Bq m²) は次式で計算する。

$$G_d(x,y) = Q_i \cdot (\chi/Q)_i(x,y,0)V_g \Delta t$$
(10)

ここで, V_gは乾性沈着速度(m s¹)である。

湿性沈着の場合,位置(X,Y,Z)の粒子iが 地表の評価点(x,y,0)へ tの間に沈着する量 G(x,y) Bq m²)は次式で計算する。

$$G_w(x,y) = \left[Q_t \{1 - \exp(-\Lambda \cdot \Delta t)\}\right] \frac{1}{2\pi\sigma_x \sigma_y}$$

$$\cdot \exp\{-\frac{(x-X)^2}{2\sigma_x^2}\} \exp\{-\frac{(y-Y)^2}{2\sigma_y^2}\}$$
 (11)

ここで, は降雨洗浄率(s')である。

は,評価点(x,y)の局所降水強度 P(mm h⁻¹) を用いて,次式で計算する。

$$\Lambda = \lambda \cdot P^{f(n)} \tag{12}$$

ここで, は洗浄率係数(s⁻¹), <u>(</u>n)は洗浄率べ キ指数である。

5) 空気吸収線量率の計算

空気吸収線量率*D*(*x*,*y*,0)は次式で与えられる。

$$D_{r}(x, y, 0) = K_{1}E_{eff} \int_{-\infty-\infty}^{+\infty+\infty+\infty} \int_{0}^{+\infty+\infty} \frac{\mu_{en}(r)\exp(-\mu r)B(E_{av}, r)}{4\pi r^{2}}$$

 $\cdot \chi(x', y', z')dx'dy'dz'$ (13)

ここで,*K*,は空気吸収線量率への換算係数(dis m³ nGy MeV¹ Bq¹ h¹), *E*_{eff}はガンマ線実効エネルギ (MeV), μ_{eff}(*r*)は空気に対するガンマ線の真吸 収係数(m¹), *r*は放射性雲中の点(*x*', *y*', *z*')か ら評価点(*x*, *y*, *0*)間までの距離(m), μは空 気に対するガンマ線の全吸収係数(m¹), *K E*_{ev}, *r*)は空気に対するガンマ線のビルドアップ係数, *E*_{ev}はガンマ線平均エネルギ(MeV)である。

空気吸収線量率の計算は,各粒子を(8)式の濃 度分布を持ったパフ雲と考えて,各パフからの吸 収線量率の寄与を積算することで評価点での空気 吸収線量率を計算する。なお、(13)式は、(8)式 の計算と同様に、種々のパラメータについてテー プル化することにより計算する。

3.性能評価

3.1 東海再処理施設からのKr 85管理放出に伴 う線量率の変動

東海事業所では,再処理施設の排気筒(地上高約90m)から数百m離れた周囲敷地内10地点にモニタリングステーション及びモニタリングポストを設置している。これらのモニタリングステーション及びポストにおいて,2 "×2" エネルギー補償型Nal(TI)シンチレーション検出器により空間放射線線量率を連続測定している。空間放射線線量率の自然放射線による通常のレベルは,場所及び時間により変動し,30~40 nGy h⁻¹である。

東海再処理施設では、運転に伴い、Kr 85を排 気筒から大気中へ放出している。なお、Kr 85は、 希ガスに属する不活性の気体であり、半減期は 10.7年、0.514 MeVのガンマ線を0.43%放出する。 不活性の気体であることから、地表に沈着するこ となく大気中を拡散していく。Kr 85の放出の際、 施設周辺に配置されたモニタリングステーション 及びモニタリングポストで数nGy h⁻¹ ~ 10数nGy h⁻¹ の空間放射線線量率の一時的な上昇が観測され る。図2に、線量率の上昇例をKr 85の放出率及 び風向とともに示す。図2のように、主に、風下 方位のモニタリングステーション・ポストで線量 率のわずかな上昇が観測される。本研究では、2003 年9月から2003年12月までの再処理施設の運転中

研究報告

に観測された線量率の変動データを用いて, SI-ERRA **の性能評価を行った。**

32 計算と観測との比較

図3に,SIERRA により計算された線量率と 観測された線量率との比較例を示す。ここで,観 測値は,Kr 85の放出に伴う線量率の上昇成分は 観測地点の平常の値(BG値)を差し引くことに より求めている。図3では,2003年11月5日の10 時から11時にかけて比較的顕著な線量率上昇が観 測されており SIERRA の計算値は、変動パター ンも良く一致しているとともに,ピーク線量率を ファクター2程度で良好にシミュレートできてい る。

図4には,計算された線量率と観測された線量 率の散布図を示す。図4では,線量率の上昇が有 意に観測されたときのSIERRA での計算値,及

図3空間放射線線量率の計算値と観測値の比較

図4 空間放射線線量率の計算値と観測値の散布図

びSIERRA での計算値が有意になったときの線 量率の観測値を示す。なお、SIERRA での有意 な計算値とは、ここでは、0.1nGy h⁻¹以上とした。 観測値に対する計算値の比は、Rで示してある。 各座標軸上の点は、0.1nGy h⁻¹以下の観測値ある いは計算値である。ファクター2での一致度は 30%、ファクター5での一致度は51%であった。

4.まとめ

東海事業所及び大洗工学センター内原子力施設 を対象として,放出地点近傍における環境中の線 量を評価するために,SIERRA を開発した。

東海再処理施設の平常運転時に,事業所敷地内 で観測された空間放射線線量率の変動データを用 いて、SIERRA の性能評価を行った。その結果, 線量率の変動パターンは良好にシミュレートで き,また,有意線量率の値は,ファクター5で一 致度は50%程度と良好であった。

5.謝辞

原稿をまとめるにあたり,名古屋大学の飯田孝 夫先生から有益な助言を頂きました。また,SI-ERRA の開発にあたり,日立エンジニアリング (株)の山本朝男氏と箭竹陽一氏にお世話になりま した。また,予測気象データの取り込みにあたり, 原子力緊急時支援・研修センター調査研究グルー プの平井功氏にお世話になりました。ここに感謝 申し上げます。

参考文献

- 1)原子力安全委員会: "原子力施設等の防災対策について",2000年5月29日一部改訂(1980).
- 2) 岩井誠, 岡村泰治, 他: "環境データ図形表示シス テムDIAMOND説明書(Rev.1)", PNC 18430 86 10 (1986).
- 3) 竹安正則,清水武彦,他:"JCO臨界事故時の放出放 射性物質の評価(時間変化)",日本原子力学会2000 年春の年会要旨集第1分冊,p16(2000).
- 4) 茅野政道,石川裕彦,他:"SPEEDI:緊急時環境線 量情報予測システム", JAERI M 84 050(1984).
- 5) 宮内和也,山本朝男,他:"緊急時環境モニタリン グ等に係る拡散予測システムの構築", JNC TJ4410 2000 1(2000).
- 6) M.Takeyasu, and M.Takeishi : "Real time Simulation of Environmental Dose in the Normal Operation of Tokai Reprocessing Plant by Dose Evaluation Computer Code (SIERRA)", AOCRP 1, OP6C 3, Seoul, Korea, Oct(2002)
- 7) T. Yamada, and S. Bunker : " Development of nested

grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation ", J. Applied Meteorology, No.27, pp562 578(1988)

8) M. Nakanishi : " Large eddy simulation of radiation fog ", Boundary Layer Meteorology, No.94, pp461 493**(** 2000 **)**

- 9) M. Chino : " Manual of a Suite of Computer Codes, EXPRESS ", JAERI M 92 082 (1992)
- 10)F. Pasquill : " Atmospheric Diffusion ", Ellis Horwood (1977).

79

1. 全体概要

2004年2月25日, 敦賀本部国際技術センターエ ムシースクエアにおいて,米国,フランス,ロシ ア,中国,韓国,そして日本の専門家が集い,高 速増殖炉開発と「もんじゅ」技術について討論す る敦賀国際パネルを開催した。会場には,高速炉 の専門家,国や自治体の関係者,敦賀市民等,約 100人が出席し,活発な討論が行われた。

本会議は、大洗工学センターで「大洗FBRサイ クルシンポジウム2004」が開催されるのと並行し て、「もんじゅ」がある福井県敦賀市においてパ ネル討論を中心とした会議を開き、FBR開発の各 国の現状と今後の国際協力及び「もんじゅ」の国 際的な共同利用について議論することを趣旨とし たものである。会議では、世界のFBR開発の動向 や「もんじゅ」への期待を一般の方にも知ってい ただくように、市議会議員の先生方を含む一般の 方々にも出席いただいたほか、報道関係者にも出 席いただき、会議後にはパネリストを務めていた だいた海外及び日本の専門家に対する記者会見を 行った。

開会にあたり 敦賀本部の岸本洋一郎本部長が, 国際協力の下に運転再開後の「もんじゅ」の積極 的な利用を考えていきたいと挨拶した。

続いて,来賓として出席いただいた福井大学教授の福井卓雄先生より福井大学における原子力・ エネルギー分野の教育,人材育成のための取り組みの紹介を交えた来賓の挨拶をいただいた。

続く基調講演では、大阪大学名誉教授宮崎慶次 先生より、「FBR開発の展望と国際協力への期待」 と題し、FBR開発の必要性と「もんじゅ」の国際 的な利用、未来のための人材育成の重要性につい てご講演をいただいた。

その後,出席した各国専門家によるパネル討論 を行い,各国のFBR開発の現状や将来計画,「も んじゅ」への期待について議論した。座長は,原 子力学会関西支部長/大阪大学教授の竹田敏一先 生に務めていただいた。各国とも,開発段階の違 いはあるものの,将来のエネルギー確保のために はFBRシステムが必要との認識であること,もん じゅ」に対しては,マイナーアクチニド(MA)燃 焼の実用規模での燃焼実証,運転データによる設 計コードの検証,技術情報交換などの期待が述べ られた。

最後に,柳澤務本部長代理より閉会の挨拶とし て,活発な討論に対する御礼と,討論で出された 「もんじゅ」への熱い期待に応えられるよう,一 日も早い「もんじゅ」の運転再開を目指して引き 続き全力をあげる決意を述べ,盛会のうちに終了 した。表1に敦賀国際パネルのプログラムを示す。

2.来賓挨拶

福井大学教授の福井卓雄先生より「福井大学で は,2004年4月から、『原子力・エネルギー安全 工学専攻』という名称の講座を立ち上げることに なった。サイクル機構にも、連携講座という形で協 力をいただいている。この専攻が目指すものは, 原子力の安全と地域との共生。その成果をアジア 方面の留学生にも伝えていき,日本で開発した技 術の伝承と,地域の平和な発展を目指したい。本 会議における各国からの意見やここでの議論を今 後の取り組みの参考にしたい。」とご挨拶をいただ いた。

3.基調講演

「FBR 開発の展望と国際協力への期待」と題し, 大阪大学名誉教授の宮崎慶次先生に基調講演をいただいた。宮崎先生からは,「世界のエネルギー 需給の状況から,将来,FBRの実用化が不可欠。 資源の多くを輸入に頼る我が国は,高速増殖炉開

H	時	2004年	2月25日(水) 9	9:00~11	: 40				
場	所	敦賀本	部 国際技術セン	ンター エ	ムシー	-スクエア			
9	: 00 ~ 9	9:05	開会挨拶	サイクル	機構	敦賀本部長		岸本氵	羊一郎
9	: 05 ~ 9	9:10	来賓挨拶	福井大学	教授			福井	卓雄
9	: 10~ 9	9:35	基調講演	大阪大学	名誉教	 牧授		宮﨑	慶次
			「高速増殖炉	開発の展望	と国	際協力への期待」			
9	: 35 ~ 1	1:30	パネル討論「各	各国の高速	増殖火	P開発状況から見た	「もんじゅ」の役割」		
			座長	原子力学	会関西	雪支部長 / 大阪大学教	教授	竹田	敏一
			パネリスト	米国アイ	ダホ国	国立工学環境研究所	革新原子力部長	Ralph G.BEN	NETT
				仏国原子	カ庁ナ	Jダラッシュ研究所	原子炉研究部長	Jean L.CARBON	INIER
				ロシア物	理エオ	トルギー研究所 炉物	勿理部長	Igor MATVE	ENKO
				中国原子	能科学	学研究院 主任技師			Mi XU
				韓国原子	力研究	沉所 主任研究員		Yoon Su	b SIM
				サイクル	機構	敦賀本部国際技術1	センター長	山口	勝久
11	: 30 ~ 1	1:40	閉会挨拶	サイクル	機構	敦賀本部長代理		柳澤	務

表1 敦賀国際パネルプログラム

発を通して世界に貢献していくべきだ。しかし, 日本では「もんじゅ」が事故後停止中であり,計 画が遅れていることは誠に残念。ナトリウム冷却 高速炉は既に実績ある技術で,今後重要なのは安 全性を確保しつついかに経済性を上げていくか。 燃料の高燃焼度化による炉心の高度化や超ウラン 元素の燃焼等の研究に期待。そのためにも,一日 も早く「もんじゅ」の運転を再開し,国際協力の 下で有効に活用していくことを望む。」とのご講演 をいただいた(写真1参照)。

4.パネル討論

原子力学会関西支部長 / 大阪大学教授の竹田敏 一先生を座長とし,6ヶ国からのパネリストによ る討論が行われた。まず最初に,各国の高速増殖 炉開発状況が各パネリストより紹介された(写真 2参照)。 米国アイダホ国立工学環境研究所の Ralph G. BENNETT 革新原子力部長からは,革新的核燃料 サイクル・イニシアチブ(AFCI)と第4世代原子 カシステム研究開発(Generation IV)の取り組み について紹介された。

仏国原子力庁(CEA)カダラッシュ研究所の Jean L. CARBONNIER原子炉研究部長からは,第 4世代ガス冷却高速炉の研究開発の取組みとフェ ニックスにて行っているマイナーアクチニド (MA)の燃焼に関する研究開発について報告された。

ロシア物理エネルギー研究所のIgor MAT-VEENKO炉物理部長からは,FBR原型炉BN600の 順調な稼動と実証炉BN 800の建設状況,更に経済 性を向上させるために大型化したBN 1800等の設 計研究について報告された。

中国原子能科学研究院のMiXU主任技師からは,中国のエネルギー政策上のFBRの位置付けと

写真1 大阪大学名誉教授宮崎慶次先生による基調 講演

写真2 パネル討論の様子

2006年に臨界を目指して建設中の中国初の高速炉 発電プラントCEFR及びそれに続く計画について 報告された。

韓国原子力研究所のYoon Sub SIM 主任研究員 からは,韓国型高速炉KALIMERの設計研究の状 況について報告された。

日本からは,サイクル機構敦賀本部国際技術セ ンターの山口勝久センター長が,「もんじゅ」運 転再開後の、最高15万 MWd/tを目指した高燃焼度 燃料による炉心高度化やマイナーアクチニド入り 燃料集合体の燃焼試験等の「もんじゅ」を利用し た研究開発計画について報告した。

続いて各国からの「もんじゅ」への期待につい て討論され、フランス、米国、ロシアからはマイ ナーアクチニドの実用規模での経済性も含めた実 証試験を期待する意見が出された。また、中国か らは世界最新技術の「もんじゅ」のプラント管理 技術、運転経験等に関する技術情報交換を望む意 見が出され、韓国からは、運転データによる設計 コードの検証等の要望が出された。これらの各国 から出された「もんじゅ」への期待に対しては、 日本の山口センター長が、今後、国際協力を進め る上で協議し、実現へ向けて検討していきたいと 述べた。 5.おわりに

半日という短い時間の会議だったが,会場も含 めた活発な意見が出される等,非常に内容の濃い 有意義な会議だった。出席していた敦賀市民の方 からは,パネル討論の中で,「マイナーアクチニ ドの燃焼をぜひ「もんじゅ」で実証し,世界のた めに役立つ成果をあげるようがんばって欲しい」 との激励の言葉を頂く一幕もあった。翌日の福井 新聞を始め数社の新聞に,敦賀に6カ国の専門家 が集まり,高速増殖炉開発と国際協力,そして 「もんじゅ」への期待について討論する「敦賀国 際パネル」が開催されたとの記事が掲載された。

今回,各国の専門家より「もんじゅ」に対する 大きな期待と激励が寄せられたことを糧とし,も んじゅ」の運転再開を目指して引き続き全力を上 げて努力していくとともに,運転再開後の国際協 力や地元大学との連携協力についても,積極的に 取り組んでいきたいと考えている。

謝辞

敦賀国際パネルにご参加いただいた皆様,開催 にご協力頂いた関係者の皆様に感謝,御礼申し上 げます。

2003年度 地層処分技術に関する研究開発報告会 - 処分技術の信頼性向上のための基盤整備に向けて -- 2004年2月26日開催 -

前川 恵輔 経営企画本部バックエンド推進部

1.はじめに

原子力利用を進めていく上で避けて通ることの できない課題である高レベル放射性廃棄物の処分 に関しては,我が国では,サイクル機構が中心と なって進めてきた研究開発の成果を集大成した報 告書「第2次取りまとめ」シを技術的な拠り所とし て「特定放射性廃棄物の最終処分に関する法律」 が2000年に制定され,処分事業の実施主体である 「原子力発電環境整備機構」(以下,原環機構)が 設立された。また,原子力安全委員会により「高 レベル放射性廃棄物の処分に係る安全規制の基本 的考え方について (第1次報告)」³⁾ が公表される 等,我が国の地層処分計画は,研究開発の段階か ら事業化の段階へと進展してきているところであ る。2002年9月には原子力安全委員会から「高レ ベル放射性廃棄物の最終処分の概要調査地区選定 段階において考慮すべき環境要件について
が
が
示 され,同年12月には処分実施主体である原環機構 により,高レベル放射性廃棄物の最終処分施設の 設置可能性を調査する区域の公募が開始されてい るところであるう。

地層処分事業は,最終処分施設建設地を選定す るための調査から,処分場の建設・操業・閉鎖に 至るまで,長期間にわたることから,事業の推進 に当たっては幅広い社会の理解を得ていくことが 前提となる。最終処分の実施に向けて,今後の研 究開発には,処分事業と安全規制の段階的な進展 に合わせて,地層処分技術の信頼性を高め,処分 事業や安全規制の技術基盤をより堅固なものとし ていくことが求められる。

地層処分技術に関する研究開発を進めていく上 で重要な役割を担っている深地層の研究施設計画 については,東濃地科学センターにおいて進めて いる結晶質岩を対象とした超深地層研究所計画 (岐阜県瑞浪市)において,2003年7月に研究所の 立坑掘削を開始するとともに,幌延深地層研究センターにおいて進めている幌延深地層研究計画 (北海道幌延町)において,研究所を設置する用地 の造成工事に着手する等,両計画の推進において 大きな進展をみることができた。

今回の報告会は,以上のような背景を踏まえ, 2003年度の主要な研究開発の進捗状況を中心に報 告することを目的として開催した。

写真1に会場風景 写真2にロビー風景を示す。 本稿では,同報告会の開催概要及び参加者から

3真1 会場風景(パネル討論)

写真2 ロビー風景

会議報告

寄せられたおもな意見・質問,アンケートの結果 をまとめた。

2.開催結果の概要

報告会は,2004年2月26日(木)13:00~17:30, 津田ホール(東京都渋谷区)にて開催した。参加 者は358名(報道5社(6名)含む)であった(参 加者に関するデータは3項参照)。

開催の周知は,サイクル機構週報,日本原子力 学会及びサイクル機構ホームページ,関係機関等へ のダイレクトメール送付(1,349件)により行った。

以下, プログラム(表1)に沿って, 各報告の 概要をまとめる^{。)}。

(1)開会挨拶(サイクル機構理事長・殿塚猷一) (2)サイクル機構報告

(座長: 杤山 修・東北大学教授) 地層処分技術に関する研究開発の全体概要

(福島 操・バックエンド推進部長) まず,サイクル機構は,今後も引き続き研究開 発の中核的な役割を担い,第2次取りまとめまで に蓄積した知見や経験をもとに,2つの深地層の 研究施設や地層処分基盤研究施設(エントリー), 地層処分放射化学研究施設(クオリティ)等を活 用した基盤的な研究開発を推進していくことを示 した。研究開発目標としては,実際の地質環境へ の地層処分技術の適用性の確認及び地層処分シス テムの長期挙動に対する理解を深めることを挙 げ,各研究開発分野(深地層の科学的研究,処分 技術の信頼性向上,安全評価手法の高度化)の概 要及び現状を報告した。

各々の研究開発分野間で相互に連携を図りなが ら効率的に研究開発を進め、2つの深地層の研究 施設計画における地上からの調査研究の終了時期 及び平成10年代後半を目途とされている最終処分 施設の概要調査地区選定や、安全審査基本指針策 定のための基盤技術の提示を念頭に置き、2005年 度頃を目標に地上からの調査研究及び処分技術、 安全評価に関する成果を取りまとめていくことを 示した。また、研究成果の公表、深地層の研究施 設等の施設の公開、研究協力や研究者の育成を進 め、地層処分に対する社会の理解増進に寄与して いくこと及び、これらの役割は2005年度に設立さ れる新法人に引き継がれるものであること等につ いて報告を行った。

会場参加者から,サイクル機構以外の研究機関 からの参加の可能性について質問が寄せられた。 個別技術報告

1)東濃地科学センターにおける深地層の科学的 研究の現状 超深地層研究所計画を中心とし て(武田精悦・東濃地科学センター副所長)

表1 2003年度 地層処分技術に関する研究開発報告会・プログラム

開催日時:2004年2月26日(木)13:00~17:30 開催場所:津田ホール

【進行:石黒勝彦(サイクル機構バックエンド推進部次長)】

13:00-13:10	1.開会挨拶	殿塚猷一(サイクル機構理事長)
	2 . サイクル機構報告 1) 地層処分技術に関する研究開発の全体概要	【座長: 杤山 修 (東北大学)】 福島 操 (サイクル機構バックエンド推進部長)
13 : 10 - 15 : 10	 2) 個別技術報告 ①東濃地科学センターにおける深地層の科学的研究の現状 超深地層研究所計画を中心として ②幌延深地層研究計画の現状 	武田 精悦 (サイクル機構東濃地科学センター副所長) 山崎 眞一
	③処分技術の信頼性向上と安全評価手法の高度化に 向けた取組みの現状	(サイクル機構幌延深地層研究センター副所長) 石川 博久 (サイクル機構東海事業所処分研究部長)
15 : 10 - 15 : 30	~休憩~	
15 : 30 - 16 : 50	3 . パネル討論 「事業化段階における研究開発の役割と課題」	【座長:大江 俊昭(東海大学)】 パネリスト 北山 一美(原子力発電環境整備機構) 土田 昭司(関西大学) 杤山 修(東北大学) 中山 真一(日本原子力研究所) 西垣 誠(岡山大学) 藤川 陽子(京都大学)
16 : 50 - 17 : 00	4.閉会挨拶	河田東海夫(サイクル機構理事)

注)上記時間配分は,当日配布したプログラム⁶⁾に記載したもの。

超深地層研究所計画では,2003年7月に造成工 事に着手した研究所用地において,地上物理探査 や深度200m程度までのボーリング調査を実施し, それらの調査結果を踏まえ、深度1,300m程度の深 層ボーリング調査を行なっていること,2003年7 月より研究坑道の掘削を開始したこと等の進捗状 況について報告を行った。

会場参加者から,ボーリング調査の内容や地下 水流動の概念図の示し方,実際の処分計画への成 果の反映方法等について質問が寄せられた。

2) 幌延深地層研究計画の現状

(山崎眞一・幌延深地層研究センター副所長) 北海道幌延町において幌延深地層研究センター が進めている幌延深地層研究計画について,計画 の概要及び調査研究の進捗状況について報告を 行った。

幌延深地層研究計画では、深地層の科学的研究 (地質環境調査技術開発,地質環境モニタリング技 術開発,地質環境の長期安定性に関する研究,深 地層における工学的技術の基礎の開発)及び地層 処分研究開発(処分技術の信頼性向上,安全評価 手法の高度化)を実施しており、2003年7月に研 究所を設置する用地の造成工事に着手したこと、 研究所設置地区とその周辺地区において物理探 査,地質調査,表層水理調査,ボーリング調査を 実施中であること、地下施設の建設については、 2005年度に立坑の掘削を開始し2010年度に完成予 定であること等の進捗状況について報告を行った。

会場参加者から,幌延での岩盤の力学的な強度 や調査の意義等について質問が寄せられた。

3) 処分技術の信頼性向上と安全評価手法の高度 化に向けた取組みの現状

(石川博久・東海事業所処分研究部長) 東海事業所において進めている処分技術の信頼 性向上及び安全評価手法の高度化に向けた研究開 発について,進捗状況の報告を行った。

人工バリア材料の腐食等の特性に関するデータ ベースの整備や,人工バリア材料の長期的な健全 性を評価するための周辺岩盤の亀裂への緩衝材の 侵入現象に関する研究等のほか,安全評価に関す るモデルの高度化や手法の整備に関する研究とし て,核種移行データベースの整備や,技術情報の 共有化をはかるための統合システムの開発等につ いて,エントリー,クオリティ及び国際共同研究 を通じて行っていることを示した。

会場参加者から,幌延において計画している ヒーターを用いた人工バリア試験の内容のほか, 再処理工場から発生するTRU 廃棄物の処分研究 や,使用済燃料をそのまま処分する直接処分の研 究について質問が寄せられた。

(3)パネル討論

「事業化段階における研究開発の役割と課題」

(座長:大江俊昭・東海大学教授) 各パネリストから,地層処分事業やその研究開 発の果たすべき役割等について意見紹介いただい た後,パネリスト間での意見交換を行っていただ いた。

研究者は科学的真実を愚直に伝えることが必要 であるとの意見や,今後の研究開発には社会の信 頼を得るための努力が不可欠であるとの意見のほ か,各事業所間での情報交換等を活発に行うこと や,分野を越えた共同研究が重要であるという意 見,あるいは,人材育成が課題である等の意見が 出された。

(4) 閉会挨拶(河田東海夫・サイクル機構理事)(5) その他

ロビーにて,ポスターセッションを開設した。 合計16件のパネルを掲示し,研究者と会場参加者 との意見交換を通じて,研究開発の個別の成果等 の紹介を行った。

また,東濃,幌延,東海の各事業所の取組み等 を紹介したパンフレットや平成14年度年報⁷⁾等の 提供を行った。

3.参加者からの主な意見及びアンケート結果の 概要

(1)参加者の属性(図1)

参加者358名のうち,男性が97% (348名)を占 めた(女性3%(10名))。

年代構成は,20代2%,30代11%,40代20%, 50代26%,60代11%,70代以上2%であった(無 回答28%)。

事前に参加を申し込まれた参加者は全参加者の 96%(344名)を占めた。これは,事前申込者523

会議報告

名の66%に当たる。

(2)参加者からの主な意見・質問

会場受付けで配布した意見記入用紙により寄せ られた意見の総数は18件であった。おもな意見を 分類した結果は以下のとおり。

報告内容について(深地層の研究施設計画の位 置づけ,報告内容の詳細に関する質問。研究開 発テーマの提言。)

今後の進め方について(人材育成の必要性,民間企業等の活用,推進側等からの資金導入の提案。第2次取りまとめの評価への期待。) 報告・説明方法について(用語説明の工夫,一

般へのPRの必要性。パネル討論への賛辞。)

寄せられたご意見・ご質問に対しては 後日サイ クル機構の回答とともに公開することとしている。 (3) アンケート集計結果 (図2)

回収総数は109件(回収率30%)であった。ア ンケートの集計結果の概要は以下のとおり。

アンケート回答者の属性(図2(1))

男女の比率,年代構成は,参加者全体とほぼ同様であった(アンケート回答者109名のうち,男性 98%,女性2%。年代構成は,20代3%,30代19%, 40代23%,50代29%,60代15%,70代以上10%)。

職業については,建設関係(37%)及びエネル ギー関係(30%)が半数以上を占め,原子力関係 の職業・所属にこれまで在籍していないと回答し た方の割合は21%であった。

開催の周知方法について

本報告会開催についての情報を得た媒体につい ては,ダイレクトメール(68件)との回答がもっ とも多く,次いで,サイクル機構ホームページ (17件),知人からの紹介(14件),学会等(13件), と続く(図2(2))。

告知方法については、「このままで良い」(69%) とする回答が、「どちらでもない」(16%)、「改善 すべき」(8%)を上回った(図2(3))。

報告会に対する感想(図2(3) ~) ・報告の時間配分:

(1)参加者内訳(男女比率) 女性10名 (3%)男性 348名 (97%) (3)参加者年代(男女別) (2)参加者年代 ₁₂₀名 20代 0 20 40 100 30代 60 80 8名(2%) 無回答 39名(11%) 20代 🗖 7 96名(28%) 37 40代 30代 年 70名(20%) 67 70代以上 40代 齢 8名(2%) 50代 92 ■男性 **4**0 60代 ■女性 60代 50代 8 1 70代以上 40名(11%) 94名(26%) 96 無回答 (4) 参加者内訳(事前申し込み/当日別) (5) 申し込み方法 0 20 40 60 100 120 140 80 当日 77 E-mai 14名(4%) Fax , 0 8 事前申し込み 電話 344名(96%) 118 郵便 ■男性 14 当日 ■女性

図1 参加者に関するデータ

サイクル機構技報 No.23 2004.6

13名(12%)

どちらでもない

17名(16%)

無回答

2名(2%)

無回答 1名(1%)

わかりやすい 34名(31%)

このままでよい 61名(56%)

わかりやすい 37名(34%)

このままでよい 73名(67%)

このままでよい 84名(77%)

このままでよい

75名(69%)

図2 アンケート集計結果

ちょうど良い 93名(85%)

サイクル機構技報 No.23 2004.6

会議報告

「ちょうど良い」(85%),「短い」(12%),「長 い」(2%)。

- ・報告の内容: 「ちょうど良い<u>(</u>50%),「わかりやすい<u>(</u>31%), 「わかりにくい」(17%)、
- ・質疑応答の時間配分・進め方: 「このままでよい<u>(</u>56%), 改善すべき<u>(</u>23%), 「どちらでもない」(20%)。
- ・パネル討論の内容:
- 「ちょうど良い(35%)「わかりやすい(34%), 「わかりにくい」(14%)。
- ・進行: 「このままでよい」(67%),「どちらでもない」
- (15%),「改善すべき」(12%)。
- 運営について(図2(3))

受付 ,会場案内等については 「このままでよい」 (77%),「どちらでもない」(13%),「改善すべき」 (4%)。

以上のアンケート結果からは,本報告会は,参 加者にとって内容や時間配分等はおおむね適当で あったことがうかがえる。しかし,アンケート用 紙で寄せられた意見によると,報告内容や時間配 分,ポスターセッションのスペース等への指摘が 見受けられたことから,今後改善のための検討が 必要である。

4.おわりに

サイクル機構が進めている地層処分技術に関す る研究開発について 進捗状況の報告を目的とした 本報告会は 盛況のうちに閉会することができた。

今回の報告会は,地層処分が研究開発の段階か ら実施の段階を迎えたことを踏まえ,サイクル機 構の役割,研究開発の方向性を明確にし,具体的 な取組みを示してきたこれまでの報告会^{。3)}を受け て開催した3回目のものであり,具体的な進捗状 況を報告する場として意義のあるものであった。

事業化段階において研究開発に求められる役割 や意義等について,幅広い視点からご意見をいた だいたパネル討論に関しては,参加者からのアン ケート結果として,討論の内容や意見が興味深い ものであったとの意見や,会場を含めた議論に時 間をとるべきとの指摘があった。このことから, 本テーマに対する参加者の関心の高さが伺えると ともに,今後の研究開発を進めていく上で参考に すべき点が多いものであった。

2005年度中に予定している日本原子力研究所と の統合に関しては、地層処分技術に関する研究開 発を進めていくための組織や目標を重要な課題と して検討しているところである。高レベル放射性 廃棄物の地層処分について、オールジャパンで社 会の理解を得つつ、やり遂げていくことが、原子 力を進める上での社会に対する最も重要な責務で あると認識し、本報告会を通じて寄せられた会場 やパネル討論での意見等を参考として、事業の推 進側・規制側、そして広く社会の信頼を十分得て いく組織を目指すこととしている。

研究開発の成果等については,アンケート結果 や会場参加者からの意見等を踏まえ,今後とも進 捗状況を本報告会等の場を通じて適宜報告するこ とにより 情報提供を行っていくこととする。

参考文献

- 1)核燃料サイクル開発機構: わが国における高レベル 放射性廃棄物地層処分の技術的信頼性 地層処分研 究開発第2次取りまとめ ", JNC TN1410 99 020~ 024(1999)
- 2) 官報: "特定放射性廃棄物の最終処分に関する法律"
 (2000).
- 3)原子力安全委員会: "高レベル放射性廃棄物の処分 に係る安全規制の基本的考え方について(第1次報 告)"(2000).
- 4)原子力安全委員会:"高レベル放射性廃棄物処分の 概要調査地区選定段階において考慮すべき環境要件 について"(2002).
- 5)原子力発電環境整備機構:"公募関係資料(高レベル 放射性廃棄物の最終処分施設の設置可能性を調査す る区域)"(2002).
- 6)核燃料サイクル開発機構:"平成15年度 地層処分 技術に関する研究開発報告会 処分技術の信頼性向 上のための基盤整備に向けて 要旨・OHP集", JNC TN1400 2003 014(2004)
- 7) 核燃料サイクル開発機構:"高レベル放射性廃棄物 の地層処分技術に関する研究開発 平成14年度報告 ", JNC TN1400 2003 004(2003).
- 8)前川恵輔:"地層処分技術に関する研究開発報告会 実施段階を迎えた研究開発の新たな展開",サイ クル機構技報, No.15,P.131 134(2002)
- 9)前川恵輔: "2002年度 地層処分技術に関する研究 開発報告会 処分技術の信頼性を支える基盤の強化 に向けて ",サイクル機構技報, No.19,P.55 60 (2003)

大洗 FBR サイクルシンポジウム2004 - 2004年2月27日開催 -

小井 衛 大洗工学センター 開発調整室

1.はじめに

2004年2月27日,大洗工学センターで,『世界 の進路と「常陽」,「もんじゅ」の役割』をテーマに, 大洗FBRサイクルシンポジウム2004を開催した。

本シンポジウムは,敦賀本部国際技術センター で開催された「敦賀国際パネル」とシリーズで行 われ,我が国をはじめ各国が進める実用化技術の 確立を目指した技術開発の着実な推進に資すると ともに,多くの方々にFBR サイクル技術開発の意 義と「常陽」、「もんじゅ」の国際的役割をご理解 いただくことをねらいとした。地域の皆様をはじ め,国内外のFBRサイクル技術開発の専門家や学 生など約400名に参加いただいた。

午前の部では,小谷隆亮大洗町長,酒井長敬旭 村長からご挨拶をいただいた後,近藤駿介原子力 委員会委員長から「我が国の原子力政策における 高速増殖炉技術開発の位置付け」と題して特別講 演をいただいた。続いて,大洗工学センターの永

日 時 2004年	2月27日(金)10:00~18:15
場 所 大洗工	学センター FBR サイクル国際研究開発センター
後援東京工	業大学,茨城大学(社)日本原子力学会(社)日本機械学会,電気事業連合会
(社)日	本原子力産業会議(社)日本電機工業会,大洗町,旭村,WIN Japan,日本原子力研究所
10:00~10:05	開会挨拶をある「「「」」を構成していた。「「」」を使うていた。「」では、「」」を見ていた。「「」」を見ていた。「」では、「」」を見ていた。「」。
10:05~10:15	来賓挨拶 大洗町長 小谷 隆亮
	旭村長
10 : 15 ~ 11 : 00	特別講演 我が国の原子力政策における高速増殖炉技術開発の位置付け
	原子力委員会 委員長 近藤 駿介
11:00~11:30	基調報告 FBR サイクル技術開発の役割と今後の展開
	核燃料サイクル開発機構大洗工学センター 所長 永田 敬
13:15~16:25	技術報告 (1)米国における先進的核燃料サイクルイニシアチプと第4世代原子力システム
	米国アイダホ国立工学環境研究所 革新原子力部長 Ralph G. BENNETT
	(2)高速炉技術:現状と展望
	露国物理エネルギー研究所 副所長 Vladimir POPLAVSKIY
	(3) フランスにおけるガス冷却高速炉技術と関連した燃料サイクル
	仏国原子力庁カダラッシュ研究所 原子炉研究部長 Jean L. CARBONNIER
	(4)中国におけるナトリウム冷却高速炉燃料サイクル技術
	中国原子能科学院 副主任技師 Daogang LU
	(5)韓国におけるナトリウム冷却高速炉燃料サイクル技術
	韓国原子力研究所 主席研究員 Yoon Sub SIM
	(6)日本におけるFBRサイクル技術開発
	核燃料サイクル開発機構大洗上字センター副所長の見た。
16:40~18:10	ハネル討論 - 国際協力で解決すべき技術課題と「常陽」、「もんしゆ」の役割 -
	ハネリスト:米国アイタホ国立上学環境研究所 単新原子刀部長 Raiph G. BENNETT
	1公国原ナガ庁ガダフッシュ研究所 原ナ炉研究部長 Jean L. CARBONNIER 中国原乙能利益院 キバナ研
	ローン
18 · 10 ~ 18 · 15	
行列企画 11、50、12、05	
11:50~13:05	X社による夫成・討禰云 ' は~ C に 庙 \ YA つ C ! !]

