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Abstruct

Relationships between 226Ra and other alkaline earth elements (Mg, Ca, Sr and
Ba) were analysed in element availabilities for plants and their distributions
within plant at three sites of Ningyo-toge uranium mine and milling area. The
aim 1s to clarify the behavioural similarity of 226Ra with other elements in the
soll-plant systems at sites with different soil origins. The behaviour of 226Ra was
interacted with other elements in the processes of soil adsorption and desorption,
plant absorption and allocation among organs. There were different selectivities
among elements in each process. Plant uptake of Ba and 226Ra from soil was one
order of magnitude lower than that of Mg, Ca and Sr at all sites. Discrimination
of 226Ra agamst other elements was found in allocation within plant. Regulatory
absorption was suggested for essential bio-elements such as Mg and Ca to keep

their concentration in organ within narrow ranges.

Keywords: Absorption and allocation; Alkaline earth element; Ningyo-toge;

Soil-plant system; 226Ra; Uranium mine and milling
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Introduction

In the late 1980s, the uranium mining activity at Ningyo-Toge, Japan, was
closed and discharge of tailings ceased. Recently, attention has been directed
toward environmental management within and around the inactive uranium
mines and the mill tailings retained in this area. 226Ra is a naturally occurring
radionuclide found in tailings and dumps of waste from uranium mining. Plants
have been observed to take up 226Ra present around their roots irrespective of
their biological necessity, and hence plants provide one of pathways of radium
migration in the terrestrial environment.

To estimate the plant uptake of radionuclides, concentration ratio (CR)
expressed as the ratio of the radionuclide concentration in plant and in soil is
widely used. In ten years ago, JAEA published a comprehensive review of the
CR of radium (Simon & Ibrahim, 1990). The CRs of 226Ra were shown to vary
more than two orders of magnitude. The CR is influenced by several factors
affecting the availability of radium such as scil type, pH-level, content of soil
organic matter, clay, other alkaline-earth elements, exchangeable calcium and
potassium, and chemical forms (for review see McDowell-Boyer, Watson & Travis,
1980). Site-specific parameters should be taken into account for estimating the
migration of the radionuclide.

Although many factors affect the uptake of radium, the behaviour is expected
to be similar to that of alkaline earth elements due to the position in the periodic
table. Comparisons of radium and calcium concentration in plant for several
vegetables showed that the uptake of radium is related to the ability of plants to
take up calcium (Kopp, Oestling & Burkart, 1989; Million, Srtain, Gonzalez &
Carrier, 1994). High concentration of calcium and barium in soil reduces the
uptake of 226Ra (Kopp & Oestling et al., 1989). The quantity of radium taken up
from soil should depend on the ratio of Ra2+/Ca2* in the soil. The observed ratio
[OR = (Ra/Ca in plants)/(Ra/Ca in soil)] has been documented to be less than
unity in plants, indicating there is significant diserimination in the uptake of
radium and calcium by plants (Kirchmann, Boulenger & Lafontaine, 1966;
Bhujbal, D'Souza & Mistry, 1970; Sam and Eriksson, 1995). In contrast, studies
of Sr in plant-soil system showed the Sr/Ca ratio in the plant and Sr/Ca ratio in
the soil remained constant with a slight discrimination (Nisbet, Konoplev, Shaw,
Lembrechts, Merckx & Smolders et al., 1993). Comparative data of radium with
the akin elements such as Mg, Sr, and Ba are limited. Analysis of these
elements would be useful to understand the behaviour of radium in a variety of

vegetation with different soil characteristics.
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The Ningyo-Toge mine and milling area possess various sites with soil of
different origin, such as mill tailings, ore and natural soil. In the present study,
the amounts of 226Ra and the chemical homologues (Mg, Ca, Sr and Ba) were
determined for soils and plants in this area. Moreover, the distribution of 226Ra
and related elements in plant organs and their seasonal changes were
determined. Analysis was focused on the relationships between 226Ra and other
elements in the process of plant uptake from soil and their allocation to organs

within plants.