表1 シンポジウムプログラム

田敬所長が「FBR サイクル技術開発の役割と今後の展開」と題して基調報告を行った。

午後の部では,我が国をはじめ米国,露国,仏 国,中国,韓国の専門家が,FBRサイクル技術の 位置付け及び取組状況について技術報告を行った 後,座長に東京工業大学の二ノ方壽教授を迎え, FBR開発の必要性,国際協力で解決すべき技術課 題と「常陽」,「もんじゅ」の役割をテーマにパネ ル討論された。

さらに特別企画として、地域の皆様など約100名 に参加いただき、広報チームの女性職員がFBRの 仕組みや特長について分かりやすく紹介し、地域 の女性や広報の専門家を交えた活発な意見交換が 行われた。

表1にシンポジウムのプログラムを示す。

2.来賓挨拶

小谷隆亮大洗町長,酒井長敬旭村長から来賓挨 拶をいただいた。

小谷隆亮大洗町長からは「大洗町は国策である 原子力と40年にわたり共存共栄してきた。今後も 我が町における原子力研究開発の大いなる発展を 期待する」とのご挨拶をいただいた。

引き続き,酒井長敬旭村長からは,「研究施設 が地域と一体化し,開かれた事業所としての基盤 を構築してきた。今後も地域に根ざした研究施設 として,さらなる安全,安心の確保に留意した発 展を願う。「常陽」MKの順調な推進がなされ, 高速増殖炉開発の核となる「もんじゅ」の早期再開 を願う。」とのご挨拶をいただいた。

3.特別講演

近藤駿介原子力委員会委員長から「我が国の原 子力政策における高速増殖炉技術開発の位置付 け」と題し,特別講演いただいた(写真1)。講 演の主な内容は以下の通り。

- ・組織が持続的発展を目指すには,短期,中期及 び長期課題への投資をバランスよく効果的に行 うことが重要。
- ・短期的課題は、原子力委員会が年頭の所信において掲げた重点政策目標の第一、すなわち、原子力発電が長期にわたって基幹電源でありつづけることに努力するとともに合理的な核燃料サイクルシステムの実現を図ること。
- ・中長期課題は,重要政策目標の第二に掲げた,

写真1 近藤原子力委員会委員長による特別講演

原子力エネルギー利用技術の一層の性能向上や 利用分野の拡大を図る研究開発を,国際協力も 活用して,効果的かつ効率的に推進すること。

- ・高速増殖炉とその燃料サイクル技術は原子力エネルギー利用技術に一層の性能向上をもたらし、人類の持続可能な発展に貢献する潜在的可能性が高く、将来において人類が採用するエネルギー供給技術の有力な選択肢になり得るので重要な中長期課題の一つ。
- ・新技術は、基礎研究段階、概念創出段階、初期 技術開発段階、製品開発・導入段階、生産/販 売段階を経て実用化されるといわれ、初期技術 開発段階は、「悪夢の時代」や「ダーウィンの 海」と呼ばれ、生き延びるのが困難な期間。
- 高速増殖炉とその燃料サイクル技術は初期技術 開発段階にあり、国が「常陽」、「もんじゅ」の 設計、建設、運転及び関連する燃料サイクル技 術の研究開発を実施しているところ。
- ・現在行われている実用化戦略調査研究は国民の 大事にする原則を満たす革新技術に至りつくた め、「ダーウィンの海」を泳ぐ方策を示そうと するもの。原子力委員会は定期的に評価を行う が、実施者自らも技術の姿と進め方について広 範な国民の理解と支持が得られているかを適宜 チェックすべき。

4.基調報告

「FBRサイクル技術開発の役割と今後の展開」と 題し、永田敬大洗工学センター所長より、「常陽」、 「もんじゅ」、「実用化戦略調査研究」へと進めて きた我が国のFBRサイクル技術開発の歩みと将来 展望について報告し、また各国の技術報告の概要 を紹介した。

5.技術報告

米国,露国,仏国,中国,韓国,日本(サイク ル機構)の専門家が各国におけるFBRサイクル技 術の位置付け及び取組状況について技術報告を 行った。

Ralph G. BENNETT 氏(米国INEEL)より,米 国における第4世代原子カシステム研究開発 (Generation IV)と革新的核燃料サイクルイニシ アチブ(AFCI)への取り組みと国際協力の現状に ついて報告された。

Vladimir POPLAVSKIY氏(露国IPPE)より, ナトリウム冷却炉(BN 600, BN 800等)及び 重金属冷却炉(BREST 300等)に関する高速炉 技術の現状と展望について報告された。

Jean L. CARBONNIER 氏(仏国CEAカダラッ シュ研究所)より,フランスにおけるガス冷却高 速炉技術及びそれに関連した燃料サイクルについ て報告された。

Daogang LU氏(中国CIAE)より,現在建設中の実験炉CEFRを中心に中国におけるナトリウム 冷却高速炉燃料サイクル技術について報告された。

Yoon Sub SIM 氏(韓国 KAERI)より,現在設 計研究中のKALIMER 600を中心に,韓国におけ るナトリウム冷却高速炉燃料サイクル技術につい て報告された。

可児吉男(サイクル機構)より,サイクル機構 が実施している高速増殖炉サイクルの実用化戦略 調査研究の現状と「常陽」、「もんじゅ」の役割に ついて報告された。

6.パネル討論

座長に二ノ方壽東京工業大学教授を迎え,『国際協力で解決すべき技術課題と「常陽」,「もんじゅ」の役割』をテーマに,討論を行った(写真2)。

高速炉の必要性について,MiXU氏(中国 CIAE)は,中国のエネルギー需要の予測から,2050 年には240GWeの原子力発電容量が必要とされ, ウラン燃料を持続的に利用し,またマイナーアク チニド(MA)及び長寿命核分裂生成物(LLFP) を蓄積しないためにも,高速炉開発が重要と提言 した。また,サイクル機構の可児は,世界的な評 価においても,ウラン資源と廃棄物管理の観点か ら,高速炉は必要と補足した。

写真2 各国の専門家によるパネル討論

国際協力で解決すべき技術課題として, 仏国の CARBONNIER氏は,フェニックス炉でのMA燃料 の照射試験について紹介し,次の段階として「常 陽」,「もんじゅ」をMA燃焼の実験に利用してい きたい旨提案した。可児は,サイクル機構におい てMA燃料の製造に成功し「常陽」で照射試験を 計画している旨紹介した。また,長寿命燃料開発 として,酸化物分散強化型(ODS)フェライト鋼 被覆管を開発しており,昨年から露国の高速炉 BOR 60で照射試験を開始し,現在「常陽」での 照射試験を準備している旨紹介した。

「常陽」、「もんじゅ」の役割については、中国の XU氏は、協力の第1段階として安全解析の経験や 原子炉の運転前試験の経験に関する情報交換を、 第2段階として燃料や材料の交換照射試験を提案 した。露国のPOPLAVSKIY氏は、BOR 60と「常 陽」で燃料サイクルを含む共同研究について、ま た「もんじゅ」とはBN 600用燃料の高燃焼度化 達成のための研究協力を提案した。原研の岩村氏 は、原研とサイクル機構の融合研究として協力し ているMA燃料開発について加速器駆動未臨界炉 用窒化物MA燃料の開発と「常陽」での照射計画 について紹介した。

最後に座長の二ノ方氏は,継続的な研究開発の 活動が必ず必要である,国際協力は今後も強く進 めていく必要があり,緊密な連携の下,より成果 の上がる国際協力プログラムを「常陽」,「もん じゅ」を利用して推進すべきとまとめた。

7.特別企画

サイクル機構技報 No.23 2004.6

「は~とに届くPAって!?」をテーマに,女性の 理解促進活動について実践を交えながら討論を実

会議報

写真3 PA**の方法について討論(女性による実践・** 討論会)

施した(写真3)。

サイクル機構の理解活動(PA)チームである大 洗工学センターの'シュガーズ" 敦賀本部の'あっ ぷる",東海事業所の"スイートポテト"に加え 原子力の理解活動をしているWIN Japanの活動紹 介の後,「FBRってなあに?」をテーマにシンポ ジウムに参加していた多くの方々の参加のもと に,一般の方々を対象とした説明の実践を行い, これを題材に説明内容,話し方,資料の観点から 討論を行った。 説明内容についてはお客様の声に耳を傾けてそれにあった情報を提供することが必要,話し方については強調と間が重要,資料については動きを入れるなど興味を引く内容とするが盛り込み過ぎないなどの意見がだされた。最後にPAの現場はその場その場で解答が違うため,自分が得た情報を交換しあうことが有効であり,毎回チェックしながら進めていくことが重要と講評された。

8.おわりに

本シンポジウムを通じて,FBRサイクル技術開 発の意義,各国における取組状況や「常陽」,「も んじゅ」の国際的役割について理解を深めること ができた。

今後我が国をはじめ各国が進める実用化技術の 確立を目指した技術開発を着実に推進するため, 各国からの国際協力の提案を具体化して「常陽」, 「もんじゅ」の活用を含め国際協力を推進していく。

謝辞

シンポジウムにご参加いただいた皆様,開催に ご協力いただいた関係者に感謝し,お礼申し上げ ます。

第13回 もんじゅ・国際技術センター技術報告会 - 2004年3月10日開催 -

佐藤 輝嘉 高速増殖炉もんじゅ建設所

1.はじめに

2004年3月10日(水), 敦賀本部国際技術セン ター情報棟エムシースクエアにおいて「第13回も んじゅ・国際技術センター技術報告会」を開催した。

本報告会は,高速増殖炉もんじゅ建設所及び国際技術センターにおける技術的成果について,官 庁関係者,電力事業者,大学関係者,メーカーの ほか,広く一般の人々を対象に発表するとともに, 技術的成果の公開及び理解促進を図ることを目的 として,毎年開催しているものである。

今年度は、セッション で国際技術センターか ら「もんじゅの特性評価と供用期間中検査技術開 発」に関する報告を4件、セッション では、も んじゅ建設所から「もんじゅの信頼性向上に関す る技術開発」について3件、大洗工学センターか ら「常陽」MK 性能試験結果について1件を報 告した。また、特別発表として、社内公募型研究 推進室から「雷雲中における放射線発生機構に関 する研究」に関する報告を行い,さらに,原子力 委員会の町末男委員をお招きし,世界のエネル ギーと環境問題の現状と今後の予想や国際協力に ついて講演をいただいた。表1にプログラムを, 写真1に会場風景を示す。

当日は,官庁,電力,メーカーなどの外部関係 者約60名に加えてサイクル機構職員も約40名出席 し,延べ約100名が出席した。各発表後の質疑応答 では,出席者からより専門的な質問や意見が多数 寄せられ,活発な議論が行われた。

2.特別発表: 雷雲中における放射線発生機構に 関する研究

冬季雷活動時にモニタリングポストなどで観測 される放射線量率上昇のメカニズム解明に向けて 2002年1月から開始した社内公募型研究の成果に

開催時期:2004年 3 月10日(水)											
開催場所:敦賀本部国際技術センター情報棟エムシースクエア											
10:00~10:10	開会の挨拶 敦賀本部 もんじゅ建設所 所長 伊藤 和元										
10 : 15 ~ 10 : 55	特別発表: 雷雲中における放射線発生機構に関する研究 社内公募型研究推進室 鳥居 建男										
	セッション :もんじゅの特性評価と供用期間中検査技術開発 1. 仏国ERANOSシステムによる「もんじゅ」炉心臨界性解析										
	敦賀本部 国際技術センター 炉心技術開発Gr. 影山 武										
10 · 55 ~ 12 · 25	2.プラント熱過渡裕度評価 敦賀本部 国際技術センター システム技術開発Gr. 山田 文昭										
10, 55 - 12, 55	3.蒸気発生器伝熱管ECTセンサの開発										
	敦賀本部 国際技術センター ISIシステム開発Gr. 椎名 章										
	4. 伝熱管ECTセンサ用ブローブ搬送挙動とノイズ										
	敦賀本部 国際技術センター ISIシステム開発Gr. 今井 義之										
13:25~14:15	特別講演:日本の原子力開発と国際的役割 原子力委員会町末男委	員									
	セッション :もんじゅの信頼性向上に関する技術開発										
	1 .「常陽」MK の性能試験結果 大洗工学センター 実験炉部 技術課 吉田 昌宏										
	2.タギング法破損燃料検出装置の改良の検討										
14:15~16:30	敦賀本部 高速増殖炉もんじゅ建設所 技術課 斉藤 裕行										
	3.冷却材ナトリウムの迅速分析法の検討										
	敦賀本部 高速増殖炉もんじゅ建設所 安全管理課 飯島 稔										
	4.ナトリウム漏えい対策 敦賀本部 高速増殖炉もんじゅ建設所 プラント第2課 芋生 和道										
16:30~16:40	閉会の挨拶 教賀本部 国際技術センター 次長 榊原 安英										

表1 第13回 もんじゅ・国際技術センター技術報告会プログラム

写真1 会場風景

ついて報告した。本研究において, 雷雲中で一定 の電界強度を超えたときに2次宇宙線の高エネル ギー電子が加速され, 逃走電子となって多量の制 動放射線が発生し, その一部が地上に達すること がモンテカルロ計算の結果明らかになり, 地上で の観測結果と符合することを報告した。また, 雷 雲中の高電界領域での電子密度の急激な増加によ り, 放射線が雷放電開始機構に寄与する可能性に ついても示した。質疑応答では, 他の発電所周辺 での測定結果に関する質問や線量上昇が観測され る周期や経年変化について議論がなされた。

3.セッション

セッション では「もんじゅの特性評価と供用 期間中検査技術開発」について報告を行った。発 表の概要を以下に示す。

3.1 仏国ERANOSシステムによる「もんじゅ」 炉心臨界性解析

仏国にて開発された欧州炉物理解析システム 「ERANOS」のサイクル機構導入後初の試みとし て、「もんじゅ」初装荷炉心を対象に臨界性解析 を行い、サイクル機構の既存解析システムとの結 果と比較検討した。その結果「ERANOS」システ ムの「もんじゅ」への基本的適用性を確認すると 共にサイクル機構側解析結果の信頼性裏付けを得 た。質疑では、今後「ERANOS」が持つ2000群ク ラスの詳細群断面積の優先的導入推奨などの要望 があった。

32 プラント熱過渡裕度評価

原子炉容器出口 Na 温度低下及び蒸発器給水入

口温度上昇について,実プラント挙動を良く模擬 するよう整備したSuper COPD及びMSG熱流動 解析コードを用いて熱過渡挙動を予測し,原子炉 容器出口ノズル部,蒸発器給水管板部の熱応力解 析から評価した熱過渡余裕を報告した。さらに, Aループ蒸発器出口蒸気温度低下の熱過渡緩和方 策について報告した。今回評価された設計上の熱 過渡余裕は,実プラントではさらに拡大し安全で あることや,出口蒸気温度低下の要因であるNa流 量の試験結果について,コメント・質問が寄せら れた。

33 蒸気発生器伝熱管ECT センサの開発

もんじゅの蒸気発生器伝熱管の検査には渦電流 探傷法を適用しており,蒸発器伝熱管の欠陥検出 性能の向上を目標に開発している双方向励磁型リ モートフィールドセンサ(2001年度試作センサ) について試験片を用いた探傷結果から推奨するセ ンサ仕様,探傷条件及びセンサ振動,曲がり管部 のS/Nが改善されたことを報告すると共に,溶 接部に埋もれた欠陥信号の識別手法について報告 した。質疑応答では,片側励磁型リモートフィー ルドセンサ特性との違い,管板部の欠陥検出性に ついて議論がなされた。また,蒸気発生器の検査 性能の向上と早期開発を望む声があった。

3 A 伝熱管ECT用プローブの搬送挙動とノイズ もんじゅの蒸気発生器伝熱管の検査に適用する 渦電流探傷装置は,探傷用プローブをガスにより 伝熱管内に圧送する方式を採用しているが,プ ローブ搬送時に発生するノイズの低減が開発上の 課題となっている。このノイズ発生要因の究明を 目的として,搬送時のプローブ挙動とノイズの関 係について調査し,その結果から考えられるノイ ズ発生要因を報告した。さらに特定したノイズ発 生要因から対策を考案し,実際に試験したところ, ノイズを1/3に低減できた事を報告した。質疑 応答では,挿入時と引戻時でのセンサ挙動の違い について議論がなされた。

4.特別講演

町末男原子力委員をお招きし,世界のエネル ギーと環境問題の現状と今後の予想や国際協力に ついて講演をいただいた。

まず、御自分のIAEAにおける12年にわたる経験

を紹介された後,首相演説,エネルギー政策基本 法,エネルギー基本計画を踏まえて,核燃料サイ クルを含む原子力開発が,エネルギー問題と環境 問題を長期的に解決する手段と国が認めて進めて いるものだということを強調された。次に,世界 のエネルギーと環境問題の現状と今後の予想につ いてさまざまなデータに基づいて述べられた。現 在,世界では20%から22%の人口が世界のエネル ギーの半分を消費している状況にあること,現状 のエネルギー消費形態のまま途上国の産業が発展 すると、100年後には世界の1次エネルギー消費量 は現在の3倍を超え,気温が58度,海水が88cm 上昇し,マーシャル諸島などは水没するという分 析を紹介された。環境負荷の少ないエネルギー源 の中でも 風力や太陽熱は 大きな設置面積が必要 で気候依存性があり,コストが高いという問題が あるという説明があった。日本は,GDP当たりの 炭酸ガス生成量では最も優れているが,京都議定 書を守ることは大変困難であることも紹介された。

次に国際協力について,中国や韓国で盛んに原 子力開発が行われており,中国で原子力発電所の 建設費低減のために日本が協力することによっ て,偏西風で日本に運ばれる石炭プラントの排ガ スを減らすことができること 韓国ではIAEAの事 務所があり、またアジア原子力大学構想を提案し ていること等,アジアでの原子力開発に関する日 本の国際協力について述べられた。一方,IAEA事 務局における日本人職員の比率を例に,日本人の 国際社会への関心は必ずしも十分でないとの指摘 もあった。国際社会で通用するには個性,国際的 感性,議論への参加を通して新しい構想が描ける 能力,一級の専門家であることが必要,との意見 が述べられた。日本がナトリウム冷却高速炉と超 高温ガス炉で重要な役割を担うGEN が米国の 提案によることは残念、との感想を述べられた。 千年オーダーでエネルギーを確保しつつ環境負荷 を抑えることのできる高速炉を開発することは、 日本の科学技術先進国としての国際貢献でもある と「もんじゅ」及び「もんじゅ」を軸とした国際 協力に対して強い支持を示された。

5.セッション

セッション では「もんじゅの信頼性向上に関 する技術開発」について報告を行った。発表の概 要を以下に示す。

5.1 「常陽」MK の性能試験結果

高速実験炉「常陽」の照射性能向上を目的とし たMK 計画では,2000~2001年に主中間熱交換 器や主冷却器の交換を含む冷却系改造工事を実施 し,2002~2003年にMK 炉心構成のための燃料 交換作業を行った。改造後の炉心,プラントの設 計性能確認を主な目的として,2003年6~11月に 実施された性能試験のうち,炉心核特性,プラン ト制御特性及び過渡応答特性に関する試験の結果 を中心に報告を行った。なお,性能試験には,「も んじゅ」国際技術センターから計16名の技術者が 参加したとの紹介があった。質疑応答では,出力 運転中のフィードバック反応度の挙動について議 論が行われるとともに,「常陽」の運転データの公 開が要望としてあげられた。

52 タギング法破損燃料検出装置の改良の検討

もんじゅのタギング法破損燃料検出装置(FFDL) は,燃料集合体にあらかじめ封入してあるタグガ ス(KrとXeの安定同位体)を回収・濃縮・分析・ 解析することにより,破損燃料集合体を同定する 装置である。1997年度に実施した試験では,Xeの 濃縮率に比べKrの濃縮率が低いことが分かり, FFDLでKrを分析できないことが分かった。その ため,タグガス中のKrの濃縮率を向上させること を目的にモックアップ装置を使って試験を行っ た。その結果,タグガス回収時の設定温度を変更 すること等によりKrの濃縮率が向上することが 分かり,FFDLでKrを分析・解析できる見通しが 得られたことを報告した。

53 冷却材ナトリウムの迅速分析法の検討

もんじゅ冷却材ナトリウムの純度管理の一環と して実施している微量不純物分析について,特殊 な技能と労力を要する現状分析法を改善するた め,「グロー放電質量分析装置」を用いた金属ナト リウムの固体直接分析法(迅速分析法)を検討し, 十分適用できる見通しを得た。この方法により, 運転管理への情報の即応性が向上すること,また, もんじゅへ導入するための最終段階として装置校 正方法の検討を実施している旨を報告した。現状 分析法と迅速分析法での同一試料測定値比較にお いて,桁違いの元素も見受けられるがその原因は 推定できているか,酸素濃度の更に低いナトリウ ム試料を用いた比較測定を行ってはどうかといっ た質問が寄せられた。

5.4 ナトリウム漏えい対策

ナトリウム漏えい対策に係わる検討項目のう ち、断熱材及びヒートシンク材の敷設影響評価, 床ライナの健全性評価について報告した。断熱材 及びヒートシンク材については,これらを敷設す ることによりナトリウム漏えい時において熱的影 響の緩和が適切に図られると共に,水素濃度が適 切に抑制されることを報告した。床ライナについ ては,熱膨張によりライナ板と建物壁が干渉しな いこと,また,局部的な加熱による熱ひずみでラ イナ板に貫通性の損傷が生じないこと等により, ナトリウム漏えい時にも床ライナが健全であるこ とを報告した。質疑応答では,断熱材及びヒート シンク材がない状態での水素濃度に関する質問が 寄せられた。

6.おわりに

本報告会の開催は今回をもって13回を数える

が,毎回年度末の開催にもかかわらずサイクル機 構内外から多くの方々に出席していただいてい る。今回は,2004年1月30日にもんじゅのナトリ ウム漏えい対策等にかかる設工認について認可を いただき,もんじゅの安全性に関する国の審査・ 確認がすべて終了したことにより改造工事着手・ 運転再開への期待が高まる中での開催であった。 当日は、限られた時間の中での報告ではあったが, もんじゅの安全性・信頼性向上を目指したサイク ル機構の取り組みについて十分に理解していただ いたものと考えている。なお,当日頂いた貴重な 意見・助言等は,今後の業務や研究開発に反映し, 改造工事が一日も早く着工できるよう最大限の努 力をしていきたいと考えている。

謝辞

年度末の多忙な時期にもかかわらず,本報告会 に出席くださった皆様,また,本報告会開催のた めに惜しみなく協力してくださった関係者の方々 には心から感謝,御礼申し上げます。

会議報告

1.全体概要

核燃料サイクル開発機構(以下「サイクル機構」) は,2004年4月26日(月),27日(火)の両日,福井 県若狭湾エネルギー研究センター(福井県敦賀市) において「第4回敦賀国際エネルギーフォーラム」 (副題:日本のエネルギー政策と国際協調につい て)を開催した。

(1)目的

エネルギーをいかに確保し,配分し,利用する かということは,人類の平和と持続的発展並びに 地球環境の保全にとって極めて重要な課題であ る。また,我が国にとっても,エネルギーは国の 繁栄と国民生活を支えるものであり,国の安全保 障と環境保護の点からも重要である。21世紀を迎 えて,各国ともその将来を見据えた総合的なエネ ルギー政策を練っている。

そこで,我が国のエネルギー政策基本法に基づ いて2003年に制定されたエネルギー基本計画を中 心とした日本のエネルギー政策から始め,世界各 国のエネルギー政策及びその中における原子力の 位置付けと今後の展望を示していただき,理解を 深めることとした。

次いで,高速増殖原型炉「もんじゅ」の地元, 敦賀において本フォーラムが開催されることか ら,「もんじゅ」からその研究開発の意義と重要性 を改めて訴えた後,世界各国と我が国の大学の研 究者等から「もんじゅ」への期待と国際利用への 要望を示していただき,その可能性と具体策につ いて意見を交わすこととした。

さらに,高速炉として世界的に最先端に位置す る「もんじゅ」の研究開発を中心に,福井に存在 するその他の原子力研究開発・教育機関も加えて, 地域の技術発展の拠点としてそれらを活用してい くための提言をしていただき,議論を進めた。こ うした議論を通じて,「元気な福井」を実現するた めに、「もんじゅ」がいかに貢献できるかの方途を 探ることとした。

(2) 運営委員会

第4回敦賀国際エネルギーフォーラムの企画に あたっては,木村逸郎京都大学名誉教授(株式会 社原子力安全システム研究所 技術システム研究 所長)を委員長とし,地元有識者を中心とした関 係各界からなる運営委員会において,本フォーラ ムの全体構成等についてご審議いただくととも に,熱中塾をはじめとする会議の進行にも積極的 に関与いただき,有益なご助言,ご支援をいただ いた。

(3)後援

今回のフォーラムには,原子力委員会,文部科 学省,経済産業省(社)日本原子力産業会議(社) 日本原子力学会,(社)日本機械学会,(社)電気学 会,電気事業連合会,エネルギー・資源学会,福 井県経済団体連合会,敦賀商工会議所,福井県環 境・エネルギー懇話会,福井大学,福井大学地域 共同研究センター,福井工業大学,福井工業大学 産学共同研究センター,潮賀学園 敦賀短期大学, 敦賀学園 地域交流センターの18機関,団体のご 後援をいただいた。

(4) 会議参加者

今回のフォーラムで講演及びパネル討論をいた だいた海外登壇者は、米国、仏国、英国、露国、 韓国及び経済協力開発機構/原子力機関 (OECD/NEA)の5カ国、1国際機関から7名で あり、国内から、原子力委員会、国、大学、電力、 地元経済界、地元住民から13名にご登壇いただい たほか、サイクル機構から3名が登壇した。

海外からの参加者を含め全体の参加者は,26日 が約670名,27日が約510名で,350名収容の本会場 に入場できない方々には,ホール外3ヵ所の聴講 室において参加いただいた。また,地元敦賀工業

高校,敦賀高校,敦賀気比高校付属中学校及び敦 賀短期大学から両日にわたり260名の参加を得た。 表1に会議プログラムを示す。

(5) 来賓挨拶

フォーラムの1日目では,主催者,木村逸郎運 営委員長の挨拶のあと石井佳治福井県出納長,河 瀬一治敦賀市長,近藤駿介原子力委員長,坂田東 一文部科学省研究開発局長,James S. TULENKO 米国原子力学会(ANS)副会長/次期会長の来賓 のご挨拶をいただいた。

近藤原子力委員長からは,高速炉開発に携わる 研究者は今,高速炉が実用化できるか否かの「ダー ウィンの海」で苦闘しているが,地元の方々に叱 正・激励をお願いするとされた。James S. TU-LENKO ANS次期会長からは,長年の運転実績を 通じて原子力の平和利用のための先駆的かつ優れ

表1 会議プログラム

開催時期:2004年4月26日(月)~27日(火) 開催場所:福井県若狭湾エネルギー研究センター

4月26日(月)

時間割	講演内容等	パネリス	ト , 報 告 者 , 講 演 者
	主催者挨拶	殿塚 武一	サイクル機構 理事長
		木村 逸郎	第4回敦賀国際エネルギーフォーラム運営委員
			長(原子力安全システム研究所 技術システム研
	来客ご挨拶	石井 佳治	福井県 出幼長 若狭湾エネルギー研究センター
13:00			
		河湖 — — — — —	注
		近藤 影介	
			凉了刀安良云。安良及 文邹科学省。研究開発目。目長
12 . 20		Sames C. TOLENIKO	
13:30	基調講演・行別講演		(时国计) 地球理场支援性修可应继续 动理声目
		矛 际一	(別団法人地球境現産業技術研究機構 副理事長,
1.1 . 10	*21世紀のエネルキー政策について』		果尔大学省曾教授)
14:10	行別講演	厈 陣雄	(独立行政法人物質・材料研究機構 埋事長 ,日本字
	『科字技術開発の重要性と人材育成』		術会議 副会長,東京大字名晉教授)
14:50	休憩		
15 . 05	セッション	【座長:神田 啓治(エネル	/ギー政策研究所 所長 , 京都大学名誉教授)】
15.05	『21世紀における各国のエネルギー政策		
	と役割』		
15 • 10	第1部 「各国におけるエネルギー政策の		
15.10	展望」		
	S 1「日本のエネルギー政策と原子力の	神田啓治	(エネルギー政策研究所 所長,京都大学名誉教授)
	役割について」		
	S 2「合衆国におけるエネルギー政策の	Kemal O.PASAMEHMETO	GLU
	展望」		(米国ロスアラモス国立研究所(LANL)AFCI(革
			進的核燃料サイクル・イニシアチブ)プログラム,
			燃料部門開発テクニカル・ディレクター)
	S 3「21世紀のエネルギーにおける仏国	Patrice BERNARD	(仏国原子力庁 (CEA)原子力開発局 原子力技
	の展望,政策,役割及び国際協力」		術開発本部本部長)
	S 4「英国におけるエネルギー政策の展	Sue E.ION	(英国原子燃料会社(BNFL)執行役員,英国原子
	望と『もんじゅ』への期待」		力学会次期理事長)
	S 5「中国における高速増殖炉の現状と	趙 志祥	(中国原子能科学研究院(CIAE)院長)
	将来の開発計画		
16 : 50	休憩		
17 . 00	答う했고 パラリ 허송	【座長:神田 啓治(エネル	/ギー政策研究所 所長 , 京都大学名誉教授)】
17:00	弗 ∠ 部 ハイル 討 論	パネリスト	
		Kemal O.PASAMEHMETO	GLU
			(米国ロスアラモス国立研究所(LANL)AFCI(革
			進的核燃料サイクル・イニシアチブ)プログラム
			燃料部門開発テクニカル・ディレクター)
		Patrice BERNARD	(仏国原子力庁 (CEA)原子力開発局 原子力技
			術開発本部 本部長)
		Sue E.ION	(英国原子燃料会社(BNFL)執行役員,英国原子
			力学会次期理事長)
		岸本洋一郎	(サイクル機構 副理事長 敦賀本部 本部長)
17:35	初日終了		

4月27日(火)

時間割	講演内容等	パネリス	ト , 報 告 者 , 講 演 者				
9:00	セッション	【座長:関村 直人(東京大	、学大学院 教授)】				
	□ 『 局速炉開発における ⁻ もんじゅ」の国際 □ の利田 -						
	第1部 講演『「もんじゅ」への期待』						
	S 1「高速炉開発における『もんじゅ』 の役割」	柳澤 務	(サイクル機構 理事 敦賀本部 本部長代理)				
	S 2「国際的研究施設としての『もん	Thierry DUJARDIN	(OECD/NEA科学・開発担当次長)				
	S 3「GEN への取り組みと『もん	James S. TULENKO	(米国原子力学会(ANS)副会長 / 次期会長)				
9:50	休憩						
10:00	S -4「高速炉及び燃料サイクル開発にお	Patrice BERNARD	(仏国原子力庁(CEA)原子力開発局 原子力技				
	ける「もんじゅ」の国際的利用」		術開発本部 本部長)				
	S -5「韓国における高速炉技術開発計画 と「もんじゅ」への期待」	Moon H. CHANG	(韓国原子力研究所 新型炉技術開発團,團長)				
	S -6「ロシアにおけるナトリウム冷却型 高速炉の開発状況と「もんじゅ」への期待。	Alexander G. TSIKUNOV	(露国物理·動力工学研究所(IPPE)原子力科学 研究部 次長)				
	S -7「高速炉開発における「もんじゅ」 の国際利用」	三島嘉一郎	(京都大学大学院 教授)				
11:00	休憩						
11 : 10	第2部 パネル討論	【座長:関村 直人(東京大学大学院 教授)】					
		パネリスト					
			(OECD/NEA科学・開発担当次長) (米国国Z力学会(ANS)副会長(次期会長)				
		Patrice BERNARD	(仏国原子力庁(CEA)原子力開発局 原子力技				
		Maan II. CUANC	術開発本部本部長)				
		Alexander G. TSIKUNOV	(韓国原于刀研究所 新空炉投附開充團,團長) (露国物理·動力工学研究所(IPPE)原子力科学				
		三島嘉一郎	(京都大学大学院)教授)				
		柳澤務	(サイクル機構理事 敦賀本部 本部長代理)				
12 : 10	昼食						
13 : 10	セッション	【座長:近藤 道也(財団法)	人若狭湾エネルギー研究センター 前所長)】				
	『地球の技術発展を目指して』	ハネリスト 歯村 蕃	(敦賀市 企画部長)				
		河原はつ子	(福井県連合婦人会~会長)				
		清川 肇	(清川メッキ工業株式会社)専務取締役)				
		来馬 克美	(福井県 総務部 企画幹(エネルギー研究開発 拠点))				
		鶴田 静男	(日本原子力発電株式会社 福井事務所 所長)				
		中村 秀男	(敦賀商工会議所 専務理事)				
		福井 卓雄 石橋 遠郎	(福井大学 教授) (サイクリ機構・動智本部・副本部長、				
		口响 连即 木阪 崇司	(リインル液体) 教員平部 副平部技) (サイクル機構)副理事長)				
15:40	閉会の辞						
15 : 50	終了						

た功績を残した施設に贈られるANS「ランドマー ク賞」が「ふげん」に授与されたことを紹介いた だいた。

(6) 基調講演・特別講演

基調講演として,茅陽一地球環境産業技術研究 機構副理事長からエネルギー基本計画での原子力 の位置付けについて,また特別講演として,岸輝 雄物質材料研究機構理事長から科学技術基本計画 における「エネルギー開発の重要性」を講演いた だき,フォーラム全体の方向性,主題を,明確に

した。

(7)講演・パネルディスカッション

セッション では、はじめに、日本、米国、仏 国、英国、中国の代表から各国のエネルギー政策 の現状と展望について、世界的かつ幅広い視点か らの講演を受けた(中国は座長から紹介)。後続の パネル討論においては各国の役割や国際協力の重 要性及び、もんじゅ」への期待にも言及された。こ の議論を通し、新しい流れとして、高速増殖炉が エネルギー問題と廃棄物の問題を同時に解決でき

99

る可能性を持っていることへの期待が示唆された。

セッション では,OECD/NEA,米国,仏国, 英国,韓国,ロシア及びサイクル機構の代表から 各国の高速炉・次世代型炉の開発計画や開発状況 の講演を受け,その中で国際的研究開発の中核施 設としての「もんじゅ」への期待が各国から述べ られた。パネル討論でも,各国からあらためて 「もんじゅ」への期待が述べられ,その国際的利用 のあり方について討論された。「もんじゅ」が世界 から注目され,利用価値の高い施設であることが 再認識された。

セッション では,地元自治体,地元経済界, 地元一般市民,地元電力,地元大学及びサイクル 機構の代表が,「元気な福井への貢献」をサプテー マとして,原子力技術の地域への貢献,それがも たらす地域発展の可能性について,具体的な提案 と議論が行われた。「地元・地域と共に歩み」,「新 たな信頼への創造」,「元気な福井への貢献」を目 指すことの重要性があらためて確認された。

(8)原子力熱中塾

フォーラムのプレセッションとして「原子力熱 中塾」を開催した。今回は、6つの会議室で7グ ループに分かれて実施した。総勢127名の一般市民 (内,地元の中学生20名,高校生35名,短期大学生 18名,敦賀女性エネの会のメンバー13名)が フォーラムで講演する国内外の専門家,サイクル 機構の技術者及び広報チーム「あっぷる」のメン バーと各国のエネルギー事情 原子力発電の将来, 原子力発電所の安全性、エネルギーに関する教育, 放射性廃棄物の処理・処分等幅広い分野について 意見交換を行った。熱中塾後のアンケートで「原 子力は思っていたよりも安全だと感じた」との感 想を書いた参加者が多数見られた。

(9) ポスターセッション

会場内で「地域との連携」に関するポスターセッションを開催し,サイクル機構のほか,福井大学, 敦賀商工会議所,日本原子力発電㈱にも協力を頂 き出展した。

2.基調講演

 茅 陽一(財団法人地球環境産業技術研 究機構 副理事長,東京大学名誉教授)
 「21世紀のエネルギー政策について」

エネルギーは,国の基盤であり,国が議論する

ことは非常に重要である。エネルギー政策基本法 では、「安定供給の確保」、「環境適合」、「市場原理 の導入」の3つの基本的考え方を提示している。 また、その中でエネルギー政策の基本計画を作る ことを指示しており、エネルギー基本計画は、す でに閣議に提出され了承されている。

基本計画では,3つの基本的考え方の前にある 最も重要なものとして,安全の確保を挙げている。 エネルギーが供給でき,人々が安心して暮らして いくためには,エネルギーの供給が安心・安全な ものでなければならないということである。

この基本計画の中で最大の論点は,原子力の果 たす役割である。原子力は,供給の安定性,環境の 適合性の2つの面において,いずれも大きな優位 性を持っており,原子力発電を基幹電源として今 後も推進すべきである,と明確に打ち出されてい る。さらにもう1つの重要なポイントは,この中で 国がどのような役割を持つかということであり, 基本計画では,原子力の推進には,国が民間とと もに責任を分担するという姿勢が明確に出ている。

今後は,バイオマスあるいは原子力による水素 製造が重要な技術になってくる。現段階での水素 の製造は極めて小規模であるが,長期的には,原 子力等を使って,大規模に水素を製造し,ネット ワークを使って供給するといったシステムが期待 される。長期的な視点から原子力は水素の問題も 頭に入れて開発を考えていくのが,今後の流れで はないかと考えている(写真1参照)。

写真1 茅先生による基調講演

3.特別講演

岸 輝雄 独立行政法人物質·材料研究機 構 理事長,日本学術会議 副会長,東 京大学名誉教授)

「科学技術開発の重要性と人材育成」

日本の科学技術の政策の方向性は,1)高いレベルの研究成果を生む知の創造,2)強く国際競争力を持つ産業力,3)安全・安心な社会の実現, さらには知的財産立国を目指すことであり,そのための計画(Plan),システム改革(Do),評価(See) を行っている。

まず,計画(Plan)では重点配分ということで, 1)情報通信,2)ライフサイエンス,3)環境, 4)ナノテクノロジーの4分野と1)エネルギー, 2)製造技術,3)社会基盤,4)フロンティア を取り上げている。

システム改革(Do)では,競争的研究開発環境 を作るために,競争的資金の拡充を図るとともに, 研究所,大学等の独立行政法人化を行っている。 まもなく,サイクル機構と日本原子力研究所が統 合して,原子力独立行政法人となるが,両法人の 良いところを伸ばして,トップダウンの非常に強 い研究開発組織を作ることを大いに期待している。

評価 (See)は,客観的な定量評価と主観的な 定性評価の組合せで,資金の配分と職員の処遇を 決め,評価結果の適切な反映を図ることが重要で ある。

最後に,先進国といわれる日本の科学技術・学 術の推進体制において欠けているものとして,ア カデミーが機能していないことが指摘されてい る。内閣府の中に,政府機関として総合科学技術 会議があるが,今回新しく,特別機関として日本 学術会議が位置づけられ,アカデミーとしての機 能を果たし,持続可能な社会の構築に役立とうと している(写真2参照)。

4.セッション

『21世紀における各国のエネルギー政策と役 割』;座長:神田 啓治(エネルギー政策研究所 所長,京都大学名誉教授)

本セッションでは、エネルギーをいかに確保し, 配分し,利用するかということが,人類の平和と 持続的発展並びに地球環境の保全にとって極めて 重要な課題であるとして,日本,米国,仏国,英

写真2 岸先生による特別講演

国,中国の代表(中国は座長から紹介)から,各 国のエネルギー政策の現状と展望について,世界 的かつ幅広い視点からご紹介いただいた。各国か らは,高速増殖炉がエネルギー問題と環境の問題 を同時に解決できる可能性を持っていることへの 期待が示されるとともに,議論を通し,世界が協 力して,これらの技術確立を図っていくことの重 要性とその中での「もんじゅ」への期待について 言及された。

以下に,各国のエネルギー政策の展望とパネル 討論の概要について紹介する。

(1)第1部 講演「各国におけるエネルギー政策の展望」

「日本のエネルギー政策と原子力の役割」;神田 啓治(エネルギー政策研究所 所長,京都 大学名誉教授)

我が国は,エネルギー基盤が脆弱であること, また,世界で唯一,急激なエネルギー需要の伸び が予想されている東アジア地域に位置しているこ とから,先進国である我が国がエネルギー安全保 障に万全を期すことは非常に重要である。各国は それぞれ国情もエネルギー事情も大きく異なるだ けに,我が国にとって,独自に長期的なエネルギー 安全保障を確立していくことが日本の将来を左右 する喫緊の課題であり,核燃料サイクルを基本路 線に原子力を推進し,電力市場自由化でも自信を 持って,我が国独自の選択を考えるべきである。 また,我が国の原子力開発における現状の課題及 び今後の技術開発の必要性は以下のとおりであ り,エネルギー基本計画にあるように国と事業者 が協力して取り組んでいく必要がある。

- 1) バックエンドにおける「六ヶ所再処理プラントの立ち上げ」「使用済み燃料の中間貯蔵」「再処理後の国内外で発生する高レベル廃棄物の処理・処分」の問題
- 2)「プルサーマル(MOX 燃料製造問題を含む)」
 の問題
- 3)原子力発電所の運転に関しての「定期検査の 実施周期を現行の13ヶ月から18ヶ月ごとに伸 ばすこと」及び「維持基準の改革」
- 4)本格的原子力時代を迎えるための法体系の整備
- 5)高速炉サイクルによるウラン資源の有効利用 技術の開発

「合衆国におけるエネルギー政策の展望」; Kemal O. PASAMEHMETOGLU(米国ロスアラモ ス国立研究所(LANL)AFCI(革進的核燃料サ イクル・イニシアチブ)プログラム,燃料部門 開発テクニカル・ディレクター)

今後の予想される世界のエネルギー需要増加に 伴う化石燃料利用の増大が及ぼす資源の枯渇、地 域紛争及び二酸化炭素等による深刻な環境への影 響等への懸念から,2001年5月に国家エネルギー 政策策定グループは,大統領に対し,保障措置や 核拡散抵抗性を改善することを強調する一方で、 原子力利用の拡大,推進について提言した。米国 のエネルギー政策では,廃棄物を出さないエネル ギーの内,持続性があり経済的にも成立性のある ものを推進するとしており,核物質管理が十分に 行われることを前提条件として,米国ではエネル ギー省(DOE)の指導の下,1)新たな原子力発 電所予定地の決定(2010年構想),2)使用済燃料 からエネルギー源として価値のあるものを回収す る研究(先進的燃料サイクル;AFCI構想),3)原 子力エネルギー利用による水素製造構想,4)性 能,安全性,経済性,核拡散抵抗性を高めた第4 世代原子炉の開発からなる4つの原子力開発構想 について推進している。ここ50年間において,ア イゼンハワー元大統領の「Atoms for Peace (原子 力平和利用の提案)」という構想は実際のものと なってきた。現在,米国は世界規模での核物質管 理方策を共同で策定することを条件として,先進 国が原子力の平和利用を推進することは必然的な ものであると認識している。

「21世紀のエネルギーにおける仏国の展望,政策,役割及び国際協力」; Patrice BERNARD (仏国原子力庁(CEA)原子力開発局原子力技術開発本部本部長)

世界のエネルギー需要は恐らく2050年までに現 在の2倍に達し,世界人口は同じ頃には60億から 90億人に増加すると予想されている。気候変動は 主要な問題で、炭酸ガスを出さず長期にわたって 持続可能なエネルギーへ移行する必要がある。先 進国も途上国もエネルギー供給を長期にわたって 確保する必要がある一方で,石油資源には限りが あり、その供給は地理的・政治的な制約と不安定 性によって脅かされかねない。原子力エネルギー はこれらのエネルギーと環境との相反する問題に 対して効率的で十分な解決法をもたらすことがで きる。仏国はこのような理由から,原子力エネル ギーを主要な電力源に選び,現在仏国での電力の 3/4は58基の稼動中の原子力発電所によって供 給されている。この中で最も古い原子力発電所は 運転開始後27年を経過しており,今後の中期及び 長期における仏国での原子力発電体制の展望とし ては,第3世代の加圧水型炉であるEPR に続き第 4世代の高速炉システムを導入することになろ う。後者については,第4世代原子炉国際フォー ラムという国際的な枠組みの中で、安全性に優れ, 廃棄物発生量が小さく、長期的資源の確保が可能 で,核拡散抵抗性に優れたものを追求しており, 2035年までにアクチニドを全体的に管理できる (アクチニド全体の抽出と再利用)燃料サイクルの 方法を具備した第4世代の高速炉を開発すること を目的としている。

「英国におけるエネルギー政策の展望と『もん じゅ』への期待」; Sue E. ION (英国原子燃料 会社(BNFL)執行役員,英国原子力学会次期 理事長)

英国での2002年における電源の構成は,天然ガ ス(約40%)と原子力(22%)が全体の約6割を 占め,京都議定書の目標を容易に満足することが できた。しかし,原子力発電所の老朽化により, 新設プラントの計画がない現状では2025年まで に,稼動している原子力発電所が1基のみになる こと,また国内の天然ガスが枯渇し,2020年ごろ には,発電用燃料である石油と天然ガスの約6割 を海外に依存するとの予測結果から,政府は,昨 年,「炭素の少ない経済」と言われる白書を策定し た。この白書の焦点は,エネルギー供給と京都議 定書の二つの目標を達成することであり,2010年 までに電力の10%を再生可能エネルギーで賄うこ とを柱としているが,原子力は経済性と廃棄物処 理の不確実性から、「必要となれば建設できる」と いうように選択肢を開けておくにとどまってい る。私は少女のころから,原子力は人類に与えら れた恵みであると思っていたが,水素製造等他の 産業への利用が可能であるとともに高速炉サイク ルを確立することにより唯一,持続可能なエネル ギー源に成り得ると信じている。従って,英国も 第4世代原子炉国際フォーラムに参加し,これま でNa冷却型高速炉の開発等により培ってきた知 識,技術,経験を新しい原子炉システムに反映す ることにより貢献していくことにしており「もん じゅ」が,この開発のための貴重な資源として活 用できることを期待している。

「中国における高速増殖炉の現状と将来の開発 計画」;趙 志祥(中国原子能科学研究院(CIAE) 院長;止むを得ない事情により急きょ欠席され たため座長より内容を紹介)

現在,中国における原子力発電プラントは,稼 動中が8基で発電設備容量は計6.1GWe,建設中 が3基でありこれらの順調な運転及び建設は,原 子力開発に大きな進展をもたらした。国家計画に よると,原子力発電の総発電設備容量は,今世紀 半ばまでに240GWe程度を目標としている。これ らは,すべてPWR型であり,今後40年の運転に必 要とされる天然ウラン消費量はワンススルー方 式,あるいはプルトニウムリサイクル方式を採用 した場合,それぞれ約145万トンと94万トンにな る。この莫大な資源の供給は,世界的にも不可能 であり,中国では今後,高速増殖炉(FBR)を導 入し,関連する核燃料サイクル技術を確立するこ とにより持続可能でクリーンなエネルギーを確保 していくことを基本戦略としている。中国におけ る FBR の開発は、実験炉(CEFR)、原型炉(PFBR)、 大型炉(LFBR)の3段階からなっているが,資 源的問題から,増殖比を高め倍増時間を短くする ことを重視し,現在,建設中のCEFRは2006年に, PFBR は2020年の運転開始を目指し国の5ヶ年計 画に組み入れるべく申請の準備を進めている。高 速増殖炉の開発には長期間を要するため,他国か らの技術とノウハウを導入することが非常に重要 であり、もんじゅ」での経験を共用できること ま

た、「もんじゅ」が世界のFBR技術開発のために 重要な役割を果たしていくことを大いに期待して いる。

(2) 第2部 パネル討論

冒頭,岸本副理事長より,環境負荷の低減,経 済性の向上,核拡散抵抗性を高めることを可能に する高速炉サイクルシステム確立の必要性と「も んじゅ」が果たすべき役割、「ふげん」でのプルト ニウム利用実績の紹介等サイクル機構の役割につ いて説明を行った後,前述の講演において紹介さ れた各国の長期的なエネルギーの安定供給,地球 環境問題への対応についての取り組み方を基に, 再度,原子力がどのように人類に貢献できるか, また国際協力の必要性について議論がなされた。 結果として,原子力は,クリーンで持続可能なエ ネルギーであり,世界の平和と繁栄及び健全な環 境を維持するために不可欠であること,また,国 際協力はこれを実現するための技術的課題の解決 並びにエネルギーの安全保障,環境問題等世界的 な取り組みが必要な課題に対し有効な手段となり えるとの結論に達した。

最後に座長より、「もんじゅ」は再開に向けて着 実に歩んでおり「もんじゅ」が世界に貢献できる と思われる分野も見えてきたこと、及び本フォー ラムも4回目になり、内容のある議論ができるよ うになりこの会議が発展してきたことは、大変喜 ばしいとの感想を述べられ、締めくくられた(写 真3参照)。

写真3 セッション パネル討論の様子

5.セッション

『高速炉開発における「もんじゅ」の国際的利 用』;座長:関村 直人(東京大学大学院 教授) 各国の高速炉・次世代型炉の開発計画や開発状 況に関する議論を受けて,サイクル機構が開発を 進める「もんじゅ」の国際的役割や各国が考える 「もんじゅ」への期待について,サイクル機構, OECD/NEA,米国,仏国,韓国,露国,日本から の講演とパネル討論が行われた。

(1)第1部 講演『「もんじゅ」への期待』
 「高速炉開発における『もんじゅ』の役割」;柳
 澤 務(サイクル機構 理事 敦賀本部 本部
 長代理)

「もんじゅ」は,1995年12月のナトリウム漏えい 事故以降運転を停止しているが にれまでの設計 , 建設,運転の経験を通して高温ナトリウム,高速 中性子,プルトニウムの利用についての広範な技 術を培ってきた。地元のご理解を得て,できるだ け早期に運転再開を目指し,100%出力運転状態で の各設備の性能を段階的に確認し、設計の妥当性 を評価する。再開後10年程度を目途に「もんじゅ」 の安全安定運転を通して,故障等も含めた運転経 験を蓄積するとともに、各設備の信頼性を向上し, また,増殖性能等の燃料の燃焼に伴う炉心の特性 を評価確認し、発電プラントとしての信頼性の確 立」を目指す。特に, FBR 発電プラントの信頼性 向上のためには,高い設備利用率や定期検査期間 の短縮のための技術開発が重要である。このため、 FBR 発電プラントの運転・保守技術開発の一環と して,構造健全性確保のため,供用期間中検査等 の診断技術の開発,異常診断・監視技術開発,プ ラントの信頼性を定量的に把握し運転・保守の指 標を与える PSA 技術,放射線源モニタリングシス テム開発等の運転保守の高度化を進めており、こ れらを、もんじゅの安全安定運転を支える重要な 技術として強化していく。また,海外炉を含めこ れまでの運転経験のデータベースを構築し, FBR の運転・保守についての世界的標準を整備し、そ れをハンドブック化することで,技術の継承を 図っていく。さらにプラントの高性能化に向けた 技術開発を進めるとともに国際的研究開発の拠 点,人材育成・教育,理解促進の場としての活用 に取り組むとの抱負を述べた。

「国際的研究施設としての『もんじゅ』; Thierry DUJARDIN (OECD/NEA科学・開発担当次長)

天然資源をより良く利用できることと,長期間 の廃棄物管理という負担を軽減できることは,完 成した燃料サイクルを伴った高速中性子炉が有す る2つの主要な特徴である。

高速中性子炉で最も進化したものがナトリウム 冷却炉の設計であるが、この技術の開発にはいく つかの重要な課題があり、資本コスト、信頼性と 安全性の向上、また燃料サイクルを循環させる場 合の核拡散抵抗性の強化がある。このような課題 に対処するためには、国際的な枠組みの中で意欲 的で総合的な研究開発計画を打ち立てることが必 要であり、そのために「もんじゅ」のような既存 の研究開発施設を活用できるという利点を活かす 必要がある。

「もんじゅ」は既に建設が済んだ原型炉で,科学的,技術的及び人的な環境に恵まれており,「もんじゅ」は新しい世代の原子力エネルギーの開発を 支える無類の施設である。

持続可能性の面での高速中性子炉の利点を念頭 に置けば、「もんじゅ」で行うべき研究開発は、明 らかに燃料挙動の研究と様々な先進的な燃料、特 にマイナーアクチニドを含むものの試験、また先 進的な再処理の研究のために使用済み燃料を供給 すること、様々な条件下での安全性及び革新的な 技術上の対処方法の実証が挙げられ、OECD/NEA としても今後喜んで協力していきたいとの考えを 示した。

「GEN への取り組みと『もんじゅ』への期待」; James S. TULENKO(米国原子力学会 (ANS)副会長/次期会長)

米国では 現在104基の原子力発電プラントが稼動しており,2002年には総発電量の20%を供給した。米国の原子力発電プラントの稼動実績は数年にわたって改善され,2002年の国全体の平均設備利用率は90%であった。この実績とは裏腹に,1970年代から新規の原子力発電所の発注がないという現実が報告された。

さらに米国では,第4世代原子炉プログラムと 先進的燃料サイクル構想を計画通りに進めてい る。しかしこの両方の研究計画は,燃料試験が計 画通りに進むために十分な資金が継続的に拠出さ れる必要があること,さらに燃料開発分野の今後 の進展には,燃料試験施設,特に高速中性子を用 いた試験ができる施設が利用できるかどうかにか かっていることが示された。「もんじゅ」という原 子炉で高速中性子を用いた試験ができることが, 高速炉燃料の試験(原理の証明)を意味のある時 期に行うために重要であるとの考えが述べられた。

「高速炉及び燃料サイクル開発における「もん じゅ」の国際的利用」; Patrice BERNARD(仏 国原子力庁(CEA)原子力開発局 原子力技術 開発本部 本部長)

仏国におけるフェニックス高速炉の現状,さら にアクチニドを全体管理するという考え方,燃料 サイクルを行う場合の研究開発についての報告が あり,これらを「もんじゅ」の中で発展させてい きたいという強い要望と決意が示され,国際協力 が必要であることが強調された。仏国では,2012 年までにアクチニド抽出の実証を目指しており, 「もんじゅ」において大規模なマイナーアクチニド (MA)燃焼を実証することに期待するとの表明が なされた。

- 全てのアクチニドを抽出することで高レベル 長半減期廃棄物が持つ放射性毒性がもたらす長 期間の負担を激減することができる。
- 2)高速中性子炉の中で全てのアクチニドを再利 用することで,全ての天然ウラン資源を活用す ることができ,これはさらに数千年にわたる資 源をもたらすことを意味する。
- 3)全てのアクチニドを一括保管することにより、 核拡散抵抗性が高くなる。

「韓国における高速炉技術開発計画と「もん じゅ」への期待」; Moon H. CHANG(韓国原子 力研究所 新型炉技術開発團 團長)

韓国では,2015年までに原子力における電力需 要の割合を35%まで引き上げることが計画されて いる。しかし大きな電力需要がある一方,発電の ための国産天然資源がほとんどない韓国におい て,ウラン資源の効率的な利用と使用済燃料の貯 蔵の問題が生じており,次世代の原子炉として高 速炉を考えている。高速炉の研究開発を行うため に他に例のない貴重な財産である「もんじゅ」の 利用,国際的協調等「もんじゅ」に対して大きな 重要性と期待を持っていることが示された。

「もんじゅ」を活用した協力分野として,1)安全 解析手法の開発,2)ナトリウム関連技術の開 発,3)運転保守技術の開発,4)新型の燃料, 材料の開発について提案された。 「ロシアにおけるナトリウム冷却型高速炉の開 発状況と「もんじゅ」への期待」; Alexander G. TSIKUNOV(露国物理・動力工学研究所(IPPE): 原子力科学研究部 次長)

ロシアにおけるこれまでの高速炉開発の歴史 (120炉年)の中で,BN600の具体的な開発につい て述べられた。ロシアではBN600において,22年 間の運転で,ナトリウム漏れ(1000kg)を経験し たにもかかわらず,高い稼働率を持って高速炉を 運転してきた実績について述べられた。また次の 高速炉の研究開発も着実に進めており,その中で 燃料サイクル等「もんじゅ」の果たすべき役割に ついて ループタイプの特徴を踏まえMOXを利用 した燃料サイクルの開発及びMA燃焼開発に期待 していると具体的に示された。稼動中の高速炉は 少なく,それらは寿命を迎えつつあり,世界中で この分野の進展における「もんじゅ」という原子 炉の役割は非常に重要になることが示された。

「高速炉開発における「もんじゅ」の国際利用」; 三島嘉一郎(京都大学大学院 教授)

大学の立場から人材育成も含めた施設運用,す なわち現場を持つことの重要性,さらに燃料や材 料の照射試験の照射場としての利用も重要である との考え方が示された。照射試験炉は高速炉のみ ならず核融合炉の開発においても重要であるにも かかわらず,世界的に見ても所要の照射試験に利 用可能な高速炉は数が少なくなりつつあるのが現 状である。「もんじゅ」は,中型発電炉であり,工 学規模での照射が可能であるため,運転を再開し て照射場としての利用が可能になれば,国際的に も貴重な照射試験施設になる可能性がある。その 場合,国際的ニーズを反映しつつ照射試験施設と しての活用を図るには,その計画段階から国際協 力を進めることが重要であり 設備面から言えば, 「もんじゅ」を照射試験施設として効果的に活用し ていくには 試験体の崩壊熱の減衰に要する時間, 移送等の問題を考慮すれば、照射試験体の照射後 試験をサイトで行うことのできる照射後試験施設 を用意することが望まれる。照射試験施設として 効果的に活用していくためには,照射用炉心の検 討,サイト設置型照射後試験施設の設計,照射集 合体の設計等を計画段階から国際協力の下で進め る必要がある。

(2) 第2部 パネル討論

第2部のパネル討論では,各国のエネルギー政

策を踏まえて,1)国際的協力になぜ、もんじゅ」 が適しているのか、2)「もんじゅ」の立場からど のように国際協力ができるのかに関して討論が行 われた。そして、「もんじゅ」には現に設備があ り、豊富な経験もあること、培った人的支援(JNC の技術)が優れており、国際協力をすることで競 争的環境を作り出せることがあげられた。また、 原子力開発は、核不拡散の面、資金の面より国際 協力なくしては行い得ない状況であり、「もん じゅ」の運転再開に当たっては最初から国際協力 を計画して進める必要があるとした。

次いで「技術は実用化されることが重要で、「も んじゅ」はどのように貢献するか」について議論 され、デザインよりエンジニアリングが重要であ る点が述べられ、「もんじゅ」においてはデータ収 集後分析し透明性を持たせて皆に伝えることが重 要であるとした。さらに、技術の実証において現 場を持ち、また維持することが工学的な発展及び 研究者・技術者の育成にとって重要である点も強 調された。

次に「研究開発拠点として地域がどのように役 割を果たしていくか」について議論され,特化し た研究は地域の大学と共に進めている仏国の事例 が紹介された。

最後に関村座長から、「もんじゅ」は国際的にも 認められた研究開発のリーダーになるべきである こと、技術は技術者だけのものではなく社会と地 域に結び付いたものであること、これまでの経験 を通して敦賀地区が世界の研究開発拠点になって いくものであるとのまとめの言葉をいただき、本 セッションが締めくくられた(写真4参照)。

写真4 セッション パネル討論の様子

6.セッション

『地域の技術発展を目指して』;座長:近藤 道 也(財団法人若狭湾エネルギー研究センター 前所長)

標記テーマについて各パネリストの方々より討 論が行われた。

冒頭に近藤座長より,サイクル機構は電力会社 とは性格が異なり,研究開発能力も研究開発でき る人材も多く有しており,特別な地位を築いてい る。しかし,技術の蓄積,人材等巨大なポテンシャ ルを持ちながら地域発展に十分活かしきれていな い。そこでこれら技術が地域の技術発展に寄与で きないか討論したいと提案された。

まず,サイクル機構からは「もんじゅ」「ふげ ん」をベースに福井を1)FBR技術開発の国際的拠 点,2)原子炉廃止措置研究拠点,3)原子力人 材育成拠点からなる原子力研究開発拠点へ発展さ せていくべく構想を練っていることが示された。 研究拠点化の推進のために,1)研究開発機能の 強化,2)人材育成,3)産業の創出・育成につい て具体的なアクションプログラムの検討を進めて いると提案した。

敦賀市からは,電源立地地域対策交付金と発電 所の固定資産税による社会インフラストラク チャーの整備,地域経済効果として,従業員・関 連会社職員の消費と発電所からの地元発注の影響,敦賀3,4号機の工事開始による経済効果が 期待できることが示された。また,原子力企業の 地場産業への工業面の振興は脆弱といわざるを得 ないとの意見も出された。

地元企業からは,今までの経験では,ニーズに 応じて技術開発されたものが新たなシーズと変化 し,市場を開発してきていることが示された。付 加価値を上げて利益を上げることが目的であるが, 利益だけに固執しているわけではなく,地球環境 の維持にも繋がるものを考えている。エネルギー 研究開発拠点化構想計画策定委員会に参加して, 具体的な検討に協力していきたいと提言された。

地元経済界からは,地場産業の発展は原子力か らと考えており,敦賀3,4号機の速やかな着工, 「もんじゅ」の改造工事の着手を願っていることが 示された。敦賀の立地のメリットを活かして,地 元受注の拡大を願い,地元企業育成,さらにフォー ラム等の情報発信,技術力の拡大を進めていると 説明された。 福井大学からは,独立専攻大学院「原子力・エ ネルギー安全工学専攻」について示唆された。基 幹講座では,原子力安全工学と地域構成工学で構 成し,原子力施設の安全性を外部から認められる レベルまで向上させるための研究を行い,連携講 座では,原子力発電安全工学,プラントシステム 安全工学を原子力安全システム研究所とサイクル 機構の協力を得て立ち上げ,専攻全体として原子 力発電所と地域住民との共生のための研究を行う とした。人材として,専門性と統合性を兼ね備え た人材が必要であるとし,国家,国際的な人材育 成機関として,自由な立場で国際貢献も果たせる との意見が出された。

最後に, 敦賀をエネルギー特区として, 原子力 による水素製造や水素センサーの開発利用も進 め, 原子力以外の方も参入できるようにしたいと の意見も出た。全体を通して海外から著名な方を 国内から専門家を招聘し, 内容のあるフォーラム になった。今後も情報発信の役割を果たしていく ことが重要と締めくくられた(写真5参照)。 7.まとめ

本フォーラムでは,参加した各国から原子力に 本腰を入れて取り組もうとする真摯な姿勢が伝え られた。特に第4世代原子炉システム(GEN IV) への取り組みが多く報告され,高速中性子場を提 供しうる「もんじゅ」の国際的な有用性が,各国 の代表から強調された。

一方,「もんじゅ」や「ふげん」を中心として 福井県を原子力の研究拠点としていくことに対 し,地元からの熱い期待を感じることができた。 また,原子力熱中塾では敦賀短期大学生や敦賀女 性エネの会の方々にも積極的にご参加いただくこ とができ,敦賀国際エネルギーフォーラムが,地 元にも広く根を張り出していく感触をつかむこと ができた(写真6参照)。

今回のフォーラムは, 敦賀国際エネルギー フォーラムが, 国際性と地域性を融合させ, エネ ルギーに関する情報を敦賀から世界に発信する会 議として大きく育っていくことを予感させるもの であった。

写真5 セッション パネル討論の様子

写真6 原子力熱中塾の風景

- 高速増殖炉サイクルの研究開発 -高速増殖原型炉「もんじゅ」の研究開発

1. 高速増殖原型炉「もんじゅ」

2003年度設備点検が2003年5月6日より開始され,2004年3月12日に終了した。設備点検及び設

備保全実績をそれぞれ表1及び表2に示す。 旧科学技術庁の「もんじゅ安全性総点検チーム」 の報告書「動力炉・核燃料開発事業団高速増殖炉

:計画:実績

	-		2003年度										備	考	i	
坦	H	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月			
1次主冷却	印系設備				1 次主冷却系循環ポンプ A)メカニカ	ルシール音	等			
2次主冷却	印系設備				2 次主冷却系循環ボンプ(B)ボニーモータ等											
補助冷	却設備				1 1 1 1 1	補助冷却設備(A)送風機等										
2次メンき 冷却系	テナンス 設備				2次.	メンテナン	ノス冷却系	電磁ポンス	プ等							
原子炉補機》	令却水設備		原 (<i>F</i>	〔子炉補機〕 ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	冷却水熱交 (B)	·換器 , 冷 i	却水ポンフ (C	プ等) 	l							
原 子 炉 補 海 水	○機 冷 却 設 備		(4	()	原子炉補 (B)	機冷却海水	〈ポンプ等	(C)	l							
1 次アルゴ 設	ンガス系 備		1 次アルゴンガス系圧縮機 B 筹													
機器冷却	系 設 備		機器冷却系冷凍機(C)等 ポニーモータ冷却 電磁ポンプ冷却 ユニット ユニット(A)								プ冷却 A)	電磁ポンス ト(A)点核 期変更	プ冷却: きにつし	ユニッ いて時		
制御用圧縮	空気設備		制御用空気圧縮機等 (A) (B)													
ディーゼル教	^毪 電機設備		非常用ディーゼル発電機,内燃機関等 (A) (B) (C)													
所内電	源設備			ВУŚ	ァクラ , パ'	フーセンタ	"等	1	低圧配電盤	点検						
無 停 電 一般計装電	電 源 電 源 設 備					交流	, 直流無停	『電電源 ,	計算機用電	源,一般言	計装用電源	等 				
屋 外 開 主 要 変 圧	閉 所 器 設 備	2	275kV 特高開閉所設備等 77kV 特高開閉所設備 ,主要変圧器等													
燃料交	換設備	燃料出ノ	、孔・燃料ダ	を換孔ドア	バルブ等			- - - - - - - -								

表 1 2003年度設備点検主要工程
表2 2003年度設備点検期間内の設備保全工程

:計画:実績

в в			2003年度								(#	¥			
山田	H	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	1/#3	ち
もんじゅ港湾内の浚渫				取水口 ,も	んじゅ港の)浚渫等			·						

もんじゅ安全性総点検結果について」において改 善が必要との指摘があった種々の事項に対して, 安全性総点検直後から対応計画を定め設備改善を 行ってきた。2003年度も設備の信頼性向上及び運 転操作性向上を目的として実施してきており,次 年度も引き続き実施する予定である。

「高速増殖炉もんじゅのナトリウム漏えい対策 等にかかる設計及び工事の方法の変更(設工認変 更)」について 2004年1月30日,経済産業大臣か らの認可を戴いた。併せて,電気事業法に基づく 工事計画の変更認可申請書等についても,認可戴 いた。これまでの経緯は以下の通り。

2001年6月6日:原子炉設置変更許可申請 2002年12月26日:原子炉設置変更許可受領 2002年12月27日:設工認変更申請 2003年9月12日:設工認変更申請一部補正 2003年12月26日:設工認変更申請一部補正 「研究開発段階にある発電の用に供する原子炉

の設置,運転等に関する規則」の改正が2003年10 月1日に行われた。この改正を受け,12月24日, 国に対して,新型転換炉ふげん発電所及び高速増 殖炉もんじゅ建設所の保安規定の変更認可申請を 行った。本期間中,ヒアリングを実施しながら品 質保証等の取り込みに伴い,事業所規則の改正作 業を実施している。

2003年度第4回保安検査が2004年3月1日~19 日にかけて実施された。

福井県のもんじゅ安全性調査検討専門委員会の 最終報告書が2003年11月14日に福井県知事へ提出 され,21日には福井県知事からサイクル機構への 要請事項を受領したことを受け、「もんじゅ」の 安全確保対策の強化や研究開発拠点化の推進等に ついて社内検討を進め,2004年3月9日に福井県 議会への説明を行った。

地域の皆様にサイクル機構の業務及び原子力の 基本的な事項も含めて理解していただくことを目 的に「さいくるミーティング」を継続して実施し ている。2001年10月1日から開始して 2004年3月 30日で385回,11 &15人の方々と交流を図った。な お 6月12日より「理解促進活動の強化キャンペ-ン」を展開し,地元区長や企業への訪問を含めて, 取り組みを強化している。4月26日,27日には第 4回敦賀国際エネルギーフォーラムを開催する予 定である。このフォーラムの中で,地元の方々と じっくり話し合う場として原子力熱中塾を設けて いる。一方,「もんじゅ」見学会を継続的に開催 し,当該四半期期間中で921名(累積76,226名) の方々に現場を直接見学していただくとともに, ご意見を頂戴した。

2.「もんじゅ」に係る研究開発

「もんじゅ」による研究開発,FBRサイクル総 合研修施設や運転訓練シミュレータを用いた運転 員・保守員の教育訓練,国際協力,敦賀地区の技 術情報管理及び外部機関との研究協力にかかわる 業務を進めている。

2.1 研究開発

(1) プルトニウム利用高度化を目指した研究開発 原子炉の運転サイクル期間を延ばし、プラント 稼動率を上げるため、高速増殖炉燃料を高性能化 し経済性を向上させる研究開発を進めている。

高速増殖炉燃料の高性能化については,当初設計の安全・安定運転を達成した後の高度化された 炉心体系への移行計画や,マイナーアクチニド照 射試験計画などについて検討を継続した。「もんじ ゅ」制御棒の長寿命化については,ダブルポーラ スプラグ(多孔質金属製の端栓)型ナトリウムボ ンドピンの成立性の見通しを確認するためのナト リウム洗浄後の長期保管試験等を実施した。

(2)供用期間中検査技術開発

供用期間中検査技術開発については、主として, 原子炉容器廻り検査システムと蒸気発生器伝熱管 検査システムの開発整備を進めている。原子炉容 器廻り検査システムについては,検査装置への搭 載を検討しているEMAT(電磁超音波探傷器)に ついて、センサー用磁石の小型高性能化のための 構造検討を行っている。試作したHalbach構造の EMATの超音波強度、超音波指向性等の200 での 基本性能を調べるために高温特性解析と高温試験 を実施し、解析結果と試験結果が良く一致するこ とや懸念された不可逆な高温減磁は少ないことが わかった。蒸気発生器伝熱管検査システムについ ては、ECT(渦電流探傷)センサー性能の向上を 目指し、センサーの解析・試作・試験を進めてお り、実寸大のモックアップ装置を用いて各種人工 欠陥の検出試験を継続した。

(3)運転・保守支援技術,機器・システム技術の 高度化

運転・保守を支援するためのシステム開発、デー タベースの整備 事故・トラブルを未然に防ぐため の異常診断技術の開発等を進めている。

運転・保守支援技術開発については「もんじゅ」 作業票・保修票管理システムの開発, CADデータ の整備を継続して進めている。

予防保全技術の開発として,地震時基礎版スペ クトル速報システムの整備を終了した。地震時構 造健全性速報システムの開発を進めた。また先行 高速炉のトラブル事例について「もんじゅ」への 反映事項の抽出を進めた。

(4) もんじゅプラント評価

「もんじゅ」性能試験等の実機データから,系統 設備の設計余裕及び設計解析の妥当性を示し,得 られた知見を将来炉の設計に資することを目的 に,もんじゅ設計技術評価を実施している。図1 に「もんじゅ」プラント熱過渡裕度評価について 示す。

高速炉の設計条件や仕様を決める際の判断を支援するソフトウエアの高度化を進めるとともに, 蒸気発生器の内部挙動を詳細に把握するための解 析コードの整備を進めている。また,1次主冷却 系設備を中心にスクラムフォルトツリーの検討・ 評価を実施している。