Materials and methods
Sites and vegetations

The uranium mine and mill operation of the Ningyo-Toge Environmental
Engineering Center, Japan Nuclear Cycle Development Institute (JNC) is
located in western Japan (35° 18N, 133° 55'E) at a hilly site with an elevation of
700m. In 1960 a pilot mill was established at Ningyo-toge for processing of
uranium ore from nearby conventional mines. Mill tailings and residuals from
acid leaching were neutralized by lime and dumped in the mill tailings pond.
The pond had been covered with water and maintained. Openpit mining has
been conducted since 1977. In 1987 uranium mining and milling in this area
were closed. The openpit has been reclaimed by top-soiling of waste ore and
granite soil about 7m depth. Overburden of the mine has been dumped beside
the mine. These sites are dominated by perennial grasses: Phragmites australis
{Cav.) Trin. Ex Steud. at the mill tailings pond and Miscanthus sinensis Anderss.

at the covered openpit and the overburden dump.

Sample Collection and preparation

Soils and plants in the mill tailings pond (MT), the covered openpit (CP), and
the overburden dump (OD) were harvested. In each location, aboveground part
of the plant (1-2kg) was harvested with five replicates in May, August and
November of 1998 to study seasonal changes in elemental composition. Soil
samples of about 1kg were collected in August of 1998 by a trowel from the major
root zone areas (0-15cm) of the harvested plants. Plants were washed by tap
water, and were separated into leaves, stems and fruits (flowers and fruits being
combined). Soil samples were air dried and sieved (<2mm). Soluble fractions of
the soil were extracted with 1:10 (w/v) distilled water for a week. Soils and

plant samples were oven-dried at 80°C for over 48h, weighed, and then ground to
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homogeneity. Dried samples of soil and plant (100-200g) were ashed in porcelain
dishes placed in a muffle furnace (500°C).

Chemical analysis

For analysis of Mg, Ca, Sr and Ba, the ashed samples were digested with nitric
acid and hydrofluoric acid in a Teflon™ beaker on a sand bath, and dissolved in
1% HNOsz solution. The soil solution were filtered and adjusted to 1% HINOs
solution. These samples were subjected to chemical analysis by ICP-AES
(ICAP-5717, Jarrell-ash, Japan).

For analysis of 226Ra activity, the ashed samples were decomposed with Na2COs3
in Pt crucibles at 900°C. 226Ra in the decomposed samples and the water
samples of soil solution were precipitated in NazCOs3 solution, and were dissolved
in 1% HCI solution. The activities of 226Ra of these samples were estimated by

radon emanation method.

Results
Elements in soil and plant

The profile of 226Ra and other elements composition in soil and the soil solution
were different among sites (Table 1). MT soil contained lowest Mg and highest
Ca. OD soil contained highest Mg, and lowest Ca. Activity of 226Ra was highest
in MT soil and lowest in the OD soil. Sr and Ba did not show differences in their
concentration among soils. For the soluble fractions in soil, their concentrations
did not reflect total concentration in soil. There was a tendency for higher
content of elements in MT soil and lower content in CP soil. For plants,
concentrations of Mg and Ca were less variable in comparison with their
variability in soils (Table 1). The concentrations of Sr and Ba were also less
variable among sites. In contrast, the 226Ra concentration in plant was more
variable. The concentration of 226Ra in plant seems to increase proportionally
with increasing 226Ra in soil. For both soils and plants, there were twenty times

of difference in the concentration of 226Ra between MT and OD site.

Relationship between soil and plant

Concentration ratios of an element between plant and soil (CR) and cbserved
ratios, for 226Ra against other elements between plant and soil (OR) are given in
Table 2. The CR of Mg and Ca was observed to vary among sites, and there were
6-7 times differences in the CRs between MT and OD sites. They were inversely
correlated to their contents in soil (Table 1). The change in CR of Sr with sites
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was similar to that of Ca. On the other hand, the CR of Ba and 226Ra were less
variable with ranges between 0.05-0.09 and between 0.05-0.07, respectively.
There were no significant differences in the CR of 226Ra among sites (P=0.75).
For all sites, the CR of Ba and 226Ra was lower than that of Mg, Ca and Sr.
These differences in CR lead OR values less than unity except for Ba. The OR
for 226Ra against Mg, Ca and Sr ranged between 0.05-0.27, 0.03-0.32 and
0.08-0.21, respectively, among sites. There was no clear discrimination between
Ba and 226Ra. The OR for 226Ra against Ba was ranged from 0.6 to 1.4.