(5) FBR 実用化戦略調査研究

軽水炉に比肩できるFBR発電コストを達成する ためには、定期検査の期間を短縮し、プラントの 稼動率を向上させる必要があり、大洗工学セン ターを中心に進めている実用化戦略調査研究の一 環として、国際技術センターでは運転・保守コス トの低減のための検討を行っている。

高温用蒸気発生器体積検査技術の開発について

図1 プラント熱過渡裕度評価

は,試験体(蒸気発生器伝熱管)を取付ける既設 ナトリウムタンク上蓋の改造を実施した。また, ナトリウム中目視検査技術の開発については,水 中で実験を行うために超音波装置の仕様を決め, ターゲットモデルを製作した。

2.2 教育訓練

運転員,保守員の教育訓練を2003年度FBRサイ クル総合研修計画に基づいて計画的に進めてお リ,1月から3月にかけての3ヶ月分の研修とし て5コースのナトリウム取扱研修を8回,5コー スの保守研修を5回実施した。また,12月より約 3ヶ月に渡りナトリウム総合漏えい監視盤の設置 や炉心モデルの高度化から成るシミュレータの改 造を実施した。一方,本社と共催の形で「FBR応 用講座」を開催するとともに,受託研修として 保安院ナトリウム取扱研修を実施した。さらに, 2000年度から継続的に実施している仏国ナトリウ ム学校講師による特別講座を3月に3日間に渡っ て開催(延べ74名受講)し,海外炉技術の入手に 努めた(写真1)。

2.3 国際協力

「もんじゅ」国際技術センターを国際的に開かれ た共同研究の場として研究開発を推進するため, 従来から進めている運転経験に関する情報交換に 加えて、「もんじゅ」における1)運転前試験, 2)照射試験関連、3)高速炉技術の保存と活用 の三つを重点課題として国際協力を推進してい る。特に照射試験関連では2003年12月に仏原子力 庁と、「もんじゅ」を活用したMA燃焼試験につい て、両者の専門家間で事前検討を行っていくこと で合意したことから、社内にワーキンググループ 概況報告

を設けて、実現に向けて日仏間で協議検討すべき 課題の洗い出しなど検討を開始した。また、 BNFLとの「もんじゅ」に係る協力について、サ イクル機構より10課題を提案し、実現に向けての 調整を進めている。

2.4 技術情報管理

「もんじゅ」プラント運転支援に必要なネット ワーク等情報処理環境,性能評価等に利用する共 有科学技術計算機環境の運用・管理,事務業務・ FBR研究開発業務に必要な計算機等のITインフラ 環境の運用・整備・高度化を継続した。本期にお いては,本部事務所や福井事務所等へのファイ アーウォール設置,ウィルス(Netsky.J)対応, 下期改善提案の選定などを実施した。

3.外部機関との研究協力

若狭湾エネルギー研究センターとの研究協力と して「B₄Cペレットのイオン照射実験による中性 子照射時の組織損傷に関する基礎研究」や「ナト リウム取扱い技術にかかわる社会的受容性研究」 について2003年度業務を実施した。 福井大学と4件の共同研究(ヘリカルコイル 型蒸発器管内の沸騰現象の可視化実験, 高速増 殖炉構造材の超長寿命疲労強度特性に関する基礎 研究, FBRプラントにおけるき裂進展評価手法 の高度化に関する研究, 高出力ミリ波セラミッ クス焼結法による制御棒材の改良と長寿命化)を 実施した。

先行基礎工学研究協力としては福井大学との光 画像計測を応用した気液二相壁面乱流の特徴抽出 に関する研究,京都大学とのFe基系ホイスラー合 金熱電モジュールの高温システム適合技術に関す る研究につき共同研究を実施した。

大阪大学との共同研究として,原子炉容器廻り 検査装置に搭載を検討しているEMAT(電磁超音 波探傷器)に用いる高性能磁石配置の検討を進め ており,EMATを試作し基本特性を調べている。 また,もんじゅ性能試験データに基づく増殖比・ 反応率評価と評価手法の高度化等の検討を実施し た。

九州大学との公募型研究として,蒸気発生器の 伝熱管内に挿入された探傷プロープの振動ノイズ の原因究明を目的とした検討を進めており,プ ロープに取付けた加重計と加速度計から得られた データの整理分析を行った。

また,福井大学大学院工学研究科に非常勤講師 を派遣し,「エネルギー・環境概論」の講義を行 った。更に,福井県産業支援センターが中核機関 となって,文部科学省から補助を受けて実施する 「都市エリア産学官連携促進事業(福井まんなかエ リア)」に参画した。

(敦賀本部)

- 高速増殖炉サイクルの研究開発 -高速増殖炉サイクル実用化戦略調査研究

1.はじめに

高速増殖炉(FBR)サイクル実用化戦略調査研 究は,安全性を大前提とした上で,軽水炉サイク ル及びその他の基幹電源と比肩する経済性を達成 し得るよう,FBRサイクルが本来有する資源有効 利用,環境負荷低減等の長所を最大限に活用した 実用化像を提案する。併せて将来の社会の多様な ニーズに柔軟に対応できる開発戦略を提示すると ともに,FBRサイクルを将来の主要なエネルギー 供給源として確立するための技術体系を整備する ことを目的としている。

本研究は、1999年7月から、サイクル機構、電 気事業者、(財)電力中央研究所(電中研)及び日 本原子力研究所(原研)などからなるオールジャ パン体制で研究開発を開始し、フェーズ (1999 年度、2000年度)及びフェーズ (2001年度から 5年間)と、段階を踏んで進めることとしている。 さらに、その後の研究開発については、5年程度ご とにチェック・アンド・レビューを受けながら、 ローリングプランで進め、競争力のあるFBRサイ クル技術を2015年頃までに提示することを目標と している。

フェーズ では、フェーズ で抽出したFBRシ ステム及び燃料サイクルシステムに関する有望概 念について、可能な限りの定量的な評価が実施で きるレベルまで設計研究を深めるとともに、技術 的選択の根拠を示す上で必要となる要素技術開発 (基礎データを取得する試験の実施設計評価のた めの解析技術の整備等)を実施し、これらの成果 を基にFBRサイクル全体の整合性に配慮しなが ら、実用化候補概念として有望な候補(複数)を 選定し、併せて必要な研究開発計画を提示するこ ととしている。

2003年度第4四半期では、電気事業者等と協議・調整を図りつつ、フェーズの中間とりまとめ報

告書及びエグゼクティブ・サマリー(要約版)の 作成を実施するとともに,原子力学会(2004年春 の年会)にその概要を報告した¹⁾。また中間取りま とめの成果について,2004年度の研究開発課題評 価委員会にて審査を受けるための準備を実施して いる。

2. 高速増殖炉システム

炉システムに関するフェーズ 研究成果の中間 とりまとめとして,基幹電源としてのナトリウム 冷却炉,鉛ビスマス冷却炉,ヘリウムガス冷却炉, 水冷却炉及び分散電源としての小型炉を対象に技 術総括を行った。

ナトリウム冷却炉(図1参照)

ナトリウム冷却高速炉としては,先進ループ型 炉を代表概念に選定し,中型モジュール炉(75万 kWe,4モジュール)及び大型炉(150万kWeツ インプラント)について検討している。炉心燃料 としては、従来から開発が進められてきた酸化物 燃料と,開発要素が相対的に多いものの燃焼度の 向上や燃料インベントリの低減が期待できる金属 燃料を対象とした。このナトリウム冷却炉の概念 は 実用化のために物量削減を実現する革新技術, 高い稼働率を確保し優れたプラント信頼性・経済 性を実現する技術が必要であるが、これまでの豊 富な開発実績から相対的に高い確度を持って技術 的実現性が見通せる概念である。ただし ユーザー にとって使い勝手のよいシステムとしていくため に,保守・補修性の向上を図ったシステム設計と, それに関連した技術開発が今後必要である。

フェーズ 後半は概念検討と枢要な革新的技術 の成立性を見極めるとともに,保守・補修性,高 信頼性蒸気発生器等の課題解決に向けた検討を進 める。また,開発の確実性を高める観点から,開 発リスクのある革新技術を用いない場合の代替設 計概念の検討と,これによる性能,経済性への影 響評価を実施する。

鉛ビスマス冷却炉(図1参照)

鉛ビスマス冷却高速炉は冷却材重量が過大とな **リ,耐震性の観点からループ型及び150**万kWe規 模の大型炉の成立性が見通せないため、中型モジ ュールタンク型炉を選定した。主冷却系の循環方 式については, 鉛ビスマス冷却材が自然循環炉に 適した特性を持つことから自然循環炉の実用化の 可能性も追求したが,耐震性,経済性,炉心性能 及び保守・補修性の観点で優れる強制循環炉(70 万kWe級,4モジュール)を代表概念として選定 した。鉛ビスマス炉では被覆管腐食制限等(温度 及び流速制限)から燃料体積比が低く抑えられ, 酸化物燃料では増殖比等の炉心性能の目標を達成 することができない。そのため,開発に長期を要 するものの炉心性能の向上が期待できる窒化物燃 料と組み合わせた設計を代表概念とした。これま での検討の結果,システムの簡素化により建設単 価目標を達成可能な概念を構築した。窒化物燃料 と組み合わせることで,ナトリウム冷却炉と同程 度の高い炉心性能を達成可能である。ただし,材 料腐食に関する見通しが得られていない状況であ リ,限定的な知見から暫定した腐食制限条件の下 で設計した結果であることに留意する必要がある。

フェーズ 前半から実施している材料腐食試験 により,設計研究開始時点で暫定した材料腐食評 価式より厳しい結果が得られつつある。このため, フェーズ 後半は材料腐食試験を継続するととも に,その結果を反映した評価式に基づく経済性の 評価,保守補修の考え方の整理(材料が厳しい腐 食環境に晒されることを考慮),炉心性能の評価 (被覆管の腐食代等を見直した条件での評価)を実 施する。

ヘリウムガス冷却炉(図1参照)

ヘリウムガス冷却高速炉としては,大型炉(約 110万kWeツインプラント)について検討を進め ている。炉心燃料に関しては,被覆粒子型燃料を 対象にかご型集合体構造,六角ブロック構造等の 新型燃料形態についても検討を進めている。中間 評価においては,フェーズ 前半の研究で最も検 討が進んでいる被覆粒子燃料・横方向流冷却集合 体を代表概念とした。なお,酸化物燃料では十分 な性能が引き出せないことから,開発期間は長期 になるものの,高い炉心性能を引き出せる窒化物 燃料を検討対象とした。これまでの検討の結果, 熱効率が高く多目的利用への適用性のある概念と して,炉心出口温度850 という特長を有する概 念を構築した。ただし,本概念はヘリウムガスに よる冷却能力が劣るため燃料体積比や出力密度が 制限され,ナトリウム冷却炉等の液体金属冷却炉 と比較して炉心性能が劣る。技術実現性に関して は,鉛ビスマス冷却炉は材料開発等の研究開発, ヘリウムガス冷却炉についても炉心・燃料に関す る概念構築や耐高温燃料材料等の研究開発が必要 であり,両者とも実用化には基礎的なレベルから の継続的な研究開発を行う必要がある。

フェーズ 後半は検討対象としている複数の炉 心・燃料概念(被覆粒子燃料・冷却材横流れ集合 体型及び六角ブロック型)の技術成立性,安全性 評価に係わる課題等の検討を深め,有望な炉心概 念の明確化を進める。

水冷却炉(図1参照)

水冷却炉としては、フェーズ ではPWR型高速 **炉**, BWR型高速炉及び超臨界圧水冷却高速炉 (SCFBR)を検討対象候補とした。フェーズ で は,PWR型高速炉は重水を利用するため設備費が 高くなること、また、SCFBRは材料開発等の基礎・ 基盤的研究開発が必要であること等から、水冷却 炉の評価対象としては設計検討が進んでいる BWR型高速炉を選択した。水冷却炉は、炉心以外 は基本的にABWR と同様であることから、プラン ト技術について豊富な軽水炉の設計・運転経験が 活用できる。このため,プラント建設単価は将来 軽水炉と同等とみなせるものの, 炉心性能は,燃 焼度の限界,燃料インベントリの増加等の点で他 の炉型のレベルに到達しない。実用化には高速中 性子・水冷却環境下における被覆管材料開発,高 富化度燃料より成る炉心の損傷時の影響緩和対策 に関する研究開発等が必要である。

フェーズ 後半は,水冷却炉の技術的成立性に 係る知見を得るため,研究開発成果を取り込んだ 評価を行う。

小型炉

小型炉については炉システムとしてNa冷却小 型炉,鉛ビスマス冷却小型炉,及び多目的利用と して水素製造技術を検討対象とした。フェーズ 前半の検討の結果,炉システムに関して20年以上 の長期燃料無交換と高い受動的安全特性を満足し ながら,小型炉の特徴を活かしたコンパクトな設

図1 各冷却材のFBRシステムのプラント概念

計を採用することによりスケールデメリットを克 服する可能性を有する概念を構築した。ただし, 出力密度を抑制しつつ燃料インベントリを増加さ せるため炉容器径が大きくなること,長期燃料無 交換と現実的な定期検査頻度の整合を取る必要が あること等の課題を有する。また,原子力の多目 的利用として水蒸気改質法による水素製造プラン ト概念の構築,低温熱化学法による水素製造プラ ント系統概念の検討を行った。

フェーズ 後半は,これまでの検討で明確にした小型高速炉の魅力追求に係る課題,魅力追求と 経済性とのトレードオフの関係等に関する知見を 基に,有望なプラント像を構築する。

3.燃料サイクルシステム

フェーズ において選定した再処理システム概 念(先進湿式法,酸化物電解法,金属電解法)及 び燃料製造システム(簡素化ペレット法,振動充 てん法,鋳造法)の概念ごとに,これまでの要素 技術開発成果を踏まえ,設計の合理化・詳細化を 図るとともに,中間とりまとめとして各概念の技 術総括を行った。

(1) 再処理システム

先進湿式法

先進湿式法は,従来の湿式法で培われた溶媒抽 出法をベースに,ウラン及びプルトニウムを低除 染でマイナーアクチニド(MA)とともにリサイ クルすることによる核拡散抵抗性向上,環境負荷 低減性,プロセス合理化による経済性向上を狙っ て新たに構築された概念である。この方法は高除 染体系での豊富な実績があり,技術的成立性が高 く早期の実用化が期待できる。ただし,小規模施 設とした場合のさらなる経済性向上を追求するた め,革新的技術として超臨界直接抽出法等の技術 的成立性の見通しを得ることが課題である。

酸化物電解法(乾式法)

乾式法のうち,ロシアRIAR(原子炉研究所)で 開発された技術をベースとした酸化物電解法は, 製品がそのまま振動充てん法燃料製造工程の燃料 材となることから,簡素なシステムとなり,小規 模施設では比較的経済性に期待ができる。ただし, マイナーアクチニドの回収など技術的成立性を左 右する基礎的な課題が多く,それらの課題解決の 見通しを得ることが必要である。

金属電解法 (乾式法)

米国ANL(アルゴン国立研究所)を中心に開発 された技術をベースとした金属電解法は,これま での米国の実績や国内の試験研究により,プロセ スの技術的成立性に関わる課題は多くなく,小型 施設でも経済目標に対して高い適合度を有してい る。ただし,使用済燃料を用いてのTRU回収技術 などの枢要技術確認が必要である。今後,高レベ ル放射性物質研究施設(CPF)内の試験設備等を 用いた国内での基礎試験を実施していく一方で, 国際協力を活用することにより効果的な開発が可 能となる。

(2) 燃料製造システム

簡素化ペレット法

ペレット法燃料製造システムは,従来から酸化 物燃料と窒化物燃料で適用されており,特に高除 染の酸化物燃料に関しては豊富な製造実績があ る。簡素化ペレット法は,成型焼結工程の大幅な 簡素化等を図り,従来に比べ工程数を約1/3に 削減できる可能性を有している。低除染・TRU燃 料製造においては,セル内での遠隔・自動化とメン テナンスフリーを基本としており,工学規模での 機器・設備の成立性の確認が必要となる。

振動充てん法

振動充てん法はペレット法に比べ微粉末が少な いこと、燃料粒子を直接被覆管に充てんすること や工程機器の動作が単純であることから、遠隔自 動化に適しており低除染・TRU燃料製造技術とし ては魅力的な技術である。ロシアにおいて工学規 模の振動充てん燃料製造法として、セル内での遠 隔製造の実績があるため、基本的にはその実現性 は見通せるものと考えられるが、実際の燃料を用 いた粒子製造試験によってその特性を明らかにす ることや、量産システムの開発が課題である。

鋳造法

金属燃料の鋳造法燃料製造システムは,米国 ANLで開発された射出成型法をベースとしてい る。このシステムは比較的工程が簡単で,装置が 小型化でき,かつ遠隔操作に向いている。米国で の実績により基本プロセスは比較的高い成立性を 有しているものと考えるが,燃料の均一性等の確 認や,鋳造型(石英ガラス製)の廃棄物低減(再 利用)等が課題である。

4.統合評価 他

高速増殖炉システムと燃料サイクルシステムの 有望な組み合わせを導出するため、炉及び燃料サ イクルシステムの技術総括で抽出されたそれぞれ の有望な概念について、技術的な整合性を考慮し、 FBRサイクル概念を組み立て、これらについて多 面的評価を実施している。

5つの開発目標(安全性,経済性,資源有効利 用性,環境負荷低減性,核拡散抵抗性)に対する 適合度を,それぞれの評価指標の特性に応じた評 価手法を用いて検討している。

中間評価においては開発目標に対する適合度を 求め,FBRサイクル候補概念について暫定的では あるが特徴を明らかにした。なお,開発目標に対 する適合度に加えて,フェーズ 最終とりまとめ に向けて,技術的実現性や社会的受容性の評価を 加味していく予定である。

また,高速増殖炉システム及び燃料サイクルシ ステム各々の候補概念の研究開発の狙いを明確に した上で,現段階までに得られた技術的知見に基 づいて,候補概念ごとの研究開発計画(案)を作 成した。

今後,フェーズ 最終とりまとめに向けて,設 計研究と要素技術開発の成果を採り入れ,社会的 ニーズへの適合性の高いFBRサイクル概念を明確 にしていくとともに,実用化に至るまでの研究開 発計画を立案していく。

参考文献

1) 大野他,総合講演 "FBR サイクル実用化調査研究フ ェーズ の中間評価"日本原子力学会,2004年(第 42回)春の年会

本社:経営企画本部
FBR サイクル開発推進部

- 高速増殖炉サイクルの研究開発 -高速増殖炉の研究開発

1. 高速増殖炉固有の研究開発

高速増殖炉(FBR)の研究開発は,安全確保を 前提として,「経済性向上,資源の有効利用,環境 負荷低減,核不拡散性の確保」を目標に,燃料サ イクルと整合をとり,実用化に向けて競争力のあ る技術に仕上げることを目指している。

このため,大洗工学センターを中心に,FBR 固 有の特徴(高速中性子の利用,高温構造システム, 液体金属を冷却材として利用等)を踏まえ,「安全 性の研究」,「炉心・燃料の研究」,「構造・材料の 研究」をFBR基盤技術の3本柱とし,これらの研 究を米国,仏国,露国等との国際協力を活用して 効率的に実施している。

現在は,FBR サイクル実用化戦略調査研究にお ける種々の候補概念の成立性判断や絞込みと国の 安全研究に成果を反映することを目的に,重点化 を図って研究を進めている。

1.1 安全性の研究

FBRの安全性の研究は,FBRの特徴を十分に考 慮し,FBRの実用化を支える基盤研究としてFBR サイクル実用化戦略調査研究へ成果を反映するこ と,国の安全規制への貢献の観点から安全基準類 や安全審査のための判断資料の提供等,国の研究 機関として安全研究を推進する役割を果たすこ と,サイクル機構が有する高速実験炉「常陽」,高 速増殖原型炉「もんじゅ」の許認可及び安全性維 持・向上に主体的に貢献を果たすことを目的に研 究の重点化を図り進めている。

確率論的安全評価に関する研究

確率論的安全評価に関する研究は,FBRの安全 性を包括的に評価するための確率論的安全評価 (PSA)手法及びFBR機器の信頼性データベースを 開発・整備するとともに,その適用を通じてFBR の安全性の向上に資するものである。 PSA手法に関しては,実用化候補プラントの炉 心損傷リスク評価結果を報告書にとりまとめた。 また FBR機器の信頼性データベースについては, 機器信頼性データベース" CORDS の最新版に基づ き 故障率データハンドブックの作成を完了した。

燃料安全に関する研究

燃料安全に関する研究は,過渡条件下における 燃料破損メカニズムと破損限界の実験的な解明と 合理的な破損評価手法の開発,炉心局所事故時の 燃料ピン・冷却材伝熱挙動と被覆管破損後の燃料 損傷拡大挙動の実験的な解明とこれらの評価手法 の開発及び混合酸化物(MOX)燃料を主とした FBR燃料の実用化と安全評価上の基準類の整備に 資するものである。

定常及び除熱能力低下型条件下での破損限界評価については,実用化被覆管候補材料である酸化物分散強化型フェライト鋼(ODS鋼)の短時間強度評価結果を取りまとめ,ODS鋼等の加工硬化指数の評価を開始した。過出力条件下での破損限界評価については,米国アルゴンヌ国立研究所(ANL)との共同研究で行う炉内試験計画に反映するため,CABRI - RAFT計画試験の過出力試験結果をとりまとめた論文がNuclear Technology誌(2004年1月号)に掲載された。

炉心安全に関する研究

炉心安全に関する研究は,炉心損傷事象に係わ る実験的データベース及び安全評価手法を整備・ 適用して,FBRの炉心安全性の向上に資するもの である。

再臨界排除(溶融した燃料が再集合し,出力が 上昇して有意な機械的エネルギー放出に至る事象 を排除すること)可視化基礎試験については,冷 却材逆流型FCI(燃料と冷却材の熱的相互作用) 試験を7ケース実施し,試験データベースを整備し た。カザフスタン共和国国立原子力センター(NNC) **概** 況 報 の試験炉IGRを用いた再臨界問題排除に向けた試 験研究(EAGLE プロジェクト)の炉内試験では、融 体の排出経路の壁破損挙動に関する試験(WF試 験)のモックアップ試験体を使用した事前の技術 確認を完了した。炉外試験については、燃料模擬 物資の最終選定に向けた溶解試験(UO2ペレット) を実施し、温度、溶融状況等のデータ取得を行っ た(図1参照)。

伝熱流動に関する安全研究

伝熱流動に関する安全研究は,FBRの安全性向 上及び安全評価に不可欠な伝熱流動に関する評価 手法,基盤データを整備し,技術基盤を確立する ものである。特に,異常な過渡変化から設計基準 外事故までを対象とした総合的な解析評価手法の 確立及び冷却材パウンダリや炉内構造物の健全 性,崩壊熱除去時の炉心除熱特性,反応度抑制機 能喪失事象(ATWS)を対象とした炉心核的特性 と伝熱流動を結合させた受動的安全特性を評価す る手法の確立と実験的知見の取得に重点を置いて いる。

高燃焼炉心内での変形燃料ピンパンドルに対す る熱流動現象の評価については、サプチャンネル 解析コード "ASFRE"と燃料変形解析コード "BAMBOO"の連成解析手法の検証を行い、報告 書にとりまとめた。サーマルストライピング(高 サイクル熱疲労)に関する研究では、T字管合流 部を模擬する試験の報告書を作成するとともに、 機械学会へ論文投稿した。また、構造材への熱伝 達挙動を把握するために、水を用いた平行三噴流 試験を実施し、物性値の違いによる温度変動への 影響を報告書にとりまとめた。

ナトリウム及び格納系に関する安全研究

坩堝へのUO₂装荷状況

図1 溶融試験(UO2ペレットの装荷)

ナトリウム及び格納系に関する安全研究は,ナ トリウムに係わる安全性評価技術の高度化を図る とともに,ソースターム及び格納系安全評価技術 の高度化を図るものである。

ソースターム評価手法の開発については,炉内 ソースターム総合解析コード "TRACER" につい て,気泡移動・分離モデルの整備を行い実機規模 体系での試計算を完了した。ナトリウム燃焼に関 する研究では,空気中の液体ナトリウムの液滴状 燃焼のメカニズムを把握するための落下液滴燃焼 実験を終了した。蒸気発生器に関する安全技術高 度化研究に関しては,ナトリウム-水反応試験装 置(SWAT 1R)による12Cr鋼のウェステージ(損 耗) 試験の報告書を作成し, 伝熱特性試験結果を 日本原子力学会和文誌に投稿した。蒸気発生器水 リーク試験装置(SWAT 3R)では,注水試験の準 備を完了した。また,高温ラプチャ解析コード "TRUE "及び破損伝播解析コード" LEAP BLOW " によるSWAT 3R体系のNa 水反応に係る過渡解 析を完了した。

12 炉心・燃料の研究

炉心・燃料の研究は,安全性に優れた合理的な 設計に反映することを目的に,FBR 炉心の特徴で ある,使用温度が高いこと,高速中性子場で照射 されること,ナトリウム等を冷却材に用いること, 高燃焼度まで燃料を使用すること等を踏まえて進 めている。

炉心に関する研究

炉心の研究は,FBR 炉心の特徴である中性子エ ネルギーとして核分裂スペクトルの数 MeV 領域 から数十eVまでの5桁に及ぶ広い範囲での中性 子の反応を精度よく評価するための核特性評価技 術の開発,高燃焼度化や高線出力化に対応する燃 料体の伝熱流動を評価するための熱流動評価技術 の開発を進めている。

核特性評価技術の開発では,露国臨界実験装置 (BFS)実験解析成果に基づく,BN 600ハイブリ ッド炉心の解析精度評価結果について,国際炉物 理専門家会議PHYSOR 2004の共同論文を執筆し, 日本原子力学会2004年春の年会で実験解析結果と 設計精度評価結果に関する3件の発表を行った。

燃料に関する研究

燃料の研究は、燃料サイクルコストの低減や炉 心サイズのコンパクト化を図るため、 MOX 燃料

概況報告

を中心に,集合体取出平均燃焼度150GWd/t,ピーク線出力400W/cm以上,被覆管最高温度約700 以上を目標とし,燃料ペレットから集合体規模ま での挙動を評価するための燃料特性評価技術開 発,高燃焼度下でのスエリング特性に優れた材料 を開発するための炉心材料開発に重点を置いて進 めている。また,FBRサイクル実用化戦略調査研 究で対象となっている金属燃料や窒化物燃料,振 動充填燃料,マイナーアクチニド(MA)含有燃 料等の新型燃料開発を進めている。

燃料特性評価技術開発では,燃料挙動解析コー ド"CEDAR"の化学的挙動モデルの高度化,燃料 ペレットにおけるPu再分布挙動の評価に資する ため,拡散係数測定試験の準備を継続した。

炉心材料開発では,露国原子炉科学研究所 (RIAR)で製造したODS鋼被覆燃料ピンの照射試 験を露国高速実験炉BOR 60で継続している。

照射技術開発及び照射後試験技術開発

「常陽」では,照射試験ニーズに対応した照射 装置の開発や照射条件評価のための照射技術開発 を進めている。また,「常陽」等で照射した燃料 や材料は高線量となることから,遮蔽窓越しにマ ニプレータを用いた遠隔操作により照射後試験を 行う。このため,遠隔操作性・保守性に優れ高精 度でデータ採取を可能とするための試験技術開発 を進めている。

照射技術開発では,プラントの状態監視・異常 検知の観点から,安全性・信頼性の向上に反映す るため,光ファイバーによる計測システムの開発 を実施している。当該四半期では,「常陽」MK

性能試験で取得した原子炉運転中の1次主冷却 系機器の歪・振動データの分析評価を進めている。

照射後試験技術開発では,加熱炉を用いた熱過 渡試験装置開発のために製作したモックアップ試 験装置を用いて1,100 までの昇温試験を実施した。

分離変換技術開発

長寿命核種(核分裂生成物,アクチニド核種) の分離変換技術は,放射性廃棄物の廃棄量の低減, ウラン資源の利用効率の向上や白金族元素等の希 少金属の回収,有効利用等を目的に技術開発を進 めている。

当該四半期においては,露国との共同研究であ る全アクチニドの同時一括抽出法に関する研究を 継続した。また,実際のFBRサイクルを例とした 地層処分の負荷低減の定量評価に関する米国カリ フォルニア大学との共同研究を進めた。

13 構造・材料の研究

FBR の構造・材料の研究は, 炉の使用期間に渡って運転温度が高温(「もんじゅ」の場合, 原子 炉容器出口最高温度529)でかつ機械的荷重や熱 応力の厳しい条件で使用されるというFBR特有の 課題に焦点をあてて, プラント建設コスト低減と プラントの高温化・長寿命化, 並びに運転信頼性 の向上を通じてFBR の安全性, 経済性の向上を図 ることを目的としている。

高温構造設計技術開発

高温構造設計技術開発は,主要機器構造の設計 最適化と信頼性向上,原子炉構造のコンパクト化 と系統構成の簡素化というFBRの実用化の課題を 解決するため,構造解析コードの開発,クリープ 疲労損傷の防止に重点をおいた強度評価手法の高 度化と構造設計基準の整備,熱過渡荷重評価から 構造健全性評価を統合して解析する技術の開発, 設計から製作・運転・保守を包括的にとらえ構造 設計の抜本的な合理化を狙ったシステム化規格技 術の開発に重点をおいて進めている。

構造解析コードの開発については,汎用非線形 構造解析コード"FINAS"を,実用化戦略調査研 究及び基盤研究における種々の解析ニーズに反映 させている。構造健全性に係る解析・評価技術の 開発では,SUS304試験体の周波数応答特性を確認 するために,高サイクル熱疲労試験装置を用いた 熱疲労強度試験を継続するとともに,熱過渡応力 のスクリーニング法(熱応力の厳しい部位と熱過 渡条件を選択する手法)を開発した。システム化 規格技術の開発については,裕度交換(裕度の重 複を避け,過剰な裕度を適正な水準に設定するこ と)の可能性を定量的に確認し,本技術の有効性 を示した。実用化構造設計基準の成果として日本 原子力学会2004年春の年会で報告し,米国機械学 会(ASME)に論文投稿した。

材料評価技術開発

FBRの構造材料は,高温すなわちクリープ現象 が生じる温度領域で使用されること,ナトリウム 等の液体金属が冷却材として使用されること等か ら,軽水炉ではさほど重要でないクリープやク リープ疲労に対する強さ,さらには延性などの高 温における材料特性や耐食性に優れていることが 要求される。このため、高温強度に優れた低炭素・ 窒素添加のオーステナイト系ステンレス鋼 (316FR鋼)や高クロムフェライト鋼等の材料開 発材料強度データベースと材料強度基準の整備, 高温強度・寿命評価法の開発,高温・長時間使用 環境下における構造材料の損傷機構の解明と損傷 検出技術の開発,ナトリウムや鉛ビスマス(Pb Bi)などの冷却材に対する構造材料の耐食性評価 と腐食機構の解明に重点をおいて進めている。

高クロムフェライト鋼の材料開発では,FBR用 12Cr鋼(HCM 12A)の大気中長時間材料試験, 熱時効試験及びナトリウム中材料試験を継続し た。Pb Bi腐食特性評価及び腐食制御基礎技術の 開発では,独国カールスルーエ研究所(FZK)と 共同で実施している流動Pb Bi共晶合金(LBE) 中腐食性確認試験を終了した。これまでに得られ た成果を,日本原子力学会2004年春の年会や金属 学会春季大会で報告するとともに日本原子力学会 欧文誌に論文投稿した。漏えいナトリウムの活性 抑制技術の開発においては,ナトリウム化合物の 熱力学特性評価試験を継続し,ナトリウム化合 物溶融体の観察結果を日本原子力学会2004年春の 年会で報告した。

耐震設計技術開発

FBRの機器類は、低内圧と大きい熱応力を考慮 して相対的に薄肉構造を採用することから、耐熱 応力設計に加えて耐震設計を十分に行うことが重 要となる。また、FBRに免震構造を採用すること により地震入力を低減でき、物量削減や設計の簡 素化・標準化等が期待できる。このため、地震時 の高温配管の耐震強度評価法の開発、地震荷重を 根本的に緩和する技術としての3次元免震構造と その評価技術に関する研究を進めている。

上下免震評価法の開発においては,皿ばねとダンパーで構成する上下免震要素構造や実機想定での水平荷重支持構造の具体化を行った。3次元免

震構造とその評価技術については,建屋3次元免 震及び機器上下免震に関する技術指針(骨子)の 検討を行った。

2. 高速実験炉「常陽」

「常陽」は、液体金属ナトリウム冷却のFBR実 験炉として、1977年の初臨界達成以来、熱出力 50 MW 及び75 MW での増殖炉心(MK 炉心)に よる運転を経て、1983年から照射用炉心(MK 炉心)として、熱出力100 MW での照射運転を開 始し、2000年6月末に累積運転時間約6万1千時 間、積算熱出力約50億6千万 kWh を達成し、MK

炉心としての運転を終了した。

その後,照射性能向上を目的とした炉心・冷却 系の改造を行い,2003年11月に高性能照射炉心 (MK 炉心)として使用前検査に合格した。当 該四半期は,MK 炉心の第1サイクルで実施す る自己作動型炉停止機構(Self Actuated Shut down System: SASS)の炉内試験装置の炉心への 設置を行った(図2,表1参照)。

(大洗:開発調整室)

(Self Actuate Shutdown System)

年度	2	2000年度	2001年度	2002年度	2003年度	2004年度	2005年度
運転			第13[回定期検査			
工程	мк э	重転(100MW)	1		性能試験	MK 運転	
M						第14回定期検査	(14010107)
R.	炉心	令却系機器据付工事	・総合機能試験・性能試験		合村	<u>ዳ</u>	
計画							
Ē							

表1 高速実験炉「常陽」工程表

- 高速増殖炉サイクルの研究開発 - 高速増殖炉燃料の研究開発

1.燃料の研究開発等

本業務は,高速増殖炉燃料サイクルのトータル コストの大幅低減を可能にする燃料の開発を目的 としている。第1段階として加工,再処理コスト が低く,高燃焼度化が可能な太径中空燃料を用い た高経済性炉心について研究し,燃料概念の絞り こみを実施している。

当該四半期は,高速増殖原型炉「もんじゅ」に 太径中空燃料の燃料要素91本タイプの燃料集合体 と同127本タイプの燃料集合体を装荷する場合を 想定し,その炉心・燃料仕様を具体化すると共に 炉心・燃料設計に関して成立性の見通しがあるこ とを確認した。太径中空燃料の「もんじゅ」への 適用は,実用化段階に想定される燃料像の早期実 証に寄与すると共に「もんじゅ」の経済性向上に 貢献すると考えられる。

また、高速増殖炉サイクルの実用化に向けた「実 用化戦略調査研究」の一環として、簡素化ペレッ ト法を採用したマイナーアクチニド(MA)添加低 除染燃料製造施設の検討を実施している。

当該四半期は,MA添加低除染燃料の核・熱影響に鑑み,セル内設備として遠隔運転・遠隔保守 が可能なペレット成型,焼結,集合体組立等の枢 要設備について実施した概念設計を報告書にまと めた。

2. 燃料製造技術開発

高密度中空ペレットは,高速増殖炉の運転サイ クルの長期化(高稼働率),燃料費低減のための高 燃焼度化並びに高線出力化等に効果がある。この ため,この中空ペレットの安定製造及び製品収率 の向上を目的とした技術開発を行っている。 2003年度は,前年度に引き続き中空ペレット製 造用モックアップ試作機(成型設備)を用いて, 模擬粉末による機器単体の性能評価試験を実施し ている。

当該四半期においては,乾式ダイ潤滑型成型技 術の確証試験を行った。

簡素化プロセス技術の開発は,MOX(混合酸化物)燃料の製造プロセスを大幅に削減し,製造コストを抑えることを目的としている。前年度までの試験により本プロセス要素技術の技術的成立性を確認している。

2004年度から簡素化プロセス技術の開発とし て、本プロセスにより製造されたMOXペレットの 照射性能を確認するために2007年度から「常陽」 で実施する照射試験に向けて,試験燃料の製造を 行う計画である。