The CR can be expressed as the product of solubility (ratio of element in
solution to element in total soil) and its absorbability (CRsolute: concentration ratio
based on soluble fractions in scil). Table 3 shows the solubility and the CRsolute
for each element at the three sites. For all elements, the solubility varied
significantly with soils (P<0.001) and was lowest in CP soil. The soils of MT and
OD were observed to have similar value in the solubility except for Mg.
Apparently, differences in soil type have influenced this partitioning in similar
way among the alkaline earth elements. The CRsomte of 226Ra at CP site was
higher than that of MT and OD site. This trend was also observed for all other
elements (Mg, Ca, Sr, and Ba). Counteracting pattern between the solubility
and the CReohwe may explain the reason why the CR (based on total in soil) of
226Ra does not change proportionally with soil solubility.

The solubility was significantly different among elements (P<0.001). The
solubility of Ba and 226Ra was one order of magnitude lower than that of Ca and
Sr for each site. The CRuwlute was also significantly different among elements
(P<0.001). The CReomute of 226Ra was about 5 times lower than that of Mg, but not
necessarily lower than that of Ca and Sr. At MT site, CRsouze of 226Ra was found
to be higher than that of Ca and Sr. Thus, the OR values of 226Ra less than unity,
which derived from their lower CR (Table 2), was mainly explained by their lower
solubility against Ca and Sr and by their lower absorbability against Mg.

Distribution of elements in plant

Fig. 1 shows the distribution of elements and their seasonal change in plant
organ of P australis and M. sinensis growing on MT and OD sites, respectively.
For all elements, different organs had different concentrations. Except for Mg in
M. sinensis, a decreasing order of concentration from leaves, fruits to stems was
observed. Concentration of Ca, Sr, Ba and 226Ra, except for Mg, in leaves of both
plants increased from spring to autumn. The seasonal changes in

concentrations of all elements in stems, were less and not significant (P>0.05).
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To compare the selectivity of 226Ra among organs relative to other alkaline
earth elements, the ratio of 226Ra to other elements were calculated for each
organ. The ratios in leaves, dead leaves and fruit were highly correlated with
that in stems within and between species (Fig. 2). This high correlation
demonstrates that the ratio in plant organs was strongly affected by the ratio of
elements absorbed by plants. The 1:1 values of the ratios in stem were shown in
the figures as the solid lines. For 226Ra/Ca, 226Ra/Sr and 226Ra/Ba, plots of leaves
were distributed near the solid lines, indicating that discriminations of these
clements are similar between stem and leaves. On the other hand, the plots of
dead leaves and fruits were slightly higher than those lines. Thus, 226Ra tend
to accumulate in these organs rather than Ca, Sr and Ba for both plants. Mg
differed from these elements in the relationship with 226Ra. For the ratio of
226Ra/Mg, the plot of leaves and of dead leaves were distributed higher than the
solid line, and the plot of fruits was distributed near to the line.

Since the linear relationship of element distribution was given among organs,
observed ratios within a plant (OR defined here as 226Ra/M in an organ divided by
226Ra/M in another organ, where the M is Mg, Ca, Sr or Ba) might well draw
relative 226Ra selectivity against other elements among organs. The OR was
calculated on stem bases as leaves/stems, dead leaves/stems and fruits/stems for
each element. Irrespective of harvest time, the OR of leaves/stems and of dead
leaves/stems did not vary significantly in each element (P<0.05). The ORs of
226Ra against Ca, Sr and Ba was not different between the species. In a
comparison of plant species between P. australis and M. sinensis, significant
difference was only seen for the 226Ra/Mg ratio in leaves/stems and fruits/stems
(P<0.05). Although the OR was different among plant organs (P<0.0001) and
among elements (P<0.0001), the OR of 226Ra/Ca, 226Ra/Sr and 226Ra/Ba in each

organ showed similar value (Table 4).

Discussion
Influence of alkaline earth elements on the uptake of ?26Ra in plants

Most studies found significantly elevated 226Ra levels in plants at or near
mining and milling operations (Simon & Ibrahim, 1990). Such trend was also
observed in this study. Concentration of 226Ra in plants increased proportionally
with increasing ?26Ra concentration in soil. The concentration ratios of 226Ra for
two grass species in this area were similar to the values compiled by
McDowell-Boyer and Watson et al. (1980; CR=0.09 for forage, hay and feed) and
TAEA (1994; CR=0.08 for grass).
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In this study, differences in CR of 226Ra among sites were not observed. This
result does not favor a proportional change of the CR with different soil solubility.
Indeed, the element in water solution, which only represents a part of available
cation pool, may not represent the total available cation for plant uptake (e.g.
Larcher, 1995). Exchangeable fraction of 226Ra in soil may well represent the
availability within a limited kind of soil (Markose, Bhat & Pillai, 1993), though, it
may not sufficiently explain in a several kinds of soil (Lima and Penna-Franca,
1988). In the case of this study, differences in concentrations of concurrent
cations among soils may explain this disproportional relationship between the CR
and the solubility. A number of studies have shown that high concentration of
Ca in substrate suppresses radium uptake by plants (Taskaev, Ovchenkov,
Aleksakhin & Shuktomova, 1977; Million, Sartain, Gonzalez & Carrier, 1994;
Markose & Bhat et al., 1993; Sam & Eriksson, 1995). The presence of Ca also
suppresses the uptake of Sr and Ba (Menzel, 1954; Wallace & Romney, 1971;
Nisbet & Konoplev et al., 1993). In the present study, similar suppressions were
also observed in CRsolute of 226Ra at MT and OD sites, which have high
concentration of Mg or Ca in soil solution.