当該四半期においては,この試験燃料製造の準 備を行った。

スフェアパック燃料の開発は,粒子製造につい ては,応用試験棟に整備した振動充填燃料製造試 験装置を用いてウラン粒子の製造試験を行ってい る。充填試験については,模擬粒子を用いたコー ルド試験を継続するとともに,ウラン試験の準備 を開始した。充填状況の検査技術の開発について は,X線ラジオグラフィ検査装置をコールド試験 用に新設し,これを用いた試験準備を進めている。

スフェアパック燃料の照射試験については,ス イスPSI(ポールシェラー研究所)及びオランダ NRG(Nuclear Research and Consultancy Group) との共同研究により実施している。オランダNRG が運転管理しているHFR(High Flux Reactor)に おいて,PSIで製造した燃料の照射試験を開始し た(写真1)。予定している4回の照射試験のうち 第1,2回を終了した。

^{*}マイナーアクチニド:ウランやプルトニウムからの核変換により生成する放射性元素のうち,Nr(ネプツニウム),Arr(アメリシウム),Crr(キュリウム)の総称

スフェアパック燃料の設計コードの開発を進め ており,既存のペレット用の設計コードに粒子燃 料を評価するためのモデルを追加・拡張すること としている。熱伝導度を評価するためのモデルに ついては,微焼結UO2粒子体及びFP,TRUの模擬 物質を添加した低除染UO2ペレットについて熱伝 導度を測定しており,今後,これらをモデル化す る。機械強度を評価するためのモデルについては, 粒子充填体の実効弾性率モデルの改良を継続して いる。

3.核変換の技術開発

写真1

核変換技術開発は,高レベル放射性廃棄物 (HLW)中の放射性物質を,核反応を利用して短 寿命核種や非放射性核種に変換し,管理に必要と なる時間を短縮することを目的に進めている。そ の中で,工学的に可能な技術とするために必要不 可欠な核反応断面積データの実験研究及び測定技 術開発を実施している。

米国ORNL(オークリッジ国立研究所)との共 同研究の一環として,Tc 99,Zr 93,Pd 107の熱 中性子捕獲断面積に関する情報を得るため,これ らの核種が中性子捕獲する際に10⁻¹⁴秒という瞬時 に放出される即発ガンマ線の測定データの解析を 実施し,熱中性子捕獲断面積の下限値を解析評価 し,資料の取りまとめを実施した。

照射済燃料の燃焼度解析及びマイナー・アクチ ニドの核変換研究の基礎データとして,Np 238の 熱中性子捕獲反応の実効断面積を測定した。本研 究成果は,学術雑誌J.Nucl.Sci.Tech.の2004年1月 号に発表した。

また,核断面積測定技術開発の一環として,即 発ガンマ線分光法と飛行時間測定法による断面積 測定手法の開発を並行して進めた。即発ガンマ線 分光法については,ペアースペクトロメーターの 開発を継続実施した。飛行時間測定法については, BGO検出器(Bi4Ge3O12結晶シンチレータを用いた

線検出器)とデジタル波形処理技術を用いた核 断面積測定システムの開発成果を取りまとめた。 詳細は,学術雑誌 Nuclear Instruments and Methods in Physics Research の2004年2月号に発表し た。

核データ測定精度の更なる信頼性向上を目指し て,文部科学省公募型研究の一環として「高度放 射線測定技術による革新炉用原子核データに関す る研究開発」を継続し,革新的な核データ測定装 置である全立体角Ge検出器開発の技術要素であ る反同時計測用BGO検出器の開発及びGe検出器 のセグメント化技術開発を実施した。

4.燃料製造

「常陽」MK 第一次取替燃料集合体(85体) の製造については,ペレット製造,燃料要素加工 及び燃料集合体の組立を継続した。当該四半期に おいては,燃料集合体30体の官庁検査を受検し, 合格した。これまでに燃料ペレット33副ロット(約 80体分),燃料要素8,010本(約63体分),燃料集合 体38体が官庁検査に合格した。

5.プルトニウム系廃棄物処理技術開発

プルトニウム廃棄物処理開発施設では,プルト ニウム系廃棄物の減容・安定化処理技術の開発を 目的として,2003年度も難燃物焼却設備等の実証 試験を実施している。

当該四半期においては,難燃物焼却設備等の保 守点検を行うとともに,今年度実施した実証運転 の結果の取りまとめを行った。

東海:環境保全・研究開発センタ・

照射試験を実施している HFR

- 高速増殖炉サイクルの研究開発 -高速増殖炉燃料再処理技術の研究開発

1.再処理プロセスの開発

1.1 湿式法

湿式法については,経済性等の高速炉燃料サイクル実用化の要件に応えるため,湿式再処理工程の合理化やマイナーアクチニド(MA)回収技術, FP分離技術に関する研究開発を実施している。

(1) 簡素化再処理技術開発

現行の再処理技術を見直し,実用化を念頭に, 経済性等に優れた先進的な再処理プロセスとする ため,溶解・抽出技術に関する効率化及び簡素化 に係る要素技術や晶析技術に関する要素技術の開 発を進めている。

高レベル放射性物質研究施設(CPF)では,2003 年10月より高濃度溶解液を得るための基礎検討と して,従来は,使用済燃料をせん断片として溶解 していたのに対し,使用済燃料を粉化しての溶解 試験を実施し,ほぼシミュレーション通りとなる 粉化燃料溶解速度データを得た。

また,使用済燃料を用いた高濃度溶解液の晶析 挙動評価試験やグローブボックスでのウランとプ ルトニウムの混合割合や冷却速度をパラメータと した晶析挙動評価試験を実施し,除染係数やウラ ンの収率等に関する基礎データを収集した。

更に 遠心抽出器を用いた抽出試験については, 溶解液供給時の温度を考慮した試験を実施し, MIXSET(抽出プロセスシミュレーションコード) による計算結果とよく一致するという結果を得 た。なお,Npの共抽出挙動等については,分析作 業を継続している。

(2) マイナーアクチニド等の湿式分離研究

マイナーアクチニド(MA)回収技術開発の一 環として,2003年に実施した使用済燃料溶解液の 抽出試験により発生した高レベル放射性廃液を用 いて,アメリシウム(Am)等を,CMPO溶媒 (TRU抽出プロセスに用いられる溶媒)を用いて 分離する SETFICS 試験(溶媒抽出法ベースの MA 回収プロセス試験)を2004年3月に実施した。現 在, MA元素の分離挙動把握のために分析やデー 夕解析を実施している。

12 乾式法

現行の再処理法と比較し 経済性に優れること が期待されている乾式法の技術開発を進めている。

乾式再処理プルトニウム試験に関する(財)電力 中央研究所との共同研究契約に基づいて, CPFに 設置した金属電解法プルトニウム試験設備を用い て,2回目のウラン試験を開始し(写真1),Li還 元,電解還元,蒸留の一連のプロセスを通じた回 収率等のプロセスデータを取得している。

酸化物電解法については,電気事業者がRIAR (ロシア原子炉科学研究所)に委託して実施してい る模擬使用済燃料試験(2003年11月開始)及びPu 電気化学測定データの取得(2003年12月開始)に 立会い,試験データ等の収集を行った。Pu電気化 学測定結果に基づいて,Puの状態図(プールベ図)

写真1 ウラン試験で回収したデンドライド状金属ウラン

の修正を行った。また,応用試験棟では,不純物 元素として希土類元素が共存する系で,吹き込み ガス組成を変化させた条件でのUQ2電解試験を行 い,電流効率に与える影響因子を検討するための 基礎データを取得した。

分析技術開発については,溶融塩(NaCI CsCI 塩,温度約650)中での希土類元素(Sm, Pr, Nd)の吸光度測定試験に引き続き,白金族元素 (Pd, Ru)の吸光度測定試験を実施した。

2.機器・材料開発

2.1 前処理工程機器開発

YAG レーザによる燃料集合体の切断性能を把 握するため, YAG レーザによる模擬燃料ピン及び ラッパ管の切断試験を実施し,燃料ピンへの損傷 を最小とする切断条件を把握した。

使用済燃料粉砕化技術開発としては,2002年度 に改良を行った機械式粉砕要素試験機について, 模擬燃料ピンを用いて,耐久性試験,細粒化試験 を実施し,回転刃及びスクリーンの耐久性評価, 破砕片の細粒化条件の確認等を実施した。また, 破砕後の破砕片の粒径別分離及びワイヤ分離を目 的とした分級搬送装置を製作し,その分離性能試 験を実施した。

一方,粉砕燃料粉と粉砕金属紛を分離する磁気 分離技術については,2002年度に製作した磁気分 離要素機について,分離試験を実施し,最適な運 転条件(磁束密度,ドラム周速等)を確認した。

更に,上記の機械式粉砕要素試験機,分級搬送 装置,磁気分離要素機を機械式脱被覆システム装 置として組み上げ,第二応用試験棟への据付を実 施した。

2.2 分離工程機器開発

乾式再処理機器開発としては、坩堝冷却式高周 波誘導加熱(CCIM技術)を採用した形状管理型 溶融塩電解槽の加熱特性及び電解特性を把握する ため、2002年度に第二応用試験棟に設置した CCIM型電解槽の試験装置を用いた加熱試験及び 電解試験を実施した。加熱試験では、CCIMによ る溶融塩の加熱特性、模擬物質のスカル層への移 行特性、高周波環境下における電解析出への影響 等を評価した。また、電解試験では、模擬電解物 質として銀を用いて電極構造設計に必要なウラン 析出への電流密度分布の影響を確認した。

塩蒸留装置の開発については,塩蒸留基礎試験 を行い,塩蒸発速度に対する模擬析出物の有無, 蒸留,温度,圧力等の影響を把握した。

湿式再処理機器開発としては,応用試験棟に設 置している抽出システム試験設備を用いてウラン 試験を実施し,工学規模の遠心抽出器システムに おける逆抽出特性を把握した。

2.3 材料技術開発

高温環境下での乾式再処理機器用材料の検討として,CCIM環境を模擬したスカル層形成条件において,模擬FP核種を用いた腐食試験を行い,腐食速度への模擬FPの影響を把握した。

3.関連施設の設計・建設

3.1 リサイクル機器試験施設(RETF)の計画 今後の利用計画についての検討を進めている。

(東海:環境保全・研究開発センター)

概況報告

123

高レベル放射性廃棄物の地層処分技術に 関する研究開発

- 1. 地層処分研究開発
- 1.1 処分技術の信頼性向上
- (1) 緩衝材の連成挙動に関する研究

熱-水-応力-化学連成挙動に関する概略モデ ル構築の一環として、その構成要素である熱-水 -応力連成モデル、物質移行モデル、地球化学モ デルの解析コードの開発をそれぞれ継続して実施 した。このモデル構築に関して、第2次取りまと め環境に基づいた事例解析を実施した。また、熱 -水-応力連成試験設備(COUPLE)を用いた連 成挙動試験を終了し、緩衝材等のサンプリング、 化学分析を行い、主に計測データについて技術資 料として取りまとめた。

(2) 緩衝材の長期力学的変形挙動

緩衝材の流出に関する研究では、CTスキャンを 用いた亀裂内侵入ベントナイトの密度分布測定結 果を日本原子力学会春の年会(2004年3月29~31 日)で報告するとともに、ベントナイトコロイド の発生量を定量的に評価するための流水試験結果 を取りまとめた。また、緩衝材クリープ試験及び 人工海水条件下におけるガス移行試験を継続実施 した。さらに、緩衝材の基本特性データベースや ガス移行挙動評価モデルに関する技術資料を取り まとめるとともに、人工海水条件下における埋め 戻し材特性の予備試験結果を日本原子力学会春の 年会(2004年3月29~31日)で報告した。

(3) 緩衝材の化学的相互作用による変化

雰囲気制御下で6年間ベントナイトと鉄を共存 させた試験の結果を技術資料として取りまとめ た。また、ベントナイト-鉄反応の加速試験用の 試験準備として層間イオンをFe²⁺に置換した試料 の調整を行い、オートクレープを用いて250 での 加速試験を開始した。コンクリートを処分場に使 用することを想定し、高pH溶液によるベントナイ トの変質挙動評価のため、アルカリ溶液中でのモ ンモリロナイト溶解速度把握試験を実施した。ペ ントナイトの主成分であるスメクタイトの溶解 は,温度,pH,液中のSi濃度に依存することが分 かった。また,スメクタイトの溶解後,周囲にゲ ル状のものが析出され,長期的溶解速度を評価す る上での取扱いが課題として示された。

(4) オーバーパック材料の腐食評価に関する研究

炭素鋼の腐食挙動に関して,マグネタイト共存 下での水素発生挙動に関する評価,還元環境中の 浸漬試験結果を技術資料として取りまとめた。チ タンの不動態皮膜の安定性及び水素吸収挙動に関 して,主に還元性環境での実験研究を継続すると ともに,腐食速度・水素吸収挙動について技術資 料として取りまとめた。銅については,酸化性環 境及び緩衝材中における腐食局在化に関して技術 資料として取りまとめるとともに,還元性環境に おける硫化物の影響試験を継続した。

(5) ナチュラルアナログ研究 [地層処分で想定される現象と類似した自然界での現象についての研究]

火山ガラス等のナチュラルアナログ研究につい ては,既存のデータのデータベース化や新たな試 料の適用性に関して検討を行っている。

(6)公募型研究

核燃料サイクル公募型研究で実施している「緩 衝材及び周辺岩盤の力学的安定基準の作成」にお いては、緩衝材の水圧破砕試験を行い、緩衝材に 発生する亀裂の発生進展挙動をX線CTを用いて 観察した。

12 安全評価手法の高度化

(1) 水理・物質移行に関する研究

多孔質媒体水理試験装置(MACRO)を用いた 塩水浸入試験において透水性が低く障害になって いた上流側と下流側に設置してある隔離板を改良

した。予備的な塩水楔(海水と陸水が接触した際, 塩水が楔状に陸側に侵入する現象) 試験を実施し た結果、塩水楔が再現できることを確認できた。 亀裂状媒体水理試験装置(LABROCK)では,単 一人工亀裂を有する花崗岩体(1辺10cmのブロッ ク岩体)を用いて,パルス状のトレーサー入力を 可能とする注・排水方法改良を施し,透水・トレー サー試験を実施した。その結果 水理学的開口幅, 物質移動開口幅については良好な値が得られた。 また,単一亀裂を有する花崗岩体(1辺10cm)に ついて、X線CT装置を用いて非破壊状態で亀裂開 口幅を計測し,画像差分法を用いた計測データ (CT値)の開口幅との相関関係についての検討結 果をまとめた。亀裂ネットワーク水理試験装置 (NETBLOCK)では, 2002年度にレジン注入を行 った単一亀裂を有する10cm岩体を研削 写真撮影 することによる亀裂開口幅の計測結果を取りまと めた。また、以前実施した亀裂交差部を対象とし た透水試験結果について,サイクル機構技報への 投稿を行った。

(2) 不確実性評価に関する研究

データ不確実性を確率分布として設定する手順 について、母岩の分配係数(Kd)の設定を例とし た試行を通じて、作業の具体化とその効果の確認 を進めている。また、ガラス固化体の溶解に対す る割れの影響に関するモデル構築と評価、及び感 度分析における決定木分析手法(データマイニン グで用いられる手法の一つ)の適用性の検討の2 件について、日本原子力学会春の大会(2004年3 月29~31日)において発表した。

(3) 生物圏評価に関する研究

既存の生物圏評価モデルに対して,最新の知見 に基づく評価式とデータの更新及び再解析を行っ た。

(4)技術情報統合システムに関する研究

技術情報の体系化及びデータベースのシステム 機能に関して,基本システムの製作を実施した。 (5)性能評価研究

2003年8月1日より外部公開した熱力学データ ベース及び収着データベースホームページの運用 を継続した。また,熱力学データベース利用環境 整備の一環として,OECD/NEAで整備されたNp 及びPuの熱力学データを地球化学コードで利用 可能なデータベースファイルとして整備し,技術 資料として取りまとめた。さらに,1998年から2003 年までに公開された核種の収着に関する文献デー タを調査・収集し,収着データベースを更新し, 技術資料として取りまとめた。コロイドの影響を 考慮した核種移行モデルの開発に関しては,コロ イド共存系での核種の亀裂中の移行実験を実施 し,その実験結果の解析を通じて,核種-コロイ ドの収着プロセスについて速度論を扱うことの重 要性を示した。その結果を取りまとめ,研究報告 として日本原子力学会への投稿資料を作成した。 緩衝材間隙水の研究に関しては,緩衝材の間隙水 pH,組成等の時間空間変化を捉えるために実施し た蒸留水系,人工海水系,低アルカリ性セメント 浸出液系での試験結果について,技術資料として 取りまとめるとともに,原子力バックエンド研究 への投稿論文を作成した。

(6) 地層処分放射化学研究施設(QUALITY) にお

ける核種移行研究

溶解度試験に関しては,NpO2·xH2O(am)の溶 解度積を求める試験を継続するとともに、得られ た成果を日本原子力学会春の大会(2004年3月29 ~31日)にて報告した。収着試験に関しては,海 水条件におけるペントナイト及び岩石に対する, Cs及びSeの収着試験を継続するとともに 堆積岩 に対するCs 収着試験結果を取りまとめ日本原子 力学会春の大会(2004年3月29~31日)にて報告 した。また,ベントナイトコロイドに対するNp 及びCsの収着試験を継続した。Npの結果について は,日本原子力学会春の大会(2004年3月29~31 日)にて報告した。さらに,セメントへのRaの収 着に関する予備試験を開始した。拡散試験に関し ては,凝灰岩中のC,CI及びトリチウム水の透過 拡散試験を終了し、得られた成果を日本原子力学 会春の大会(2004年3月29~31日)にて報告した。 (7)博士研究員による研究及び先行基礎工学研究

博士研究員による研究「海水系地下水条件での 堆積岩及びその岩盤亀裂充填鉱物に対する核種収 着挙動とそのモデル構築」においては,幌延地域 の堆積岩に対するCs収着試験を実施し,得られた 成果の一部を日本原子力学会春の大会(2004年3 月29~31日)にて報告した。

先行基礎工学研究で実施している「オーバーパック材腐食生成物が緩衝材性能に及ぼす影響に関する研究」においては、QUALITYにおけるNp及びFeを用いた拡散試験を継続した。また、「亀裂内不均質性を考慮した流体解析」においては、格

子ガスオートマトン法を用いた解析コードの改良 及び操作性の向上を図るとともに,選定された不 均質性パラメータを変化させた亀裂モデルを作成 し,流体・物質移動解析を実施しパラメータの影 響を評価した。

2.深地層の科学的研究

2.1 地質環境の長期安定性に関する研究

隆起・侵食に関する研究では,10万年オーダー の隆起・侵食が地質環境に与える影響を把握する ための,地形変化シミュレーションモデルの開発 を実施した。気候・海水準変動が地質環境に与え る影響を把握するため,海水準変動にともなう平 野の地層・地形の発達に関する調査計画の検討を 進めた。

火山活動に関する研究では,地下深部のマグマ や高温岩体の存在を確認するための調査技術開発 の一環として,鳴子火山周辺地域におけるMT (Magneto Telluric:電磁探査)法及び西南日本に おける温泉ガスのヘリウム同位体比の測定を実施 し,当該手法の適用性の確認等を行った。さらに, 火山活動の長期予測モデルの開発として,東北日 本の複成火山を対象に,空間統計学的手法を用い た確率モデルの開発を進めた。また,火成活動が 地質環境に及ぼす影響評価手法の開発として,坑 井温度による熱流束解析手法の検討及び改良を行 なった。

地震・断層に関する研究では,地下の震源断層 を抽出する技術開発の一環として,地下での震源 断層の存在が指摘されている中国地方を事例研究 の対象とし,リニアメントの判断基準に関する検 討を行った。また,断層活動による地質環境への 力学的及び水理学的な影響を把握する手法の開発 を目的として,断層周辺岩盤の断層岩(断層粘土 や断層角レキ等),小断層,割れ目等の分布に関す るデータを収集・整理し,水理地質構造モデル等 の検討を進めた。

地質環境の長期安定性に関する研究で得られた データを効率的に活用できるよう,収集データを 一元管理するためのGIS (Geographical Information System:地理情報システム)データベースの 整備を行った。また,地殻変動の将来予測の信頼 性の向上を目指すため,地殻変動をシミュレーシ ョンする有限要素法プログラムの開発を進めた。

陸域地下構造フロンティア研究のうち、地震発

生に関する研究では,弾性波アクロスの東濃鉱山 内での観測試験を継続し,送受信のルーチン化を 進めた。また,正馬様用地内に新規の地震観測ア レーを設置した。電磁アクロスについては,東濃 鉱山から連続送信した電磁アクロス信号を正馬様 用地内で受信する電場・磁場観測を継続した。ま た,正馬様用地内に受信点を追加し,東濃鉱山の 送信電極を強化した。

活断層帯での地殻活動研究では,測地用GPS観 測網による跡津川断層周辺の精密地殻変動観測の ほか,地震観測,地殻応力観測を継続した。

22 地質環境特性に関する調査研究

(1) 東濃鉱山における試験研究

岩盤の長期挙動に関する研究については,東濃 鉱山の坑道周辺岩盤長期観測を実施すると共に, 坑道クリープ解析の取りまとめを実施した。孔壁 崩壊現象に関する研究では,月1回の定期観察の ほか,孔壁崩壊形状の計測,試錐孔周辺のAE (Acoustic Emission)及び電位等の連続計測を実施 するとともに,計測結果の取りまとめを行った。

坑道周辺の地質環境特性に関する研究について は、間隙水圧のモニタリングを継続した。不飽和 領域の原位置計測手法に関する研究では、TDR (Time Domain Reflectometry)による室内試験、 孔間レーダー及び間隙水圧の原位置計測を実施 し、それぞれの解析結果を用いて不飽和領域の総 合的な評価を行った。

ナチュラルアナログ研究については,月吉断層 に沿う物質移行調査の一環として採取した試料の 化学分析及び同位体分析を継続して実施した。ま た 東濃ウラン鉱床の地史のとりまとめを行った。

なお,東濃鉱山の坑道を利用した試験研究は所 期の目的を達成したことから,2003年度末をもっ て終了した。

(2) 広域地下水流動研究

地下水涵養量の算定及び表層部の地下水特性の 長期的な変化を把握するために,表層水理観測機 器を用いた長期観測を継続実施した。

深層を対象とした試錐調査(DH 14,15号孔) は,両孔ともに掘削作業を終了し,BTV(Borehole TV)検層,物理検層及び流体検層を実施した。また,既存試錐孔における地下深部の水圧及び水質 の長期的な変化の観測を継続した。

地表のリニアメントと地下深部の不連続構造・

比抵抗構造との関係の把握を目的とした試錐調査 では、掘削作業、物理検層、BTV 検層及び VSP(Vertical Seismic Profiling) 探査を実施した。

2.3 超深地層研究所計画

(1) 調査試験研究

瑞浪超深地層研究所

超深地層研究所計画における第1段階(地表からの調査予測研究段階)の調査研究の一環として, 瑞浪超深地層研究所用地の地質環境特性を把握す るための調査研究を継続した。

2003年3月より開始した深層ボーリング調査 (予定掘削長約1,350m)においては、深度250m付 近からボーリング孔を南西方向へ約14度に傾斜さ せるためのコントロール掘削を実施した。深度500 mにて予定の方位・傾斜が得られたことから、沿 角掘削に移り、3月末現在、深度約640mまで到達 した。

浅層試錐孔4孔を利用した地下水の水圧及び水 質に関する長期観測を継続中であり,これらの試 錐調査及び観測で得られる岩石や地下水の試料を 対象とした各種室内試験・分析を実施した。

地質環境のモデル化・解析については, 文献調 査・地表踏査・物理探査, 及び既存試錐孔・浅層 試錐孔による調査の2段階の情報により,構築し た水理地質構造モデルを用いて,研究坑道掘削に 伴う影響解析を実施し,掘削に伴う水頭変化等の 現象を予測した。また,情報量の増加に伴う不確 実性低減の過程を評価するための地下水流動解析 を実施中である。さらに,昨年度実施した調査研 究の成果を取りまとめ,技術報告書を作成した。 調査技術開発については,第2段階の調査研究 で必要となる調査手法の整備に向け,高差圧対応 水理調査機器の概念設計,逆VSP法探査に関する 情報収集及び調査仕様を検討するための予備解析 を終了した。また,立坑・坑道壁面調査手法及び 試錐掘削工法の検討についても作業を終了した。

工学技術の基礎に関する研究については,情報 化施工,品質保証,突発湧水対策,地震動評価に 関する今年度の検討を終了した。

正馬樣用地

既存試錐孔を利用した地下水の水圧の長期観測 及び地下水涵養量の算定を主目的とした表層水理 定数観測を継続中である。

(2)施設設計及び建設管理

瑞浪超深地層研究所における研究坑道掘削工事 において,主立坑及び換気立坑の坑口上部(地表 から深度10m程度まで)について,鉄筋工事,型 枠工事,コンクリート打設などの躯体工事を行い 完了した。現在,櫓や巻上機室,コンクリートプ ラント等の地上設備の基礎工事を実施している。

また,坑口下部以降の立坑掘削工事に対する施 工計画の安全事前評価委員会を設置し,工事の安 全事前評価体制を整備した (写真1)。

2.4 幌延深地層研究計画

2003年度第4四半期においては,第3四半期に 引き続き,各種の現場調査を継続実施するととも に,調査結果の取りまとめを開始した。

2004年度調査研究計画を策定し,北海道庁及び 幌延町役場において説明を行った(写真2)。

写真1 瑞浪超深地層研究所:研究坑道掘削状況

サイクル機構技報 No.23 2004.6

写真 2 2004年度調査研究計画説明会 (2004年4月6日:於幌延町公民館)

各調査研究における実施内容は以下のとおりで ある。

(1) 地層科学研究

地質環境調査技術開発

地質調査については,幌延町内において地表地 質調査などを実施した。また,地質調査及び物理 探査(電磁探査)結果の取りまとめを開始した。

表層水理調査については,2002年度に設置した 河川流量観測システムによる観測を,研究所設置 地区及びその周辺地区内の2河川(ペンケエベコ ロベツ川,下エベコロベツ川)を対象に継続実施 した。また,幌延町内の4箇所に設置した気象観 測装置による観測を継続した。

試錐調査については, HDB 6(予定掘削長 620m), HDB 7孔(予定掘削長520m), HDB 8孔 (予定掘削長470m)の掘削及び試錐孔を利用した 各種調査を終了した。

地質環境モニタリング技術の開発

2002年度までに掘削した試錐孔について,地下 水の水圧・水質長期モニタリング装置の設置を開 始した。2001年度に地下水の水圧・水質長期モニ タリング装置を設置した試錐孔においては,地下 水水圧のモニタリングを継続した。

深地層の工学的技術の基礎の開発 地下施設の基本設計を終了した。

地質環境の長期安定性に関する研究

2002年度に開始した各種観測(地震,GPSなど) を継続した。

(2) 地層処分研究開発

下記の ~ の研究項目について, 室内試験 などを開始した。

人工バリア等の工学技術の検証

設計手法の適用性確認

安全評価手法の信頼性向上

(3) 環境調査

2003年度モニタリング調査結果の取りまとめを 行うと共に 2004年度調査計画の検討を開始した。

3.国際共同研究

(1) スイスとの共同研究

スイスNAGRA(放射性廃棄物管理協同組合) との共同研究の一環として参加しているグリムゼ ル原位置試験でのCRR(コロイドと放射性核種の 遅延評価)プロジェクトについては最終報告書の 取りまとめ作業を継続中である。また,同原位置 試験のHPF(結晶質岩中の高アルカリプルームの 影響評価)プロジェクトについては,現地にて採 取した岩石を用いた室内試験を東海ENTRY及び 東濃地科学センターにおいて継続すると共に, HPFプロジェクト終了に向けた最終段階の試験を 実施した。瑞浪及び幌延の二つの深地層の研究施 設計画に関わる技術的支援の一環として,NAGRA の研究者と共同で現在実施中の試錐調査や地下水 流動に関するモデル化・解析に関する技術的検討 を継続している。

モンテリー地下研究所における国際共同プロジェクトでは,2003年7月より開始したフェーズ9 における間隙水の地球化学的評価試験(PC試験) に継続参加中である。

(2) スウェーデンとの共同研究

スウェーデン SKB (核燃料廃棄物管理会社)と のHRL (Hard Rock Laboratory)における共同研 究に関し, プロトタイプ処分場プロジェクト (PRP)については,人工バリア及び周辺岩盤の挙 動のデータ取得を継続した。また,予測解析を実 施した結果をÄspö年報 (Annual Report 2003)と して,事務局へ提出した。

(3)米国との共同研究

米国DOE(エネルギー省)各研究所との共同研 究を実施している。LBNL(ローレンスパークレー 国立研究所)とは,水理・物質移行に関わるサイ ト特性調査及び予測技術に関する共同研究とし て,幌延及びエスポ地下研究所HRLで取得された データを用いたモデルの改良及び解析を継続し た。PNNL(パシフィックノースウエスト国立研 究所)とは,2003年度はホウケイ酸ガラス中のト リウムの溶解度制限固相の把握,シリカ系での4 価のアクチニド元素の挙動に関わる熱力学データ の検討を継続して実施している。SNL(サンディ ア国立研究所)とは,岩盤中への拡散現象,コロ イド移行挙動等に関する実験研究,不確実性評価 についての共同研究を継続している。このうち不 確実性評価として,地質環境の調査と性能評価の 連携について,幌延のデータを利用した感度解析 のためのモデル設定を継続している。

(4) カナダとの共同研究

カナダAECL(原子力公社)との共同研究につ いては,地下研究施設(URL)でのトンネルシー リング性能試験(TSX)におけるデータ取得を終 了し,解体・サンプリングを開始した。また,TSX 調整会議(2004年2月25,26日,カナダ)におい て,サンプリング方法等の最終調整を行うととも に,現地の進行状況を確認した。

(5) その他の国際協力

多機関が参加している国際プロジェクトに関し ては、DECOVALEX(熱-水-応力連成現象解析 モデル高度化のための国際共同研究)の新しいフ ェーズ(DECOVALEX THMC)が立ち上がった。 運営会議(2004年3月2~4日、フランス)が開 催され、各機関の参加のもとに具体的な実施内容 の検討を開始した。

OECD/NEA熱力学データベースプロジェクト・ フェーズ / 運営会議(2004年2月17,18日, フランス)に参加し,フェーズ 終了,フェーズ 立ち上げに向けての計画,問題点を議論した。

ベルギー原子力研究センター(SCK・CEN)との共同研究会議(2003年10月29~30日,フランス)への参加報告書を作成した。

アジア地域での地層処分分野における研究開発 協力に関しては、2003年3月25日に協力取決めを 締結したKAERI(韓国原子力研究所)と研究協力 会議(2004年1月8~9日,韓国)を開催し,協 力の具体化に関する協議により,地質環境の調査 手法の開発,工学バリアの長期性能に関する研究 等に関連する研究を協力テーマとして選定した。

IAEAの地下研ネットワークに関するコンサル

タント会議(2月24~26日,米国LBNL)に参加 し,サイクル機構の研究開発の現状を紹介した。

4.関係機関との協力

原子力安全委員会特定放射性廃棄物処分安全調 査会の場を通じて,基盤となる情報や知見を提供 し,安全規制に関わる課題整理に関する議論を支 援した。

電力中央研究所(電中研)との協力として,幌 延における2003年度の共同研究を継続実施した。 その一環としてコントロールボーリングの現地作 業を2004年1月に開始し(写真3),2003年度に計 画していた試錐掘削・調査を終了した(2004年3 月)。

5.研究成果の公的資源化

「地層処分技術に関する研究開発報告会」において,2003年度の研究開発成果の進捗等の報告を行った(2月26日)。

また,JNCの地層処分技術に関わる研究開発の 概要について,原子力委員会定例会議で報告した (3月16日)。

写真3 コントロールボーリングの実施場所 (幌延町北進地区)

(本社:経営企画本部 バックエンド推進部)

軽水炉燃料再処理技術の研究開発

1.再処理施設

分離精製工場等は,2004年1月26日より04-1 キャンペーンを開始した。本キャンペーンは2004 年6月17日に終了する予定である。

04 - 1キャンペーン実績工程を表1に示す。 本キャンペーンの処理予定量は,約28.6tであ り,2004年3月末における使用済燃料の累積処理 量は,約1.037tとなった

本キャンペーンで処理予定の使用済燃料の性状 を表2に示す。

使用済燃料の受入については表3に示す。

1.1 プルトニウム転換技術開発施設運転

プルトニウム転換技術開発施設では,2004年1 月から3月にかけて工程設備の調整及び作動確認 を実施した。また,2月から3月にかけて,空気 圧縮機の更新工事を行った。

なお,2004年3月末現在における累積転換量 は,前四半期同様,約13.6tMOX(約5.6tPu)で ある。

12 ガラス固化技術開発施設(TVF)開発運転

溶融炉更新工事に伴い,ガラス固化体の製造を 実施していないため,2004年3月末までのガラス 固化体の累積製造本数は前四半期同様130本であ る。

2004年1月より,ガラス固化技術開発施設(TVF)

化 リキ・ イャノ・ハーノ 夫頴上	表	1	04 -	1	キャ	ンペ	ーン	実績	工程
--------------------	---	---	------	---	----	----	----	----	----

月		2004年	
項目	1月	2月	3月
+ 12 2 4 2 2 2	26		
++7/(-)		注	1

注1:使用済燃料せん断処理について記載

への改良型溶融炉の搬入・据付作業を実施している。

2.技術開発

2.1 軽水炉燃料の再処理技術開発

(1) ガラス溶融炉に係る技術開発

メーカーとの技術協力協定に基づき実施してい

る日本原燃(株)六ヶ所再処理施設のK施設ガラス

表2 使用済燃料集合体の性状

項目 原子炉名称	燃料重量(t) 炉装荷時ベース	集合体数 (体)	平均燃焼度 (MWD/T)	冷却期間 (年)
サイクル機構ふげ ん発電所(低濃縮 ウラン燃料)	4 D	26	16 ,900	5.6~ 10.4
サイクル機構ふげ ん発電所(MOX 燃 料タイプA)	9 5	62	9 ,000	19.9~ 24.0
関西電力(株) 大飯発電所 1 号機	0 5	1	21 ,700	14 .6
関西電力(株) 大飯発電所 2 号機	0.9	2	19 ,800	15.6~ 22.8
関西電力(株) 美浜発電所3号機	05	1	8 <i>4</i> 00	25 5
関西電力(株) 高浜発電所3号機	0 5	1	9 ,000	18 .4
九州電力(株) 川内原子力発電所 1 号機	6 4	14	13 ,100	19 2
九州電力(株) 川内原子力発電所 2号機	6 .4	14	27 ,700	16 5
合 計	28.6	121	-	-

* 端数処理を行っているので,重量の和(又は差)にずれが生 じる場合がある

表3 使用済燃料の受入量

原子炉名称	受 入 量(t)	受入日
中部電力(株) 浜岡原子力発電所	6 2	2004年1月22日

サイクル機構技報 No.23 2004.6

溶融炉の実物大の確証改良溶融炉を用いたモック アップ試験を,2004年1月より開始した。

また,電力会社との共同研究として,ガラス溶 融炉の解体に関する研究を実施しており,解体装 置等の設計・製作を実施している。

(2)低レベル放射性廃棄物処理技術開発

1) クリプトン除去技術開発

固定化試験においては,回収クリプトンを固定 化した固化体(固定化容器)のクリプトンの保持 特性試験として,固定化容器を室温で5,000時間保 持した後の再放出量測定を実施した。

固定化コールド試験においては,ターゲット電 極の冷却性能を評価するための特性試験を実施し た。

クリプトン回収技術開発施設については,第二 種圧力容器の定期自主検査等の設備保全を行った。

3.関連施設の設計・建設

3.1 低放射性廃棄物処理技術開発施設(LWTF) (1)施設の目的

本施設は,東海事業所再処理施設から発生する 低放射性の固体及び液体廃棄物の減容処理の実証 を目的とする。

(2)施設の概要

本施設は,低放射性廃棄物処理技術開発棟(以 下「技術開発棟」という。)及び発電機棟から成る。

技術開発棟の地下2階には受入貯蔵セル,蒸発 固化室,給液調整室等を,地下1階には共沈セル, スラリ貯蔵セル,分析室等を,地上1階にはろ過 セル,蒸発固化セル等を,地上2階には吸着セル, 吸着室,焼却室,オフガス処理室等を,地上3階 には焼却炉排気室,第6安全管理室,更衣室等を, 地上4階には制御室,排気室,オフガス処理室等 を,地上5階には給気室等を配置する。

また,低放射性液体廃棄物の受入及び払出しの ため,技術開発棟は低放射性濃縮廃液貯蔵施設と 第三低放射性廃液蒸発処理施設の間に設置された 配管トレンチと接続する。

発電機棟の地上1階には発電機室,高圧配電盤 室等を,地上2階には給気機械室等を配置する。 1)建家規模

技術開発棟 構造:鉄筋コンクリート造 階数:地下2階,地上5階 建築面積:約2 400m² (延床面積:約15,000m²) 発電機棟 構造:鉄筋コンクリート造 階数:地上2階 建築面積:600m² (延床面積:約700m²)

2)主要設備

技術開発棟

a)固体廃棄物処理系

再処理施設より発生する低放射性固体廃棄物 は,焼却炉にて焼却する。発生した焼却灰は,ド ラム缶に封入し貯蔵施設で保管する。

(主要機器の能力)

焼却炉約400 kg / 日以上 1 基 b)液体廃棄物処理系

再処理施設より発生する低放射性液体廃棄物 は、沈殿剤等を添加して沈殿物を生成させ(共沈), ろ過処理する。ろ過処理後の廃液は,固化助剤を 混ぜて調整後,蒸発缶へ供給し蒸発濃縮を行い, 蒸発終了後,直接ドラム缶へ充てんし自然冷却に より固化体とする。発生した固化体は,貯蔵施設 で保管する。

(主要機器の能力)

蒸発缶	約300リットル/日以上	1基
	約3 m³ / 日以上	2基

発電機棟

技術開発棟の停電時に必要な電源を確保するた め,発電機棟に発電設備を設置する。

(主要機器の能力)

ディーゼル発電機 容量1,000 kVA 2基 (3)進捗状況

1)許認可

再処理施設に関する設計及び工事の方法に係る 軽微変更について,2004年2月2日に経済産業省 へ報告した。

また,再処理施設に関する設計及び工事の方法 に係る一部変更について,2004年3月22日に経済 産業省へ申請し,現在,審査中である。

2)工事

技術開発棟建設工事は,地上階躯体工事を継続した。

発電機棟建設工事は,基礎躯体工事を終了し, 地上階躯体工事を開始した。

写真1にLWTFの工事外観を示す。

写真1 LWTFの工事外観(2004年3月撮影)

(東海	:	建設工務管理部
			再処理センター

環境保全技術開発

1. 処理処分技術開発

1.1 低レベル放射性廃棄物の処理処分技術開発

サイクル機構から発生する低レベル放射性廃棄 物について,安全性を確保しつつ合理的な処理処 分を進めるため,以下の対応を図っている。 (1)低レベル放射性廃棄物管理計画

2002年3月に取りまとめた低レベル放射性廃棄 物管理プログラムに基づき,各施設から発生する それぞれの廃棄物に対して,合理的に廃棄体を製 作するための廃棄物の分別,処理,廃棄体として の確認の方法に関する検討を継続している。

合理的に廃棄体を製作する方法の1つとして, MOX系廃棄物,再処理系廃棄物を対象とした廃棄 体化処理施設の概念検討を実施している。また, 廃棄物データの精度向上に向けた取り組みとし て,再処理系の雑固体廃棄物に付着している核種 の組成,放射能濃度のデータ取得を実施している。 図1にMOX系,再処理系廃棄物を対象とした廃棄 体化処理施設の概念フローを示す。 (2)低レベル放射性廃棄物処理技術開発

1) 難処理有機廃棄物処理技術開発

サイクル機構では,焼却処理が困難な廃フッ素 油,廃溶媒等の難処理有機廃棄物の処理技術評価 を目的として水蒸気改質処理(スチームリフォー ミング)法による分解・酸化処理技術開発を実施

図1 MOX系,再処理系廃棄物を対象とした廃棄体 化処理施設の概念フロー

している。

この方法は,有機物を高温の水蒸気と混合する ことにより分解・ガス化し,次に空気との酸化反応により水,二酸化炭素等に完全分解・酸化する 技術であり,焼却炉と比較して小型,単純構造の ため腐食対策が容易,設備コストが低い,大気圧 に対し負圧運転可能等の特徴を有している。図2 に水蒸気改質処理装置の概念図を示す。

対象廃棄物を模擬したTBP(リン酸トリブチル) 溶媒,フッ素系油等の分解・酸化処理のコールド 実証試験を実施し,ガス化温度,空気混合比等の 処理条件や排ガスの分析,試料に含まれるハロゲ ン,リンの物質収支等のデータ取得・評価を行っ た(図3参照)。また,2004年1月よりコールド 試験装置の改造及び管理区域内への移設を開始

図2 水蒸気改質処理装置の概念図

し,2004年3月に設置を終了した。

2004年度以降は,改造・移設後のホット実証試 験装置を用いて,模擬廃棄物及び実廃棄物処理試 験を実施していく予定である。

(3)低レベル放射性廃棄物(TRU廃棄物)の処分 技術開発

1)核種移行に係る個別現象モデル/データ整備 セメント系材料の硝酸塩や硝酸塩変遷生成物に よる変質、硝酸塩やセメント系材料由来の高pHプ ルームによるペントナイト/岩盤の長期変質への 影響及び硝酸塩の変遷に関する2003年度の研究を 実施した。処分システムに及ぼす硝酸塩の影響に 関する研究成果を取りまとめ,日本原子力学会春 の年会(2004年3月29~31日)において発表した (3件シリーズ発表)。セメント系材料に起因する 高pHプルームのペントナイト/岩盤への影響に ついては,モデルの確証研究を行った。

2) 処分システムの長期安定性

ニアフィールド水理場の長期的変遷評価システ ムの構築に関して,これまで実施してきた化学的 変遷及び力学的変遷に関する試験結果等を用いた 個別モデルの開発/確証を行い,これらを段階的 にプロトタイプシステムに組み込み,システムの 高度化を継続している。また,二次元評価システ ムの高速化を実施した(図4参照)。

3)システム性能評価

処分システムの性能に関連するパラメータの相 対的重要度及び処分システムが安全に成立するた めの十分条件(成立条件)の網羅的抽出に関する 研究(包括的感度解析)を継続した。2003年度は 結晶質岩系のサイトを想定した包括的感度解析の ためのマルチチャンネルモデルの開発を実施する とともに,現実的なパラメータ範囲の組み合わせ

によるTRU 廃棄物地層処分の成立性について検 討した。また,包括的感度解析を用いた成立条件 抽出について日本原子力学会春の年会(2004年3 月29~31日)において発表した(2件発表)。 4)処分材料の高度化

ヨウ素フィルタの長期保持性能を有する固化法 の一つとして,サイクル機構の自主技術である銅 マトリックス固化法につき,2003年度は,銅マト リックス固化体の海水系模擬地下水中における浸 出挙動について評価した。

(4) ナトリウム洗浄・処理技術の開発

ナトリウムを使用した原子炉施設等のメンテナ ンスや施設の廃止解体時等には,放射性物質を含 むナトリウムが付着した機器,配管等が払い出さ れるとともに,原子炉の冷却材として使われた多 量の放射性ナトリウムが排出される。このため, 安全かつ経済的に多量の放射性ナトリウムを処分 する技術や機器の洗浄・除染を行う技術を確立す る必要があり,それらの技術開発に取り組んでいる。

ナトリウム洗浄技術開発については,機器等の クレビス部(すき間)を対象としたナトリウム洗 浄処理試験の成果を報告書にまとめた。ナトリウ ム処理技術開発においては,ナトリウム転換基礎 試験装置を用いて,苛性ソーダ水溶液中にナトリ ウムを連続注入する長時間ナトリウム注入試験を 終了し,報告書にとりまとめた。

2. 廃止措置技術開発

2001年度策定した5ヶ年計画に基づき,以下のとおり各事業所にて施設の廃止措置を進めている。

2.1 「ふげん」の廃止措置

(1)新型転換炉「ふげん」

新型転換炉ふげん発電所は,2003年6月27日よ リ第18回定期検査を実施中であったが,2004年3 月31日,経済産業大臣からの合格証受領をもって 定期検査を終了した。今回の定期検査では,原子 炉内の燃料集合体をすべて取り出した後,燃料集 合体を再度原子炉に装荷することをできないよう な措置を燃料交換機に施し(写真1参照),2004年 2月20日経済産業大臣の承認を受けた。これによ り,非常用炉心冷却系設備や原子炉冷却系等が原 子炉等規制法に基づく定期検査の対象から除外さ れ,今定期検査の点検・検査項目は従来に比べ約 3分の1に減少した。 概況報告

燃料を再度装荷できない措置前(スナウト取り外し前)

※スナウト:燃料交換機と炉心とを結合させる装置

燃料を再度装荷できない措置後(スナウト取り外し後)

写真1 「ふげん」の燃料交換機(燃料を再度装荷 できない措置状況)

今後は,安全確保の下で廃止措置に向けた準備 作業等を着実に実施していく。

2004年3月24日には,使用済燃料貯蔵プール冷 却系配管が破断し使用済燃料貯蔵プールの水位が 低下したことにより原子力災害対策特別措置法の 特定事象の発生を想定して,2003年度の総合防災 訓練を実施した。

2004年3月29日には日本原子力学会の技術開発 賞として,新型転換炉ふげん発電所,東海事業所 再処理センター,東海事業所プルトニウム燃料セ ンター,大洗工学センターが「新型転換炉『ふげ ん』プロジェクトの完遂」を受賞した(写真2参 照)。

(2)「ふげん」用燃料の措置

1)使用済燃料の搬出,輸送等

2004年3月末現在「ふげん」の使用済燃料貯蔵 プールには704体の使用済燃料を保管中である。

使用済燃料の輸送については,今後計画的に搬 出していくこととしており,2004年度は2回の使

写真2 日本原子力学会賞 技術開発賞の受賞 (2004年3月29日)

用済燃料輸送を行う予定である。

2)保障措置

2004年1月19日から2月19日にかけて, IAEA に よる MOX 燃料の追加検認が行われた。

(3) 関連技術開発

1)照射後試験

「ふげん」で高燃焼度を達成した MOX 燃料の照 射特性を把握するため,日本原子力研究所東海研 究所燃料試験棟(以下,原研という)及び核燃料 サイクル開発機構大洗工学センターにて照射後試 験を実施中である。本期間中は、大洗工学センター において,燃料ペレット金相試験及び燃料ペレッ ト機器分析を行った。また,原研において,マイ クロ燃焼度測定,残留 FP ガス分析,ペレット熱拡 散率測定,被覆管バースト試験及び被覆管水素分 析を実施し終了した。

2) 高燃焼度 MOX 燃料の再処理特性研究

上記燃料の一部を利用し,将来の核燃料サイク ルに必要な燃焼が進んだMOX燃料の再処理施設 での溶解特性を把握するため,日本原子力研究所 と共同で研究を進めている。今期間中は,2004年 度に実施する溶解特性試験に必要なパラメータ調 査を実施するとともに試験用試料の切断,運搬等, 試験の準備を行った。

3)国際貢献

文部科学省原子力研究交流制度

2003年度同制度の計画に基づき,10月27日より 6名の研修生(中国)を受入れている。うち1名 は昨年12月に帰国しており,現在5名が研修中で ある。研修生は各課室に配属され,「ふげん」の担 当者によるOJT形式の実務研修(約5ヶ月)を実

概況報告

135

施している。なお,本研修は2004年4月18日終了 予定である。

これまでの同制度に基づく研修生の受け入れ実 績は2004年3月末現在累計で68名である。

また同制度に基づく中国への講師の派遣については,2003年11月9日から11月19日の第一次派遣団に引き続き,2004年2月22日~3月3日に2003年度の第二次派遣団として3名の講師を派遣した。

4)廃止措置準備

物量データベースの整備,廃止措置エンジニア リング支援システムの構築作業を継続して進めて おり,廃止措置計画評価システム(COSMARD) について日本原子力研究所と共同研究を継続して いる。

また,1999年度から,ノルウェーのエネルギー 技術研究所(OECD/NEA ハルデン炉プロジェクト)の協力を得て,最新の仮想現実・可視化技術 等を適用した解体作業シミュレーションシステム (VRdose)の開発を行ってきたが,2003年度をも って開発を完了した。

2004年2月27日には、「ふげん」の廃止措置につ いて技術的な助言をいただくために設置している 廃止措置技術専門委員会において、「ふげん」廃止 措置の準備状況、トリチウム除去コールド試験結 果、原子炉冷却系の系統化学除染結果、原子炉本 体解体技術の検討状況について報告し、機構外部 の委員よりご意見をいただいた。

そのほか,放射能インベントリ評価,重水系や 炉心等の特有機器の解体手順,除染方法,廃棄物 の処理方法等の調査,検討,試験を継続して実施 している。

22 製錬転換施設の廃止措置

乾式設備のうちウラン転換試験設備の2003年度 予定の解体工事(F2転換・精製工程等)を10月から 実施し 2004年1月に無事故・無災害で終了した。

23 ウラン濃縮施設の廃止措置

(1) 原型プラント

第一運転単位(DOP 1)は2001年2月に,原料 の供給を終了し 窒素ガスを封入し維持している。 第二運転単位(DOP 2)については,1999年11月 に,窒素ガスを封入し維持している。

(2) 滞留ウラン除去・回収技術開発

濃縮機器やプラント内に滞留しているウランを

除去・回収することを目的として,製錬転換施設 においてフッ化ガス(7フッ化ヨウ素)製造設備 の運転を実施している。また,原型プラントDOP 2においては,滞留ウラン除去・回収試験を2003 年7月末まで実施した。その後は,次の滞留ウラ ン除去・回収試験の準備作業を継続している。 (3)遠心機処理技術開発

使用済み遠心機の解体,除染処理技術の開発を 目的にパイロットプラント遠心機,原型プラント 遠心機の汚染分離試験データの整理を行った。ま た,パイロットプラント遠心機を連続的に処理す る試験を行い,試験装置の処理能力についての確 認を行った。

2.4 解体エンジニアリングシステムの構築

人形峠環境技術センター施設設備に関するデー タベース化の業務を継続するとともに,解体エン ジニアリングシステム(プロトタイプ)の構築と して三次元CADとサプシステムとのリンク化を 進めた。

また,センターのウラン系施設廃止措置計画策 定に関する検討を継続した。

25 デコミッショニング技術の開発

大洗工学センターにおいて解体を進めている施 設(重水臨界実験装置(DCA))及び今後解体が 予定されている施設(旧廃棄物処理建家)につい て,その特徴を考慮した解体技術の開発及び合理 的な施設解体方法の検討を実施している。これら の検討ツールとして,施設内に設置された機器の 情報(3次元位置,材質,放射能量等)を基に解 体手順などを選択して,解体に必要なコスト,人 員,工程,被ばく量等を算出し,解体計画の最適 化を図るデコミッショニング評価システム"DEC-MAN"を開発している。

解体技術開発として,除染システム(硝酸と水 酸化ナトリウム溶液の交互浸漬法)の検討結果を 踏まえシステム概念図を作成し,除染液の性能確 認試験を開始した。また,解体技術評価手法では, 固体廃棄物前処理施設(WDF)の減容焼却炉の解 体に関する計算結果を実績値と比較し,関係式を 導出した。

2.6 DCA 廃止措置

DCAは,1969年の初臨界以来,新型転換炉開発

のための研究開発を実施し 新型転換炉原型炉「ふ げん」の設計,運転及び実証炉の設計に成果を反 映し,所期の目的を達成した。その後,1995年か ら2000年にかけて未臨界度測定技術開発を目的と した研究開発を進め,臨界度モニター開発の見通 しを得た。また,1991年より,毎年東京工業大学 大学院生の実習の場としても利用され,2001年9 月26日に32年間の運転を終了した。その後,2002 年1月21日に国に解体届を提出し,廃止措置に着 手した。

DCAの廃止措置は,原子炉機能を停止する第1 段階(2001年度開始),燃料棒分解洗浄設備等を 解体撤去する第2段階(2003年度開始),原子炉 本体を本格的に解体する第3段階(2008年頃開 始),そして原子炉建屋を解体する最終段階の第4 段階(2013年頃開始)に分けて実施する計画で, 現在第1段階を終了し,第2段階を実施中である (表1参照)。また,図5に廃止措置の概略を示す。

当該四半期においては,起動用中性子源装置等の解体撤去作業を終了した。また,重水の搬出準備として輸送用保護容器を受入れ,容器の各種検 査を行うとともに重水の充てん作業を開始した。

3. 鉱山跡措置

鉱山保安法及び環境保全協定等に従い,構内及 び構外の鉱山関連施設の維持・管理を継続した。

鉱さいの措置に関連して,スーパーサイフォン フィルタのろ過砂を用いたラジウム除去の実証試 験を継続した。また,坑水処理に係る廃棄物発生 量の低減化に向けた水質調査及び処理の合理化に 向けた基礎試験を継続した。鉱さい等の長期的な 安定化方策及び安全性にかかわる評価に向けた検 討を継続した。また,露天採掘場跡地,鉱さい堆 積場周辺の地下水モニタリング及び測定技術開発 等を継続した。

4. 関連施設の設計・建設

4.1 低放射性廃棄物処理技術開発施設(LWTF) 「軽水炉燃料再処理技術の研究開発」の章に記載。

42 固体廃棄物処理技術開発施設(LEDF)

大洗工学センターの「常陽」や照射後試験施設 等で発生した放射性廃棄物は、WDFで前処理した 後に,日本原子力研究所大洗研究所の廃棄物管理 施設で処理・保管を行っている。しかし,研究開 発の進展等に伴い,廃棄物発生量の増大等の課題 が顕在化している。そこで,廃棄物の高減容化, 安定化に関する技術開発とその実証を図るととも に,照射試験等を円滑に推進するための固体廃棄 物処理技術開発施設(LEDF)の建設を計画して いる。

[施設の概要]

処理能力:約13トン/年 建家規模 ・構造:鉄筋コンクリート造

処理フロー及び建家概念

・図6にLEDFの処理フローと建家の概念を示す。

2003年度は,表2に示す計画に基づき,2002年

	2001年度	2002年度	2003年度	2004年度	2005年度	2006年度
	第1	 段階(原子炉の機能停止) 				
			第2段階(燃料棒分解洗	│ 浄設備等を解体撤去) ·		
DCA廃止措置			燃料棒分解洗浄設備の解(本 1		
					解体工法解析評価	

表1 DCA 廃止措置計画

度までに実施した内装設備(部屋配置,処理プロ セス,物流計画等)をより具体化するための基本 設計 と建屋設計の基本設計を実施した。当該四 半期においては,基本設計 として内装設備,建 屋・附帯設備の設計を完了した。

図6 固体廃棄物処理技術開発施設(LEDF)鳥かん図

/本社:経営企画本部
 パックエンド推進部

 東海:環境保全・研究開発センター
 大洗:開発調整室
 人形:環境保全技術開発部

	2001年度	2002年度	2003年度	2004年度
固体廃棄物処理技術開発施設				
(LEDF)	合理化設計	基本設計	基本設計	詳細設計
 内装設計 				
		(内装基本設計)	(内装設備選定)	
			基本設計	実施設計
(2) 建家設計				

表2 固体廃棄物処理技術開発施設(LEDF)設計工程

核物質管理と核不拡散対応

1.核物質管理

1.1 核物質利用

プルトニウム利用に関する2003年度海外動向調 査報告書を関係者に配布した。

12 計量管理報告

(1)核物質の在庫及びその増減の状況について以下の報告書を文部科学省へ提出した。

報告書名	件数	提出日(2004年)
在庫変動報告書(ICR)	67	1/15 2/12 2/26 3/1 3/15
実在庫量明細報告書(PIL)	10	3/17
物質収支報告書(MBR)	9	3/17
国籍管理報告書(OCR)	102	1/29 2/26 3/1 3/15 3/31

- 2.核不拡散・保障措置
- 2.1 核不拡散

(1)核不拡散分野の研究開発に関する米国エネル ギー省(DOE)及び国立研究所の有識者と意見交 換を行った。(2004年3月22日:ブルックヘブン 国立研究所(BNL),24日:DOE,25日:サンデ ィア国立研究所(SNL),26日:ローレンスリバモ ア国立研究所(LLNL))

22 保障措置研究・技術開発

(1)米国DOEとの常設調整グループ会合において、実施中の22件の共同研究について進捗状況の確認及び4件の新規研究について議論を行った。
 (2004年3月23,24日)

(2)核物質管理・保障措置委員会を開催し,大学 関係者,国内研究機関の有識者との意見交換を行った。(2004年3月19日)

(本社:国際・核物質管理部)

概況報告

安全管理と安全研究

1.個人被ばく線量測定・評価技術の高度化

 1.1 外部被ばく線量測定・評価技術の高度化研究 2002年6月にフランスCEAのValduc研究所で行われたSILENE臨界事故時線量評価相互比較試験 における基準線量が、主催者であるIRSNから発表 された。本試験では合計3回の照射が行われ,核 分裂数は0.7×10¹⁷~15×10¹⁷ fissions,照射され た中性子線量と線量はそれぞれ0.8~1.7Gy, 0.4~3.0Gyの範囲であった。サイクル機構が本試 験で使用した線量計による線量評価結果と主催者 発表値を比較した結果,線量計については± 30%以内であった。一方,硫黄の放射化(³²S(n, p)³²P反応)を利用した中性子線量計については, 鉛遮へいによって核分裂スペクトルを低エネル ギーにシフトさせた照射条件において約半分の過 小評価となった。

12 内部被ばく線量測定・評価技術の高度化研究 体外計測における計数効率の体格補正方法を検 討するため,全身均一分布とした年齢別のMIRD 数学ファントムによるシミュレーションを継続し て行った。シミュレーションの結果,サイクル機 構東海で開発したスキャニング型全身カウンタで は,幼児等の体格の小さな被検者に対しては計数 効率が大きくなる傾向が認められ,保守的な線量 評価を与えることが解った。しかしながら,通常 のモニタリングの対象としている成人に対して は,体格パラメータ(身長または体重)と計数効 率の関係から,計数効率が大きくなる傾向は顕著 に現れない結果を得た。

また,内部被ばく線量評価の標準化を図ること を目的として,2002年度に開発したプルトニウム 内部被ばく線量評価コード(RAPUTA)の機能拡 張を行い,より汎用性の優れた内部被ばく線量評 価コードの開発を進めている。内部被ばく線量評 価が重要となる事故時では,個人の代謝特性を考慮しなければならない状況も想定されることから,このコードでは,モニタリングデータに基づく個別の線量評価が行えることとしている。

なお,当四半期において,これまでの安全研究 の成果を取りまとめ,第2回原研-サイクル機構 合同安全研究成果報告会(2004年2月:東京)で 発表した。

2.放射線モニタリング技術の高度化研究

2.1 放射線測定器の校正手法の高度化研究

一般的に中性子線源は安全性や操作性を考慮し て,付加カプセル等に収納して使用する場合や, 照射装置や支持台等の線源支持構造を持つことが 多く,線源周辺の構造物が増えるほど,フルエン スの非等方性が増す傾向にある。そこで²⁵²Cf中性 子校正場の非等方性を把握するため,線源周辺の 構造材からの散乱中性子についてモンテカルロ輸 送計算コードMCNPによる計算を行い,線源から のフルエンス角度分布を評価した(図1及び図2 参照)。

中性子照射装置を用いて,線源から1mの地点 で校正を行う場合,等方点線源として計算される フルエンス率に対する比である非等方性補正係数 は1.11となったが,周辺線量当量換算係数の変化 は小さく379pSv・cm²となった。なお,この成果に ついては,日本原子力学会春の年会(2004年3月: 岡山)において発表した。

放射線測定器の校正及び特性試験に用いる基準 線校正場における照射野の均一性をイメージン グプレート(IP)を用いて調査した。ISO6980で は大面積にわたって線量率の均一性を要求する場 合,直径15cmの照射野内における線量率の均一性 を,[®]Sr +[®]Yの場合±5%とすることが規定され ている。そこで[®]Sr +[®]Y(公称放射能74MBq)に

図1 付加カプセルの外観とその計算体系 ²⁵²Cf線源(AEA Tech.製X1カプセル)と付加 カプセル(内部にAI製スペーサ)を計算体系に 組み込んだ様子。

図2 X1カプセル,付加カプセル及び照射装置照射 筒を計算体系に組み込んだ場合のフルエンス 角度分布

ついて,ポリエチレンテレフタレート製の平坦化 フィルタの有無における条件で照射を行い,測定 を行った。フィルタなしの条件では,照射野中心 の線量率が高くなり,直径10cmの範囲で5%, 直径15cmで10%の均一性であった。フィルタあり の条件では,直径15cmで5%以下であったことか ら,ISOの規定を満足していることが再確認された。

22 臨界監視技術の高度化に関する研究

臨界安全監視システムの開発の一環として,再 処理施設の排気をサンプリングし,1時間ごとに Ge検出器で連続測定を行った。従来から設置され ている主排気筒のNal(TI)検出器で測定された [®]Kr放出量との比較を図3に示す。図3より,本 装置は工程運転に伴う[®]Krの放出の傾向を捕らえ ることができる。今後,測定値の濃度換算のため モンテカルロ計算コードEGS4等の計算プログラ ムを用いて検出器の効率を評価していく予定であ る。

また,再処理施設などに設置している臨界警報 装置について,エネルギー特性に加えて,方向特 性,さらに装置を取り付けている壁からの後方散 乱線によるレスポンスへの影響をモンテカルロ計 算コードで解析した。本成果については,第7回 NUCEFセミナー(2004年2月:原研東海研究所) において報告した。

23 走行式放射線モニタの高度化に関する研究

本研究では,従来平常時に使用している走行式 モニタを高度化し,臨界や火災・爆発等の事故時 における放射線状況等を効率的に把握するととも に,現場復旧作業員の被ばく低減を目的として, 走行式放射線モニタの概念設計及び主要搭載機器 の耐久性試験を実施してきたが,2003年度ですべ て終了した。

現在 本研究に係る技術レポートを作成中である。

2.4 放射線モニタのシミュレーション応答解析 に関する研究

放射線モニタの応答シミュレーション技術の, 実機の設計評価への応用を進めている。

今期は,中性子線量計への適用を見込んでいる 熱/高速中性子同時検出型中性子計数管のうち, 円筒形計数管を対象とした応答評価を行ってい る。線量計への適用を想定し,さまざまな中性子 場を模擬した入力に対する出力と,中性子線量評 価値との対比を継続している。

モニタによる^{®Kr}放出傾向

3.1 海洋環境における放射性物質移行モデルに 関する研究

放射性物質の挙動と拡散予測モデルに関する研 究では,常陸那珂火力発電所からの温排水を考慮 した海流計算のテストランを行った。また得られ た海水の水温差計算結果を検証するため,モニタ リング船で調査した水温データの整理を行った。

地球規模の海洋環境における放射性物質移行モ デルに関する研究では,日本海Cs拡散モデルに使 用する拡散係数を決定し,大気圏核実験に起因す る海水中¹³⁷Cs濃度を計算したところ,1970年から 現在までの期間について日本分析センターがまと めた観測値を良好に再現できた(図4参照)。

32 環境試料の分析及び測定技術の高度化に関 する研究

時間間隔解析手法を組み込んだサーベイメータ の製作について検討した。本体の設計にあたって は小型化・省電力化に留意した。本サーベイメー タの特徴としては,エネルギー分解能の高いシリ コン半導体検出器を用い,サーベイメータ内に消 費電力の少ない液晶を設置し,エネルギースペク トルメータを装備するところにある。

現在,検出部を製作中であり,検出部が完成次 第,バックグラウンドや計数効率等の総合試験を 実施する(写真1及び表1参照)。

一方,質量分析法を用いた極低濃度放射性核種

図4 島根沖表層海水中¹³⁷Cs 濃度 (観測値の出典:日本分析センターホームページ http://search.kankyo-hoshano.go.jp/top.html)

写真1 時間間隔解析機能付きサーベイメータ本体

表1 基本スペック

項 目	仕様
本体	290×170×155mm(除く取手部)
エネルギー情報	10bit固定
時間情報	16bit可变
データ取り込み速度	2 ,000 event / sec.
有効データ数	6 3Mevents

の定量に関する研究では,誘導結合プラズマ質量 分析装置(ICP MS)を測定系に用いたテクネチ ウム - 99([∞]Tc)の定量に向けての基礎実験を行 った。基礎実験の結果,有機物分解の際,分解効 率が高い過塩素酸は,試料溶液中の99%以上のTc を揮発させることが分かった。また,濃縮操作に おいては,塩酸系の時にもっともTcの揮発が大き いことが分かった。

これらの結果から、Tcの定量の際には、有機物 分解において分解効率の高い過塩素酸の使用は不 可能であることが分かった。また、濃縮操作にお いては、塩酸を用いることができないので、一般 的には安定度の高い金属の塩化物として処理でき ないことが判明した。これらの結果は表土や畑土 など有機物が多く複雑なマトリクスを有する試料 からのTc抽出において有用である。

今後,サイクル機構周辺のTcの分布を調査する ため引き続き検討していく。

33 大気中ラドン濃度の測定

サイクル機構はウラン鉱山跡地を有し, ラドン の監視が義務づけられている。しかし, ラドン測 定についてはJISなどの規格が国内に存在しない ため,国内外の動向を把握しつつ,測定法自身も 開発研究する必要がある。

今期は,前期に引続いて,積分型測定器による 大気中ラドン濃度の測定,地表からのラドン散逸 量の測定等の調査を継続した。さらに,各種測定 器の試験を実施した。その他,長期間の平衡等価 ラドン濃度を測定する積分型ラドン娘核種測定器 による実環境試験を継続した。

- 4.安全工学研究
- 4.1 異常事象時における換気系の安全性に関す る研究

MOX加工施設等の換気設備等の検討のため、既 存の施設の情報について調査を継続した。

また,換気系解析のための市販の熱流動解析 コード(CFD)の適用性検討のため,過去に実施 した実験のモデル化の見直し,データの処理を継 続し,CFDコードのひとつであるCFX 5による解 析を実施し結果を比較 検討し適用性を確認した。

42 核燃料施設の安全解析手法の開発・整備

中性子及びガンマ線線量評価コードシステムの 合理的な遮へい評価を実施するための高度化整備 として,核定数ライブラリ等の改良を継続して実 施した。

臨界事故時の線量評価手法の検討として,臨界 計算コードと遮へい計算コードの接続計算手法を 用い,硝酸ウラニル溶液系,硝酸プルトニウム溶 液系及びMOX粉末系を線源とした場合における 臨界事故規模,遮へい体及び線量の関係の評価・検 討を実施した。

MOX加工施設等の臨界管理に関する研究とし て,ISO TC 85/SC5/WG5 (臨界安全に関連した 計算・取扱いの規格化)に関連したMOX均質系 の臨界データの比較・評価を行った。また,MOX 非均質系の臨界ペンチマークとして,これまで実 施されたものに加えて,International Handbook of Evaluated Criticality Safety Benchmark Experiments に示されている実験に対する評価・検討を 許認可評価用解析コードシステムSCALE4及びモ ンテカルロ輸送計算コードMCNP4を用いて行っ た。

4.3 核燃料施設の確率論的安全評価の適用研究

MOX施設へのPSA適用性研究として 核燃料施 設の事故シナリオ,事故評価・解析手法の検討, モデルプラントの設定検討のため,引き続き原子 炉と原子炉以外の原子力施設に対する確率論的な 安全評価の実施に関する手順の差異,特徴につい て検討を実施し,モデルプラントとして米国の MOX加工施設(MFFF)の施設情報を整理すると ともに,手法及びデータの検討結果として原子炉 (軽水型発電炉)のPSA手法とその安全関連データ 及び化学プラントでの定量的安全評価手法とその 関連データについて整理した。さらに国際原子力 機関(IAEA)の手順を参考に,MOX加工施設で の定量的評価手順を検討した。

(本社:安全推進本部)

1.国際会議

1.1 国内

期間	開催場所	会議名及び内容
2004年 1 月14~15日	大 洗	JNC/CEA (仏国原子力庁) 先進技術協定に基づく技術会合
2 月23~25日	東京	解体プルトニウム処分協力に関する日露レビュー会合
2 月24~26日	瑞浪	JNC/NAGRA(スイス放射性廃棄物管理共同組合)技術検討会議
2 月25日	敦 賀	敦賀国際パネル
2月26日	大洗	高速炉に関する日/露セミナー
2月27日	大洗	大洗 FBR サイクルシンポジウム2004
3月15~19日	東海	IAEA/RCA [*] 個人被曝線量計相互比較に関する最終プロジェクト評価に関するワークショップ

12 国外

期間	開	催	場	所	슾	議	名	及	び	内	容
2004年 3 月23~24日	米国 ワシン	トン	,		「JNC/DOE(米国エネルギ·	-省)	亥不拡散	保障措	置協定	こに基づ	「く常設調整会合」

2.海外派遣・留学

期	間	派 遣 ・ 留 学 先	目	的			
2004年1月~	2005年1月	米国 アルゴンヌ国立研究所	新型燃料の安全性試験に関する共同研究				

3.主要外国人の来訪

訪問日	訪問場所	訪問者
2004年 1月30日	東京	露国クルチャトフ研究所ベリホフ総裁
2月17日	東海	英国BNFLイオン執行役員
2月26日	東海	バヌアツ共和国セラ・モリサ財務・経済大臣
2 月26~27日	大洗	露国IPPEポプラフスキー副所長

* Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology 原子力科学技術に関する研究・開発及び訓練のための地域協力協定(アジア太平洋地域における原子力地域協力, IAEA)
| 訪問日 | 訪問場所 | 訪問者 |
|--------|-------------------|----------------------------------|
| 3月4~5日 | 東 海
大 洗
東 京 | 仏国CEA プシャール原子力局長 |
| 3月18日 | 東京 | 経済協力開発機構原子力機関(OECD/NEA)エチャベリ事務局長 |

 4. 文部科学省原子力研究交流制度に基づく協力 2003年度同制度の計画に基づき,中国2名,インドネシア1名,合計3名の研修生を受入れた。
 2003年度の受入れ合計数は15名(中国11名,インドネシア3名,ベトナム1名)である。

同制度に基づく講師の派遣については,2グ ループを派遣した。2003年度の派遣については合 計3グループ8名である。

5.国際特別研究員制度に基づく研究者招聘

米国,カナダから各1名の特別研究員を招聘した。2003年度同制度に基づく新規招聘の合計数は 6名である(延長を除く)。

- 6.余剰兵器解体プルトニウム(解体プル)処分 協力
- (1)3体デモ照射は、ロシア原子炉科学研究所
 (RIAR¹⁾)との共同研究契約に基づき、2003年4
 月から1体の燃料集合体の照射後試験を実施し

ている。非破壊試験は終了(データ整理中)し現 在燃料ピンの破壊試験を実施している。

- (2) BN600安全解析は、ロシア物理エネルギー研 究所(IPPE²⁾)との共同研究契約に基づき、 BN600³⁾のハイブリッド炉心化に際しての安全 性について評価及び解析を実施している。
- (3) RIAR 施設整備は, RIAR との共同研究契約に 基づき, BN600ハイブリッド炉心へ燃料供給す る設備の改造を実施している。
- (4) 解体プルトニウム処分協力に関する日露レ ビュー会合を,2月に東京で開催した。
- 1) RIAR: <u>Research Institute of Atomic Reactors</u> 原子 炉科学研究所
- 2) IPPE : <u>Institute of Physics and Power Engineering物</u> 理エネルギー研究所
- 3) BN600 : <u>B</u>uistrui <u>N</u>eitron (Fast Neutron)<u>600</u> ロ シ アの高速原型炉

(本社:国際・核物質管理部)

業務品質保証活動

業務品質保証活動においては,公衆と環境の安 全及び社会的信頼の確保を前提とした原子力の開 発及び利用の促進に係る業務の高い品質を確保す ることを目的に,すべての業務を対象として,業 務に要求される品質(要求品質)を定め,その達 成に向けた活動を推進している。

1.経営管理サイクルと業務品質保証活動

2004年度の業務を実施するに当たり,サイクル 機構としての重要課題への取り組み方針並びに具 体的重点事項及び目標を明示した「平成16年度業 務実施基本方針・基本計画」,「平成16年度業務品 質保証活動基本方針・基本計画」等が2004年3月 31日の理事会議にて承認・決定された。