Mg and Ca are essential nutrients for plant. Then, concentrations of these
elements in plants are maintained at certain levels in various soil conditions
(Table 2). CRsohute of Mg and Ca tended to be higher in CP plants than in MT
and OD plants, which compensates the lower content of these elements in the
former soil. Sr, Ba and 226Ra are postulated to have no metabolic roles in plant.
The change in CRsotute of these elements was similar to that of Mg and Ca. This
parallel change between CRscuie of Sr, Ba and 226Ra and that of Mg or Ca
indicates that the regulation in uptake of nutrients proportionally influence on
the uptake of these non-functional elements from soil substrate. Concurrent Sr
and Ba also have larger replacing ability is to take-up 226Ra than Mg and Ca
(Williams & Coleman, 1950; Kopp & Oestling et al., 1989). However, Sr and Ba
concentration in substrates may not approach the value large enough to influence
the plant uptake in natural environment (Table 1). Then, the main alkaline
earth elements to limit 226Ra uptake by plant would be Mg or Ca in soil.
Although the solubility of an element in soil is affected by many factors, the soil
which has a high solubility of radium may also has high solubilities of the akin
elements as shown in Table 3, which in turn reduces the absorption of radium.
Therefore, the high solubility of 226Ra does not necessarily lead to high 226Ra
transfer to plant.

At MT site, mill tailings and residuals from acid leaching had been dumped
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after neutralization by lime ten years ago. The high concentration of Ca at this
site should have some effect on the 226Ra uptake by plant. The 226Ra
concentration in OD soil was similar to that in the agricultural field in the
vicinity of the Ningyo-toge uranium site (Yunoki, Kataoka, Michiro, Sugiyama,
Shimizu & Mori, 1993) (53-76 mBq g'1), while the 226Ra concentration in plant
growing on OD site was one order of magnitude higher than that in vegetables
(spinach and Chinese cabbage) and grains (polished rice) from the agricultural
field (0.14-0.54 mBq g! dw: recalculated from fresh weight bases data asuming
dry weight content of fresh products = 10%). High fertilization and liming rates

may explain the lower transfer of 226Ra to the plants in agricultural field.

Distribution of ?26Ra in plants

Higher ?26Ra concentrations in leaves than in stems and fruits observed in this
study were confirmed by several authors (Lima & Penna-Franca, 1988; Million &
Sartain et al, 1994), though, contradict many studies which observed a
decreasing gradient from stems to leaves (Simon & Ibrahim, 1990). An increase
in 226Ra concentration in leaves from young to old has been observed for several
plant types under different growing conditions (Popova & Vallejo, 1964; Simon &
Ibrahim, 1990; Baeza, Paniagua, Rufo & Parandica, 1996). An increase of Sr in
leaves with plant growth also has been observed {(Banmnai, Muramatsu &
Yanagisawa, 1995). Kopp & Oestling et al. (1989) suggested that plants cannot
fully discriminate between 226Ra and Ca in their transfer process. Ca does not
move easily in the plant body, and tend to accumulate in the leaves with aging.
This was not the case in Mg which has metabolically different functions with Ca
and is easily redistributed from older to younger organs. It is reasonably
supposed that the concentrations of Sr, Ba and 226Ra are positively correlated
with Ca concentration in an organ. Million & Sartain et al. (1994) also found
that large differences in plant 226Ra concentration were correlated strongly to Ca

levels in plant than to in soil factors.

Discrimination of 226Ra

This study showed that alkaline earth elements are discriminated in each
process of desorption from soil to water, absorption by plant and allocation among
organs within a plant. In desorption process, the lower solubility of 226Ra and
Ba than that of Ca and Sr was observed. Similar sizes of the ions in the pair of
Sr and Ca (1.12 and 0.99A, respectively) and 226Ra and Ba (1.43 and 1.34A,

respectively) may account for the similar behavior in each pair in soil (Taskayev
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& Ovchenkov et al.,, 1977). Plant absorption and transfer of 226Ra has been
documented to be lower than that of Ca (Kirchmann & Boulenger et al., 1966;
Bhujbal & D'Souza et al., 1970; Sam & Erriksson, 1995). In the present
experiment, however, the CRsoute of 226Ra was higher than that of Ca in the plant
at MT (Table 3). The observed ratio based on soil solution [OR=(Ra/Ca in
plant)/(Ra/Ca in soil solution)] in P. australis at MT was 1.76; M. sinensis at CP
and OD had the ratio of 0.29 and 0.30, respectively. In the plant at MT, the
CRsonate of Sr and Ba was also higher than that of Ca (Table 3). In this site, Sr,
Ba and 226Ra showed high selectivity. This was in agreement with the results
obtained by some studies showing discrimination in favour of Sr uptake when Ca
concentration in soil solution exceeded the plants needs (Epstein & Leggett, 1954;
Romney, Alexander, Rhoads & Larson, 1959; Roca & Vallejo, 1995). In the
process of alloeation within a plant, alkaline earth elements, such as Ca, St, Ba
and 226Ra were found not to be discriminated between stems and leaves, whereas
226Ra tended to accumulate in dead leaves and fruits rather than in the
vegetative organs. Sam and Eriksson (1995) showed that the transfer of 226Ra
from vegetative to edible parts was lower than that of Ca on the average of
several crops. However, tkeir data also indicated that some crops could have
higher translocation of 226Rz to edible parts. These differences in the selectivity

of elements should be considered in the comparative study of plant species.

Conclusions

The 226Ra uptake depended on the availability of the radionuclides in the soil
and the selectivity of plant, which were both related to the element concentration
in the soil solution. In this study, contrasting differences of element composition
in soil were observed in relation to the concentrations of 226Ra and other alkaline
earth elements and their solubilities. The soil, which has high solubility of 226Ra,
also had high solubility of the chemical homologues. At high concentration of
Mg and Ca in scil solution, a suppression of Sr, Ba and 226Ra uptake was
observed, as a consequence of the regulatory uptake of Mg and Ca. Therefore,
the high solubility of 226Ra does not necessarily lead to high 226Ra transfer to
plant. There was a lower selectivity of Ba and 226Ra uptake over Mg, Ca and Sr
uptake. This was explained by their lower solubility than the Ca and Sr
solubility and their lower absorbability than the Mg absorbability.

Distribution of 226Ra in plants was correlated more to Ca rather than Mg.

Concentrations of Ca, Sy, Ba and 226Ra in leaves increased from spring to autumn.
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On the other hand, the selectivity of 226Ra against the chemical homologues in
organ was constant throughout the plant growing period.

These results indicate that 226Ra uptake from soil to plant and its allocation
among plant organs were correlated with the chemical homologues. The
determination of the effect of concurrent elements on 226Ra uptake and their
discrimination in each process of desorption, absorption and allocation could be
useful for evaluating 226Ra behaviour in soil-plant system.

Concentration ratios of 226Ra at the studied sites in the Ningyo-Toge area were
not different from those obtained by other authors. However, they were one
order of magnitude higher than that in agricultural field nearby. Fertilization
and liming in the agricultural field were assumed to explain the differences in

concentration ratios between them.
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Table 1. Concentrations of Mg, Ca, Sr, Ba and 2°Ra in soils, soluble
fractions and plants harvested in August. Values in parentheses indicate
standard error of mean (»=5). (MT mill tailings pond, CP covered openpit,

OD overburden dump})
Site MT CP oD
Total in soil
Mg (ppm) 650 (222) 2907 (82) 2372 (228)
Ca (ppm) 6120 (1500) 1269 (51) 397 (54)
St (ppm) 13 (1) 10 (0) 8 (1)
Ba (ppm) 283 (74) 157 (17) 230 (54)
2Ra  (10°Bg/g) 1420 (272) 167 (18) 58 (10)
Soluble in soil
Mg (ppm) 0.8 (0.1) 0.2 (0.0) 0.6 (0.1)
Ca (ppm) 194 (5.7) 0.6 (0.1) 1.4 (0.3)
St (10°ppm) 353 (8.5) 5.8 (0.6) 163 (2.4)
Ba (10°ppm)  30.3 (8.9) 7.5 (0.4) 253 (4.6)
26Ra  (10°Ba/g) 363.4 (53.7) 143 (1.0) 19.3 (4.1)
Plant P. australis M. sinensis M sinensis
Mg (ppm) 733 (32) 768 (39) 682 (89)
Ca (ppm) 1629 (194) 1152 (59) 901 (105)
Sr (ppm) 4.4 (1.6) 7.9 (0.6) 7.4 (0.8)
Ba (ppm)  12.0 (0.9) 13.7 (0.8) 11.9 (0.9)
2%Ra  (10°Bg/g) 724 (11.5) 8.5 (1.2) 3.7 (0.3)




Table 2. CR of each element and OR for *°Ra against other elements (defined

as the ratio of *°Ra/M in plants to “**Ra/M in soil, where M represent Mg, Ca,
Sr or Ba) in MT, CP and OD site. Mean and SE (in parentheses) are presented.

Site MT CP OD
CR
Mg 1.54 (0.33) 0.27 (0.02) 0.29 (0.05)
Ca 0.33 (0.06) 0.91 (0.06) 2.38 (0.34)
Sr 0.32 (0.03) 0.76 (0.08) 0.95 (0.11)
Ba 0.05 (0.02) 0.09 (0.01) 0.06 (0.02)
“Ra 0.07 (0.03) 0.05 (0.01) 0.07 (0.01)
OR
6Ra/Mg 0.049 (0.014) 0213 (0.047) 0267 (0.060)
*Ra/Ca 0320 (0.154) 0.063 (0.015) 0.031 (0.005)
226Ra/Sr 0211 (0.070) 0.078 (0.020) 0.075 (0.010)
%Ra/Ba 1284 (0.301) 0.608 (0.120) 1.403 (0.396)
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Table 3. Solubility (ratio of soluble fractions to totals in soil) and
CR.,,... (concentration ratio based on soluble fractions in soil) of Mg,

Ca, Sr, Ba and “*°Ra in MT, CP and OD site. Mean and SE (in
parentheses) are presented.

Site MT CP oD
Solubility (%)
Mg 0.157 (0.033)  0.007 (0.001)  0.025 (0.005)
Ca 0.333 (0.054)  0.046 (0.005)  0.359 (0.071)
Sr 0.261 (0.045)  0.055 (0.006) 0211 (0.037)
Ba 0.011 (0.002)  0.005 (0.000)  0.013 (0.003)
2%Ra 0.034 (0.011)  0.009 (0.001)  0.037 (0.011)
CR e
Mg 993 (76) 3938 (555) 1229 (122)
Ca 119 (39) 2096 (217) 735 (121)
Sr 148 (43) 1402 (98) 482 (61)
Ba 578 (183) 1873 (194) 512 (71)
26Ra 209 (29) 604 (98) 218 (32)
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Table 4. Observed ratios (ratio of “"Ra/M in plants to

226

*°Ra/M in
soil, where M represent Mg, Ca, Sr or Ba) at MT, CP and OD site.
Means and SE (in parentheses) are presented.

MT

CP oD

OR(Ra/Mg) 0.049 (0.014) 0213 (0.047) 0267 (0.060)
OR(Ra/Ca) 0.320 (0.154) 0.063 (0.015) 0031 (0.005)
OR(Ra/Sr) 0211 (0.070) 0.078 (0.020) 0.075 (0.010)
OR(Ra/Ba) 1.284 (0.301) 0.608 (0.120) 1.403 (0.396)
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+EBRE  78.1 30.3 36.8
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Z7 AR (mBg g-1dw) 3.0

Brorft 3 Horfe ¥

P1
o7 13.2 7.2 0.20 0.11
IAFT 10.1 7.0 0.15 0.11
FAEIY 10.6 5.4 0.16 0.08
Fd ) 5.2 0.08
FaEY 3.5 5.7 0.05 0.09
FX PP 1.2 2.9 0.02 0.04
Y7L 26.6 18.2 0.41 0.28
AR 6.8 12.3 0.10 0.19

P2
Th 1.5 1.5 0.03 0.03

P3
IR ) 4.9 4.4 0.10 0.09
YN T 6.6 3.3 0.14 0.07
raey 2.2 2.8 0.05 0.06
7P 6.3 4.6 0.13 0.10

P4
T 0.4 2.6 0.01 0.06
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