また,これらの基本方針・基本計画の決定に先 立ち,本社各部室及び各事業所等における2003年 度業務実施計画等に係る年度末の実施結果及び 2003年12月25日の理事会議において決定された基 本方針・基本計画(案)に基づく2004年度業務実施 計画等に関する理事長ヒアリングを2004年2月24 日から3月16日にかけて延べ4日間にわたって実 施した。

2004年度業務品質保証活動基本方針及び基本計 画を次頁に示す。

2.理事長診断会

要求品質の達成状況を確認し,改善プロセスに ついて必要な指導を行う理事長診断会を大洗工学 センター及び人形峠環境技術センターを対象に 2004年3月10日に実施した。テーマは,「常陽MK

の利用の進め方について」及び「人形峠環境 技術センターにおける廃止措置の進め方につい て」である。 3.指導会

2003年度は,5事業所が7つの検討テーマにつ いて活動を行っている。品質保証の外部専門家に よる指導の下,敦賀本部,東海事業所,大洗工学 センター,人形峠環境センター及び東濃地科学セ ンターの指導会を開催した。

4.安全・品質監査

2003年度の定期監査である安全・品質監査につ いて,是正措置結果(計画を含む)の集約を行っ た。是正措置結果の第1段階のフォローを2004年 3月に開始した。第2,3段階のフォローは2004 年度監査の事前説明及び本監査で実施する予定で ある。

5.ISO等の認証取得・維持活動の推進

ISO9001の規格研修をもんじゅ建設所において 実施した。

6.業務品質保証の階層別教育

業務品質保証に関する階層別教育の一環とし て,役員層と外部の品質保証専門家との意見交換 会を2004年3月27日に開催した。講師として,こ れまで5年間指導会の講師を務め,サイクル機構 の仕組みに精通しておられる宮村鐵夫中央大学教 授をお招きし,これからの品質保証におけるトッ プの役割」と題し,意思決定とリスクマネージメ ント,PDCAによる継続的品質改善等について講 演して頂くと共に活発な意見交換を行った。 平成16年度業務品質保証活動基本方針 及び業務品質保証活動基本計画 核燃料サイクル開発機構

理事長

業務品質保証活動を推進し,要求品質を達成 するために,平成16年度の業務品質保証活動基 本方針及び業務品質保証活動基本計画を以下の とおり定める。

[業務品質保証活動基本方針]

- ・「業務品質方針」を踏まえ,要求品質に照らし て業務の実態をチェックし,業務の「質」を 改善するため,PDCAのサイクルを確実に回 して,業務品質改善活動を実施する。
- ・適正かつ効率的な業務運営の仕組みを構築するとともに、このような取り組みを定着させ効果あるものとするために、国際規格(ISO等)の認証取得・維持活動を推進する。
- ・現状の業務の実態をチェックし,原子力施設 等の保安活動に係る品質保証活動の強化及び 業務の「質」の向上に資するために,品質監 査を確実に実施する。
- ・事業所長等は,業務品質保証に関する意識と 能力を高めるための教育・啓発を,従業員等 に対し計画的に実施する。
- [業務品質保証活動基本計画]

各部門において,業務の標準化を図りつつ, 業務品質向上の観点から業務品質改善活動を継 続的に実施するとともに,業務品質改善の意識 が従業員等に定着し維持されるようにする。

- 1.業務品質改善活動の実施
- (1) 継続的な業務品質改善の推進

各部門においては,要求品質に照らして業務 の実態をチェックし,業務の「質」を着実に改 善するため,経営管理サイクルの「業務推進・ 品質改善目標リスト」における業務品質改善項 目の重点化及びその課題,目標,達成基準等の 具体化を図り,PDCAのサイクルを確実に回し て業務品質改善活動を実施する。この活動に当 たっては,診断会,指導会等の制度の活用によ り活性化を図るとともに,改善成果の定着化を 図る。 (2)原子力施設等の保安活動に係る品質保証活動の強化

保安活動に係る品質保証要領類の整備,品質 保証に関する教育の徹底及び日常の保安活動の 監視・測定を確実に実施するとともに,品質保 証計画の継続的な改善を図る。

2.業務運営の仕組みの確立

(1)業務の標準化の推進

- 各部門においては、改善活動の成果を日常管理に確実に反映し維持するために、業務の標準化を実施する。また、ITを活用した業務運営システムの原研との統合の検討を踏まえた業務の標準化について、検討を行う。
- ・各部門においては,法規制,品質保証計画及 びISO等における要求事項を踏まえた文書体 系の整備を実施する。

(2) ISO等の国際規格認証取得・維持活動の推進

- ・各事業所は、ISO等の国際規格認証取得・維 持活動を推進する。
- ・認証を取得した部門は,その仕組みを改善の ツールとして用い実行する。
- ・複数のマネジメントシステムを有する事業所 においては,安全規制に係る保安活動の品質 保証を中心として品質保証体系の整理・統合 化に係る検討を進める。

3.品質監査の実施

- (1)現状の業務の実態をチェックし,原子力施設等の保安活動に係る品質保証活動の強化及び業務の「質」の向上に資するために,監査員の力量の向上を図りつつ,合理的な品質監査(安全・品質監査,自主品質監査)を確実に実施する。
- (2)事業所長等は、サイクル機構に納入される 物品・役務等の「質」を確保し向上させるために、受注者品質監査を計画的に実施する。

4.業務品質保証に関する教育・啓発の実施 事業所長等は、業務品質保証に関する意識と 能力を高めるための教育・啓発を目的・目標を明 確にしつつ、従業員等に対し計画的に実施する。

以上

(本社:品質保証推進部)

外 部 発 表

1.外部発表

1.1 外部発表実施状況

2004年1月から3月において外部発表終了の届けがあった外部発表資料は次のとおりである。

	発 表 内 容	発表先及び発表年月日
	高 速 増 殖 炉 (F B R) 関 係	(44件)
1	「常陽」MK による新たな高速炉開発の幕開け 「常陽」MK の概況 「常陽」MK 冷却系改造工事ビデオ	「常陽」MK 14万キロワット達成記念報告会 (大洗文化センター)2003年1月26日
2	次世代の高速炉サイクル開発へ	「常陽」MK 14万キロワット達成記念報告会 (大洗文化センター)2003年1月26日
3	24GHzジャイロトロンによるB₄Cセラミックスの焼結Ⅲ	日本物理学会 2003年秋季大会 (岡山大学)2003年 9 月20日
4	T字形合流管下流域に発生するアーチ状渦列の数値解析	京都大学数理解析研究所共同研究集会「乱流の解剖 - 構造 とはたらきの解明」 (京都大学)2004年1月14日
5	T字配管合流部での主配管内2次流れと枝配管流れとの相互作用について	京都大学数理解析研究所共同研究集会「乱流の解剖 - 構造 とはたらきの解明」 (京都大学)2004年1月14日
6	高速炉の火災PSA	第11回火災研究専門委員会(日本原子力学会) (東京工業大学)2004年1月16日
7	Advanced MOX Core Design Study of Sodium Cooled Reactors in Current Feasibility Study on Commercialized Fast Reactor Cycle Systems in Japan	Nuclear Technology Vol.146 No.1 2004年 2 月
8	IN LINE流力弾性振動による配管系の疲労破壊現象の解明と早期寿命予測法の確立	日本機械学会論文集A編 2004年2月
9	FUNTEC フォーラムにおける「ジャイロトロン・セラミックス焼結法による 原子炉制御棒の長寿命化」研究成果の発表(ポスターパネル形式)	FUNTEC フォーラム (福井大学) 2004年 2 月 2 日
10	第 2 回原研 - サイクル機構合同安全研究成果報告会	第 2 回原研 - サイクル機構合同安全研究成果報告会 (星陵会館)2004年 2 月 6 日
11	R&D Prospects of Monju	敦賀国際パネル(敦賀本部MCスクエア)2004年2月25日
12	FBR サイクル技術開発の役割と今後の展開	大洗 FBR サイクルシンポジウム2004 (大洗工学センター)2004年 2 月27日
13	日本における FBR サイクル技術開発 - 目指すシステムと技術展望 -	大洗 FBR サイクルシンポジウム2004 (大洗工学センター)2004年 2 月27日
14	連成の力学 様々な連成現象 熱 流体 構造連成	構造工学ハンドブック 2004年3月
15	Oxygen Diffusion Analysis of Lead Bismuth-Cooled Natural Circulation Reactor	Journal of Nuclear Science and Technology Vol.41 No.3 2004年3月
16	Experimental Investigation of Fission Products Release from Irradiated FBR MOX Fuel	Fuel Safety Research Meeting 2004 (虎ノ門パストラル)2004年 3 月 2 日
17	「次世代原子力技術開発の国際協力の意義と将来のエネルギー供給における その重要性」 - 高速炉開発の意義、国際協力及び「もんじゅ」の役割 -	日本原子力産業会議 国際シンポジウム (虎ノ門パストラル)2004年3月2日
18	「もんじゅ」プラント熱過渡裕度評価	第13回もんじゅ国際技術センター技術報告会 (敦賀本部 MC スクエア) 2004年 3 月10日
19	「常陽」MK の性能試験結果	第13回もんじゅ国際技術センター技術報告会 (敦賀本部 MC スクエア) 2004年 3 月10日
20	タギング法破損燃料検出装置の改良の検討 - タギング法破損燃料検出装置モックアップ試験の概要 -	第13回もんじゅ国際技術センター技術報告会 (敦賀本部 MC スクエア)2004年 3 月10日
21	蒸気発生器伝熱管ECTセンサの開発双方向励磁型リモートフィールドセンサの特性(H13試作)	第13回もんじゅ国際技術センター技術報告会 (教賀本部MCスクエア)2004年3月10日

	発 表 内 容	発 表 先 及 び 発 表 年 月 日			
	高速增殖炉(FBR)関係〔44件)				
22	伝熱管ECT用プロープの搬送挙動とノイズ	第13回もんじゅ国際技術センター技術報告会 (敦賀本部MCスクエア)2004年 3 月10日			
23	仏国「ERANOS」システムによる「もんじゅ」炉心臨界性解析	第13回もんじゅ国際技術センター技術報告会 (敦賀本部MCスクエア)2004年 3 月10日			
24	Promising Fast Reactor Systems in the Feasibility Study on Commercialized FR Cycle Systems	14th Pacific Basin Nuclear Conference (ホノルル)2004年 3 月21日			
25	JOYO MK , State of the Art, FBR Irradiation Test Facility	14th Pacific Basin Nuclear Conference (ホノルル)2004年 3 月21日			
26	Sodium Cooled Fast Reactor Concepts and Supporting Fundamental Re- searches	14th Pacific Basin Nuclear Conference (ホノルル)2004年 3 月21日			
27	Advanced Energy Conversion Systems for FBR	14th Pacific Basin Nuclear Conference (ホノルル)2004年 3 月25日			
28	目で見る「常陽」MK 冷却系改造工事	平成15年度弥生研究会「研究炉の運転・管理及び改良に関 する研究会」 (東京大学)2004年3月24日			
29	「常陽」MK 性能試験結果	平成15年度弥生研究会「研究炉の運転・管理及び改良に関 する研究会」 (東京大学)2004年3月24日			
30	「常陽」MK 性能試験時の原子炉自動停止とその対策	平成15年度弥生研究会「研究炉の運転・管理及び改良に関 する研究会」 (東京大学)2004年3月24日			
31	高温損傷を受けた SUS 304鋼の磁気特性の異方性	第13回MAGDAコンファレンス (東北大学)2004年 3 月26日			
32	高温疲労劣化による SUS 304鋼の磁気特性変化	第13回MAGDAコンファレンス (東北大学)2004年 3 月26日			
33	PNC FMS鋼の照射後シャルピー衝撃特性に及ぼす組織の影響	日本金属学会2004年春期大会 (東京工業大学)2004年 3 月30日			
34	Pb,BiおよびPb Bi共晶合金の酸素分析と酸素分圧測定	日本金属学会2004年春期大会 (東京工業大学)2004年 3 月31日			
35	液体金属冷却高速炉用被覆管材料開発戦略	日本金属学会2004年春期大会 (東京工業大学)2004年3月31日			
36	高速炉用ラッピングワイヤ表面近傍におけるスエリング組織発達	日本金属学会2004年春期大会 (東京工業大学)2004年 3 月31日			
37	エルボ下流のT字配管合流部における主配管内2次流れと枝配管流れとの相 互作用について	「乱流の解剖 - 構造とはたらきの解明」講究録 (京都) 2004年 3 月31日			
38	FNCA Safety Culture Project Safety Culture Information for Member Country Research Reactor Report of Experimental Fast Reactor " JOYO "	FNCA 原子力安全文化ワークショップ (大田)2004年4月			
39	Replacement of Secondary Heat Transport System Components In the Experimental Fast Reactor JOYO	ICONE 12 (ワシントンDC) 2004年 4 月25日			
40	The Adventitious Pin Failure Study under a Slow Power Ramp	ICONE 12 (ワシントンDC) 2004年 4 月25日			
41	Core Performance Tests at Low Power for the Joyo Upgrade to MK III	ICONE 12 (ワシントンDC) 2004年 4 月25日			
42	Experimental Investigation of Evaporation Behavior for Lead Bismuth Eutec- tic and its Impurity Tellerium	ICONE 12 (ワシントンDC) 2004年 4 月25日			
43	Magnetohydrodynamic Turbulent Flow for LMFRs	ICONE 12 (ワシントンDC) 2004年 4 月25日			
44	Study of Thermal Unfluence on Tubes due to Sodium Water Reactions in LMFBR Steam Generator	ICONE 12 (ワシントンDC) 2004年 4 月25日			
	先 進 リ サ イ ク ル 関 係	(21件)			
1	Structure of Molten (Na 2Cs)CI Containing UO22*Ion	Joint Meeting: Fifth International Conference on Molecular Electronics and Bioelectronics (つくば国際会議場)2004年1月14日			
2	Thermal Conductivity of Molten Salts	Joint Meeting: Fifth International Conference on Molecular Electronics and Bioelectronics (つくば国際会議場) 2004年1月14日			
3	Current Status of R&D on the Advanced Fuel Cycle	遠隔技術開発に関する講演 (大田) 2004年1月29日			
4	テクネチウム (核データ)	日本原子力学会「PUREX システムにおけるルテニウム及 びテクネチウムの化学」研究専門委員会報告書 (静岡大学)2004年 1月31日			
5	吸収スペクトル測定によるNaCl 2CsCl中のUO (2+)UO (+)およびU(4+) /U(3+)の平衡に関する研究	平成15年度「アクチニド元素の化学と工学」専門研究会 (京都大学)2004年2月17日			
6	CPFにおける金属電解法乾式再処理プロセス試験	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			

	発 表 内 容	発 表 先 及 び 発 表 年 月 日			
	先進リサイクル関係(21件)				
7	オブジェクト指向型汎用シミュレーションソフト(O DPS)による抽出シミュ レーションコードの開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
8	核燃料サイクル施設設計情報の統合システムの開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
9	金属電解再処理法に適した臨界管理方式の検討と安全性解析	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
10	先進リサイクル技術開発のための核データ測定	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
11	先進湿式法による U/Pu/Np 分離技術の開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
12	先進的湿式再処理技術開発に関する試験研究の現状	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
13	直接抽出技術開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
14	高速実験炉「常陽」 その他 多数	大洗 FBR サイクルシンポジウム2004 (大洗工学センター)2004年 2 月27日			
15	Development of the MAREC Process for HLLW Partitioning Using a Novel Silica-Based CMPO Extraction Resin	Journal of Nuclear Science and Technology Vol.41 No.3 2004年3月			
16	Fuel Cycle Technology for PPU Concept Based on the Aqueous Reprocess- ing and Oxide Fuel	International Science and Technology Forum on Pro- tected Plutonium Utilization for Peace and Sustainable Prosperity (東京) 2004年3月1日			
17	CPFにおける安全確保の取り組み	核燃料施設等事業者情報交換会 (東京)2004年3月15日			
18	リサイクル機器試験(RETF)における遠隔保守技術	原子動力研究会 (日本原子力産業会議)2004年3月16日			
19	核燃料のリサイクル技術の開発 ~ エネルギー資源のリサイクルに向けて~	第6回サイクルフォーラム (東海村リコッティ)2004年3月25日			
20	Conceptual Design Study on Fast Reactor Fuel Reprocessing System Using Super-DIREX Process	ICONE 12 (ワシントンDC) 2004年 4 月25日			
21	New Decladding System in the Reprocessing Process for Fast Reactor Fuel	ICONE 12 (ワシントンDC) 2004年 4 月25日			
	プルトニウム燃料(MOX)関係(3件)				
1	マイクロフォーカス型X線CT法による振動充填燃料の内部構造の分析	第4回放射線による非破壊評価シンポジウム (東京)2004年2月7日			
2	マルテンサイト(9 Cr) 系 ODC 鋼の抵抗溶接技術開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日			
3	原子炉用核燃料製造プロセスの簡素化- 成型焼結試験-	日本セラミックス協会2004年年会 (湘南工科大学)2004年 3 月24日			
	放射性廃棄物関係	(1件)			
1	プルトニウム廃棄物処理開発施設の概要と減容・安定化処理の運転実績	デコミッショニング技報 29号 2004年3月			
	地層処分技術に関する研究開発関係 (36件)				
1	飛騨山脈北部の1 Ma以降の急激な隆起 - 北部フォッサマグナ西縁,居谷里層の礫組成を指標として -	地質学雑誌 110巻 1 号 2004年 1 月			
2	不均質媒体中の波動支配方程式の線形力学系 システム関数への変換による 波動場計算法	第53回理論応用力学講演会 (東京)2004年1月27日			
3	花崗岩地域における大深度長期間水圧モニタリング	第33回岩盤力学に関するシンポジウム (土木会館)2004年1月29日			
4	亀裂を有する軟岩の透水性および物質移行特性に関する室内実験	第33回岩盤力学に関するシンポジウム (土木会館)2004年1月29日			
5	亀裂開口現象を考慮した大深度坑道掘削の解析的検討	第33回岩盤力学に関するシンポジウム (土木会館)2004年1月29日			
6	水圧モニタリングデータの地球潮汐・気圧変動成分の分離解析	第33回岩盤力学に関するシンポジウム (土木会館)2004年1月29日			
7	電気伝導度検層による深部花崗岩中の水みちの抽出と水理特性の評価	第33回岩盤力学に関するシンポジウム (土木会館)2004年1月29日			
8	圧縮ベントナイト中の間隙水測定手法の検討	日本原子力学会 バックエンド部会誌 10巻 2 号 2004年 2 月			

	発 表 内 容	発 表 先 及 び 発 表 年 月 日
	地層処分技術に関する研究開発関係	(36件)
9	「幌延深地層研究計画における地下施設計画」	土木学会北海道支部平成15年度年次技術研究発表会 (札幌コンベンションセンター)2004年2月2日
10	「幌延深地層研究計画における地下施設坑道の安定性の検討」	土木学会北海道支部平成15年度年次技術研究発表会 (札幌コンベンションセンター)2004年2月2日
11	3次元蛍光分光光度法による東濃地域地下水中の溶存腐植物質の特性研究	腐植物質研究会北海道支部2004年冬季研究発表会 (北海道大学)2004年2月3日
12	Identification of the Water Conducting Features and Evaluation of Hydraulic Parameters Using Fluid Electric Conductivity Logging	Dynamics of Fluids in Fractured Rock (バークレー)2004年 2 月10日
13	Uncertainty Evaluation of Groundwater Flow by Multiple Modeling Approach at Mizunami Underground Research Laboratory Project, Japan	Dynamics of Fluids in Fractured Rock (バークレー)2004年 2 月10日
14	特殊な環境から発見された二枚貝が化学合成生物か否かを判別する方法の開 発とその応用例	地質学会西日本支部総会 (広島)2004年2月14日
15	TRU廃棄物処分システムにおける地下水化学の評価	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
16	圧縮ベントナイト及び凝灰岩中のC , Cl , Iの拡散挙動に及ぼす NaNO₃の影響	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
17	亀裂を有する軟岩の透水性および物質移行特性に関する室内実験	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
18	高レベル放射性廃棄物地層処分における閉鎖性能に関する研究	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
19	地質環境の長期安定性に関する研究	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
20	超深地層研究所計画 - 地層科学研究の現状 -	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
21	幌延深地層研究計画 地上からの調査研究の現状・施設計画	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
22	幌延深地層研究計画における地下施設計画	土木学会地下環境部会調査技術WG (東京)2004年2月24日
23	X線CTによる鉄器の非破壊評価	大社町教育委員会遺跡調査報告書 2004年3月
24	高レベル放射性廃棄物の地層処分技術に関する研究開発の展開	土木学会論文集 756号 2004年3月
25	地質環境の長期安定性と地層処分 - 今後の研究開発に向けた視点 -	月刊地球 3号 2004年3月
26	リニアメントによる割れ目の累積頻度の推定	平成15年度土木学会中部支部研究発表会 (長野工業高等専門学校)2004年3月6日
27	東濃鉱山における通気測定について	資源・素材学会平成16年度春季大会 (早稲田大学)2004年 3 月29日
28	封圧環境下におけるAE/DRA法による原位置岩盤応力推定の試み - 東濃鉱山の堆積岩を対象として -	資源・素材学会平成16年度春季大会 (早稲田大学)2004年 3 月29日
29	地盤内三次元応力分布の評価法	資源・素材学会平成16年度春季大会 (早稲田大学)2004年 3 月31日
30		平成15年度放射性廃棄物管理専門研究会報告書 (京都)2004年3月31日
31		地震 2号 2004年4月
32	RIPL法によるテフラ層の識別と最新の噴火活動の推定	月刊地球 4号 2004年4月
33	前弧域の非火山地帯における高温異常域について - 紀伊半島中~南部の地殻・マントル構造と温泉ガスのヘリウム同位体比 - _	月刊地球 4号 2004年4月
34	Experimental and Numerical Studies on Colloid Enhanced Radionuclide Transport: The Effects of Kinetic Radionuclide Sorption onto Colloidal Particles	米国材料学会(MRS)2004年 Spring Meeting (サンフランシスコ)2004年 4 月12日
35	Determinations of Thermodynamic Properties of Porewater in Sandstone by a Vapor Pressure Method	米国材料学会(MRS)2004年 Spring Meeting (サンフランシスコ)2004年 4 月12日
36	Effects of the Orientation of Clay Particles and Ionic Strength on Diffusion and Activation Enthalpies of I- and Cs ⁺ Ions in Compacted Bentonite	米国材料学会(MRS)2004年 Spring Meeting (サンフランシスコ)2004年 4 月12日
	再処理関係	(1件)
1	形状管理型 CCIM 溶融塩電解槽の開発	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日

	発 表 内 容	発表先及び発表年月日
	環境保全関係	(2件)
1	新型転換炉ふげん発電所廃止措置の準備の概要	第15回原子力施設デコミッショニング技術講座 (三会堂ビル)2004年2月6日
2	Current Status & Future Prospective of Pu & Nuclear Wastes - Direction for Pu and Spent Fuel Management -	International Science and Technology Forum on Pro- tected Plutonium Utilization for Peace and Sustainable Prosperity (東京工業大学) 2004年 3 月20日
	放 射 線 (安 全) 管 理 関 係	(6件)
1	エボナイトを利用した中性子被ばく線量の簡易・迅速な測定	Isotope News 3号 2004年2月
2	2 種類の臨界警報装置のエネルギーおよび方向特性の評価 - プラスチックシンチレータと減速材付き核分裂検出器 -	第 7 回 NUCEF セミナー (日本原子力研究所東海研究所) 2004年 2 月20日
3	サイトスペシフィック定数の使用による環境影響評価の改善例について	第5回「環境放射能」研究会 (つくば)2004年3月2日
4	天然鉱物からのルミネッセンス現象を用いた積算線量測定に向けての基礎的 研究	第 5 回「環境放射能」研究会 (つくば) 2004年 3 月 2 日
5	位置検出型ファイバーエリアモニタの開発(2) 試作機によるフィールド試 験	日本保健物理学会第38回研究発表会 (神戸大学)2004年3月22日
6	第 7 回 東海再処理施設技術報告会 - 東海再処理施設における放射線管理の経験(その1) -	第 7 回東海再処理施設技術報告会 (日本原燃再処理事業所)2004年 3 月26日
	その他	(3件)
1	Bulk Synthesis and Characterization of Carbon Nanoparticle Encaging Lan- thanum Carbide	第26回フラーレン・ナノチューブ総合シンポジウム (淡路国際会議場)2004年1月16日
2	原子力施設納入画像監視システムREALFIELD	明電時報 294号 2004年3月
3	原子力災害における防災対策について	消防研修第75号 NBC 災害対策編 2004年

12 2004年の日本原子力学会春の年会における口頭発表

2004年の日本原子力学会春の年会における口頭発表の件数及び表題をプロジェクト分類別に以下に示す。(2004年3月29日~31日,岡山大学)

	発 表 内 容
	高速增殖炉(FBR)関係 (88件)
1	「もんじゅ」用 ISI 装置の開発 - (16) 新型伝熱管 ECT プローブの試作
2	「もんじゅ」用ISI装置の開発 -(17) 蒸気発生器伝熱管渦電流探傷センサの開発 (2)-
3	「もんじゅ」用ISI装置の開発 -(18)伝熱管 ECT用プローブの搬送挙動とノイズ(2)-
4	「もんじゅ」冷却系統の運転信頼性評価 - 1 次冷却系スクラムフォールトツリー解析 -
5	「ロシア余剰核兵器解体プルトニウム処分」(I)BN600パイ パック燃料オプション2)BFS臨界実験を反映したBN 600ハイブリッド炉心の核設計精度評価
6	「ロシア余剰核兵器解体プルトニウム処分」(I)BN600バイ パック燃料オプション4) BN600ハイブリッド炉心の設計
7	「ロシア余剰核兵器解体プルトニウム処分」(I) BN600バイ パック燃料オプション 5)BN 600ハイブリット炉心の安全解 体(Safety Analysis of the BN 600 Reactor with Hybrid Core)
8	「常陽」MK 性能試験 -(1)全体計画-
9	「常陽」MK 性能試験 -(2)臨界試験、過剰反応度の測 定・解析 -
10	「常陽」MK 性能試験 -(3)核出力校正 -
11	「常陽」MK 性能試験 -(4)制御棒反応度価値 -
12	「常陽」MK 性能試験 -(5)等温温度係数 -
13	「常陽」MK- 性能試験 - (6)出力係数・燃焼係数-
14	「常陽」MK 性能試験 -(7) 炉心内流量分布及び集合体 出口温度分布 -

	発表内容
	高速増殖炉(FBR)関係 (88件)
15	「常陽」MK 性能試験 -(9) プラントヒートバランス特 性 -
16	「常陽」MK 性能試験 -(10)手動スクラム試験及び外部 電源喪失試験 -
17	「常陽」MK 性能試験 -(11)燃料破損検出系特性試験 -
18	「常陽」MK 性能試験 -(12)ナトリウム純度測定試験 -
19	3次元輸送計算コードTORTの「もんじゅ」しゃへい解析へ の適用性検討(その5) - 1次主冷却系配管しゃへい室 -
20	9Cr ODSマルテンサイト鋼被覆管の過剰酸素制御による強 度改善
21	A Study on the Effect of the Cross Sections Collapsing Method in FBR MONJU Criticality Analysis by the Transport Codes NSHEX and GMVP
22	BFS臨界実験解析(X) - BFS 62 5及び66 1炉心の解析結果 -
23	BFS臨界実験解析(XV) - BN 600模擬体系に関する実験解析の総合評価 -
24	BFS臨界実験解析(XVI) ネプツニウムを装荷した高速炉心 の臨界実験解析(その2:高Pu富化度炉心)
25	BN600バイパック燃料オプションの協力の概要
26	FBR サイクル開発のための高性能照射炉に新生した「常陽」 MK
27	FBRサイクル実用化戦略調査研究フェーズの中間評価 (1)FBRサイクルの必要性と効果

	発表内容
	高速増殖炉(FBR)関係 (88件)
28	FBRサイクル実用化戦略調査研究フェーズ の中間評価 (2) 炉システムの技術総括の見通し
29	FBRサイクル実用化戦略調査研究フェーズの中間評価 (3)燃料サイクルシステムの技術総括の見通し
30	FBRサイクル実用化戦略調査研究フェーズ の中間評価 (4)FBRサイクルとしての総合評価
31	FBRサイクル実用化戦略調査研究フェーズ の中間評価 (5)FBRサイクル開発に対する期待と今後の進め方
32	FBR蒸気発生器でのNa - 水反応ジェットの伝熱特性
33	JENDL 3.3に基づくORIGEN2コード用高速炉断面積ライブ ラリ
34	MA含有燃料の物性に関する基礎研究(I) - 研究の概要説明 -
35	MA含有燃料の物性に関する基礎研究(Ⅱ) - Am含有 MOX 燃料の酸素ポテンシャル測定 -
36	MA含有燃料の物性に関する基礎研究(IV) - 化学平衡計算による状態図解析 -
37	MA含有燃料の物性に関する基礎研究(V) - 分子動力学法による物性評価 -
38	MOCとノード法を結合した3次元六角詳細輸送計算コード の開発
39	Na 冷却小型高速炉への超臨界炭酸ガス Feher サイクルの適 用研究
40	ODS鋼の引張特性に及ぼすナトリウム環境の影響
41	Pb Bi 冷却直接接触沸騰水型小型高速炉に関する技術開発 - 鉛ビスマス超音波流量計測に関する研究 -
42	トランスパイレーション法による鉛ビスマスの蒸気圧の測定
43	ナトリウムエアロゾルのレーザー誘起ブレークダウン発光 特性
44	ナトリウムの処理技術の開発 - ナトリウム転換基礎試験結果 -
45	ナトリウム - 水反応の数値解析研究(10) 多次元コード SERAPHIMによる反応領域最高温度の感度解析
46	ナトリウム - 水反応の数値解析研究(11)数値モデルによる 伝熱管のナトリウム側熱伝達率の推定と実験との比較
47	ナトリウム冷却高温プラントに適合する金属燃料炉心の検 討(2)
48	ナトリウム冷却高速炉のガス巻込みに関する研究(1) - 研究の全体概要 -
49	ナトリウム冷却高速炉のガス巻込みに関する研究(2) - 可視化によるガス巻込み発生状況の把握 -
50	ナトリウム冷却高速炉のガス巻込みに関する研究(3) - UVP、PIVを用いたガス巻込み発生要因の評価 -
51	ナトリウム冷却高速炉のガス巻込みに関する研究(4) - 1/18スケール液面部分モデル水流動試験解析 -
52	ナトリウム冷却高速炉のガス巻込みに関する研究(5) - くぼ み渦に関する数値解析精度評価-
53	プラント動特性解析コードSuper-COPDの整備 - 出力 40%トリップ時試験解析 -
54	もんじゅ用ISI装置の開発 - (14)高温用ビードセンサの開発 -
55	ラマン分光法による高温下でのナトリウム鉄複合酸化物の 分析(4)
56	遠隔操作による Am 含有 MOX 燃料製造技術の開発() - 5 % Am 含有 MOX ペレット作製試験の結果 -
57	遠隔操作によるAm含有MOX燃料製造技術の開発() - Am含有MOXペレットの品質保証検査 -

	発表内容
	高速増殖炉(FBR)関係 (88件)
58	極低酸素分圧下の鉛ビスマス中におけるCr Mo鋼の腐食挙動
59	固体金属ナトリウム中における不純物の直接分析法の検討
60	高温プラント適合型のナトリウム冷却小型高速炉金属燃料 炉心の検討
61	高温環境下疲労損傷によるSUS304鋼の磁気特性変化
62	高強度フェライト/マルテンサイト(PNC FMS)鋼被覆管の 照射後引張強度特性
63	高速実験炉「常陽」燃料集合体の非均質効果に関する検討
64	高速増殖原型炉「もんじゅ」性能試験において測定された出 力係数の解析
65	高速増殖原型炉「もんじゅ」性能試験における反応度測定値 の誤差の評価
66	高速増殖炉に適用可能な熱電併用水素製造システムの検討 (1) -ハイブリッド熱化学法の低温化原理検討 -
67	高速増殖炉に適用可能な熱電併用水素製造システムの検討 (2) - 低温熱化学法によるナトリウム冷却炉水素製造プラ ントの概念検討 -
68	高速炉における高サイクル熱疲労に関する試験研究(1) ナトリウムを用いた正弦波温度変動熱疲労試験の研究計画
69	高速炉の炉心安全向上のためのEAGLE プロジェクト(7) - 炉外試験へのアルミナ融体適用性検討 -
70	高速炉の炉心安全向上のためのEAGLE プロジェクト(8) - 炉内中規模試験の準備と実施 -
71	高速炉を用いたLLFP核変換技術の検討(その6) - 鉛ビスマス炉とナトリウム炉の核変換特性比較 -
72	実用化戦略調査研究における燃料サイクルの経済性評価
73	実用化戦略調査研究プラント概念設計(1) Na冷却中型炉で の自然循環時PRACS崩壊熱除去特性評価
74	実用化戦略調査研究プラント概念設計(2) 保守・補修性を 向上させた鉛ビスマス冷却高速炉概念の検討
75	実用化戦略調査研究プラント概念設計(3) 保守補修性を考 慮した重金属炉の耐震評価
76	実用化戦略調査研究プラント概念設計(4) 各種冷却材によ る高速増殖炉プラント概念建設コスト比較
77	実用化戦略調査研究プラント概念設計(5) - 各種冷却材高 速増殖炉の概念構築(プラントシステム) -
78	実用高速炉構造設計基準のための技術開発(その5) - 非弾性設計解析指針の開発 -
79	実用高速炉構造設計基準のための技術開発(その6) - 直管型球形管板の3次元構造解析法の開発 -
80	実用高速炉構造設計基準のための技術開発(その7) - ラチェット疲労試験 -
81	照射済高速炉燃料集合体内における燃料ピン曲がり量の測 定及び評価
82	振動充填MOX燃料の採用による線出力・燃料仕様・核特性 への影響に関する検討
83	設計ウィンドゥ評価・表示システムの開発(I) システムの概要および炉内流動最適化問題への適用
84	設計ウィンドゥ評価・表示システムの開発(II) システムの構築および炉内熱流動問題への適用
85	長寿命核分裂生成物(LLFP)核変換要素の検討 - ヨウ素化合物の特性評価試験 -
86	配管入口部のキャビテーションを伴う水中渦に関する研究 - 初生条件への系統圧力の影響 -
87	仏フェニックス炉サーマルストライピング破損に係る熱流 動要因の考察

Γ

	発表内容
	高速増殖炉(FBR)関係 (88件)
88	溶融炉心物質の固化挙動に対する高速炉安全解析コード SIMMER のモデル改良
	先進リサイクル関係 (28件)
1	Analysis of the Prompt Gamma Rays Emitted in the Thermal- Neutron Capture Reaction by ¹⁰⁷ Pd
2	Comparison of the Fuel Performance for Advanced FBR Cy- cle Systems (FUJI Project)(6) -5 % Np-MOX Sphere-pac Fuels Fabrication-
3	CPF における金属電解法乾式再処理プロセス試験(6) - ウランを用いた連続プロセス性能予備試験 -
4	FBRサイクル実用化戦略調査研究フェーズ の燃料製造シ ステム検討(18)(湿式再処理に対応する燃料製造システム の経済性等に関する評価)
5	FBR 燃料再処理解体・せん断工程の合理化検討(3) - 高出力 YAG レーザ用光ファイバーの照射試験 -
6	MA含有MOX燃料の微構造に及ぼす熱処理条件の影響(1) 密度と結晶粒径
7	MA含有燃料の物性に関する基礎研究() - MA含有 MOX 燃料の融点測定 -
8	Neutron Capture Cross Section of ²³⁷ Np
9	Super DIREX再処理法により使用済燃料からのU Pu直接抽 出に関する技術開発(11) - 照射済燃料の常圧溶解 -
10	Super DIREX再処理法による使用済燃料からのU Pu直接抽 出に関する技術開発(12) - 照射済MOX燃料の常圧溶解その2 -
11	Super DIREX再処理法による使用済燃料からのU, Pu直接 抽出に関する技術開発(13) - TBP硝酸錯体による超臨界 二酸化炭素中での酸化ウランの溶解反応
12	Super DIREX再処理法による使用済燃料からのU, Pu直接 抽出に関する技術開発(14) - 向流接触塔による超臨界流体からのUの逆抽出 -
13	フッ化物揮発法を用いた再処理技術に係る検討(1) - 安定なPuF6の生成条件について -
14	フッ化物揮発法を用いた窒化物被覆粒子燃料の処理技術 - 窒化チタン被覆のフッ化試験 -
15	乾式プロセスにおける電極反応流動特性数値解析(1) - MOX共析条件における拡散層厚さ評価 -
16	乾式プロセスにおける電極反応流動特性数値解析(2) - 共存対流条件における拡散層厚さ評価 -
17	乾式再処理より発生する廃溶融塩の酸化物への転換処理
18	共晶析法による再処理プロセスの開発(II) - 晶析操作の物質収支 -
19	共晶析法による再処理プロセスの開発(Ⅲ) - 母液リサイクル操作の物質収支 -
20	金属燃料リサイクルプラントの設計評価(その8) - 廃棄物処理方法および発生量の検討 -
21	金属燃料リサイクルプラントの設計評価(その9) - 燃料製造設備の臨界管理手法の検討 -
22	金属燃料リサイクルプラントの設計評価(その10) - 主要機器とセル・建屋内配置の検討 -
23	金属燃料リサイクルプラントの設計評価(その11) - 安全設計のためのリスクの検討 -
24	先進湿式再処理プラントの概念検討(1) - MAREC法による Am 及び Cm の回収 -
25	即発ガンマ線分光法による熱中性子補獲断面積測定のため のペアスペクトロメータの設計

	発表内容
	先進リサイクル関係 (28件)
26	単サイクル抽出による照射済高速炉燃料からのU , Pu , Np 共回収
27	粉化燃料抽出法によるアミド系抽出剤への溶解性の検討
28	溶融塩中におけるf元素の紫外可視吸光分光研究(3) - NaCl 2CsCl中のウラン、ウラニルイオンの吸収スペクト ルー
	プルトニウム燃料(MOX)関係 (11件)
1	「ロシア余剰核兵器解体プルトニウム処分」(I) BN600バイ パック燃料オプション3)MOX振動充填燃料集合体三体のデ モ照射実験共同研究成果
2	「ロシア余剰核兵器解体プルトニウム処分」(I)BN600バイ パック燃料オプション6)解体核プルトニウム処分の為の MOX振動充填燃料製造施設改造
3	FBRサイクル実用化戦略調査研究フェーズ の燃料製造シ ステム検討(16)(簡素化ペレット燃料製造プラントの設計 研究)
4	FBRサイクル実用化戦略調査研究フェーズ の燃料製造シ ステム検討 (17) (ゲル化振動充填燃料製造システムにおけ る試薬回収設備概念の検討)
5	MA含有MOX燃料の微構造に及ぼす熱処理条件の影響(2) 均質性と相状態
6	MOX粉末の熱特性(1) - 30%Pu MOXの酸化特性 -
7	MOX粉末の熱物性(2) - 原料粉末の熱伝導率に及ぼす粉末物性の影響 -
8	MOX粉末の熱特性3) - 原料粉末の熱伝導率解析式の作成 -
9	金属燃料ピンの「常陽」照射試験計画
10	高燃焼度 MOX 燃料集合体の照射試験(4) - ペレット金相試験 -
11	高燃焼度 MOX 燃料集合体の照射試験(5) - 燃料ペレットの組織形態と元素分布 -
	放射性廃棄物関係 (7件)
1	放射能識別装置によるウラン系汚染物測定性能試験
2	ウラン廃棄物の非破壊測定技術開発 - 第1報:放射能評価手法の開発 -
3	ウラン廃棄物の非破壊測定技術開発 - 第2報:測定装置の製作と性能の確認試験 -
4	ガラス固化技術開発施設(TVF)における溶融炉更新と関連 技術開発
5	グリムゼル岩盤試験場における亀裂中の核種およびコロイ ドの移行(1) - 方法と試験結果 -
6	海水系地下水条件下における埋め戻し材のシーリング性能 に関する実験的研究
7	再処理施設等から発生する放射性廃棄物の核種分析
	地層処分技術に関する研究開発関係(17件)
1	Grimsel試験場における亀裂中の核種およびコロイドの移行 (2)* :モデル解析
2	Model Development on Radionuclide Sorption in a Sedimen- tary Rock/Groundwater System (1): Effect Factor on Ce- sium Sorption onto a Sedimentary Rock under Saline Groudwater Condition
3	Np(IV)水和酸化物の溶解度積
4	ベントナイトコロイドに対するネプツニウム収着特性
5	圧縮ベントナイト中のI- 及びCs [*] イオンの拡散及び活性化エ ネルギーに及ぼす粘土粒子の配向及びイオン強度の影響
6	緩衝材の流出 / 侵入現象評価 (1) - X線CTを用いた亀裂侵入ベントナイトの密度分布の把握 -

	発 表 内 容					
	地層処分技術に関する研究開発関係(17件)					
7	緩衝材の流出 / 侵入現象評価(2) - 固相拡散モデルの開発 -					
8	亀裂を有する堆積性軟岩の水理・物質移行特性評価に関する 実験的研究					
9	凝灰岩中のC, CI, Iの拡散挙動に及ぼすNaNO ₃ の影響					
10	決定木分析を用いた核種移行解析結果の感度分析の検討					
11	原位置における実規模プラグのシーリング性能に関する研 究()					
12	高レベル放射性廃棄物の地層処分技術に関する研究開発の 全体概要					
13	堆積岩に対するセシウムの分配係数に及ぼす競合イオンの 影響					
14	炭酸塩生成時の放射性元素の共沈現象に関するデータ取得 及びモデル開発					
15	地層処分における人工バリア等の性能保証に関わる研究					
16	地層処分性能評価のガラス溶解評価におけるガラス固化体 中の亀裂発生に伴う表面積増加の影響					
17	超深地層研究所計画における地表からの地質環境特性調査- 繰り返しアプローチに基づく調査の事例-					
	再処理関係(5件)					
1	高放射性廃液中の微量プルトニウム分析法の開発					
2	再処理工程への磁気分離の適用技術に関する研究() - 希土類硫化物と二酸化ウランとの磁気分離ー					
3	酸化物電解法における陰極処理装置の開発 塩蒸留試験					
4	磁気軸受型遠心抽出器の開発(2) - 流動性およびタッチダウン時の評価 -					
5	人手の介入による柔軟なHAZOP解析システム					
	環境保全関係(6件)					
1	TRU 廃棄物処分における硝酸塩の影響に関する研究(I) - 金属腐食による硝酸イオンの化学的変遷 -					

発表内容					
環境保全関係(6件)					
2	TRU廃棄物処分における硝酸塩の影響に関する研究(II) - セメント系材料の環境下におけるNaNO3の圧縮成型ペントナ イトの水理特性に及ぼす影響 -				
3	TRU廃棄物処分における硝酸塩の影響に関する研究(Ⅲ) - 普通ポルトランドセメントペースト硬化体の水理・力学特 性に及ぼすアンモニアの影響 -				
4	TRU廃棄物処分における硝酸塩の影響に関する研究() 硝酸ナトリウムの影響を考慮した核種移行パラメーター				
5	包括的感度解析手法を用いたTRU廃棄物処分の成立性に関 する検討(1) - 成立条件の網羅的抽出手法について -				
6	包括的感度解析手法を用いたTRU廃棄物処分の成立性に関 する検討(2) TRU廃棄物処分の成立性に関する試解析結果 について				
	ウ ラ ン 濃 縮 関 係 (1件)				
1	ウラン濃縮機器の除染試験()				
新型転換炉(ATR)関係 (1件)					
1	廃液中六価クロムの処理技術の開発(その2) - ふげん発 電所の鉄水遮へい体冷却水の処理試験 -				
	放射線(安全)管理関係(3件)				
1	²⁵² Cf中性子校正場の特性				
2	ラジウム線源の絶対測定とラドン放出率				
3	ルミネッセンス自動化測定システムを用いた蓄積環境放射 線線量の測定				
	その他(5件)				
1	「もんじゅ」用ISI装置の開発 - (その15)高磁場配置型 SH 波 EMATの高温特性について -				
2	フランスの廃棄物処理に関わる社会の透明性				
3	原子力プラントにおける火災や燃焼化学反応を伴う熱流動 問題 - (3 評価の手段 -				
4	原子力防災対応に係わる訓練シミュレータの開発				
5	FBRサイクル多面的評価手法の開発				

技術情報管理 情報システム

1.技術情報管理

研究開発成果をまとめた機構作成成果報告書, 委託研究報告書,共同研究報告書等を効果的に利 活用するため,これらの書誌情報・要旨・全文の PDFファイルをデータベース化するとともに, 利便性向上のため,ウェブ利用クライアント& サーバ方式データベースシステム(成果情報デー タベースシステム:JSERV)の社内運用を行って いる。

また,情報公開の一環として,社外利用者のた め,インターネット利用によるJSERVを整備し,公 開の技術資料,外部発表資料,特許情報等に関す る検索閲覧サービスを行うとともに,技術資料と 外部発表資料の目録をサイクル機構のホームペー ジに掲載している。

四半期ごとに発行する技術広報誌であるサイク ル機構技報第22号を編集し,2004年3月20日に社 外に広く配布した。さらに,全頁をホームページ に掲載することにより,サイクル機構の技術動向, 技術開発成果及び事業計画の進ちょく状況の啓蒙 に努めている。 2.情報システム

サイクル機構では,大洗工学センター内の情報 センターにおいて,大型計算機システム(科学技 術計算用及び業務処理用)の運用・整備,全事業 所を結ぶ情報処理ネットワークの運用・整備,情 報セキュリティ対策等を実施している。

大型計算機システムについては,新科学技術計 算機が3月から運用開始され,業務処理用計算機 は構成変更による4月からの運用開始に向けての 作業を行っている。

情報処理ネットワークについてはサイクル機構 全社ネットワークの運用を継続するとともに,イ ントラにおいて、Windows Updateの実施を促すテ ロップの掲載、ウィルスソフトの更新等、コン ピュータウィルス感染を防止するための活動を推 進した。また、新法人設立に向けた先行的取組み の一つとして、日本原子力研究所が実施している INIS (国際的な原子力情報システム)データベー スのインターネット利用を2月に開始した。

大学等との研究協力 社内公募型研究

1.大学等との研究協力

サイクル機構は開かれた研究開発機関を目指し て,大学等の研究機関との研究協力制度を設け, 研究協力の推進を行っている。

1.1 先行基礎工学研究

サイクル機構は,1995年度より,研究開発プロ ジェクトに先行した基礎工学研究について,研究 協力テーマを提示している。大学等の研究者から は研究目的を達成する上で必要な手法,アイデア 等を研究協力課題として提案して頂き,サイクル 機構の研究者と共同研究等の形態で研究開発を 行っている。2003年度は,43件の研究協力課題に ついて実施している。2004年度の先行基礎工学研 究に係る研究協力課題の募集を行い,募集件数14 件を超える応募件数の中から13件を選定し,受入 れ準備作業を進めている(表1参照)。

No.	研究協力テーマ 研究協力課題	サイクル機構 受入箇所	協形	力態	提 案 者 所属機関・氏名			
	【高速増殖炉関係】(5件)							
1	不規則温度ゆらぎに対する熱疲労損傷評価法に関する基礎研究 不規則信号統計量を用いた疲労損傷評価量の推定	大洗 構造信頼性研究Gr	共 研	同 究	東京大学 教授 酒井 信介			
2	低除染燃料の相状態及び物性評価に関する研究 低除染燃料の相状態と物性に関する基礎研究	大洗 照射センター 照射燃料試験室	共研	同 究	大阪大学 教授 山中 伸介			
3	複雑形状内高精度熱流動シミュレーション手法に関する研究 直接乱流シミュレーション手法の応用と乱流モデルの改良	大洗 流体計算工学研究Gr	共 研	同 究	東京工業大学 教授 青木 尊之			
4	「もんじゅ」性能試験における反応率分布・増殖比解析手法の高度化研究」 「もんじゅ」性能試験における反応率分布・増殖比解析手法の高度化研究 - 3次元化と核種の共鳴の取り扱いの高度化 -	敦賀 国際センター 炉心技術開発Gr	共 研	同 究	大阪大学 教授 竹田 敏一			
5	ヘリカルコイル管内沸騰二相流のDNB現象に関する研究 ヘリカルコイル管内沸騰二相流のDNB発生機構と流動構造	敦賀 国際センター システム技術開発Gr	共研	同 究	近畿大学 教授 松井 剛一			
	【核燃料サイクル関係】(2件)							
6	低除染燃料製造設備における検査及び計測制御に関する基礎研究 低除染燃料製造プロセス等における多元系の計測とそのロバスト制御	東海 環境センター プルトニウム燃料開発Gr	共研	同 究	茨城大学 教授 白石 昌武			
7	急激な燃焼化学反応に対する施設の健全性に関する研究 ガス爆発の数値的再現による構造物に対する安全評価手法の確立	東海 再処理センター 技術開発課	共研	同 究	慶應義塾大学 助教授 松尾亜紀子			
	【放射線安全関係】(2件)							
8	緊急時被ばく線量評価手法に関する研究 天然鉱物を用いたルミネッセンス法による被ばく線量測定方法の開発	東海 環境監視課	客 研究	員 I員	新潟大学 教授 橋本 哲夫			
9	放射線空間分布の実時間測定 線位置検出装置による使用施設内の放射線空間分布の実時間測定	敦賀 環境監視課	共 研	同 究	早稲田大学 教授 長谷部 信行			
	【地層処分・地層科学関係】(4件)							
10	亀裂性岩盤中の微細な構造や不均質性が地下水移流・分散に与える影響評価 (1)X線CTによる亀裂性岩盤内の移流・分散現象の分析	東海 環境センター システム解析Gr	共 研	同 究	熊本大学 助手 佐藤 晃			

表 1 2004年度 先行基礎工学研究協力課題一覧(新規分)

No.	研究協力テーマ	サイクル機構	協	力	提 案 者
	研究協力課題	受 入 箇 所	形	態	所属機関・氏名
11	加速器微量分析システムを用いた地球化学研究 深部地下水組成推定のための花崗岩起源流体化学組成に関する研究	東海 環境センター 処分バリア性能研究Gr	共研	同 究	筑波大学 講師 黒澤 正紀
12	堆積軟岩における掘削影響評価のための原位置AE測定手法に関する基礎的研究 ボーリングコアを用いた堆積軟岩のAE特性の分析および原位置測定手法 に関する研究	幌延 深地層研究Gr	共研	同 究	京都大学 教授 青木 謙治
13	地層中のメタン量の原位置測定法に関する研究	幌延	共	同	山口大学
	溶存メタンセンサーによる原位置メタン量測定法に関する研究	深地層研究Gr	研	究	教授 兵動 正幸

12 核燃料サイクル公募型研究

サイクル機構は,1999年度より,大学及び公的 研究機関の研究者から,サイクル機構が取り組む 核燃料サイクル分野の研究開発において,原則と してサイクル機構の施設・設備を利用し,先見的, 独創的な研究テーマを広く公募している。応募者 には主体的に研究に取り組んで頂く公募型の研究 協力を行っている。2003年度は,12件の研究テー マについて実施している。

13 博士研究員制度

サイクル機構は,1997年度より,博士号の学位 を有する若手研究者を2~3年間の任期付で採用 している。若手研究者はサイクル機構の先導的, 基礎・基盤的な研究業務に関連して,機構が承認 した研究テーマを自主的に遂行し,研究者として の業績を得ていくとともに人材育成を図っている。

2003年度は,17名の博士研究員により研究を実施している。2004年度の博士研究員の募集を行い, 募集定員6名を越える応募者(15名)の中から6 名の研究テーマを選定し,受入れ準備作業を進め ている(表2参照)。

14 その他

サイクル機構は,研究施設の共同利用や共同研 究等を通じ,地層の研究に関する協力を円滑に進 めるため,2004年3月に(財)北海道科学技術総合 振興センターと研究協力に関する協定を締結した。

2. 社内公募型研究

サイクル機構内の創造的研究活動を活性化する ための一方策として,サイクル機構の研究者及び 技術者から新概念の創出,技術のプレークスルー を目指す研究を発掘・推進する「社内公募型研究 推進制度」を2001年度より開始している。

本制度は,サイクル機構が取り組む研究開発の 全分野から,独創性・新規性に優れた研究テーマ 並びに研究者を募集・選定し,一定期間(原則3 年間)研究のための予算と環境を保証し自由に研 究を実施できるようにするものである。募集する

Ν	lo.	研 究 テ ー マ	サイクル機構 受 入 箇 所
	1	酸化物分散強化型フェライト鋼の応力負荷環境下における照射効果の解明とそれに基づく照射下形状不 安定性の改善	大洗 核燃料工学Gr
	2	選択チャンネル核分裂モデルによる核分裂収率計算法の研究	東海 環境センター システム設計評価Gr
	3	イメージングプレートを用いる被曝線量評価法の確立	東海 線量計測課
	4	地下深部の酸化還元システムにおける岩石の鉱物学的・地球化学的役割	東濃 瑞浪超深地層研究所 超深地層研究Gr
	5	均質化法に基づくミクロ - マクロモデルによる核種移行解析の高度化	東海 環境センター 処分バリア性能研究Gr
	6	画像可視化計測手法による地下深部単一岩盤亀裂内水理・物質移動メカニズムの解明及び高精度モデルの 構築	東海 環境センター システム解析Gr

表2 博士研究員による2004年度研究テーマ一覧(新規分)

研究は,原則として個人レベルで実施できる規模 及び内容のもので,提案者自らが実施することを 基本としている。

第1期(2001年度)の採択研究は、「使用済み 燃料の再処理における溶媒を用いない湿式分離技 術の適用性研究」、「放射性廃棄物処分における緩 衝材及び岩石マトリクスの中の核種拡散移行過程 での固液界面現象と移行モデルの高度化に関する 研究」、「高温環境複雑人工物の損傷検出技術の開 発」及び「雷雲中における放射線発生機構に関す る研究」の4件であり、当該期間において3年間 の研究を終了し、成果の取りまとめ、学会等への 発表を行った。また、これら第1期採択研究は、 2004年5月7日に社内公募型研究評価委員会によ る最終評価を受ける予定である。

第2期(2002年度)の採択研究は、「炭素系内 包構造体を利用した放射性核種の処理法及びその 利用技術の研究」及び「溶融塩電解プロセス制御 に資する電気化学的元素濃度測定手法の研究」の 2件であり、2003年12月19日に社内公募型研究評 価委員会による中間評価を受け、全研究テーマの 継続が決定した。当該期間においては、引き続き それぞれサイクル機構内の装置や外部機関の装置 を利用して試験研究を継続している。

第3期(2003年度)の採択研究は,「原子力施 設非破壊検査用小型高輝度電子銃の実用化研究」 及び「原子力技術の受容に関する個人及び集団の 意思決定過程分析とシミュレーション」の2件で あり,当該期間においては,それぞれサイクル機 構内の装置や外部機関の装置を利用して試験研究 を進めている。

第4期(2004年度)の研究テーマ募集は2003年 7月から9月末までの間行われ、2件の応募が あった。一方,本制度では、各研究テーマの研究 期間は原則3年であるが、研究者から新たな展開 を図るための延長申請があり、社内公募型研究評 価委員会で認められた場合は、最大2年の期間延 長ができることとなっている。今回は、2001年度 採択研究から、新たな発展的研究テーマを掲げた 2件の延長申請があった。同年12月19日に開催さ れた社内公募型研究評価委員会において、新規と 延長の合計4件の研究提案について選考審査が行 われた。採択された研究テーマは表3の通りであ り2004年4月から研究を開始することが決定した。

表3 2004年度採択研究テーマ

番号	研 究 テ ー マ
16 1	ミュオン誘雷手法に関する研究(継続)
16 2	地質媒体微細間隙中での核種拡散移行過程における 固液界面現象に関する研究(継続)

(本社:技術展開部 社内公募型研究推進室)

技術協力・技術移転 開発技術の利用・展開 施設・設備の供用 国内技術協力研修

1.技術協力・技術移転

サイクル機構は,再処理,ウラン濃縮,MOX燃料加工,高速増殖炉等の技術開発成果を事業主体 に円滑に技術協力・技術移転するため,技術協力 協定等を締結し,技術情報の提供,技術者の派遣, 技術者の教育・訓練,受託業務等を実施している。 (1)再処理

再処理については,日本原燃(株)に対する従来 の技術協力・技術移転に加え,六ヶ所再処理工場 の試運転に関する技術支援を継続実施した。

また,六ヶ所再処理工場の試運転準備要員であ る日本原燃(株)再処理技術者の東海事業所での研 修及び日本原燃(株)委託会社社員への研修を継続 実施した。

(2) ウラン濃縮

ウラン濃縮技術については 技術情報の提供等を 行うとともに ウラン濃縮プラントの運転経験に基 づくコンサルティング等の受託契約を締結した。

また,電力会社等からの要請に基づき,人形峠 環境技術センターの濃縮施設において共同研究 「使用済遠心分離機処理技術に係る試験研究」を継 続実施した。

(3) MOX燃料

MOX 燃料加工技術については、技術情報の開示 等を行うとともに,日本原燃(株)と「MOX 燃料加 工施設の詳細設計等に係る技術協力業務(その 3)」「燃料製造プロセス条件の最適化検討に係わ る小規模 MOX 追加試験」及び「MOX 燃料加工に 係わる確証試験(実規模 MOX 試験その1)」の受 託業務を継続実施した。

また,プルトニウム燃料製造施設でも日本原燃 技術者の研修を継続実施した。

(4) FBR

FBR については,技術情報の開示等を行うとと もに,日本原子力発電(株)と「炉心安全性向上の ためのIGR試験研究」、「高温構造設計手法高度化 及び免震技術開発」及び「自己作動型炉停止機構 炉内試験研究」に関する共同研究契約に基づき当 該研究を継続実施している。

(5) 高レベル廃棄物

高レベル廃棄物の地層処分技術については,原 子力発電環境整備機構と締結した「特定放射性廃 棄物の地層処分技術に関する協力協定」に基づき, 技術協力を行っている。

2.開発技術の利用・展開

2.1 先端原子力関連技術成果展開事業

開発成果の展開・活用を図るため、サイクル機構 が保有する特許等を企業に提供して,企業の製品 開発を支援する「先端原子力関連技術成果展開事 業」を1998年度から行っている。

2003年度下半期からは,前年度からの継続分4 件及び今年度新規分4件の合計8件の実用化共同 研究開発を実施している。

今期は技術委員会による最終評価を実施した。 また,2004年度の実用化共同研究開発の募集,日 本原子力研究所と合同技術移転説明会を行った。

22 特許・コンピュータコードの利用

(1) 特許の利用

サイクル機構の研究開発の過程で発明・考案された技術成果については,特許出願,技術の権利 化及び技術情報の公開を図るとともに,特許の使 用を希望するものと実施許諾契約を締結し,利用 に供している。これまでの特許(実用新案を含む。 以下同様)出願件数は,国内で約2,700件,外国 で約1,020件(このうち,2004年3月末現在,開 発成果として保有している特許権は,国内約770 件,外国約380件)である。2004年1月から3月 における登録件数は国内6件,外国67件である(表

1 参照)。2003年度における出願件数は国内56件, ついて使用許諾契約を行い,現在は16件を許諾し 外国27件である。

特許の外部利用実施状況は、使用者と実施許諾 契約を締結し,契約累計はこれまで34件であり,

ている。

(2) コンピュータコードの利用

研究開発の過程で開発されたコンピュータ・プ 10月には「危険物取扱い用トング構造」の特許に ログラム(計算コード)については,外部利用が

種類	登録日	登録番号	発明の名称	特許権者
	2003 .12 .19	3504595	使用済核燃料の前処理方法および前処理装置	サイクル機構
国	2004 .01 .16	3513374	チタン系金属の肉盛溶接方法	サイクル機構 三菱重工業(株)
	2004 .01 .23	3514742	使用済核燃料の再処理装置	サイクル機構
	2004 .02 .20	3523634	中間熱交換器組込型蒸気発生器	サイクル機構
内	2004 .02 .20	3524083	中間熱媒体を有するヘリカル型熱交換器	サイクル機構
	2004 .02 .27	3525255	核燃料物質含有ダスト補集・回収装置	サイクル機構 木村化工機(株)
	2002 .09 .18	0841095 イギリス他4ヶ国	サイクロン式集塵装置	サイクル機構
	2003 .12 .02	6657202 アメリカ	複眼式線量分布測定方法	サイクル機構
	2004 .01 .06	6672258 アメリカ	中間熱交換器組込型蒸気発生器	サイクル機構
	2004 .02 .13	0214327 フランス	原子炉容器の熱荷重緩和装置	サイクル機構
	2004 .03 .02	6699169 アメリカ	遠心抽出器	サイクル機構
	2004 .03 .02	6700125 アメリカ	放射性ダストモニタ	サイクル機構
国	1999 .05 .06	3909288 ドイツ	気体状ルテニウムの生成を抑制した放射性廃液のガラス溶 融固化処理方法	サイクル機構
	1997 .07 .02	0420723 イギリス他 3 ヶ国	放射性金属廃棄物の減容処理方法	サイクル機構
	1998 .07 .22	0452075 イギリス他 2 ヶ国	核燃料サイクルから発生する使用済溶媒の分離精製方法	サイクル機構
	1999 .05 .27	4126943 ドイツ	核燃料サイクルから発生する使用済溶媒の抽出分離方法	サイクル機構
	2000 .08 .31	4226223 ドイツ	原子炉内燃料交換方法	サイクル機構
	2001 .08 .29	0709789 イギリス他 2 ヶ国	構造物の熱設計方法およびその設計に最適な数値計算装置	サイクル機構
	1998 .07 .08	0714103 イギリス他 2 ヶ国	放射能汚染金属の溶融除染方法	サイクル機構
	2001 .09 .26	0740141 イギリス他 3 ヶ国	回転体に対する電磁的回転加振装置及びそれを用いた回転 体の制振装置	サイクル機構
外	2001 .07 .18	0740140 イギリス他 3 ヶ国	回転体の静止場での振動評価方法	サイクル機構
	2001 .06 .20	0825617 イギリス他 2 ヶ国	放射性ヨウ素含有廃棄物の固化方法	サイクル機構
	2000 .05 .31	0847061 イギリス他 2 ヶ国	放射性雑固体廃棄物の溶融処理方法	サイクル機構
	2001 .05 .23	0845789 イギリス他 2 ヶ国	放射性固体廃棄物の溶融処理方法	サイクル機構
	2002 .06 .19	0857932 イギリス他 2 ヶ国	コールドクルーシブル誘導溶融炉からの溶融物抜き出し装 置	サイクル機構
	2003 .01 .02	19814112 ドイツ	環境浄化体,環境浄化方法及び環境浄化装置	サイクル機構
	2001 .12 .05	0895249 イギリス他 2 ヶ国	遠隔蓋開閉型粉末用気送容器	サイクル機構

表1 2004年1月から2004年3月 特許登録一覧

種類	登録日	登録番号	発明の名称	特許権者
	2003 .02 .12	0961293 イギリス他 3 ヶ国	保守用グローブボックス一体型連続焼結設備	サイクル機構
国	2002 .05 .02	0940818 イギリス他 2 ヶ国	気密アダプタ及びその交換方法	サイクル機構
	2002 .05 .02	0686860 イギリス他 2 ヶ国	炉内検査装置	サイクル機構 川崎重工業(株)
外	1998 .09 .30	0743651 イギリス他 2 ヶ国	Na流入孔ダイビングベル型制御棒	サイクル機構 (株)日立製作所
	2003 .01 .16	19821293 ドイツ	半導体放射線検出素子	サイクル機構 三菱重工業(株)
	2001 .07 .18	0919913 イギリス他 2 ヶ国	マイクロコンピュータ及びそのアクセス速度制御方法	サイクル機構 三菱重工業(株)

考えられるものについて,ソフトウェア会社と計 算コードの販売に係る業務代行契約を締結し,利 用者への使用許諾を行っている。これまでの契約 累計は21件で現在は8件の許諾を継続している。

3.施設・設備の供用

技術協力の一環として、サイクル機構の施設・設 備を利用した施設等の供用を行っている。2003年 度は、東濃地科学センターの第2立坑(目的:無 重量研究)新型転換炉ふげん発電所廃棄物処分建 屋の一部(目的:デコミショニング研究)、人形 峠環境技術センターの環境工学施設の一部(目的: デコミショニング研究)の供用を継続実施した。 そのうち新型転換炉ふげん発電所廃棄物処分建屋 の一部及び人形峠環境技術センターの環境工学施 設の一部の施設供用契約については、2003年度末 をもって終了した。

また,東濃地科学センターにあるペレトロン年 代測定装置(タンデム型加速器質量分析装置)に よる地層発掘物質の年代測定を外部からの依頼に 基づき実施した。

4.国内技術協力研修

日本原燃(株)再処理技術者の研修は第4四半期 までに9名が終了し,第4四半期は2名が継続し 終了した。日本原燃(株)再処理技術者の研修は, 2003年度末で一旦終了する。また,MOX燃料加工 技術者の研修は,2003年7月より2名が継続実施 した。

そのほかに,東電環境エンジニアリング(株)技 術者1名が放射線管理分野の研修を継続実施し た。また,日本原燃(株)関連会社の常陽産業(株) から19名が2003年度末で研修を終了した。同検査 開発(株)は2名が研修を修了した。これをもって 2002年度より継続してきた常陽産業(株)及び検査 開発(株)の再処理研修が修了した。研修を受けた 延べ人数は54名である。

さらに,常陽産業(株)から廃棄物搬出業務要員 研修の依頼を受け14名の研修が2003年度末で修了 した。2003年10月より(財)核物質管理センターよ り2名の研修員を受入れ,分析研修及び放射線管 理研修を予定どおり修了した。

特許・実用新案紹介

中間熱交換器組込型蒸気発生器

出願番号:特願2001 - 352684 出願日:平成13年11月19日 特許番号:特許第3523634号 登録日:平成16年2月20日 特許権者:核燃料サイクル開発機構

本発明は高速増殖炉において,中間熱交換器, 2次系主ポンプ,2次系配管設備,2次系の計測 制御設備・予備設備・ナトリウム純化等の補助設 備,ダンプタンク等の各種設備の2次冷却系統を 簡素化し必要な物量と設置スペースを大幅に削減 した中間熱交換器組込型蒸気発生器を提供するも のである。

1.目的

冷却材に液体金属ナトリウムを用いる高速増殖 炉では,タービンで発電するためにナトリウムの 熱で蒸気を発生する蒸気発生器が使用されてい る。冷却材である液体ナトリウムが水と激しく反 応する性質を持っていることから,蒸気発生器の 伝熱管が破損した場合に,水とナトリウムの反応 の影響が原子炉炉心に波及しないように,中間熱 交換器を介在させている。

この中間熱交換器関係機器の設置スペースの縮 小化を目的に中間熱交換器と蒸気発生器の二つの 機能を持たせ,かつ伝熱管の万一の破損に対しても 高い安全性を確保するために開発したものである。

2.技術の概要

図1(断面図)は中間熱交換器組込型蒸気発生 器の実施例であり,ナトリウム冷却型高速増殖炉

図1 中間熱交換器組込型蒸気発生器の実施例

図2 X X 矢視図

有底で有蓋の円筒状容器(10)の内部に,同軸 状に間隔をあけて内筒(12)を設置する。内筒の 長さは容器長さより短く,内筒(12)の上下端は 円筒状容器(10)の底面及び上面に対して十分な 隙間を設けている。円筒状容器(10)は,その内 部に2次冷却材として液体ナトリウム(14)を収 容するものであり,上部の自由液面は不活性ガス (16)で覆っている。内筒(12)は,その内外で 流路を区分する機能を担い,内筒内は上昇流れの 領域,内筒外は下降流れの領域となる。

内筒(12)の上下方向のほぼ中央部に液体ナト リウムが自由に通過できる多孔板(18)を設け, 内筒(12)の下側多孔板(18)の下方にヘリカル コイル状の中間熱交換用伝熱管(20)を設置し, 上方にヘリカルコイル状の蒸気発生用伝熱管(22) を設置する。これらの配置は二次冷却材(14)の 流動方向を上向きにし熱交換効率を高めている。

円筒状容器(10)の外周部に電磁駆動用コイル

(24)を設置し,内筒(12)に磁性体コア(26)を 取り付けることで電磁ポンプを構成し,2次冷却 材を強制循環させることで小型化を図っている。

原子炉炉心を流れて加熱された1次冷却材(液 体ナトリウム)は中間熱交換器組込型蒸気発生器 に達し,中間熱交換用伝熱管(20)の内部を流通 し,2次冷却材(液体ナトリウム)を加熱し,過 熱された二次冷却材は内筒内を上昇し,多孔板の 孔を通過して蒸気発生用伝熱管(22)の内部を流 れる水を加熱する。その水は蒸気となりタービン 発電機に向かう。

このように

- ・電磁ポンプ機構により強制流動・循環させるこ とで熱効率を高められる。
- ・外部からの通電する電極が不要となり,ダクト 構造を単純化できかつ製造や保守が容易である。
- ・安全性の確保

等の利点が生じる。

核燃料サイクル開発機構

Japan Nuclear Cycle Development Institute

本 社	〒319−1184	茨 城 県 那 珂 郡 東 海 村 村 松 4 - 4 9	TEL (029) 282-1122
敦 賀 本 部	〒914-8585	福井県敦賀市木崎65-20	TEL (0770) 23-3021
新型転換 <mark>炉</mark> ふげん発電所	〒914-8510	福井県敦賀市明神町3	TEL (0770) 26-1221
高速増殖炉もんじゅ建設所	〒919-1279	福井県敦賀市白木2-1	TEL (0770) 39-1031
東海事業所	∓319-1194	茨城県那珂郡東海村村松4-33	TEL (029) 282-1111
大 洗 エ 学 セ ン タ –	〒311−1393	茨 城 県 東 茨 城 <mark>郡 大</mark> 洗 町 成 田 町 4 0 0 2	TEL (029) 267-4141
人形峠環境技術センター	708-0698	岡山県苫田郡上斎原村1550	TEL (0868) 44-2211
東 濃 地 科 学 セ ン タ -	〒509-5102	岐 阜 県 土 岐 市 泉 町 定 林 寺 9 5 9 - 3 1	TEL (0572) 53-0211
幌延深地層研究センター	〒098 −3207	北 海 道 天 塩 郡 幌 延 町 宮 園 町 1 - 8	TEL (01632) 5-2022
東京事務所	〒100-8577	東京都千代田区内幸町2-1-8 新生銀行本店ビル11階	TEL (03) 5157-1911
東京インフォメーションルーム	〒100-0006	東京都千代田区有楽町1-1-2 日比谷三井ビル1階	TEL (03) 3597-9497
福井事務所	〒910-0005	福井県福井市大手3-4-1 福井放送会館5階	TEL (0776) 25-3040
六 ヶ 所 事 務 所	〒039-3212	青森県上北郡六ヶ所村尾駮字沖付	TEL (0175) 71-2716
札 幌 事 務 所	〒060-0 005	北海道札幌市中央区北五条西6丁目 北海道通信ビル5階	TEL (011) 200-1681
水戸連絡事務所	<u>∓310-08</u> 52	茨城県水戸市笠原町978-25 茨城県開発公社ビル4階	TEL (029) 301-1020
〈海外事務所〉			
WASHINGTON	INC Washington	Office	TEL 202-338-3770
MAGHINOTON	1825 K Street, N	. W., Suite508 Washington D.C.20006	FAX 202-338-3771
	U.S.A.	-	
PARIS	JNC Paris Office		TEL 1-4260-3101

JNC Paris Office 4-8, Rue Sainte-Anne, 75001 PARIS France TEL 1-4260-3101 FAX 1-4260-2413

サイクル機構技報 JNC Technical Review No.23 2004.6

2004年6月20日発行

© 20 編 集	04 核炸 発 行	然料サイクル開発機構 核燃料サイクル開発機構 技術 〒319-1184 茨城県那珂郡東 TEL:029(282)1122(代) E-Mail:gihoh@jnc.go.jp	i展開部 技術協力課 減村村松4-49 FAX:029(282)7980 URL:http://www.jnc.go.jp/
製	作	いばらき印刷株式会社 〒319-1112 茨城県那珂郡東 TEL:029(282)0370 E-Mail:info@i-printing.co.jp	ē海村村松字平原3115-3 FAX:029(282)0524 URL:http://www.i-printing.co.jp/

©2004 Japan Nuclear Cycle Development Institute

Published by Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan

